WO2019077980A1 - 固体撮像装置 - Google Patents

固体撮像装置 Download PDF

Info

Publication number
WO2019077980A1
WO2019077980A1 PCT/JP2018/036629 JP2018036629W WO2019077980A1 WO 2019077980 A1 WO2019077980 A1 WO 2019077980A1 JP 2018036629 W JP2018036629 W JP 2018036629W WO 2019077980 A1 WO2019077980 A1 WO 2019077980A1
Authority
WO
WIPO (PCT)
Prior art keywords
solid
state imaging
imaging device
sealing resin
main substrate
Prior art date
Application number
PCT/JP2018/036629
Other languages
English (en)
French (fr)
Inventor
清一 糸井
健 玉利
大輔 櫻井
正三 越智
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from JP2018125684A external-priority patent/JP7149489B2/ja
Priority claimed from JP2018125685A external-priority patent/JP7162238B2/ja
Priority claimed from JP2018126476A external-priority patent/JP7270225B2/ja
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to EP18867857.7A priority Critical patent/EP3700196B1/en
Priority to CN201880060819.3A priority patent/CN111108744B/zh
Publication of WO2019077980A1 publication Critical patent/WO2019077980A1/ja
Priority to US16/803,551 priority patent/US11381767B2/en

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61BDIAGNOSIS; SURGERY; IDENTIFICATION
    • A61B1/00Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor
    • A61B1/04Instruments for performing medical examinations of the interior of cavities or tubes of the body by visual or photographical inspection, e.g. endoscopes; Illuminating arrangements therefor combined with photographic or television appliances
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B23/00Telescopes, e.g. binoculars; Periscopes; Instruments for viewing the inside of hollow bodies; Viewfinders; Optical aiming or sighting devices
    • G02B23/24Instruments or systems for viewing the inside of hollow bodies, e.g. fibrescopes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/14Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation
    • H01L27/144Devices controlled by radiation
    • H01L27/146Imager structures
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N25/00Circuitry of solid-state image sensors [SSIS]; Control thereof
    • H04N25/70SSIS architectures; Circuits associated therewith

Definitions

  • the present disclosure relates to a small solid-state imaging device provided in an electronic endoscope or the like.
  • an endoscope is provided.
  • an industrial endoscope which can observe or inspect flaws, corrosion and the like inside boilers, turbines, engines, chemical plants and the like.
  • Such an endoscope includes, for example, a solid-state imaging device including a solid-state imaging device such as a charge coupled device (abbreviated as CCD) or an electronic component at the tip of the insertion portion is there.
  • the solid-state imaging device receives the reflected light from the object to be imaged, performs photoelectric conversion, and transmits the photoelectrically converted signal to the information processing device including the monitor device via the signal cable.
  • the information processing apparatus processes a signal received from the solid-state imaging device, and displays an imaging target object imaged by the solid-state imaging device in color on the monitor device.
  • an endoscope incorporating a solid-state imaging device is inserted into, for example, a narrow and winding lumen or the like, it is desirable to reduce the diameter of the insertion portion. Further, in order to realize an endoscope having a small size and good operability, the solid-state imaging device is desired to be downsized and reduced in diameter.
  • Patent Document 1 discloses a solid-state imaging device disposed at the tip of an endoscope.
  • Patent Document 1 discloses a solid-state imaging device in which the entire configuration is miniaturized by minimizing the sealing fixing portion formed of the sealing resin.
  • FIG. 25 is a cross-sectional view of the solid-state imaging device of Patent Document 1
  • FIG. 26 is a plan view of the solid-state imaging device of Patent Document 1.
  • the transparent member 101 is adhered on the light receiving surface of the solid-state imaging element 103, and the lead 112 of the FPC (flexible circuit board) is connected to the protruding electrode 110 formed on the light receiving surface.
  • the peripheral portion of the transparent member 101 and the connection portion of the solid-state imaging element 103 and the lead 112 are sealed with a sealing resin 104.
  • An object of the present application is to provide a more miniaturized solid-state imaging device.
  • a solid-state imaging device and a substrate fixed to the solid-state imaging device by a sealing resin on the surface opposite to the light-receiving surface of the solid-state imaging device are provided.
  • the outer edge of the substrate viewed from the surface side is contained within the outer edge of the solid-state imaging device, and the outer edge of the sealing resin viewed from the light-receiving surface side of the solid-state imaging device is within the outer edge of the solid-state imaging device.
  • Sectional view showing the configuration of a solid-state imaging device according to a first embodiment A plan view showing a configuration of a solid-state imaging device according to Embodiment 1. Sectional drawing which shows the formation process of the solid-state imaging device in Embodiment 1. Sectional drawing which shows the formation process of the solid-state imaging device in Embodiment 2.
  • Sectional view showing the configuration of a solid-state imaging device according to a third embodiment Sectional view showing the configuration of a solid-state imaging device according to a fourth embodiment
  • Side view schematically showing a configuration of a solid-state imaging device according to a fifth embodiment A plan view schematically showing a configuration of a solid-state imaging device in a fifth embodiment
  • Sectional drawing which shows typically the shape of the main board
  • Sectional drawing which shows typically the structure of the solid-state imaging device of Embodiment 5
  • Sectional drawing which shows typically the shape of the main board
  • Sectional view showing the configuration of a solid-state imaging device according to a sixth embodiment
  • Sectional view showing the configuration of a solid-state imaging device according to a sixth embodiment
  • Top view showing the configuration of a solid-state imaging device according to a sixth embodiment
  • Top view showing the configuration of a solid-state imaging device according to a sixth embodiment
  • Sectional view showing the configuration of a solid-state imaging device according to a seventh embodiment Top view showing the configuration of a solid-state imaging device according to a seventh embodiment
  • Embodiment 1 The first embodiment of the present invention will be described below with reference to the drawings.
  • FIG. 1 is a cross-sectional view of a solid-state imaging device according to Embodiment 1 of the present disclosure
  • FIG. 2 is a plan view of the solid-state imaging device according to Embodiment 1 of the present disclosure.
  • the solid-state imaging device includes a solid-state imaging device 3 in the shape of a rectangular parallelepiped.
  • the solid-state imaging device 3 has a light receiving surface 3a and a back surface 3c.
  • a rectangular parallelepiped transparent member 1 (for example, a cover glass) is disposed on the light receiving surface 3 a of the solid-state imaging device 3.
  • the transparent member 1 is fixed to the solid-state imaging device 3 by an adhesive 2.
  • a plurality of first connection terminals 9 are formed on the back surface 3 c of the solid-state imaging device 3.
  • the wiring on the light receiving surface 3a and the first connection terminal 9 on the back surface 3c are electrically connected. This is the same as the transparent member 1 of the fifth embodiment.
  • a convex main substrate 8 is disposed on the back surface 3c.
  • the solid-state imaging device 3 is fixed to the main substrate 8 by the first sealing resin 4 and the second sealing resin 5.
  • a plurality of second connection terminals 11 are formed on the upper surface of the protrusion of the main substrate 8.
  • a protruding electrode 10 is provided between the second connection terminal 11 of the main substrate 8 and the first connection terminal 9 formed on the back surface 3c.
  • the bump electrode 10 electrically connects the main substrate 8 and the solid-state imaging device 3.
  • a plurality of third connection terminals 17 are formed on the upper surface of the base portion of the main substrate 8.
  • a plurality of electronic components 6 having connection terminals 32 are disposed in the cavity 7 between the back surface 3 c and the base portion of the main substrate 8.
  • a protruding electrode 13 is provided between the third connection terminal 17 and the connection terminal 32.
  • the bump electrode 13 electrically connects the main substrate 8 and the electronic component 6.
  • the second sealing resin 5 is filled in the cavity 7 and covers the electronic component 6.
  • Connection terminals 15 for a cable are formed on the side surface of the base portion of the main substrate 8.
  • the area of the transparent member 1 and the adhesive 2 in plan view is smaller than the area of the solid-state imaging device 3 in plan view (see FIG. 2).
  • the outer edges of the transparent member 1 and the adhesive 2 are disposed so as to fit within the outer edge of the solid-state imaging device 3 in a plan view.
  • the area of the first sealing resin 4 and the second sealing resin 5 and the main substrate 8 in plan view is smaller than the area of the solid-state imaging device 3 in plan view.
  • the outer edges of the first sealing resin 4 and the second sealing resin 5 and the outer edge of the main substrate 8 are disposed so as to fit within the outer edge of the solid-state imaging device 3 in plan view.
  • the element that maximizes the width dimension of the solid-state imaging device that is, the dimension in the vertical and horizontal directions in FIG.
  • the solid-state imaging device can be miniaturized to the size of the solid-state imaging device 3.
  • the area of the transparent member 1 and the adhesive 2 in plan view may be the same as the area of the solid-state imaging device 3 in plan view.
  • the transparent member 1 and the adhesive 2 may have the same shape in plan view as the shape in plan view of the solid-state imaging device 3.
  • first sealing resin 4 and the second sealing resin 5 and the main substrate 8 in plan view may be the same as the areas of the solid-state imaging device 3 in plan view.
  • the first sealing resin 4 and the second sealing resin 5 and the main substrate 8 may have the same shape in plan view as the shape in plan view of the solid-state imaging device 3.
  • the solid-state imaging device can be produced by the process shown in FIG.
  • the first connection terminal 9 is formed on the back surface 3c. Further, the transparent member 1 is disposed on the light receiving surface 3 a of the solid-state imaging device 3, and is fixed by the adhesive 2.
  • the second connection terminal 11 and the third connection terminal 17 are formed on the main substrate 8, and the bump electrode 10 is formed on the second connection terminal 11.
  • the connection terminal 32 is formed on the electronic component 6, and the protruding electrode 13 is formed on the connection terminal 32.
  • the electronic component 6 is disposed on the electronic component 6, and the bump electrode 13 is connected to the third connection terminal 17 on the main substrate 8. Thereby, the electronic component 6 and the main substrate 8 are electrically connected.
  • the electronic component 6 is filled with the second sealing resin 5.
  • the main substrate 8 is singulated by dicing.
  • the first sealing resin 4 is applied to the surface of the main substrate 8 on which the protruding electrodes 10 are formed.
  • the surface of the main substrate 8 on which the protruding electrodes 10 are formed and the surface on which the first connection terminals 9 of the solid-state imaging device 3 are formed are disposed facing each other. . Then, the protruding electrode 10 is connected to the first connection terminal 9, and the main substrate 8 and the solid-state imaging device 3 are fixed by the first sealing resin 4. Thereby, the solid-state imaging device 3 and the main substrate 8 are electrically connected.
  • the solid-state imaging device is completed through the above steps.
  • the solid-state imaging device 3 receives the light reflected by the object to be imaged through the transparent member 1 at the light receiving surface 3a, and converts the received light into an electric signal.
  • the electrical signal is transmitted to the main substrate 8 electrically connected to the solid-state imaging device 3.
  • the electrical signal is transmitted to the electronic component 6 electrically connected to the main substrate 8.
  • the electronic component 6 performs predetermined signal processing on the transmitted electrical signal and transmits the signal to the main substrate 8.
  • An electrical signal transmitted to the main substrate 8 via the electronic component 6 is transmitted from the cable connection terminal 15 to an external device (for example, an information processing apparatus including a monitor device).
  • Main board 8 1 mm x 1 mm x thickness 0.6 mm
  • Electronic component 6 0.6 mm ⁇ 0.3 mm ⁇ 0.3 mm or less
  • Transparent member 1 1 mm ⁇ 1 mm ⁇ 0.3 mm thickness
  • Solid-state imaging device 3 1 mm ⁇ 1 mm ⁇ thickness 0.1 mm
  • the area of the transparent member 1 in plan view and the area of the main substrate 8 in plan view may be smaller than the area of the solid-state imaging device 3 in plan view as shown in FIGS. 1 and 2.
  • the electronic component 6 is, for example, a capacitor, but may be a resistor. Moreover, the electronic component 6 is provided with the connection terminal 32 for transmitting and receiving an electric signal. In a plan view, the electronic component 6 is disposed to fit within the outer edge of the solid-state imaging device 3.
  • the transparent member 1 is a transparent rectangular solid optical member.
  • the width of the transparent member 1 is the same as that of the solid-state imaging device 3 in order to make the width of the solid-state imaging device 3 smaller and smaller than that of the solid-state imaging device 3. Or less than the width dimension of.
  • the solid-state imaging device 3 is a CCD image sensor or a CMOS image sensor that detects light and converts it into an electric signal.
  • the solid-state imaging device 3 may incorporate a circuit that performs signal processing. Alternatively, the solid-state imaging device 3 may be stacked with an element having a function of performing signal processing.
  • the solid-state imaging device 3 includes a first connection terminal 9 for transmitting and receiving electric signals.
  • the first connection terminal 9, the second connection terminal 11, and the connection terminals 32, 14 are formed of, for example, aluminum or the like.
  • a metal such as copper having a higher conductivity than aluminum may be used.
  • copper may be plated with nickel / gold to make it difficult to oxidize.
  • connection terminal 15 for the cable is formed of, for example, aluminum or the like.
  • a metal such as copper having higher conductivity than aluminum may be used.
  • the copper may be plated with nickel / gold to make it difficult to oxidize.
  • the protruding electrodes 10 and 13 are formed of, for example, solder.
  • a metal such as copper or gold may be used.
  • the main substrate 8 is formed of, for example, a ceramic substrate or the like.
  • a buildup substrate, an aramid epoxy substrate, a glass epoxy substrate, or the like may be used.
  • the main substrate 8 is formed with cavities 7 (electronic components 6) for mounting the electronic components 6 on the left and right in a plan view.
  • the size of the electronic component 6 is, for example, 0.6 mm ⁇ 0.3 mm ⁇ thickness 0.3 mm.
  • the width dimension of the solid-state imaging device can be kept the same as the width dimension of the solid-state imaging device 3.
  • Two electronic components 6 are formed symmetrically in the left-right direction with the protruding portion of the main substrate 8 as a boundary. Thereby, the heat dissipation of the solid-state imaging device 3 becomes symmetrical and it is possible to suppress the in-plane variation such as the electrical characteristics.
  • the electronic component 6 may be formed on the base portion 8b (see FIG. 1) of the main substrate 8 to be four-point symmetric.
  • the adhesive 2 is a transparent adhesive such as an ultraviolet curing type.
  • the width dimension of the adhesive 2 is equal to or less than the width dimension of the transparent member 1.
  • the first sealing resin 4 is an epoxy adhesive.
  • the width dimension of the first sealing resin 4 is equal to or less than the width dimension of the solid-state imaging device 3.
  • the first sealing resin 4 covers the protruding electrodes 10 connecting the solid-state imaging device 3 and the main substrate 8.
  • the width dimension of the second sealing resin 5 is equal to or less than the width dimension of the solid-state imaging device 3.
  • the second sealing resin 5 is a resin having a low elastic modulus and high heat dissipation as compared to the first sealing resin 4.
  • the surface of the second sealing resin 5 in contact with the first sealing resin 4 is tapered from the outside to the inside as in the tapered portion 5 a of FIG. 1.
  • the interface between the first sealing resin 4 and the second sealing resin 5 is inclined from the inside to the outside of the solid-state imaging device in the direction in which the thickness of the first sealing resin 4 becomes thinner.
  • the width dimension of the solid-state imaging device can be determined by stacking and connecting the transparent member 1, the solid-state imaging device 3, the main substrate 8, and the electronic component 6 constituting the solid-state imaging device. And can be miniaturized. Further, since the width dimension of the solid-state imaging device can be reduced, for example, the diameter reduction of the insertion portion of the endoscope can be achieved.
  • the structure is symmetrical.
  • Second Embodiment Separation of First Sealing Resin 4 and Second Sealing Resin 5
  • the second embodiment differs from the first embodiment in that the shape of the second sealing resin 5 after sealing is different. Matters not described are the same as in the first embodiment.
  • the adhesive 2 is applied to the light receiving surface 3a side of the solid-state imaging device 3, and then the transparent member 1 is disposed to spread the adhesive over the entire light receiving surface 3a. After that, fix with ultraviolet light or heat.
  • the main substrate 8 has the second connection terminal 11 and the third connection terminal 17, and heating and pressing are performed on the second connection terminal 11.
  • the bump electrode 10 is formed by ultrasonic waves or the like.
  • the electronic component 6 has a connection terminal 32, and the projection electrode 13 is formed on the connection terminal 32.
  • the electronic component 6 is disposed on the electronic component 6, and the bump electrode 13 is connected to the third connection terminal 17 on the main substrate 8 by heat treatment such as reflow. Thereby, the electronic component 6 and the main substrate 8 are electrically connected.
  • the electronic component 6 on the main substrate 8 on which the electronic component 6 is mounted is filled with the second sealing resin 5.
  • the main substrate 8 is cut into pieces by dicing using a cutting blade or the like.
  • the periphery of the electronic component 6 mounted on the main substrate 8 is filled with a sealing resin by potting or the like.
  • the second sealing resin 5 is filled so as not to extend to the side portions of the adjacent electronic components 6, so that only the main substrate 8 is not cut at the time of singulation dicing without cutting the second sealing resin 5. Can be separated into pieces, and substrate size after cutting and quality improvement and stabilization of the cutting portion can be realized.
  • the second sealing resin 5 is filled up to a position where it does not cover the upper surface of the electronic component 6, and after applying the first sealing resin 4 as shown in (e) of FIG. As shown in (f), when the solid-state imaging device 3 is mounted, the wetting and spreading of the first sealing resin 4 can be stopped at the end of the electronic component 6.
  • Third Embodiment First Sealing Resin 4 has a Drum-Shaped Form
  • a third embodiment will be described with reference to FIG.
  • the third embodiment is different from the second embodiment in the shape of the first sealing resin 4. Matters that are not described are the same as in the first and second embodiments.
  • the shape of the first sealing resin 4 varies depending on the wettability of the first sealing resin 4 and the solid-state imaging device 3.
  • the shape of the first sealing resin 4 is not limited to the fillet shape as shown in FIG. 4F of the second embodiment, but may be a drum shape as shown in FIG.
  • the wettability of the first sealing resin 4 to the surfaces of the main substrate 8 and the solid-state imaging device 3 is reduced.
  • the viscosity of the first sealing resin 4 is increased.
  • the central portion of the first sealing resin 4 is pushed out to form a drum shape. Thereby, the stress applied in the heat treatment and the reliability test in the post process can be absorbed more.
  • Embodiment 4 Third Sealing Resin 26
  • the outflow prevention function of the first sealing resin 4 in the second and third embodiments is improved, and a second connection between the electronic component 6 and the solid-state imaging device 3 is added. Matters not described are the same as in the first to third embodiments.
  • the third sealing resin 26 is a material different from the first sealing resin 4, and is a resin having a low elastic modulus and high heat dissipation as compared to the first sealing resin 4.
  • the third sealing resin 26 is applied on the electronic component 6 by potting or the like after the main substrate 8 is singulated, and is temporarily cured by heating at a temperature of about 100 ° C. to 150 ° C. After that, when the first sealing resin 4 is applied and the solid-state imaging device 3 is mounted, the first sealing resin 4 wets and spreads, but the wetted and spread portion contacts the third sealing resin 26 and stops. It prevents spilling to the outside of the substrate 8.
  • first sealing resin 4 and the third sealing resin 26 are cured by heating at about 170 ° C. to 200 ° C.
  • the solid-state imaging device 3 is only connected by the metal bumps formed on the central protrusion of the main substrate 8 and the first sealing resin 4.
  • the space part on the electronic component 6 was filled with the 3rd sealing resin 26, and the main substrate 8 and the solid-state image sensor 3 were connected.
  • the third sealing resin 26 not only a thermosetting resin but also an ultraviolet ray curable resin which can be cured for a short time or a heat and ultraviolet ray curable resin may be used.
  • FIG. 7 is a cross-sectional view schematically showing the configuration of a solid-state imaging device according to the fifth embodiment.
  • FIG. 7 is a side view schematically showing a configuration of a solid-state imaging device according to a fifth embodiment.
  • a light receiving surface 3a is provided on one surface of the solid-state imaging device 3 and a rewiring layer is provided on the other surface 3c.
  • the wirings on both sides of the solid-state imaging device 3 are electrically connected by the through vias 3 b.
  • rewiring is performed so that the wiring on the back surface 3c side matches the through via 3b.
  • the wiring on the back surface 3c is aligned with the wiring on the light receiving surface 3a side. The same applies to the other embodiments.
  • the solid-state imaging device 3 is an element that detects light and converts it into an electric signal and an image, and is, for example, a CCD image sensor or a CMOS image sensor.
  • the solid-state imaging device 3 is made of, for example, a base material such as Si, InGaAs, InP, InAs or the like.
  • the number of pixels of the light receiving surface 3a is, for example, 100 to 4,000,000 pixels, and the pixel size is, for example, 1 to 2 ⁇ m.
  • the through via 3 b is made of metal film or metal plating, and for example, Cu, W, Au or the like is used.
  • the inside of the back surface 3c is wired in three dimensions, and the through via 3b and the plurality of first connection terminals 9 on the surface of the back surface 3c are electrically connected. Therefore, after processing the electric signal of one pixel or plural pixels received by the light receiving surface 3a, it can be transmitted to the first connection terminal 9 through the back surface 3c via the through via 3b.
  • the back surface 3c is made of, for example, a wiring layer made of a metal film such as Cu, Al, Au or the like and an insulating layer such as epoxy, polyimide, acrylic, SiN, SiO2, etc.
  • the first connection terminal 9 is formed of a circular or polygonal metal film such as Au, Al, Cu or the like.
  • a transparent rectangular parallelepiped transparent member 1 is disposed on the light receiving surface 3 a of the solid-state imaging device 3, and the transparent member 1 is fixed to the solid-state imaging device 3 by an adhesive 2.
  • a transparent material having a refractive index of 1.3 to 1.8 such as borosilicate, quartz, sapphire, or quartz is used.
  • the adhesive 2 is, for example, a transparent material such as acrylic, epoxy, silicone, which has a transmittance of at least 90% and a refractive index of 1.3 to 1.8, such as ultraviolet curing or thermal curing or a combination of ultraviolet and thermal curing.
  • the main substrate 8 is disposed to face the back surface 3 c of the solid-state imaging device 3.
  • the main substrate 8 is, for example, a multistage substrate consisting of two stages.
  • the main substrate 8 is composed of a projection 8a of a rectangular parallelepiped and a base 8b of a rectangular parallelepiped larger than the projection 8a. Both are a laminated body or an integral body.
  • a third connection terminal 17, a connection terminal 15, and a connection terminal 16 are provided on the upper surface, the upper surface and the side surface of the base 8b, and the back surface of the protrusion 8a, respectively. It is electrically connected by three-dimensional wiring and vias.
  • the main substrate 8 is a relay substrate for connecting a capacitor, a coil, and a resistor to the electric signal terminal output from the solid-state imaging device 3 and a cable for connecting the external connection device (not shown).
  • the main substrate 8 is, for example, a ceramic multilayer substrate made of alumina, glass or the like, or an organic multilayer substrate made of glass epoxy, aramid or the like.
  • the connection terminals on the main substrate 8 are made of a fired conductive adhesive, a plating film on a sputter film, and the like.
  • a plurality of second connection terminals 11 are provided on the upper surface of the protrusion 8 a of the main substrate 8 at a position facing the first connection terminals 9 of the solid-state imaging device 3.
  • the connection terminal 9 is electrically connected by the protruding electrode 10.
  • the bump electrode 10 is made of, for example, Au, Cu, solder, AuSn, a conductive adhesive, nano paste, plating or the like.
  • a first sealing resin 4 is provided between the solid-state imaging device 3 and the main substrate 8, and is sealed so as to cover the bump electrode 10.
  • the first sealing resin 4 is a thermosetting or ultraviolet curable one-component adhesive composed of a base resin, a curing agent, an inorganic filler and the like, and for example, an epoxy, an acrylic, or a silicone resin is used.
  • a plurality of third connection terminals 17 are formed on the upper surface of the base portion 8 b of the main substrate 8, the electronic component 6 is mounted on the third connection terminals 17, and the third connection terminals 17 and the electronic components 6 is electrically connected by a bonding material 23.
  • the electronic component 6 is, for example, a capacitor, a resistor, or a coil, and for example, a component having a size of 0603, 0402, 0201 or the like is used.
  • the bonding material 23 is made of, for example, solder, AuSn, a conductive adhesive, or the like.
  • a plurality of cable connection terminals 15 are formed on the side surface of the base portion 8 b of the main substrate 8.
  • the connection terminal 15 for the cable is made of, for example, Au-Ni, Au-Pd-Ni, Cu or the like, and can be electrically connected to the wiring of the connection cable (not shown) via a solder or a conductive adhesive. .
  • FIG. 9 is a plan view schematically showing the configuration of the solid-state imaging device 3 according to the embodiment of the present disclosure.
  • a light receiving surface 3a formed on the solid-state imaging device 3 is provided in a rectangular shape, and a plurality of through vias 3b are disposed in the outer peripheral portion so as to surround the light receiving surface 3a.
  • the pitch interval of the through vias 3b is, for example, 10 to 100 ⁇ m. Since the adhesive 2 and the transparent member 1 provided so as to cover the light receiving surface 3a of the solid-state imaging device 3 are transparent materials, they can be transmitted and the electrode pad on the light receiving surface and the through via 3b can be observed.
  • the solid-state imaging device of small size and high image quality can be stacked in a three-dimensional direction while maintaining the external dimensions within the projection area of the solid-state imaging device. And the external shape of the endoscope tip can be reduced.
  • FIG. 10 are cross-sectional views schematically showing a manufacturing process of a solid-state imaging device in a fifth embodiment of the present invention.
  • the bump electrode 10 is formed on the second connection terminal 11 of the bump portion 8a of the main substrate 8 using bump forming means such as a stud bump bonder.
  • a bump forming process may be performed after the electronic component process.
  • the first sealing resin 4 is applied to the projection 8a of the main substrate 8 using a material supply means such as a dispenser or a needle transfer device.
  • the second sealing resin 5 may be applied in advance so as to fill the gap between the projection 8 a of the main substrate 8 and the electronic component 6. Since the bonding area is increased by the second sealing resin 5, the reliability can be improved.
  • the first sealing resin 4 is cured while bonding the bump electrode 10 and the first connection terminal 9 using a heating / pressurizing device.
  • the junction temperature may be 120 to 180 ° C.
  • ultrasonic waves may be applied simultaneously with heating and pressurizing. It is possible to apply to a solid-state imaging device 3 that can be joined at low temperature and has low heat resistance.
  • heating may be performed using heating means such as a curing furnace or a reflow furnace. A plurality of solid-state imaging devices can be cured at one time, and the production lead time can be shortened.
  • FIG. 10 are side views of (a1) to (d1) in FIG. 10 respectively.
  • FIG. 11 is a cross-sectional view schematically showing the shape of the main substrate 8 of the fifth embodiment.
  • a first notch 8 c is provided in the vicinity of at least one vertex of the protrusion 8 a of the main substrate 8.
  • a second notch 8 d is provided near at least one vertex of the base portion of the main substrate 8.
  • FIG. 12 is a cross-sectional view schematically showing a structure of a solid-state imaging device according to a fifth embodiment.
  • the first first sealing resin 4 between the solid-state imaging device 3 and the projection 8a of the main substrate 8 wets and spreads along the first notch 8c before it wets and spreads to the outer peripheral portion of the back surface 3c. .
  • the first notch 8 c is filled with the first sealing resin 4.
  • the first sealing resin 4 does not wet and spread on the side surface of the solid-state imaging device 3.
  • the second sealing resin 5 between the base 8 b of the main substrate 8 and the projection 8 a wets and spreads in the second notch 8 d.
  • the side surface of the main substrate 8 is not wetted.
  • the adhesion strength between the solid-state imaging device 3 and the main substrate 8 is The influence of the bonding strength of the bump electrode 10 becomes dominant. Therefore, the bonding strength between the solid-state imaging device 3 and the main substrate 8 is so low that it can not withstand the vibration during transportation in the assembly process or the impact when the solid-state imaging device is dropped, and a failure occurs. Will occur.
  • the number of terminals of the second connection terminal 11 on the projection 8a of the main substrate 8 is as small as, for example, several to several tens of pins, or the second connection terminal 11 is biased to the central portion of the main substrate 8 only. In the case, this problem becomes noticeable.
  • the sealing resin it is necessary for the sealing resin not to protrude from the outer shape of the solid-state imaging device 3 and to sufficiently fill the void with the sealing resin.
  • the notch shape is a concave shape and has a semi-dome shape.
  • the width may be equal to the width direction and the depth direction in FIGS. 11 and 12, and the depth may be equal to half of the width.
  • the end face of the notched portion may have a smooth dome shape, and it is more preferable that the end face have a minute unevenness and a certain surface roughness. Since the surface area is increased, the surface tension of the sealing resin is increased, which is effective in suppressing the spread of wetting on the side surface.
  • the width of the main substrate 8 is w1
  • the width of the top of the head is w2
  • the width of the first notch 8c is w4
  • the width of the second notch 8d is w3
  • the width w4 of the first notch 8c is preferably 5% or more and 50% or less of the width w2 of the top of the head. If it is less than 5%, the first first sealing resin 4 wets and spreads over the entire back surface of the back surface 3c, and the problem of protruding to the side surface occurs. On the other hand, if it is 50% or more, the first notch 8c can be provided only on one side of the top of the head, and the left and right non-uniform filling resin of the sealing resin is formed.
  • the wider the width w4 of the first notch portion is, the larger the effect of inducing the first sealing resin 4 in the direction of the base portion 8b increases, and the flow of sealing resin to the side surface of the solid-state imaging device 3 is suppressed. it can. Furthermore, it is more preferable that an angle between the first notch 8c and the top of the head be 30 degrees or more and 60 degrees or less. It becomes possible to flow the first sealing resin 4 to the base portion 8b side.
  • the width w3 of the second notch be 2% or more and 30% or less of the width w1 of the main substrate 8. If it is less than 2%, the second sealing resin 5 protrudes from the main substrate 8, and the projected size from the top surface of the cover glass exceeds the solid-state imaging device 3, which causes a problem that miniaturization can not be achieved. If it is more than 30%, the mounting area can not be secured, and the sealing resin may flow out to the end face of the main substrate 8.
  • first notches 8c and the second notches 8d are provided at the corners of the four corners, the spread shape can be made uniform and there is also an effect of relaxing the stress distribution after bonding.
  • a plurality of notches may be provided in the middle part of the side, and the whole side may have a notch.
  • main substrate 8 made of ceramic into pieces After firing and separating the main substrate 8 made of ceramic into pieces, it is collectively loaded into a chemically resistant net, and vibration is applied for a predetermined time. As the adjacent main substrates 8 collide with each other, stress is concentrated at the corner and an impact exceeding the breaking strength is applied.
  • the corner is dropped and a first notch 8c and a second notch 8d are formed. Thereafter, the whole net is put into a plating bath and subjected to electroless plating, whereby the connection terminals can be plated.
  • the notch may be formed by applying vibration when the plating bath is charged or when cleaning. Production time can be shortened.
  • a ceramic substrate having a thickness of 0.90 to 0.98 mm ⁇ 0.90 to 0.98 mm and a height of 0.85 to 0.95 mm is formed, and as a result, a notch is formed.
  • the width of the notch 8c and the second notch 8d was 0.05 to 0.20 mm.
  • Two 0603 are mounted as the electronic component 6 and the first sealing resin 4 and the second sealing resin 5 are applied on the top of the main substrate 8 to obtain a 1.0 mm ⁇ 1.0 mm ⁇ 0.4 mm solid-state imaging device 3
  • the first sealing resin 4 and the second sealing resin 5 can be sealed without any void without protruding from the main substrate 8, and a solid-state imaging device was able to be suppressed within 1.0 ⁇ 1.0 mm, which is equivalent to the size of the solid-state imaging device 3.
  • a partition may be provided inside the mesh so that the main substrate 8 can be stored one by one, and a projection or a grinding blade may be provided inside the partition. According to this method, the shape of the notch can be further stabilized.
  • the notch portion may be formed by using a machining means such as grinding or luteter. Even if the material of the main substrate 8 is an organic substrate such as glass epoxy having high breaking strength, it is possible to form the notch.
  • FIG. 13 is a cross-sectional view schematically showing the shape of the main substrate 8 of the fifth embodiment of the present invention. This embodiment differs from the above embodiment in that the side surface of the main substrate 8 is inclined.
  • the angle between the upper surface and the side surface of the top of the main substrate 8 is ⁇ 1, and the angle between the upper surface of the base portion 8b of the main substrate 8 and the side surface is ⁇ 2.
  • ⁇ 1 and ⁇ 2 may be less than 90 °. If the angle is less than 90 °, it is possible to suppress the outflow of the first sealing resin 4 in a liquid state to the side surface after the wetting and spreading to the outer peripheral portion.
  • connection terminal 15 for cable is hindered.
  • ⁇ 2 is set to less than 90 °, when connecting a cable to the connection terminal 15 for cable, it becomes easy to keep within the projection area of the solid-state imaging device 3 even if the amount of fillet of solder is increased. There is also an effect that the miniaturization and the reliability of the cable connection terminal can be compatible.
  • Sixth Embodiment 14 and 15 are cross-sectional views of a solid-state imaging device according to a sixth embodiment of the present invention.
  • FIG. 16 and 17 are plan views of the solid-state imaging device taken along the dotted line A in FIG. 14 in the sixth embodiment of the present invention.
  • FIG. 16 is a view before sealing
  • FIG. 17 is a view after sealing.
  • FIG. 18 is a cross-sectional view showing wetting and spreading of the sealing resin in region B of FIG. 14 in the sixth embodiment of the present invention.
  • FIGS. 14 and 15 As the structure of the solid-state imaging device according to the sixth embodiment of the present invention, as shown in FIGS. 14 and 15, there is a solid-state imaging device 3, one side of the solid-state imaging device 3 has a light receiving surface 3 a A plurality of first connection terminals 9 are arranged on the surface.
  • the transparent member 1 is disposed to face the light receiving surface 3 a, and the solid-state imaging device 3 and the transparent member 1 are fixed by an adhesive 2.
  • the main substrate 8 is disposed to face the back surface 3 c of the solid-state imaging device 3, and the first connection terminal 9 of the solid-state imaging device 3 and the second connection terminal 11 of the main substrate 8 are disposed via the projecting electrodes 10.
  • the connection portion between the solid-state imaging device 3 and the main substrate 8 is fixed by the first sealing resin 4.
  • the first sealing resin 4 is wet and spread without flowing down to the outside of the first conductor pattern 25a formed at the end of the joint.
  • the first conductor pattern 25 a is also used as a recognition mark of alignment in the mounting machine used when connecting the main substrate 8 and the solid-state imaging device 3.
  • the first conductor pattern 25 a has a shape different from that of the second connection terminal 11.
  • a plurality of electronic components 6 are arranged in cavities 7 formed on both sides of the junction of the main substrate 8 and the solid-state imaging device 3.
  • the electronic component 6 is electrically connected to the third connection terminal 17 of the main substrate 8 via the bonding material 12.
  • a plurality of second connection terminals 14 for cables are formed on the main substrate 8.
  • Such a solid-state imaging device can be manufactured by the process of FIG.
  • the first connection terminal 9 is formed on the solid-state imaging device 3, the transparent member 1 is disposed on the light receiving surface of the solid-state imaging device, and fixed with the adhesive 2.
  • the first conductor pattern 25a, the second connection terminal 11, the third connection terminal 17, and the second connection terminal 14 for the cable are formed on the main substrate 8 on which the cavity 7 is formed.
  • the first conductor pattern 25a is formed in the same process together with the second connection terminal 11, the third connection terminal 17, and the second connection terminal 14 for the cable.
  • the bump electrode 10 is formed on the second connection terminal 11, and the electronic component 6 and the bonding material 12 are disposed on the third connection terminal 17 of the cavity 7.
  • the bonding material 12 is melted by heating, and the electronic component 6 and the third connection terminal 17 are electrically connected via the bonding material 12.
  • the surface of the main substrate 8 on which the protruding electrodes 10 are formed and the surface on which the first connection terminals 9 of the solid-state imaging device 3 are formed face each other.
  • the connection terminal 9 and the second connection terminal 11 are electrically connected via the protruding electrode 10.
  • the first sealing resin 4 is sealed at the joint portion of the first connection terminal 9 and the second connection terminal 11 to fix the connection portion, and the solid-state imaging device Is completed.
  • the solid-state imaging device 3 receives light by the light receiving surface 3 a through the transparent member 1 and is converted into an electric signal.
  • the converted electrical signal is transmitted to the main substrate 8 electrically connected to the solid-state imaging device 3.
  • the electrical signal transmitted to the main substrate 8 is transmitted to the electronic component 6 electrically connected to the main substrate 8.
  • the electronic component 6 performs processing incorporated in the electronic component 6 on the transmitted electric signal, and transmits the signal to the main substrate 8 again.
  • an electrical signal is transmitted from the second connection terminal 14 for the cable to the external device.
  • each member the main substrate 8 is 1 mm ⁇ 1 mm ⁇ thickness 0.6 mm, the electronic component 6 is 0.6 mm ⁇ 0.3 mm ⁇ thickness 0.3 mm or less, and the transparent member 1 is 1 mm ⁇ 1 mm ⁇ The thickness is 0.3 mm, and the solid-state imaging device 3 is 1 mm ⁇ 1 mm ⁇ thickness 0.1 mm. These dimensions are exemplary.
  • the electronic component 6 is, for example, a capacitor, but may be a resistor.
  • the transparent member 1 is a transparent rectangular solid optical member.
  • the width dimension of the transparent member 1 is equal to or less than the solid-state imaging device 3.
  • the solid-state imaging device 3 is a CCD image sensor or a CMOS image that detects light and converts it into an electric signal.
  • a circuit that performs signal processing may be incorporated. It may be stacked with an element having a function of performing signal processing.
  • a first connection terminal 9 is provided to transmit and receive electrical signals.
  • the first connection terminal 9 and the second connection terminal 11 are formed of, for example, aluminum or the like, but metals such as copper having higher conductivity than aluminum or tungsten may be used. Furthermore, copper may be plated with nickel / gold to make it difficult to oxidize.
  • connection terminal 14 for cable is formed of, for example, aluminum or the like, but a metal such as copper having higher conductivity than aluminum or tungsten may be used. Furthermore, copper may be plated with nickel / gold to make it difficult to oxidize.
  • the bump electrode 10 is formed of, for example, solder, but a metal such as copper or gold may be used.
  • the main substrate 8 is formed of, for example, a ceramic substrate or the like, but a buildup substrate, an aramid epoxy substrate, a glass epoxy substrate or the like may be used.
  • ⁇ Cavity 7> The size of the cavity 7 is 1.0 mm ⁇ 0.35 mm ⁇ 0.35 mm in thickness, and the electronic component 6 is accommodated in the cavity 7 so that the width dimension of the solid-state imaging device is the same as the width dimension of the solid-state imaging device 3 You can keep
  • Two cavities 7 are formed symmetrically on the surface of the main substrate 8 connected to the solid-state imaging device 3, and the heat dissipation of the solid-state imaging device 3 is symmetrical so that the in-plane variation of characteristics is realized. You can hold it down.
  • the adhesive 2 is a transparent adhesive such as an ultraviolet curing type, and the width dimension is equal to or less than that of the solid-state imaging device.
  • the first sealing resin 4 is an epoxy-based adhesive, and the width dimension is the same as or smaller than that of the solid-state imaging device 3.
  • the first sealing resin 4 is formed at the end of the bonding portion. It is prevented from flowing to the outside of the formed first conductor pattern 25a. Furthermore, by subjecting the first conductor pattern 25a to a plating treatment, the first sealing resin 4 wets and spreads to the end of the first conductor pattern 25a, and a fillet C is formed.
  • first sealing resin 4 may be formed in the area of the cavity 7 as long as the first sealing resin 4 does not flow to the outside of the main substrate 8.
  • the first conductor pattern 25a is formed of, for example, aluminum or the like, but a metal such as copper having a higher conductivity than aluminum or tungsten may be used. Furthermore, copper may be plated with nickel / gold to make it difficult to oxidize.
  • the first conductor pattern 25a is also used as a recognition mark for alignment in the mounting machine used when connecting the main substrate 8 and the solid-state imaging device 3.
  • the shape of the first conductor pattern 25 a is preferably different from that of the second connection terminal 11 and is preferably such a shape that the first sealing resin 4 does not flow to the outside of the main substrate 8. It becomes a corner mark of 0.3 mm ⁇ 0.1 mm, and the width direction is 0.15 mm ⁇ 0.1 mm.
  • FIG. 20 is a cross-sectional view of a solid-state imaging device according to a seventh embodiment of the present invention
  • FIGS. 21 and 22 are plan views of the solid-state imaging device taken along the dotted line A in FIG. FIG. 21 is before sealing, and FIG. 22 is after sealing. Matters not described are the same as in the sixth embodiment.
  • the solid-state imaging device 3 As the structure of the solid-state imaging device according to the seventh embodiment of the present invention, as shown in FIG. 20, the solid-state imaging device 3 is provided, the light receiving surface 3a is provided on one side of the solid state imaging device 3, A plurality of first connection terminals 9 are arranged.
  • the transparent member 1 is disposed to face the light receiving surface 3 a, and the solid-state imaging device 3 and the transparent member 1 are fixed by an adhesive 2.
  • the main substrate 8 is disposed to face the back surface 3 c of the solid-state imaging device 3, and the first connection terminal 9 of the solid-state imaging device 3 and the second connection terminal 11 of the main substrate 8 are disposed via the projecting electrodes 10.
  • the connection portion between the solid-state imaging device 3 and the main substrate 8 is fixed by the first sealing resin 4.
  • a plurality of electronic components 6 are disposed in a cavity 7 formed on one side of the joint portion between the main substrate 8 and the solid-state imaging device 3 and electrically connected to the third connection terminal 17 of the main substrate 8 via the joint material 12. doing.
  • a plurality of second connection terminals 14 for cables are formed on the main substrate 8.
  • ⁇ Cavity 7> The size of the cavity 7 is 1.0 mm ⁇ 0.7 mm ⁇ 0.35 mm in thickness, and the electronic component 6 is accommodated in the cavity 7 so that the width dimension of the solid-state imaging device is the same as the width dimension of the solid-state imaging device 3 You can keep
  • One cavity 7 is formed on one side of the second connection terminal 11 of the solid-state imaging device 3 of the main substrate 8.
  • the first sealing resin 4 is an epoxy-based adhesive, and the width dimension is equal to or less than that of the solid-state imaging device 3.
  • the first conductor patterns 25 a and 25 b are formed at the end of the second connection terminal 11 of the main substrate 8 and the solid-state imaging device 3, and the second conductor pattern 25 c is formed at the end of the cavity 7.
  • the first sealing resin 4 is prevented from flowing down to the outside of the main substrate 8.
  • the second conductor pattern 25 c has a shape different from that of the third connection terminal 17.
  • the resin covering the electronic component 6 is the second sealing resin 5.
  • the resin whose expansion is prevented by the second conductor pattern 25 c is the second sealing resin 5 in another embodiment.
  • the first conductor patterns 25a and 5b and the second conductor pattern 25c are formed of, for example, aluminum or the like, but a metal such as copper having a higher conductivity than aluminum or tungsten may be used. Furthermore, copper may be plated with nickel / gold to make it difficult to oxidize.
  • the first conductor patterns 25a and 25b and the second conductor pattern 25c are preferably formed in the same process as the second connection terminal 11 and the third connection terminal 17.
  • the first conductor patterns 25a and 5b and the second conductor pattern 25c are also used as recognition marks for alignment in the mounting machine used when connecting the main substrate 8 and the solid-state imaging device 3.
  • the shapes of the first conductor patterns 25a and 25b and the second conductor pattern 25c are different from those of the second connection terminal 11, and are such that the first sealing resin 4 does not flow to the outside of the main substrate 8
  • the size of the first conductor patterns 25a and 5b is a corner mark of 0.3 mm ⁇ 0.1 mm in the longitudinal direction and 0.15 mm ⁇ 0.1 mm in the width direction, and the size of the first conductor pattern 25b is 0
  • the size of the second conductor pattern 25c is 0.7 mm ⁇ 0.08 mm.
  • the second conductor pattern 25c may be provided without the first conductor patterns 25a and 25b of the sixth embodiment.
  • the first conductor patterns 25a and 5b and the second conductor pattern 25c surround an end around the cross section of the solid-state imaging device. Sealing resin is surrounding.
  • Eighth Embodiment 23 and 24 are plan views of the solid-state imaging device according to the eighth embodiment of the present invention, in which FIG. 23 is before sealing and FIG. 24 is after sealing. Matters not described are the same as in the sixth and seventh embodiments.
  • the first sealing resin 4 is an epoxy-based adhesive, and the width dimension is the same as or smaller than that of the solid-state imaging device 3.
  • the first sealing resin 4 is formed at the end of the joint portion. It prevents the flow down to the outside of the first conductor pattern 25a.
  • the first sealing resin 4 wets and spreads to the end of the conductor pattern 25 to form a fillet.
  • the first conductor pattern 25 a is also used as a recognition mark of alignment in a mounting machine used when connecting the main substrate 8 and the solid-state imaging device 3.
  • the shape of the first conductor pattern 25 a is a circle larger than the second connection terminal 11.
  • first sealing resin 4 may be formed in the area of the cavity 7 as long as the first sealing resin 4 does not flow to the outside of the main substrate 8.
  • the first conductor pattern 25a is formed of, for example, aluminum or the like, but a metal such as copper having a higher conductivity than aluminum or tungsten may be used. Furthermore, copper may be plated with nickel / gold to make it difficult to oxidize.
  • the first conductor pattern 25a is also used as a recognition mark for alignment in the mounting machine used when connecting the main substrate 8 and the solid-state imaging device 3. It is preferable that the shape of the first conductor pattern 25 a be a circle larger than the second connection terminal 11 and have a shape such that the first sealing resin 4 does not flow to the outside of the main substrate 8.
  • the diameter of the first conductor pattern 25a is 0.2 mm while the diameter of the first conductor pattern 25a is 0.1 mm.
  • connection terminal By forming the connection terminal on the back surface of the light receiving surface as in the above structure, the light receiving surface occupancy of the solid-state imaging device is increased, and the performance efficiency of solid-state imaging is not impaired.
  • the fillet By forming the fillet to the end of the main substrate without the sealing resin flowing down to the side surface of the main substrate by the formed conductor pattern, it is possible to provide a small-sized, high-performance solid-state imaging device with high reliability. .
  • the solid-state imaging device of the present disclosure is widely used as a small-sized solid-state imaging device.
  • it is used as an endoscope solid-state imaging device.

Abstract

固体撮像素子と、上記固体撮像素子の受光面とは反対側の面で、封止樹脂により上記固体撮像素子に固定される基板とを備え、上記固体撮像素子の受光面側から見た上記基板の外縁は、上記固体撮像素子の外縁内に収まっており、上記固体撮像素子の受光面側から見た上記封止樹脂の外縁は、上記固体撮像素子の外縁内に収まっている固体撮像装置を用いる。また、上記封止樹脂は、第1封止樹脂であり、上記第1封止樹脂とは非接触で、上記部品を封止する第2封止樹脂を有する上記固体撮像装置を用いる。

Description

固体撮像装置
 本開示は、電子内視鏡等に設けられる小型の固体撮像装置に関するものである。
 従来から医療分野において、細長い挿入部を体腔内に挿入することにより、体腔内臓器等を観察したり、処置具チャンネル内に挿通された処置具を用いて各種治療処置したりできる医療用の内視鏡が提供されている。また、工業分野において、ボイラ、タービン、エンジン、化学プラントなどの内部の傷や腐蝕などを観察又は検査できる工業用の内視鏡が提供されている。
 このような内視鏡(電子内視鏡)には、例えば、挿入部の先端部に電荷結合素子(CCDと略記)などの固体撮像素子や電子部品を備えた固体撮像装置を内蔵したものがある。固体撮像装置は、撮像対象物からの反射光を受光して光電変換し、光電変換した信号を、信号ケーブルを介して、モニタ装置を備えた情報処理装置に伝送する。情報処理装置は、固体撮像装置から受信した信号を処理し、固体撮像装置で撮像された撮像対象物を、モニタ装置にカラー表示する。
 固体撮像装置を内蔵した内視鏡は、例えば、狭く曲がりくねった管腔内等に挿入されるため、挿入部の細径化が望まれている。また、固体撮像装置は、小回りがきき、操作性の良い内視鏡を実現するため、小型化、小径化が望まれている。
 特許文献1には、内視鏡の先端部に配置される固体撮像装置が開示されている。特許文献1には、封止樹脂によって形成される封止固定部をできるだけ小さくして全体の構成を小型化した固体撮像装置が開示されている。
特開2001-17389号公報
 図25は、特許文献1の固体撮像装置の断面図であり、図26は、特許文献1の固体撮像装置の平面図である。特許文献1の固体撮像装置では、固体撮像素子103の受光面上に透明部材101が接着され、受光面に形成された突起電極110に、FPC(フレキシブル回路基板)のリード112が接続されている。また、特許文献1の固体撮像装置では、透明部材101の周辺部と、固体撮像素子103及びリード112の接続部分とが、封止樹脂104で封止されている。
 このため、特許文献1では、封止樹脂104の部分が余分に周囲にでている。このため、固体撮像装置の小型化が阻まれていた。
 本願の課題は、より小型化された固体撮像装置を提供することを目的とする。
 上記課題を解決するため、固体撮像素子と、上記固体撮像素子の受光面とは反対側の面で、封止樹脂により上記固体撮像素子に固定される基板とを備え、上記固体撮像素子の受光面側から見た上記基板の外縁は、上記固体撮像素子の外縁内に収まっており、上記固体撮像素子の受光面側から見た上記封止樹脂の外縁は、上記固体撮像素子の外縁内に収まっている固体撮像装置を用いる。
 本開示によれば、より小型化した固体撮像装置を提供することができる。
実施の形態1における固体撮像装置の構成を示す断面図 実施の形態1における固体撮像装置の構成を示す平面図 実施の形態1における固体撮像装置の形成工程を示す断面図 実施の形態2における固体撮像装置の形成工程を示す断面図 実施の形態3における固体撮像装置の構成を示す断面図 実施の形態4における固体撮像装置の構成を示す断面図 実施の形態5における固体撮像装置の構成を模式的に示す断面図 実施の形態5における固体撮像装置の構成を模式的に示す側面図 実施の形態5における固体撮像装置の構成を模式的に示す平面図 実施の形態5における固体撮像装置の製造工程を模式的に示す断面図 実施の形態5のメイン基板の形状を模式的に示す断面図 実施の形態5の固体撮像装置の構造を模式的に示す断面図 実施の形態5のメイン基板の形状を模式的に示す断面図 実施の形態6における固体撮像装置の構成を示す断面図 実施の形態6における固体撮像装置の構成を示す断面図 実施の形態6における固体撮像装置の構成を示す平面図 実施の形態6における固体撮像装置の構成を示す平面図 実施の形態6における封止樹脂の濡れ広がりを示す断面図 実施の形態6における固体撮像装置の形成工程を示す断面図 実施の形態7における固体撮像装置の構成を示す断面図 実施の形態7における固体撮像装置の構成を示す平面図 実施の形態7における固体撮像装置の構成を示す平面図 実施の形態8における固体撮像装置の構成を示す平面図 実施の形態8における固体撮像装置の構成を示す平面図 従来の固体撮像装置の構成を示す断面図 従来の固体撮像装置の構成を示す平面図
 (実施の形態1)
 以下、本発明の実施の形態1、図面を参照して説明する。
 図1は、本開示の実施の形態1における固体撮像装置の断面図であり、図2は、本開示の実施の形態1における固体撮像装置の平面図である。
 <構造>
 図1に示すように、本発明の実施の形態1における固体撮像装置は、直方体形状の固体撮像素子3を有している。固体撮像素子3は、受光面3aと裏面3cを有している。
 固体撮像素子3の受光面3aには、直方体形状の透明部材1(例えば、カバーガラス)が配置されている。透明部材1は、接着剤2によって、固体撮像素子3に固定されている。固体撮像素子3の裏面3cには、第1接続端子9が複数形成されている。
 なお、受光面3a上の配線と裏面3cの第1接続端子9とは電気的に接続されている。これは、実施の形態5の透明部材1と同様である。
 裏面3cには、凸形状のメイン基板8が配置されている。固体撮像素子3は、第1封止樹脂4と第2封止樹脂5によって、メイン基板8に固定されている。
 メイン基板8の突起部上面には、第2接続端子11が複数形成されている。メイン基板8の第2接続端子11と、裏面3cに形成された第1接続端子9との間には、突起電極10が設けられている。突起電極10は、メイン基板8と固体撮像素子3とを電気的に接続している。
 メイン基板8のベース部上面には、第3接続端子17が複数形成されている。裏面3cとメイン基板8のベース部との間のキャビテイ7には、接続端子32を有した電子部品6が複数配置されている。
 第3接続端子17と、接続端子32との間には、突起電極13が設けられている。突起電極13は、メイン基板8と電子部品6とを電気的に接続している。第2封止樹脂5は、キャビテイ7に充填され、電子部品6を覆っている。メイン基板8のベース部の側面には、ケーブル用の接続端子15が形成されている。
 平面視における透明部材1及び接着剤2の面積は、平面視における固体撮像素子3の面積より小さい(図2を参照)。平面視において、透明部材1及び接着剤2の外縁は、固体撮像素子3の外縁内に収まるように配置されている。
 また、平面視における第1封止樹脂4と第2封止樹脂5及びメイン基板8の面積は、平面視における固体撮像素子3の面積より小さい。平面視において、第1封止樹脂4と第2封止樹脂5の外縁及びメイン基板8の外縁は、固体撮像素子3の外縁内に収まるように配置されている。
 これにより、固体撮像装置の幅寸法、つまり、図2の縦横方向の寸法が、最大となる要素は、固体撮像素子3となる。固体撮像装置は、固体撮像素子3の大きさまで小型化されることができる。
 なお、平面視における透明部材1及び接着剤2の面積は、平面視における固体撮像素子3の面積と同じであってもよい。そして、透明部材1及び接着剤2は、平面視における形状が、固体撮像素子3の平面視における形状と同じであってもよい。
 また、平面視における第1封止樹脂4と第2封止樹脂5及びメイン基板8の面積は、平面視における固体撮像素子3の面積と同じであってもよい。そして、第1封止樹脂4と第2封止樹脂5及びメイン基板8は、平面視における形状が、固体撮像素子3の平面視における形状と同じであってもよい。
 <製法>
 固体撮像装置は、図3に示す工程により作成することができる。
 まず図3の(a)に示すように、裏面3cに第1接続端子9を形成する。また、固体撮像素子3の受光面3aに透明部材1を配置し、接着剤2で固定する。
 一方で、図3の(b)に示すように、メイン基板8に第2接続端子11と第3接続端子17とを形成し、第2接続端子11上に突起電極10を形成する。また、電子部品6に接続端子32を形成し、接続端子32上に突起電極13を形成する。また、電子部品6を電子部品6に配置し、突起電極13をメイン基板8上の第3接続端子17に接続する。これにより、電子部品6とメイン基板8は、電気的に接続される。
 次に、図3の(c)に示すように、第2封止樹脂5で電子部品6を充填する。次に、図3の(d)に示すように、メイン基板8をダイシングで個片化する。次、図3の(e)に示すように、メイン基板8の突起電極10が形成された面に、第1封止樹脂4を塗布する。
 次に、図3の(f)に示すように、メイン基板8の突起電極10が形成された面と、固体撮像素子3の第1接続端子9が形成された面とを向かい合わせで配置する。そして、突起電極10を第1接続端子9に接続し、メイン基板8と固体撮像素子3とを第1封止樹脂4で固定する。これにより、固体撮像素子3とメイン基板8は、電気的に接続される。以上の工程により、固体撮像装置が完成する。
 <動作>
 固体撮像素子3は、撮像対象物で反射された光を、透明部材1を通して受光面3aで受光し、受光した光を電気信号に変換する。
 電気信号は、固体撮像素子3と電気的に接続されているメイン基板8に伝わる。電気信号は、メイン基板8と電気的に接続されている電子部品6に伝わる。電子部品6は、伝えられた電気信号に対して所定の信号処理を行い、メイン基板8に伝える。電子部品6を経由し、メイン基板8に伝えられた電気信号は、ケーブル用の接続端子15から外部機器(例えば、モニタ装置を備えた情報処理装置)に伝えられる。
 <各要素>
 それぞれの部材のサイズの一例を下記に示す。
 メイン基板8:1mm×1mm×厚さ0.6mm
 電子部品6:0.6mm×0.3mm×厚さ0.3mm以下
 透明部材1:1mm×1mm×厚さ0.3mm
 固体撮像素子3:1mm×1mm×厚さ0.1mm
 なお、透明部材1の平面視における面積及びメイン基板8の平面視における面積は、図1及び図2で示したように、固体撮像素子3の平面視における面積より小さくてもよい。
 <電子部品6>
 電子部品6は、例えば、コンデンサであるが、抵抗器であっても良い。また、電子部品6は、電気信号の授受を行うための接続端子32を備えている。平面視において、電子部品6は、固体撮像素子3の外縁内に収まるように配置されている。
 <透明部材1>
 透明部材1は、透明な直方体形状の光学部材である。固体撮像装置の幅寸法(固体撮像装置を平面視したときの縦と横の寸法)を、固体撮像素子3の幅寸法にして小型化するため、透明部材1の幅寸法は、固体撮像素子3の幅寸法以下とする。
 <固体撮像素子3>
 固体撮像素子3は、光を検出して電気信号に変換するCCDイメージセンサやCMOSイメージセンサなどである。固体撮像素子3には、信号処理を行う回路が組み込まれていても良い。または、固体撮像素子3は、信号処理を行う機能を持つ素子と積層されていても良い。固体撮像素子3は、電気信号の授受を行うための第1接続端子9を備えている。
 <第1接続端子9,第2接続端子11,接続端子32,14>
 第1接続端子9,第2接続端子11,接続端子32,14は、例えばアルミニウムなどによって形成される。第1接続端子9,第2接続端子11,接続端子32,14には、銅のようにアルミニウムよりも導電率が高い金属を用いても良い。第1接続端子9,第2接続端子11,接続端子32,14に銅を用いた場合、銅にニッケル/金めっき処理を施して、酸化しにくい状態にしても良い。
 <ケーブル用の接続端子15>
 ケーブル用の接続端子15は、例えばアルミニウムなどによって形成される。ケーブル用の接続端子15には、銅のようにアルミニウムよりも導電率が高い金属を用いても良い。ケーブル用の接続端子15に銅を用いた場合、銅にニッケル/金めっき処理を施して酸化しにくい状態にしても良い。
 <突起電極10,13>
 突起電極10,13は、例えば半田などによって形成される。突起電極10,13には、銅や金のような金属を用いても良い。
 <メイン基板8>
 メイン基板8は、例えばセラミック基板などによって形成される。メイン基板8には、ビルドアップ基板、アラミドエポキシ基板、ガラスエポキシ基板などを用いてもよい。メイン基板8は、平面視において、左右に電子部品6が実装されるためのキャビテイ7(電子部品6)が形成されている。
 <電子部品6>
 電子部品6のサイズは、例えば0.6mm×0.3mm×厚さ0.3mmである。電子部品6が電子部品6内に収まることにより、固体撮像装置の幅寸法を、固体撮像素子3の幅寸法と同じに保つことができる。
 電子部品6は、メイン基板8の突起部を境に2個、左右対称に形成されている。これにより、固体撮像素子3の放熱性が左右対称となり、電気的特性等の面内バラつきを押さえることができる。
 また、メイン基板8のベース部8b(図1参照)にも、電子部品6を形成し、4個点対称にしても良い。
 <接着剤2>
 接着剤2は、紫外線硬化型等の透明な接着剤である。接着剤2の幅寸法は、透明部材1の幅寸法以下である。
 <第1封止樹脂4>
 第1封止樹脂4は、エポキシ系の接着剤である。第1封止樹脂4の幅寸法は、固体撮像素子3の幅寸法以下である。第1封止樹脂4は、固体撮像素子3とメイン基板8とを接続する突起電極10を覆っている。
 <第2封止樹脂5>
 第2封止樹脂5の幅寸法は、固体撮像素子3の幅寸法以下である。第2封止樹脂5は、第1封止樹脂4と比較して、弾性率が低く、放熱性の高い樹脂である。第2封止樹脂5の第1封止樹脂4と接している面は、図1のテーパー部5aのように、外側から内側に向かってテーパーが形成される。例えば、第1封止樹脂4と第2封止樹脂5との境界面は、固体撮像装置の内部から外部へ、第1封止樹脂4の厚みが薄くなる方向へ傾斜している。このように、テーパー部5aを設けることで、製造時、第1封止樹脂4が漏れることを防ぐことが可能となる。
 <効果>
 上記の構造のように、固体撮像装置を構成する透明部材1、固体撮像素子3、メイン基板8、電子部品6を積層して接続することにより、固体撮像装置の幅寸法は、固体撮像素子3の幅寸法にすることができ、小型化できる。また、固体撮像装置の幅寸法を小さくできるので、例えば、内視鏡の挿入部の細径化を図ることができる。
 また、固体撮像装置を固定する封止樹脂に、密着性の高い第1封止樹脂4、放熱性の高い第2封止樹脂5の2種類を使用し、かつ左右対称の構造とすることで、信頼性の高い固体撮像装置を提供することができる。
 (第2の実施の形態):第1封止樹脂4と第2封止樹脂5とが分離
 次に、図4の(a)~図4の(d)を用いて第2の実施の形態について説明する。第2の実施の形態は、実施の形態1と異なり、第2封止樹脂5の封止後の形状が異なる。説明しない事項は、実施の形態1と同様である。
 <プロセス>
 まず図4の(a)に示すように、固体撮像素子3の受光面3a側に接着剤2を塗布した後、透明部材1を配置して、前記受光面3a全面に接着剤を濡れ広がらせてから紫外線もしくは熱などにより固定する。
 また一方で、図4の(b)に示すように、メイン基板8には第2接続端子11と第3接続端子17とを有しており、第2接続端子11上には加熱、加圧、超音波などにより突起電極10を形成する。また、電子部品6は接続端子32を有し、前記接続端子32上には突起電極13が形成されている。
 電子部品6を電子部品6に配置し、突起電極13をメイン基板8上の第3接続端子17にリフローなどの熱処理により接続する。これにより、電子部品6とメイン基板8は、電気的に接続される。
 次に図4の(c)に示すように、電子部品6が搭載されたメイン基板8上の電子部品6を第2封止樹脂5で充填する。その後、図4の(d)に示すように、切断ブレードなどを用いてメイン基板8をダイシングで切断し個片化する。
 図4の(c)および、図4の(d)に示す樹脂封止工程では、ポッティングなどによりメイン基板8上に実装された電子部品6の周辺に封止樹脂を充填していく。
 その際に第2封止樹脂5は隣り合わせた電子部品6の側面部まではみ出さないように充填させることで、個片化ダイシング時は第2封止樹脂5を切断せずにメイン基板8のみを切断すれば個片化することが可能となり、切断後の基板サイズおよび切断部の品質向上および安定化が実現できる。
 また、第2封止樹脂5は電子部品6上面に被らない位置までの充填とすることにより、図4の(e)に示すように第1封止樹脂4を塗布した後に、図4の(f)に示すように固体撮像素子3を実装した際に、第1封止樹脂4の濡れ広がりを電子部品6の端部で止めることが可能となる。
 <構造>
 実施の形態2の構造では、第1封止樹脂4と第2封止樹脂5とが分離している。このことにより、電子部品6の外側およびメイン基板8の外側へ第1封止樹脂4が流れ出すことを防止することで、固体撮像装置の小型化構造を実現している。
 (実施の形態3)第1封止樹脂4が太鼓形状
 次に図5を用いて実施の形態3について説明する。実施の形態3は、実施の形態2に対して、第1封止樹脂4の形状が異なる。説明しない事項は、実施の形態1、2と同様である。
 第1封止樹脂4の形状は、第1封止樹脂4と固体撮像素子3との濡れ性によって異なってくる。第1封止樹脂4の形状は、実施の形態2の図4の(f)に示されるようなフィレット形状だけでなく、図5に示されるような太鼓形状であってもよい。
 メイン基板8および固体撮像素子3の表面に対する第1封止樹脂4との濡れ性を低下させる。また、第1封止樹脂4の粘性を上げる。これらのことにより、メイン基板8へ固体撮像素子3を実装する際に、第1封止樹脂4の中央部が押し出され太鼓形状を形成する。これにより、後工程における熱処理や信頼性試験においてかかる応力をより吸収する事ができる。
 (実施の形態4):第3封止樹脂26
 次に、図6を用いて、実施の形態4について説明する。実施の形態4は、実施の形態2および3における、第1封止樹脂4の流れ出し防止機能の向上および、電子部品6と固体撮像素子3との第2の接続を付加したものである。説明しない事項は、実施の形態1~3と同様である。
 第1封止樹脂4の流れ出し防止機能を、さらに向上させるとともに、メイン基板8と固体撮像素子3との接続信頼性向上を図る手法として、第1封止樹脂4とは別の第3封止樹脂26を電子部品6上に形成した構造である。
 第3封止樹脂26は第1封止樹脂4とは異なった材料であり、第1封止樹脂4と比較して、弾性率が低く、放熱性の高い樹脂である。
 第3封止樹脂26は、メイン基板8が個片化された後に電子部品6上にポッティングなどにより塗布され、100℃~150℃程度の温度で加熱し仮硬化させる。その後、第1封止樹脂4を塗布し固体撮像素子3を実装すると第1封止樹脂4が濡れ広がっていくが、濡れ広がった部分が第3封止樹脂26に接触し止まることで、メイン基板8の外側へこぼれることを防止する。
 その後、170℃~200℃程度で加熱することで第1封止樹脂4および第3封止樹脂26を硬化させる。
 これにより、第1封止樹脂4の流れ出しを第3封止樹脂26により確実に止めることが可能となる。
 さらに、実施の形態2,3では、固体撮像素子3はメイン基板8の中央突起部に形成された金属バンプおよび第1封止樹脂4により接続されているだけであったが、本実施の形態4では、より高品質な接続を確保するために、電子部品6上の空間部分を第3封止樹脂26で埋め、メイン基板8と固体撮像素子3を接続した。
 第3封止樹脂26は熱硬化型樹脂だけでなく、短時間硬化が可能な紫外線硬化型樹脂もしくは、熱と紫外線併用硬化型の樹脂を使用してもよい。
 (実施の形態5)
 (固体撮像装置の構造)
 図7は、実施の形態5における固体撮像装置の構成を模式的に示す断面図である。
 <固体撮像素子3>
 図7に示すように、実施の形態5における固体撮像装置は、矩形の固体撮像素子3を有している。図8は、実施の形態5における固体撮像装置の構成を模式的に示す側面図である。
 固体撮像素子3の一方の表面には、受光面3aを、もう一方の裏面3cとして再配線層を有している。
 固体撮像素子3の両面の配線同士は、貫通ビア3bによって電気的に接続されている。受光面3aと裏面3cとを、貫通ビア3bで繋ぐ時、裏面3c側の配線を貫通ビア3bに合わせるように再配線する。受光面3a側の配線に、裏面3cの配線を合わせる。他の実施の形態でも同様である。
 ここで、固体撮像素子3とは、光を検出して電気信号、画像に変換する素子であり、例えばCCDイメージセンサやCMOSイメージセンサなどである。固体撮像素子3は、例えば、Si、InGaAs、InP、InAsなどの基材から成る。
 受光面3aの画素数は、例えば100~400万画素であり、画素サイズは例えば1~2μmである。
 貫通ビア3bは、金属膜または金属めっきなどから成り、例えばCu、W、Auなどが用いられる。
 ここで、裏面3cの内部は、3次元に配線され、貫通ビア3bと裏面3c表面の複数個の第1接続端子9とは電気的に接続されている。そのため、受光面3aで受けた1画素ないしは複数画素の電気信号を処理した後、貫通ビア3bを介して、裏面3cを通り、第1接続端子9に伝えることができる。ここで、裏面3cは例えばCu、Al、Auなどの金属膜から成る配線層と例えばエポキシ、ポリイミド、アクリル、SiN、SiO2などの絶縁層とから成る。
 第1接続端子9は、円または多角形形状の例えばAu、Al、Cuなどの金属膜から成る。
 固体撮像素子3の受光面3aには、透明かつ直方体形状の透明部材1が配置されており、透明部材1は接着剤2によって固体撮像素子3に固定されている。ここで、透明部材1は、例えば、ホウケイ酸、石英、サファイア、水晶などの屈折率が1.3~1.8の透明材料が用いられる。
 接着剤2は、例えばアクリル、エポキシ、シリコーンなどの紫外線硬化ないしは熱硬化または紫外線・熱硬化併用の透過率90%以上かつ屈折率が1.3~1.8の透明材料である。固体撮像素子3に透明部材1を貼り付けることにより、組立工程において、埃や異物が直接受光面に付着するのを防ぐことができるだけでなく、使用環境下において水分の侵入、異物の付着を防ぐことができる。
 <メイン基板8>
 また、固体撮像素子3の裏面3cに対向するように、メイン基板8が配置されている。メイン基板8は、例えば、2段から成る多段基板である。メイン基板8には、直方体の突起部8aと、突起部8aより大きな直方体のベース部8bとから成る。両者は積層体、または、一体物である。突起部8a上面、ベース部8bの上面と側面、と裏面には、それぞれ第3接続端子17、接続端子15、接続端子16を備え、それぞれの接続端子間は、メイン基板8の内部や表面の3次元配線・ビアにより電気的に接続されている。
 ここで、メイン基板8は、固体撮像素子3から出力された電気信号端子と図示しない外部接続機器に繋ぐためのケーブルとを、コンデンサ、コイル、抵抗とを接続するための中継基板である。
 メイン基板8は、例えば、アルミナ、ガラスなどから成るセラミック多層基板または、ガラスエポキシ、アラミドなどから成る有機多層基板である。メイン基板8上の接続端子は、焼成導電接着剤やスパッタ膜へのめっき膜などから成る。
 メイン基板8の突起部8a上面には複数個の第2接続端子11が、固体撮像素子3の第1接続端子9と対向する位置に複数個設けられており、第2接続端子11と第1接続端子9とは突起電極10によって電気的に接続されている。ここで、突起電極10は、例えば、Au、Cu、はんだ、AuSn、導電性接着剤、ナノペースト、めっきなどから成る。
 さらに、固体撮像素子3とメイン基板8との間には第1封止樹脂4が設けられ、突起電極10を覆うように封止されている。第1封止樹脂4は、ベース樹脂、硬化剤、無機フィラーなどから成る熱硬化性または紫外線硬化性の一液接着剤であり、例えば、エポキシ、アクリル、シリコーン樹脂が用いられる。
 一方、メイン基板8のベース部8bの上面には、第3接続端子17が複数形成されており、第3接続端子17の上には電子部品6が搭載され、第3接続端子17と電子部品6とは接合材料23によって電気的に接続されている。
 電子部品6は、例えば、コンデンサ、抵抗、コイルであり、例えば0603、0402、0201などの寸法の部品が用いられる。また、接合材料23は、例えば、はんだ、AuSn、導電性接着剤などから成る。
 メイン基板8のベース部8bの側面には、ケーブル用の接続端子15が複数個形成されている。ケーブル用の接続端子15は、例えば、Au-Ni、Au-Pd-Ni、Cuなどから成り、図示しない接続ケーブルの配線と、はんだや導電性接着剤を介して電気的に接続することができる。
 図9は、本開示の実施の形態における固体撮像素子3の構成を模式的に示す平面図である。
 固体撮像素子3上に形成された受光面3aが矩形上に設けられており、受光面3aを取り囲むように外周部に貫通ビア3bが複数個配置されている。貫通ビア3bのピッチ間隔は、例えば10~100μmで設けられる。固体撮像素子3の受光面3aを覆うように設けられた接着剤2および透明部材1は透明材料のため、透過して受光面及び貫通ビア3b上の電極パッドを観察することができる。
 <効果>
 本発明の実施の形態の構造によれば、小型かつ高画質の固体撮像素子において、固体撮像素子の投影面積内の外形寸法を保ったまま、立体方向に積層できるため、固体撮像装置を小型化することができ、内視鏡先端部の外形を小さくすることができる。
 <固体撮像装置の製造方法>
 図10の(a1)~(d2)は本発明の実施の形態5における固体撮像装置の製造工程を模式的に示す断面図である。
 まず、図10の(a1)に示すバンプ形成工程において、スタッドバンプボンダなどのバンプ形成手段を用いて、メイン基板8の突起部8aの第2接続端子11に突起電極10を形成する。
 また、図10の(b1)に示す電子部品搭載工程において、第3接続端子17にディスペンサやニードル転写装置などの材料供給手段を用いて、はんだペーストである接合材料23を塗布した後、電子部品6を搭載し、リフロー炉などのはんだ溶融手段を用いてはんだ接合させる。
 なお、バンプ形成工程後に電子部品工程で説明したが順序はこれに限られない。電子部品工程後にバンプ形成工程を行っても構わない。
 さらに、図10の(c1)に示す封止樹脂塗布工程において、メイン基板8の突起部8aにディスペンサやニードル転写装置などの材料供給手段を用いて、第1封止樹脂4を塗布する。ここで、予めメイン基板8の突起部8aと電子部品6との間の空隙を充填するように第2封止樹脂5を塗布しておいても構わない。第2封止樹脂5によって接着面積が増えるため、信頼性を向上することができる。
 次に、図10の(d1)に示す固体撮像素子実装工程において、加熱・加圧手段を用いて突起電極10と第1接続端子9を接合させながら、第1封止樹脂4を硬化させる。例えば、接合部温度は120~180℃にするとよい。また、加熱・加圧と同時に超音波を印加してもよい。低温で接合でき、弱耐熱の固体撮像素子3にも適用できるようになる。さらに、硬化炉やリフロー炉などの加熱手段を用いて加熱してもよい。複数個の固体撮像装置を一括で硬化できるようになり、生産リードタイムを短縮することができるようになる。
 図10の(a2)~(d2)は、それぞれ、以上の図10の(a1)~(d1)の側面図である。
 <メイン基板8の形状、切り欠き、面取り>
 図11は実施の形態5のメイン基板8の形状を模式的に示す断面図である。メイン基板8の突起部8aの少なくとも1箇所の頂点近傍には、第1切り欠き部8cが設けられている。さらに、メイン基板8のベース部の少なくとも1か所の頂点近傍には第2切り欠き部8dが設けるのが好ましい。
 図12は、実施の形態5の固体撮像装置の構造を模式的に示す断面図である。固体撮像素子3とメイン基板8の突起部8a間にある第1の第1封止樹脂4は、裏面3cの外周部へ濡れ拡がるよりも先に、第1切り欠き部8cに沿って濡れ拡がる。このため、第1切り欠き部8cは、第1封止樹脂4で充填される。結果、第1封止樹脂4は、固体撮像素子3の側面に濡れ拡がらない。
 一方、メイン基板8のベース部8bと突起部8aの間にある第2封止樹脂5は、第2切り欠き部8d内に濡れ拡がる。しかし、メイン基板8側面には濡らさない。
 ここで、第1封止樹脂4および第2封止樹脂5の塗布量が少なく、固体撮像素子3とメイン基板8の間に空隙が多い場合、固体撮像素子3とメイン基板8の接着強度は、突起電極10の接合強度の影響が支配的になる。そのため、固体撮像素子3とメイン基板8との間の接合強度は、組み立て工程における搬送における振動や、固体撮像装置を落下させた時の衝撃に耐えられないほど低くなり、破壊不良が発生する問題が生じる。特に、メイン基板8の突起部8a上の第2接続端子11の端子数が例えば数ピンから数十ピンと少ない場合や、第2接続端子11がメイン基板8の中央部のみに偏って配置された場合において、この問題は顕著にみられるようになる。
 以上の理由から、固体撮像素子3の外形から、封止樹脂は、はみ出さず、かつ、封止樹脂で空隙を十分満たす必要がある。
 <形状>
 ここで、図11、図12における第1切り欠き部8c、第2切り欠き部8dの形状について説明する。切り欠き部形状は、凹部形状であり、半ドーム形状を有する。図11、図12の幅方向及び奥行き方向に対して幅は同等であり、深さは幅の1/2から同等であるとよい。
 欠け部の端面は滑らかなドーム形状であってもよく、微小の凹凸や一定の表面粗さを有しているとなおよい。表面積が増えるため封止樹脂の表面張力が大きくなり、側面への濡れ拡がりを抑える効果がある。
 さらに、深さは、メイン基板8の幅をw1、頭頂部の幅をw2、第1切り欠き部8cの幅をw4、第2切り欠き部8dの幅をw3とし、それぞれの関係を説明する。
 第1切り欠き部8cの幅w4は、頭頂部の幅w2の5%以上50%以下であることが望ましい。5%未満であると第1の第1封止樹脂4は裏面3cの裏面全面に濡れ拡がり、側面まではみ出す問題が発生する。一方50%以上であると頭頂部の片側にしか第1切り欠き部8cを設けることができなくなり、左右不均一な封止樹脂のフィレット形状となる。
 一方、第1切り欠き部の幅w4は、広いほど第1封止樹脂4をベース部8bの方向に誘導する効果が増し、固体撮像素子3の側面への封止樹脂流動を抑制することができる。さらに、第1切り欠き部8cと頭頂部とのなす角度は30度以上60度以下であるとなおよい。第1封止樹脂4をベース部8b側に流動することが可能になる。
 一方、第2切り欠き部の幅w3は、メイン基板8の幅w1の2%以上、30%以下であることが望ましい。2%未満であると第2封止樹脂5はメイン基板8からはみ出し、カバーガラス上面からの投影寸法が固体撮像素子3を上回り、小型化できない問題が発生する。30%より大きい場合、実装面積が確保できず、さらにメイン基板8の端面に封止樹脂が流出する問題が生じる。
 <効果>
 以上のような第1切り欠き部8c、第2切り欠き部8dが少なくとも1つの角に形成されることにより、封止樹脂の拡がり、端面への濡れを防ぐことができろ。結果、固体撮像素子3の投影面積の範囲内に、第1封止樹脂4、5の拡がりを抑えられ、小型化に対応できるようになる。
 さらに、4隅の角に第1切り欠き部8c、第2切り欠き部8dを設けることにより、拡がり形状を均一化することができ、接合後の応力分布を緩和する効果もある。また、第1切り欠き部8c、第2切り欠き部8dだけでなく、辺の中間部に複数個切り欠き部を有してもよく、辺全体に切り欠きを有していても構わない。
 <切り欠き部の形成方法>
 次に、第1切り欠き部8c及び第2切り欠き部8dの形成方法について述べる。
 セラミックから成るメイン基板8を、焼成し個片化した後、耐薬品性の網に一括投入し、振動を所定の時間加える。隣接するメイン基板8が衝突し合うことにより、角部に応力が集中し破壊強度を上回る衝撃が加わる。
 そのために、角部が脱落し第1切り欠き部8c及び第2切り欠き部8dが形成される。その後、網ごとめっき浴に投入し、無電解めっきを施すことにより、接続端子にめっき形成することができる。なお、めっき浴投入時あるいは洗浄時に振動を与えて切り欠き部を形成しても構わない。生産時間を短時間化することができる。
 以上の実施の形態5により、0.90~0.98mm×0.90~0.98mm、高さ0.85~0.95mmのセラミック基板を形成し、切り欠き部を形成した結果、第1切り欠き部8c及び第2切り欠き部8dの幅は、0.05~0.20mmで形成された。
 電子部品6として0603を2個搭載し、メイン基板8の頭頂部に第1封止樹脂4および第2封止樹脂5を塗布し1.0mm×1.0mm×0.4mmの固体撮像素子3を熱圧着で実装精度±5μmで実装した結果、第1封止樹脂4および第2封止樹脂5はメイン基板8からはみ出すことなく、かつ空孔部なく封止することができ、固体撮像措置の投影面積を固体撮像素子3の寸法と同等の1.0×1.0mm以内に抑えることができた。
 上記の実施の形態における網は、複数個のメイン基板8が収納できるものとして説明したがこれに限られない。網の内部にメイン基板8が1個ずつ収納できるような間仕切りを設け、さらに間仕切りの内側に突起部や研削刃を設けてもよい。この方法によれば切り欠き部の形状をさらに安定化することができる。
 また、網を用いずに、個片のメイン基板8を固定した後、研削、リューターなどの機械加工手段を用いて、切り欠き部を形成しても構わない。メイン基板8の材質が、破壊強度の高いガラスエポキシなどの有機基板であっても切り欠き部を形成することが可能になる。
 <傾斜形状のメイン基板8>
 図13は本発明の実施の形態5のメイン基板8の形状を模式的に示す断面図である。メイン基板8の側面が傾斜している点で上記の実施の形態とは異なる。
 メイン基板8の頭頂部の上面と側面のなす角をθ1、メイン基板8のベース部8bの上面と側面のなす角をθ2とする。
 ここで、θ1およびθ2は90°未満であるとよい。90°未満であれば、液体状態の第1封止樹脂4が外周部まで濡れ拡がった後側面に流出するのを抑制することができる。
 一方、90°以上の場合、側面まで濡れ拡がり、外形が大きくなるだけでなく、ケーブル用の接続端子15のはんだ接合を妨げる問題を生じる。
 さらにθ2を90°未満にすることにより、ケーブル用の接続端子15にケーブルを接続する場合、はんだのフィレット量を多くしても、固体撮像素子3の投影面積内に抑えることが容易になり、小型化とケーブル接続端子の信頼性を両立できる効果もある。
 (実施の形態6)
 図14、図15は、本発明の実施の形態6における固体撮像装置の断面図である。
 図16、図17は、本発明の実施の形態6において図14の波線Aでの固体撮像装置の平面図である。図16が封止前、図17が封止後の図である。
 図18は本発明の実施の形態6において図14の領域Bでの封止樹脂の濡れ広がりを示す断面図である。
 <構造>
 本発明の実施の形態6における固体撮像装置の構造は、図14、図15に示すように、固体撮像素子3があり、固体撮像素子3の一方の面には受光面3aが、もう一方の面には、第1接続端子9が複数個配置されている。
 受光面3aに対向するように透明部材1が、配置されており、接着剤2で固体撮像素子3と透明部材1を固定している。
 固体撮像素子3の裏面3cに対向するように、メイン基板8を配置しており、固体撮像素子3の第1接続端子9とメイン基板8の第2接続端子11とを突起電極10を介して、電気的に接続しており、第1封止樹脂4で固体撮像素子3とメイン基板8の接続部を固定している。
 そして、図17に示すように、第1封止樹脂4は、接合部の端部に形成された第1導体パターン25aの外側に流れ落ちることなく濡れ広がっている。
 ここで第1導体パターン25aは、メイン基板8と固体撮像素子3を接続する際に使用する実装機において、位置合わせの認識マークとしても使用される。第1導体パターン25aは、第2接続端子11とは異なる形状である。
 さらに、図15に示すように、メイン基板8と固体撮像素子3の接合部の両側に形成したキャビテイ7に電子部品6が複数個配置されている。電子部品6は、メイン基板8の第3接続端子17と接合材12を介して電気的に接続されている。
 また、メイン基板8には複数のケーブル用の第2接続端子14が形成されている。
 <製法>
 このような固体撮像装置は図19の工程により作製することができる。
 はじめに、図19の(a)に示すように、固体撮像素子3に第1接続端子9を形成し、固体撮像素子の受光面に透明部材1を配置し、接着剤2で固定する。
 一方で図19の(b)に示すように、キャビテイ7が形成されたメイン基板8に第1導体パターン25a、第2接続端子11、第3接続端子17、ケーブル用の第2接続端子14を形成する。
 第1導体パターン25aは、第2接続端子11、第3接続端子17、ケーブル用の第2接続端子14とともに同じプロセスで形成される。
 次に図19の(c)に示すように、第2接続端子11上に突起電極10を形成し、キャビテイ7の第3接続端子17上に電子部品6、接合材12を配置する。
 次に図19の(d)に示すように、加熱によって接合材12を溶融して、電子部品6と第3接続端子17を、接合材12を介して電気的に接続する。
 次に図19の(e)に示すように、メイン基板8の突起電極10が形成された面と固体撮像素子3の第1接続端子9が形成された面を向かいあわせで配置し、第1接続端子9と第2接続端子11とを突起電極10を介して電気的に接続する。
 最後に次に図19の(f)に示すように、第1接続端子9と第2接続端子11の接合部に第1封止樹脂4を封止して接続部を固定し、固体撮像装置が完成する。
 <動作>
 図14において、透明部材1を介して固体撮像素子3が受光面3aで受光し、電気信号に変換される。
 変換された電気信号は、固体撮像素子3と電気的に接続されているメイン基板8に伝送される。
 メイン基板8に伝送された電気信号は、メイン基板8と電気的に接続されている電子部品6に伝送される。
 電子部品6は、伝送された電気信号に対して電子部品6に組み込まれた処理を行い、再びメイン基板8に伝送する。
 全ての電子部品6を経由した後、電気信号をケーブル用の第2接続端子14から外部機器に伝送する。
 <各要素>
 なお、それぞれの部材のサイズは、メイン基板8が1mm×1mm×厚さ0.6mm、電子部品6が0.6mm×0.3mm×厚さ0.3mm以下、透明部材1が1mm×1mm×厚さ0.3mm、固体撮像素子3が1mm×1mm×厚さ0.1mmである。これらの寸法は、例示である。
 <電子部品6>
 電子部品6は、例えば、コンデンサであるが、抵抗器でも良い。
 <透明部材1>
 透明部材1は、透明な直方体形状の光学部材である。
 また、固体撮像装置の幅寸法を固体撮像素子3と同じにし、小型化するため、透明部材1の幅寸法は固体撮像素子3以下である。
 <固体撮像素子3>
 固体撮像素子3は、光を検出して電気信号に変換するCCDイメージセンサやCMOSイメージなどのことである。信号処理を行う回路が組み込まれていても良い。信号処理を行う機能を持つ素子と積層されていても良い。電気信号の授受を行うための第1接続端子9を備えている。
 <第1接続端子9,第2接続端子11>
 第1接続端子9、第2接続端子11は、例えばアルミニウムなどによって形成されているが、銅のようにアルミニウムよりも導電率が高い金属やタングステンを用いても良い。さらに、銅にニッケル/金めっき処理を施して酸化しにくい状態にしても良い。
 <ケーブル用の第2接続端子14>
 ケーブル用の第2接続端子14は、例えばアルミニウムなどによって形成されているが、銅のようにアルミニウムよりも導電率が高い金属やタングステンを用いても良い。さらに、銅にニッケル/金めっき処理を施して酸化しにくい状態にしても良い。
 <突起電極10>
 突起電極10は、例えば半田などによって形成されているが、銅や金のような金属を用いても良い。
 <メイン基板8>
 メイン基板8は、例えばセラミック基板などによって形成されているが、ビルドアップ基盤、アラミドエポキシ基板、ガラスエポキシ基板などを用いても良い。
 <キャビテイ7>
 キャビテイ7のサイズは、1.0mm×0.35mm×厚さ0.35mmであり、電子部品6がキャビテイ7内に収まることにより、固体撮像装置の幅寸法を固体撮像素子3の幅寸法と同じに保つことができる。
 キャビテイ7はメイン基板8の固体撮像素子3と接続されている面に2個、左右対称に形成されており、固体撮像素子3の放熱性が左右対称となることで、特性の面内バラつきを押さえることができる。
 <接着剤2>
 接着剤2は、紫外線硬化型等の透明な接着剤であり、幅寸法は固体撮像素子と同じかそれ以下である。
 <第1封止樹脂4>
 第1封止樹脂4は、エポキシ系の接着剤であり、幅寸法は固体撮像素子3よりと同じかそれ以下である。
 また、図16に示すように、メイン基板8の端部に第1導体パターン25aを形成することによって、図17と図18に示すように、第1封止樹脂4は接合部の端部に形成された第1導体パターン25aの外側に流れ落ちることを防いでいる。さらに第1導体パターン25aにめっき処理を施すことにより、第1導体パターン25aの端部まで第1封止樹脂4が濡れ広がり、フィレットCを形成している。
 また、第1封止樹脂4はメイン基板8の外側に流れ落ちなければ、キャビテイ7の領域に形成されていても良い。
 <第1導体パターン25a>
 第1導体パターン25aは、例えばアルミニウムなどによって形成されているが、銅のようにアルミニウムよりも導電率が高い金属やタングステンを用いても良い。さらに、銅にニッケル/金めっき処理を施して酸化しにくい状態にしても良い。
 また、第1導体パターン25aは、メイン基板8と固体撮像素子3を接続する際に使用する実装機において、位置合わせの認識マークとしても使用される。第1導体パターン25aの形状は第2接続端子11と異なる形状で、かつ、第1封止樹脂4がメイン基板8の外側に流れ落ちないような形状であることが望ましく、サイズは、長手方向が0.3mm×0.1mm、短手方向が0.15mm×0.1mmのコーナーマークとなる。
 (実施の形態7)
 図20は、本発明の実施の形態7における固体撮像装置の断面図であり、図21、図22は本発明の実施の形態7において図20の波線Aでの固体撮像装置の平面図で、図21が封止前、図22が封止後である。説明しない事項は実施の形態6と同様である。
 <構造>
 本発明の実施の形態7における固体撮像装置の構造は、図20に示すように、固体撮像素子3があり、固体撮像素子3の一方の面には受光面3aが、もう一方の面には、第1接続端子9が複数個配置されている。
 受光面3aに対向するように透明部材1が、配置されており、接着剤2で固体撮像素子3と透明部材1を固定している。
 固体撮像素子3の裏面3cに対向するように、メイン基板8を配置しており、固体撮像素子3の第1接続端子9とメイン基板8の第2接続端子11とを突起電極10を介して、電気的に接続しており、第1封止樹脂4で固体撮像素子3とメイン基板8の接続部を固定している。
 メイン基板8と固体撮像素子3の接合部の片側に形成したキャビテイ7に電子部品6が複数個配置されており、メイン基板8の第3接続端子17と接合材12を介して電気的に接続している。
 また、メイン基板8には複数のケーブル用の第2接続端子14が形成されている。
 <キャビテイ7>
 キャビテイ7のサイズは、1.0mm×0.7mm×厚さ0.35mmであり、電子部品6がキャビテイ7内に収まることにより、固体撮像装置の幅寸法を固体撮像素子3の幅寸法と同じに保つことができる。
 キャビテイ7は、メイン基板8の固体撮像素子3の第2接続端子11の片側に1個、形成されており、キャビテイ7の個数を減らすことでメイン基板8の製造工程を短縮することができる。
 <第1封止樹脂4>
 第1封止樹脂4は、エポキシ系の接着剤であり、幅寸法は固体撮像素子3と同じかそれ以下である。
 また、図21に示すように、メイン基板8と固体撮像素子3の第2接続端子11の端部に第1導体パターン25a、25bを形成し、キャビテイ7の端部に第2導体パターン25cを形成することによって、図22に示すように、第1封止樹脂4がメイン基板8の外側に流れ落ちることを防いでいる。第2導体パターン25cは、第3接続端子17と異なる形状である。
 なお、上記の実施の形態では、電子部品6を覆う樹脂は、第2封止樹脂5としている。第2導体パターン25cにより、広がりを防止される樹脂は、別の実施の形態では、第2封止樹脂5である。
 <第1導体パターン25a、25b、第2導体パターン25c>
 第1導体パターン25a、5b、第2導体パターン25cは、例えばアルミニウムなどによって形成されているが、銅のようにアルミニウムよりも導電率が高い金属やタングステンを用いても良い。さらに、銅にニッケル/金めっき処理を施して酸化しにくい状態にしても良い。
 第1導体パターン25a、25b、第2導体パターン25cは、第2接続端子11、第3接続端子17と同じ工程で形成するのが好ましい。
 また、第1導体パターン25a、5b、第2導体パターン25cは、メイン基板8と固体撮像素子3を接続する際に使用する実装機において、位置合わせの認識マークとしても使用される。第1導体パターン25a、25b、第2導体パターン25cの形状は第2接続端子11と異なる形状で、かつ、第1封止樹脂4がメイン基板8の外側に流れ落ちないような形状であることが望ましく、第1導体パターン25a、5bのサイズは、長手方向が0.3mm×0.1mm、短手方向が0.15mm×0.1mmのコーナーマークとなり、第1導体パターン25bのサイズは、0.1mm×0.08mmの長方形となり、第2導体パターン25cのサイズは、0.7mm×0.08mmの長方形となる。
 なお、実施の形態6の第1導体パターン25a,25bがなく、第2導体パターン25cだけ設けてもよい。
 なお、第1導体パターン25a、5b、第2導体パターン25cにより、固体撮像装置のある断面の周囲の端部を囲んでいる。封止樹脂が囲んでいる。
 (実施の形態8)
 図23、図24は、本発明の実施の形態8における固体撮像装置の平面図であり、図23が封止前、図24が封止後である。説明しない事項は実施の形態6、7と同様である。
 <第1封止樹脂4>
 第1封止樹脂4は、エポキシ系の接着剤であり、幅寸法は固体撮像素子3よりと同じかそれ以下である。
 また、図23に示すように、メイン基板8の端部に第1導体パターン25aを形成することによって、図24に示すように、第1封止樹脂4は接合部の端部に形成された第1導体パターン25aの外側に流れ落ちることを防いでいる。
 さらに第1導体パターン25aにめっき処理を施すことにより、導体パターン25の端部まで第1封止樹脂4が濡れ広がり、フィレットを形成している。
 ここで、第1導体パターン25aはメイン基板8と固体撮像素子3を接続する際に使用する実装機において、位置合わせの認識マークとしても使用される。第1導体パターン25aの形状は、第2接続端子11よりも大きな円形としている。
 また、第1封止樹脂4はメイン基板8の外側に流れ落ちなければ、キャビテイ7の領域に形成されていても良い。
 <第1導体パターン25a>
 第1導体パターン25aは、例えばアルミニウムなどによって形成されているが、銅のようにアルミニウムよりも導電率が高い金属やタングステンを用いても良い。さらに、銅にニッケル/金めっき処理を施して酸化しにくい状態にしても良い。
 また、第1導体パターン25aは、メイン基板8と固体撮像素子3を接続する際に使用する実装機において、位置合わせの認識マークとしても使用される。第1導体パターン25aの形状は第2接続端子11よりも大きな円形で、かつ、第1封止樹脂4がメイン基板8の外側に流れ落ちないような形状であることが望ましく、第2接続端子11のサイズが直径0.1mmであるのに対し、第1導体パターン25aのサイズは、直径0.2mmとなる。
 <効果>
 上記の構造のように、接続端子を受光面の裏面に形成することで、固体撮像素子の受光面占有率が上がり、固体撮像の性能効率を損なうことがなく、更に、接続端子の端部に形成された導体パターンによって封止樹脂がメイン基板の側面に流れ落ちることなくメイン基板の端部までフィレットを形成することで、信頼性が高く、小型で高性能な固体撮像装置を提供することができる。
 (全体として)
 実施の形態1~8は組み合わせできる。
 本開示の固体撮像装置は、小型の固体撮像装置として広く利用される。例えば、内視鏡固体撮像装置として利用される。
1 透明部材
2 接着剤
3 固体撮像素子
3a 受光面
3b 貫通ビア
3c 裏面
4 第1封止樹脂
5 第2封止樹脂
5a テーパー部
6 電子部品
7 キャビテイ
8 メイン基板
8a 突起部
8b ベース部
8c 第1切り欠き部
8d 第2切り欠き部
9 第1接続端子
A 波線
B 領域
C フィレット
10 突起電極
11 第2接続端子
12 接合材
13 突起電極
14 第2接続端子
17 第3接続端子
15 接続端子
16 接続端子
23 接合材料
25 導体パターン
25a 第1導体パターン
25b 第1導体パターン
25c 第2導体パターン
26 第3封止樹脂
32 接続端子
w1 幅
w2 幅
w3 幅
w4 幅
101 透明部材
103 固体撮像素子
104 封止樹脂
110 突起電極
112 リード

Claims (26)

  1. 固体撮像素子と、
    前記固体撮像素子の受光面とは反対側の面に接続されたメイン基板と、
    前記メイン基板に実装された電子部品と、
    前記固体撮像素子と前記メイン基板間に位置する封止樹脂と、を含む固体撮像装置。
  2. 前記固体撮像素子の受光面側から見た前記メイン基板の外縁は、前記固体撮像素子の外縁内に収まっており、
    前記固体撮像素子の受光面側から見た前記封止樹脂の外縁は、前記固体撮像素子の外縁内に収まっている請求項1記載の固体撮像装置。
  3. 前記固体撮像素子の受光面に接着材で固定される透明部材をさらに備え、
    前記固体撮像素子の受光面側から見た前記透明部材の外縁は、前記固体撮像素子の外縁内に収まっており、
    前記固体撮像素子の受光面側から見た前記接着材の外縁は、前記固体撮像素子の外縁内に収まっている請求項1または2に記載の固体撮像装置。
  4. 前記メイン基板は、前記固体撮像素子と接続される突起部と、前記突起部を支え、前記電子部品が実装されたベース部とを有する請求項1~3のいずれか1項に記載の固体撮像装置。
  5. 前記受光面に形成された配線と、前記反対側の面に形成された配線とは、電気的に繋がっている請求項1~4のいずれか1項に記載の固体撮像装置。
  6. 前記メイン基板には、前記固体撮像素子の受光面側から見て、左右に前記電子部品が実装されるための空間であるキャビテイが形成されている請求項1~5のいずれか1項に記載の固体撮像装置。
  7. 前記封止樹脂は、第1封止樹脂と第2封止樹脂との積層体であり、
    前記固体撮像素子側の前記第1封止樹脂と前記メイン基板の側の前記第2封止樹脂とを有し、
    前記第1封止樹脂と前記第2封止樹脂との境界面は、前記固体撮像装置の内部から外部へ、前記第1封止樹脂の厚みが薄くなり、傾斜している請求項1~6のいずれか1項に記載の固体撮像装置。
  8. 前記封止樹脂は、第1封止樹脂と第2封止樹脂との積層体であり、
    前記固体撮像素子側の前記第1封止樹脂と前記メイン基板の側の前記第2封止樹脂とを有し、
    前記第1封止樹脂と前記第2封止樹脂とは非接触である請求項1~6のいずれか1項に記載の固体撮像装置。
  9. 前記第1封止樹脂は、前記固体撮像素子と前記メイン基板とを接続する接続電極を覆っている請求項7または8記載の固体撮像装置。
  10. 前記第2封止樹脂は、前記部品を封止している請求項7~9のいずれか1項に記載の固体撮像装置。
  11. 前記第2封止樹脂は、前記第1封止樹脂より放熱性が高い、請求項7~10のいずれか1項に記載の固体撮像装置。
  12. 前記第2封止樹脂は、前記第1封止樹脂より柔軟である、請求項7~11のいずれか1項に記載の固体撮像装置。
  13. 前記第1封止樹脂は、太鼓形状である請求項7~12のいずれか1項に記載の固体撮像装置。
  14. 前記電子部品と前記固体撮像素子とを接続する第3封止樹脂がある請求項1~13のいずれか1項に記載の固体撮像装置。
  15. 前記突起部のコーナに凹形状の第1切り欠き部がある請求項5~14のいずれか1項に記載の固体撮像装置。
  16. 前記封止樹脂は、前記第1切り欠き部より前記固体撮像装置の側面へはみ出さない請求項15記載の固体撮像装置。
  17. 前記ベース部のコーナに凹形状の第2切り欠き部がある請求項15または16に記載の固体撮像装置。
  18. 前記電子部品は、前記ベースに配置され、前記電子部品を封止する第2封止樹脂があり、前記第2封止樹脂は、前記第2切り欠き部より固体撮像装置の側面へはみ出さない請求項17に記載の固体撮像装置。
  19.  前記突起部の上面と側面のなす角と、前記ベース部の上面と側面のなす角との少なくとも1方が90°未満である請求項5~18のいずれか1項に記載の固体撮像装置。
  20. 前記固体撮像素子は、電気信号の授受を行うための第1接続端子を受光面に対して裏面に有し、
    前記メイン基板は、前記固体撮像素子との電気的接続をするための第2接続端子を有し、
    前記第2接続端子の端部に形成された第1導体パターンと、
    を含む請求項1~19のいずれか1項に記載の固体撮像装置。
  21. 前記第2接続端子と、前記第1導体パターンとの形状が異なる請求項20記載の固体撮像装置。
  22. 前記封止樹脂が、前記第1導体パターン上に濡れ広がっているが、前記固体撮像装置の側面にはみ出していない請求項20または21記載の固体撮像装置。
  23. 前記第1導体パターンは、前記メイン基板と固体撮像素子との位置合わせの認識マークである請求項20~22のいずれか1項に記載の固体撮像装置。
  24. 前記電子部品が実装される前記メイン基板に位置する第3接続端子の端部に形成された第2導体パターンと、
    前記電子部品を覆う封止樹脂と、
    を含む請求項1~23のいずれか1項に記載の固体撮像装置。
  25. 前記封止樹脂が、前記第2導体パターン上に濡れ広がっている請求項24記載の固体撮像装置。
  26. 前記封止樹脂が、前記第2導体パターン上に濡れ広がっているが、前記固体撮像装置の側面にはみ出していない請求項24または25記載の固体撮像装置。
PCT/JP2018/036629 2017-10-20 2018-10-01 固体撮像装置 WO2019077980A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP18867857.7A EP3700196B1 (en) 2017-10-20 2018-10-01 Solid-state imaging device
CN201880060819.3A CN111108744B (zh) 2017-10-20 2018-10-01 固体摄像装置
US16/803,551 US11381767B2 (en) 2017-10-20 2020-02-27 Solid-state imaging device having electronic components mounted between a main substrate and an imaging element

Applications Claiming Priority (8)

Application Number Priority Date Filing Date Title
JP2017-203532 2017-10-20
JP2017203532 2017-10-20
JP2018125684A JP7149489B2 (ja) 2018-07-02 2018-07-02 固体撮像装置
JP2018-125685 2018-07-02
JP2018125685A JP7162238B2 (ja) 2018-07-02 2018-07-02 固体撮像装置
JP2018-125684 2018-07-02
JP2018-126476 2018-07-03
JP2018126476A JP7270225B2 (ja) 2017-10-20 2018-07-03 固体撮像装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/803,551 Continuation US11381767B2 (en) 2017-10-20 2020-02-27 Solid-state imaging device having electronic components mounted between a main substrate and an imaging element

Publications (1)

Publication Number Publication Date
WO2019077980A1 true WO2019077980A1 (ja) 2019-04-25

Family

ID=66172956

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036629 WO2019077980A1 (ja) 2017-10-20 2018-10-01 固体撮像装置

Country Status (1)

Country Link
WO (1) WO2019077980A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110112158A (zh) * 2019-05-05 2019-08-09 豪威科技(上海)有限公司 背照式图像传感器芯片及其制作方法、内窥镜探测头

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001017389A (ja) 1999-07-07 2001-01-23 Olympus Optical Co Ltd 固体撮像装置
WO2016129409A1 (ja) * 2015-02-13 2016-08-18 ソニー株式会社 撮像素子、製造方法、および電子機器
JP2017094044A (ja) * 2015-11-20 2017-06-01 オリンパス株式会社 半導体装置の製造方法、半導体装置、および内視鏡

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001017389A (ja) 1999-07-07 2001-01-23 Olympus Optical Co Ltd 固体撮像装置
WO2016129409A1 (ja) * 2015-02-13 2016-08-18 ソニー株式会社 撮像素子、製造方法、および電子機器
JP2017094044A (ja) * 2015-11-20 2017-06-01 オリンパス株式会社 半導体装置の製造方法、半導体装置、および内視鏡

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3700196A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110112158A (zh) * 2019-05-05 2019-08-09 豪威科技(上海)有限公司 背照式图像传感器芯片及其制作方法、内窥镜探测头

Similar Documents

Publication Publication Date Title
US9455358B2 (en) Image pickup module and image pickup unit
US8698887B2 (en) Image pickup apparatus, endoscope and manufacturing method for image pickup apparatus
JP6068649B2 (ja) 電子素子実装用基板および電子装置
JP6021618B2 (ja) 撮像装置、内視鏡及び撮像装置の製造方法
JP2008092417A (ja) 半導体撮像素子およびその製造方法並びに半導体撮像装置および半導体撮像モジュール
JP2009088510A (ja) ガラスキャップモールディングパッケージ及びその製造方法、並びにカメラモジュール
US10356907B2 (en) Endoscope, electronic unit and method for manufacturing electronic unit
CN109863601B (zh) 摄像模块
JP6124505B2 (ja) 撮像モジュール
US10381393B2 (en) Image pickup apparatus and method for manufacturing image pickup apparatus
JP6081170B2 (ja) 撮像装置、内視鏡及び撮像装置の製造方法
WO2019077980A1 (ja) 固体撮像装置
CN111108744B (zh) 固体摄像装置
JP2006245359A (ja) 光電変換装置及びその製造方法
JP7162238B2 (ja) 固体撮像装置
JP2011029523A (ja) 電子部品収納用パッケージおよび電子装置
JP2004254037A (ja) 撮像装置
JP2019080301A (ja) 固体撮像装置
JP7149489B2 (ja) 固体撮像装置
JP6606008B2 (ja) 撮像素子実装用基板、撮像装置および撮像モジュール
WO2018216092A1 (ja) 撮像モジュールおよび内視鏡
JP2010205915A (ja) 半導体装置
JP2011096952A (ja) 回路装置およびその製造方法
JP2011044535A (ja) 半導体素子の実装構造
JP2009246265A (ja) 半導体パッケージ基板

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18867857

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018867857

Country of ref document: EP

Effective date: 20200520