WO2019078201A1 - 硬化膜形成組成物、配向材および位相差材 - Google Patents

硬化膜形成組成物、配向材および位相差材 Download PDF

Info

Publication number
WO2019078201A1
WO2019078201A1 PCT/JP2018/038483 JP2018038483W WO2019078201A1 WO 2019078201 A1 WO2019078201 A1 WO 2019078201A1 JP 2018038483 W JP2018038483 W JP 2018038483W WO 2019078201 A1 WO2019078201 A1 WO 2019078201A1
Authority
WO
WIPO (PCT)
Prior art keywords
group
component
forming composition
cured film
film
Prior art date
Application number
PCT/JP2018/038483
Other languages
English (en)
French (fr)
Inventor
伊藤 潤
直也 西村
Original Assignee
日産化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日産化学株式会社 filed Critical 日産化学株式会社
Priority to CN201880067114.4A priority Critical patent/CN111212879A/zh
Priority to US16/756,631 priority patent/US20200325327A1/en
Priority to JP2019549291A priority patent/JP7436954B2/ja
Priority to KR1020207011883A priority patent/KR20200062259A/ko
Publication of WO2019078201A1 publication Critical patent/WO2019078201A1/ja
Priority to JP2023114611A priority patent/JP2023156287A/ja

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08KUse of inorganic or non-macromolecular organic substances as compounding ingredients
    • C08K5/00Use of organic ingredients
    • C08K5/04Oxygen-containing compounds
    • C08K5/09Carboxylic acids; Metal salts thereof; Anhydrides thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/24Homopolymers or copolymers of amides or imides
    • C08L33/26Homopolymers or copolymers of acrylamide or methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F120/00Homopolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride, ester, amide, imide or nitrile thereof
    • C08F120/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F120/52Amides or imides
    • C08F120/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F120/58Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide containing oxygen in addition to the carbonamido oxygen, e.g. N-methylolacrylamide, N-acryloyl morpholine
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/52Amides or imides
    • C08F220/54Amides, e.g. N,N-dimethylacrylamide or N-isopropylacrylamide
    • C08F220/56Acrylamide; Methacrylamide
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/18Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing
    • C08G59/40Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups ; e.g. general methods of curing characterised by the curing agents used
    • C08G59/42Polycarboxylic acids; Anhydrides, halides or low molecular weight esters thereof
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/02Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds
    • C08G63/06Polyesters derived from hydroxycarboxylic acids or from polycarboxylic acids and polyhydroxy compounds derived from hydroxycarboxylic acids
    • C08G63/08Lactones or lactides
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G63/00Macromolecular compounds obtained by reactions forming a carboxylic ester link in the main chain of the macromolecule
    • C08G63/66Polyesters containing oxygen in the form of ether groups
    • C08G63/668Polyesters containing oxygen in the form of ether groups derived from polycarboxylic acids and polyhydroxy compounds
    • C08G63/672Dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/18Manufacture of films or sheets
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L1/00Compositions of cellulose, modified cellulose or cellulose derivatives
    • C08L1/02Cellulose; Modified cellulose
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L101/00Compositions of unspecified macromolecular compounds
    • C08L101/12Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity
    • C08L101/14Compositions of unspecified macromolecular compounds characterised by physical features, e.g. anisotropy, viscosity or electrical conductivity the macromolecular compounds being water soluble or water swellable, e.g. aqueous gels
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L33/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides or nitriles thereof; Compositions of derivatives of such polymers
    • C08L33/04Homopolymers or copolymers of esters
    • C08L33/14Homopolymers or copolymers of esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L67/00Compositions of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Compositions of derivatives of such polymers
    • C08L67/04Polyesters derived from hydroxycarboxylic acids, e.g. lactones
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L69/00Compositions of polycarbonates; Compositions of derivatives of polycarbonates
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L71/00Compositions of polyethers obtained by reactions forming an ether link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K19/00Liquid crystal materials
    • C09K19/52Liquid crystal materials characterised by components which are not liquid crystals, e.g. additives with special physical aspect: solvents, solid particles
    • C09K19/54Additives having no specific mesophase characterised by their chemical composition
    • C09K19/56Aligning agents
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B1/00Optical elements characterised by the material of which they are made; Optical coatings for optical elements
    • G02B1/10Optical coatings produced by application to, or surface treatment of, optical elements
    • G02B1/11Anti-reflection coatings
    • G02B1/111Anti-reflection coatings using layers comprising organic materials
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3083Birefringent or phase retarding elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1337Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers
    • G02F1/133711Surface-induced orientation of the liquid crystal molecules, e.g. by alignment layers by organic films, e.g. polymeric films
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/86Arrangements for improving contrast, e.g. preventing reflection of ambient light
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K85/00Organic materials used in the body or electrodes of devices covered by this subclass
    • H10K85/10Organic polymers or oligomers
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2367/00Characterised by the use of polyesters obtained by reactions forming a carboxylic ester link in the main chain; Derivatives of such polymers
    • C08J2367/02Polyesters derived from dicarboxylic acids and dihydroxy compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J2433/00Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers
    • C08J2433/04Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters
    • C08J2433/14Characterised by the use of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical, or of salts, anhydrides, esters, amides, imides, or nitriles thereof; Derivatives of such polymers esters of esters containing halogen, nitrogen, sulfur, or oxygen atoms in addition to the carboxy oxygen
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L2203/00Applications
    • C08L2203/16Applications used for films
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/13363Birefringent elements, e.g. for optical compensation
    • G02F1/133631Birefringent elements, e.g. for optical compensation with a spatial distribution of the retardation value
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/8791Arrangements for improving contrast, e.g. preventing reflection of ambient light

Definitions

  • the present invention relates to a liquid crystal aligning agent for photo alignment, liquid crystal aligning agent, and retardation material for aligning liquid crystal molecules.
  • the present invention is useful for producing a patterned retardation material used in a 3D display of a circularly polarized glasses system, and a retardation material used in a circularly polarizing plate used as an antireflection film of an organic EL display.
  • the present invention relates to a liquid crystal alignment agent for photo alignment, an alignment material, and a retardation material.
  • a retardation material is usually disposed on a display element such as a liquid crystal panel that forms an image.
  • a display element such as a liquid crystal panel that forms an image.
  • a plurality of two types of retardation regions having different retardation characteristics are regularly arranged, and constitute a patterned retardation material.
  • a retardation material patterned so as to dispose a plurality of retardation regions having different retardation characteristics as described above will be referred to as a patterned retardation material.
  • the patterned retardation material can be produced, for example, by optically patterning a retardation material composed of a polymerizable liquid crystal as disclosed in Patent Document 1.
  • the optical patterning of the retardation material made of a polymerizable liquid crystal utilizes a photoalignment technique known for forming an alignment material of a liquid crystal panel. That is, a coating film made of a photoalignable material is provided on a substrate, and two types of polarized light having different polarization directions are irradiated to this. Then, a photo alignment film is obtained as an alignment material in which two types of liquid crystal alignment regions having different alignment control directions of liquid crystals are formed.
  • a solution-like retardation material containing a polymerizable liquid crystal is coated on the photoalignment film to realize the alignment of the polymerizable liquid crystal. Thereafter, the oriented polymerizable liquid crystal is cured to form a patterned retardation material.
  • the anti-reflection film of the organic EL display is composed of a linear polarizer and a quarter-wave retarder, and the extraneous light directed to the panel surface of the image display panel is converted into linearly polarized light by the linear polarizer, and the subsequent quarter-wave The light is converted to circularly polarized light by a retardation plate.
  • the extraneous light by this circularly polarized light is reflected by the surface of the image display panel or the like, the rotational direction of the polarization plane is reversed at the time of this reflection.
  • the reflected light is converted by the 1 ⁇ 4 wavelength retardation plate into linearly polarized light in the direction to be blocked by the linear polarization plate and then blocked by the subsequent linear polarization plate, contrary to the time of arrival.
  • outgoing radiation to the outside is significantly suppressed.
  • Patent Document 2 describes that this optical film has reverse dispersion characteristics by constituting a quarter-wave retarder by combining a half-wave plate and a quarter-wave plate.
  • a method of configuring by In this method it is possible to construct an optical film with reverse dispersion characteristics using a liquid crystal material with positive dispersion characteristics in a wide wavelength band for displaying a color image.
  • Patent Documents 3 and 4 As a liquid crystal material applicable to this retardation layer, one having an inverse dispersion characteristic has been proposed (Patent Documents 3 and 4). According to the liquid crystal material having such an inverse dispersion characteristic, instead of forming a 1 ⁇ 4 wavelength retardation plate by combining 2 layers of a 1 ⁇ 2 wavelength plate and a 1 ⁇ 4 wavelength plate, it is possible to use a retardation layer Can be secured by a single layer to ensure reverse dispersion characteristics, whereby an optical film capable of securing a desired retardation in a wide wavelength band can be realized with a simple configuration.
  • An alignment layer is used to align the liquid crystal.
  • a method of forming an alignment layer for example, a rubbing method or a photo-alignment method is known, and the photo-alignment method is capable of quantitative control of alignment processing without generating static electricity and dust which are problems of the rubbing method.
  • an acrylic resin, a polyimide resin, etc. which have photodimerization sites, such as a cinnamoyl group and a chalcone group, in a side chain as an available photoalignment property material are known. It has been reported that these resins exhibit the ability to control the alignment of liquid crystals (hereinafter also referred to as liquid crystal alignment) by irradiating polarized UV light (see Patent Documents 5 to 7).
  • the alignment film itself which has the role of aligning the polymerizable liquid crystal on the alignment film, is polymerized.
  • a method of producing a thinner retardation film is used. Therefore, it is required that the alignment layer can be easily peeled off after the polymerizable liquid crystal is cured.
  • the alignment layer is required to have solvent resistance.
  • the alignment layer may be exposed to heat or a solvent in the process of producing the phase difference material. When the alignment layer is exposed to a solvent, the liquid crystal alignment ability may be significantly reduced.
  • JP 2005-49865 A Japanese Patent Application Laid-Open No. 10-68816 U.S. Pat. No. 8,119,026 JP, 2009-179563, A Patent No. 3611342 JP, 2009-058584, A Japanese Patent Publication No. 2001-517719 Patent No. 4207430 gazette
  • the present invention has been made based on the above findings and examination results. That is, the object of the present invention is to provide excellent photoreaction efficiency and solvent resistance, and to align the polymerizable liquid crystal with high sensitivity, and after curing the polymerizable liquid crystal, from the polymerizable liquid crystal layer It is providing the cured film formation composition for providing the orientation material which becomes peelable.
  • the first aspect of the present invention is A cinnamic acid derivative represented by the following formula (1), which is a component (A), (In formula (1), A 1 and A 2 each independently represent a hydrogen atom or a methyl group, R 1 represents a hydrogen atom, a halogen atom, C 1 to C 6 alkyl, C 1 to C 6 haloalkyl, C 1 ⁇ C 6 alkoxy, C 1 ⁇ C 6 haloalkoxy, C 3 ⁇ C 8 cycloalkyl, C 3 ⁇ C 8 halocycloalkyl, C 2 ⁇ C 6 alkenyl, C 2 ⁇ C 6 haloalkenyl, C 3 ⁇ C 8 Cycloalkenyl, C 3 -C 8 halocycloalkenyl, C 2 -C 6 alkynyl, C 2 -C 6 haloalkynyl, (C 1 -C 6 alkyl) carbonyl, (C 1 -C 6 haloalky
  • the component (B) is preferably at least one polymer selected from the group consisting of polyether polyols, polyester polyols, polycarbonate polyols and polycaprolactone polyols.
  • the component (B) is preferably cellulose or a derivative thereof.
  • the component (B) comprises at least one of a polyethylene glycol ester group and a C 2 to C 5 hydroxyalkyl ester group, and at least one of a carboxyl group and a phenolic hydroxy group. It is preferable that it is an acryl polymer which it has.
  • the component (B) is at least one of a monomer having a polyethylene glycol ester group and a monomer having a C 2 to C 5 hydroxyalkyl ester group, a monomer having a carboxyl group and a phenolic It is preferable that it is an acrylic copolymer obtained by the polymerization reaction of the monomer containing at least one of the monomer which has a hydroxyl group.
  • the component (B) is preferably an acrylic polymer having a hydroxyalkyl group in its side chain.
  • the component (C) is preferably a polymer obtained by polymerizing a monomer containing an N-hydroxymethyl compound or an N-alkoxymethyl (meth) acrylamide compound.
  • the ratio of the component (A) to the component (B) is preferably 5:95 to 60:40 by mass.
  • the component (C) it is preferable to contain 10 parts by mass to 500 parts by mass of the component (C) based on 100 parts by mass of the total amount of the components (A) and (B).
  • a second aspect of the present invention relates to an alignment material obtained by using the cured film-forming composition of the first aspect of the present invention.
  • a third aspect of the present invention relates to a retardation material which is formed using a cured film obtained from the cured film-forming composition of the first aspect of the present invention.
  • the present invention it is possible to align the polymerizable liquid crystal with high sensitivity while having excellent photoreaction efficiency and having high solvent sensitivity, and to be removable from the polymerizable liquid crystal layer after curing the polymerizable liquid crystal. It is an object of the present invention to provide a cured film-forming composition for providing an alignment material.
  • the cured film-forming composition of the present embodiment contains a low molecular photoalignment component which is the (A) component, a hydrophilic polymer which is the (B) component, and a crosslinking agent which is the (C) component.
  • the cured film-forming composition of the present embodiment can further contain a crosslinking catalyst as the component (D) in addition to the components (A), (B), and (C). And, as long as the effects of the present invention are not impaired, other additives can be contained.
  • the component (A) contained in the cured film-forming composition of the present invention is a cinnamic acid derivative represented by the above formula (1).
  • halogen atom in the said Formula (1), a fluorine atom, a chlorine atom, a bromine atom, and an iodine atom are mentioned.
  • the expression "halo" in the present specification also represents these halogen atoms.
  • C a to C b alkyl in the above formula (1) represents a linear or branched hydrocarbon group having a carbon number of a to b, and examples thereof include a methyl group, an ethyl group and n-propyl group.
  • C a to C b haloalkyl in the above formula (1) is a linear or branched chain having a carbon atom number of a to b, wherein the hydrogen atom bonded to the carbon atom is optionally substituted by a halogen atom And when substituted by two or more halogen atoms, the halogen atoms may be identical to one another or different from one another.
  • fluoromethyl group for example, fluoromethyl group, chloromethyl group, bromomethyl group, iodomethyl group, difluoromethyl group, chlorofluoromethyl group, dichloromethyl group, bromofluoromethyl group, trifluoromethyl group, chlorodifluoromethyl group, dichlorofluoromethyl group, trichloromethyl group Group, bromodifluoromethyl group, bromochlorofluoromethyl group, dibromofluoromethyl group, 2-fluoroethyl group, 2-chloroethyl group, 2-bromoethyl group, 2, 2-difluoroethyl group, 2-chloro-2-fluoroethyl group Group, 2,2-dichloroethyl group, 2-bromo-2-fluoroethyl group, 2,2,2-trifluoroethyl group, 2-chloro-2,2-difluoroethyl group, 2,2-dichloro-2 -
  • C a to C b cycloalkyl in the above formula (1) represents a cyclic hydrocarbon group having a carbon number of a to b, and a single ring or a composite ring structure of 3 to 6 ring members Can be formed.
  • each ring may be optionally substituted with an alkyl group within the specified number of carbon atoms.
  • cyclopropyl group 1-methylcyclopropyl group, 2-methylcyclopropyl group, 2,2-dimethylcyclopropyl group, 2,2,3,3-tetramethylcyclopropyl group, cyclobutyl group, cyclopentyl group, 2- Methylcyclopentyl, 3-methylcyclopentyl, cyclohexyl, 2-methylcyclohexyl, 3-methylcyclohexyl, 4-methylcyclohexyl, bicyclo [2.2.1] heptane-2-yl, etc. And are selected in the range of each designated number of carbon atoms.
  • C a to C b halocycloalkyl in the above formula (1) is a cyclic hydrocarbon consisting of a to b carbon atoms in which a hydrogen atom bonded to a carbon atom is optionally substituted by a halogen atom Group, and can form a single ring or a complex ring structure from a 3-membered ring to a 6-membered ring.
  • Each ring may be optionally substituted by an alkyl group within the specified number of carbon atoms, and substitution by a halogen atom may be a ring structure part or a side chain part, or Both may be both, and further, when substituted by two or more halogen atoms, those halogen atoms may be identical to each other or may be different from each other.
  • 2,2-difluorocyclopropyl, 2,2-dichlorocyclopropyl, 2,2-dibromocyclopropyl, 2,2-difluoro-1-methylcyclopropyl, 2,2-dichloro-1-methyl Cyclopropyl group, 2,2-dibromo-1-methylcyclopropyl group, 2,2,3,3-tetrafluorocyclobutyl group, 2- (trifluoromethyl) cyclohexyl group, 3- (trifluoromethyl) cyclohexyl group A 4- (trifluoromethyl) cyclohexyl group etc. are mentioned as a specific example, and it is selected in the range of the designated carbon atom number of each.
  • C a to C b alkenyl in the above formula (1) is a linear or branched chain having a carbon number of a to b, and one or more double bonds in the molecule.
  • Unsaturated hydrocarbon group having, for example, vinyl group, 1-propenyl group, 2-propenyl group, 1-methylethenyl group, 2-butenyl group, 1-methyl-2-propenyl group, 2-methyl-2-propenyl group , 2-pentenyl group, 2-methyl-2-butenyl group, 3-methyl-2-butenyl group, 2-ethyl-2-propenyl group, 1,1-dimethyl-2-propenyl group, 2-hexenyl group, 2 -Methyl-2-pentenyl group, 2,4-dimethyl-2,6-heptadienyl group, 3,7-dimethyl-2,6-octadienyl group, etc. are mentioned as specific examples, and the range of each designated carbon atom number Is selected
  • C a to C b haloalkenyl in the above formula (1) is a straight chain or branched chain having a carbon atom number of a to b, wherein the hydrogen atom bonded to the carbon atom is optionally substituted by a halogen atom It represents an unsaturated hydrocarbon group which is linear and has one or more double bonds in the molecule. At this time, when substituted by two or more halogen atoms, those halogen atoms may be identical to each other or different from each other.
  • C a to C b cycloalkenyl in the above formula (1) represents a cyclic unsaturated hydrocarbon group having a carbon number of a to b and having one or more double bonds. And a 3- or 6-membered monocyclic or complex ring structure can be formed.
  • each ring may be optionally substituted by an alkyl group within the specified number of carbon atoms, and furthermore, the double bond may be in the form of either endo- or exo-.
  • 2-cyclopenten-1-yl group, 3-cyclopenten-1-yl group, 2-cyclohexen-1-yl group, 3-cyclohexen-1-yl group, bicyclo [2.2.1] -5-heptene- A 2-yl group etc. are mentioned as a specific example, and it is chosen in the range of the number of carbon atoms of each designation.
  • C a to C b halocycloalkenyl in the above formula (1) is cyclic, wherein the hydrogen atom bonded to a carbon atom is optionally substituted by a halogen atom, and the number of carbon atoms is a to b, and It represents an unsaturated hydrocarbon group having one or more double bonds, and can form a 3- to 6-membered monocyclic or complex ring structure.
  • each ring may be optionally substituted by an alkyl group within the specified number of carbon atoms, and furthermore, the double bond may be in the form of either endo- or exo-.
  • substitution with a halogen atom may be a ring structure part, a side chain part, or both of them, and when substituted by two or more halogen atoms, those halogen atoms May be identical to one another or different from one another.
  • 2-chlorobicyclo [2,2.1] -5-hepten-2-yl group etc. are mentioned as a specific example, and it is selected in the range of the designated carbon atom number of each.
  • C a to C b alkynyl in the above formula (1) is linear or branched having a carbon number of a to b, and has one or more triple bonds in the molecule
  • C a to C b haloalkynyl in the above formula (1) is a straight chain or branched chain having a carbon atom number of a to b, wherein the hydrogen atom bonded to the carbon atom is optionally substituted by a halogen atom It represents an unsaturated hydrocarbon group which is linear and has one or more triple bonds in the molecule. At this time, when substituted by two or more halogen atoms, those halogen atoms may be identical to each other or different from each other.
  • C a -C b alkoxy in the above formula (1) represents an alkyl-O- group having the above-mentioned meaning having a carbon atom number of a to b, and examples thereof include a methoxy group, an ethoxy group and n-propyloxy Groups, i-propyloxy group, n-butyloxy group, i-butyloxy group, s-butyloxy group, t-butyloxy group, n-pentyloxy group, n-hexyloxy group etc. are mentioned as specific examples, and each designation It is selected in the range of the number of carbon atoms.
  • C a to C b haloalkoxy in the above formula (1) represents a haloalkyl-O- group having the above-mentioned meaning consisting of a to b carbon atoms, such as difluoromethoxy, trifluoromethoxy, Chlorodifluoromethoxy, bromodifluoromethoxy, 2-fluoroethoxy, 2-chloroethoxy, 2,2,2-trifluoroethoxy, 1,1,2,2-tetrafluoroethoxy, 2-chloro -1,1,2-trifluoroethoxy group, 2-bromo-1,1,2-trifluoroethoxy group, pentafluoroethoxy group, 2,2-dichloro-1,1,2-trifluoroethoxy group, 2 , 2,2-trichloro-1,1-difluoroethoxy group, 2-bromo-1,1,2,2-tetrafluoroethoxy group, 2,2,3,3-tet Fluoropropy
  • the notation of (C a -C b alkyl) carbonyl in the above formula (1) represents an alkyl-C (O)-group having the above-mentioned meaning having a carbon atom number of a to b, such as acetyl group, propionyl Groups, butyryl group, isobutyryl group, valeryl group, isovaleryl group, 2-methylbutanoyl group, pivaloyl group, hexanoyl group, heptanoyl group etc. are mentioned as specific examples, and each is selected within the specified number of carbon atoms .
  • the notation of (C a -C b haloalkyl) carbonyl in the above formula (1) represents a haloalkyl-C (O)-group of the above meaning having a carbon atom number of a to b, such as fluoroacetyl group, Chloroacetyl group, difluoroacetyl group, dichloroacetyl group, trifluoroacetyl group, chlorodifluoroacetyl group, bromodifluoroacetyl group, trichloroacetyl group, pentafluoropropionyl group, heptafluorobutanoyl group, 3-chloro-2,2- A dimethylpropanoyl group etc. are mentioned as a specific example, and it is selected in the range of the designated carbon atom number of each.
  • (C a -C b alkoxy) carbonyl in the above formula (1) represents an alkyl-O-C (O)-group having the above-mentioned meaning that the number of carbon atoms is a to b, for example, methoxycarbonyl Groups, ethoxycarbonyl group, n-propyloxycarbonyl group, i-propyloxycarbonyl group, n-butoxycarbonyl group, i-butoxycarbonyl group, t-butoxycarbonyl group etc. are mentioned as specific examples, and each designated carbon It is selected in the range of the number of atoms.
  • the notation of (C a -C b haloalkoxy) carbonyl in the above formula (1) represents a haloalkyl-O-C (O)-group having the above-mentioned meaning consisting of a to b carbon atoms, for example, 2 -Chloroethoxycarbonyl group, 2,2-difluoroethoxycarbonyl group, 2,2,2-trifluoroethoxycarbonyl group, 2,2,2-trichloroethoxycarbonyl group etc. are mentioned as specific examples, and each designated carbon It is selected in the range of the number of atoms.
  • the notation of (C a -C b alkylamino) carbonyl in the above formula (1) represents a carbamoyl group substituted by an alkyl group having the above-mentioned meaning in which one of hydrogen atoms consists of a to b carbon atoms.
  • methylcarbamoyl group, ethylcarbamoyl group, n-propylcarbamoyl group, i-propylcarbamoyl group, n-butylcarbamoyl group, i-butylcarbamoyl group, s-butylcarbamoyl group, t-butylcarbamoyl group and the like are specific examples. And are selected in the range of each designated number of carbon atoms.
  • the notation of (C a -C b haloalkyl) aminocarbonyl in the above formula (1) represents a carbamoyl group substituted by a haloalkyl group having the above-mentioned meaning in which one of the hydrogen atoms consists of the number of carbon atoms a to b,
  • 2-fluoroethylcarbamoyl group, 2-chloroethylcarbamoyl group, 2,2-difluoroethylcarbamoyl group, 2,2,2-trifluoroethylcarbamoyl group etc. are mentioned as a specific example, and each designated carbon atom number It is selected in the range of
  • di (C a -C b alkyl) aminocarbonyl in the above formula (1) is that the number of carbon atoms in which both hydrogen atoms may be the same or different from each other is a to b
  • a carbamoyl group, an N, N-di-n-butylcarbamoyl group and the like are mentioned as specific examples, and they are selected in the range of the designated number of carbon atoms of each.
  • R 1 , R 2 , R 3 , R 4 and R 5 of the cinnamic acid derivative represented by the formula (1) among others, a hydrogen atom, a halogen atom, C 1 to C 6 alkyl, C 2 It is preferably a substituent selected from 1 to C 6 haloalkyl, C 1 to C 6 alkoxy, C 1 to C 6 haloalkoxy, cyano and nitro.
  • R 3 is preferably a substituent other than a hydrogen atom in the above definition from the viewpoint of orientation sensitivity, and a halogen atom, a C 1 to C 6 alkyl, a C 1 to C 6 haloalkyl, a C 1 to C More preferred are substituents selected from 6 alkoxy, C 1 -C 6 haloalkoxy, cyano and nitro.
  • Examples of the divalent aromatic group of R 2 include 1,4-phenylene, 2-fluoro-1,4-phenylene, 3-fluoro-1,4-phenylene, 2,3,5,6- A tetrafluoro-1,4-phenylene group or the like; and a divalent heterocyclic group of R 2 include, for example, a 1,4-pyridylene group, a 2,5-pyridylene group, a 1,4-furanylene group and the like; Examples of the divalent fused cyclic group include, for example, 2,6-naphthylene group and the like. As R 2, a 1,4-phenylene group is preferable.
  • Preferred examples of the compound represented by the above formula (1) include, for example, the following formulas (1-1) to (1-5) (In the above formula, each R 1 has the same meaning as in the above formula (1).) The compound etc. which are represented by each of can be mentioned.
  • the compound represented by the said Formula (1) can be synthesize
  • the component (B) contained in the cured film-forming composition of the present embodiment is a hydrophilic polymer.
  • the polymer which is the component (B) can be a polymer having one or more substituents selected from a hydroxy group, a carboxyl group and an amino group (hereinafter, also referred to as a specific polymer).
  • the specific polymer which is the component (B) it is preferable to select a highly hydrophilic polymer having high hydrophilicity so as to be more hydrophilic than the component (A).
  • the specific polymer is preferably a polymer having a hydrophilic group such as a hydroxy group, a carboxyl group or an amino group, and specifically, one or two selected from a hydroxy group, a carboxyl group and an amino group It is preferable that it is a polymer which has the above substituent.
  • the polymer which is the component (B) for example, acrylic polymer, polyamic acid, polyimide, polyvinyl alcohol, polyester, polyester polycarboxylic acid, polyether polyol, polyester polyol, polycarbonate polyol, polycaprolactone polyol, polyalkyleneimine, poly Examples thereof include polymers having a linear or branched structure such as allylamine, celluloses (cellulose or derivatives thereof), phenol novolac resin, and melamine formaldehyde resin, and cyclic polymers such as cyclodextrins.
  • acrylic polymer a polymer obtained by polymerizing a monomer having an unsaturated double bond such as acrylic acid ester, methacrylic acid ester, styrene or the like can be applied.
  • the specific polymer which is the component (B) preferably, at least one of hydroxyalkyl cyclodextrins, celluloses, polyethylene glycol ester group and C 2 -C 5 hydroxyalkyl ester group, carboxyl group and phenolic Acrylic polymer having at least one of hydroxy group, acrylic polymer having aminoalkyl group at side chain, acrylic polymer having hydroxyalkyl group at side chain such as polyhydroxyethyl methacrylate, polyether polyol, polyester polyol , Polycarbonate polyols and polycaprolactone polyols.
  • the acrylic polymer may be an acrylic polymer having such a structure, and the type and the like of the main chain skeleton and side chains of the polymer constituting the acrylic polymer are not particularly limited.
  • a preferable structural unit As a structural unit having at least one of a polyethylene glycol ester group and a C 2 to C 5 hydroxyalkyl ester group, a preferable structural unit is represented by the following formula [B1]. As a structural unit having at least one of a carboxyl group and a phenolic hydroxy group, a preferable structural unit is represented by the following formula [B2].
  • X 3 and X 4 each independently represent a hydrogen atom or a methyl group
  • Y 1 is a H- (OCH 2 CH 2 ) n -group (where n is The value is 2 to 50, preferably 2 to 10.) or a hydroxyalkyl group having 2 to 5 carbon atoms
  • Y 2 represents a carboxyl group or a phenolic hydroxy group.
  • the acrylic polymer which is an example of the component (B) preferably has a weight average molecular weight of 3,000 to 200,000, more preferably 4,000 to 150,000, 5,000 to 100, Even more preferably, it is 000. If the weight average molecular weight is more than 200,000 and is too large, the solubility in a solvent may be reduced and the handling properties may be reduced, and if the weight average molecular weight is less than 3,000, the heat may be reduced. At the time of curing, the curing may be insufficient and the solvent resistance and heat resistance may be reduced.
  • the weight average molecular weight is a value obtained by gel permeation chromatography (GPC) using polystyrene as a standard material.
  • GPC gel permeation chromatography
  • a monomer having at least one of a polyethylene glycol ester group and a hydroxyalkyl ester group having 2 to 5 carbon atoms (hereinafter also referred to as b1 monomer)
  • the method of copolymerizing a monomer having at least one of a carboxyl group and a phenolic hydroxy group (hereinafter, also referred to as a b2 monomer) is convenient.
  • Examples of the above-described monomer having a polyethylene glycol ester group include monoacrylate or monomethacrylate of H- (OCH 2 CH 2 ) n -OH.
  • the value of n is 2 to 50, preferably 2 to 10.
  • acrylic acid methacrylic acid
  • vinyl benzoic acid is mentioned, for example.
  • examples of the above-mentioned monomer having a phenolic hydroxy group include p-hydroxystyrene, m-hydroxystyrene and o-hydroxystyrene.
  • acrylic acid ester compounds such as methyl acrylate, ethyl acrylate, propyl acrylate, isopropyl acrylate, butyl methacrylate, butyl acrylate, isobutyl acrylate, t-butyl acrylate, methyl methacrylate, ethyl methacrylate, propyl methacrylate, Methacrylate compounds such as isopropyl methacrylate, isobutyl methacrylate and t-butyl methacrylate, maleimide, N-methyl maleimide, N-phenyl maleimide and maleimide compounds such as N-cyclohexyl maleimide, acrylamide compounds, acrylonitrile, maleic anhydride, styrene Compounds and vinyl compounds may be mentioned.
  • the amount of the b1 monomer and b2 monomer used to obtain the acrylic polymer which is an example of the component (B) is b1 based on the total amount of all the monomers used to obtain the acrylic polymer which is the component (B). It is preferable that 2 mol% to 95 mol% of monomers and 5 mol% to 98 mol% of b2 monomers.
  • the b2 monomer When a monomer having only a carboxyl group is used as the b2 monomer, 60 mol% to 95 mol% of the b1 monomer and the b2 monomer are contained based on the total amount of all the monomers used to obtain the acrylic polymer which is the component (B). It is preferably 5 mol% to 40 mol%. On the other hand, when a monomer having only a phenolic hydroxy group is used as the b2 monomer, it is preferable that the b1 monomer is 2 mol% to 80 mol% and the b2 monomer is 20 mol% to 98 mol%. If the b2 monomer is too small, the liquid crystal alignment tends to be insufficient. If it is too large, the compatibility with the component (A) tends to decrease.
  • the method for obtaining the acrylic polymer which is an example of the component (B) is not particularly limited, but, for example, in a solvent in which the b1 monomer and the b2 monomer, and optionally monomers other than the b1 monomer and the b2 monomer, a polymerization initiator, etc. , At a temperature of 50.degree. C. to 110.degree. C. by polymerization reaction.
  • the solvent to be used is not particularly limited as long as it dissolves the b1 monomer and the b2 monomer, the optionally used b1 monomer and monomers other than the b2 monomer, the polymerization initiator and the like. As a specific example, it describes in the term of ⁇ solvent> mentioned later.
  • An acrylic polymer having an aminoalkyl group at a side chain which is a preferred example of the specific polymer of the component (B), includes aminoalkyl ester monomers such as aminoethyl acrylate, aminoethyl methacrylate, aminopropyl acrylate and aminopropyl methacrylate. It is selected from the group consisting of a polymerized product, or the aminoalkyl ester monomer, and the b1 monomer, the b2 monomer, and a monomer other than these monomers, for example, a monomer having neither a hydroxy group nor a carboxy group. What copolymerized with a seed or 2 or more types of monomers is mentioned.
  • acrylic polymer which has a hydroxyalkyl group in the side chain which is a preferable example of the specific polymer of the component (B), for example, hydroxyethyl acrylate, hydroxyethyl methacrylate, hydroxypropyl acrylate, hydroxypropyl methacrylate, hydroxybutyl acrylate, hydroxy Those obtained by polymerizing a hydroxyalkyl ester monomer such as butyl methacrylate, hydroxypentyl acrylate and hydroxypentyl methacrylate, or the hydroxyalkyl ester monomer, the b1 monomer, the b2 monomer, and monomers other than these monomers, for example, a hydroxy group Copolymerized with one or more monomers selected from the group consisting of monomers having neither a carboxyl group nor a carboxy group Thing, and the like.
  • a hydroxyalkyl ester monomer such as butyl methacrylate, hydroxypentyl acrylate
  • the acrylic polymer which is an example of the (B) component obtained by the said method is a state of the solution normally melt
  • an acrylic polymer which is an example of the component (B) obtained by the above method is added to diethyl ether under stirring, water or the like to cause reprecipitation, and the formed precipitate is filtered and washed
  • the powder can be dried at normal temperature or dried by heating under normal pressure or reduced pressure to form a powder of an acrylic polymer which is an example of the component (B).
  • the polymerization initiator and the unreacted monomer coexisting with the acrylic polymer which is an example of the component (B) can be removed, and as a result, the acrylic polymer which is an example of the purified component (B) Powder is obtained. If sufficient purification can not be performed by one operation, the obtained powder may be redissolved in a solvent and the above operation may be repeated.
  • polyether polyol which is a preferable example of the specific polymer of the component (B) include polyethylene glycol, polypropylene glycol and propylene glycol, and polyvalent alcohols such as bisphenol A, triethylene glycol and sorbitol and the like to be propylene oxide and polyethylene What added or condensed glycol, polypropylene glycol etc. is mentioned.
  • polyether polyols include Adeka Polyether P series, G series, EDP series, BPX series, FC series, CM series manufactured by Adeka, Uniox (registered trademark) HC-40, HC-60, ST- 30E, ST-40E, G-450, G-750, Uniol (registered trademark) TG-330, TG-1000, TG-3000, TG-4000, HS-1600D, DA-400, DA-700, DB-400 And Nonion (registered trademark) LT-221, ST-221, OT-221 and the like.
  • polyester polyol which is a preferable example of the specific polymer of (B) component
  • Dicarboxylic acids such as adipic acid, sebacic acid, and isophthalic acid
  • Diols such as ethylene glycol, propylene glycol, butylene glycol, polyethylene glycol, polypropylene glycol, etc.
  • Specific examples of the polyester polyol include Polylight (registered trademark) OD-X-286, OD-X-102, OD-X-355, OD-X-2330, OD-X-240, OD-X-668, manufactured by DIC.
  • polycaprolactone polyol which is a preferable example of the specific polymer of the component (B)
  • a polyhydric alcohol such as trimethylolpropane or ethylene glycol as an initiator
  • Specific examples of the polycaprolactone polyol include Polylight (registered trademark) OD-X-2155, OD-X-640, OD-X-2568 manufactured by DIC, Plaxcel (registered trademark) 205, L205AL, 205 U, 208, 210 manufactured by Daicel Chemical Industries, Ltd. , 212, L212AL, 220, 230, 240, 303, 305, 308, 312, 320, 410, and the like.
  • polycarbonate polyol which is a preferable example of the specific polymer of (B) component, what made diethyl carbonate, diphenyl carbonate, ethylene carbonate etc. react with polyhydric alcohols, such as trimethylol propane and ethylene glycol, is mentioned.
  • polycarbonate polyols include Placel (registered trademark) CD 205, CD 205 PL, CD 210, CD 220, C-590, C-1050, C-2050, C-2090, C-3090 and the like manufactured by Daicel Chemical Industries.
  • Preferred examples of the specific polymer of component (B) include celluloses such as hydroxyalkyl celluloses such as hydroxyethyl cellulose and hydroxypropyl cellulose, hydroxyalkyl alkyl celluloses such as hydroxyethyl methylcellulose, hydroxypropyl methylcellulose and hydroxyethyl ethyl cellulose, and celluloses And the like, and, for example, hydroxyalkyl celluloses such as hydroxyethyl cellulose and hydroxypropyl cellulose are preferable.
  • cyclodextrin which is a preferable example of the specific polymer of the component (B), cyclodextrin such as ⁇ -cyclodextrin, ⁇ -cyclodextrin and ⁇ -cyclodextrin, methyl- ⁇ -cyclodextrin, methyl- ⁇ -cyclodextrin And methylated cyclodextrins such as methyl- ⁇ -cyclodextrin, hydroxymethyl- ⁇ -cyclodextrin, hydroxymethyl- ⁇ -cyclodextrin, hydroxymethyl- ⁇ -cyclodextrin, hydroxymethyl- ⁇ -cyclodextrin, 2-hydroxyethyl- ⁇ -cyclodextrin, 2- Hydroxyethyl- ⁇ -cyclodextrin, 2-hydroxyethyl- ⁇ -cyclodextrin, 2-hydroxypropyl- ⁇ -cyclodextrin, 2-hydroxypropyl- ⁇ -cyclodextrin, 2-hydroxyoxyl- ⁇ -cycl
  • melamine formaldehyde resin which is a preferable example of the specific polymer of (B) component, it is resin obtained by polycondensing melamine and formaldehyde, and is represented by a following formula.
  • R represents a hydrogen atom or an alkyl group having 1 to 4 carbon atoms.
  • the melamine formaldehyde resin of component (B) is preferably alkylated with the methylol group formed during the polycondensation of melamine and formaldehyde.
  • the method of obtaining the melamine formaldehyde resin of the component (B) is not particularly limited, generally, it is mixed with melamine and formaldehyde, made weakly alkaline using sodium carbonate, ammonia and the like, and then heated at 60-100 ° C. It is synthesized by Furthermore, the methylol group can be alkoxylated by reacting with an alcohol.
  • the weight average molecular weight of the melamine formaldehyde resin of component (B) is preferably 250 to 5,000, more preferably 300 to 4,000, and still more preferably 350 to 3,500. If the weight average molecular weight is more than 5,000 and too large, the solubility in solvents may be reduced and the handling properties may be reduced, and if the weight average molecular weight is less than 250 and is too small, it may be at the time of heat curing Curing may be insufficient, and solvent resistance and heat resistance may be reduced.
  • the melamine formaldehyde resin of the component (B) may be used in the form of a liquid or in the form of a solution in which the purified liquid is redissolved in a solvent described later.
  • the melamine formaldehyde resin of the component (B) may be a mixture of melamine formaldehyde resins of plural types of the component (B).
  • phenol novolak resin which is a preferable example of the specific polymer of (B) component
  • a phenol-formaldehyde polycondensate etc. are mentioned, for example.
  • the polymer of the component (B) may be used in the form of a powder or in the form of a solution in which the purified powder is redissolved in a solvent described later. Further, in the cured film-forming composition of the present embodiment, the polymer of the component (B) may be a mixture of two or more of the polymers of the component (B).
  • composition of the present invention contains a crosslinking agent as component (C).
  • the crosslinking agent of component (C) is a compound that reacts with component (A) or component (B) described above, or both, and reacts at a temperature lower than the sublimation temperature of component (A).
  • Component (C) is selected from the carboxyl group of component (A), the hydroxy group in the polymer of component (B), the carboxyl group, the amide group, the amino group and the alkoxysilyl group at a temperature lower than the sublimation temperature of component (A). Bond with the As a result, as described later, when the components (A) and (B) and the crosslinking agent which is the component (C) thermally react, sublimation of the component (A) can be suppressed. And the composition of this invention can form an alignment material with high photoreaction efficiency as a cured film.
  • crosslinking agent which is the component (C) include compounds such as epoxy compounds, methylol compounds and isocyanate compounds, with preference given to methylol compounds.
  • methylol compound examples include, for example, compounds such as alkoxymethylated glycoluril, alkoxymethylated benzoguanamine and alkoxymethylated melamine.
  • alkoxymethylated glycoluril examples include, for example, 1,3,4,6-tetrakis (methoxymethyl) glycoluril, 1,3,4,6-tetrakis (butoxymethyl) glycoluril, 1,3,4 , 6-Tetrakis (hydroxymethyl) glycoluril, 1, 3-bis (hydroxymethyl) urea, 1, 1, 3, 3- tetrakis (butoxymethyl) urea, 1, 1, 3, 3- tetrakis (methoxymethyl) Examples thereof include urea, 1,3-bis (hydroxymethyl) -4,5-dihydroxy-2-imidazolinone, and 1,3-bis (methoxymethyl) -4,5-dimethoxy-2-imidazolinone.
  • glycoluril compounds (trade name: Cymel (registered trademark) 1170, Powderlink (registered trademark) 1174) manufactured by Mitsui Cytec Co., Ltd., methylated urea resin (trade name: UFR (registered trademark) 65), butylated urea resin (trade name: UFR (registered trademark) 300, U-VAN (registered trademark) 10S60, U-VAN (registered trademark) 10R, U-VAN (registered trademark) 11 HV), DIC (stock And the like) urea / formaldehyde resin (high condensation type, trade name: Beckamine (registered trademark) J-300S, P-955, N) and the like.
  • methylated urea resin (trade name: UFR (registered trademark) 65)
  • butylated urea resin (trade name: UFR (registered trademark) 300, U-VAN (registered trademark) 10S60, U-VAN (registered trademark) 10R, U
  • alkoxymethylated benzoguanamine examples include, for example, tetramethoxymethylbenzoguanamine and the like.
  • Mitsui Cytec Co., Ltd. trade name: Cymel (registered trademark) 1123
  • Sanwa Chemical Co., Ltd. trade name: Nikalac (registered trademark) BX-4000, BX-37, and the like) BL-60, BX-55H) and the like.
  • alkoxymethylated melamine examples include, for example, hexamethoxymethylmelamine.
  • Mitsui Cytec Co., Ltd. methoxymethyl type melamine compound (trade name: Cymel (registered trademark) 300, 301, 303, 350), butoxymethyl type melamine compound (trade name: Mycoat (trade name) Registered Trademarks 506 and 508), and a methoxymethyl type melamine compound (trade name: Nikalac (registered trademark) MW-30, MW-22, MW-11, and MS-001, manufactured by Sanwa Chemical Co., Ltd.) MX-002, MX-730, MX-750, MX-035), butoxymethyl type melamine compound (trade name: Nicarak (registered trademark) MX-45, MX-410, MX-302), etc. It can be mentioned.
  • it may be a compound obtained by condensing a melamine compound, a urea compound, a glycoluril compound and a benzoguanamine compound in which the hydrogen atom of such an amino group is substituted with a methylol group or an alkoxymethyl group.
  • a melamine compound a urea compound, a glycoluril compound and a benzoguanamine compound in which the hydrogen atom of such an amino group is substituted with a methylol group or an alkoxymethyl group.
  • high molecular weight compounds prepared from melamine compounds and benzoguanamine compounds described in US Pat. No. 6,323,310 can be mentioned.
  • Examples of commercial products of the melamine compound include trade name: Cymel (registered trademark) 303 (manufactured by Mitsui Cytec Co., Ltd.) and the like
  • commercial products of the benzoguanamine compound include trade name: Cymel (registered trademark) 1123 (trade name). Mitsui Cytec Co
  • component (C) in addition to the above compounds, a hydroxymethyl group or an alkoxymethyl group such as N-hydroxymethyl acrylamide, N-methoxymethyl methacrylamide, N-ethoxymethyl acrylamide, N-butoxymethyl methacrylamide, etc. Polymers made using substituted acrylamide or methacrylamide compounds can also be used.
  • Such polymers include, for example, poly (N-butoxymethyl acrylamide), a copolymer of N-butoxymethyl acrylamide and styrene, a copolymer of N-hydroxymethyl methacrylamide and methyl methacrylate, N-ethoxymethyl Examples thereof include copolymers of methacrylamide and benzyl methacrylate, and copolymers of N-butoxymethyl acrylamide, benzyl methacrylate and 2-hydroxypropyl methacrylate, and the like.
  • the weight average molecular weight of such a polymer is 1,000 to 500,000, preferably 2,000 to 200,000, more preferably 3,000 to 150,000, still more preferably 3 , 000 to 50,000.
  • crosslinking agents can be used alone or in combination of two or more.
  • the content of the crosslinking agent of the component (C) in the composition of the present invention is 10 parts by mass to 500 parts by mass based on 100 parts by mass of the total amount of the low molecular orientation component of the component (A) and the polymer of the component (B). It is preferable that it is a mass part, More preferably, it is 15 mass parts-400 mass parts. If the content of the crosslinking agent is too small, the solvent resistance and heat resistance of the cured film obtained from the cured film-forming composition are reduced, and the alignment sensitivity at the time of photoalignment is reduced. On the other hand, when the content is excessive, the photoalignment and storage stability may be reduced.
  • the composition of the present invention contains a crosslinking agent as the component (C) as described above. Therefore, in the inside of the cured film obtained from the composition of the present invention, before the photoreaction by the photoalignable group in the low molecular orientation component of the (A) component, the thermal reaction using the (C) crosslinking agent A crosslinking reaction can be performed. As a result, when it is used as an alignment material, the resistance to the polymerizable liquid crystal to be applied thereon and its solvent can be improved.
  • the cured film-forming composition of the present embodiment can further contain a crosslinking catalyst as a component (D) in addition to the components (A), (B), and (C).
  • a crosslinking catalyst which is (D) component it can be set, for example as an acid or a thermal acid generator. This (D) component is effective in promoting the thermosetting reaction of the cured film formation composition of this Embodiment.
  • the component (D) includes a sulfonic acid group-containing compound, hydrochloric acid or a salt thereof, and a compound which is thermally decomposed to generate an acid upon prebaking or postbaking, that is, thermally decomposed to generate an acid at a temperature of 80 ° C. to 250 ° C. There is no particular limitation as long as it is a compound.
  • Such compounds include, for example, hydrochloric acid, methanesulfonic acid, ethanesulfonic acid, propanesulfonic acid, butanesulfonic acid, pentanesulfonic acid, octanesulfonic acid, benzenesulfonic acid, p-toluenesulfonic acid, camphorsulfonic acid, trifluoromethane Lomethanesulfonic acid, p-phenolsulfonic acid, 2-naphthalenesulfonic acid, mesitylenesulfonic acid, p-xylene-2-sulfonic acid, m-xylene-2-sulfonic acid, 4-ethylbenzenesulfonic acid, 1H, 1H, 2H, Sulfonic acids such as 2H-perfluorooctanesulfonic acid, perfluoro (2-ethoxyethane) sulfonic acid, pentafluoroethanesulf
  • Examples of the compound capable of generating an acid by heat include bis (tosyloxy) ethane, bis (tosyloxy) propane, bis (tosyloxy) butane, p-nitrobenzyl tosylate, o-nitrobenzyl tosylate, and the like.
  • the content of the component (D) in the cured film-forming composition of the present embodiment is preferably 0.01 parts by mass with respect to 100 parts by mass of the total amount of the compound of the component (A) and the polymer of the component (B).
  • the amount is 10 to 10 parts by mass, more preferably 0.1 to 6 parts by mass, and still more preferably 0.5 to 5 parts by mass.
  • the cured film-forming composition of the present embodiment is used mainly in the form of a solution dissolved in a solvent.
  • the solvent used at that time may be any one as long as it can dissolve (A) component, (B) component and (C) component, if necessary, (D) component, and / or other additives described later. Etc. are not particularly limited.
  • the solvent include, for example, ethylene glycol monomethyl ether, ethylene glycol monoethyl ether, methyl cellosolve acetate, ethyl cellosolve acetate, diethylene glycol monomethyl ether, diethylene glycol monoethyl ether, propylene glycol, propylene glycol monomethyl ether, propylene glycol monomethyl ether acetate Propylene glycol propyl ether acetate, toluene, xylene, methyl ethyl ketone, methyl isobutyl ketone, cyclopentanone, cyclohexanone, 2-butanone, 3-methyl-2-pentanone, 2-pentanone, 2-heptanone, ⁇ -butyrolactone, 2-hydroxy Ethyl propionate, 2-hydroxy-2-methylpropio Ethyl Ethyl Ethoxyacetate Ethyl Ethyl Hydroxy Acetate Methyl 2-Hydroxy-3-
  • the cured film-forming composition of the present embodiment may, if necessary, be a sensitizer, a silane coupling agent, a surfactant, a rheology modifier, a pigment, a dye, as long as the effects of the present invention are not impaired. It can contain a storage stabilizer, an antifoamer, an antioxidant and the like.
  • a sensitizer is effective in promoting a photoreaction after forming a thermosetting film using the cured film forming composition of the present embodiment.
  • benzophenone, anthracene, anthraquinone, thioxanthone etc. and derivatives thereof, nitrophenyl compound etc. may be mentioned.
  • benzophenone derivatives and nitrophenyl compounds are preferred.
  • Specific examples of preferred compounds are N, N-diethylaminobenzophenone, 2-nitrofluorene, 2-nitrofluorenone, 5-nitroacenaphthene, 4-nitrobiphenyl, 4-nitrocinnamic acid, 4-nitrostilbene, 4-nitrobenzophenone, 5-nitroindole and the like.
  • N, N-diethylaminobenzophenone which is a derivative of benzophenone is preferred.
  • sensitizers are not limited to those described above.
  • sensitizers can be used alone or in combination of two or more compounds.
  • the use ratio of the sensitizer in the cured film-forming composition of the present embodiment is 0. 1 relative to 100 parts by mass of the total mass of the low molecular orientation component of the component (A) and the acrylic polymer of the component (B).
  • the amount is preferably 1 to 20 parts by mass, and more preferably 0.2 to 10 parts by mass. If this ratio is too small, the effect as a sensitizer may not be sufficiently obtained, and if it is too large, the transmittance may be reduced and the coating film may be roughened.
  • the cured film-forming composition of the present embodiment comprises a low molecular photoalignment component which is the (A) component, and a polymer which is more hydrophilic than the photoalignment component of the (A) component which is the (B) component; It contains a crosslinking agent which is the component (C). And, as long as the effects of the present invention are not impaired, other additives can be contained.
  • the blending ratio of the component (A) to the component (B) is preferably 5:95 to 60:40 by mass.
  • the content of the component (B) is too large, the liquid crystal alignment tends to be lowered, and when too small, the solvent resistance is lowered and the alignment tends to be lowered.
  • the preferable example of the cured film formation composition of this Embodiment is as follows. [1]: The compounding ratio of the component (A) to the component (B) is 5:95 to 60:40 by mass ratio, based on 100 parts by mass of the total amount of the component (A) and the component (B) A cured film-forming composition containing 10 parts by mass to 150 parts by mass of the component (C).
  • a cured film-forming composition containing 10 parts by mass to 500 parts by mass of the component (C) and a solvent based on 100 parts by mass of the total amount of the components (A) and (B).
  • a cured film-forming composition containing a component and a solvent.
  • the compounding ratio in the case of using the cured film formation composition of this Embodiment as a solution, a preparation method, etc. are explained in full detail below.
  • the ratio of solid content in the cured film-forming composition of the present embodiment is not particularly limited as long as each component is uniformly dissolved in the solvent, but it is 1% by mass to 80% by mass, and preferably Is 3% by mass to 60% by mass, more preferably 5% by mass to 40% by mass.
  • solid content means what remove
  • the method for preparing the cured film-forming composition of the present embodiment is not particularly limited.
  • a preparation method for example, a method of mixing a solution of the component (B) dissolved in a solvent with the component (A), the component (C) and optionally the component (D) according to a predetermined ratio to obtain a uniform solution
  • a method of further adding and mixing other additives as required.
  • the solution of the specific copolymer obtained by the polymerization reaction in a solvent can be used as it is.
  • a monomer having a polyethylene glycol ester group and a monomer having a C 2 -C 5 hydroxyalkyl ester group at least one of a monomer having a carboxyl group and a monomer having a phenolic hydroxy group
  • the component (A), the component (C) and optionally the component (D) are added to the solution of the component (B) obtained by copolymerization in the same manner as described above to obtain a uniform solution.
  • a solvent may be additionally added for the purpose of adjusting the concentration.
  • the solvent used in the formation process of the component (B) and the solvent used for adjusting the concentration of the cured film forming composition may be the same or different.
  • the solution of the composition for forming a cured film according to the present embodiment is used as a substrate (for example, a silicon / silicon dioxide coated substrate, a silicon nitride substrate, a substrate coated with a metal such as aluminum, molybdenum or chromium, a glass substrate, a quartz substrate Bar coating, spin coating, flow coating, roll coating, etc. on ITO substrates etc.
  • a substrate for example, a silicon / silicon dioxide coated substrate, a silicon nitride substrate, a substrate coated with a metal such as aluminum, molybdenum or chromium, a glass substrate, a quartz substrate Bar coating, spin coating, flow coating, roll coating, etc. on ITO substrates etc.
  • the coating is formed by slit coating, spin coating following the slit, inkjet coating, printing, or the like to form a coating, and then the coating is heated and dried on a hot plate or an oven to form a cured film.
  • resin films such as triacetyl cellulose (TAC) film, cycloolefin polymer film, polyethylene terephthalate film, acrylic film etc.
  • the conditions for the heating and drying may be such that the crosslinking reaction by the crosslinking agent proceeds to such an extent that the components of the alignment material formed from the cured film do not elute in the polymerizable liquid crystal solution applied thereon.
  • the heating temperature and heating time are preferably 70 ° C. to 160 ° C., for 0.5 minutes to 10 minutes.
  • the film thickness of the cured film formed using the curable composition of the present embodiment is, for example, 0.05 ⁇ m to 5 ⁇ m, and is appropriately selected in consideration of the difference in level of the substrate to be used and the optical and electrical properties. be able to.
  • the cured film thus formed can function as an alignment material, that is, a member for aligning a compound having liquid crystallinity such as liquid crystal by performing polarized UV irradiation.
  • ultraviolet light to visible light having a wavelength of 150 nm to 450 nm is generally used, and irradiation is performed by irradiating linearly polarized light from a vertical or oblique direction at room temperature or in a heated state.
  • the alignment material formed from the cured film composition of this embodiment has solvent resistance and heat resistance
  • a retardation material comprising a polymerizable liquid crystal solution on this alignment material
  • the liquid crystal By heating to the phase transition temperature, the retardation material is brought into a liquid crystal state and is oriented on the alignment material.
  • a phase derived from the phase difference material of the laminate is attached to the transferred body via the adhesive layer or the adhesive layer.
  • the phase difference material can be transferred as a layer having optical anisotropy by peeling and removing the alignment material from the cured film derived from the phase difference material.
  • optical members such as a polarizing plate and a phase difference plate, and a to-be-transferred base material can be used, for example.
  • a retardation plate for example, one having a retardation layer which is a liquid crystal layer, or a stretched film can be used.
  • materials of the pressure-sensitive adhesive layer and the adhesive layer it is possible to use a pressure-sensitive adhesive or an adhesive having adhesiveness to both of the retardation layer and the transferred body.
  • the pressure-sensitive adhesive and the adhesive those generally used in a method of producing a retardation plate by a transfer method can be applied.
  • the retardation material for example, a liquid crystal monomer having a polymerizable group, a composition containing the same, or the like is used.
  • the substrate which forms alignment material is a film, since the above-mentioned exfoliation after forming a phase contrast material becomes easy, it is desirable.
  • Retardation materials that form such retardation materials are in a liquid crystal state, and there are materials that take on an alignment state such as horizontal alignment, cholesteric alignment, vertical alignment, hybrid alignment, etc. Can be used according to the phase difference.
  • a cured film formed by the method described above from the cured film composition of the present embodiment is given a predetermined mask via a line and space pattern.
  • polarized UV exposure is performed at +45 degrees, and then the mask is removed, and then polarized UV is exposed at -45 degrees to form two types of liquid crystal alignment regions having different alignment control directions of liquid crystals.
  • the alignment material is obtained.
  • a retardation material made of a polymerizable liquid crystal solution is applied, and then heated to the phase transition temperature of the liquid crystal to bring the retardation material into a liquid crystal state and align it on the alignment material.
  • the retardation material in the aligned state is cured as it is, the retardation material is transferred as described above, and the alignment material is peeled off and removed, whereby two types of retardation regions having different retardation characteristics are respectively obtained.
  • a plurality of regularly arranged patterned retardation materials can be obtained. Therefore, the cured film-forming composition of the present embodiment can be suitably used for the production of various retardation materials (retardation films).
  • PEPO polyester polyol polymer (adipic acid / diethylene glycol copolymer having the following structural unit. Molecular weight: 4,800.) (In the above formula, R represents alkylene.)
  • PUA Polyurethane-grafted acrylic polymer [Akrit (registered trademark) 8UA-301 (manufactured by Taisei Fine Chemical Co., Ltd.]]
  • PCP polycarbonate polyol [C-590 (manufactured by Kuraray Co., Ltd.)]
  • HPC hydroxypropyl cellulose [HPC-SSL (manufactured by Nippon Soda Co., Ltd.)]
  • PCL polycaprolactone tetraol [Placcel 410 (manufactured by Daicel Corporation)]
  • ⁇ C component> HMM Melamine crosslinker represented by the following structural formula [Cymel (CYMEL) (registered trademark) 303 (manufactured by Mitsui Cytec Co., Ltd.)]
  • PTSA p-toluenesulfonic acid monohydrate
  • PPTS pyridinium p-toluenesulfonate
  • Each resin composition of the Examples and Reference Examples contains a solvent, and as the solvent, propylene glycol monomethyl ether (PM), butyl acetate (BA), ethyl acetate (EA), isobutyl acetate (IBA), methyl ethyl ketone (MEK) , Methyl isobutyl ketone (MIBK) was used.
  • PM propylene glycol monomethyl ether
  • BA butyl acetate
  • EA ethyl acetate
  • IBA isobutyl acetate
  • MEK methyl ethyl ketone
  • MIBK Methyl isobutyl ketone
  • the molecular weight of the acrylic copolymer in the polymerization example is as follows using a room temperature gel permeation chromatography (GPC) apparatus (GPC-101) manufactured by Shodex Corp. and a column (KD-803, KD-805) manufactured by Shodex Corp. And measured.
  • the following number average molecular weight (hereinafter referred to as Mn) and weight average molecular weight (hereinafter referred to as Mw) are expressed in terms of polystyrene.
  • Polymerization Example 2 An acrylic polymer solution was obtained by dissolving 100.0 g of BMAA and 4.2 g of AIBN as a polymerization catalyst in 193.5 g of PM and reacting at 90 ° C. for 20 hours. Mn of the obtained acrylic polymer was 2,700 and Mw was 3,900. The acrylic polymer solution was gradually dropped into 2000.0 g of hexane to precipitate a solid, which was filtered and dried under reduced pressure to obtain a polymer (PC-2).
  • Example 1 1.8 g of MCA as component (A), 7.3 g of PEPO as component (B), 5.9 g of polymer (PC-1) obtained in Synthesis Example 1 as component (C), PTSA 0 as component (D) .9 g were mixed, to which 44 g of PM as a solvent, 175 g of BA and 66 g of EA were added to obtain a solution. Next, the obtained solution was filtered with a filter with a pore size of 1 ⁇ m to prepare a liquid crystal aligning agent (A-1).
  • Examples 2 to 25 The respective liquid crystal aligning agents (A-2) to (A-25) were prepared in the same manner as in Example 1 except that the components of the types and blending amounts shown in Table 1 below were used.
  • Example 26 The liquid crystal aligning agent (A-1) prepared in Example 1 was coated on a TAC film as a substrate at a wet film thickness of 4 ⁇ m using a bar coater. Heat drying was performed at 140 ° C. for 1 minute in a heat circulating oven to form a cured film on the film. Then, on the surface of this cured film, 313 nm linearly polarized light was irradiated perpendicularly at an exposure of 10 mJ / cm 2 to form a liquid crystal alignment film.
  • a horizontal alignment polymerizable liquid crystal solution (RMS03-013C) manufactured by Merck Co., Ltd.
  • the polymerizable liquid crystal is cured by vertically irradiating 365 nm non-polarized light with an exposure amount of 300 mJ / cm 2 , and a retardation film is obtained. Made.
  • Examples 27 to 52 are the same as Example 26 except that COP films having been subjected to ozone treatment were used as a substrate, using (A-2) to (A-25) as liquid crystal aligning agents, and Examples Each retardation film of 27 to 52 was produced.
  • Preparation Example 2 Add 29.0 g of a polymerizable liquid crystal LC242 (manufactured by BASF), 0.9 g of Irgacure 907 (manufactured by BASF) as a polymerization initiator, 0.2 g of BYK-361N (manufactured by BYK) as a leveling agent, and CP as a solvent.
  • Example 57 The liquid crystal aligning agent (A-26) prepared in Example 53 was coated on a TAC film as a substrate at a wet film thickness of 4 ⁇ m using a bar coater. It heat-dried at 110 degreeC for 1 minute in heat circulation type oven, and formed the cured film on the film. Then, on the surface of this cured film, 313 nm linearly polarized light was irradiated perpendicularly at an exposure of 10 mJ / cm 2 to form a liquid crystal alignment film.
  • the polymerizable liquid crystal solution (LC-1) prepared in Preparation Example 1 was coated on the liquid crystal alignment film with a wet film thickness of 6 ⁇ m using a bar coater. Next, after heat drying on a hot plate at 90 ° C. for 1 minute, the polymerizable liquid crystal is cured by vertically irradiating 365 nm non-polarized light with an exposure amount of 500 mJ / cm 2 , and a retardation film Made.
  • Example 61 The liquid crystal aligning agent (A-26) prepared in Example 53 was coated on a TAC film as a substrate at a wet film thickness of 4 ⁇ m using a bar coater. It heat-dried at 110 degreeC for 1 minute in heat circulation type oven, and formed the cured film on the film. Then, on the surface of this cured film, 313 nm linearly polarized light was irradiated perpendicularly at an exposure of 10 mJ / cm 2 to form a liquid crystal alignment film.
  • the polymerizable liquid crystal solution (LC-2) prepared in Preparation Example 1 was coated on the liquid crystal alignment film with a wet film thickness of 12 ⁇ m using a bar coater.
  • the polymerizable liquid crystal is cured by vertically irradiating 365 nm non-polarized light with an exposure amount of 500 mJ / cm 2 , and a retardation film Made.
  • Examples 62 to 64, Reference Examples 5 to 6 Operations were performed in the same manner as in Example 61 except that (A-27) to (A-31) were used as liquid crystal aligning agents, and retardation films of Examples 62 to 64 and Reference Examples 5 to 6 were produced.
  • the cured film-forming composition according to the present invention is very useful as an alignment material for forming a liquid crystal alignment film of a liquid crystal display element or an optically anisotropic film provided inside or outside of a liquid crystal display element, in particular It is suitable as a forming material of the patterning phase difference material used for 3D displays and organic EL elements.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Materials Engineering (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Manufacturing & Machinery (AREA)
  • Dispersion Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

【課題】優れた光反応効率と耐溶剤性を備え、重合性液晶を硬化させた後に当該重合性液晶層から剥離可能となる硬化膜を形成する硬化膜形成組成物、配向材、位相差材を提供する。 【解決手段】(A)成分である下記式(1)で表される桂皮酸誘導体、(式(1)中、A1とA2は水素原子等を表し、R1は水素原子等であり、R2は芳香族基等であり、R3は単結合、酸素原子等であり、R4~R7はそれぞれ独立に水素原子等であり、nは0~3の整数である。)、(B)成分であるヒドロキシ基、カルボキシル基およびアミノ基から選ばれる1種または2種以上の置換基を有する親水性ポリマー、並びに(C)成分である架橋剤を含有し、必要に応じて(D)成分として架橋触媒をさらに含有する硬化膜形成組成物、それを用いて得られる配向材、位相差材。

Description

硬化膜形成組成物、配向材および位相差材
 本発明は液晶分子を配向させる光配向用液晶配向剤、配向材および位相差材に関する。特に本発明は、円偏光メガネ方式の3Dディスプレイに用いられるパターニングされた位相差材や、有機ELディスプレイの反射防止膜として使用される円偏光板に用いられる位相差材を作製するのに有用な光配向用液晶配向剤、配向材および位相差材に関する。
 円偏光メガネ方式の3Dディスプレイの場合、液晶パネル等の画像を形成する表示素子の上に位相差材が配置されるのが通常である。この位相差材は、位相差特性の異なる2種類の位相差領域がそれぞれ複数、規則的に配置されており、パターニングされた位相差材を構成している。尚、以下、本明細書においては、このような位相差特性の異なる複数の位相差領域を配置するようにパターン化された位相差材をパターン化位相差材と称する。
 パターン化位相差材は、例えば、特許文献1に開示されるように、重合性液晶からなる位相差材料を光学パターニングすることで作製することができる。重合性液晶からなる位相差材料の光学パターニングは、液晶パネルの配向材形成で知られた光配向技術を利用する。すなわち、基板上に光配向性の材料からなる塗膜を設け、これに偏光方向が異なる2種類の偏光を照射する。そして、液晶の配向制御方向の異なる2種類の液晶配向領域が形成された配向材として光配向膜を得る。この光配向膜の上に重合性液晶を含む溶液状の位相差材料を塗布し、重合性液晶の配向を実現する。その後、配向された重合性液晶を硬化してパターン化位相差材を形成する。
 有機ELディスプレイの反射防止膜は、直線偏光板、1/4波長位相差板により構成され、画像表示パネルのパネル面に向かう外来光を直線偏光板により直線偏光に変換し、続く1/4波長位相差板により円偏光に変換する。ここでこの円偏光による外来光は、画像表示パネルの表面等で反射するものの、この反射の際に偏光面の回転方向が逆転する。その結果、この反射光は、到来時とは逆に、1/4波長位相差板より、直線偏光板により遮光される方向の直線偏光に変換された後、続く直線偏光板により遮光され、その結果、外部への出射が著しく抑制される。
 この1/4波長位相差板に関して、特許文献2には、1/2波長板、1/4波長板を組み合わせて1/4波長位相差板を構成することにより、この光学フィルムを逆分散特性により構成する方法が提案されている。この方法の場合、カラー画像の表示に供する広い波長帯域において、正の分散特性による液晶材料を使用して逆分散特性により光学フィルムを構成することができる。
 また近年、この位相差層に適用可能な液晶材料として、逆分散特性を備えるものが提案されている(特許文献3、4)。このような逆分散特性の液晶材料によれば、1/2波長板、1/4波長板を組み合わせて2層の位相差層により1/4波長位相差板を構成する代わりに、位相差層を単層により構成して逆分散特性を確保することができ、これにより広い波長帯域において所望の位相差を確保することが可能な光学フィルムを簡易な構成により実現することができる。
 液晶を配向させるためには配向層が用いられる。配向層の形成方法としては、例えばラビング法や光配向法が知られており、光配向法はラビング法の問題点である静電気や塵の発生がなく、定量的な配向処理の制御ができる点で有用である。
 光配向法を用いた配向材形成では、利用可能な光配向性の材料として、側鎖にシンナモイル基およびカルコン基等の光二量化部位を有するアクリル樹脂やポリイミド樹脂等が知られている。これらの樹脂は、偏光UV照射することにより、液晶の配向を制御する性能(以下、液晶配向性とも言う。)を示すことが報告されている(特許文献5~特許文献7を参照。)。
一方、昨今のデバイスの軽量、薄型化の要求に伴い、位相差材もより薄いものが要求されるようになり、配向膜の上で重合性液晶を配向させる役割を有する配向膜自体を、重合性液晶が硬化した後に剥離させることで、より膜厚の薄い位相差材を作製する手法が用いられている。そのため、配向層には、重合性液晶が硬化した後に、容易に剥離可能であることが求められている。
 また、配向層には、液晶配向能や剥離性の他、耐溶剤性が要求される。例えば、配向層が、位相差材の製造過程にて熱や溶剤にさらさる場合がある。配向層が溶剤にさらされると、液晶配向能が著しく低下するおそれがある。
 そこで、例えば特許文献8には、安定した液晶配向能を得るために、光により架橋反応の可能な構造と熱によって架橋する構造とを有する重合体成分を含有する液晶配向剤、および、光により架橋反応の可能な構造を有する重合体成分と熱によって架橋する構造を有する化合物とを含有する液晶配向剤が提案されている。
特開2005-49865号公報 特開平10-68816号公報 米国特許第8119026号明細書 特開2009-179563号公報 特許第3611342号公報 特開2009-058584号公報 特表2001-517719号公報 特許第4207430号公報
 本発明は、以上の知見や検討結果に基づいてなされたものである。すなわち、本発明の目的は、優れた光反応効率を有するとともに耐溶剤性を備え、高感度で重合性液晶を配向させることができるとともに、重合性液晶を硬化させた後に当該重合性液晶層から剥離可能となる配向材を提供するための硬化膜形成組成物を提供することである。
 本発明の他の目的および利点は、以下の記載から明らかとなるであろう。
 本発明の第1の態様は、
 (A)成分である、下記式(1)で表される桂皮酸誘導体、
Figure JPOXMLDOC01-appb-C000002
(式(1)中、AとAはそれぞれ独立に、水素原子またはメチル基を表し、Rは水素原子、ハロゲン原子、C~Cアルキル、C~Cハロアルキル、C~Cアルコキシ、C~Cハロアルコキシ、C~Cシクロアルキル、C~Cハロシクロアルキル、C~Cアルケニル、C~Cハロアルケニル、C~Cシクロアルケニル、C~Cハロシクロアルケニル、C~Cアルキニル、C~Cハロアルキニル、(C~Cアルキル)カルボニル、(C~Cハロアルキル)カルボニル、(C~Cアルコキシ)カルボニル、(C~Cハロアルコキシ)カルボニル、(C~Cアルキルアミノ)カルボニル、(C~Cハロアルキル)アミノカルボニル、ジ(C~Cアルキル)アミノカルボニル、シアノ及びニトロから選ばれる置換基を表し、Rは2価の芳香族基、2価の脂環族基、2価の複素環式基または2価の縮合環式基であり、Rは単結合、酸素原子、-COO-または-OCO-であり、R~Rはそれぞれ独立に水素原子、ハロゲン原子、C~Cアルキル基、C~Cハロアルキル基、C~Cアルコキシ基、C~Cハロアルコキシ基、シアノ基、及びニトロ基から選ばれる置換基であり、nは0~3の整数である。)、
 (B)成分である、ヒドロキシ基、カルボキシル基およびアミノ基から選ばれる1種または2種以上の置換基を有する親水性ポリマー、並びに
 (C)成分である架橋剤を含有することを特徴とする硬化膜形成組成物に関する。
 本発明の第1の態様において、(B)成分が、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオールおよびポリカプロラクトンポリオールよりなる群から選ばれた少なくとも1種のポリマーであることが好ましい。
 本発明の第1の態様において、(B)成分がセルロースまたはその誘導体であることが好ましい。
 本発明の第1の態様において、(B)成分が、ポリエチレングリコールエステル基およびC~Cヒドロキシアルキルエステル基のうちの少なくとも一方と、カルボキシル基およびフェノール性ヒドロキシ基のうちの少なくとも一方とを有するアクリル重合体であることが好ましい。
 本発明の第1の態様において、(B)成分が、ポリエチレングリコールエステル基を有するモノマーおよびC~Cヒドロキシアルキルエステル基を有するモノマーのうちの少なくとも一方と、カルボキシル基を有するモノマーおよびフェノール性ヒドロキシ基を有するモノマーのうちの少なくとも一方とを含むモノマーの重合反応により得られるアクリル共重合体であることが好ましい。
 また、本発明の第1の態様において、(B)成分が、ヒドロキシアルキル基を側鎖に有するアクリル重合体であることが好ましい。
 本発明の第1の態様において、(C)成分がN-ヒドロキシメチル化合物またはN-アルコキシメチル(メタ)アクリルアミド化合物を含むモノマーを重合したポリマーであることが好ましい。
 本発明の第1の態様において、(D)成分として架橋触媒をさらに含有することが好ましい。
 本発明の第1の態様において、(A)成分と(B)成分の比率が質量比で5:95乃至60:40であることが好ましい。
 本発明の第1の態様において、(A)成分及び(B)成分の合計量100質量部に基づいて、10質量部乃至500質量部の(C)成分を含有することが好ましい。
 本発明の第1の態様において、(A)成分の化合物及び(B)成分のポリマーの合計量100質量部に対して0.01質量部乃至10質量部の(D)成分を含有することが好ましい。
 本発明の第2の態様は、本発明の第1の態様の硬化膜形成組成物を用いて得られることを特徴とする配向材に関する。
 本発明の第3の態様は、本発明の第1の態様の硬化膜形成組成物から得られる硬化膜を使用して形成されることを特徴とする位相差材に関する。
 本発明によれば、優れた光反応効率を有するとともに耐溶剤性を備え、高感度で重合性液晶を配向させることができるとともに、重合性液晶を硬化させた後に当該重合性液晶層から剥離可能となる配向材を提供するための硬化膜形成組成物を提供することである。
<硬化膜形成組成物>
 本実施の形態の硬化膜形成組成物は、(A)成分である低分子の光配向成分と、(B)成分である親水性ポリマーと、(C)成分である架橋剤を含有する。本実施の形態の硬化膜形成組成物は、(A)成分、(B)成分、(C)成分に加えて、さらに、(D)成分として架橋触媒をも含有することができる。そして、本発明の効果を損なわない限りにおいて、その他の添加剤を含有することができる。
 以下、各成分の詳細を説明する。
<(A)成分>
 本発明の硬化膜形成組成物に含有される(A)成分は、上記式(1)で表される桂皮酸誘導体である。
 上記式(1)におけるハロゲン原子としては、フッ素原子、塩素原子、臭素原子及びヨウ素原子が挙げられる。尚、本明細書中「ハロ」の表記もこれらのハロゲン原子を表す。
 上記式(1)におけるC~Cアルキルの表記は、炭素原子数がa~b個よりなる直鎖状又は分岐鎖状の炭化水素基を表し、例えばメチル基、エチル基、n-プロピル基、i-プロピル基、n-ブチル基、i-ブチル基、s-ブチル基、t-ブチル基、n-ペンチル基、1-メチルブチル基、2-メチルブチル基、3-メチルブチル基、1-エチルプロピル基、1,1-ジメチルプロピル基、1,2-ジメチルプロピル基、2,2-ジメチルプロピル基、n-ヘキシル基、1-メチルペンチル基、2-メチルペンチル基、1,1-ジメチルブチル基、1,3-ジメチルブチル基、ヘプチル基、オクチル基、ノニル基、デシル基、ウンデシル基、ドデシル基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。
 上記式(1)におけるC~Cハロアルキルの表記は、炭素原子に結合した水素原子が、ハロゲン原子によって任意に置換された、炭素原子数がa~b個よりなる直鎖状又は分岐鎖状の炭化水素基を表し、このとき、2個以上のハロゲン原子によって置換されている場合、それらのハロゲン原子は互いに同一でも、または互いに相異なっていてもよい。例えばフルオロメチル基、クロロメチル基、ブロモメチル基、ヨードメチル基、ジフルオロメチル基、クロロフルオロメチル基、ジクロロメチル基、ブロモフルオロメチル基、トリフルオロメチル基、クロロジフルオロメチル基、ジクロロフルオロメチル基、トリクロロメチル基、ブロモジフルオロメチル基、ブロモクロロフルオロメチル基、ジブロモフルオロメチル基、2-フルオロエチル基、2-クロロエチル基、2-ブロモエチル基、2,2-ジフルオロエチル基、2-クロロ-2-フルオロエチル基、2,2-ジクロロエチル基、2-ブロモ-2-フルオロエチル基、2,2,2-トリフルオロエチル基、2-クロロ-2,2-ジフルオロエチル基、2,2-ジクロロ-2-フルオロエチル基、2,2,2-トリクロロエチル基、2-ブロモ-2,2-ジフルオロエチル基、2-ブロモ-2-クロロ-2-フルオロエチル基、2-ブロモ-2,2-ジクロロエチル基、1,1,2,2-テトラフルオロエチル基、ペンタフルオロエチル基、1-クロロ-1,2,2,2-テトラフルオロエチル基、2-クロロ-1,1,2,2-テトラフルオロエチル基、1,2-ジクロロ-1,2,2-トリフルオロエチル基、2-ブロモ-1,1,2,2-テトラフルオロエチル基、2-フルオロプロピル基、2-クロロプロピル基、2-ブロモプロピル基、2-クロロ-2-フルオロプロピル基、2,3-ジクロロプロピル基、2-ブロモ-3-フルオロプロピル基、3-ブロモ-2-クロロプロピル基、2,3-ジブロモプロピル基、3,3,3-トリフルオロプロピル基、3-ブロモ-3,3-ジフルオロプロピル基、2,2,3,3-テトラフルオロプロピル基、2-クロロ-3,3,3-トリフルオロプロピル基、2,2,3,3,3-ペンタフルオロプロピル基、1,1,2,3,3,3-ヘキサフルオロプロピル基、ヘプタフルオロプロピル基、2,3-ジクロロ-1,1,2,3,3-ペンタフルオロプロピル基、2-フルオロ-1-メチルエチル基、2-クロロ-1-メチルエチル基、2-ブロモ-1-メチルエチル基、2,2,2-トリフルオロ-1-(トリフルオロメチル)エチル基、1,2,2,2-テトラフルオロ-1-(トリフルオロメチル)エチル基、2,2,3,3,4,4-ヘキサフルオロブチル基、2,2,3,4,4,4-ヘキサフルオロブチル基、2,2,3,3,4,4,4-ヘプタフルオロブチル基、1,1,2,2,3,3,4,4-オクタフルオロブチル基、ノナフルオロブチル基、4-クロロ-1,1,2,2,3,3,4,4-オクタフルオロブチル基、2-フルオロ-2-メチルプロピル基、2-クロロ-1,1-ジメチルエチル基、2-ブロモ-1,1-ジメチルエチル基、5-クロロ-2,2,3,4,4,5,5-ヘプタフルオロペンチル基、トリデカフルオロヘキシル基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。
 上記式(1)におけるC~Cシクロアルキルの表記は、炭素原子数がa~b個よりなる環状の炭化水素基を表し、3員環から6員環までの単環又は複合環構造を形成することが出来る。また、各々の環は指定の炭素原子数の範囲でアルキル基によって任意に置換されていてもよい。例えばシクロプロピル基、1-メチルシクロプロピル基、2-メチルシクロプロピル基、2,2-ジメチルシクロプロピル基、2,2,3,3-テトラメチルシクロプロピル基、シクロブチル基、シクロペンチル基、2-メチルシクロペンチル基、3-メチルシクロペンチル基、シクロヘキシル基、2-メチルシクロヘキシル基、3-メチルシクロヘキシル基、4-メチルシクロヘキシル基、ビシクロ[2.2.1]ヘプタン-2-イル基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。
 上記式(1)におけるC~Cハロシクロアルキルの表記は、炭素原子に結合した水素原子が、ハロゲン原子によって任意に置換された、炭素原子数がa~b個よりなる環状の炭化水素基を表し、3員環から6員環までの単環又は複合環構造を形成することが出来る。また、各々の環は指定の炭素原子数の範囲でアルキル基によって任意に置換されていてもよく、ハロゲン原子による置換は環構造部分であっても、側鎖部分であっても、或いはそれらの両方であってもよく、さらに、2個以上のハロゲン原子によって置換されている場合、それらのハロゲン原子は互いに同一でも、または互いに相異なっていてもよい。例えば2,2-ジフルオロシクロプロピル基、2,2-ジクロロシクロプロピル基、2,2-ジブロモシクロプロピル基、2,2-ジフルオロ-1-メチルシクロプロピル基、2,2-ジクロロ‐1-メチルシクロプロピル基、2,2-ジブロモ-1-メチルシクロプロピル基、2,2,3,3-テトラフルオロシクロブチル基、2-(トリフルオロメチル)シクロヘキシル基、3-(トリフルオロメチル)シクロヘキシル基、4-(トリフルオロメチル)シクロヘキシル基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。
 上記式(1)におけるC~Cアルケニルの表記は、炭素原子数がa~b個よりなる直鎖状又は分岐鎖状で、且つ分子内に1個又は2個以上の二重結合を有する不飽和炭化水素基を表し、例えばビニル基、1-プロペニル基、2-プロペニル基、1-メチルエテニル基、2-ブテニル基、1-メチル-2-プロペニル基、2-メチル-2-プロペニル基、2-ペンテニル基、2-メチル-2-ブテニル基、3-メチル-2-ブテニル基、2-エチル-2-プロペニル基、1,1-ジメチル-2-プロペニル基、2-ヘキセニル基、2-メチル-2-ペンテニル基、2,4-ジメチル-2,6-ヘプタジエニル基、3,7-ジメチル-2,6-オクタジエニル基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。
 上記式(1)におけるC~Cハロアルケニルの表記は、炭素原子に結合した水素原子が、ハロゲン原子によって任意に置換された、炭素原子数がa~b個よりなる直鎖状又は分岐鎖状で、且つ分子内に1個又は2個以上の二重結合を有する不飽和炭化水素基を表す。このとき、2個以上のハロゲン原子によって置換されている場合、それらのハロゲン原子は互いに同一でも、または互いに相異なっていてもよい。例えば2,2-ジクロロビニル基、2-フルオロ-2-プロペニル基、2-クロロ-2-プロペニル基、3-クロロ-2-プロペニル基、2-ブロモ-2-プロペニル基、3-ブロモ-2-プロペニル基、3,3-ジフルオロ-2-プロペニル基、2,3-ジクロロ-2-プロペニル基、3,3-ジクロロ-2-プロペニル基、2,3-ジブロモ-2-プロペニル基、2,3,3-トリフルオロ-2-プロペニル基、2,3,3-トリクロロ-2-プロペニル基、1-(トリフルオロメチル)エテニル基、3-クロロ-2-ブテニル基、3-ブロモ-2-ブテニル基、4,4-ジフルオロ-3-ブテニル基、3,4,4-トリフルオロ-3-ブテニル基、3-クロロ-4,4,4-トリフルオロ-2-ブテニル基、3-ブロモ-2-メチル-2-プロペニル基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。
 上記式(1)におけるC~Cシクロアルケニルの表記は、炭素原子数がa~b個よりなる環状の、且つ1個又は2個以上の二重結合を有する不飽和炭化水素基を表し、3員環から6員環までの単環又は複合環構造を形成することが出来る。また、各々の環は指定の炭素原子数の範囲でアルキル基によって任意に置換されていてもよく、さらに、二重結合はendo-又はexo-のどちらの形式であってもよい。例えば2-シクロペンテン-1-イル基、3-シクロペンテン-1-イル基、2-シクロヘキセン-1-イル基、3-シクロヘキセン-1-イル基、ビシクロ[2.2.1]-5-ヘプテン-2-イル基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。
 上記式(1)におけるC~Cハロシクロアルケニルの表記は、炭素原子に結合した水素原子が、ハロゲン原子によって任意に置換された、炭素原子数がa~b個よりなる環状の、且つ1個又は2個以上の二重結合を有する不飽和炭化水素基を表し、3員環から6員環までの単環又は複合環構造を形成することが出来る。また、各々の環は指定の炭素原子数の範囲でアルキル基によって任意に置換されていてもよく、さらに、二重結合はendo-又はexo-のどちらの形式であってもよい。また、ハロゲン原子による置換は環構造部分であっても、側鎖部分であっても、或いはそれらの両方であってもよく、2個以上のハロゲン原子によって置換されている場合、それらのハロゲン原子は互いに同一でも、または互いに相異なっていても良い。例えば2-クロロビシクロ[2,2.1]-5-ヘプテン-2-イル基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。
 上記式(1)におけるC~Cアルキニルの表記は、炭素原子数がa~b個よりなる直鎖状又は分岐鎖状で、且つ分子内に1個又は2個以上の三重結合を有する不飽和炭化水素基を表し、例えばエチニル基、1-プロピニル基、2-プロピニル基、2-ブチニル基、1-メチル-2-プロピニル基、2-ペンチニル基、1-メチル-2-ブチニル基、1,1-ジメチル-2-プロピニル基、2-ヘキシニル基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。
 上記式(1)におけるC~Cハロアルキニルの表記は、炭素原子に結合した水素原子が、ハロゲン原子によって任意に置換された、炭素原子数がa~b個よりなる直鎖状又は分岐鎖状で、且つ分子内に1個又は2個以上の三重結合を有する不飽和炭化水素基を表す。このとき、2個以上のハロゲン原子によって置換されている場合、それらのハロゲン原子は互いに同一でも、または互いに相異なっていても良い。例えば2-クロロエチニル基、2-ブロモエチニル基、2-ヨードエチニル基、3-クロロ-2-プロピニル基、3-ブロモ-2-プロピニル基、3-ヨード-2-プロピニル基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。
 上記式(1)におけるC~Cアルコキシの表記は、炭素原子数がa~b個よりなる前記の意味であるアルキル-O-基を表し、例えばメトキシ基、エトキシ基、n-プロピルオキシ基、i-プロピルオキシ基、n-ブチルオキシ基、i-ブチルオキシ基、s-ブチルオキシ基、t-ブチルオキシ基、n-ペンチルオキシ基、n-ヘキシルオキシ基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。
 上記式(1)におけるC~Cハロアルコキシの表記は、炭素原子数がa~b個よりなる前記の意味であるハロアルキル-O-基を表し、例えばジフルオロメトキシ基、トリフルオロメトキシ基、クロロジフルオロメトキシ基、ブロモジフルオロメトキシ基、2-フルオロエトキシ基、2-クロロエトキシ基、2,2,2-トリフルオロエトキシ基、1,1,2,2,-テトラフルオロエトキシ基、2-クロロ-1,1,2-トリフルオロエトキシ基、2-ブロモ-1,1,2-トリフルオロエトキシ基、ペンタフルオロエトキシ基、2,2-ジクロロ-1,1,2-トリフルオロエトキシ基、2,2,2-トリクロロ-1,1-ジフルオロエトキシ基、2-ブロモ-1,1,2,2-テトラフルオロエトキシ基、2,2,3,3-テトラフルオロプロピルオキシ基、1,1,2,3,3,3-ヘキサフルオロプロピルオキシ基、2,2,2-トリフルオロ-1-(トリフルオロメチル)エトキシ基、ヘプタフルオロプロピルオキシ基、2-ブロモ-1,1,2,3,3,3-ヘキサフルオロプロピルオキシ基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。
 上記式(1)における(C~Cアルキル)カルボニルの表記は、炭素原子数がa~b個よりなる前記の意味であるアルキル-C(O)-基を表し、例えばアセチル基、プロピオニル基、ブチリル基、イソブチリル基、バレリル基、イソバレリル基、2-メチルブタノイル基、ピバロイル基、ヘキサノイル基、ヘプタノイル基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。
 上記式(1)における(C~Cハロアルキル)カルボニルの表記は、炭素原子数がa~b個よりなる前記の意味であるハロアルキル-C(O)-基を表し、例えばフルオロアセチル基、クロロアセチル基、ジフルオロアセチル基、ジクロロアセチル基、トリフルオロアセチル基、クロロジフルオロアセチル基、ブロモジフルオロアセチル基、トリクロロアセチル基、ペンタフルオロプロピオニル基、ヘプタフルオロブタノイル基、3-クロロ-2,2-ジメチルプロパノイル基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。
 上記式(1)における(C~Cアルコキシ)カルボニルの表記は、炭素原子数がa~b個よりなる前記の意味であるアルキル-O-C(O)-基を表し、例えばメトキシカルボニル基、エトキシカルボニル基、n-プロピルオキシカルボニル基、i-プロピルオキシカルボニル基、n-ブトキシカルボニル基、i-ブトキシカルボニル基、t-ブトキシカルボニル基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。
 上記式(1)における(C~Cハロアルコキシ)カルボニルの表記は、炭素原子数がa~b個よりなる前記の意味であるハロアルキル-O-C(O)-基を表し、例えば2-クロロエトキシカルボニル基、2,2-ジフルオロエトキシカルボニル基、2,2,2-トリフルオロエトキシカルボニル基、2,2,2-トリクロロエトキシカルボニル基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。
 上記式(1)における(C~Cアルキルアミノ)カルボニルの表記は、水素原子の一方が炭素原子数がa~b個よりなる前記の意味であるアルキル基によって置換されたカルバモイル基を表し、例えばメチルカルバモイル基、エチルカルバモイル基、n-プロピルカルバモイル基、i-プロピルカルバモイル基、n-ブチルカルバモイル基、i-ブチルカルバモイル基、s-ブチルカルバモイル基、t-ブチルカルバモイル基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。
 上記式(1)における(C~Cハロアルキル)アミノカルボニルの表記は、水素原子の一方が炭素原子数a~b個よりなる前記の意味であるハロアルキル基によって置換されたカルバモイル基を表し、例えば2-フルオロエチルカルバモイル基、2-クロロエチルカルバモイル基、2,2-ジフルオロエチルカルバモイル基、2,2,2-トリフルオロエチルカルバモイル基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。
 上記式(1)におけるジ(C~Cアルキル)アミノカルボニルの表記は、水素原子が両方とも、それぞれ同一でも又は互いに相異なっていてもよい炭素原子数がa~b個よりなる前記の意味であるアルキル基によって置換されたカルバモイル基を表し、例えばN,N-ジメチルカルバモイル基、N-エチル-N-メチルカルバモイル基、N,N-ジエチルカルバモイル基、N,N-ジ-n-プロピルカルバモイル基、N,N-ジ-n-ブチルカルバモイル基等が具体例として挙げられ、各々の指定の炭素原子数の範囲で選択される。
式(1)で表される桂皮酸誘導体の置換基R、R、R、R及びRとしては、中でも、それぞれ独立に水素原子、ハロゲン原子、C~Cアルキル、C~Cハロアルキル、C~Cアルコキシ、C~Cハロアルコキシ、シアノ及びニトロから選ばれる置換基であることが好ましい。
また、Rとしては上記定義の中で水素原子以外の置換基であることが、配向感度の点から好ましく、ハロゲン原子、C~Cアルキル、C~Cハロアルキル、C~Cアルコキシ、C~Cハロアルコキシ、シアノ及びニトロから選ばれる置換基がさらに好ましい。
 Rの2価の芳香族基としては、例えば1,4-フェニレン基、2-フルオロ-1,4-フェニレン基、3-フルオロ-1,4-フェニレン基、2,3,5,6-テトラフルオロ-1,4-フェニレン基等を;R2の2価の複素環式基としては、例えば1,4-ピリジレン基、2,5-ピリジレン基、1,4-フラニレン基等を;R2の2価の縮合環式基
としては、例えば2,6-ナフチレン基等を、それぞれ挙げることができる。R2として
は1,4-フェニレン基が好ましい。
 上記式(1)で表される化合物の好ましい例としては、例えば下記式(1-1)~(1-5)
Figure JPOXMLDOC01-appb-C000003
(上式中、R1は、それぞれ、上記式(1)におけるのと同義である。)
のそれぞれで表される化合物等を挙げることができる。
 上記式(1)で表される化合物は、有機化学の定法を適宜に組み合わせて合成することができる。
 また、本実施の形態の硬化膜形成組成物における(A)成分の化合物としては、式(1)で表される複数種の化合物の混合物であってもよい。
<(B)成分>
 本実施の形態の硬化膜形成組成物に含有される(B)成分は、親水性のポリマーである。
 そして、(B)成分であるポリマーは、ヒドロキシ基、カルボキシル基およびアミノ基から選ばれる1種または2種以上の置換基を有するポリマー(以下、特定重合体とも言う。)とすることができる。
 本実施の形態の硬化膜形成組成物において、(B)成分である特定重合体としては、(A)成分より親水性であるように、高い親水性を備えた高親水性ポリマーの選択が好ましい。そして、特定重合体は、ヒドロキシ基やカルボキシル基やアミノ基等の親水性基を有するポリマーであることが好ましく、具体的には、ヒドロキシ基、カルボキシル基およびアミノ基から選ばれる1種または2種以上の置換基を有するポリマーであることが好ましい。
 (B)成分であるポリマーとしては、例えば、アクリル重合体、ポリアミック酸、ポリイミド、ポリビニルアルコール、ポリエステル、ポリエステルポリカルボン酸、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオール、ポリカプロラクトンポリオール、ポリアルキレンイミン、ポリアリルアミン、セルロース類(セルロースまたはその誘導体)、フェノールノボラック樹脂、メラミンホルムアルデヒド樹脂等の直鎖構造または分岐構造を有するポリマー、シクロデキストリン類等の環状ポリマー等が挙げられる。
 このうち、アクリル重合体としてはアクリル酸エステル、メタクリル酸エステル、スチレン等の不飽和二重結合を有するモノマーを重合して得られる重合体が適用されうる。
 (B)成分である特定重合体としては、好ましくは、ヒドロキシアルキルシクロデキストリン類、セルロース類、ポリエチレングリコールエステル基およびC~Cヒドロキシアルキルエステル基のうちの少なくとも一方と、カルボキシル基およびフェノール性ヒドロキシ基のうちの少なくとも一方とを有するアクリル重合体、アミノアルキル基を側鎖に有するアクリル重合体、ポリヒドロキシエチルメタクリレート等のヒドロキシアルキル基を側鎖に有するアクリル重合体、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオールおよびポリカプロラクトンポリオールである。
 (B)成分の特定重合体の好ましい一例である、ポリエチレングリコールエステル基および炭素原子数2乃至5のヒドロキシアルキルエステル基のうち少なくとも一方と、カルボキシル基およびフェノール性ヒドロキシ基のうち少なくとも一方とを有するアクリル重合体は、斯かる構造を有するアクリル重合体であればよく、アクリル重合体を構成する高分子の主鎖の骨格および側鎖の種類などについて特に限定されない。
 ポリエチレングリコールエステル基および炭素原子数2乃至5のヒドロキシアルキルエステル基のうち少なくとも一方を有する構造単位として、好ましい構造単位は下記式[B1]で表される。
 カルボキシル基およびフェノール性ヒドロキシ基のうち少なくとも一方を有する構造単位として、好ましい構造単位は下記式[B2]で表される。
Figure JPOXMLDOC01-appb-C000004
 上記式[B1]および式[B2]中、XおよびXはそれぞれ独立して水素原子またはメチル基を表し、YはH-(OCHCH-基(ここで、nの値は2乃至50であり、好ましくは2乃至10である。)または炭素原子数2乃至5のヒドロキシアルキル基を表し、Yはカルボキシル基またはフェノール性ヒドロキシ基を表す。
 (B)成分の例であるアクリル重合体は、重量平均分子量が3,000乃至200,000であることが好ましく、4,000乃至150,000であることがより好ましく、5,000乃至100,000であることがさらになお好ましい。重量平均分子量が200,000を超えて過大なものであると、溶剤に対する溶解性が低下しハンドリング性が低下する場合があり、重量平均分子量が3,000未満で過小なものであると、熱硬化時に硬化不足になり溶剤耐性および耐熱性が低下する場合がある。尚、重量平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)により、標準資料としてポリスチレンを用いて得られる値である。以下、本明細書においても同様とする。
 (B)成分の例であるアクリル重合体の合成方法としては、ポリエチレングリコールエステル基および炭素原子数2乃至5のヒドロキシアルキルエステル基のうち少なくとも一方を有するモノマー(以下、b1モノマーとも言う。)と、カルボキシル基およびフェノール性ヒドロキシ基のうち少なくとも一方を有するモノマー(以下、b2モノマーとも言う。)とを共重合する方法が簡便である。
 上述したポリエチレングリコールエステル基を有するモノマーとしては、H-(OCHCH-OHのモノアクリレートまたはモノメタクリレートが挙げられる。nの値は2乃至50であり、好ましくは2乃至10である。
 上述した炭素原子数2乃至5のヒドロキシアルキルエステル基を有するモノマーとしては、例えば、2-ヒドロキシエチルメタクリレート、2-ヒドロキシエチルアクリレート、2-ヒドロキシプロピルメタクリレート、2-ヒドロキシプロピルアクリレート、4-ヒドロキシブチルアクリレート、4-ヒドロキシブチルメタクリレートが挙げられる。
 上述したカルボキシル基を有するモノマーとしては、例えば、アクリル酸、メタクリル酸、ビニル安息香酸が挙げられる。
 上述したフェノール性ヒドロキシ基を有するモノマーとしては、例えば、p-ヒドロキシスチレン、m-ヒドロキシスチレン、o-ヒドロキシスチレンが挙げられる。
 また、本実施の形態においては、(B)成分の例であるアクリル重合体を合成するに際し、本発明の効果を損なわない限り、b1モノマーおよびb2モノマー以外のモノマー、具体的には、ヒドロキシ基およびカルボキシル基のいずれも有さないモノマーを併用することができる。
 そのようなモノマーとしては、例えば、メチルアクリレート、エチルアクリレート、プロピルアクリレート、イソプロピルアクリレート、ブチルメタクリレート、ブチルアクリレート、イソブチルアクリレート、t-ブチルアクリレート等のアクリル酸エステル化合物、メチルメタクリレート、エチルメタクリレート、プロピルメタクリレート、イソプロピルメタクリレート、イソブチルメタクリレート、t-ブチルメタクリレート等のメタクリル酸エステル化合物、マレイミド、N-メチルマレイミド、N-フェニルマレイミド、及びN-シクロヘキシルマレイミド等のマレイミド化合物、アクリルアミド化合物、アクリロニトリル、マレイン酸無水物、スチレン化合物およびビニル化合物等が挙げられる。
 (B)成分の例であるアクリル重合体を得るために用いるb1モノマーおよびb2モノマーの使用量は、(B)成分であるアクリル重合体を得るために用いる全モノマーの合計量に基づいて、b1モノマーが2モル%乃至95モル%、b2モノマーが5モル%乃至98モル%であることが好ましい。
 b2モノマーとしてカルボキシル基のみを有するモノマーを用いる場合、(B)成分であるアクリル重合体を得るために用いる全モノマーの合計量に基づいて、b1モノマーが60モル%乃至95モル%、b2モノマーが5モル%乃至40モル%であることが好ましい。
 他方、b2モノマーとしてフェノール性ヒドロキシ基のみを有するモノマーを用いる場合、b1モノマーが2モル%乃至80モル%、b2モノマーが20モル%乃至98モル%であることが好ましい。b2モノマーが過小の場合は液晶配向性が不充分となり易く、過大の場合は(A)成分との相溶性が低下し易い。
 (B)成分の例であるアクリル重合体を得る方法は特に限定されないが、例えば、b1モノマーとb2モノマーと所望によりb1モノマーおよびb2モノマー以外のモノマーと重合開始剤等とを共存させた溶剤中において、50℃乃至110℃の温度下で重合反応により得られる。その際、用いられる溶剤は、b1モノマーとb2モノマー、所望により用いられるb1モノマーおよびb2モノマー以外のモノマーおよび重合開始剤等を溶解するものであれば特に限定されない。具体例としては、後述する<溶剤>の項に記載する。
 (B)成分の特定重合体の好ましい一例であるアミノアルキル基を側鎖に有するアクリル重合体は、例えば、アミノエチルアクリレート、アミノエチルメタクリレート、アミノプロピルアクリレート及びアミノプロピルメタクリレート等のアミノアルキルエステルモノマーを重合したもの、または、当該アミノアルキルエステルモノマーと、上記b1モノマー、上記b2モノマー、及び、これらのモノマー以外のモノマー、例えばヒドロキシ基およびカルボキシ基のいずれも有さないモノマーからなる群から選ばれる1種または2種以上のモノマーとを共重合したものが挙げられる。
 (B)成分の特定重合体の好ましい一例であるヒドロキシアルキル基を側鎖に有するアクリル重合体としては、例えば、ヒドロキシエチルアクリレート、ヒドロキシエチルメタクリレート、ヒドロキシプロピルアクリレート、ヒドロキシプロピルメタクリレート、ヒドロキシブチルアクリレート、ヒドロキシブチルメタクリレート、ヒドロキシペンチルアクリレート及びヒドロキシペンチルメタクリレート等のヒドロキシアルキルエステルモノマーを重合したもの、または、当該ヒドロキシアルキルエステルモノマーと、上記b1モノマー、上記b2モノマー、及び、これらのモノマー以外のモノマー、例えばヒドロキシ基およびカルボキシ基のいずれも有さないモノマーからなる群から選ばれる1種または2種以上のモノマーとを共重合したものが挙げられる。
 前記方法により得られる(B)成分の例であるアクリル重合体は、通常、溶剤に溶解した溶液の状態である。
 また、上記方法で得られた(B)成分の例であるアクリル重合体の溶液を、攪拌下のジエチルエーテルや水等に投入して再沈殿させ、生成した沈殿物を濾過・洗浄した後に、常圧または減圧下で、常温乾燥または加熱乾燥し、(B)成分の例であるアクリル重合体の粉体とすることができる。前記操作により、(B)成分の例であるアクリル重合体と共存する重合開始剤および未反応のモノマーを除去することができ、その結果、精製した(B)成分の例であるアクリル重合体の粉体が得られる。一度の操作で充分に精製できない場合は、得られた粉体を溶剤に再溶解させ、上記の操作を繰り返し行えば良い。
 (B)成分の特定重合体の好ましい一例であるポリエーテルポリオールとしてはポリエチレングリコール、ポリプロピレングリコール及びプロピレングリコールが挙げられ、また、ビスフェノールA、トリエチレングリコール、ソルビトール等の多価アルコールにプロピレンオキサイドやポリエチレングリコール、ポリプロピレングリコール等を付加または縮合したものが挙げられる。ポリエーテルポリオールの具体例としてはADEKA製アデカポリエーテルPシリーズ、Gシリーズ、EDPシリーズ、BPXシリーズ、FCシリーズ、CMシリーズ、日油製ユニオックス(登録商標)HC-40、HC-60、ST-30E、ST-40E、G-450、G-750、ユニオール(登録商標)TG-330、TG-1000、TG-3000、TG-4000、HS-1600D、DA-400、DA-700、DB-400、ノニオン(登録商標)LT-221、ST-221、OT-221等が挙げられる。
 (B)成分の特定重合体の好ましい一例であるポリエステルポリオールとしては、アジピン酸、セバシン酸、イソフタル酸等の多価カルボン酸にエチレングリコール、プロピレングリコール、ブチレングリコール、ポリエチレングリコール、ポリプロピレングリコール等のジオールを反応させたものが挙げられる。ポリエステルポリオールの具体例としてはDIC製ポリライト(登録商標)OD-X-286、OD-X-102、OD-X-355、OD-X-2330、OD-X-240、OD-X-668、OD-X-2108、OD-X-2376、OD-X-2044、OD-X-688、OD-X-2068、OD-X-2547、OD-X-2420、OD-X-2523、OD-X-2555、OD-X-2560、クラレ製ポリオールP-510、P-1010、P-2010、P-3010、P-4010、P-5010、P-6010、F-510、F-1010、F-2010、F-3010、P-1011、P-2011、P-2013、P-2030、N-2010、PNNA-2016等が挙げられる。
 (B)成分の特定重合体の好ましい一例であるポリカプロラクトンポリオールとしては、トリメチロールプロパンやエチレングリコール等の多価アルコールを開始剤としてε-カプロラクタムを開環重合させたものが挙げられる。ポリカプロラクトンポリオールの具体例としてはDIC製ポリライト(登録商標)OD-X-2155、OD-X-640、OD-X-2568、ダイセル化学製プラクセル(登録商標)205、L205AL、205U、208、210、212、L212AL、220、230、240、303、305、308、312、320、410等が挙げられる。
 (B)成分の特定重合体の好ましい一例であるポリカーボネートポリオールとしては、トリメチロールプロパンやエチレングリコール等の多価アルコールに炭酸ジエチル、炭酸ジフェニル、エチレンカーボネート等を反応させたものが挙げられる。ポリカーボネートポリオールの具体例としてはダイセル化学製プラクセル(登録商標)CD205、CD205PL、CD210、CD220、C-590、C-1050、C-2050、C-2090、C-3090等が挙げられる。
 (B)成分の特定重合体の好ましい一例であるセルロースとしては、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース等のヒドロキシアルキルセルロース類、ヒドロキシエチルメチルセルロース、ヒドロキシプロピルメチルセルロース、ヒドロキシエチルエチルセルロース等のヒドロキシアルキルアルキルセルロース類およびセルロース等が挙げられ、例えば、ヒドロキシエチルセルロース、ヒドロキシプロピルセルロース等のヒドロキシアルキルセルロース類が好ましい。
 (B)成分の特定重合体の好ましい一例であるシクロデキストリンとしては、α-シクロデキストリン、β-シクロデキストリン及びγ-シクロデキストリン等のシクロデキストリン、メチル-α-シクロデキストリン、メチル-β-シクロデキストリンならびにメチル-γ-シクロデキストリン等のメチル化シクロデキストリン、ヒドロキシメチル-α-シクロデキストリン、ヒドロキシメチル-β-シクロデキストリン、ヒドロキシメチル-γ-シクロデキストリン、2-ヒドロキシエチル-α-シクロデキストリン、2-ヒドロキシエチル-β-シクロデキストリン、2-ヒドロキシエチル-γ-シクロデキストリン、2-ヒドロキシプロピル-α-シクロデキストリン、2-ヒドロキシプロピル-β-シクロデキストリン、2-ヒドロキシプロピル-γ-シクロデキストリン、3-ヒドロキシプロピル-α-シクロデキストリン、3-ヒドロキシプロピル-β-シクロデキストリン、3-ヒドロキシプロピル-γ-シクロデキストリン、2,3-ジヒドロキシプロピル-α-シクロデキストリン、2,3-ジヒドロキシプロピル-β-シクロデキストリン、2,3-ジヒドロキシプロピル-γ-シクロデキストリン等のヒドロキシアルキルシクロデキストリン等が挙げられる。
 (B)成分の特定重合体の好ましい一例であるメラミンホルムアルデヒド樹脂としてはメラミンとホルムアルデヒドを重縮合して得られる樹脂であり下記式で表される。
Figure JPOXMLDOC01-appb-C000005
 上記式中、Rは水素原子または炭素原子数1乃至4のアルキル基を表す。
 (B)成分のメラミンホルムアルデヒド樹脂は、保存安定性の観点からメラミンとホルムアルデヒドの重縮合の際に生成したメチロール基がアルキル化されていることが好ましい。
 (B)成分のメラミンホルムアルデヒド樹脂を得る方法は特には限定されないが、一般的にメラミンとホルムアルデヒドを混合し、炭酸ナトリウムやアンモニア等を用いて弱アルカリ性にした後60-100℃にて加熱することで合成される。さらにアルコールと反応させることでメチロール基をアルコキシ化することができる。
 (B)成分のメラミンホルムアルデヒド樹脂は、重量平均分子量が250乃至5,000であることが好ましく、300乃至4,000であることがより好ましく、350乃至3,500であることがさらになお好ましい。重量平均分子量が5,000を超えて過大なものであると、溶剤に対する溶解性が低下しハンドリング性が低下する場合があり、重量平均分子量が250未満で過小なものであると、熱硬化時に硬化不足になり溶剤耐性及び耐熱性が低下する場合がある。
 本発明においては、(B)成分のメラミンホルムアルデヒド樹脂は液体形態で、あるいは精製した液体を後述する溶剤に再溶解した溶液形態で用いてもよい。
 また、本発明においては、(B)成分のメラミンホルムアルデヒド樹脂は、複数種の(B)成分のメラミンホルムアルデヒド樹脂の混合物であってもよい。
(B)成分の特定重合体の好ましい一例であるフェノールノボラック樹脂としては、例えば、フェノール-ホルムアルデヒド重縮合物などが挙げられる。
 本実施の形態の硬化膜形成組成物において、(B)成分のポリマーは、粉体形態で、または精製した粉末を後述する溶剤に再溶解した溶液形態で用いてもよい。
 また、本実施の形態の硬化膜形成組成物において、(B)成分のポリマーは、(B)成分のポリマーの複数種の混合物であってもよい。
<(C)成分>
 本発明の組成物は、(C)成分として、架橋剤を含有する。
 より詳しくは、(C)成分の架橋剤は、上述の(A)成分または(B)成分、もしくはこれらの双方と反応し、かつ(A)成分の昇華温度より低温で反応する化合物である。
 (C)成分は、(A)成分の昇華温度より低温で、(A)成分のカルボキシル基、(B)成分のポリマー中のヒドロキシ基、カルボキシル基、アミド基、アミノ基及びアルコキシシリル基から選ばれる基と結合する。
 その結果、後述するように、(A)成分及び(B)成分と、(C)成分である架橋剤とが熱反応する際に、(A)成分が昇華するのを抑制することができる。そして、本発明の組成物は、硬化膜として、光反応効率の高い配向材を形成することができる。
 (C)成分である架橋剤としては、エポキシ化合物、メチロール化合物およびイソシアナート化合物等の化合物が挙げられるが、好ましくはメチロール化合物である。
 上述したメチロール化合物の具体例としては、例えば、アルコキシメチル化グリコールウリル、アルコキシメチル化ベンゾグアナミンおよびアルコキシメチル化メラミン等の化合物が挙げられる。
 アルコキシメチル化グリコールウリルの具体例としては、例えば、1,3,4,6-テトラキス(メトキシメチル)グリコールウリル、1,3,4,6-テトラキス(ブトキシメチル)グリコールウリル、1,3,4,6-テトラキス(ヒドロキシメチル)グリコールウリル、1,3-ビス(ヒドロキシメチル)尿素、1,1,3,3-テトラキス(ブトキシメチル)尿素、1,1,3,3-テトラキス(メトキシメチル)尿素、1,3-ビス(ヒドロキシメチル)-4,5-ジヒドロキシ-2-イミダゾリノン、および1,3-ビス(メトキシメチル)-4,5-ジメトキシ-2-イミダゾリノン等が挙げられる。
 これらの市販品として、三井サイテック(株)製グリコールウリル化合物(商品名:サイメル(登録商標)1170、パウダーリンク(登録商標)1174)等の化合物、メチル化尿素樹脂(商品名:UFR(登録商標)65)、ブチル化尿素樹脂(商品名:UFR(登録商標)300、U-VAN(登録商標)10S60、U-VAN(登録商標)10R、U-VAN(登録商標)11HV)、DIC(株)製尿素/ホルムアルデヒド系樹脂(高縮合型、商品名:ベッカミン(登録商標)J-300S、同P-955、同N)等が挙げられる。
 アルコキシメチル化ベンゾグアナミンの具体例としては、例えば、テトラメトキシメチルベンゾグアナミン等が挙げられる。
 これらの市販品として、三井サイテック(株)製(商品名:サイメル(登録商標)1123)、(株)三和ケミカル製(商品名:ニカラック(登録商標)BX-4000、同BX-37、同BL-60、同BX-55H)等が挙げられる。
 アルコキシメチル化メラミンの具体例としては、例えば、ヘキサメトキシメチルメラミン等が挙げられる。
 これらの市販品として、三井サイテック(株)製メトキシメチルタイプメラミン化合物(商品名:サイメル(登録商標)300、同301、同303、同350)、ブトキシメチルタイプメラミン化合物(商品名:マイコート(登録商標)506、同508)、(株)三和ケミカル製メトキシメチルタイプメラミン化合物(商品名:ニカラック(登録商標)MW-30、同MW-22、同MW-11、同MS-001、同MX-002、同MX-730、同MX-750、同MX-035)、ブトキシメチルタイプメラミン化合物(商品名:ニカラック(登録商標)MX-45、同MX-410、同MX-302)等が挙げられる。
 また、このようなアミノ基の水素原子がメチロール基またはアルコキシメチル基で置換されたメラミン化合物、尿素化合物、グリコールウリル化合物およびベンゾグアナミン化合物を縮合させて得られる化合物であってもよい。例えば、米国特許第6323310号に記載されているメラミン化合物およびベンゾグアナミン化合物から製造される高分子量の化合物が挙げられる。
 前記メラミン化合物の市販品としては、商品名:サイメル(登録商標)303(三井サイテック(株)製)等が挙げられ、前記ベンゾグアナミン化合物の市販品としては、商品名:サイメル(登録商標)1123(三井サイテック(株)製)等が挙げられる。
 さらに、(C)成分としては、上記化合物に加えて、N-ヒドロキシメチルアクリルアミド、N-メトキシメチルメタアクリルアミド、N-エトキシメチルアクリルアミド、N-ブトキシメチルメタアクリルアミド等のヒドロキシメチル基またはアルコキシメチル基で置換されたアクリルアミド化合物またはメタアクリルアミド化合物を使用して製造されるポリマーも用いることができる。
 そのようなポリマーとしては、例えば、ポリ(N-ブトキシメチルアクリルアミド)、N-ブトキシメチルアクリルアミドとスチレンとの共重合体、N-ヒドロキシメチルメタアクリルアミドとメチルメタクリレートとの共重合体、N-エトキシメチルメタアクリルアミドとベンジルメタクリレートとの共重合体、および、N-ブトキシメチルアクリルアミドとベンジルメタクリレートと2-ヒドロキシプロピルメタクリレートとの共重合体等が挙げられる。このようなポリマーの重量平均分子量は、1,000乃至500,000であり、好ましくは、2,000乃至200,000であり、より好ましくは3,000乃至150,000であり、さらに好ましくは3,000乃至50,000である。
 これらの架橋剤は、単独でまたは2種以上を組み合わせて使用することができる。
 本発明の組成物における(C)成分の架橋剤の含有量は、(A)成分の低分子配向成分と(B)成分のポリマーとの合計量の100質量部に基づいて10質量部乃至500質量部であることが好ましく、より好ましくは15質量部乃至400質量部である。架橋剤の含有量が過小である場合には、硬化膜形成組成物から得られる硬化膜の溶剤耐性および耐熱性が低下し、光配向時の配向感度が低下する。他方、含有量が過大である場合には光配向性および保存安定性が低下することがある。
 本発明の組成物は、上述したように、(C)成分として、架橋剤を含有する。そのため、本発明の組成物から得られた硬化膜の内部では、(A)成分の低分子配向成分中の光配向性基による光反応の前に、(C)架橋剤を用いた熱反応による架橋反応を行うことができる。その結果、配向材として用いられた場合に、その上に塗布される重合性液晶やその溶剤に対する耐性を向上させることができる。
<(D)成分>
 本実施の形態の硬化膜形成組成物は、(A)成分、(B)成分、(C)成分に加えて、さらに、(D)成分として架橋触媒を含有することができる。
 (D)成分である架橋触媒としては、例えば、酸または熱酸発生剤とすることができる。この(D)成分は、本実施の形態の硬化膜形成組成物の熱硬化反応を促進させることにおいて有効である。
 (D)成分としては、スルホン酸基含有化合物、塩酸またはその塩、およびプリベークまたはポストベーク時に熱分解して酸を発生する化合物、すなわち温度80℃から250℃で熱分解して酸を発生する化合物であれば特に限定されるものではない。そのような化合物としては、例えば、塩酸、メタンスルホン酸、エタンスルホン酸、プロパンスルホン酸、ブタンスルホン酸、ペンタンスルホン酸、オクタンスルホン酸、ベンゼンスルホン酸、p-トルエンスルホン酸、カンファスルホン酸、トリフルオロメタンスルホン酸、p-フェノールスルホン酸、2-ナフタレンスルホン酸、メシチレンスルホン酸、p-キシレン-2-スルホン酸、m-キシレン-2-スルホン酸、4-エチルベンゼンスルホン酸、1H,1H,2H,2H-パーフルオロオクタンスルホン酸、パーフルオロ(2-エトキシエタン)スルホン酸、ペンタフルオロエタンスルホン酸、ノナフルオロブタン-1-スルホン酸、ドデシルベンゼンスルホン酸等のスルホン酸またはその水和物や塩等が挙げられる。熱により酸を発生する化合物としては、例えば、ビス(トシルオキシ)エタン、ビス(トシルオキシ)プロパン、ビス(トシルオキシ)ブタン、p-ニトロベンジルトシレート、o-ニトロベンジルトシレート、1,2,3-フェニレントリス(メチルスルホネート)、p-トルエンスルホン酸ピリジニウム塩、p-トルエンスルホン酸モルフォニウム塩、p-トルエンスルホン酸エチルエステル、p-トルエンスルホン酸プロピルエステル、p-トルエンスルホン酸ブチルエステル、p-トルエンスルホン酸イソブチルエステル、p-トルエンスルホン酸メチルエステル、p-トルエンスルホン酸フェネチルエステル、シアノメチルp-トルエンスルホネート、2,2,2-トリフルオロエチルp-トルエンスルホネート、2-ヒドロキシブチルp-トルエンスルホネート、N-エチル-p-トルエンスルホンアミド、及び下記式で表される化合物等が挙げられる。
Figure JPOXMLDOC01-appb-C000006
Figure JPOXMLDOC01-appb-C000007
Figure JPOXMLDOC01-appb-C000008
Figure JPOXMLDOC01-appb-C000009
Figure JPOXMLDOC01-appb-C000010
Figure JPOXMLDOC01-appb-C000011
 本実施の形態の硬化膜形成組成物における(D)成分の含有量は、(A)成分の化合物と(B)成分のポリマーとの合計量の100質量部に対して、好ましくは0.01質量部乃至10質量部、より好ましくは0.1質量部乃至6質量部、更に好ましくは0.5質量部乃至5質量部である。(D)成分の含有量を0.01質量部以上とすることで、充分な熱硬化性および溶剤耐性を付与することができ、さらに光照射に対する高い感度をも付与することができる。しかし、10質量部より多い場合、組成物の保存安定性が低下する場合がある。
<溶剤>
 本実施の形態の硬化膜形成組成物は、主として溶剤に溶解した溶液状態で用いられる。その際に使用する溶剤は、(A)成分、(B)成分および(C)成分、必要に応じて(D)成分、および/または、後述するその他添加剤を溶解できればよく、その種類および構造などは特に限定されるものでない。
 溶剤の具体例としては、例えば、エチレングリコールモノメチルエーテル、エチレングリコールモノエチルエーテル、メチルセロソルブアセテート、エチルセロソルブアセテート、ジエチレングリコールモノメチルエーテル、ジエチレングリコールモノエチルエーテル、プロピレングリコール、プロピレングリコールモノメチルエーテル、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールプロピルエーテルアセテート、トルエン、キシレン、メチルエチルケトン、メチルイソブチルケトン、シクロペンタノン、シクロヘキサノン、2-ブタノン、3-メチル-2-ペンタノン、2-ペンタノン、2-ヘプタノン、γ-ブチロラクトン、2-ヒドロキシプロピオン酸エチル、2-ヒドロキシ-2-メチルプロピオン酸エチル、エトキシ酢酸エチル、ヒドロキシ酢酸エチル、2-ヒドロキシ-3-メチルブタン酸メチル、3-メトキシプロピオン酸メチル、3-メトキシプロピオン酸エチル、3-エトキシプロピオン酸エチル、3-エトキシプロピオン酸メチル、ピルビン酸メチル、ピルビン酸エチル、酢酸エチル、酢酸ブチル、酢酸イソブチル、乳酸エチル、乳酸ブチル、N,N-ジメチルホルムアミド、N,N-ジメチルアセトアミド、およびN-メチルピロリドン等が挙げられる。
 これらの溶剤は、1種単独でまたは2種以上の組合せで使用することができる。
<その他添加剤>
 さらに、本実施の形態の硬化膜形成組成物は、本発明の効果を損なわない限りにおいて、必要に応じて、増感剤、シランカップリング剤、界面活性剤、レオロジー調整剤、顔料、染料、保存安定剤、消泡剤、酸化防止剤等を含有することができる。
 例えば、増感剤は、本実施の形態の硬化膜形成組成物を用いて熱硬化膜を形成した後、光反応を促進することにおいて有効である。
 その他添加剤の一例であるの増感剤としては、ベンゾフェノン、アントラセン、アントラキノン、チオキサントン等およびその誘導体、並びにニトロフェニル化合物等が挙げられる。これらのうち、ベンゾフェノン誘導体およびニトロフェニル化合物が好ましい。好ましい化合物の具体例としてN,N-ジエチルアミノベンゾフェノン、2-ニトロフルオレン、2-ニトロフルオレノン、5-ニトロアセナフテン、4-ニトロビフェニル、4-ニトロ桂皮酸、4-ニトロスチルベン、4-ニトロベンゾフェノン、5-ニトロインドール等が挙げられる。特に、ベンゾフェノンの誘導体であるN,N-ジエチルアミノベンゾフェノンが好ましい。
 これらの増感剤は上記のものに限定されるものではない。また、増感剤は単独でまたは2種以上の化合物を組み合わせて併用することが可能である。
 本実施の形態の硬化膜形成組成物における増感剤の使用割合は、(A)成分の低分子配向成分と(B)成分のアクリル重合体との合計質量の100質量部に対して0.1質量部乃至20質量部であることが好ましく、より好ましくは0.2質量部乃至10質量部である。この割合が過小である場合には、増感剤としての効果を充分に得られない場合があり、過大である場合には透過率の低下および塗膜の荒れが生じることがある。
<硬化膜形成組成物の調製>
 本実施の形態の硬化膜形成組成物は、(A)成分である低分子の光配向成分と、(B)成分である、(A)成分の光配向性成分より親水性であるポリマーと、(C)成分である架橋剤を含有する。そして、本発明の効果を損なわない限りにおいて、その他の添加剤を含有することができる。
 (A)成分と(B)成分の配合比は、質量比で5:95乃至60:40が好ましい。(B)成分の含有量が過大の場合は液晶配向性が低下し易く、過小の場合は溶剤耐性が低下することにより配向性が低下し易い。
 本実施の形態の硬化膜形成組成物の好ましい例は、以下のとおりである。
 [1]:(A)成分と(B)成分の配合比が質量比で5:95乃至60:40であり、(A)成分と(B)成分との合計量の100質量部に基づいて、10質量部乃至150質量部の(C)成分を含有する硬化膜形成組成物。
 [2]:(A)成分と(B)成分との合計量の100質量部に基づいて、10質量部乃至500質量部の(C)成分、溶剤を含有する硬化膜形成組成物。
 [3]:(A)成分と(B)成分との合計量の100質量部に基づいて、10質量部乃至150質量部の(C)成分、0.01質量部乃至10質量部の(D)成分、溶剤を含有する硬化膜形成組成物。
 本実施の形態の硬化膜形成組成物を溶液として用いる場合の配合割合、調製方法等を以下に詳述する。
 本実施の形態の硬化膜形成組成物における固形分の割合は、各成分が均一に溶剤に溶解している限り、特に限定されるものではないが、1質量%乃至80質量%であり、好ましくは3質量%乃至60質量%であり、より好ましくは5質量%乃至40質量%である。ここで、固形分とは、硬化膜形成組成物の全成分から溶剤を除いたものをいう。
 本実施の形態の硬化膜形成組成物の調製方法は、特に限定されない。調製法としては、例えば、溶剤に溶解した(B)成分の溶液に(A)成分、(C)成分および必要に応じて(D)成分を所定の割合で混合し、均一な溶液とする方法、或いは、この調製法の適当な段階において、必要に応じてその他添加剤をさらに添加して混合する方法が挙げられる。
 本実施の形態の硬化膜形成組成物の調製においては、溶剤中の重合反応によって得られる特定共重合体の溶液をそのまま使用することができる。この場合、例えば、ポリエチレングリコールエステル基を有するモノマーおよびC~Cヒドロキシアルキルエステル基を有するモノマーのうち少なくとも一方と、カルボキシル基を有するモノマーおよびフェノール性ヒドロキシ基を有するモノマーのうち少なくとも一方とを共重合させて得られる(B)成分の溶液に前記と同様に(A)成分、(C)成分および必要に応じて(D)成分を入れて均一な溶液とする。この際に、濃度調整を目的としてさらに溶剤を追加投入してもよい。このとき、(B)成分の生成過程で用いられる溶剤と、硬化膜形成組成物の濃度調整に用いられる溶剤とは同一であってもよく、また異なってもよい。
 また、調製された硬化膜形成組成物の溶液は、孔径が0.2μm程度のフィルタなどを用いて濾過した後、使用することが好ましい。
<硬化膜、配向材および位相差材>
 本実施の形態の硬化膜形成組成物の溶液を基板(例えば、シリコン/二酸化シリコン被覆基板、シリコンナイトライド基板、金属、例えば、アルミニウム、モリブデン、クロムなどが被覆された基板、ガラス基板、石英基板、ITO基板等)やフィルム(例えば、トリアセチルセルロース(TAC)フィルム、シクロオレフィンポリマーフィルム、ポリエチレンテレフタレートフィルム、アクリルフィルム等の樹脂フィルム)等の上に、バーコート、回転塗布、流し塗布、ロール塗布、スリット塗布、スリットに続いた回転塗布、インクジェット塗布、印刷などによって塗布して塗膜を形成し、その後、ホットプレートまたはオーブン等で加熱乾燥することにより、硬化膜を形成することができる。
 加熱乾燥の条件としては、硬化膜から形成される配向材の成分が、その上に塗布される重合性液晶溶液に溶出しない程度に、架橋剤による架橋反応が進行すればよく、例えば、温度60℃乃至200℃、時間0.4分間乃至60分間の範囲の中から適宜選択された加熱温度および加熱時間が採用される。加熱温度および加熱時間は、好ましくは70℃乃至160℃、0.5分間乃至10分間である。
 本実施の形態の硬化性組成物を用いて形成される硬化膜の膜厚は、例えば、0.05μm乃至5μmであり、使用する基板の段差や光学的、電気的性質を考慮し適宜選択することができる。
 このようにして形成された硬化膜は、偏光UV照射を行うことで配向材、すなわち、液晶等の液晶性を有する化合物を配向させる部材として機能させることができる。
 偏光UVの照射方法としては、通常150nm乃至450nmの波長の紫外光乃至可視光が用いられ、室温または加熱した状態で垂直または斜め方向から直線偏光を照射することによって行われる。
 本実施形態の硬化膜組成物から形成された配向材は耐溶剤性および耐熱性を有しているため、この配向材上に、重合性液晶溶液からなる位相差材料を塗布した後、液晶の相転移温度まで加熱することで位相差材料を液晶状態とし、配向材上で配向させる。そして、配向状態となった位相差材料をそのまま硬化させて、積層体を形成したあと、被転写体上に粘着層または接着層を介して積層体の位相差材料由来の面を貼り付けたのち、位相差材料由来の硬化膜から配向材を剥離して除くことにより、光学異方性を有する層として位相差材を転写することができる。
 被転写体としては、例えば偏光板、位相差板等の光学部材や、被転写基材を用いることができる。位相差板としては、例えば液晶層である位相差層を有するものや、延伸フィルムを用いることができる。
 粘着層および接着層の材料としては、位相差層および被転写体の両方に密着性を有する粘着剤や接着剤を用いることができる。粘着剤および接着剤としては、転写法による位相差板の製造方法に使用される一般的なものを適用することができる。
 位相差材料としては、例えば、重合性基を有する液晶モノマーおよびそれを含有する組成物等が用いられる。そして、配向材を形成する基板がフィルムである場合には、位相差材を形成した後の上記剥離が容易となるため、好ましい。このような位相差材を形成する位相差材料は、液晶状態となって、配向材上で、水平配向、コレステリック配向、垂直配向、ハイブリッド配向等の配向状態をとるものがあり、それぞれ必要とされる位相差に応じて使い分けることが出来る。
 また、3Dディスプレイに用いられるパターン化位相差材を製造する場合には、本実施形態の硬化膜組成物から上記した方法で形成された硬化膜に、ラインアンドスペースパターンのマスクを介して所定の基準から、例えば、+45度の向きで偏光UV露光し、次いで、マスクを外してから-45度の向きで偏光UVを露光し、液晶の配向制御方向の異なる2種類の液晶配向領域が形成された配向材を得る。その後、重合性液晶溶液からなる位相差材料を塗布した後、液晶の相転移温度まで加熱することで位相差材料を液晶状態とし、配向材上で配向させる。そして、配向状態となった位相差材料をそのまま硬化させたあと、上記のとおり位相差材を転写し、配向材を剥離して除くことにより、位相差特性の異なる2種類の位相差領域がそれぞれ複数、規則的に配置された、パターン化位相差材を得ることができる。
 そのため、本実施の形態の硬化膜形成組成物は、各種位相差材(位相差フィルム)の製造に好適に用いることができる。
 以下、本発明の実施例を挙げて、本発明を具体的に説明するが、本発明はこれらに限定して解釈されるものではない。
[実施例で用いる略記号]
 以下の実施例で用いる略記号の意味は、次のとおりである。
<原料>
 BMAA:N-ブトキシメチルアクリルアミド
 AIBN:α,α’-アゾビスイソブチロニトリル
<A成分>
 MCA:4-メトキシ桂皮酸
Figure JPOXMLDOC01-appb-C000012
 PCA:4-プロポキシ桂皮酸
Figure JPOXMLDOC01-appb-C000013
 CHCA:4-シクロヘキシル桂皮酸
Figure JPOXMLDOC01-appb-C000014
<B成分>
 PEPO:ポリエステルポリオール重合体(下記構造単位を有するアジピン酸/ジエチレングリコール共重合体。分子量4,800。)
Figure JPOXMLDOC01-appb-C000015
(上記式中、Rは、アルキレンを表す。)
 PUA:ポリウレタングラフトアクリルポリマー[アクリット(登録商標)8UA-301(大成ファインケミカル(株)製)]
 PCP:ポリカーボネートポリオール[C-590(クラレ(株)製)]
 HPC:ヒドロキシプロピルセルロース[HPC-SSL(日本曹達(株)製)]
 PCL:ポリカプロラクトンテトラオール[プラクセル410(ダイセル(株)製)]
<C成分>
 HMM:下記の構造式で表されるメラミン架橋剤[サイメル(CYMEL)(登録商標)303(三井サイテック(株)製)]
Figure JPOXMLDOC01-appb-C000016
<D成分>
 PTSA:p-トルエンスルホン酸・一水和物
 PPTS:p-トルエンスルホン酸ピリジニウム
<溶剤>
 実施例及び参考例の各樹脂組成物は溶剤を含有し、その溶剤として、プロピレングリコールモノメチルエーテル(PM)、酢酸ブチル(BA)、酢酸エチル(EA)、酢酸イソブチル(IBA)、メチルエチルケトン(MEK)、メチルイソブチルケトン(MIBK)を用いた。
<重合体の分子量の測定>
 重合例におけるアクリル共重合体の分子量は、(株)Shodex社製常温ゲル浸透クロマトグラフィー(GPC)装置(GPC-101)、Shodex社製カラム(KD―803、KD-805)を用い以下のようにして測定した。
なお、下記の数平均分子量(以下、Mnと称す。)及び重量平均分子量(以下、Mwと称す。)は、ポリスチレン換算値にて表した。
 カラム温度:40℃
 溶離液:テトラヒドロフラン
 流速:1.0mL/分
 検量線作成用標準サンプル:昭和電工社製 標準ポリスチレン(分子量 約197,000、55,100、12,800、3,950、1,260、580)。
<C成分の合成>
<重合例1>
 BMAA 100.0g、重合触媒としてAIBN 1.0gをPM 193.5gに溶解し、80℃にて20時間反応させることによりアクリル重合体溶液を得た。得られたアクリル重合体のMnは10,000、Mwは23,000であった。アクリル重合体溶液をヘキサン2000.0gに徐々に滴下して固体を析出させ、ろ過および減圧乾燥することで、重合体(PC-1)を得た。
<重合例2>
 BMAA 100.0g、重合触媒としてAIBN 4.2gをPM 193.5gに溶解し、90℃にて20時間反応させることによりアクリル重合体溶液を得た。得られたアクリル重合体のMnは2,700、Mwは3,900であった。アクリル重合体溶液をヘキサン2000.0gに徐々に滴下して固体を析出させ、ろ過および減圧乾燥することで、重合体(PC-2)を得た。
<重合例3>
 MMA100.0g、HEMA11.1g、重合触媒としてAIBN 5.6gをPM 450.0gに溶解し、80℃にて20時間反応させることによりアクリル共重合体溶液を得た。得られたアクリル共重合体のMnは4,200、Mwは7,600であった。得られたアクリル重合体溶液をヘキサン5000.0gに徐々に滴下して固体を析出させ、ろ過および減圧乾燥することで、重合体(PB-1)を得た。
<液晶配向剤の調製>
<実施例1>
 (A)成分としてMCA 1.8g、(B)成分としてPEPO 7.3g、(C)成分として合成例1で得た重合体(PC-1)を5.9g、(D)成分としてPTSA 0.9gを混合し、これに溶媒としてのPM 44g、BA 175g、及びEA 66gを加えて溶液を得た。次いで、この得られた溶液を孔径1μmのフィルターでろ過することにより、液晶配向剤(A-1)を調製した。
<実施例2~25>
 下記表1に示す種類及び配合量の各成分を用いた以外は、実施例1と同様に操作し、各液晶配向剤(A-2)~(A-25)を調製した。
Figure JPOXMLDOC01-appb-T000017
<液晶配向膜の形成及び位相差フィルムの作製>
<実施例26>
 実施例1で調製した液晶配向剤(A-1)を、基板としてのTACフィルム上にバーコーターを用いてWet膜厚4μmにて塗布した。熱循環式オーブン内にて140℃で1分間の加熱乾燥を行い、フィルム上に硬化膜を形成した。次いで、この硬化膜表面に313nmの直線偏光を10mJ/cmの露光量で垂直に照射し、液晶配向膜を形成した。メルク株式会社製の水平配向用重合性液晶溶液(RMS03-013C)を、バーコーターを用いて上記液晶配向膜上にWet膜厚6μmにて塗布した。次いで、ホットプレート上にて65℃で1分間の加熱乾燥を行った後、365nmの非偏光を300mJ/cmの露光量で垂直に照射することで重合性液晶を硬化させ、位相差フィルムを作製した。
<実施例27~52>
 液晶配向剤として(A-2)~(A-25)を用い、実施例51および52は基板としてオゾン処理を施したCOPフィルムを用いた以外は、実施例26と同様に操作し、実施例27~52の各位相差フィルムを作製した。
 上記で作製した各位相差フィルムについて、下記方法により評価を行った。その評価結果
を表2に示す。
<配向性の評価>
 作製した基板上の位相差フィルムを一対の偏光板で挟み込み、目視によりクロスニコル下での位相差特性の発現状況を観察した。位相差が欠陥なく発現しているものを○、位相差が発現していないものを×として「液晶配向性」の欄に記載した。
<転写性の評価>
 作製した基板上の位相差フィルムの位相差材料由来の面を、石英上に透明光学粘着フィルム(日東電工社製 LUCIACS)を介して貼合した。その後、基板としてのTACもしくはCOPフィルムを剥離することにより、石英上に重合性液晶からなる位相差層を転写した。位相差層を転写した石英を一対の偏光板で挟み込み、目視によりクロスニコル下での位相差特性の発現状況を観察した。位相差が欠陥なく発現しているものを○、欠陥が発現しているものを×として「転写性」の欄に記載した。また、ATR法により転写時の剥離界面を観測して「剥離界面」の欄に記載した。
Figure JPOXMLDOC01-appb-T000018
 表2の結果から明らかなように、実施例の位相差フィルムは、液晶配向性および転写性が良好であった。
<液晶配向剤の調製2>
<実施例53~56、参考例1~2>
 下記表3に示す種類及び配合量の各成分を用いた以外は、実施例1と同様に操作し、各液晶配向剤(A-26)~(A-31)を調製した。
Figure JPOXMLDOC01-appb-T000019
<重合性液晶溶液の調製>
<調製例1>
 重合性液晶LC242(BASF社製)29.0g、重合開始剤としてイルガキュア907(BASF社製)0.9g、レベリング剤としてBYK-361N(BYK社製)0.2g、溶媒としてのMIBKを加えて固形分濃度が30質量%の重合性液晶溶液(LC-1)を得た。
<調製例2>
 重合性液晶LC242(BASF社製)29.0g、重合開始剤としてイルガキュア907(BASF社製)0.9g、レベリング剤としてBYK-361N(BYK社製)0.2g、溶媒としてのCPを加えて固形分濃度が30質量%の重合性液晶溶液(LC-2)を得た。
<液晶配向膜の形成及び位相差フィルムの作製>
<実施例57>
 実施例53で調製した液晶配向剤(A-26)を、基板としてのTACフィルム上にバーコーターを用いてWet膜厚4μmにて塗布した。熱循環式オーブン内にて110℃で1分間の加熱乾燥を行い、フィルム上に硬化膜を形成した。次いで、この硬化膜表面に313nmの直線偏光を10mJ/cmの露光量で垂直に照射し、液晶配向膜を形成した。調製例1で調製した重合性液晶溶液(LC-1)を、バーコーターを用いて上記液晶配向膜上にWet膜厚6μmにて塗布した。次いで、ホットプレート上にて90℃で1分間の加熱乾燥を行った後、365nmの非偏光を500mJ/cmの露光量で垂直に照射することで重合性液晶を硬化させ、位相差フィルムを作製した。
<実施例58~60、参考例3~4>
 液晶配向剤として(A-27)~(A-31)を用いた以外は、実施例57と同様に操作し、実施例58~60、参考例3~4の各位相差フィルムを作製した。
<実施例61>
 実施例53で調製した液晶配向剤(A-26)を、基板としてのTACフィルム上にバーコーターを用いてWet膜厚4μmにて塗布した。熱循環式オーブン内にて110℃で1分間の加熱乾燥を行い、フィルム上に硬化膜を形成した。次いで、この硬化膜表面に313nmの直線偏光を10mJ/cmの露光量で垂直に照射し、液晶配向膜を形成した。調製例1で調製した重合性液晶溶液(LC-2)を、バーコーターを用いて上記液晶配向膜上にWet膜厚12μmにて塗布した。次いで、ホットプレート上にて90℃で1分間の加熱乾燥を行った後、365nmの非偏光を500mJ/cmの露光量で垂直に照射することで重合性液晶を硬化させ、位相差フィルムを作製した。
<実施例62~64、参考例5~6>
 液晶配向剤として(A-27)~(A-31)を用いた以外は、実施例61と同様に操作し、実施例62~64、参考例5~6の各位相差フィルムを作製した。
<配向性の評価>
 作製した基板上の位相差フィルムを一対の偏光板で挟み込み、目視によりクロスニコル下での位相差特性の発現状況を観察した。位相差が欠陥なく発現しているものを○、欠陥が発生していたいものを×として表4の「液晶配向性」の欄に記載した。
Figure JPOXMLDOC01-appb-T000020
 表4に示すように、実施例では重合性液晶溶液(LC-1)および(LC-2)のどちらを用いても、得られた位相差材は良好な配向性を示した。それに対して、参考例では(LC-1)を用いて得られた位相差材は良好な配向性を示したが、(LC-2)を用いて得られた位相差材は良好な配向性が得られなかった。
 本発明による硬化膜形成組成物は、液晶表示素子の液晶配向膜や、液晶表示素子に内部や外部に設けられる光学異方性フィルムを形成するための配向材として非常に有用であり、特に、3Dディスプレイや有機EL素子に用いられるパターン化位相差材の形成材料として好適である。

Claims (12)

  1.  (A)成分である、下記式(1)で表される桂皮酸誘導体、
    Figure JPOXMLDOC01-appb-C000001
    (式(1)中、AとAはそれぞれ独立に、水素原子またはメチル基を表し、Rは水素原子、ハロゲン原子、C~Cアルキル、C~Cハロアルキル、C~Cアルコキシ、C~Cハロアルコキシ、C~Cシクロアルキル、C~Cハロシクロアルキル、C~Cアルケニル、C~Cハロアルケニル、C~Cシクロアルケニル、C~Cハロシクロアルケニル、C~Cアルキニル、C~Cハロアルキニル、(C~Cアルキル)カルボニル、(C~Cハロアルキル)カルボニル、(C~Cアルコキシ)カルボニル、(C~Cハロアルコキシ)カルボニル、(C~Cアルキルアミノ)カルボニル、(C~Cハロアルキル)アミノカルボニル、ジ(C~Cアルキル)アミノカルボニル、シアノ及びニトロから選ばれる置換基を表し、Rは2価の芳香族基、2価の脂環族基、2価の複素環式基または2価の縮合環式基であり、Rは単結合、酸素原子、-COO-または-OCO-であり、R~Rはそれぞれ独立に水素原子、ハロゲン原子、C~Cアルキル基、C~Cハロアルキル基、C~Cアルコキシ基、C~Cハロアルコキシ基、シアノ基、及びニトロ基から選ばれる置換基であり、nは0~3の整数である。)、
     (B)成分である、ヒドロキシ基、カルボキシル基およびアミノ基から選ばれる1種または2種以上の置換基を有する親水性ポリマー、並びに
     (C)成分である架橋剤を含有することを特徴とする硬化膜形成組成物。
  2.  (B)成分が、ポリエーテルポリオール、ポリエステルポリオール、ポリカーボネートポリオールおよびポリカプロラクトンポリオールよりなる群から選ばれた少なくとも1種のポリマーであることを特徴とする請求項1に記載の硬化膜形成組成物。
  3.  (B)成分がセルロースまたはその誘導体であることを特徴とする請求項1に記載の硬化膜形成組成物。
  4.  (B)成分が、ポリエチレングリコールエステル基およびC~Cヒドロキシアルキルエステル基のうちの少なくとも一方と、カルボキシル基およびフェノール性ヒドロキシ基のうちの少なくとも一方とを有するアクリル重合体であることを特徴とする請求項1に記載の硬化膜形成組成物。
  5.  (B)成分が、ヒドロキシアルキル基を側鎖に有するアクリル重合体であることを特徴とする請求項1に記載の硬化膜形成組成物。
  6.  (C)成分がN-ヒドロキシメチル化合物またはN-アルコキシメチル(メタ)アクリルアミド化合物を含むモノマーを重合したポリマーであることを特徴とする請求項1乃至請求項5のいずれか1項に記載の硬化膜形成組成物。
  7.  (D)成分として架橋触媒をさらに含有することを特徴とする請求項1乃至請求項6のいずれか1項に記載の硬化膜形成組成物。
  8.  (A)成分と(B)成分の比率が質量比で5:95乃至60:40であることを特徴とする請求項1乃至請求項7のいずれか1項に記載の硬化膜形成組成物。
  9.  (A)成分及び(B)成分の合計量100質量部に基づいて、10質量部乃至500質量部の(C)成分を含有することを特徴とする請求項1乃至請求項8のいずれか1項に記載の硬化膜形成組成物。
  10. (A)成分の化合物及び(B)成分のポリマーの合計量100質量部に対して0.01質量部乃至10質量部の(D)成分を含有する請求項7に記載の硬化膜形成組成物。
  11.  請求項1乃至請求項10のいずれか1項に記載の硬化膜形成組成物を用いて得られることを特徴とする配向材。
  12.  請求項1乃至請求項10のいずれか1項に記載の硬化膜形成組成物から得られる硬化膜を使用して形成されることを特徴とする位相差材。
PCT/JP2018/038483 2017-10-16 2018-10-16 硬化膜形成組成物、配向材および位相差材 WO2019078201A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
CN201880067114.4A CN111212879A (zh) 2017-10-16 2018-10-16 固化膜形成用组合物、取向材及相位差材
US16/756,631 US20200325327A1 (en) 2017-10-16 2018-10-16 Cured-film-forming composition, orientation material, and retardation material
JP2019549291A JP7436954B2 (ja) 2017-10-16 2018-10-16 硬化膜形成組成物、配向材および位相差材
KR1020207011883A KR20200062259A (ko) 2017-10-16 2018-10-16 경화막 형성 조성물, 배향재 및 위상차재
JP2023114611A JP2023156287A (ja) 2017-10-16 2023-07-12 硬化膜形成組成物、配向材および位相差材

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017200249 2017-10-16
JP2017-200249 2017-10-16

Publications (1)

Publication Number Publication Date
WO2019078201A1 true WO2019078201A1 (ja) 2019-04-25

Family

ID=66174187

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/038483 WO2019078201A1 (ja) 2017-10-16 2018-10-16 硬化膜形成組成物、配向材および位相差材

Country Status (6)

Country Link
US (1) US20200325327A1 (ja)
JP (2) JP7436954B2 (ja)
KR (1) KR20200062259A (ja)
CN (1) CN111212879A (ja)
TW (1) TW201930432A (ja)
WO (1) WO2019078201A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021106858A1 (ja) * 2019-11-25 2021-06-03 日産化学株式会社 硬化膜形成組成物、配向材および位相差材

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012037868A (ja) * 2010-07-15 2012-02-23 Jsr Corp 位相差フィルム用液晶配向剤、位相差フィルム用液晶配向膜、位相差フィルム及びその製造方法
WO2013054784A1 (ja) * 2011-10-11 2013-04-18 日産化学工業株式会社 硬化膜形成組成物、配向材および位相差材
WO2014010688A1 (ja) * 2012-07-12 2014-01-16 日産化学工業株式会社 硬化膜形成組成物、配向材および位相差材
WO2014065324A1 (ja) * 2012-10-24 2014-05-01 日産化学工業株式会社 硬化膜形成組成物、配向材および位相差材
WO2016143865A1 (ja) * 2015-03-11 2016-09-15 日産化学工業株式会社 硬化膜形成組成物、配向材及び位相差材
WO2016147987A1 (ja) * 2015-03-13 2016-09-22 日産化学工業株式会社 硬化膜形成組成物、配向材および位相差材

Family Cites Families (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS55165858A (en) 1979-06-13 1980-12-24 Toppan Printing Co Ltd Center-bound bookbinding folding pagination and its processing method
JP2660601B2 (ja) * 1990-06-27 1997-10-08 日本石油株式会社 液晶表示素子用補償板の製造法
JP2952449B2 (ja) * 1992-06-03 1999-09-27 日石三菱株式会社 液晶表示素子用補償板の製造法
JPH1068816A (ja) 1996-08-29 1998-03-10 Sharp Corp 位相差板及び円偏光板
US6174649B1 (en) * 1997-04-25 2001-01-16 Samsung Display Devices Co., Ltd. Cinnamate-containing photopolymer for orientation film of liquid crystal display (LCD) and method for using the photopolymer to form an orientation film
KR19980078124A (ko) * 1997-04-25 1998-11-16 손욱 광중합형 액정 배향재 및 이를 이용한 액정 배향막의 제조방법
DE69806618T2 (de) 1997-09-25 2003-02-27 Rolic Ag Zug Photovernetzbare polyimide
KR100814371B1 (ko) * 2000-04-24 2008-03-18 니폰 가야꾸 가부시끼가이샤 액정성 화합물의 배향방법
JP4207430B2 (ja) 2002-01-31 2009-01-14 Jsr株式会社 液晶配向剤、液晶配向膜の形成方法および液晶表示素子
US7496214B2 (en) * 2002-09-25 2009-02-24 The Hong Kong Polytechnic University Method of palm print identification
CN100370286C (zh) * 2003-02-12 2008-02-20 日本化药株式会社 垂直导向基材和生产垂直排列液晶延迟膜的方法
JP2005049865A (ja) 2003-07-17 2005-02-24 Arisawa Mfg Co Ltd 光学位相差素子の製造方法
DE602004001650T2 (de) * 2003-10-17 2007-07-19 Merck Patent Gmbh Polymerisierbare Zimtsäurederivate mit einer seitlichen Substitution
WO2008119426A1 (en) 2007-03-30 2008-10-09 Merck Patent Gmbh Birefingent layer with negative optical dispersion
JP5316740B2 (ja) 2007-08-30 2013-10-16 Jsr株式会社 液晶配向膜の形成方法
JP5373293B2 (ja) 2008-01-29 2013-12-18 富士フイルム株式会社 化合物、液晶組成物及び異方性材料
JP2009300760A (ja) * 2008-06-13 2009-12-24 Nippon Oil Corp 楕円偏光板およびそれを用いた垂直配向型液晶表示装置
JP5825137B2 (ja) * 2011-04-21 2015-12-02 Jsr株式会社 位相差フィルム用液晶配向剤、位相差フィルム用液晶配向膜、位相差フィルム及びその製造方法
JP6146100B2 (ja) * 2012-06-21 2017-06-14 Jsr株式会社 液晶配向剤、液晶配向膜、位相差フィルム、液晶表示素子及び位相差フィルムの製造方法
EP2876120B1 (en) * 2012-07-20 2017-09-06 Tosoh Corporation (diisopropyl fumarate)-(cinnamic acid derivative) copolymer, and phase difference film produced using same
KR102073756B1 (ko) * 2012-09-12 2020-02-05 닛산 가가쿠 가부시키가이샤 배향재의 제조방법, 배향재, 위상차재의 제조방법 및 위상차재
KR102115142B1 (ko) * 2012-11-28 2020-05-26 도소 가부시키가이샤 푸마르산디에스테르-계피산에스테르계 공중합체, 그 제조 방법 및 그것을 사용한 필름
KR102359535B1 (ko) * 2014-02-28 2022-02-08 닛산 가가쿠 가부시키가이샤 위상차재 형성용 수지 조성물, 배향재 및 위상차재
US10126478B2 (en) * 2014-10-15 2018-11-13 Tosoh Corporation Resin composition and optical compensation film using same
WO2017069252A1 (ja) * 2015-10-23 2017-04-27 富士フイルム株式会社 光配向膜用組成物、光配向膜、光学積層体および画像表示装置
US10465115B2 (en) * 2015-12-17 2019-11-05 Merck Patent Gmbh Cinnamic acid derivatives
KR101933765B1 (ko) * 2016-08-23 2018-12-28 동우 화인켐 주식회사 편광판 및 이를 포함하는 화상표시장치

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012037868A (ja) * 2010-07-15 2012-02-23 Jsr Corp 位相差フィルム用液晶配向剤、位相差フィルム用液晶配向膜、位相差フィルム及びその製造方法
WO2013054784A1 (ja) * 2011-10-11 2013-04-18 日産化学工業株式会社 硬化膜形成組成物、配向材および位相差材
WO2014010688A1 (ja) * 2012-07-12 2014-01-16 日産化学工業株式会社 硬化膜形成組成物、配向材および位相差材
WO2014065324A1 (ja) * 2012-10-24 2014-05-01 日産化学工業株式会社 硬化膜形成組成物、配向材および位相差材
WO2016143865A1 (ja) * 2015-03-11 2016-09-15 日産化学工業株式会社 硬化膜形成組成物、配向材及び位相差材
WO2016147987A1 (ja) * 2015-03-13 2016-09-22 日産化学工業株式会社 硬化膜形成組成物、配向材および位相差材

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021106858A1 (ja) * 2019-11-25 2021-06-03 日産化学株式会社 硬化膜形成組成物、配向材および位相差材
CN114746512A (zh) * 2019-11-25 2022-07-12 日产化学株式会社 固化膜形成用组合物、取向材料及相位差材
CN114746512B (zh) * 2019-11-25 2023-09-22 日产化学株式会社 固化膜形成用组合物、取向材料及相位差材

Also Published As

Publication number Publication date
CN111212879A (zh) 2020-05-29
US20200325327A1 (en) 2020-10-15
KR20200062259A (ko) 2020-06-03
JPWO2019078201A1 (ja) 2020-12-03
JP7436954B2 (ja) 2024-02-22
TW201930432A (zh) 2019-08-01
JP2023156287A (ja) 2023-10-24

Similar Documents

Publication Publication Date Title
JP6274442B2 (ja) 硬化膜形成組成物、配向材および位相差材
JP6274441B2 (ja) 硬化膜形成組成物、配向材および位相差材
CN109153857B (zh) 偏光层形成组合物
CN109154685B (zh) 配向层形成组合物
JP2023156287A (ja) 硬化膜形成組成物、配向材および位相差材
JP2016224151A (ja) 水溶媒系液晶配向剤、液晶配向膜及び位相差材
JP7152704B2 (ja) 硬化膜形成組成物、配向材および位相差材
JP6687911B2 (ja) 硬化膜形成組成物、配向材および位相差材
US10428274B2 (en) Liquid crystal alignment agent for photo-alignment, aligning member, and retardation member
JP7177396B2 (ja) 硬化膜形成組成物、配向材および位相差材
WO2018021328A1 (ja) 重合体組成物
WO2021106858A1 (ja) 硬化膜形成組成物、配向材および位相差材

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18868082

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019549291

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207011883

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18868082

Country of ref document: EP

Kind code of ref document: A1