WO2019078010A1 - 情報処理装置、情報処理方法、移動体、及び、車両 - Google Patents

情報処理装置、情報処理方法、移動体、及び、車両 Download PDF

Info

Publication number
WO2019078010A1
WO2019078010A1 PCT/JP2018/037133 JP2018037133W WO2019078010A1 WO 2019078010 A1 WO2019078010 A1 WO 2019078010A1 JP 2018037133 W JP2018037133 W JP 2018037133W WO 2019078010 A1 WO2019078010 A1 WO 2019078010A1
Authority
WO
WIPO (PCT)
Prior art keywords
vehicle
unit
moving
group
information processing
Prior art date
Application number
PCT/JP2018/037133
Other languages
English (en)
French (fr)
Inventor
昌一 粟井
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to US16/755,158 priority Critical patent/US11200795B2/en
Publication of WO2019078010A1 publication Critical patent/WO2019078010A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/01Detecting movement of traffic to be counted or controlled
    • GPHYSICS
    • G08SIGNALLING
    • G08GTRAFFIC CONTROL SYSTEMS
    • G08G1/00Traffic control systems for road vehicles
    • G08G1/16Anti-collision systems
    • G08G1/166Anti-collision systems for active traffic, e.g. moving vehicles, pedestrians, bikes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W30/00Purposes of road vehicle drive control systems not related to the control of a particular sub-unit, e.g. of systems using conjoint control of vehicle sub-units
    • B60W30/08Active safety systems predicting or avoiding probable or impending collision or attempting to minimise its consequences
    • B60W30/095Predicting travel path or likelihood of collision
    • B60W30/0956Predicting travel path or likelihood of collision the prediction being responsive to traffic or environmental parameters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0015Planning or execution of driving tasks specially adapted for safety
    • B60W60/0016Planning or execution of driving tasks specially adapted for safety of the vehicle or its occupants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W60/00Drive control systems specially adapted for autonomous road vehicles
    • B60W60/001Planning or execution of driving tasks
    • B60W60/0027Planning or execution of driving tasks using trajectory prediction for other traffic participants
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4041Position
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4042Longitudinal speed
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60WCONJOINT CONTROL OF VEHICLE SUB-UNITS OF DIFFERENT TYPE OR DIFFERENT FUNCTION; CONTROL SYSTEMS SPECIALLY ADAPTED FOR HYBRID VEHICLES; ROAD VEHICLE DRIVE CONTROL SYSTEMS FOR PURPOSES NOT RELATED TO THE CONTROL OF A PARTICULAR SUB-UNIT
    • B60W2554/00Input parameters relating to objects
    • B60W2554/40Dynamic objects, e.g. animals, windblown objects
    • B60W2554/404Characteristics
    • B60W2554/4044Direction of movement, e.g. backwards

Definitions

  • the present technology relates to an information processing apparatus, an information processing method, a moving object, and a vehicle, and in particular, an information processing apparatus suitable for use in detecting the condition of another moving object around a moving object such as a vehicle.
  • the present invention relates to a processing method, a moving body, and a vehicle.
  • the prediction target vehicle is selected based on the previous deceleration operation of the driver of the prediction target vehicle traveling between the vehicle that has started to decelerate and the support target vehicle. It has been proposed to predict the decelerating action and to perform the driving assistance control of the target vehicle based on the predicted decelerating action and the traffic condition of the road (for example, see Patent Document 1).
  • Patent Document 1 In order to perform automatic driving and driving assistance more safely, it is desired not only the method described in Patent Document 1 but also to be able to accurately grasp the situation of surrounding vehicles by various methods.
  • the present technology has been made in view of such a situation, and makes it possible to accurately grasp the situation of another moving object around a moving object such as a vehicle.
  • the information processing apparatus is a mobile object detection unit that detects another mobile object around the mobile object, and one of the position, velocity, and movement direction of each of the other mobile objects. Based on the above, a moving object group detection unit that detects a moving object group including two or more of the other moving objects is provided.
  • the information processing layer device detects another moving object around the moving object, and one of the position, the velocity, and the moving direction of each of the other moving objects.
  • the mobile object group including two or more other mobile objects is detected based on one or more.
  • the mobile object according to the second aspect of the present technology is based on a mobile object detection unit that detects another mobile object in the vicinity, and one or more of the position, velocity, and movement direction of each of the other mobile objects. And a moving body group detection unit that detects a moving body group including two or more other moving bodies.
  • the vehicle according to the third aspect of the present technology has two or more vehicles based on one or more of a vehicle detection unit that detects other vehicles in the vicinity and the position, speed, and movement direction of each of the other vehicles. And a vehicle group detection unit that detects a vehicle group including the other vehicle.
  • another mobile object around the mobile object is detected, and two or more mobile objects are detected based on one or more of the position, the velocity, and the movement direction of each of the other mobile objects.
  • a mobile group including the other mobiles is detected.
  • another mobile in the vicinity is detected, and two or more other mobiles are detected based on one or more of the position, the velocity, and the moving direction of each of the other mobiles.
  • Mobiles including mobiles are detected.
  • other vehicles in the vicinity are detected, and two or more other vehicles are detected based on one or more of the position, speed, and movement direction of each of the other vehicles.
  • a group of vehicles is detected.
  • the behavior of the mobile can be appropriately controlled.
  • FIG. 1 is a block diagram showing an embodiment of an action planning system to which the present technology is applied. It is a flowchart for demonstrating the action plan process performed by an action plan system. It is a figure showing the example of the vehicles group. It is a figure which shows the example of a vehicle group. It is a figure which shows the example of a vehicle group. It is a figure showing the example of the vehicles group. It is a figure which shows the example of a vehicle group. It is a figure which shows the example of a vehicle group. It is a figure for demonstrating the estimation method of an obstruction. It is a figure for demonstrating the estimation method of an obstruction. It is a figure for demonstrating the estimation method of an obstruction.
  • FIG. 1 is a block diagram showing a configuration example of a schematic function of a vehicle control system 100 which is an example of a mobile control system to which the present technology can be applied.
  • the vehicle control system 100 is a system that is provided in the vehicle 10 and performs various controls of the vehicle 10.
  • the vehicle 10 is distinguished from other vehicles, it is referred to as the own vehicle or the own vehicle.
  • the vehicle control system 100 includes an input unit 101, a data acquisition unit 102, a communication unit 103, an in-vehicle device 104, an output control unit 105, an output unit 106, a drive system control unit 107, a drive system 108, a body system control unit 109, and a body.
  • the system system 110, the storage unit 111, and the automatic driving control unit 112 are provided.
  • the input unit 101, the data acquisition unit 102, the communication unit 103, the output control unit 105, the drive system control unit 107, the body system control unit 109, the storage unit 111, and the automatic operation control unit 112 are connected via the communication network 121. Connected to each other.
  • the communication network 121 may be, for example, an on-vehicle communication network or bus conforming to any standard such as CAN (Controller Area Network), LIN (Local Interconnect Network), LAN (Local Area Network), or FlexRay (registered trademark). Become. In addition, each part of the vehicle control system 100 may be directly connected without passing through the communication network 121.
  • CAN Controller Area Network
  • LIN Local Interconnect Network
  • LAN Local Area Network
  • FlexRay registered trademark
  • each unit of the vehicle control system 100 performs communication via the communication network 121
  • the description of the communication network 121 is omitted.
  • the input unit 101 and the automatic driving control unit 112 communicate via the communication network 121, it is described that the input unit 101 and the automatic driving control unit 112 merely communicate.
  • the input unit 101 includes an apparatus used by a passenger for inputting various data and instructions.
  • the input unit 101 includes operation devices such as a touch panel, a button, a microphone, a switch, and a lever, and an operation device and the like that can be input by a method other than manual operation by voice or gesture.
  • the input unit 101 may be a remote control device using infrared rays or other radio waves, or an external connection device such as a mobile device or wearable device corresponding to the operation of the vehicle control system 100.
  • the input unit 101 generates an input signal based on data, an instruction, and the like input by the passenger, and supplies the input signal to each unit of the vehicle control system 100.
  • the data acquisition unit 102 includes various sensors for acquiring data used for processing of the vehicle control system 100 and supplies the acquired data to each unit of the vehicle control system 100.
  • the data acquisition unit 102 includes various sensors for detecting the state of the vehicle 10 and the like.
  • the data acquisition unit 102 includes a gyro sensor, an acceleration sensor, an inertia measurement device (IMU), an operation amount of an accelerator pedal, an operation amount of a brake pedal, a steering angle of a steering wheel, and an engine speed.
  • IMU inertia measurement device
  • a sensor or the like for detecting a motor rotation speed or a rotation speed of a wheel is provided.
  • the data acquisition unit 102 includes various sensors for detecting information outside the vehicle 10.
  • the data acquisition unit 102 includes an imaging device such as a ToF (Time Of Flight) camera, a stereo camera, a monocular camera, an infrared camera, and other cameras.
  • the data acquisition unit 102 includes an environment sensor for detecting weather, weather, etc., and an ambient information detection sensor for detecting an object around the vehicle 10.
  • the environment sensor includes, for example, a raindrop sensor, a fog sensor, a sunshine sensor, a snow sensor, and the like.
  • the ambient information detection sensor is made of, for example, an ultrasonic sensor, a radar, LiDAR (Light Detection and Ranging, Laser Imaging Detection and Ranging), sonar or the like.
  • the data acquisition unit 102 includes various sensors for detecting the current position of the vehicle 10.
  • the data acquisition unit 102 includes a GNSS receiver or the like which receives a GNSS signal from a Global Navigation Satellite System (GNSS) satellite.
  • GNSS Global Navigation Satellite System
  • the data acquisition unit 102 includes various sensors for detecting information in the vehicle.
  • the data acquisition unit 102 includes an imaging device for imaging a driver, a biological sensor for detecting biological information of the driver, a microphone for collecting sound in a vehicle interior, and the like.
  • the biological sensor is provided, for example, on a seat or a steering wheel, and detects biological information of an occupant sitting on a seat or a driver holding the steering wheel.
  • the communication unit 103 communicates with the in-vehicle device 104 and various devices outside the vehicle, a server, a base station, etc., and transmits data supplied from each portion of the vehicle control system 100, and receives the received data. Supply to each part of 100.
  • the communication protocol supported by the communication unit 103 is not particularly limited, and the communication unit 103 can also support a plurality of types of communication protocols.
  • the communication unit 103 performs wireless communication with the in-vehicle device 104 by wireless LAN, Bluetooth (registered trademark), NFC (Near Field Communication), WUSB (Wireless USB), or the like. Also, for example, the communication unit 103 may use a Universal Serial Bus (USB), a High-Definition Multimedia Interface (HDMI (registered trademark)), or an MHL (Universal Serial Bus) via a connection terminal (and a cable, if necessary) not shown. Wired communication is performed with the in-vehicle device 104 by Mobile High-definition Link) or the like.
  • USB Universal Serial Bus
  • HDMI High-Definition Multimedia Interface
  • MHL Universal Serial Bus
  • the communication unit 103 may communicate with an apparatus (for example, an application server or control server) existing on an external network (for example, the Internet, a cloud network, or a network unique to an operator) via a base station or an access point. Communicate. Also, for example, the communication unit 103 may use a P2P (Peer To Peer) technology to connect with a terminal (for example, a pedestrian or a shop terminal, or a MTC (Machine Type Communication) terminal) existing in the vicinity of the vehicle 10. Communicate. Further, for example, the communication unit 103 may perform vehicle to vehicle communication, vehicle to infrastructure communication, communication between the vehicle 10 and a house, and communication between the vehicle 10 and the pedestrian. ) V2X communication such as communication is performed. Also, for example, the communication unit 103 includes a beacon receiving unit, receives radio waves or electromagnetic waves transmitted from radio stations installed on roads, and acquires information such as current position, traffic jam, traffic restriction, or required time. Do.
  • an apparatus for example, an application server or control server
  • the in-vehicle device 104 includes, for example, a mobile device or wearable device of a passenger, an information device carried in or attached to the vehicle 10, a navigation device for searching for a route to an arbitrary destination, and the like.
  • the output control unit 105 controls the output of various information to the occupant of the vehicle 10 or the outside of the vehicle.
  • the output control unit 105 generates an output signal including at least one of visual information (for example, image data) and auditory information (for example, audio data), and supplies the generated output signal to the output unit 106.
  • the output control unit 105 combines image data captured by different imaging devices of the data acquisition unit 102 to generate an overhead image or a panoramic image, and an output signal including the generated image is generated.
  • the output unit 106 is supplied.
  • the output control unit 105 generates voice data including a warning sound or a warning message for danger such as collision, contact, entering a danger zone, and the like, and outputs an output signal including the generated voice data to the output unit 106.
  • Supply for example, the output control unit 105 generates voice data including a warning sound or a warning message for danger such as collision, contact, entering a danger zone, and the like, and outputs an
  • the output unit 106 includes a device capable of outputting visual information or auditory information to an occupant of the vehicle 10 or the outside of the vehicle.
  • the output unit 106 includes a display device, an instrument panel, an audio speaker, headphones, wearable devices such as a glasses-type display worn by a passenger, a projector, a lamp, and the like.
  • the display device included in the output unit 106 has visual information in the driver's field of vision, such as a head-up display, a transmissive display, and a device having an AR (Augmented Reality) display function, in addition to a device having a normal display. It may be an apparatus for displaying.
  • the drive system control unit 107 controls the drive system 108 by generating various control signals and supplying them to the drive system 108. In addition, the drive system control unit 107 supplies a control signal to each unit other than the drive system 108 as necessary, and notifies a control state of the drive system 108, and the like.
  • the driveline system 108 includes various devices related to the driveline of the vehicle 10.
  • the drive system 108 includes a driving force generating device for generating a driving force of an internal combustion engine or a driving motor, a driving force transmission mechanism for transmitting the driving force to the wheels, and a steering mechanism for adjusting a steering angle.
  • a braking system that generates a braking force an antilock brake system (ABS), an electronic stability control (ESC), an electric power steering apparatus, and the like are provided.
  • the body control unit 109 controls the body system 110 by generating various control signals and supplying the control signals to the body system 110.
  • the body system control unit 109 supplies a control signal to each unit other than the body system 110, as required, to notify the control state of the body system 110, and the like.
  • the body system 110 includes various devices of the body system mounted on the vehicle body.
  • the body system 110 includes a keyless entry system, a smart key system, a power window device, a power seat, a steering wheel, an air conditioner, and various lamps (for example, headlamps, back lamps, brake lamps, blinkers, fog lamps, etc.) Etc.
  • the storage unit 111 includes, for example, a read only memory (ROM), a random access memory (RAM), a magnetic storage device such as a hard disk drive (HDD), a semiconductor storage device, an optical storage device, and a magneto-optical storage device. .
  • the storage unit 111 stores various programs, data, and the like used by each unit of the vehicle control system 100.
  • the storage unit 111 is map data such as a three-dimensional high-accuracy map such as a dynamic map, a global map that has a lower accuracy than a high-accuracy map and covers a wide area, and information around the vehicle 10 Remember.
  • the autonomous driving control unit 112 performs control regarding autonomous driving such as autonomous traveling or driving assistance. Specifically, for example, the automatic driving control unit 112 can avoid collision or reduce the impact of the vehicle 10, follow-up traveling based on the inter-vehicle distance, vehicle speed maintenance traveling, collision warning of the vehicle 10, lane departure warning of the vehicle 10, etc. Coordinated control is carried out to realize the functions of the Advanced Driver Assistance System (ADAS), including: Further, for example, the automatic driving control unit 112 performs cooperative control for the purpose of automatic driving or the like that travels autonomously without depending on the driver's operation.
  • the automatic driving control unit 112 includes a detection unit 131, a self position estimation unit 132, a situation analysis unit 133, a planning unit 134, and an operation control unit 135.
  • the detection unit 131 detects various types of information necessary for control of automatic driving.
  • the detection unit 131 includes an out-of-vehicle information detection unit 141, an in-vehicle information detection unit 142, and a vehicle state detection unit 143.
  • the outside-of-vehicle information detection unit 141 performs detection processing of information outside the vehicle 10 based on data or signals from each unit of the vehicle control system 100. For example, the outside information detection unit 141 performs detection processing of an object around the vehicle 10, recognition processing, tracking processing, and detection processing of the distance to the object.
  • the objects to be detected include, for example, vehicles, people, obstacles, structures, roads, traffic lights, traffic signs, road markings and the like. Further, for example, the outside-of-vehicle information detection unit 141 performs a process of detecting the environment around the vehicle 10.
  • the surrounding environment to be detected includes, for example, weather, temperature, humidity, brightness, road surface condition and the like.
  • the information outside the vehicle detection unit 141 indicates data indicating the result of the detection process as the self position estimation unit 132, the map analysis unit 151 of the situation analysis unit 133, the traffic rule recognition unit 152, the situation recognition unit 153, and the operation control unit 135. Supply to the emergency situation avoidance unit 171 and the like.
  • the in-vehicle information detection unit 142 performs in-vehicle information detection processing based on data or signals from each unit of the vehicle control system 100.
  • the in-vehicle information detection unit 142 performs a driver authentication process and recognition process, a driver state detection process, a passenger detection process, an in-vehicle environment detection process, and the like.
  • the state of the driver to be detected includes, for example, physical condition, awakening degree, concentration degree, fatigue degree, gaze direction and the like.
  • the in-vehicle environment to be detected includes, for example, temperature, humidity, brightness, smell and the like.
  • the in-vehicle information detection unit 142 supplies data indicating the result of the detection process to the situation recognition unit 153 of the situation analysis unit 133, the emergency situation avoidance unit 171 of the operation control unit 135, and the like.
  • the vehicle state detection unit 143 detects the state of the vehicle 10 based on data or signals from each unit of the vehicle control system 100.
  • the state of the vehicle 10 to be detected includes, for example, speed, acceleration, steering angle, presence / absence of abnormality and contents, state of driving operation, position and inclination of power seat, state of door lock, and other on-vehicle devices. Status etc. are included.
  • the vehicle state detection unit 143 supplies data indicating the result of the detection process to the situation recognition unit 153 of the situation analysis unit 133, the emergency situation avoidance unit 171 of the operation control unit 135, and the like.
  • Self position estimation unit 132 estimates the position and orientation of vehicle 10 based on data or signals from each part of vehicle control system 100 such as external information detection unit 141 and situation recognition unit 153 of situation analysis unit 133. Do the processing. In addition, the self position estimation unit 132 generates a local map (hereinafter, referred to as a self position estimation map) used to estimate the self position, as necessary.
  • the self-location estimation map is, for example, a high-accuracy map using a technique such as SLAM (Simultaneous Localization and Mapping).
  • the self position estimation unit 132 supplies data indicating the result of the estimation process to the map analysis unit 151, the traffic rule recognition unit 152, the situation recognition unit 153, and the like of the situation analysis unit 133.
  • the self position estimation unit 132 stores the self position estimation map in the storage unit 111.
  • the situation analysis unit 133 analyzes the situation of the vehicle 10 and the surroundings.
  • the situation analysis unit 133 includes a map analysis unit 151, a traffic rule recognition unit 152, a situation recognition unit 153, and a situation prediction unit 154.
  • the map analysis unit 151 uses various data or signals stored in the storage unit 111 while using data or signals from each part of the vehicle control system 100 such as the self position estimation unit 132 and the external information detection unit 141 as necessary. Perform analysis processing and construct a map that contains information necessary for automatic driving processing.
  • the map analysis unit 151 is configured of the traffic rule recognition unit 152, the situation recognition unit 153, the situation prediction unit 154, the route planning unit 161 of the planning unit 134, the action planning unit 162, the operation planning unit 163, and the like. Supply to
  • the traffic rule recognition unit 152 uses traffic rules around the vehicle 10 based on data or signals from each unit of the vehicle control system 100 such as the self position estimation unit 132, the outside information detection unit 141, and the map analysis unit 151. Perform recognition processing. By this recognition process, for example, the position and state of signals around the vehicle 10, the contents of traffic restrictions around the vehicle 10, and the travelable lanes and the like are recognized.
  • the traffic rule recognition unit 152 supplies data indicating the result of the recognition process to the situation prediction unit 154 and the like.
  • the situation recognition unit 153 uses data or signals from each unit of the vehicle control system 100 such as the self position estimation unit 132, the outside information detection unit 141, the in-vehicle information detection unit 142, the vehicle state detection unit 143, and the map analysis unit 151. Based on the recognition processing of the situation regarding the vehicle 10 is performed. For example, the situation recognition unit 153 performs recognition processing of the situation of the vehicle 10, the situation around the vehicle 10, the situation of the driver of the vehicle 10, and the like. In addition, the situation recognition unit 153 generates a local map (hereinafter referred to as a situation recognition map) used to recognize the situation around the vehicle 10 as needed.
  • the situation recognition map is, for example, an Occupancy Grid Map.
  • the situation of the vehicle 10 to be recognized includes, for example, the position, attitude, movement (for example, speed, acceleration, moving direction, etc.) of the vehicle 10, and the presence or absence and contents of abnormality.
  • the circumstances around the vehicle 10 to be recognized include, for example, the type and position of surrounding stationary objects, the type, position and movement of surrounding animals (eg, speed, acceleration, movement direction, etc.) Configuration and road surface conditions, as well as ambient weather, temperature, humidity, brightness, etc. are included.
  • the state of the driver to be recognized includes, for example, physical condition, alertness level, concentration level, fatigue level, movement of eyes, driving operation and the like.
  • the situation recognition unit 153 supplies data (including a situation recognition map, if necessary) indicating the result of the recognition process to the self position estimation unit 132, the situation prediction unit 154, and the like. In addition, the situation recognition unit 153 stores the situation recognition map in the storage unit 111.
  • the situation prediction unit 154 performs a prediction process of the situation regarding the vehicle 10 based on data or signals from each part of the vehicle control system 100 such as the map analysis unit 151, the traffic rule recognition unit 152, and the situation recognition unit 153. For example, the situation prediction unit 154 performs prediction processing of the situation of the vehicle 10, the situation around the vehicle 10, the situation of the driver, and the like.
  • the situation of the vehicle 10 to be predicted includes, for example, the behavior of the vehicle 10, the occurrence of an abnormality, the travelable distance, and the like.
  • the situation around the vehicle 10 to be predicted includes, for example, the behavior of the moving object around the vehicle 10, the change of the signal state, and the change of the environment such as the weather.
  • the driver's condition to be predicted includes, for example, the driver's behavior and physical condition.
  • the situation prediction unit 154 together with data from the traffic rule recognition unit 152 and the situation recognition unit 153, indicates data indicating the result of the prediction process, the route planning unit 161 of the planning unit 134, the action planning unit 162, and the operation planning unit 163. Supply to etc.
  • the route planning unit 161 plans a route to a destination based on data or signals from each unit of the vehicle control system 100 such as the map analysis unit 151 and the situation prediction unit 154. For example, the route planning unit 161 sets a route from the current position to the specified destination based on the global map. In addition, for example, the route planning unit 161 changes the route as appropriate based on traffic jams, accidents, traffic restrictions, conditions such as construction, the physical condition of the driver, and the like. The route planning unit 161 supplies data indicating the planned route to the action planning unit 162 and the like.
  • the action planning part 162 safely makes the route planned by the route planning part 161 within the planned time. Plan the action of the vehicle 10 to travel.
  • the action planning unit 162 performs planning of start, stop, traveling direction (for example, forward, backward, left turn, right turn, change of direction, etc.), travel lane, travel speed, overtaking, and the like.
  • the action plan unit 162 supplies data indicating the planned action of the vehicle 10 to the operation plan unit 163 and the like.
  • the operation planning unit 163 is an operation of the vehicle 10 for realizing the action planned by the action planning unit 162 based on data or signals from each unit of the vehicle control system 100 such as the map analysis unit 151 and the situation prediction unit 154. Plan.
  • the operation plan unit 163 plans acceleration, deceleration, a traveling track, and the like.
  • the operation planning unit 163 supplies data indicating the planned operation of the vehicle 10 to the acceleration / deceleration control unit 172, the direction control unit 173, and the like of the operation control unit 135.
  • the operation control unit 135 controls the operation of the vehicle 10.
  • the operation control unit 135 includes an emergency situation avoidance unit 171, an acceleration / deceleration control unit 172, and a direction control unit 173.
  • the emergency situation avoidance unit 171 is based on the detection results of the external information detection unit 141, the in-vehicle information detection unit 142, and the vehicle state detection unit 143, collision, contact, entry into a danger zone, driver abnormality, vehicle 10 Perform detection processing of an emergency such as When the emergency situation avoidance unit 171 detects the occurrence of an emergency situation, it plans the operation of the vehicle 10 for avoiding an emergency situation such as a sudden stop or a sharp turn.
  • the emergency situation avoidance unit 171 supplies data indicating the planned operation of the vehicle 10 to the acceleration / deceleration control unit 172, the direction control unit 173, and the like.
  • the acceleration / deceleration control unit 172 performs acceleration / deceleration control for realizing the operation of the vehicle 10 planned by the operation planning unit 163 or the emergency situation avoidance unit 171.
  • the acceleration / deceleration control unit 172 calculates a control target value of a driving force generator or a braking device for achieving planned acceleration, deceleration, or sudden stop, and drives a control command indicating the calculated control target value. It is supplied to the system control unit 107.
  • the direction control unit 173 performs direction control for realizing the operation of the vehicle 10 planned by the operation planning unit 163 or the emergency situation avoidance unit 171. For example, the direction control unit 173 calculates the control target value of the steering mechanism for realizing the traveling track or the sharp turn planned by the operation plan unit 163 or the emergency situation avoidance unit 171, and performs control indicating the calculated control target value. The command is supplied to the drive system control unit 107.
  • this embodiment mainly relates to the processing of the data acquisition unit 102, the situation recognition unit 153, the situation prediction unit 154, and the action planning unit 162 in the vehicle control system 100 of FIG.
  • FIG. 2 is a block diagram showing a configuration example of an action planning system 200 which is an embodiment of the action planning system to which the present technology is applied.
  • the action plan system 200 is a system that detects the situation around the vehicle 10 provided with the action plan system 200, and plans the action of the vehicle 10 based on the detection result of the situation around the vehicle 10.
  • the action plan system 200 includes an observation data acquisition unit 201, an action plan processing unit 202, a vehicle group detection processing unit 203, a comparison unit 204, an obstacle estimation unit 205, a determination unit 206, and a map DB (database) 207.
  • the observation data acquisition unit 201 includes an imaging device, the above-described ambient information detection sensor, a GNSS receiver, and the like, and acquires observation data indicating the situation around the vehicle 10 and the like.
  • the observation data acquisition unit 201 supplies the acquired observation data to the external condition analysis unit 221 of the action plan processing unit 202 and the vehicle detection unit 231 of the vehicle group detection processing unit 203.
  • the action plan processing unit 202 performs a process of planning an action of the vehicle 10.
  • the action plan processing unit 202 includes an outside situation analyzing unit 221 and an action planning unit 222.
  • the external condition analysis unit 221 analyzes the condition around the vehicle 10 based on the observation data, the map data stored in the map DB 207, and the estimation result of the obstacle by the obstacle estimation unit 205.
  • the external condition analysis unit 221 supplies the behavior planning unit 222 with data indicating an analysis result of the condition around the vehicle 10.
  • the behavior planning unit 222 plans the behavior of the vehicle 10 based on the analysis result of the situation around the vehicle 10, the detection result of the vehicle group by the vehicle group detection unit 232, and the map data stored in the map DB 207. .
  • the behavior planning unit 222 supplies data indicating the planned behavior of the vehicle 10 to the comparing unit 204 and the behavior planning unit 163 in FIG.
  • the vehicle group detection processing unit 203 performs detection processing of a vehicle group in front of the vehicle 10.
  • the vehicle group detection processing unit 203 includes a vehicle detection unit 231, a vehicle group detection unit 232, and a vehicle group behavior estimation unit 233.
  • the vehicle detection unit 231 performs detection processing of another vehicle ahead of the vehicle 10 based on the observation data.
  • the vehicle detection unit 231 supplies data indicating the detection result of another vehicle to the vehicle group detection unit 232.
  • the vehicle group detection unit 232 performs detection processing of a vehicle group in front of the vehicle 10 based on the detection result of another vehicle.
  • the vehicle group detection unit 232 supplies data indicating the detection result of the vehicle group to the behavior planning unit 222 and the vehicle group behavior estimation unit 233.
  • the vehicle group behavior inference unit 233 performs a process of inferring an activity plan of each vehicle group.
  • the vehicle group behavior inference unit 233 uses the comparison unit 204, the determination unit 206, the output control unit 105 in FIG. 1, and the like to indicate the detection result of each vehicle group and the estimation result of the action plan of each vehicle group. Supply.
  • the comparison unit 204 compares the route of the vehicle 10 planned by the action planning unit 222 (hereinafter referred to as a planned route) and the route of each vehicle group estimated by the vehicle group behavior estimation unit 233 (hereinafter referred to as an estimated route). Compare with.
  • the comparison unit 204 supplies the obstacle estimation unit 205 with data indicating the result of comparison between the planned route of the vehicle 10 and the estimated route of each vehicle group.
  • the obstacle estimation unit 205 estimates the position of the obstacle based on the planned route of the vehicle 10 and the estimated route of each vehicle group.
  • the obstacle estimation unit 205 supplies data indicating the estimation result of the obstacle to the external condition analysis unit 221.
  • the determination unit 206 determines the detection accuracy of the vehicle group and the estimation accuracy of the action plan of the vehicle group.
  • the determination unit 206 supplies data indicating the determination result to the behavior planning unit 222.
  • Map DB207 contains the information around the vehicle 10, and stores the map data used for the plan of the action of the vehicle 10.
  • This process is started, for example, when an operation for starting the vehicle 10 and starting driving is performed, for example, when an ignition switch, a power switch, or a start switch of the vehicle 10 is turned on. Ru. Further, this process ends, for example, when an operation for ending the driving is performed, for example, when an ignition switch, a power switch, a start switch or the like of the vehicle 10 is turned off.
  • the observation data acquisition unit 201 acquires observation data.
  • the observation data acquisition unit 201 captures an image of the front of the vehicle 10 by the imaging device.
  • the observation data acquisition unit 201 detects an object around the vehicle 10 by the ambient information detection sensor.
  • the observation data acquisition unit 201 receives the GNSS signal from the GNSS satellite by the GNSS receiver. Then, the observation data acquisition unit 201 supplies the image outside the vehicle 10, the sensor data indicating the detection result of the object, and the observation data including the GNSS signal to the external condition analysis unit 221 and the vehicle detection unit 231.
  • the outside situation analyzing unit 221 analyzes the outside situation of the vehicle. For example, based on observation data, the vehicle external condition analysis unit 221 may use other vehicles, people, obstacles, structures, roads, traffic lights, traffic signs, road markings, and objects such as road surfaces around the vehicle 10, and The position etc. of them are detected. Further, the external condition analysis unit 221 detects the current position of the vehicle 10 based on the GNSS signal.
  • the external condition analysis unit 221 detects the object around the vehicle 10, the current position of the vehicle 10, the map data stored in the map DB 207, and the estimation result of the obstacle by the obstacle estimation unit 205 described later.
  • the analysis process of the surrounding condition of the vehicle 10 is performed based on FIG.
  • the external condition analysis unit 221 analyzes, for example, the type, position, and movement (for example, velocity, acceleration, moving direction, etc.) of an object around the vehicle 10, and the configuration of the surrounding road, the condition of the road surface, etc. Do.
  • the external condition analysis unit 221 supplies the behavior planning unit 222 with data indicating an analysis result of the condition around the vehicle 10.
  • step S3 the vehicle detection unit 231 performs another vehicle detection process. Specifically, the vehicle detection unit 231 detects the position and velocity vector (that is, the velocity and movement direction) of the other vehicle traveling in front of the vehicle 10 based on the observation data. The vehicle detection unit 231 supplies data indicating the detection results of the position and speed vector of the other vehicle to the vehicle group detection unit 232.
  • the vehicle detection unit 231 detects the position and velocity vector (that is, the velocity and movement direction) of the other vehicle traveling in front of the vehicle 10 based on the observation data.
  • the vehicle detection unit 231 supplies data indicating the detection results of the position and speed vector of the other vehicle to the vehicle group detection unit 232.
  • arbitrary methods can be used for the detection method of the position and speed vector of another vehicle.
  • a millimeter wave radar in the observation data acquisition unit 201 and detect the position and velocity vector of another vehicle in real time based on data detected by the millimeter wave radar.
  • a stereo camera can be provided in the observation data acquisition unit 201, and the position and velocity vector of another vehicle can be detected in real time based on the image captured by the stereo camera.
  • step S4 the vehicle group detection unit 232 performs a vehicle group detection process. For example, the vehicle group detection unit 232 clusters the detected other vehicles into one or more clusters based on the position and speed vector of each other vehicle, and recognizes each cluster as a vehicle group.
  • Each vehicle group includes, for example, two or more other vehicles performing the same action.
  • each vehicle group includes two or more other vehicles moving in a row in substantially one row in the traveling direction (forward) of the vehicle 10.
  • 4 to 8 show an example of a vehicle group.
  • the vehicles 301-1 to 301-5 travel in a substantially straight line.
  • one vehicle group 301 including the vehicles 301-1 to 301-5 is detected.
  • the vehicles 311-1 to 311-5 are advancing along a route which detours in the right direction in a row in order to avoid the obstacle 312.
  • one vehicle group 311 including the vehicles 311-1 to 311-5 is detected.
  • the vehicles 321-1 to 321-4 travel in a line in a substantially straight line in the left direction in order to avoid the obstacle 323. Further, in front of the vehicle 10, the vehicle 322-1 and the vehicle 322-2 are traveling along a route which detours in the right direction in a row in order to avoid the obstacle 323. In this case, for example, two vehicle groups of a vehicle group 321 including the vehicles 321-1 to 321-4 and a vehicle group 322 including the vehicles 322-1 and 322-2 are detected.
  • the vehicles 331-1 to 331-4 travel along a route that detours in the right direction in a row to avoid the obstacle 333.
  • the vehicle 332 travels in the direction of the obstacle 333 without avoiding the obstacle 333 like the vehicles 331-1 to 331-4.
  • the vehicle group 331 including the vehicles 331-1 to 331-4 is detected, and the vehicle 332 is detected as one vehicle group.
  • a vehicle group including only one vehicle may be detected.
  • the vehicles 341 to 345 travel in different directions without being synchronized with each other.
  • the vehicles 341 to 345 are detected as different vehicle groups.
  • arbitrary clustering methods can be used for clustering of another vehicle.
  • a unique clustering method may be constructed by machine learning or the like using big data.
  • the range which detects a vehicle group may be limited, and does not need to be limited.
  • the range in which the vehicle group is detected may be limited to the range in which the vehicle 10 reaches within a predetermined time.
  • the vehicle detection unit 231 may detect the vehicle group within the range in which the other vehicle can be detected.
  • the vehicle group detection unit 232 supplies data indicating the detection result of the vehicle group to the behavior planning unit 222 and the vehicle group behavior estimation unit 233.
  • the behavior planning unit 222 plans the behavior of the host vehicle (that is, the vehicle 10). For example, the action planning unit 222 determines, based on the analysis result of the situation around the vehicle 10 by the outside situation analyzing unit 221 and the map data stored in the map DB 207, the planned route separately Plan the actions of the vehicle 10 to drive safely. For example, the action planning unit 162 performs planning of start, stop, traveling direction (for example, forward, backward, left turn, right turn, change of direction, etc.), travel lane, travel speed, overtaking, and the like. The behavior planning unit 222 supplies data indicating the planned behavior of the vehicle 10 to the comparing unit 204 and the behavior planning unit 163 in FIG.
  • traveling direction for example, forward, backward, left turn, right turn, change of direction, etc.
  • the operation plan unit 163 plans the operation of the vehicle 10 for realizing the action planned by the action plan unit 162, and controls the acceleration / deceleration control of the operation control unit 135 in FIG. It supplies to the unit 172 and the direction control unit 173 and the like. Then, the acceleration / deceleration control unit 172 and the direction control unit 173 perform acceleration / deceleration control, direction control, and the like of the vehicle 10, whereby the vehicle 10 performs the operation planned by the operation planning unit 163.
  • the vehicle group behavior estimation unit 233 estimates a vehicle group behavior plan. Specifically, the vehicle group action estimation unit 233 estimates an action plan such as a route of each vehicle group based on the position and the speed vector of another vehicle belonging to each vehicle group.
  • the vehicle group behavior inference unit 233 uses the comparison unit 204, the determination unit 206, the output control unit 105 in FIG. 1, and the like to indicate the detection result of each vehicle group and the estimation result of the action plan of each vehicle group. Supply.
  • the determination unit 206 determines the detection accuracy of the vehicle group and the estimation accuracy of the action plan of the vehicle group.
  • the determination unit 206 supplies data indicating the determination result to the behavior planning unit 222.
  • arbitrary methods can be used for the determination method of the detection accuracy of a vehicle group, and the estimation accuracy of the action plan of a vehicle group.
  • step S7 the comparison unit 204 and the obstacle estimation unit 205 perform an obstacle estimation process.
  • the comparison unit 204 compares the planned route of the vehicle 10 with the estimated route of each vehicle group. Then, when there is a vehicle group whose estimated route is significantly different from the estimated route of the vehicle 10, the comparison unit 204 supplies the obstacle estimation unit 205 with data indicating the estimated route of the vehicle group and the estimated route of the vehicle 10. .
  • the obstacle estimation unit 205 estimates the position of the obstacle based on the planned route of the vehicle 10 and the estimated route of the vehicle group significantly different from the planned route of the vehicle 10. For example, the obstacle estimating unit 205 infers that an obstacle is present on a route that is estimated to not pass the vehicle group among the planned routes of the vehicle 10.
  • FIG. 9 adds to FIG. 5 a detection area Ra1 where the vehicle 10 can detect an object in front, and a blind area Rb2 which is a blind spot due to the vehicle 311-1 immediately before the vehicle 10 in the detection area Ra1. It is a thing.
  • the obstacle 312 can not be detected from the vehicle 10 because the obstacle 312 is present in the dead area Rb1.
  • the estimated route of the vehicle group 311 indicated by the arrow is different from the planned route of the vehicle 10. Therefore, the obstacle estimating unit 205 estimates that an obstacle is present on a route that is estimated to not pass the vehicle group 311 among the planned routes of the vehicle 10. As a result, the obstacle estimating unit 205 can estimate in advance the presence of the obstacle 312 in the blind spot of the vehicle 10.
  • FIG. 10 adds the detection area Ra2 of the vehicle 10 and the blind area Rb2 generated by the vehicle 321-1 immediately before the vehicle 10 in FIG.
  • the obstacle 323 can not be detected from the vehicle 10 because the obstacle 323 exists in the dead angle region Rb1.
  • the planned route is set so that the vehicle 10 travels straight
  • the estimated route of the vehicle group 321 and the vehicle group 322 indicated by the arrows is different from the planned route of the vehicle 10. Therefore, the obstacle estimating unit 205 estimates that an obstacle is present on a route that is predicted to not pass the vehicle group 321 and the vehicle group 322 among the planned routes of the vehicle 10.
  • the obstacle estimating unit 205 can estimate in advance the presence of the obstacle 323 in the blind spot of the vehicle 10.
  • FIGS. 11 to 21 schematically show the front of the vehicle 10, in particular, a vehicle group including the vehicles 351-1 to 351-3 avoiding an obstacle.
  • the object shown at the lower end of FIGS. 11 to 21 is the hood of the vehicle 10.
  • the planned route of the vehicle 10 is set to go straight ahead in the lane at the left end at the beginning.
  • a vehicle group including the vehicles 351-1 to 351-3 travels in front of the same lane as the vehicle 10.
  • a cone 361, a direction guide plate 362, a cone 363, and a direction guide plate 364 exist in front of the lane in which the vehicle 10 is traveling.
  • those obstacles become blind spots by the vehicle 351-1 and the like, and can not be seen by the vehicle 10.
  • the vehicles 351-1 to 351-3 gradually move to the right.
  • the vehicle group including the vehicles 351-1 to 351-3 changes lanes to the right lane. Therefore, since the planned route of the vehicle 10 and the estimated route of the vehicle group including the vehicles 351-1 to 351-3 are different, some of the planned routes of the vehicle 10 is a route presumed to not pass the vehicle group It can be inferred that an obstacle exists. That is, before the cone 361, the direction guide plate 362, the cone 363, and the direction guide plate 364 can be seen from the vehicle 10, it can be inferred that there is an obstacle ahead of the left lane.
  • the obstacle estimation unit 205 supplies data indicating the estimation result of the obstacle to the external condition analysis unit 221. Thereby, the estimated position of the obstacle is recognized by the external situation analysis unit 221, and the action planning unit 222 plans the action of the vehicle 10 based on the estimated position of the obstacle (for example, the obstacle Plan to route the vehicle 10 to avoid
  • step S1 the process returns to step S1, and the processes after step S1 are performed.
  • the action plan unit 222 follows behind the vehicle group based on the estimated route of the vehicle group ahead.
  • the action of the vehicle 10 may be planned to follow (travel along the same route as the vehicle group). As described above, even if the road marking can not be detected by causing the vehicle 10 to follow the group of vehicles traveling safely, the vehicle 10 travels safely without exceeding the lane or falling onto the road shoulder. can do.
  • the action planning unit 222 may also plan the action of the vehicle 10 so as to follow behind the group of vehicles ahead. This enables the vehicle 10 to travel safely.
  • the vehicle 10 can travel without significantly reducing the traveling speed according to the vehicle Become.
  • FIG. 22 adds the detection area Ra3 of the vehicle 10 and the blind spot area Rb3 generated by the vehicle 301-1 immediately before the vehicle 10 to FIG.
  • the vehicle 10 follows behind the vehicle group 301 traveling in a substantially straight line, it is difficult to grasp the entire image of the vehicle group 301 from the vehicle 10, and the detection accuracy of the vehicle group 301 decreases. Do.
  • the action planning unit 222 moves the vehicle 10 to a position shifted laterally to the moving direction of the vehicle group 301 at predetermined timing (for example, at predetermined intervals). May be planned to move the vehicle 10.
  • predetermined timing for example, at predetermined intervals.
  • the output unit 106 in FIG. 1 may display information on a vehicle group under the control of the output control unit 105.
  • 24 and 25 show an example of a method of displaying information on a vehicle group.
  • the display effect 401 and the display effect 402 which show the path
  • the recommended route may be indicated by an arrow 403 or the like.
  • the display effect 401, the display effect 402, the arrow 403, and the like may be superimposed and displayed using a head-up display or the like within the field of vision of the driver of the vehicle 10.
  • the vehicle group may be detected based on one or two of them.
  • the sharing of the functions of each unit in FIG. 2 can be changed as necessary.
  • the function of the vehicle detection unit 231 may be absorbed by the external condition analysis unit 221.
  • the action planning unit 222 may plan the action of the vehicle 10 based on the estimation result of the vehicle group action estimation unit 233.
  • the present technology detects mobile groups around various mobile bodies such as motorcycles, bicycles, personal mobility, airplanes, ships, construction machines, agricultural machines (tractors) and the like. It can be applied to the case where it is performed. Further, mobile bodies to which the present technology can be applied include, for example, mobile bodies that a user, such as a drone or a robot, operates (operates) remotely without boarding.
  • the mobile unit group to be detected may include different types of mobile units.
  • the moving body group may include not only vehicles but also motorcycles and the like.
  • the detection direction of the moving object group is not limited to the front of the moving object group, and directions other than the front around the moving object may be detected.
  • the traveling direction may be set as the detection direction of the mobile unit group.
  • the series of processes described above can be performed by hardware or software.
  • a program that configures the software is installed on a computer.
  • the computer includes, for example, a general-purpose personal computer that can execute various functions by installing a computer incorporated in dedicated hardware and various programs.
  • FIG. 26 is a block diagram showing an example of a hardware configuration of a computer that executes the series of processes described above according to a program.
  • a central processing unit (CPU) 501 a read only memory (ROM) 502, and a random access memory (RAM) 503 are mutually connected by a bus 504.
  • CPU central processing unit
  • ROM read only memory
  • RAM random access memory
  • an input / output interface 505 is connected to the bus 504.
  • An input unit 506, an output unit 507, a recording unit 508, a communication unit 509, and a drive 510 are connected to the input / output interface 505.
  • the input unit 506 includes an input switch, a button, a microphone, an imaging device, and the like.
  • the output unit 507 includes a display, a speaker, and the like.
  • the recording unit 508 includes a hard disk, a non-volatile memory, and the like.
  • the communication unit 509 is formed of a network interface or the like.
  • the drive 510 drives a removable recording medium 511 such as a magnetic disk, an optical disk, a magneto-optical disk, or a semiconductor memory.
  • the CPU 501 loads the program recorded in the recording unit 508, for example, to the RAM 503 via the input / output interface 505 and the bus 504, and executes the program. A series of processing is performed.
  • the program executed by the computer 500 can be provided by being recorded on, for example, a removable recording medium 511 as a package medium or the like. Also, the program can be provided via a wired or wireless transmission medium such as a local area network, the Internet, or digital satellite broadcasting.
  • the program can be installed in the recording unit 508 via the input / output interface 505 by attaching the removable recording medium 511 to the drive 510. Also, the program can be received by the communication unit 509 via a wired or wireless transmission medium and installed in the recording unit 508. In addition, the program can be installed in advance in the ROM 502 or the recording unit 508.
  • the program executed by the computer may be a program that performs processing in chronological order according to the order described in this specification, in parallel, or when necessary, such as when a call is made. It may be a program to be processed.
  • a system means a set of a plurality of components (devices, modules (parts), etc.), and it does not matter whether all the components are in the same case. Therefore, a plurality of devices housed in separate housings and connected via a network, and one device housing a plurality of modules in one housing are all systems. .
  • the present technology can have a cloud computing configuration in which one function is shared and processed by a plurality of devices via a network.
  • each step described in the above-described flowchart can be executed by one device or in a shared manner by a plurality of devices.
  • the plurality of processes included in one step can be executed by being shared by a plurality of devices in addition to being executed by one device.
  • the present technology can also be configured as follows.
  • a mobile detection unit that detects another mobile around the mobile;
  • a moving body group detection unit that detects a moving body group including two or more other moving bodies based on one or more of the position, the velocity, and the moving direction of each of the other moving bodies; apparatus.
  • the moving body group detection unit detects the moving body group by clustering the other moving bodies based on one or more of the position, the velocity, and the moving direction of each of the other moving bodies.
  • the information processing apparatus according to 1).
  • the obstacle estimation unit may not pass the mobile object group among the planned routes of the mobile object, when the planned route for moving the mobile object is different from the estimated route of the mobile object group.
  • the information processing apparatus further comprising: an action planning unit that plans an action of the moving object based on a position of the obstacle that is estimated.
  • the information processing apparatus according to any one of (1) to (6), further including an action planning unit configured to plan an action of the moving object based on a detection result of the moving object group.
  • the information processing apparatus wherein the action planning unit plans the action of the moving object to follow the moving object group when the visibility of the moving direction of the moving object is poor.
  • the action planning unit when the detection accuracy of the road surface in the traveling direction of the moving object is low, plans the action of the moving object to follow the moving object group.
  • the action planning unit is configured to move the moving object so as to move to a position laterally displaced with respect to the traveling direction of the moving object group at a predetermined timing when the moving object follows the moving object group.
  • the information processing apparatus according to any one of (8) to (10).
  • (12) The information processing apparatus according to any one of (1) to (11), further including: an output control unit configured to control display of information on the moving object group.
  • the information processing layer device Detect other mobiles around mobiles, An information processing method for detecting a mobile object group including two or more other mobile objects based on one or more of the position, the velocity, and the movement direction of each of the other mobile objects.
  • a moving body detection unit that detects other moving bodies in the vicinity; A moving body group detection unit that detects a moving body group including two or more other moving bodies based on one or more of the position, the velocity, and the moving direction of each of the other moving bodies; .
  • a vehicle detection unit that detects other vehicles around the vehicle; A vehicle group detection unit that detects a vehicle group including two or more other vehicles based on one or more of the position, the speed, and the moving direction of each of the other vehicles.
  • Reference Signs List 10 10 vehicle, 100 vehicle control system, 102 data acquisition unit, 105 output control unit, 106 output unit, 133 situation analysis unit, 141 external information detection unit, 162 action plan unit, 163 operation plan unit, 135 operation control unit, 200 action Planning system, 202 action plan processing unit, 203 vehicle group detection processing unit, 204 comparison unit, 205 obstacle estimation unit, 206 determination unit, 221 vehicle external condition analysis unit, 222 action planning unit, 231 vehicle detection unit, 232 vehicle group detection Unit, 233 Vehicle group behavior estimation unit, 301, 311, 321, 322, 331, 332, 341 to 345 Vehicle group

Landscapes

  • Engineering & Computer Science (AREA)
  • Automation & Control Theory (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Traffic Control Systems (AREA)

Abstract

本技術は、移動体の周囲の他の移動体の状況を正確に把握することができるようにする情報処理装置、情報処理方法、移動体、及び、車両に関する。 情報処理装置は、移動体の周囲の他の移動体を検出する移動体検出部と、各前記他の移動体の位置、速度、及び、移動方向のうち1つ以上に基づいて、2以上の前記他の移動体を含む移動体群を検出する移動体群検出部とを備える。本技術は、例えば、車両の自動運転を制御するシステムに適用することができる。

Description

情報処理装置、情報処理方法、移動体、及び、車両
 本技術は、情報処理装置、情報処理方法、移動体、及び、車両に関し、特に、車両等の移動体の周囲の他の移動体の状況を検出する場合に用いて好適な情報処理装置、情報処理方法、移動体、及び、車両に関する。
 従来、支援対象車両の前方の車両が減速を開始した場合、減速を開始した車両と支援対象車両との間を走行する予測対象車両の運転者の過去の減速操作に基づいて、予測対象車両の減速行動を予測し、予測される減速行動及び道路の交通状況に基づいて、支援対象車両の運転支援制御を行うことが提案されている(例えば、特許文献1参照)。
特開2015-230511号公報
 一方、より安全に自動運転や運転支援を行うために、特許文献1に記載の方法に限らず、様々な方法により周囲の車両の状況を正確に把握できるようにすることが望まれている。
 本技術は、このような状況に鑑みてなされたものであり、車両等の移動体の周囲の他の移動体の状況を正確に把握できるようにするものである。
 本技術の第1の側面の情報処理装置は、移動体の周囲の他の移動体を検出する移動体検出部と、各前記他の移動体の位置、速度、及び、移動方向のうち1つ以上に基づいて、2以上の前記他の移動体を含む移動体群を検出する移動体群検出部とを備える。
 本技術の第1の側面の情報処理方法は、情報処理層装置が、移動体の周囲の他の移動体を検出し、各前記他の移動体の位置、速度、及び、移動方向のうち1つ以上に基づいて、2以上の前記他の移動体を含む移動体群を検出する。
 本技術の第2の側面の移動体は、周囲の他の移動体を検出する移動体検出部と、各前記他の移動体の位置、速度、及び、移動方向のうち1つ以上に基づいて、2以上の前記他の移動体を含む移動体群を検出する移動体群検出部とを備える。
 本技術の第3の側面の車両は、周囲の他の車両を検出する車両検出部と、各前記他の車両の位置、速度、及び、移動方向のうち1つ以上に基づいて、2以上の前記他の車両を含む車両群を検出する車両群検出部とを備える。
 本技術の第1の側面においては、移動体の周囲の他の移動体が検出され、各前記他の移動体の位置、速度、及び、移動方向のうち1つ以上に基づいて、2以上の前記他の移動体を含む移動体群が検出される。
 本技術の第2の側面においては、周囲の他の移動体が検出され、各前記他の移動体の位置、速度、及び、移動方向のうち1つ以上に基づいて、2以上の前記他の移動体を含む移動体群が検出される。
 本技術の第3の側面においては、周囲の他の車両が検出され、各前記他の車両の位置、速度、及び、移動方向のうち1つ以上に基づいて、2以上の前記他の車両を含む車両群が検出される。
 本技術の第1の側面乃至第3の側面によれば、車両等の移動体の周囲の他の移動体の状況を正確に把握することができる。その結果、移動体の行動を適切に制御することができる。
 なお、ここに記載された効果は必ずしも限定されるものではなく、本開示中に記載された何れかの効果であってもよい。
本技術が適用され得る車両制御システムの概略的な機能の構成例を示すブロック図である。 本技術を適用した行動計画システムの一実施の形態を示すブロック図である。 行動計画システムにより実行される行動計画処理を説明するためのフローチャートである。 車両群の例を示す図である。 車両群の例を示す図である。 車両群の例を示す図である。 車両群の例を示す図である。 車両群の例を示す図である。 障害物の推測方法を説明するための図である。 障害物の推測方法を説明するための図である。 障害物の推測方法を説明するための図である。 障害物の推測方法を説明するための図である。 障害物の推測方法を説明するための図である。 障害物の推測方法を説明するための図である。 障害物の推測方法を説明するための図である。 障害物の推測方法を説明するための図である。 障害物の推測方法を説明するための図である。 障害物の推測方法を説明するための図である。 障害物の推測方法を説明するための図である。 障害物の推測方法を説明するための図である。 障害物の推測方法を説明するための図である。 車両群の確認方法を説明するための図である。 車両群の確認方法を説明するための図である。 車両群に関する情報の表示例を示す図である。 車両群に関する情報の表示例を示す図である。 コンピュータの構成例を示す図である。
 以下、本技術を実施するための形態について説明する。説明は以下の順序で行う。
 1.車両制御システムの構成例
 2.実施の形態
 3.変形例
 4.その他
 <<1.車両制御システムの構成例>>
 図1は、本技術が適用され得る移動体制御システムの一例である車両制御システム100の概略的な機能の構成例を示すブロック図である。
 車両制御システム100は、車両10に設けられ、車両10の各種の制御を行うシステムである。なお、以下、車両10を他の車両と区別する場合、自車又は自車両と称する。
 車両制御システム100は、入力部101、データ取得部102、通信部103、車内機器104、出力制御部105、出力部106、駆動系制御部107、駆動系システム108、ボディ系制御部109、ボディ系システム110、記憶部111、及び、自動運転制御部112を備える。入力部101、データ取得部102、通信部103、出力制御部105、駆動系制御部107、ボディ系制御部109、記憶部111、及び、自動運転制御部112は、通信ネットワーク121を介して、相互に接続されている。通信ネットワーク121は、例えば、CAN(Controller Area Network)、LIN(Local Interconnect Network)、LAN(Local Area Network)、又は、FlexRay(登録商標)等の任意の規格に準拠した車載通信ネットワークやバス等からなる。なお、車両制御システム100の各部は、通信ネットワーク121を介さずに、直接接続される場合もある。
 なお、以下、車両制御システム100の各部が、通信ネットワーク121を介して通信を行う場合、通信ネットワーク121の記載を省略するものとする。例えば、入力部101と自動運転制御部112が、通信ネットワーク121を介して通信を行う場合、単に入力部101と自動運転制御部112が通信を行うと記載する。
 入力部101は、搭乗者が各種のデータや指示等の入力に用いる装置を備える。例えば、入力部101は、タッチパネル、ボタン、マイクロフォン、スイッチ、及び、レバー等の操作デバイス、並びに、音声やジェスチャ等により手動操作以外の方法で入力可能な操作デバイス等を備える。また、例えば、入力部101は、赤外線若しくはその他の電波を利用したリモートコントロール装置、又は、車両制御システム100の操作に対応したモバイル機器若しくはウェアラブル機器等の外部接続機器であってもよい。入力部101は、搭乗者により入力されたデータや指示等に基づいて入力信号を生成し、車両制御システム100の各部に供給する。
 データ取得部102は、車両制御システム100の処理に用いるデータを取得する各種のセンサ等を備え、取得したデータを、車両制御システム100の各部に供給する。
 例えば、データ取得部102は、車両10の状態等を検出するための各種のセンサを備える。具体的には、例えば、データ取得部102は、ジャイロセンサ、加速度センサ、慣性計測装置(IMU)、及び、アクセルペダルの操作量、ブレーキペダルの操作量、ステアリングホイールの操舵角、エンジン回転数、モータ回転数、若しくは、車輪の回転速度等を検出するためのセンサ等を備える。
 また、例えば、データ取得部102は、車両10の外部の情報を検出するための各種のセンサを備える。具体的には、例えば、データ取得部102は、ToF(Time Of Flight)カメラ、ステレオカメラ、単眼カメラ、赤外線カメラ、及び、その他のカメラ等の撮像装置を備える。また、例えば、データ取得部102は、天候又は気象等を検出するための環境センサ、及び、車両10の周囲の物体を検出するための周囲情報検出センサを備える。環境センサは、例えば、雨滴センサ、霧センサ、日照センサ、雪センサ等からなる。周囲情報検出センサは、例えば、超音波センサ、レーダ、LiDAR(Light Detection and Ranging、Laser Imaging Detection and Ranging)、ソナー等からなる。
 さらに、例えば、データ取得部102は、車両10の現在位置を検出するための各種のセンサを備える。具体的には、例えば、データ取得部102は、GNSS(Global Navigation Satellite System)衛星からのGNSS信号を受信するGNSS受信機等を備える。
 また、例えば、データ取得部102は、車内の情報を検出するための各種のセンサを備える。具体的には、例えば、データ取得部102は、運転者を撮像する撮像装置、運転者の生体情報を検出する生体センサ、及び、車室内の音声を集音するマイクロフォン等を備える。生体センサは、例えば、座面又はステアリングホイール等に設けられ、座席に座っている搭乗者又はステアリングホイールを握っている運転者の生体情報を検出する。
 通信部103は、車内機器104、並びに、車外の様々な機器、サーバ、基地局等と通信を行い、車両制御システム100の各部から供給されるデータを送信したり、受信したデータを車両制御システム100の各部に供給したりする。なお、通信部103がサポートする通信プロトコルは、特に限定されるものではなく、また、通信部103が、複数の種類の通信プロトコルをサポートすることも可能である。
 例えば、通信部103は、無線LAN、Bluetooth(登録商標)、NFC(Near Field Communication)、又は、WUSB(Wireless USB)等により、車内機器104と無線通信を行う。また、例えば、通信部103は、図示しない接続端子(及び、必要であればケーブル)を介して、USB(Universal Serial Bus)、HDMI(登録商標)(High-Definition Multimedia Interface)、又は、MHL(Mobile High-definition Link)等により、車内機器104と有線通信を行う。
 さらに、例えば、通信部103は、基地局又はアクセスポイントを介して、外部ネットワーク(例えば、インターネット、クラウドネットワーク又は事業者固有のネットワーク)上に存在する機器(例えば、アプリケーションサーバ又は制御サーバ)との通信を行う。また、例えば、通信部103は、P2P(Peer To Peer)技術を用いて、車両10の近傍に存在する端末(例えば、歩行者若しくは店舗の端末、又は、MTC(Machine Type Communication)端末)との通信を行う。さらに、例えば、通信部103は、車車間(Vehicle to Vehicle)通信、路車間(Vehicle to Infrastructure)通信、車両10と家との間(Vehicle to Home)の通信、及び、歩車間(Vehicle to Pedestrian)通信等のV2X通信を行う。また、例えば、通信部103は、ビーコン受信部を備え、道路上に設置された無線局等から発信される電波あるいは電磁波を受信し、現在位置、渋滞、通行規制又は所要時間等の情報を取得する。
 車内機器104は、例えば、搭乗者が有するモバイル機器若しくはウェアラブル機器、車両10に搬入され若しくは取り付けられる情報機器、及び、任意の目的地までの経路探索を行うナビゲーション装置等を含む。
 出力制御部105は、車両10の搭乗者又は車外に対する各種の情報の出力を制御する。例えば、出力制御部105は、視覚情報(例えば、画像データ)及び聴覚情報(例えば、音声データ)のうちの少なくとも1つを含む出力信号を生成し、出力部106に供給することにより、出力部106からの視覚情報及び聴覚情報の出力を制御する。具体的には、例えば、出力制御部105は、データ取得部102の異なる撮像装置により撮像された画像データを合成して、俯瞰画像又はパノラマ画像等を生成し、生成した画像を含む出力信号を出力部106に供給する。また、例えば、出力制御部105は、衝突、接触、危険地帯への進入等の危険に対する警告音又は警告メッセージ等を含む音声データを生成し、生成した音声データを含む出力信号を出力部106に供給する。
 出力部106は、車両10の搭乗者又は車外に対して、視覚情報又は聴覚情報を出力することが可能な装置を備える。例えば、出力部106は、表示装置、インストルメントパネル、オーディオスピーカ、ヘッドホン、搭乗者が装着する眼鏡型ディスプレイ等のウェアラブルデバイス、プロジェクタ、ランプ等を備える。出力部106が備える表示装置は、通常のディスプレイを有する装置以外にも、例えば、ヘッドアップディスプレイ、透過型ディスプレイ、AR(Augmented Reality)表示機能を有する装置等の運転者の視野内に視覚情報を表示する装置であってもよい。
 駆動系制御部107は、各種の制御信号を生成し、駆動系システム108に供給することにより、駆動系システム108の制御を行う。また、駆動系制御部107は、必要に応じて、駆動系システム108以外の各部に制御信号を供給し、駆動系システム108の制御状態の通知等を行う。
 駆動系システム108は、車両10の駆動系に関わる各種の装置を備える。例えば、駆動系システム108は、内燃機関又は駆動用モータ等の駆動力を発生させるための駆動力発生装置、駆動力を車輪に伝達するための駆動力伝達機構、舵角を調節するステアリング機構、制動力を発生させる制動装置、ABS(Antilock Brake System)、ESC(Electronic Stability Control)、並びに、電動パワーステアリング装置等を備える。
 ボディ系制御部109は、各種の制御信号を生成し、ボディ系システム110に供給することにより、ボディ系システム110の制御を行う。また、ボディ系制御部109は、必要に応じて、ボディ系システム110以外の各部に制御信号を供給し、ボディ系システム110の制御状態の通知等を行う。
 ボディ系システム110は、車体に装備されたボディ系の各種の装置を備える。例えば、ボディ系システム110は、キーレスエントリシステム、スマートキーシステム、パワーウィンドウ装置、パワーシート、ステアリングホイール、空調装置、及び、各種ランプ(例えば、ヘッドランプ、バックランプ、ブレーキランプ、ウィンカ、フォグランプ等)等を備える。
 記憶部111は、例えば、ROM(Read Only Memory)、RAM(Random Access Memory)、HDD(Hard Disc Drive)等の磁気記憶デバイス、半導体記憶デバイス、光記憶デバイス、及び、光磁気記憶デバイス等を備える。記憶部111は、車両制御システム100の各部が用いる各種プログラムやデータ等を記憶する。例えば、記憶部111は、ダイナミックマップ等の3次元の高精度地図、高精度地図より精度が低く、広いエリアをカバーするグローバルマップ、及び、車両10の周囲の情報を含むローカルマップ等の地図データを記憶する。
 自動運転制御部112は、自律走行又は運転支援等の自動運転に関する制御を行う。具体的には、例えば、自動運転制御部112は、車両10の衝突回避あるいは衝撃緩和、車間距離に基づく追従走行、車速維持走行、車両10の衝突警告、又は、車両10のレーン逸脱警告等を含むADAS(Advanced Driver Assistance System)の機能実現を目的とした協調制御を行う。また、例えば、自動運転制御部112は、運転者の操作に拠らずに自律的に走行する自動運転等を目的とした協調制御を行う。自動運転制御部112は、検出部131、自己位置推定部132、状況分析部133、計画部134、及び、動作制御部135を備える。
 検出部131は、自動運転の制御に必要な各種の情報の検出を行う。検出部131は、車外情報検出部141、車内情報検出部142、及び、車両状態検出部143を備える。
 車外情報検出部141は、車両制御システム100の各部からのデータ又は信号に基づいて、車両10の外部の情報の検出処理を行う。例えば、車外情報検出部141は、車両10の周囲の物体の検出処理、認識処理、及び、追跡処理、並びに、物体までの距離の検出処理を行う。検出対象となる物体には、例えば、車両、人、障害物、構造物、道路、信号機、交通標識、道路標示等が含まれる。また、例えば、車外情報検出部141は、車両10の周囲の環境の検出処理を行う。検出対象となる周囲の環境には、例えば、天候、気温、湿度、明るさ、及び、路面の状態等が含まれる。車外情報検出部141は、検出処理の結果を示すデータを自己位置推定部132、状況分析部133のマップ解析部151、交通ルール認識部152、及び、状況認識部153、並びに、動作制御部135の緊急事態回避部171等に供給する。
 車内情報検出部142は、車両制御システム100の各部からのデータ又は信号に基づいて、車内の情報の検出処理を行う。例えば、車内情報検出部142は、運転者の認証処理及び認識処理、運転者の状態の検出処理、搭乗者の検出処理、及び、車内の環境の検出処理等を行う。検出対象となる運転者の状態には、例えば、体調、覚醒度、集中度、疲労度、視線方向等が含まれる。検出対象となる車内の環境には、例えば、気温、湿度、明るさ、臭い等が含まれる。車内情報検出部142は、検出処理の結果を示すデータを状況分析部133の状況認識部153、及び、動作制御部135の緊急事態回避部171等に供給する。
 車両状態検出部143は、車両制御システム100の各部からのデータ又は信号に基づいて、車両10の状態の検出処理を行う。検出対象となる車両10の状態には、例えば、速度、加速度、舵角、異常の有無及び内容、運転操作の状態、パワーシートの位置及び傾き、ドアロックの状態、並びに、その他の車載機器の状態等が含まれる。車両状態検出部143は、検出処理の結果を示すデータを状況分析部133の状況認識部153、及び、動作制御部135の緊急事態回避部171等に供給する。
 自己位置推定部132は、車外情報検出部141、及び、状況分析部133の状況認識部153等の車両制御システム100の各部からのデータ又は信号に基づいて、車両10の位置及び姿勢等の推定処理を行う。また、自己位置推定部132は、必要に応じて、自己位置の推定に用いるローカルマップ(以下、自己位置推定用マップと称する)を生成する。自己位置推定用マップは、例えば、SLAM(Simultaneous Localization and Mapping)等の技術を用いた高精度なマップとされる。自己位置推定部132は、推定処理の結果を示すデータを状況分析部133のマップ解析部151、交通ルール認識部152、及び、状況認識部153等に供給する。また、自己位置推定部132は、自己位置推定用マップを記憶部111に記憶させる。
 状況分析部133は、車両10及び周囲の状況の分析処理を行う。状況分析部133は、マップ解析部151、交通ルール認識部152、状況認識部153、及び、状況予測部154を備える。
 マップ解析部151は、自己位置推定部132及び車外情報検出部141等の車両制御システム100の各部からのデータ又は信号を必要に応じて用いながら、記憶部111に記憶されている各種のマップの解析処理を行い、自動運転の処理に必要な情報を含むマップを構築する。マップ解析部151は、構築したマップを、交通ルール認識部152、状況認識部153、状況予測部154、並びに、計画部134のルート計画部161、行動計画部162、及び、動作計画部163等に供給する。
 交通ルール認識部152は、自己位置推定部132、車外情報検出部141、及び、マップ解析部151等の車両制御システム100の各部からのデータ又は信号に基づいて、車両10の周囲の交通ルールの認識処理を行う。この認識処理により、例えば、車両10の周囲の信号の位置及び状態、車両10の周囲の交通規制の内容、並びに、走行可能な車線等が認識される。交通ルール認識部152は、認識処理の結果を示すデータを状況予測部154等に供給する。
 状況認識部153は、自己位置推定部132、車外情報検出部141、車内情報検出部142、車両状態検出部143、及び、マップ解析部151等の車両制御システム100の各部からのデータ又は信号に基づいて、車両10に関する状況の認識処理を行う。例えば、状況認識部153は、車両10の状況、車両10の周囲の状況、及び、車両10の運転者の状況等の認識処理を行う。また、状況認識部153は、必要に応じて、車両10の周囲の状況の認識に用いるローカルマップ(以下、状況認識用マップと称する)を生成する。状況認識用マップは、例えば、占有格子地図(Occupancy Grid Map)とされる。
 認識対象となる車両10の状況には、例えば、車両10の位置、姿勢、動き(例えば、速度、加速度、移動方向等)、並びに、異常の有無及び内容等が含まれる。認識対象となる車両10の周囲の状況には、例えば、周囲の静止物体の種類及び位置、周囲の動物体の種類、位置及び動き(例えば、速度、加速度、移動方向等)、周囲の道路の構成及び路面の状態、並びに、周囲の天候、気温、湿度、及び、明るさ等が含まれる。認識対象となる運転者の状態には、例えば、体調、覚醒度、集中度、疲労度、視線の動き、並びに、運転操作等が含まれる。
 状況認識部153は、認識処理の結果を示すデータ(必要に応じて、状況認識用マップを含む)を自己位置推定部132及び状況予測部154等に供給する。また、状況認識部153は、状況認識用マップを記憶部111に記憶させる。
 状況予測部154は、マップ解析部151、交通ルール認識部152及び状況認識部153等の車両制御システム100の各部からのデータ又は信号に基づいて、車両10に関する状況の予測処理を行う。例えば、状況予測部154は、車両10の状況、車両10の周囲の状況、及び、運転者の状況等の予測処理を行う。
 予測対象となる車両10の状況には、例えば、車両10の挙動、異常の発生、及び、走行可能距離等が含まれる。予測対象となる車両10の周囲の状況には、例えば、車両10の周囲の動物体の挙動、信号の状態の変化、及び、天候等の環境の変化等が含まれる。予測対象となる運転者の状況には、例えば、運転者の挙動及び体調等が含まれる。
 状況予測部154は、予測処理の結果を示すデータを、交通ルール認識部152及び状況認識部153からのデータとともに、計画部134のルート計画部161、行動計画部162、及び、動作計画部163等に供給する。
 ルート計画部161は、マップ解析部151及び状況予測部154等の車両制御システム100の各部からのデータ又は信号に基づいて、目的地までのルートを計画する。例えば、ルート計画部161は、グローバルマップに基づいて、現在位置から指定された目的地までのルートを設定する。また、例えば、ルート計画部161は、渋滞、事故、通行規制、工事等の状況、及び、運転者の体調等に基づいて、適宜ルートを変更する。ルート計画部161は、計画したルートを示すデータを行動計画部162等に供給する。
 行動計画部162は、マップ解析部151及び状況予測部154等の車両制御システム100の各部からのデータ又は信号に基づいて、ルート計画部161により計画されたルートを計画された時間内で安全に走行するための車両10の行動を計画する。例えば、行動計画部162は、発進、停止、進行方向(例えば、前進、後退、左折、右折、方向転換等)、走行車線、走行速度、及び、追い越し等の計画を行う。行動計画部162は、計画した車両10の行動を示すデータを動作計画部163等に供給する。
 動作計画部163は、マップ解析部151及び状況予測部154等の車両制御システム100の各部からのデータ又は信号に基づいて、行動計画部162により計画された行動を実現するための車両10の動作を計画する。例えば、動作計画部163は、加速、減速、及び、走行軌道等の計画を行う。動作計画部163は、計画した車両10の動作を示すデータを、動作制御部135の加減速制御部172及び方向制御部173等に供給する。
 動作制御部135は、車両10の動作の制御を行う。動作制御部135は、緊急事態回避部171、加減速制御部172、及び、方向制御部173を備える。
 緊急事態回避部171は、車外情報検出部141、車内情報検出部142、及び、車両状態検出部143の検出結果に基づいて、衝突、接触、危険地帯への進入、運転者の異常、車両10の異常等の緊急事態の検出処理を行う。緊急事態回避部171は、緊急事態の発生を検出した場合、急停車や急旋回等の緊急事態を回避するための車両10の動作を計画する。緊急事態回避部171は、計画した車両10の動作を示すデータを加減速制御部172及び方向制御部173等に供給する。
 加減速制御部172は、動作計画部163又は緊急事態回避部171により計画された車両10の動作を実現するための加減速制御を行う。例えば、加減速制御部172は、計画された加速、減速、又は、急停車を実現するための駆動力発生装置又は制動装置の制御目標値を演算し、演算した制御目標値を示す制御指令を駆動系制御部107に供給する。
 方向制御部173は、動作計画部163又は緊急事態回避部171により計画された車両10の動作を実現するための方向制御を行う。例えば、方向制御部173は、動作計画部163又は緊急事態回避部171により計画された走行軌道又は急旋回を実現するためのステアリング機構の制御目標値を演算し、演算した制御目標値を示す制御指令を駆動系制御部107に供給する。
 <<2.実施の形態>>
 次に、図2乃至図21を参照して、本技術の実施の形態について説明する。
 なお、この実施の形態は、図1の車両制御システム100のうち、主にデータ取得部102、状況認識部153、状況予測部154、及び、行動計画部162の処理に関連するものである。
 <行動計画システムの構成例>
 図2は、本技術を適用した行動計画システムの一実施の形態である行動計画システム200の構成例を示すブロック図である。
 行動計画システム200は、行動計画システム200が設けられている車両10の周囲の状況を検出し、車両10の周囲の状況の検出結果に基づいて、車両10の行動の計画を行うシステムである。行動計画システム200は、観測データ取得部201、行動計画処理部202、車両群検出処理部203、比較部204、障害物推測部205、判定部206、及び、地図DB(データベース)207を備える。
 観測データ取得部201は、撮像装置、上述した周囲情報検出センサ、及び、GNSS受信機等を備え、車両10の周囲の状況等を示す観測データを取得する。観測データ取得部201は、取得した観測データを、行動計画処理部202の車外状況分析部221、及び、車両群検出処理部203の車両検出部231に供給する。
 行動計画処理部202は、車両10の行動を計画する処理を行う。行動計画処理部202は、車外状況分析部221及び行動計画部222を備える。
 車外状況分析部221は、観測データ、地図DB207に記憶されている地図データ、及び、障害物推測部205による障害物の推測結果に基づいて、車両10の周囲の状況の分析処理を行う。車外状況分析部221は、車両10の周囲の状況の分析結果を示すデータを行動計画部222に供給する。
 行動計画部222は、車両10の周囲の状況の分析結果、車両群検出部232による車両群の検出結果、及び、地図DB207に記憶されている地図データに基づいて、車両10の行動を計画する。行動計画部222は、計画した車両10の行動を示すデータを、比較部204及び図1の動作計画部163等に供給する。
 車両群検出処理部203は、車両10の前方の車両群の検出処理を行う。車両群検出処理部203は、車両検出部231、車両群検出部232、及び、車両群行動推測部233を備える。
 車両検出部231は、観測データに基づいて、車両10の前方の他車両の検出処理を行う。車両検出部231は、他車両の検出結果を示すデータを車両群検出部232に供給する。
 車両群検出部232は、他車両の検出結果に基づいて、車両10の前方の車両群の検出処理を行う。車両群検出部232は、車両群の検出結果を示すデータを行動計画部222及び車両群行動推測部233に供給する。
 車両群行動推測部233は、各車両群の行動計画の推測処理を行う。車両群行動推測部233は、各車両群の検出結果、及び、各車両群の行動計画の推測結果を示すデータを、比較部204、判定部206、及び、図1の出力制御部105等に供給する。
 比較部204は、行動計画部222により計画された車両10の経路(以下、予定経路と称する)と、車両群行動推測部233により推測された各車両群の経路(以下、推測経路と称する)とを比較する。比較部204は、車両10の予定経路と各車両群の推測経路とを比較した結果を示すデータを障害物推測部205に供給する。
 障害物推測部205は、車両10の予定経路及び各車両群の推測経路に基づいて、障害物の位置を推測する。障害物推測部205は、障害物の推測結果を示すデータを車外状況分析部221に供給する。
 判定部206は、車両群の検出精度、及び、車両群の行動計画の推測精度の判定を行う。判定部206は、判定結果を示すデータを行動計画部222に供給する。
 地図DB207は、車両10の周囲の情報を含み、車両10の行動の計画に用いる地図データを記憶する。
 <行動計画処理>
 次に、図3のフローチャートを参照して、行動計画システム200により実行される行動計画処理について説明する。なお、この処理は、例えば、車両10を起動し、運転を開始するための操作が行われたとき、例えば、車両10のイグニッションスイッチ、パワースイッチ、又は、スタートスイッチ等がオンされたとき開始される。また、この処理は、例えば、運転を終了するための操作が行われたとき、例えば、車両10のイグニッションスイッチ、パワースイッチ、又は、スタートスイッチ等がオフされたとき終了する。
 ステップS1において、観測データ取得部201は、観測データを取得する。例えば、観測データ取得部201は、撮像装置により車両10の前方を撮影する。また、例えば、観測データ取得部201は、周囲情報検出センサにより車両10の周囲の物体を検出する。さらに、例えば、観測データ取得部201は、GNSS受信機によりGNSS衛星からのGNSS信号を受信する。そして、観測データ取得部201は、車両10の前方の画像、物体の検出結果を示すセンサデータ、及び、GNSS信号を含む観測データを車外状況分析部221及び車両検出部231に供給する。
 ステップS2において、車外状況分析部221は、車外の状況を分析する。例えば、車外状況分析部221は、観測データに基づいて、車両10の周囲の他車両、人、障害物、構造物、道路、信号機、交通標識、道路標示、及び、路面等の物体、並びに、それらの位置等を検出する。また、車外状況分析部221は、GNSS信号に基づいて、車両10の現在位置を検出する。
 そして、車外状況分析部221は、車両10の周囲の物体の検出結果、車両10の現在位置、地図DB207に記憶されている地図データ、及び、後述する障害物推測部205による障害物の推測結果に基づいて、車両10の周囲の状況の分析処理を行う。例えば、車外状況分析部221は、例えば、車両10の周囲の物体の種類、位置及び動き(例えば、速度、加速度、移動方向等)、並びに、周囲の道路の構成及び路面の状態等の分析を行う。車外状況分析部221は、車両10の周囲の状況の分析結果を示すデータを行動計画部222に供給する。
 ステップS3において、車両検出部231は、他車両の検出処理を行う。具体的には、車両検出部231は、観測データに基づいて、車両10の前方を走行する他車両の位置及び速度ベクトル(すなわち、速度及び移動方向)を検出する。車両検出部231は、他車両の位置及び速度ベクトルの検出結果を示すデータを車両群検出部232に供給する。
 なお、他車両の位置及び速度ベクトルの検出方法には、任意の手法を用いることができる。例えば、観測データ取得部201にミリ波レーダを設け、ミリ波レーダにより検出されたデータに基づいて、他車両の位置及び速度ベクトルをリアルタイムに検出することが可能である。また、例えば、観測データ取得部201にステレオカメラを設け、ステレカメラにより撮影された画像に基づいて、他車両の位置及び速度ベクトルをリアルタイムに検出することが可能である。
 ステップS4において、車両群検出部232は、車両群の検出処理を行う。例えば、車両群検出部232は、各他車両の位置及び速度ベクトルに基づいて、検出された他車両を1以上のクラスタにクラスタリングし、各クラスタをそれぞれ車両群と認識する。
 各車両群は、例えば、同様の行動を行う2以上の他車両を含む。例えば、各車両群は、車両10の進行方向(前方)において、略一列に連なって移動する2以上の他車両を含む。
 図4乃至図8は、車両群の例を示している。
 図4の例では、車両10の前方において、車両301-1乃至車両301-5が略一直線に並んで走行している。この場合、例えば、車両301-1乃至車両301-5を含む1つの車両群301が検出される。
 図5の例では、車両10の前方において、車両311-1乃至車両311-5が、障害物312を避けるために右方向に迂回するルートを略一列に連なって進んでいる。この場合、例えば、車両311-1乃至車両311-5を含む1つの車両群311が検出される。
 図6の例では、車両10の前方において、車両321-1乃至車両321-4が、障害物323を避けるために左方向に迂回するルートを略一列に連なって進んでいる。また、車両10の前方において、車両322-1及び車両322-2が、障害物323を避けるために右方向に迂回するルートを略一列に連なって進んでいる。この場合、例えば、車両321-1乃至車両321-4を含む車両群321、並びに、車両322-1及び車両322-2を含む車両群322の2つの車両群が検出される。
 図7の例では、車両10の前方において、車両331-1乃至車両331-4が、障害物333を避けるために右方向に迂回するルートを略一列に連なって進んでいる。一方、車両332は、車両331-1乃至車両331-4のように障害物333を避けることなく、障害物333の方向に進んでいる。この場合、例えば、車両331-1乃至車両331-4を含む車両群331が検出されるとともに、車両332が1つの車両群として検出される。
 この例のように、他の車両と同調せずに単独で走行する車両が存在する場合、1台の車両のみを含む車両群が検出される場合がある。
 図8の例では、車両10の前方において、車両341乃至車両345が、それぞれ同調せずに異なる方向を進行している。この場合、例えば、車両341乃至車両345がそれぞれ別の車両群として検出される。
 なお、他車両のクラスタリングには、任意のクラスタリング手法を用いることができる。また、例えば、ビッグデータを用いた機械学習等により、独自のクラスタリング手法を構築するようにしてもよい。
 ただし、例えば、図5、図6、及び、図7の例のように、車両群を構成する車列がカーブしている場合、先頭の車両と最後尾の車両の移動方向が大きく異なる場合がある。このように、先頭の車両と最後尾の車両の移動方向が大きく異なっていても、全体として1つの車列を構成する場合、その車列が1つのクラスタとして検出されるクラスタリング手法を用いることが望ましい。
 また、車両群を検出する範囲は、限定してもよいし、限定しなくてもよい。例えば、車両群を検出する範囲を、車両10が所定の時間内に到達する範囲内に限定してもよい。或いは、例えば、車両群を検出する範囲を限定せずに、車両検出部231が他車両を検出可能な範囲内において、車両群を検出するようにしてもよい。
 車両群検出部232は、車両群の検出結果を示すデータを行動計画部222及び車両群行動推測部233に供給する。
 ステップS5において、行動計画部222は、自車両(すなわち、車両10)の行動を計画する。例えば、行動計画部222は、車外状況分析部221による車両10の周囲の状況の分析結果、及び、地図DB207に記憶されている地図データに基づいて、別途計画されたルートを計画された時間内で安全に走行するための車両10の行動を計画する。例えば、行動計画部162は、発進、停止、進行方向(例えば、前進、後退、左折、右折、方向転換等)、走行車線、走行速度、及び、追い越し等の計画を行う。行動計画部222は、計画した車両10の行動を示すデータを、比較部204及び図1の動作計画部163等に供給する。
 動作計画部163は、行動計画部162により計画された行動を実現するための車両10の動作を計画し、計画した車両10の動作を示すデータを、図1の動作制御部135の加減速制御部172及び方向制御部173等に供給する。そして、加減速制御部172及び方向制御部173が、車両10の加減速制御及び方向制御等を行うことにより、車両10が動作計画部163により計画された動作を行う。
 ステップS6において、車両群行動推測部233は、車両群の行動計画を推測する。具体的には、車両群行動推測部233は、各車両群に属する他車両の位置及び速度ベクトルに基づいて、各車両群の経路等の行動計画を推測する。車両群行動推測部233は、各車両群の検出結果、及び、各車両群の行動計画の推測結果を示すデータを、比較部204、判定部206、及び、図1の出力制御部105等に供給する。
 なお、車両群の行動計画の推測方法には、任意の手法を用いることができる。
 判定部206は、車両群の検出精度、及び、車両群の行動計画の推測精度の判定を行う。判定部206は、判定結果を示すデータを行動計画部222に供給する。
 なお、車両群の検出精度、及び、車両群の行動計画の推測精度の判定方法には、任意の手法を用いることができる。
 ステップS7において、比較部204及び障害物推測部205は、障害物の推測処理を行う。例えば、比較部204は、車両10の予定経路と、各車両群の推測経路とを比較する。そして、比較部204は、推測経路が車両10の予定経路と有意に異なる車両群が存在する場合、その車両群の推測経路及び車両10の予定経路を示すデータを障害物推測部205に供給する。
 障害物推測部205は、車両10の予定経路、及び、車両10の予定経路と有意に異なる車両群の推測経路に基づいて、障害物の位置を推測する。例えば、障害物推測部205は、車両10の予定経路のうち、車両群が通らないと推測される経路上に障害物が存在すると推測する。
 図9は、車両10が前方の物体を検出可能な検出領域Ra1、及び、検出領域Ra1のうち車両10の直前の車両311-1により死角になっている死角領域Rb2を、図5に追記したものである。
 この例では、障害物312は、死角領域Rb1内に存在するため、車両10から検出することができない。一方、車両10が直進するように予定経路が設定されている場合、矢印で示される車両群311の推測経路が、車両10の予定経路と異なる。そこで、障害物推測部205は、車両10の予定経路のうち車両群311が通らないと推測される経路上に障害物が存在すると推測する。その結果、障害物推測部205は、車両10の死角にある障害物312の存在を事前に推測することができる。
 図10は、車両10の検出領域Ra2、及び、車両10の直前の車両321-1により発生する死角領域Rb2を図6に追記したものである。
 この例では、障害物323は、死角領域Rb1内に存在するため、車両10から検出することができない。一方、車両10が直進するように予定経路が設定されている場合、矢印で示される車両群321及び車両群322の推測経路が、車両10の予定経路と異なる。そこで、障害物推測部205は、車両10の予定経路のうち車両群321及び車両群322が通らないと推測される経路上に障害物が存在すると推測する。その結果、障害物推測部205は、車両10の死角にある障害物323の存在を事前に推測することができる。
 図11乃至図21は、車両10の前方の様子、特に、車両351-1乃至車両351-3を含む車両群が障害物を避ける様子を模式的に示している。なお、図11乃至図21の下端に写っている物体は、車両10のボンネットである。
 この例では、当初左端の車線を直進するように車両10の予定経路が設定されている。また、図11に示されるように、車両10と同じ車線の前方に車両351-1乃至車両351-3を含む車両群が走行している。一方、図18乃至図21に示されるように、車両10が走行中の車線の前方には、コーン361、方向案内板362、コーン363、及び、方向案内板364が存在する。しかし、それらの障害物は、車両351-1等により死角になり、車両10からは見えない。
 これに対して、図11乃至図17に示されるように、車両351-1乃至車両351-3は、徐々に右方向に移動している。その結果、車両351-1乃至車両351-3を含む車両群は、1つ右の車線に車線変更していると推測される。従って、車両10の予定経路と、車両351-1乃至車両351-3を含む車両群の推測経路が異なるため、車両10の予定経路のうち、車両群が通らないと推測される経路上に何らかの障害物が存在すると推測することができる。すなわち、コーン361、方向案内板362、コーン363、及び、方向案内板364が車両10から見える前に、左端の車線の前方に何らかの障害物が存在すると推測することができる。
 障害物推測部205は、障害物の推測結果を示すデータを車外状況分析部221に供給する。これにより、車外状況分析部221により障害物の推測位置が認識され、行動計画部222が、推測される障害物の位置に基づいて、車両10の行動を計画するようになる(例えば、障害物を避けるように車両10の経路を計画するようになる)。
 その後、処理はステップS1に戻り、ステップS1以降の処理が実行される。
 このようにして、車両10の前方の車両群を検出することにより、他車両の状況を正確に把握することができる。そして、例えば、図8乃至図21を参照して上述したように、車両10の死角にある障害物の存在を迅速かつ正確に把握することができる。その結果、車両10の行動をより適切に制御し、障害物を安全に避けることができる。
 <<3.変形例>>
 以下、上述した本技術の実施の形態の変形例について説明する。
 例えば、積雪等で路面の検出精度が低い場合(例えば、白線等の道路標示の検出精度が低い場合)、行動計画部222が、前方の車両群の推測経路に基づいて、車両群の後を追従する(車両群と同じ経路を走行する)ように車両10の行動を計画するようにしてもよい。このように、安全に走行している車両群に車両10を追従させることにより、道路標示を検出できなくても、車両10は、車線をはみ出したり、路肩に落ちたりすることなく、安全に走行することができる。
 また、例えば、霧等で前方の視界が悪い場合も同様に、行動計画部222が、前方の車両群の後を追従するように車両10の行動を計画するようにしてもよい。これにより、車両10が安全に走行することが可能になる。特に、ナイトビジョン等の霧の中でも視界を良好に保つシステムが搭載された車両が車両群の中に存在する場合、車両10は、その車両に従って走行速度をあまり落とさずに走行することが可能になる。
 さらに、図22は、車両10の検出領域Ra3、及び、車両10の直前の車両301-1により発生する死角領域Rb3を図4に追記したものである。このように、略直線状に連なって走行する車両群301の後ろに車両10が追従している場合、車両10から車両群301の全体像を把握しづらくなり、車両群301の検出精度が低下する。
 これに対して、例えば、図23に示されるように、行動計画部222は、所定のタイミングで(例えば、所定の間隔で)車両群301の移動方向に対して横にずれた位置に車両10を移動させるように車両10の行動を計画するようにしてもよい。これにより、車両群301を構成する全ての車両301-1乃至車両301-5が車両10の検出領域Ra3内に入るようになり、車両群301の検出精度が向上する。また、例えば、車両群301の前方に障害物302が存在する場合、障害物302を迅速に検出することが可能になる。
 また、例えば、図1の出力部106が、出力制御部105の制御の下に、車両群に関する情報を表示するようにしてもよい。図24及び図25は、車両群に関する情報の表示方法の例を示している。
 図24の例では、車両10の前方の画像に、車両群が通過した経路を示す表示効果401及び表示効果402が重畳されて表示されている。従って、表示効果401及び表示効果402は、危険度(走行コスト)が低い領域を示すようになる。
 また、例えば、図25に示されるように、矢印403等で推薦経路を示すようにしてもよい。
 なお、例えば、車両10の運転者の視界内に、ヘッドアップディスプレイ等を用いて、表示効果401及び表示効果402、並びに、矢印403等を重畳して表示するようにしてもよい。
 また、以上の説明では、各他車両の位置、並びに、移動ベクトル(速度及び移動方向)に基づいて、車両群を検出する例を示したが、他車両の位置、速度、及び、移動方向のうちの1つ又は2つに基づいて、車両群を検出するようにしてもよい。
 また、例えば、図2の各部の機能の分担は、必要に応じて変更することが可能である。例えば、車両検出部231の機能を車外状況分析部221に吸収するようにしてもよい。また、例えば、行動計画部222が、車両群行動推測部233の推測結果に基づいて、車両10の行動を計画するようにしてもよい。
 さらに、本技術は、先に例示した車両以外にも、自動二輪車、自転車、パーソナルモビリティ、飛行機、船舶、建設機械、農業機械(トラクター)等の各種の移動体の周囲の移動体群の検出を行う場合にも適用することができる。また、本技術が適用可能な移動体には、例えば、ドローン、ロボット等のユーザが搭乗せずにリモートで運転(操作)する移動体も含まれる。
 また、検出対象となる移動体群は、異なる種類の移動体を含んでいてもよい。例えば、移動体群が、車両だけでなく、自動二輪車等を含んでいてもよい。
 さらに、移動体群の検出方向は、移動体群の前方に限定されるものではなく、移動体の周囲の前方以外の方向を検出対象としてもよい。例えば、移動体が前方以外の方向を進行する場合、その進行方向を移動体群の検出方向に設定するようにしてもよい。
 <<4.その他>>
 <コンピュータの構成例>
 上述した一連の処理は、ハードウェアにより実行することもできるし、ソフトウェアにより実行することもできる。一連の処理をソフトウェアにより実行する場合には、そのソフトウェアを構成するプログラムが、コンピュータにインストールされる。ここで、コンピュータには、専用のハードウェアに組み込まれているコンピュータや、各種のプログラムをインストールすることで、各種の機能を実行することが可能な、例えば汎用のパーソナルコンピュータなどが含まれる。
 図26は、上述した一連の処理をプログラムにより実行するコンピュータのハードウェアの構成例を示すブロック図である。
 コンピュータ500において、CPU(Central Processing Unit)501,ROM(Read Only Memory)502,RAM(Random Access Memory)503は、バス504により相互に接続されている。
 バス504には、さらに、入出力インターフェース505が接続されている。入出力インターフェース505には、入力部506、出力部507、記録部508、通信部509、及びドライブ510が接続されている。
 入力部506は、入力スイッチ、ボタン、マイクロフォン、撮像素子などよりなる。出力部507は、ディスプレイ、スピーカなどよりなる。記録部508は、ハードディスクや不揮発性のメモリなどよりなる。通信部509は、ネットワークインターフェースなどよりなる。ドライブ510は、磁気ディスク、光ディスク、光磁気ディスク、又は半導体メモリなどのリムーバブル記録媒体511を駆動する。
 以上のように構成されるコンピュータ500では、CPU501が、例えば、記録部508に記録されているプログラムを、入出力インターフェース505及びバス504を介して、RAM503にロードして実行することにより、上述した一連の処理が行われる。
 コンピュータ500(CPU501)が実行するプログラムは、例えば、パッケージメディア等としてのリムーバブル記録媒体511に記録して提供することができる。また、プログラムは、ローカルエリアネットワーク、インターネット、デジタル衛星放送といった、有線または無線の伝送媒体を介して提供することができる。
 コンピュータ500では、プログラムは、リムーバブル記録媒体511をドライブ510に装着することにより、入出力インターフェース505を介して、記録部508にインストールすることができる。また、プログラムは、有線または無線の伝送媒体を介して、通信部509で受信し、記録部508にインストールすることができる。その他、プログラムは、ROM502や記録部508に、あらかじめインストールしておくことができる。
 なお、コンピュータが実行するプログラムは、本明細書で説明する順序に沿って時系列に処理が行われるプログラムであっても良いし、並列に、あるいは呼び出しが行われたとき等の必要なタイミングで処理が行われるプログラムであっても良い。
 また、本明細書において、システムとは、複数の構成要素(装置、モジュール(部品)等)の集合を意味し、すべての構成要素が同一筐体中にあるか否かは問わない。したがって、別個の筐体に収納され、ネットワークを介して接続されている複数の装置、及び、1つの筐体の中に複数のモジュールが収納されている1つの装置は、いずれも、システムである。
 さらに、本技術の実施の形態は、上述した実施の形態に限定されるものではなく、本技術の要旨を逸脱しない範囲において種々の変更が可能である。
 例えば、本技術は、1つの機能をネットワークを介して複数の装置で分担、共同して処理するクラウドコンピューティングの構成をとることができる。
 また、上述のフローチャートで説明した各ステップは、1つの装置で実行する他、複数の装置で分担して実行することができる。
 さらに、1つのステップに複数の処理が含まれる場合には、その1つのステップに含まれる複数の処理は、1つの装置で実行する他、複数の装置で分担して実行することができる。
 <構成の組み合わせ例>
 本技術は、以下のような構成をとることもできる。
(1)
 移動体の周囲の他の移動体を検出する移動体検出部と、
 各前記他の移動体の位置、速度、及び、移動方向のうち1つ以上に基づいて、2以上の前記他の移動体を含む移動体群を検出する移動体群検出部と
 を備える情報処理装置。
(2)
 前記移動体群検出部は、各前記他の移動体の位置、速度、及び、移動方向のうち1つ以上に基づいて前記他の移動体をクラスタリングすることにより前記移動体群を検出する
 前記(1)に記載の情報処理装置。
(3)
 前記移動体群は、前記移動体の進行方向において略一列に連なって移動する2以上の前記他の移動体を含む
 前記(1)又は(2)に記載の情報処理装置。
(4)
 前記移動体群を構成する前記他の移動体の速度及び移動方向に基づいて、前記移動体群の行動を推測する移動体群行動推測部を
 さらに備える前記(1)乃至(3)のいずれかに記載の情報処理装置。
(5)
 前記移動体群行動推測部により推測される前記移動体群の経路に基づいて、障害物の位置を推測する障害物推測部を
 さらに備える前記(4)に記載の情報処理装置。
(6)
 前記障害物推測部は、前記移動体が移動する予定の予定経路と、推測される前記移動体群の経路とが異なる場合、前記移動体の前記予定経路のうち前記移動体群が通らないと推測される経路に前記障害物が存在すると推測する
 前記(5)に記載の情報処理装置。
(7)
 推測される前記障害物の位置に基づいて、前記移動体の行動を計画する行動計画部を
 さらに備える前記(5)又は(6)に記載の情報処理装置。
(8)
 前記移動体群の検出結果に基づいて、前記移動体の行動を計画する行動計画部を
 さらに備える前記(1)乃至(6)のいずれかに記載の情報処理装置。
(9)
 前記行動計画部は、前記移動体の進行方向の視界が悪い場合、前記移動体群に追従するように前記移動体の行動を計画する
 前記(8)に記載の情報処理装置。
(10)
 前記行動計画部は、前記移動体の進行方向の路面の検出精度が低い場合、前記移動体群に追従するように前記移動体の行動を計画する
 前記(8)又は(9)に記載の情報処理装置。
(11)
 前記行動計画部は、前記移動体が前記移動体群に追従している場合、所定のタイミングで前記移動体群の進行方向に対して横にずれた位置に移動するように前記移動体の行動を計画する
 前記(8)乃至(10)のいずれかに記載の情報処理装置。
(12)
 前記移動体群に関する情報の表示を制御する出力制御部を
 さらに備える前記(1)乃至(11)のいずれかに記載の情報処理装置。
(13)
 情報処理層装置が、
 移動体の周囲の他の移動体を検出し、
 各前記他の移動体の位置、速度、及び、移動方向のうち1つ以上に基づいて、2以上の前記他の移動体を含む移動体群を検出する
 情報処理方法。
(14)
 周囲の他の移動体を検出する移動体検出部と、
 各前記他の移動体の位置、速度、及び、移動方向のうち1つ以上に基づいて、2以上の前記他の移動体を含む移動体群を検出する移動体群検出部と
 を備える移動体。
(15)
 周囲の他の車両を検出する車両検出部と、
 各前記他の車両の位置、速度、及び、移動方向のうち1つ以上に基づいて、2以上の前記他の車両を含む車両群を検出する車両群検出部と
 を備える車両。
 なお、本明細書に記載された効果はあくまで例示であって限定されるものではなく、他の効果があってもよい。
 10 車両, 100 車両制御システム, 102 データ取得部, 105 出力制御部, 106 出力部, 133 状況分析部, 141 車外情報検出部, 162 行動計画部, 163 動作計画部, 135 動作制御部, 200 行動計画システム, 202 行動計画処理部, 203 車両群検出処理部, 204 比較部, 205 障害物推測部, 206 判定部, 221 車外状況分析部, 222 行動計画部, 231 車両検出部, 232 車両群検出部, 233 車両群行動推測部, 301,311,321,322,331,332,341乃至345 車両群

Claims (15)

  1.  移動体の周囲の他の移動体を検出する移動体検出部と、
     各前記他の移動体の位置、速度、及び、移動方向のうち1つ以上に基づいて、2以上の前記他の移動体を含む移動体群を検出する移動体群検出部と
     を備える情報処理装置。
  2.  前記移動体群検出部は、各前記他の移動体の位置、速度、及び、移動方向のうち1つ以上に基づいて前記他の移動体をクラスタリングすることにより前記移動体群を検出する
     請求項1に記載の情報処理装置。
  3.  前記移動体群は、前記移動体の進行方向において略一列に連なって移動する2以上の前記他の移動体を含む
     請求項1に記載の情報処理装置。
  4.  前記移動体群を構成する前記他の移動体の速度及び移動方向に基づいて、前記移動体群の行動を推測する移動体群行動推測部を
     さらに備える請求項1に記載の情報処理装置。
  5.  前記移動体群行動推測部により推測される前記移動体群の経路に基づいて、障害物の位置を推測する障害物推測部を
     さらに備える請求項4に記載の情報処理装置。
  6.  前記障害物推測部は、前記移動体が移動する予定の予定経路と、推測される前記移動体群の経路とが異なる場合、前記移動体の前記予定経路のうち前記移動体群が通らないと推測される経路に前記障害物が存在すると推測する
     請求項5に記載の情報処理装置。
  7.  推測される前記障害物の位置に基づいて、前記移動体の行動を計画する行動計画部を
     さらに備える請求項5に記載の情報処理装置。
  8.  前記移動体群の検出結果に基づいて、前記移動体の行動を計画する行動計画部を
     さらに備える請求項1に記載の情報処理装置。
  9.  前記行動計画部は、前記移動体の進行方向の視界が悪い場合、前記移動体群に追従するように前記移動体の行動を計画する
     請求項8に記載の情報処理装置。
  10.  前記行動計画部は、前記移動体の進行方向の路面の検出精度が低い場合、前記移動体群に追従するように前記移動体の行動を計画する
     請求項8に記載の情報処理装置。
  11.  前記行動計画部は、前記移動体が前記移動体群に追従している場合、所定のタイミングで前記移動体群の進行方向に対して横にずれた位置に移動するように前記移動体の行動を計画する
     請求項8に記載の情報処理装置。
  12.  前記移動体群に関する情報の表示を制御する出力制御部を
     さらに備える請求項1に記載の情報処理装置。
  13.  情報処理層装置が、
     移動体の周囲の他の移動体を検出し、
     各前記他の移動体の位置、速度、及び、移動方向のうち1つ以上に基づいて、2以上の前記他の移動体を含む移動体群を検出する
     情報処理方法。
  14.  周囲の他の移動体を検出する移動体検出部と、
     各前記他の移動体の位置、速度、及び、移動方向のうち1つ以上に基づいて、2以上の前記他の移動体を含む移動体群を検出する移動体群検出部と
     を備える移動体。
  15.  周囲の他の車両を検出する車両検出部と、
     各前記他の車両の位置、速度、及び、移動方向のうち1つ以上に基づいて、2以上の前記他の車両を含む車両群を検出する車両群検出部と
     を備える車両。
PCT/JP2018/037133 2017-10-18 2018-10-04 情報処理装置、情報処理方法、移動体、及び、車両 WO2019078010A1 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/755,158 US11200795B2 (en) 2017-10-18 2018-10-04 Information processing apparatus, information processing method, moving object, and vehicle

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017201529 2017-10-18
JP2017-201529 2017-10-18

Publications (1)

Publication Number Publication Date
WO2019078010A1 true WO2019078010A1 (ja) 2019-04-25

Family

ID=66174385

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/037133 WO2019078010A1 (ja) 2017-10-18 2018-10-04 情報処理装置、情報処理方法、移動体、及び、車両

Country Status (2)

Country Link
US (1) US11200795B2 (ja)
WO (1) WO2019078010A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021176997A1 (ja) * 2020-03-06 2021-09-10 ソニーグループ株式会社 情報処理装置、情報処理方法、及びプログラム
WO2023228320A1 (ja) * 2022-05-25 2023-11-30 三菱電機株式会社 運転支援装置および運転支援方法

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102018214551A1 (de) * 2018-08-28 2020-03-05 Bayerische Motoren Werke Aktiengesellschaft Abbiegeassistent im Fahrzeug
EP3693938A1 (en) * 2019-02-11 2020-08-12 Ningbo Geely Automobile Research & Development Co. Ltd. Passage of a platoon of vehicles
JP7243389B2 (ja) * 2019-03-29 2023-03-22 マツダ株式会社 車両走行制御装置
US20220383748A1 (en) * 2019-10-29 2022-12-01 Sony Group Corporation Vehicle control in geographical control zones

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006313519A (ja) * 2005-04-04 2006-11-16 Sumitomo Electric Ind Ltd 障害物検出センター装置、障害物検出システム及び障害物検出方法
JP2009075856A (ja) * 2007-09-20 2009-04-09 Toyota Central R&D Labs Inc 車両用情報提示装置
JP2010182207A (ja) * 2009-02-06 2010-08-19 Toyota Motor Corp 運転支援装置
DE102015201555A1 (de) * 2015-01-29 2016-08-04 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines Fahrzeugs
JP2017182586A (ja) * 2016-03-31 2017-10-05 株式会社Subaru 表示装置

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002123894A (ja) * 2000-10-16 2002-04-26 Hitachi Ltd プローブカー制御方法及び装置並びにプローブカーを用いた交通制御システム
WO2009156000A1 (en) * 2008-06-25 2009-12-30 Tomtom International B.V. Navigation apparatus and method of detection that a parking facility is sought
US8352112B2 (en) * 2009-04-06 2013-01-08 GM Global Technology Operations LLC Autonomous vehicle management
WO2010140215A1 (ja) * 2009-06-02 2010-12-09 トヨタ自動車株式会社 車両用周辺監視装置
JP2011071646A (ja) * 2009-09-24 2011-04-07 Aisin Seiki Co Ltd 車載用通信装置
JP6015329B2 (ja) * 2012-10-11 2016-10-26 株式会社デンソー 隊列走行システム及び隊列走行装置
JP5817777B2 (ja) * 2013-04-17 2015-11-18 株式会社デンソー 隊列走行システム
KR102219268B1 (ko) * 2014-11-26 2021-02-24 한국전자통신연구원 탐험 경로 협력형 내비게이션 시스템 및 그 제어 방법
US9538702B2 (en) * 2014-12-22 2017-01-10 Irobot Corporation Robotic mowing of separated lawn areas
KR20170016177A (ko) * 2015-08-03 2017-02-13 엘지전자 주식회사 차량 및 그 제어방법
CN107134160A (zh) * 2016-02-29 2017-09-05 法拉第未来公司 紧急信号检测和响应
KR102693520B1 (ko) * 2016-11-29 2024-08-08 삼성전자주식회사 객체들 간의 충돌을 방지하는 충돌 방지 장치 및 방법
US20180237012A1 (en) * 2017-02-22 2018-08-23 Ford Global Technologies, Llc Autonomous vehicle towing
JP7147178B2 (ja) * 2018-02-27 2022-10-05 トヨタ自動車株式会社 行動支援装置、行動支援方法、プログラム
WO2020122270A1 (ko) * 2018-12-11 2020-06-18 엘지전자 주식회사 차량 제어 장치 및 그것을 포함하는 차량

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006313519A (ja) * 2005-04-04 2006-11-16 Sumitomo Electric Ind Ltd 障害物検出センター装置、障害物検出システム及び障害物検出方法
JP2009075856A (ja) * 2007-09-20 2009-04-09 Toyota Central R&D Labs Inc 車両用情報提示装置
JP2010182207A (ja) * 2009-02-06 2010-08-19 Toyota Motor Corp 運転支援装置
DE102015201555A1 (de) * 2015-01-29 2016-08-04 Robert Bosch Gmbh Verfahren und Vorrichtung zum Betreiben eines Fahrzeugs
JP2017182586A (ja) * 2016-03-31 2017-10-05 株式会社Subaru 表示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021176997A1 (ja) * 2020-03-06 2021-09-10 ソニーグループ株式会社 情報処理装置、情報処理方法、及びプログラム
WO2023228320A1 (ja) * 2022-05-25 2023-11-30 三菱電機株式会社 運転支援装置および運転支援方法

Also Published As

Publication number Publication date
US11200795B2 (en) 2021-12-14
US20200302780A1 (en) 2020-09-24

Similar Documents

Publication Publication Date Title
JP7136106B2 (ja) 車両走行制御装置、および車両走行制御方法、並びにプログラム
US20200241549A1 (en) Information processing apparatus, moving apparatus, and method, and program
US11014494B2 (en) Information processing apparatus, information processing method, and mobile body
US11501461B2 (en) Controller, control method, and program
US11200795B2 (en) Information processing apparatus, information processing method, moving object, and vehicle
US11915452B2 (en) Information processing device and information processing method
US11377101B2 (en) Information processing apparatus, information processing method, and vehicle
EP3835823B1 (en) Information processing device, information processing method, computer program, information processing system, and moving body device
US11590985B2 (en) Information processing device, moving body, information processing method, and program
WO2019107143A1 (ja) 情報処理装置、情報処理方法、プログラム、及び、移動体
WO2020129687A1 (ja) 車両制御装置、車両制御方法、プログラム、及び、車両
WO2020009060A1 (ja) 情報処理装置及び情報処理方法、コンピュータプログラム、並びに移動体装置
US11615628B2 (en) Information processing apparatus, information processing method, and mobile object
US20200191975A1 (en) Information processing apparatus, self-position estimation method, and program
JP7192771B2 (ja) 情報処理装置、情報処理方法、プログラム、及び、車両
US20240257508A1 (en) Information processing device, information processing method, and program
WO2019073795A1 (ja) 情報処理装置、自己位置推定方法、プログラム、及び、移動体
WO2019117104A1 (ja) 情報処理装置および情報処理方法
WO2019097884A1 (ja) 情報処理装置と管理装置および方法とプログラム
WO2022075075A1 (ja) 情報処理装置および方法、並びに情報処理システム
WO2024009829A1 (ja) 情報処理装置、情報処理方法および車両制御システム
WO2022024569A1 (ja) 情報処理装置と情報処理方法およびプログラム
JP2023108329A (ja) 振動検出システムおよび振動検出方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18867577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18867577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP