WO2019076384A1 - 一种高倍数耐盐性高吸水树脂 - Google Patents

一种高倍数耐盐性高吸水树脂 Download PDF

Info

Publication number
WO2019076384A1
WO2019076384A1 PCT/CN2018/111574 CN2018111574W WO2019076384A1 WO 2019076384 A1 WO2019076384 A1 WO 2019076384A1 CN 2018111574 W CN2018111574 W CN 2018111574W WO 2019076384 A1 WO2019076384 A1 WO 2019076384A1
Authority
WO
WIPO (PCT)
Prior art keywords
salt
superabsorbent resin
tolerant
water absorption
magnesity
Prior art date
Application number
PCT/CN2018/111574
Other languages
English (en)
French (fr)
Inventor
夏振华
刘清白
Original Assignee
安徽富瑞雪化工科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 安徽富瑞雪化工科技股份有限公司 filed Critical 安徽富瑞雪化工科技股份有限公司
Publication of WO2019076384A1 publication Critical patent/WO2019076384A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F220/00Copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and only one being terminated by only one carboxyl radical or a salt, anhydride ester, amide, imide or nitrile thereof
    • C08F220/02Monocarboxylic acids having less than ten carbon atoms; Derivatives thereof
    • C08F220/04Acids; Metal salts or ammonium salts thereof
    • C08F220/06Acrylic acid; Methacrylic acid; Metal salts or ammonium salts thereof

Definitions

  • the invention relates to the technical field of polymer materials, in particular to a super absorbent resin.
  • superabsorbent resin is widely used in various fields of life and industry as a new type of functional polymer material, for example, it has been widely used in medical and health, agriculture, forestry, horticulture and desert management. Since the early 1980s, superabsorbent resins have been used as an absorbent for artificial body fluids in physiological and hygienic materials. Among them, the largest amount is the water-absorbent resin for sanitary napkins for infants and women. Among them, 80%-85% of the output is applied to sanitary products as human body fluids, especially the most important absorbent materials for urine.
  • the water absorption process of the superabsorbent resin is a complicated process, and the hydrophilic ion is a driving factor for the superabsorbent resin to complete the water absorption process, and the resin network structure is a structural factor capable of absorbing a large amount of water.
  • the polymer network Before water absorption, the polymer network is a solid-state network, which is not ionized into an ion pair.
  • the hydration of hydrophilic groups and water molecules causes the polymer network to expand, resulting in a difference in the concentration of ions inside and outside the network, resulting in a network structure.
  • the osmotic pressure is generated outside, and the water molecules penetrate into the network structure under the action of osmotic pressure. Therefore, when the adsorbed water contains a salt, the osmotic pressure is lowered and the water absorbing ability is lowered.
  • human urine and blood components are complex, and mainly contain urea and various inorganic salt ions such as Cl-, Na+, K+, and SO42-. All kinds of ionic components have a great influence on the water absorbing ability of the super absorbent resin, and the liquid absorbing ratio of the super absorbent resin is greatly reduced.
  • the present invention is directed to solving the problems described above.
  • the object of the present invention is to provide a high-magnesity salt-tolerant superabsorbent resin which can increase the water absorption ratio of saturated saline, blood and urine, and the water absorption ratio of the water is more than 100 times, and the saturated deionized water reaches 900 times or more.
  • the present invention provides a high-magnesity salt-tolerant superabsorbent resin comprising the following components, the contents of each component being expressed as follows:
  • the water absorption aid is one or two of K12 or sodium dodecylbenzenesulfonate.
  • the high-magnesity salt-tolerant superabsorbent resin contains the following components, and the content of each component is expressed as follows:
  • the water absorption aid is one or two of K12 or sodium dodecylbenzenesulfonate.
  • the high-magnesity salt-tolerant superabsorbent resin contains the following components, and the content of each component is expressed as follows:
  • the sorption brine monomer comprises one or more of acrylamide, acrylonitrile, 2-acrylamido-2-methylpropanesulfonic acid.
  • the initiator is one or more of ammonium persulfate, sodium persulfate, potassium persulfate, and sodium hydrogen sulfite.
  • the crosslinking agent is N,N'-methylbisacrylamide.
  • the water absorbing aid may also be one or more of other anionic surfactants.
  • the high-magnesity salt-tolerant superabsorbent resin of the present invention comprises the following components: acrylic acid, sodium hydroxide, a swellable brine monomer, an initiator, a crosslinking agent, a water absorption aid, and water.
  • Acrylic acid is a main component of the high-magnesity salt-tolerant superabsorbent resin of the present invention, and has good water absorbability, but has poor salt tolerance. Therefore, in the present invention, the ratio and material selection of each component are strictly controlled to overcome the resistance of acrylic acid. The disadvantage of poor saltability results in a highly water-absorbent resin having high salt tolerance.
  • the initiator has a small content of the initiator, resulting in a low activity center of the superabsorbent resin, a slow polymerization rate, a low degree of crosslinking, a decrease in the liquid absorption rate, and an initiator content.
  • the content of the initiator in the present invention is 0.02 to 0.5 part by weight, preferably 0.1 to 0.45 part by weight, more preferably 0.2 to 0.4 part by weight.
  • the initiator in the present invention is ammonium persulfate, sodium persulfate, potassium persulfate, sodium hydrogen sulfite or other redox initiator.
  • the water-absorbing aid has a strong water absorption property and can absorb water of thousands of times its own mass.
  • the inventors have found that the addition of a water absorbing aid to a superabsorbent resin has an unexpected effect, and prior to this, there is no precedent for adding a water absorbing aid to a superabsorbent resin, and the present invention broadens the development direction of the superabsorbent resin.
  • K12 or sodium dodecylbenzenesulfonate is selected as the water absorption aid, and the absorption multiple of the saturated water-absorbing saturated saline solution of the superabsorbent resin can be improved without reducing the absorption multiple of the absorbed deionized water.
  • the content of the water absorbing aid in the present invention is from 0.1 to 1.0 part by weight, preferably from 0.2 to 0.8 part by weight, more preferably from 0.4 to 0.6 part by weight.
  • the sorption of brine monomer is mainly used for improving the resistance of the superabsorbent resin to inorganic salt ions such as Cl-, Na+, K+, SO42-, etc.
  • the water absorption rate of a complex liquid such as human urine or blood.
  • the boll-aid brine monomer of the present invention comprises one or more of acrylamide, acrylonitrile and 2-acrylamido-2-methylpropanesulfonic acid, and the content of the auxiliary brine-absorbing monomer of the present invention is 2-12.
  • the parts by weight are preferably 4 to 10 parts by weight, more preferably 5 to 10 parts by weight.
  • sodium hydroxide is neutralized with acrylic acid to form sodium acrylate, and then copolymerized with acrylic acid and a salt-resistant monomer to form a super absorbent resin.
  • the amount of sodium hydroxide added is small, the water absorption ratio of the super absorbent resin increases as the amount of sodium hydroxide increases until the peak value is reached, and the water absorption ratio of the super absorbent resin continues to increase with the addition amount of sodium hydroxide.
  • the content of sodium hydroxide of the present invention is from 15 to 45 parts by weight, preferably from 18 to 42 parts by weight, more preferably from 20 to 40 parts by weight.
  • the cross-linking agent is to increase the strength of the superabsorbent resin after water absorption without being dissolved by water.
  • the crosslinking agent is N,N'-methylenebisacrylamide, which helps the superabsorbent resin to form an interpenetrating network structure, thereby improving its salt tolerance, and the water absorption rate of 0.9% sodium chloride physiological saline. Reached 100 times.
  • the content of the crosslinking agent in the present invention is from 0.02 to 0.5 part by weight, preferably from 0.05 to 0.45 part by weight, more preferably from 0.1 to 0.4 part by weight.
  • the high-magnesity salt-tolerant superabsorbent resin provided by the present invention will be explained in detail by way of specific examples.
  • a high-magnesity salt-tolerant superabsorbent resin containing the following components, the contents of each component being expressed as follows:
  • the high-magnification salt-tolerant superabsorbent resin of Example 1 has a water absorption multiple of 930 times, a salt water absorption ratio of 105 times, a urine water absorption multiple of 98 times, a blood water absorption multiple of 95 times, and good salt tolerance.
  • a high-magnesity salt-tolerant superabsorbent resin containing the following components, the contents of each component being expressed as follows:
  • the high-magnification salt-tolerant superabsorbent resin of Example 2 has a water absorption ratio of 985 times, a water absorption multiple of 98 times, a urine absorption ratio of 96 times, and a blood absorption ratio of 93 times, and improves the salt tolerance of the super absorbent resin. At the same time, to a greater extent, avoid reducing the water absorption multiple of deionized water.
  • a high-magnesity salt-tolerant superabsorbent resin containing the following components, the contents of each component being expressed as follows:
  • the high-magnification salt-tolerant superabsorbent resin of Example 3 has a water absorption multiple of 900 times, a salt water absorption multiple of 105 times, a urine water absorption multiple of 112 times, a blood water absorption multiple of 103 times, and a high water absorption resin absorbs urine and blood. Better results.
  • the water absorption aid in the examples of the present invention is one or two of K12 or sodium dodecylbenzenesulfonate.
  • the sorption brine monomer includes one or more of acrylamide, acrylonitrile, 2-acrylamido-2-methylpropanesulfonic acid.
  • the initiator is one or more of ammonium persulfate, sodium persulfate, potassium persulfate, and sodium hydrogen sulfite.
  • the crosslinking agent is N,N'-methylenebisacrylamide.
  • the water absorbing aid may also be one or more of other anionic surfactants.
  • Table 1 shows the water absorption parameters of some embodiments of the present invention.
  • the present invention uses artificially prepared artificial blood and artificial urine instead of blood and urine, and the specific formula is as follows:
  • the invention improves the water absorption multiple of saturated saline, blood and urine by controlling the ratio and the selection of acrylic acid, sodium hydroxide, sorption brine monomer, initiator, crosslinking agent, water absorption aid and water, and the water absorption of the salt water
  • the multiple is more than 100 times, and the saturated deionized water reaches 900 times or more. It is especially suitable for adult diapers and sanitary napkins.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Addition Polymer Or Copolymer, Post-Treatments, Or Chemical Modifications (AREA)

Abstract

一种高倍数耐盐性高吸水树脂,含有下述组分,各组分的含量表示如下:丙烯酸为100份重量份、氢氧化钠为15~45份重量份、助吸盐水单体为2~12份重量份、引发剂为0.02~0.5份重量份、交联剂为0.02~0.5份重量份、吸水助剂为0.1~1.0份重量份、水为150~250份重量份,其中,吸水助剂为K12或十二烷基苯磺酸钠的一种或二种。

Description

一种高倍数耐盐性高吸水树脂
本申请要求在2018年7月25日提交中国专利局、申请号为201810823749.4、发明名称为“一种高倍数耐盐性高吸水树脂”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及高分子材料技术领域,尤其涉及一种高吸水树脂。
背景技术
目前高吸水树脂作为一类新型的功能性高分子材料广泛的应用在生活和工业各个领域,例如在医药卫生、农林园艺、荒漠治理等方面获得了广泛的应用。从80年代初期开始,高吸水树脂应用在生理卫生材料中作为人工体液的吸收载体,其中,用量最大的是在婴儿和妇女卫生巾用吸水树脂。其中80%-85%的产量应用于卫生用品作为人的体液,特别是尿液的最主要吸收材料。
高吸水树脂的吸水过程是一个很复杂的过程,亲水离子是高吸水树脂能够完成吸水过程的动力因素,树脂的网络结构是能够吸收大量水的结构因素。吸水前,高分子网络是固态网束,未电离成离子对,吸水时亲水基与水分子的水合作用使得高分子网束扩张,产生网内、外离子浓度差,从而造成网络结构内、外产生渗透压,水分子在渗透压的作用下向网络结构内部渗透。因此,被吸附水中含有盐时,渗透压降低,吸水能力降低。
但是,人的尿液、血液成分复杂,主要含有尿素和各种无机盐离子,如Cl-、Na+、K+、SO42-等。各种离子成分均会对高吸水树脂的吸水能力产生较大的影响,表现为高吸水树脂的吸液倍率大幅度下降。
因此,提供一种提高耐盐性,大量吸收盐水、血液、尿液等含有其它无机盐离子的液体的高吸水性树脂成为业界急需解决的技术问题。
发明内容
本发明旨在解决上面描述的问题。本发明的目的是提供一种高倍数耐盐性高吸水树脂, 其提高饱和吸盐水、血液和尿液的吸水倍数,其吸盐水倍数达到100倍以上,饱和吸去离子水达到900倍以上。
本发明提供一种高倍数耐盐性高吸水树脂,含有下述组分,各组分的含量表示如下:
Figure PCTCN2018111574-appb-000001
其中,吸水助剂为K12或十二烷基苯磺酸钠的一种或二种。
可选择地,高倍数耐盐性高吸水树脂含有下述组分,各组分的含量表示如下:
Figure PCTCN2018111574-appb-000002
其中,吸水助剂为K12或十二烷基苯磺酸钠的一种或二种。
可选择地,高倍数耐盐性高吸水树脂含有下述组分,各组分的含量表示如下:
Figure PCTCN2018111574-appb-000003
可选择地,助吸盐水单体包括丙烯酰胺、丙烯腈、2-丙烯酰氨基-2-甲基丙磺酸中的一种 或多种。
可选择地,引发剂为过硫酸铵、过硫酸钠、过硫酸钾、亚硫酸氢钠中的一种或多种。
可选择地,交联剂为N,N′-甲基双丙烯酰胺。
可选择地,吸水助剂也可以为其它阴离子表面活性剂中的一种或以上。
本发明的高倍数耐盐性高吸水树脂包括组分如下:丙烯酸、氢氧化钠、助吸盐水单体、引发剂、交联剂、吸水助剂以及水。
丙烯酸作为本发明的高倍数耐盐性高吸水树脂的主要组分,其具有良好的吸水性,但耐盐性差,因此本发明中对各组分的配比和选材进行严格控制,克服丙烯酸耐盐性差的缺点,得到了耐盐性高的高吸水树脂。
引发剂作为本发明的高倍数耐盐性高吸水树脂的重要组分,引发剂含量少导致高吸水树脂的活性中心少、聚合速度慢、交联度低、吸液率下降,引发剂含量过多,在吸液过程中会发生其它副交联反应导致交联度过大,易发生爆聚,吸液率降低。因此,本发明中引发剂的含量为0.02~0.5份重量份,优选0.1~0.45份重量份,进一步优选0.2~0.4份重量份。本发明中的引发剂为过硫酸铵、过硫酸钠、过硫酸钾、亚硫酸氢钠或其它氧化还原引发剂。
吸水助剂作为本发明的高倍数耐盐性高吸水树脂的重要组分,具有很强的吸水性,可吸收其自身质量上千倍的水。发明人发现在高吸水树脂中加入吸水助剂具有意想不到的效果,在此之前没有在高吸水树脂中加入吸水助剂的先例,本发明拓宽了高吸水树脂的发展方向。本发明中选用K12或十二烷基苯磺酸钠作为吸水助剂,能够在提高高吸水树脂饱和吸水饱和吸盐水的吸水倍数的同时不降低吸收去离子水的吸收倍数。本发明中吸水助剂的含量为0.1~1.0份重量份,优选地0.2~0.8份重量份,更优选地0.4~0.6份重量份。
助吸盐水单体作为本发明的高倍数耐盐性高吸水树脂的重要组分,主要用于提高高吸水树脂对于Cl-、Na+、K+、SO42-等无机盐离子的耐受性,提高对于人的尿液、血液等成分复杂的液体的吸水倍率。本发明的助吸盐水单体包括丙烯酰胺、丙烯腈,2-丙烯酰氨基-2-甲基丙磺酸中的一种或多种,本发明的助吸盐水单体的含量为2~12份重量份,优选地4~10份重量份,更优选地5~10份重量份。
氢氧化钠作为本发明的高倍数耐盐性高吸水树脂的重要组分,与丙烯酸中和反应生成丙烯酸钠,然后与丙烯酸、耐盐水单体共聚生成高吸水性树脂。氢氧化钠加入量较少时,高吸水树脂的吸水倍率随着氢氧化钠的加入量增大而增大直到达到峰值,高吸水树脂的吸水倍率随着氢氧化钠的加入量继续增大而降低,这是由于高吸水树脂中的游离羧酸根少,因此吸水 倍率低,氢氧化钠用量增大,游离羧酸根变多,因此吸水倍率升高,氢氧化钠用量过大会影响高吸水树脂的交联程度,使高吸水树脂的水溶性增大而吸水倍率降低。因此,本发明的氢氧化钠的含量为15~45份重量份,优选地18~42份重量份,更优选地20~40份重量份。
不同的交联剂对高吸水树脂的性能有很大影响,交联剂的目的是提高高吸水树脂吸水后的强度,不致被水溶解。本发明中选用交联剂为N,N′-亚甲基双丙烯酰胺,有助于高吸水树脂形成互穿型网络结构,从而提高其耐盐性,0.9%氯化钠生理盐水的吸水率达到100倍。本发明中交联剂的含量为0.02~0.5份重量份,优选地0.05~0.45份重量份,更优选地0.1~0.4份重量份。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互任意组合。
下面将通过具体实施例的方式详细解释本发明提供的高倍数耐盐性高吸水树脂
实施例1
一种高倍数耐盐性高吸水树脂,含有下述组分,各组分的含量表示如下:
Figure PCTCN2018111574-appb-000004
实施例1的高倍数耐盐性高吸水树脂去离子水吸水倍数为930倍,盐水吸水倍数为105倍,尿液吸水倍数98倍,血液吸水倍数95倍,具有良好的耐盐性。
实施例2
一种高倍数耐盐性高吸水树脂,含有下述组分,各组分的含量表示如下:
Figure PCTCN2018111574-appb-000005
实施例2的高倍数耐盐性高吸水树脂去离子水吸水倍数为985倍,盐水吸水倍数为98倍,尿液吸水倍数96倍,血液吸水倍数93倍,在提高高吸水树脂耐盐性的同时更大程度的避免减少去离子水的吸水倍数。
实施例3
一种高倍数耐盐性高吸水树脂,含有下述组分,各组分的含量表示如下:
Figure PCTCN2018111574-appb-000006
实施例3的高倍数耐盐性高吸水树脂去离子水吸水倍数为900倍,盐水吸水倍数为105倍,尿液吸水倍数112倍,血液吸水倍数103倍,高吸水树脂吸收尿液、血液的效果更好。
其中,本发明实施例中的吸水助剂为K12或十二烷基苯磺酸钠的一种或二种。助吸盐水单体包括丙烯酰胺、丙烯腈,2-丙烯酰氨基-2-甲基丙磺酸中的一种或多种。引发剂为过硫酸铵、过硫酸钠、过硫酸钾、亚硫酸氢钠中的一种或多种。交联剂为N,N′-亚甲基双丙烯酰胺。吸水助剂也可以为其它阴离子表面活性剂中的一种或以上。
下面进一步通过列表的方式,给出本发明部分实施例中不同组分的高倍数耐盐性高吸水树脂的参数。表1示出了本发明的部分实施例的吸水参数。
表1A
Figure PCTCN2018111574-appb-000007
表1B
Figure PCTCN2018111574-appb-000008
Figure PCTCN2018111574-appb-000009
其中,本发明使用人工配制的人工血、人工尿代替血和尿液,具体配方如下:
人工血:去离子水88.14%,甘油10.0%,氯化钠1.0%,碳酸钠0.4%,羟甲基纤维素0.46%。
人工尿:去离子水97.09%,尿素1.94%,氯化钠0.8%,七水合硫酸镁0.11%,氯化钙0.06%。
盐水:0.9%氯化钠生理盐水。
最后应说明的是:在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包含一系列要素的过程、方法、物品或者设备不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者设备所固有的要素。在没有更多限制的情况下,由语句“包括一个…”限定的要素,并不排除在包括所述要素的过程、方法、物品或者设备中还存在另外的相同要素。
以上实施例仅用以说明本发明的技术方案,而非对其限制。尽管参照前述实施例对本发 明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。
工业实用性
本发明通过控制丙烯酸、氢氧化钠、助吸盐水单体、引发剂、交联剂、吸水助剂以及水的配比和选材,提高饱和吸盐水、血液和尿液的吸水倍数,其吸盐水倍数达到100倍以上,饱和吸去离子水达到900倍以上,特别适用于成人用纸尿裤和卫生巾。

Claims (7)

  1. 一种高倍数耐盐性高吸水树脂,其特征在于,所述高倍数耐盐性高吸水树脂含有下述组分,各组分的含量表示如下:
    Figure PCTCN2018111574-appb-100001
    其中,所述吸水助剂为K12或十二烷基苯磺酸钠的一种或二种。
  2. 根据权利要求1所述的高倍数耐盐性高吸水树脂,其特征在于,所述高倍数耐盐性高吸水树脂含有下述组分,各组分的含量表示如下:
    Figure PCTCN2018111574-appb-100002
    其中,所述吸水助剂为K12或十二烷基苯磺酸钠的一种或二种。
  3. 根据权利要求1所述的高倍数耐盐性高吸水树脂,其特征在于,所述高倍数耐盐性高吸水树脂含有下述组分,各组分的含量表示如下:
    Figure PCTCN2018111574-appb-100003
    Figure PCTCN2018111574-appb-100004
    其中,所述吸水助剂为K12或十二烷基苯磺酸钠的一种或二种。
  4. 根据权利要求1~3中任一项所述的高倍数耐盐性高吸水树脂,其特征在于,所述助吸盐水单体包括丙烯酰胺、丙烯腈、2-丙烯酰氨基-2-甲基丙磺酸中的一种或多种。
  5. 根据权利要求4所述的高倍数耐盐性高吸水树脂,其特征在于,所述引发剂为过硫酸铵、过硫酸钠、过硫酸钾、亚硫酸氢钠中的一种或多种。
  6. 根据权利要求5所述的高倍数耐盐性高吸水树脂,其特征在于,所述交联剂为N,N′-亚甲基双丙烯酰胺。
  7. 根据权利要求1所述的高倍数耐盐性高吸水树脂,其特征在于,所述吸水助剂也可以为其它阴离子表面活性剂中的一种或以上。
PCT/CN2018/111574 2018-07-25 2018-10-24 一种高倍数耐盐性高吸水树脂 WO2019076384A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810823749.4A CN109111544B (zh) 2018-07-25 2018-07-25 一种高倍数耐盐性高吸水树脂
CN201810823749.4 2018-07-25

Publications (1)

Publication Number Publication Date
WO2019076384A1 true WO2019076384A1 (zh) 2019-04-25

Family

ID=64863177

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/111574 WO2019076384A1 (zh) 2018-07-25 2018-10-24 一种高倍数耐盐性高吸水树脂

Country Status (2)

Country Link
CN (1) CN109111544B (zh)
WO (1) WO2019076384A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110229256A (zh) * 2019-06-11 2019-09-13 安徽富瑞雪化工科技股份有限公司 一种高吸水性树脂的生产方法
CN111215039B (zh) * 2019-11-21 2023-06-09 怡佳(福建)卫生用品股份有限公司 一种纸尿裤用吸附材料及其制备方法与应用
CN113683718B (zh) * 2021-08-13 2022-12-09 浙江工业大学 一种适用于卫生用品的低反渗高吸水性树脂的制备方法
CN114316107B (zh) * 2022-01-07 2023-08-18 安徽富瑞雪化工科技股份有限公司 一种高吸水性树脂的新型生产方法

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101486781A (zh) * 2008-01-16 2009-07-22 成都理工大学 一种反相微乳液法高吸水树脂的制备方法
CN102161725A (zh) * 2011-01-11 2011-08-24 中国海洋石油总公司 一种聚丙烯酸高吸水性树脂的制备与改性方法
CN104744711A (zh) * 2015-03-25 2015-07-01 华南理工大学 一种高白度丙烯酸高吸水树脂及其制备方法
CN106280163A (zh) * 2015-05-26 2017-01-04 湖北乾峰新材料科技有限公司 一种耐盐性丙烯酸系高吸水树脂的制备方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5647625B2 (ja) * 2009-12-24 2015-01-07 株式会社日本触媒 ポリアクリル酸系吸水性樹脂粉末及びその製造方法
CN103910896B (zh) * 2014-04-08 2016-03-30 万华化学集团股份有限公司 一种低返渗高分子吸水树脂的制备方法
CN104327209A (zh) * 2014-11-25 2015-02-04 江苏达胜加速器制造有限公司 一种卫生材料用高吸水树脂的制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101486781A (zh) * 2008-01-16 2009-07-22 成都理工大学 一种反相微乳液法高吸水树脂的制备方法
CN102161725A (zh) * 2011-01-11 2011-08-24 中国海洋石油总公司 一种聚丙烯酸高吸水性树脂的制备与改性方法
CN104744711A (zh) * 2015-03-25 2015-07-01 华南理工大学 一种高白度丙烯酸高吸水树脂及其制备方法
CN106280163A (zh) * 2015-05-26 2017-01-04 湖北乾峰新材料科技有限公司 一种耐盐性丙烯酸系高吸水树脂的制备方法

Also Published As

Publication number Publication date
CN109111544B (zh) 2020-09-01
CN109111544A (zh) 2019-01-01

Similar Documents

Publication Publication Date Title
WO2019076384A1 (zh) 一种高倍数耐盐性高吸水树脂
JP5599513B2 (ja) ポリアクリル酸(塩)系吸水性樹脂粉末及びその製造方法
CN103910896B (zh) 一种低返渗高分子吸水树脂的制备方法
US4885161A (en) Wound dressings in gelled paste form
BR0309458A (pt) Partìculas de polìmero absorvente de água retardante da decomposição de fluidos corpóreos, compósitos compreendendo as mesmas e seu uso
MX2008002257A (es) Metodo de particulas de polimeros superabsorbentes altamente neutralizadas con reticulacion de superficie usando acidos de bronsted.
JPH04285613A (ja) 水性電解質溶液に対して高度の吸収性を有するポリマー
CN105348444A (zh) 一种高吸水性树脂及其制备方法
BRPI0407342A (pt) agente absorvente de água
JP2007112972A (ja) 粘着性ハイドロゲル及び粘着性ハイドロゲル製造用組成物
Nalampang et al. Structural effects in photopolymerized sodium AMPS hydrogels crosslinked with poly (ethylene glycol) diacrylate for use as burn dressings
JP2006503118A (ja) 制御された水溶性流動体の吸収をともなうイオン性ヒドロゲル
CN106474525A (zh) 一种新型抗菌止血纱布及其制备方法
RU2008107401A (ru) Впитывающий элемент, содержащий впитывающий воду агент
CN105504636A (zh) 用于土遗址脱盐的吸水脱盐复合材料及其应用
JP2005519145A5 (zh)
CN109081887B (zh) 一种高吸水性树脂
JP6210817B2 (ja) 徐放剤用吸水性剤及びその製造方法
CN103374094B (zh) 氧化胺型抗菌高吸水树脂
JP3251647B2 (ja) 吸水性樹脂およびその製造方法
JP2015062893A (ja) 徐放剤用吸水性剤及びその製造方法
Cui et al. Poly acrylic acid superabsorbent hydrogel for hygiene materials
RU2612703C1 (ru) Способ получения полимерного гидрогеля
WO2022145242A1 (ja) 複合吸収体及び衛生用品
JPH0525208A (ja) 多孔性ポリマーの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18867597

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18867597

Country of ref document: EP

Kind code of ref document: A1