WO2019075939A1 - 波长转换装置及其制备方法 - Google Patents

波长转换装置及其制备方法 Download PDF

Info

Publication number
WO2019075939A1
WO2019075939A1 PCT/CN2018/071421 CN2018071421W WO2019075939A1 WO 2019075939 A1 WO2019075939 A1 WO 2019075939A1 CN 2018071421 W CN2018071421 W CN 2018071421W WO 2019075939 A1 WO2019075939 A1 WO 2019075939A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
aluminum oxide
silver
wavelength conversion
substrate
Prior art date
Application number
PCT/CN2018/071421
Other languages
English (en)
French (fr)
Inventor
田梓峰
周萌
段银祥
许颜正
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2019075939A1 publication Critical patent/WO2019075939A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/30Elements containing photoluminescent material distinct from or spaced from the light source
    • F21V9/32Elements containing photoluminescent material distinct from or spaced from the light source characterised by the arrangement of the photoluminescent material

Definitions

  • the present invention relates to a wavelength conversion device and a method of fabricating the same, and, in particular, to a wavelength conversion device having high reflectivity, low thermal resistance, high reliability, and a method of fabricating the same.
  • a laser fluorescence conversion type light source As a laser light source which is developed rapidly and widely used in various laser light sources, a laser fluorescence conversion type light source generally converts excitation light of a laser into an outgoing light of a desired color by using a wavelength conversion device.
  • the wavelength conversion device is a key component of the laser fluorescence conversion type light source, and its performance directly determines the advantages and disadvantages of the laser fluorescence conversion type light source.
  • a wavelength conversion device is generally composed of a substrate layer, a reflective layer, and a light-emitting layer that are sequentially stacked.
  • the temperature of the wavelength conversion device rises rapidly and the heat rapidly increases, so that it is required to have high reflectance, thermal conductivity, reliability, and the like.
  • the diffuse reflection layer is entirely formed by sintering of an inorganic material, and has high heat resistance, but the thermal conductivity of the scattering particles and the glass powder as a constituent material thereof is low, and in order to ensure a high reflectance, the sintered structure of the diffuse reflection layer is usually It is a porous structure with high thermal resistance, which is disadvantageous for the reliability of the wavelength conversion device under the excitation of the laser light emitted by the high power laser and the improvement of the luminance.
  • the thermal resistance can be reduced by thinning the thickness of the diffuse reflection layer, this in turn reduces the reflectance. Therefore, the diffuse reflection layer cannot theoretically ensure high reflectivity, thermal conductivity, and reliability at the same time.
  • the metal high-reflection layer is made of high-purity metal such as aluminum or silver, and has high reflectivity, thin thickness, and low thermal resistance.
  • high-purity metal such as aluminum or silver
  • the metal high-reflection layer has high reflectivity, thin thickness, and low thermal resistance.
  • discoloration of the luminescent glass layer occurs, thereby affecting the luminescence saturation.
  • the glass frit and the silver powder are mixed and sintered separately to form a silver glass reflective layer, the phenomenon of discoloration of the luminescent glass can be alleviated, but the silver glass reflective layer contains a glass structure, so that the reflectance does not reach the effect of pure silver reflection.
  • an object of the present invention is to provide a wavelength conversion device having high reflectance, thermal conductivity, and long-term reliability, and a method of fabricating the same.
  • One aspect of the invention provides a wavelength conversion device.
  • a phosphor layer, a silver plating layer, and a substrate layer which are sequentially stacked, convert the excitation light into emitted light of different wavelengths, and the silver plating layer is for reflecting the emitted light emitted from the fluorescent layer.
  • the wavelength conversion device further includes a first aluminum oxide layer, a second aluminum oxide layer, and a sintered silver layer, wherein the first aluminum oxide layer is between the fluorescent layer and the silver plating layer, the second An aluminum oxide layer is between the silver plating layer and the sintered silver layer, and the sintered silver layer is between the second aluminum oxide layer and the substrate layer.
  • the formation of the silver plating layer by using a physical sputtering or evaporation process enables the obtained silver plating layer to have a uniform thickness, and has high density and surface flatness, thereby having high reflectance.
  • the aluminum oxide layer on the one hand can reduce the thermal resistance and on the other hand can increase the bonding strength between the layers. There are two main reasons for the excellent bonding strength. First, since the first and second aluminum oxide layers are also formed by physical sputtering or evaporation, they have excellent compactness with each layer, and between the layers. There are fewer defects at the interface; second, the alumina material has a similar crystal structure with the luminescent layer and the silver coating layer, and has a good bonding strength.
  • the first aluminum oxide layer wraps one surface (for example, corresponding to the upper surface in the drawing) and the side wall of the silver plating layer such that the silver plating layer is coated with the first aluminum oxide
  • the layer and the second aluminum oxide layer are sealed.
  • the second aluminum oxide layer wraps the other surface and sidewall of the silver plating layer such that the silver plating layer is sealed by the first aluminum oxide layer and the second aluminum oxide layer.
  • the silver coating layer is sealed by the first dense aluminum oxide layer and the second aluminum oxide layer, which can effectively isolate the silver coating layer from contact with air and avoid rapid deterioration under high temperature conditions. And because alumina itself has a very high temperature stability, it also guarantees excellent sealing performance under long-term high temperature conditions.
  • the substrate layer is a metal substrate or a ceramic substrate.
  • the phosphor layer is (Lu, Y) 3 (Al, Ga) 5 O 12 :Ce 3+ single phase ceramic layer, (Lu,Y) 3 (Al,Ga) 5 O 12 :Ce 3+ Single crystal ceramic layer, Al 2 O 3 -(Lu,Y) 3 (Al,Ga) 5 O 12 :Ce 3+ complex phase ceramic layer and Al 2 O 3 -(Lu,Y) 3 (Al,Ga) 5 At least one of O 12 :Ce 3+ eutectic ceramic layers.
  • the wavelength conversion device further includes a solder layer between the sintered silver layer and the substrate layer.
  • a solder layer By providing the solder layer, the bonding between the sintered silver layer and the substrate layer can be made stronger, and the long-term reliability can be improved.
  • the wavelength conversion device further includes a sealing layer surrounding the fluorescent layer, the first aluminum oxide layer, the silver plating layer, and the second aluminum oxide layer on the substrate layer And surrounding the sintered silver layer and forming at least a seal to the sintered silver layer.
  • a sealing layer surrounding the fluorescent layer, the first aluminum oxide layer, the silver plating layer, and the second aluminum oxide layer on the substrate layer And surrounding the sintered silver layer and forming at least a seal to the sintered silver layer.
  • Another aspect of the present invention provides a method of fabricating a wavelength conversion device comprising the steps of: preparing a phosphor layer and polishing one surface of the phosphor layer; and performing the fluorescence by a physical sputtering or evaporation process Forming a first aluminum oxide layer, a silver plating layer, and a second aluminum oxide layer on the polished surface of the layer; coating the silver paste on one surface of the substrate layer; and stacking the second aluminum oxide layer (4) On the surface of the substrate layer (6) coated with silver paste; the entire apparatus is sintered.
  • the preparation method further comprises the steps of: coating the first aluminum oxide layer, the silver plating film layer, the heat-curing glue or the UV-curable glue on the substrate layer.
  • the second aluminum oxide layer and the periphery of the sintered silver layer are described, and then a sealing layer is formed by heat curing or UV curing.
  • Yet another aspect of the present invention provides a method of fabricating a wavelength conversion device comprising the steps of: preparing a phosphor layer and polishing one surface of the phosphor layer; and performing the fluorescence on a physical sputtering or evaporation process Forming a first aluminum oxide layer, a silver plating layer, and a second aluminum oxide layer on the polished surface of the layer; preparing a silver paste; coating the silver paste on a surface of the second aluminum oxide layer; The layer is sintered to form a sintered silver layer; a substrate layer is prepared; a solder is coated on the surface of the substrate layer or the sintered silver layer, and then the substrate layer and the sintered silver layer are soldered to form a connection a solder layer of the substrate layer and the sintered silver layer.
  • the preparation method further comprises the steps of: coating the first aluminum oxide layer, the silver plating layer, and the surface with a heat curing glue or a UV curing glue on the substrate layer.
  • the second aluminum oxide layer, the sintered silver layer, and the periphery of the solder layer are described, and then cured by UV curing or heat to form a sealing layer.
  • the surface of the silver coating layer having the reflective function is flat and dense by sequentially stacking and preparing different functional layers; the effective sealing of the first aluminum oxide layer and the second aluminum oxide layer on the silver coating layer also ensures the silver coating layer Long-term optical performance reliability, while the choice of alumina material enables the second aluminum oxide layer to achieve high-strength adhesion to the substrate by sintering the silver layer and/or the solder layer, which also ensures long-term mechanical reliability of the wavelength conversion device. Sex.
  • the wavelength conversion device and the method of fabricating the same according to the present invention can achieve higher reflectance, thermal conductivity, and long-term reliability.
  • FIG. 1 is a cross-sectional view illustrating a wavelength conversion device according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view illustrating a wavelength conversion device according to a second embodiment of the present invention.
  • FIG. 3 is a cross-sectional view illustrating a wavelength conversion device according to a third embodiment of the present invention.
  • FIG. 4 is a cross-sectional view illustrating a wavelength conversion device according to a fourth embodiment of the present invention.
  • FIG. 5 is a cross-sectional view illustrating a wavelength conversion device according to a fifth embodiment of the present invention.
  • Fig. 6 is a cross-sectional view illustrating a wavelength conversion device according to a modification of the fifth embodiment of the present invention.
  • a wavelength conversion device according to a first embodiment of the present invention has a multilayer stack structure in which a phosphor layer 1, a first aluminum oxide layer 2, a silver plating layer 3, and a second aluminum oxide layer 4 are stacked in this order from top to bottom.
  • the sintered silver layer 5 and the substrate layer 6 are sintered.
  • the fluorescent layer 1 is usually a fluorescent ceramic layer.
  • the fluorescent ceramic layer is a (Lu, Y) 3 (Al, Ga) 5 O 12 :Ce 3+ single-phase ceramic layer or a single crystal ceramic layer, and may also be Al 2 O 3 -(Lu,Y) 3 (Al , Ga) 5 O 12 : Ce 3+ complex phase ceramic layer or eutectic ceramic layer, or a combination thereof.
  • the multiphase ceramic refers to a ceramic matrix composite material, which is a small branch under the broad category of "composite material”.
  • the so-called “complex phase” mainly refers to the presence of two or more substances "phases" in the material composition, so it is also called “multiphase ceramics”.
  • the “scattering phase” refers to a second phase material different from the main phase material, and its function is to form a scattering effect on the incident excitation light, thereby increasing the absorption rate of the excitation light, thereby improving the light conversion to the excitation light. effectiveness. Therefore, the ceramic main phase and the scattering phase together constitute a multiphase ceramic material, and the scattering phase is dispersed as a second phase material in the ceramic main phase. Since a large number of such scattering phases exist, the light beam is scattered multiple times as it propagates inside the fluorescent layer 1.
  • the phosphor layer 1 may also be any suitable fluorescent ceramic material known.
  • the fluorescent layer 1 converts the excitation light into emitted light of different wavelengths. Particularly preferably, the fluorescent ceramic layer is a YAG fluorescent ceramic layer.
  • the first aluminum oxide layer 2, the silver plating layer 3, and the second aluminum oxide layer 4 are sequentially disposed on the fluorescent layer 1.
  • the thickness of the first aluminum oxide layer 2 and the second aluminum oxide layer 4 is preferably from 10 to 500 nm, and the thickness of the silver plating layer is preferably from 100 to 500 nm.
  • the first aluminum oxide layer 2, the silver plating layer 3, and the second aluminum oxide layer 4 may each be formed by a physical sputtering or an evaporation process.
  • the silver plating layer 3 reflects the light beam emitted from the fluorescent layer 1. By using a physical sputtering or evaporation process, the obtained silver plating layer 3 can be made uniform in thickness, and has high density and surface flatness, thereby having high reflectance.
  • the thickness of the aluminum oxide layer is relatively small, on the one hand, the thermal resistance can be reduced, and on the other hand, the bonding strength between the layers can be improved.
  • the sintered silver layer 5 is laminated on the second aluminum oxide layer 4, and is formed at least by mixing silver powder and an organic carrier into a silver paste and sintering.
  • the sintered silver layer 5 may also be formed by mixing silver powder, an organic vehicle, and glass frit into a silver paste and sintering.
  • the sintered silver layer 5 has a close-packed structure of silver particles.
  • the organic vehicle may be any suitable organic vehicle known, for example, an organic vehicle which may be a mixed solution of ethyl cellulose, terpineol, butyl carbitol, or butyl carbitol.
  • the thickness of the sintered silver layer 5 is in the range of 1 to 100 ⁇ m, preferably 2 to 50 ⁇ m, and more preferably 5 to 30 ⁇ m.
  • the silver paste process is not easy to control; in the case where the thickness of the silver reflective layer is greater than 100 ⁇ m, it is disadvantageous to obtain a dense and flat sintered silver surface.
  • the particle size of the raw material silver powder is 0.01 to 1 ⁇ m, the silver powder having a particle diameter of less than 0.01 ⁇ m is not easily dispersed, and the silver powder having a particle diameter of more than 1 ⁇ m is difficult to be sintered at a temperature of 700 ° C or lower to form a dense film layer, thereby causing deterioration of adhesion.
  • the raw material silver powder is preferably spherical or flake-shaped, and the two shape particles are advantageous for forming a silver powder close-packed structure, so that the silver reflective layer is more dense.
  • the raw silver powder has a tap density of more than 2 g/cm 3 , preferably more than 4 g/cm 3 , more preferably more than 6 g/cm 3 .
  • the substrate layer 6 may be a metal substrate such as copper or aluminum, or may be a ceramic substrate such as aluminum nitride, silicon carbide, silicon nitride, or alumina ceramic substrate. Among them, a copper metal substrate having a nickel-gold protective layer on its surface is preferable. When a ceramic substrate is used, the surface of the ceramic substrate may be sequentially plated with a Ti transition layer and a nickel gold protective layer.
  • the substrate layer may be a flat substrate layer as shown in FIG. 1 or a substrate layer with heat dissipation fins.
  • the wavelength conversion device according to the first embodiment of the present invention as shown in Fig. 1 employs a sandwich-like structure of Al 2 O 3 /Ag/Al 2 O 3 on the phosphor layer. Since the thermal expansion coefficient of the alumina and the fluorescent ceramic layer is close to each other, the coating effect of the first alumina layer 2 bonded well can be achieved on the fluorescent layer 1. At the same time, since both alumina and silver are hexagonal, good adhesion between the first aluminum oxide layer 2 and the silver plating layer 3 and between the silver plating layer 3 and the second aluminum oxide layer 4 can be achieved. Further, since the density of the aluminum oxide film is very high, such a sandwich structure can provide a good protective effect on the silver plating layer 3 as a reflective layer.
  • the sintered silver layer 5 is formed by mixing silver powder and an organic carrier into a silver paste and being sintered, it can achieve good adhesion with both alumina and a metal substrate, and has high thermal conductivity.
  • the sintered silver layer 5 adhesion reliability and excellent thermal conductivity between the second aluminum oxide layer 4 and the substrate layer 6 are ensured.
  • a laminated structure such as the first aluminum oxide layer 2, the silver plating film layer 3, the second aluminum oxide layer 4, the sintered silver layer 5, and the substrate layer as described above, it is ensured even under conditions of up to 600 ° C The reflectance of the silver plating layer 3 and the adhesion between the above layers did not change.
  • the wavelength conversion device according to the first embodiment of the present invention has high reflectance, thermal conductivity, and long-term reliability.
  • the fluorescent layer 1 was formed using YAG fluorescent ceramics. Then, one surface (the lower surface in Fig. 1) of the fluorescent layer 1 is polished. Next, the first aluminum oxide layer 2, the silver plating film layer 3, and the second aluminum oxide layer 4 are sequentially formed by magnetron sputtering on the polished surface of the phosphor layer 1, thereby forming a four-layer stacked structure. Then, for example, a spherical silver powder having a diameter of 10-100 nm, ethyl cellulose, terpineol, butyl carbitol, and butyl carbitol are mixed and dissolved to form a silver paste, and the silver paste is formed. It is coated on one surface of the copper substrate.
  • the surface of the formed second aluminum oxide layer 4 of the four-layer stacked structure is stacked on the silver paste-coated surface of the copper substrate, and the entire apparatus is placed in a muffle furnace at 200 ° C to 600 ° C.
  • the sintered silver layer 5 bonded to the second aluminum oxide layer 4 and the copper substrate layer 6 is formed under normal pressure or pressure sintering at a temperature for 2 minutes to 1 hour.
  • the above preparation methods are merely examples, and those skilled in the art can adjust some of the technical parameters and components as needed.
  • the process of preparing the silver paste and the final sintering can be carried out using any suitable formulation and method known.
  • FIG. 2 is a schematic cross-sectional view showing a wavelength conversion device according to a second embodiment of the present invention.
  • the wavelength conversion device according to the second embodiment of the present invention also has a multilayer stack structure in which a phosphor layer 1, a first aluminum oxide layer 2, and a silver plating film are sequentially stacked from top to bottom in the drawing.
  • the wavelength conversion device according to the second embodiment of the present invention is different from the wavelength conversion device of the first embodiment shown in FIG. 1 in that the width of the silver plating film layer 3 in the cross section is shorter than that of the first aluminum oxide layer 2 and The width of the aluminum oxide layer 4, the second aluminum oxide layer 4 wraps the lower surface and the side walls of the silver plating layer 3.
  • the plating width of the silver plating layer 3 is smaller than the widths of the first aluminum oxide layer 2 and the second aluminum oxide layer 4, and therefore, the lower surface and sidewalls of the silver plating layer 3 are covered by the second aluminum oxide layer 4.
  • the coating is such that the silver plating layer 3 is sealed by the first aluminum oxide layer 2 and the second aluminum oxide layer 4.
  • the silver plating film can be better protected.
  • the layer 3 is not affected by the external environment, and the silver plating layer 3 as a reflective layer is prevented from being vulcanized and blackened due to long-term contact with air, ensuring better long-term reliability of the device.
  • the method of fabricating the wavelength conversion device according to the second embodiment of the present invention is substantially the same as the method of fabricating the wavelength conversion device of the first embodiment.
  • the only difference is that in the step of forming the silver plating layer 3 by the physical sputtering or evaporation process, the plating width of the silver plating layer 3 in the cross section shown in FIG. 2 is made smaller than that of the first aluminum oxide layer 2. Width, and in the subsequent step of forming the second aluminum oxide layer 4, forming a second aluminum oxide layer on the entire surface layer including the surface of the silver plating layer 3 and the exposed surfaces of the first aluminum oxide layer 2 4, thereby wrapping the surface of the silver plating layer 3 with both sides.
  • FIG. 3 is a schematic cross-sectional view showing a wavelength conversion device according to a third embodiment of the present invention.
  • the wavelength conversion device according to the third embodiment of the present invention is different from the wavelength conversion device of the second embodiment shown in FIG. 2 only in that the width of the silver plating layer 3 in the cross section is shorter than that of the first aluminum oxide layer 2 and The width of the second aluminum oxide layer 4, the first aluminum oxide layer 2 envelops the upper surface and the side walls of the silver plating film layer 3.
  • the silver plating film can be better protected.
  • Layer 3 is not affected by factors such as oxygen, moisture and impurities in the external environment, ensuring better long-term reliability of the device.
  • the method of fabricating the wavelength conversion device according to the third embodiment of the present invention is substantially the same as the method of fabricating the wavelength conversion device of the first embodiment.
  • the only difference is that after the first aluminum oxide layer 2 is formed by a physical sputtering or evaporation process, a recess is formed in the first aluminum oxide layer 2 by, for example, an etching process, and then the silver plating film layer 3 is formed in the concave portion.
  • a second aluminum oxide layer 4 is formed on the silver plating layer 3 and the first aluminum oxide layer 2.
  • Fig. 4 is a schematic cross-sectional view showing a wavelength conversion device according to a fourth embodiment of the present invention.
  • the wavelength conversion device according to the fourth embodiment of the present invention also has a multilayer stack structure.
  • the wavelength conversion device according to the fourth embodiment of the present invention is different from the wavelength conversion device of the first embodiment shown in FIG. 1 in that a phosphor layer 1 and a first aluminum oxide layer 2 are stacked in this order from top to bottom.
  • a solder layer 7 is further provided between the sintered silver layer 5 and the substrate layer 6. That is, in the present embodiment, the sintered silver layer 5 and the substrate layer 6 are welded and joined by the solder layer 7. Therefore, the connection between the sintered silver layer and the substrate layer in the wavelength conversion device according to the present embodiment is more robust than the above embodiment, and the long-term reliability of the device is improved. On the other hand, however, since the solder layer is added, the thickness of the wavelength conversion device according to the present embodiment is increased, and the heat dissipation performance is also affected. Thus, it is possible to determine whether or not to provide a solder layer according to design needs.
  • the fluorescent layer 1 was formed using YAG fluorescent ceramics. Then, one surface (the lower surface in Fig. 4) of the fluorescent layer 1 is polished. Next, the first aluminum oxide layer 2, the silver plating film layer 3, and the second aluminum oxide layer 4 are sequentially formed by magnetron sputtering on the polished surface of the phosphor layer 1, thereby forming a four-layer stacked structure.
  • a spherical silver powder having a diameter of 10-100 nm, ethyl cellulose, terpineol, butyl carbitol, and butyl carbitol are mixed and dissolved to form a silver paste, and the silver paste is coated. Covered on the second aluminum oxide film layer 4. Then, the four-layer stack structure coated with the silver paste is pre-baked at 60-150 ° C for 2 to 60 minutes, and then placed in a muffle furnace at a temperature of 400-600 ° C for 2 minutes to 1 hour to form.
  • the sintered silver layer 5 is formed.
  • solder is applied onto the copper substrate as the substrate layer 6, the sintered silver layer 5 is placed on the coated solder, and the substrate layer 6 and the sintered silver layer 5 are welded at a temperature of 200 to 300 ° C.
  • a solder layer 7 connecting the substrate layer 6 and the sintered silver layer 5 is formed.
  • solder may be coated on the sintered silver layer 5, and then the sintered silver layer 5 is soldered to the nickel-plated copper substrate by reflow soldering to form a solder layer 7 connecting the sintered silver layer 5 and the substrate layer 6. .
  • solder layer 7 is provided on the basis of the wavelength conversion device of the first embodiment is shown in FIG.
  • the solder layer 7 can also be disposed in the wavelength conversion devices of the second embodiment and the third embodiment, and achieve the same effect.
  • Fig. 5 is a schematic cross-sectional view showing a wavelength conversion device according to a fifth embodiment of the present invention.
  • the wavelength conversion device according to the fifth embodiment of the present invention also has a multilayer stack structure in which a phosphor layer 1, a first aluminum oxide layer 2, and a silver plating film are sequentially stacked from top to bottom in the drawing.
  • the wavelength conversion device according to the fifth embodiment of the present invention is different from the wavelength conversion device of the first embodiment shown in FIG. 1 in that, in the outer peripheral portion of the substrate layer 6, a phosphor layer 1 is laminated around the first layer, and the first oxidation is formed.
  • the sealing layer 8 is formed in a ring shape on the outer peripheral portion of the substrate layer 6, so as to surround the side of the stacked phosphor layer 1, the first aluminum oxide layer 2, the silver plating layer 3, the second aluminum oxide layer 4, and the sintered silver layer 5. wall.
  • the sealing layer 8 may have a cross-sectional shape such as a rectangle, a cone, or the like. Preferably, as shown in FIG. 5, the sealing layer 8 has a tapered cross section in the direction of the phosphor layer 1.
  • the sealing layer 8 may be formed of, for example, any one of epoxy resin, silicone rubber, or silicone resin, or a combination thereof.
  • the oxygen permeability of the sealing layer 8 is less than 500 cc/m 2 per day; further preferably, the oxygen permeability is less than 300 cc/m 2 per day; particularly preferably, the oxygen permeability is less than 100 cc/m 2 per day.
  • the sealing layer 8 surrounding the fluorescent layer 1, the first aluminum oxide layer 2, the silver plating layer 3, the second aluminum oxide layer 4, and the sintered silver layer 5 is formed, it is difficult to invade the atmosphere in the atmosphere such as oxygen and moisture.
  • the inner layer structure of the layer 8 (particularly, the second aluminum oxide layer 4 and the sintered silver layer 5) makes the wavelength conversion device according to the fifth embodiment of the present invention have better long-term reliability.
  • illustrated in FIG. 5 is that the first aluminum oxide layer 2, the silver plating film layer 3, the second aluminum oxide layer 4, all the sidewalls of the sintered silver layer 5, and a part of the side walls of the fluorescent layer 1 are surrounded by the sealing layer 8. And an example of sealing, but the invention is not limited thereto.
  • the height of the sealing layer 8 may be formed to seal only the sintered silver layer 5.
  • the formation height of the sealing layer 8 should be at least higher than the height of the sintered silver layer 5, so that at least the sintered silver layer 5 is sealed.
  • the sealing layer 8 is provided in the wavelength conversion device of each of the above embodiments, it is only necessary to add the following steps at the end of the preparation process: coating on the substrate layer 6 with a UV-curing glue such as epoxy glue or a thermosetting glue. At least the first aluminum oxide layer 2, the silver plating film layer 3, the second aluminum oxide layer 4, and the periphery of the sintered silver layer 5 are then formed by UV curing or heat curing to form a sealing layer 8, thereby achieving sealing of the outer peripheral portions of the above layers.
  • a UV-curing glue such as epoxy glue or a thermosetting glue.
  • FIG. 6 illustrates an example in which the sealing layer 8 in the present embodiment is applied to the wavelength conversion device of the fourth embodiment.
  • the wavelength conversion device in the second to third embodiments may be provided with the solder layer 7 and the sealing layer 8 at the same time according to design requirements.

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Optical Filters (AREA)

Abstract

一种能够实现较高的反射率、热导率和长期可靠性的波长转换装置及其制备方法。波长转换装置包括:依次堆叠的荧光层(1)、银镀膜层(3)和基板层(6),荧光层(1)将激发光转换成不同波长的出射光,银镀膜层(3)用于反射从荧光层(1)中出射的出射光,波长转换装置还包括第一氧化铝层(2)、第二氧化铝层(4)和烧结银层(5),第一氧化铝层(2)位于荧光层(1)与银镀膜层(3)之间,第二氧化铝层(4)位于银镀膜层(3)与烧结银层(5)之间,烧结银层(5)位于第二氧化铝层(4)与基板层(6)之间。

Description

波长转换装置及其制备方法 技术领域
本发明涉及波长转换装置及其制备方法,特别地,涉及具有高反射率、低热阻、高可靠性的波长转换装置及其制备方法。
背景技术
作为目前各种激光光源中发展较快、应用较广的一种激光光源,激光荧光转换型光源通常利用波长转换装置将激光器的激发光转换成所需颜色的出射光。波长转换装置是激光荧光转换型光源的关键部件,其性能的高低直接决定激光荧光转换型光源的优劣。
当前,波长转换装置通常由依次堆叠的基板层、反射层和发光层组成。当大功率激光器发出的激光照射波长转换装置时,波长转换装置的温度很快升高且热量迅速增加,因此需要其具有较高的反射率、热导率、可靠性等。
目前的波长转换装置中的反射层主要有两种类型:一种是采用白色散射粒子和玻璃粉混合烧结形成的漫反射层;另一种是采用高纯度的致密金属(例如,银、铝)形成的高反射层。这两种反射层各有优劣。漫反射层全部由无机材料烧结形成,耐热性较高,但是作为其组成材料的散射粒子和玻璃粉的热导率较低,并且为了保证较高的反射率,漫反射层的烧结结构通常是多孔结构,热阻较高,因而不利于波长转换装置在高功率激光器发出的激光的激发下的可靠性和发光亮度的提高。虽然可以通过减薄漫反射层的厚度来降低热阻,但是这又会降低其反射率。因此,漫反射层在原理上无法确保同时具有较高的反射率、热导率、可靠性。金属高反射层由铝或银等高纯金属制成,反射率高,厚度薄,热阻低。但由于当前制备工艺的限制,这样的金属反射层在与发光玻璃层共烧时,会出现发光玻璃层变色现象,进而影响发光饱和度。虽然将玻璃粉和银粉混合烧结单独形成银玻璃反射层可以缓解发光玻璃变色这一现象,但这种银玻璃反射层由于含有玻璃结构,使得反射率达不到纯银反射的效果。
发明内容
鉴于上述问题,本发明的目的是提出一种具有较高的反射率、热导率和长期可靠性的波长转换装置及其制备方法。
本发明的一个方面提供了一种波长转换装置。包括依次堆叠的荧光层、银镀膜层和基板层,所述荧光层将激发光转换成不同波长的出射光,所述银镀膜层用于反射从所述荧光层中出射的所述出射光。所述波长转换装置还包括第一氧化铝层、第二氧化铝层和烧结银层,其中,所述第一氧化铝层位于所述荧光层与所述银镀膜层之间,所述第二氧化铝层位于所述银镀膜层与所述烧结银层之间,所述烧结银层位于所述第二氧化铝层与所述基板层之间。通过采用物理溅射或者蒸镀工艺形成银镀膜层能够使得到的银镀膜层厚度均匀,并且具有高的致密度和表面平整度,从而具有高反射率。氧化铝层一方面能减小热阻,另一方面能够提高各层之间的结合强度。结合强度优异有两方面主要原因,其一,由于第一和第二氧化铝层同样采用物理溅射或者蒸镀工艺形成,其与各层之间具有极好致密性,与各层之间的在界面处的缺陷较少;其二,氧化铝材料同发光层和银镀膜层均具有类似的晶体结构,具有很好的结合强度。
另外,优选地,所述第一氧化铝层包裹所述银镀膜层的一个表面(例如,对应于附图中的上表面)和侧壁,使得所述银镀膜层被所述第一氧化铝层和所述第二氧化铝层密封。可替代地,所述第二氧化铝层包裹所述银镀膜层的另一表面和侧壁,使得所述银镀膜层被所述第一氧化铝层和所述第二氧化铝层密封。银镀膜层被致密性极高的第一氧化铝层和第二氧化铝层密封,能十分有效的隔绝银镀膜层与空气的接触,避免其在高温情况下的快速劣化。并且由于氧化铝本身也具有极高的高温稳定性,长期高温情况下同样也能保证极佳的密封性能。通过采用上述结构,能够加强对银镀膜层的保护,进一步提高装置的长期可靠性。
优选地,所述基板层是金属基板或陶瓷基板。
优选地,所述荧光层是是(Lu,Y) 3(Al,Ga) 5O 12:Ce 3+单相陶瓷层、(Lu,Y) 3(Al,Ga) 5O 12:Ce 3+单晶陶瓷层、Al 2O 3-(Lu,Y) 3(Al,Ga) 5O 12:Ce 3+复相陶瓷层和Al 2O 3-(Lu,Y) 3(Al,Ga) 5O 12:Ce 3+共晶陶瓷层中的至少一种。
优选地,所述波长转换装置还包括焊接层,所述焊接层位于所述烧结银层与所述基板层之间。通过设置焊接层,能够使烧结银层与基板层之间的接合更加牢固,提高长期可靠性。
优选地,所述波长转换装置还包括密封层,所述密封层在所述基板层上围绕所述荧光层、所述第一氧化铝层、所述银镀膜层、所述第二氧化铝层和所述烧结银层的四周并形成至少对所述烧结银层的密封。通过设置密封层,能够使位于密封层内的层叠结构免受外界环境的影响,从而能够进一步提高装置的长期可靠性。
本发明的另一方面提供了一种波长转换装置的制备方法,其包括如下步骤:制备荧光层,并对所述荧光层的一个表面进行抛光;通过物理溅射或蒸镀工艺在所述荧光层的抛光的表面上依次形成第一氧化铝层、银镀膜层和第二氧化铝层;将银浆涂覆在基板层的一个表面上;将所述第二氧化铝层(4)叠置在所述基板层(6)的涂覆有银浆的所述表面上;对整个装置进行烧结。
优选地,在所述烧结结束之后,所述制备方法还包括如下步骤:在所述基板层上用热固化胶水或UV固化胶水涂覆所述第一氧化铝层、所述银镀膜层、所述第二氧化铝层和所述烧结银层的四周,然后利用加热固化或者UV固化形成密封层。
本发明的又一方面提供了一种波长转换装置的制备方法,其包括如下步骤:制备荧光层,并对所述荧光层的一个表面进行抛光;通过物理溅射或蒸镀工艺在所述荧光层的抛光的表面上依次形成第一氧化铝层、银镀膜层和第二氧化铝层;制备银浆;将所述银浆涂覆在所述第二氧化铝层的表面上;对上述各层进行烧结,形成烧结银层;制备基板层;在所述基板层或所述烧结银层的表面上涂覆焊料,然后对所述基板层和所述烧结银层进行焊接,形成连接所述基板层和所述烧结银层的焊接层。
优选地,在所述焊接结束之后,所述制备方法还包括如下步骤:在所述基板层上用热固化胶水或UV固化胶水涂覆所述第一氧化铝层、所述银镀膜层、所述第二氧化铝层、所述烧结银层和所述焊接层的四周,然后利用UV固化或者加热固化形成密封层。
通过不同功能层的依序叠置、制备,使得具有反射功能的银镀膜层表面平整且致密;第一氧化铝层和第二氧化铝层对银镀膜层的有效密封也同时保证了银镀膜层的长期光学性能可靠性,同时氧化铝材料的选择使得第二氧化铝层能够通过烧结银层和/或焊接层实现与基板的高强度粘接,也即同时保证了波长转换装置的长期机械可靠性。
如上所述,根据本发明的波长转换装置及其制备方法能够实现较高的反射率、热导率和长期可靠性。
附图说明
图1是图示了根据本发明的第一实施例的波长转换装置的横截面图。
图2是图示了根据本发明的第二实施例的波长转换装置的横截面图。
图3是图示了根据本发明的第三实施例的波长转换装置的横截面图。
图4是图示了根据本发明的第四实施例的波长转换装置的横截面图。
图5是图示了根据本发明的第五实施例的波长转换装置的横截面图。
图6是图示了根据本发明的第五实施例的变型例的波长转换装置的横截面图。
具体实施方式
下面,将参照附图详细说明根据本发明的波长转换装置。
第一实施例
图1是示出了根据本发明的的第一实施例的波长转换装置的示意性截面图。根据本发明的第一实施例的波长转换装置具有多层堆叠结构,在图中从上到下依次堆叠有荧光层1、第一氧化铝层2、银镀膜层3、第二氧化铝层4、烧结银层5和基板层6。
荧光层1通常是荧光陶瓷层。通常,荧光陶瓷层是(Lu,Y) 3(Al,Ga) 5O 12:Ce 3+单相陶瓷层或者单晶陶瓷层,也可以是Al 2O 3-(Lu,Y) 3(Al,Ga) 5O 12:Ce 3+复相陶瓷层或者共晶陶瓷层,或者是它们的组合。这里,复相陶瓷是指陶瓷基复合材料,其是“复合材料”大范畴下的一个小分支。所谓“复相”主要是指材料组分中存在两种或两种以上的物质“相”,故又称“多相陶瓷”。在由这样的复相荧光陶瓷材料构 成的荧光层1的内部具有较多的散射相。这里,“散射相”是指有别于主相材料的第二相材料,其功能是对入射的激发光形成一种散射效果,从而提升激发光的吸收率,进而提升对激发光的光转换效率。因此,陶瓷主相和散射相共同组成复相陶瓷材料,并且散射相作为第二相物质弥散在陶瓷主相中。由于存在大量的这样的散射相,所以光束在荧光层1的内部传播时会被多次散射。除了上述材料之外,荧光层1也可以是已知的任何合适的荧光陶瓷材料。荧光层1将激发光转换成不同波长的出射光。特别优选的,荧光陶瓷层为YAG荧光陶瓷层。
在荧光层1上依次设置有第一氧化铝层2、银镀膜层3、第二氧化铝层4。其中,第一氧化铝层2和第二氧化铝层4的厚度优选为10至500nm,银镀膜层的厚度优选为100至500nm。第一氧化铝层2、银镀膜层3和第二氧化铝层4均可以通过物理溅射或者蒸镀工艺而形成。银镀膜层3于反射从荧光层1中出射的光束。通过采用物理溅射或者蒸镀工艺,能够使得到的银镀膜层3厚度均匀,并且具有高的致密度和表面平整度,从而具有高反射率。氧化铝层的厚度比较小,一方面能减小热阻,另一方面提高各层之间的结合强度。
烧结银层5层叠在第二氧化铝层4上,并且至少是由银粉和有机载体混合成银浆料并经过烧结而形成的。例如,烧结银层5还可以是由银粉、有机载体和玻璃粉混合成银浆料并经过烧结而形成的。烧结银层5具有银颗粒的密堆积结构。有机载体可以是已知的任意合适的有机载体,例如,可以是乙基纤维素、松油醇、丁基卡比醇、丁基卡比醇酯混合溶解的有机载体。烧结银层5的厚度范围为1~100μm,优选为2~50μm,更加优选为5~30μm。在银反射层厚度小于1μm情况下,银浆工艺不容易控制;在银反射层厚度大于100μm情况下,不利于获得致密平整的烧结银表面。原料银粉的粒径范围是0.01~1μm,粒径小于0.01μm的银粉不容易分散,粒径大于1μm的银粉难以在700℃以下的温度烧结形成致密的膜层,从而导致附着力劣化。原料银粉优选为球形或者片状,这两种形状颗粒有利于形成银粉密堆积结构,使得银反射层更致密。原料银粉的振实密度大于2g/cm 3,优选大于4g/cm 3,更优选大于6g/cm 3
基板层6可以是诸如铜、铝等金属基板,也可以是诸如氮化铝、碳 化硅、氮化硅、氧化铝陶瓷基板等陶瓷基板。其中,表面镀有镍金保护层的铜金属基板是优选的。当使用陶瓷基板时,陶瓷基板的表面可以依次镀有Ti过渡层和镍金保护层。基板层可以是如图1.所示的平板式基板层,也可以是带散热鳍片的基板层。
如图1所示的根据本发明的第一实施例的波长转换装置在荧光层上采用了Al 2O 3/Ag/Al 2O 3的类似三明治的结构。由于氧化铝与荧光陶瓷层的热膨胀系数接近,因而在荧光层1上能够实现粘接良好的第一氧化铝层2的镀膜效果。同时,由于氧化铝与银都是六方晶系,因此能够实现第一氧化铝层2与银镀膜层3之间以及银镀膜层3与第二氧化铝层4之间的良好的粘接。此外,由于氧化铝膜的致密度非常高,所以这样的三明治结构能够对作为反射层的银镀膜层3起到良好的保护作用。另外,由于烧结银层5是由银粉和有机载体混合成银浆料并经过烧结而形成的,所以其与氧化铝和金属基板均能够实现良好的粘接,并且具有高的导热率。通过形成烧结银层5,确保了第二氧化铝层4与基板层6之间的粘接可靠性和优良的导热性。通过设置如上所述的第一氧化铝层2、银镀膜层3、第二氧化铝层4、烧结银层5和基板层这样的层叠结构,即便在高达600℃的工况下,仍能够确保银镀膜层3的反射率以及上述各层之间的附着力不发生变化。例如,通过实验可以发现,银镀膜层3的反射率在常温下为95%,在600℃的高温下为94%,几乎不会影响波长转换装置的性能。由上可知,根据本发明的第一实施例的波长转换装置具有较高的反射率、热导率和长期可靠性。
下面将简要说明根据本发明的第一实施例的波长转换装置的制备方法。
首先采用YAG荧光陶瓷形成荧光层1。然后对荧光层1的一个表面(图1中的下表面)进行抛光。接着,在荧光层1的抛光的表面上通过磁控溅射依次镀覆形成第一氧化铝层2、银镀膜层3和第二氧化铝层4,从而形成四层堆叠结构。然后,例如将直径为10-100nm的球状银粉、乙基纤维素、松油醇、丁基卡比醇、丁基卡比醇酯混合溶解的有机载体混合搅拌均匀形成银浆,并将银浆涂覆在铜基板的一个表面上。此后,将形成的四层堆叠结构的第二氧化铝层4的表面叠置在铜基板的涂有银浆 的表面上,并将整个装置置于马弗炉中,在200℃至600℃的温度下常压或加压烧结2分钟至1小时,形成粘接至第二氧化铝层4和铜基板层6的烧结银层5。
应当理解的是,上述制备方法仅是示例,本领域技术人员可以根据需要对其中的一些技术参数和成分进行调整。例如,制备银浆和最后烧结的过程均可以采用已知的任何适当的配方和方法。
第二实施例
图2是示出了根据本发明的的第二实施例的波长转换装置的示意性截面图。与第一实施例类似地,根据本发明的第二实施例的波长转换装置也具有多层堆叠结构,在图中从上到下依次堆叠有荧光层1、第一氧化铝层2、银镀膜层3、第二氧化铝层4、烧结银层5和基板层6。根据本发明的第二实施例的波长转换装置与图1所示的第一实施例的波长转换装置的区别在于:银镀膜层3在横截面中的宽度短于第一氧化铝层2和第二氧化铝层4的宽度,第二氧化铝层4包裹着银镀膜层3的下表面和侧壁。
如图2所示,银镀膜层3的镀覆宽度小于第一氧化铝层2和第二氧化铝层4的宽度,因此,银镀膜层3的下表面和侧壁被第二氧化铝层4包裹,使得银镀膜层3被第一氧化铝层2和第二氧化铝层4密封。
与第一实施例相比,由于银镀膜层3的侧壁没有暴露在空气中而是被包裹在第一氧化铝层2和第二氧化铝层4之中,因此能够更好地保护银镀膜层3不受外界环境的影响,避免了作为反射层的银镀膜层3因为长期与空气接触而产生硫化发黑现象,确保装置具有更好的长期可靠性。
根据本发明的第二实施例的波长转换装置的制备方法与第一实施例的波长转换装置的制备方法基本相同。不同之处仅在于,在通过物理溅射或蒸镀工艺形成银镀膜层3的步骤中,使银镀膜层3在图2所示的横截面中的镀覆宽度小于第一氧化铝层2的宽度,并且在随后形成第二氧化铝层4的步骤中,在包括银镀膜层3的表面与两侧、第一氧化铝层2的露出表面在内的整个表面层上形成第二氧化铝层4,从而将银镀膜层3的表面与两侧包裹在内。
第三实施例
图3是示出了根据本发明的的第三实施例的波长转换装置的示意性截面图。根据本发明的第三实施例的波长转换装置与图2所示的第二实施例的波长转换装置的区别仅在于:银镀膜层3在横截面中的宽度短于第一氧化铝层2和第二氧化铝层4的宽度,第一氧化铝层2包裹着银镀膜层3的上表面和侧壁。
与第一实施例相比,由于银镀膜层3的侧壁没有暴露在空气中而是被包裹在第一氧化铝层2和第二氧化铝层4之中,因此能够更好地保护银镀膜层3不受外界环境中的氧气、水分和杂质等因素的影响,确保装置具有更好的长期可靠性。
根据本发明的第三实施例的波长转换装置的制备方法与第一实施例的波长转换装置的制备方法基本相同。不同之处仅在于,在通过物理溅射或蒸镀工艺形成第一氧化铝层2之后,利用诸如蚀刻工艺在第一氧化铝层2中形成凹部,然后在凹部中形成银镀膜层3。接着,在银镀膜层3和第一氧化铝层2上形成第二氧化铝层4。
第四实施例
图4是示出了根据本发明的的第四实施例的波长转换装置的示意性截面图。与第一实施例类似地,根据本发明的第四实施例的波长转换装置也具有多层堆叠结构。根据本发明的第四实施例的波长转换装置与图1所示的第一实施例的波长转换装置的区别在于:在图中从上到下依次堆叠有荧光层1、第一氧化铝层2、银镀膜层3、第二氧化铝层4、烧结银层5、焊接层7和基板层6。
如图4所示,在根据本实施例的波长转换装置中,在烧结银层5与基板层6之间还设置有焊接层7。也即是,在本实施例中,烧结银层5和基板层6之间是通过焊接层7焊接连接的。因此,与上述实施例相比,根据本实施例的波长转换装置中的烧结银层与基板层之间的连接更加牢固,提高了装置的长期可靠性。但另一方面,由于增设了焊接层,所以根据本实施例的波长转换装置的厚度会增大,并且散热性能也会受到影响。因而,可以根据设计需要确定是否设置焊接层。
下面,将简要说明根据本实施例的波长转换装置的制备方法。首先采用YAG荧光陶瓷形成荧光层1。然后对荧光层1的一个表面(图4中的下表面)进行抛光。接着,在荧光层1的抛光的表面上通过磁控溅射依次镀覆形成第一氧化铝层2、银镀膜层3和第二氧化铝层4,从而形成四层堆叠结构。然后,将直径为10-100nm的球状银粉、乙基纤维素、松油醇、丁基卡比醇、丁基卡比醇酯混合溶解的有机载体混合搅拌均匀形成银浆,并将银浆涂覆在第二氧化铝膜层4上。然后,将涂敷有银浆的四层堆叠结构在60~150℃下预烘干2~60分钟,再置于马弗炉中在400~600℃的温度下烧结2分钟至1小时,形成了烧结银层5。此外,将焊料涂覆于作为基板层6的铜基板上,将烧结银层5置于涂覆的焊料之上,在200~300℃的温度下将基板层6与烧结银层5焊接起来,形成连接基板层6与烧结银层5的焊接层7。或者,也可将焊料涂覆在烧结银层5上,然后采用回流焊接将烧结银层5焊接至镀有镍金的铜基板上,从而形成连接烧结银层5和基板层6的焊接层7。
需要说明的是,图4中示出的是在第一实施例的波长转换装置的基础上设置焊接层7的示例。但应当理解的是,焊接层7也可以设置在第二实施例和第三实施例的波长转换装置中,并取得相同的效果。
第五实施例
图5是示出了根据本发明的的第五实施例的波长转换装置的示意性截面图。与第一实施例类似地,根据本发明的第五实施例的波长转换装置也具有多层堆叠结构,在图中从上到下依次堆叠有荧光层1、第一氧化铝层2、银镀膜层3、第二氧化铝层4、烧结银层5和基板层6。根据本发明的第五实施例的波长转换装置与图1所示的第一实施例的波长转换装置的区别在于:在基板层6的外周部,形成有围绕层叠的荧光层1、第一氧化铝层2、银镀膜层3、第二氧化铝层4、烧结银层5四周的密封层8。
密封层8在基板层6的外周部上被形成为环状,从而围绕层叠的荧光层1、第一氧化铝层2、银镀膜层3、第二氧化铝层4、烧结银层5的侧壁。密封层8可以具有诸如矩形、锥形等横截面形状。优选地,如图5所示,密封层8具有尖端朝着荧光层1方向的锥形截面。密封层8可以 由例如环氧树脂、硅橡胶或硅树脂中的任一种或它们的组合形成。优选地,密封层8的透氧率低于500cc/m 2每天;进一步优选地,透氧率低于300cc/m 2每天;特别优选地,透氧率低于100cc/m 2每天。
由于形成有围绕荧光层1、第一氧化铝层2、银镀膜层3、第二氧化铝层4、烧结银层5四周的密封层8,使得大气中的氧气和湿气等难以侵入位于密封层8内部层叠结构(特别地,第二氧化铝层4和烧结银层5),使得根据本发明的的第五实施例的波长转换装置具有更好的长期可靠性。另外,在图5中图示的是第一氧化铝层2、银镀膜层3、第二氧化铝层4、烧结银层5的全部侧壁以及荧光层1的部分侧壁被密封层8包围并密封的示例,但本发明不限于此。例如,密封层8的高度可以被形成为仅密封烧结银层5。换言之,在基板层6上,密封层8的形成高度至少应当高于烧结银层5的高度,从而实现至少密封烧结银层5。
当在上述各实施例的波长转换装置中设置密封层8时,仅需要在制备过程的最后添加如下步骤:在基板层6上,用诸如环氧树脂胶水等UV固化胶水或热固化胶水涂覆至少第一氧化铝层2、银镀膜层3、第二氧化铝层4和烧结银层5的四周,然后利用UV固化或者加热固化形成密封层8,从而实现对上述各层外周部的密封。
需要说明的是,图5中示出的是在第一实施例的波长转换装置的基础上设置密封层8的示例。但应当理解的是,密封层8也可以设置在第二实施例至第四实施例的波长转换装置中,并取得相同的效果。例如,图6图示了将本实施例中的密封层8应用于第四实施例的波长转换装置的示例。另外,根据设计需要,第二实施例至第三实施例中的波长转换装置也可以同时设置有焊接层7和密封层8。
尽管在上面已经参照附图说明了根据本发明的波长转换装置和激光荧光转换型光源,但是本发明不限于此,且本领域技术人员应理解,在不偏离本发明随附权利要求书限定的实质或范围的情况下,可以做出各种改变、组合、次组合以及变型。

Claims (11)

  1. 一种波长转换装置,包括依次堆叠的荧光层(1)、银镀膜层(3)和基板层(6),所述荧光层(1)将激发光转换成不同波长的出射光,所述银镀膜层(3)用于反射从所述荧光层(1)中出射的所述出射光,
    其特征在于,所述波长转换装置还包括第一氧化铝层(2)、第二氧化铝层(4)和烧结银层(5),其中,
    所述第一氧化铝层(2)位于所述荧光层(1)与所述银镀膜层(3)之间,所述第二氧化铝层(4)位于所述银镀膜层(3)与所述烧结银层(5)之间,所述烧结银层(5)位于所述第二氧化铝层(4)与所述基板层(6)之间。
  2. 根据权利要求1所述的波长转换装置,其特征在于,
    所述第一氧化铝层(2)包裹所述银镀膜层(3)的一个表面和侧壁,使得所述银镀膜层(3)被所述第一氧化铝层(2)和所述第二氧化铝层(4)密封;或者
    所述第二氧化铝层(4)包裹所述银镀膜层(3)的另一表面和侧壁,使得所述银镀膜层(3)被所述第一氧化铝层(2)和所述第二氧化铝层(4)密封。
  3. 根据权利要求1所述的波长转换装置,其特征在于,所述基板层(6)是金属基板或陶瓷基板。
  4. 根据权利要求1所述的波长转换装置,其特征在于,所述荧光层(1)是(Lu,Y) 3(Al,Ga) 5O 12:Ce 3+单相陶瓷层、(Lu,Y) 3(Al,Ga) 5O 12:Ce 3+单晶陶瓷层、Al 2O 3-(Lu,Y) 3(Al,Ga) 5O 12:Ce 3+复相陶瓷层和Al 2O 3-(Lu,Y) 3(Al,Ga) 5O 12:Ce 3+共晶陶瓷层中的至少一种。
  5. 根据权利要求1至4中任一项所述的波长转换装置,其特征在于,所述波长转换装置还包括焊接层(7),所述焊接层(7)位于所述烧结银 层(5)与所述基板层(6)之间。
  6. 根据权利要求1至4中任一项所述的波长转换装置,其特征在于,所述波长转换装置还包括密封层(8),所述密封层(8)在所述基板层(6)上围绕所述荧光层(1)、所述第一氧化铝层(2)、所述银镀膜层(3)、所述第二氧化铝层(4)和所述烧结银层(5)的四周并形成至少对所述烧结银层(5)的密封。
  7. 根据权利要求1至4中任一项所述的波长转换装置,其特征在于,所述波长转换装置还包括:
    焊接层(7),所述焊接层(7)位于所述烧结银层(5)与所述基板层(6)之间;以及
    密封层(8),所述密封层(8)在所述基板层(6)上围绕所述荧光层(1)、所述第一氧化铝层(2)、所述银镀膜层(3)、所述第二氧化铝层(4)和所述烧结银层(5)的四周并形成对至少所述烧结银层(5)的密封。
  8. 一种波长转换装置的制备方法,其特征在于,包括如下步骤:
    制备荧光层(1),并对所述荧光层(1)的一个表面进行抛光;
    通过物理溅射或蒸镀工艺在所述荧光层(1)的抛光的表面上依次形成第一氧化铝层(2)、银镀膜层(3)和第二氧化铝层(4);
    将银浆涂覆在基板层(6)的一个表面上;
    将所述第二氧化铝层(4)叠置在所述基板层(6)的涂覆有银浆的所述表面上;
    对整个装置进行烧结。
  9. 根据权利要求8所述的制备方法,其特征在于,在所述烧结结束之后,所述制备方法还包括如下步骤:
    在所述基板层(6)上用热固化胶水或UV固化胶水涂覆所述第一氧化铝层(2)、所述银镀膜层(3)、所述第二氧化铝层(4)和所述烧结银层(5)的四周,然后利用加热固化或者UV固化形成密封层(8)。
  10. 一种波长转换装置的制备方法,其特征在于,包括如下步骤:
    制备荧光层(1),并对所述荧光层(1)的一个表面进行抛光;
    通过物理溅射或蒸镀工艺在所述荧光层(1)的抛光的表面上依次形成第一氧化铝层(2)、银镀膜层(3)和第二氧化铝层(4);
    制备银浆;
    将所述银浆涂覆在所述第二氧化铝层(4)的表面上;
    对上述各层进行烧结,形成烧结银层(5);
    制备基板层(6);
    在所述基板层(6)或所述烧结银层(5)的表面上涂覆焊料,然后对所述基板层(6)和所述烧结银层(5)进行焊接,形成连接所述基板层(6)和所述烧结银层(5)的焊接层(7)。
  11. 根据权利要求10所述的制备方法,其特征在于,在所述焊接结束之后,所述制备方法还包括如下步骤:
    在所述基板层(6)上用热固化胶水或UV固化胶水涂覆所述第一氧化铝层(2)、所述银镀膜层(3)、所述第二氧化铝层(4)、所述烧结银层(5)和所述焊接层(7)的四周,然后利用UV固化或者加热固化形成密封层(8)。
PCT/CN2018/071421 2017-10-18 2018-01-04 波长转换装置及其制备方法 WO2019075939A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710970950.0 2017-10-18
CN201710970950.0A CN109681846B (zh) 2017-10-18 2017-10-18 波长转换装置及其制备方法

Publications (1)

Publication Number Publication Date
WO2019075939A1 true WO2019075939A1 (zh) 2019-04-25

Family

ID=66173515

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/071421 WO2019075939A1 (zh) 2017-10-18 2018-01-04 波长转换装置及其制备方法

Country Status (2)

Country Link
CN (1) CN109681846B (zh)
WO (1) WO2019075939A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11306898B2 (en) 2019-12-26 2022-04-19 Delta Electronics, Inc. Wavelength conversion element
CN111304614B (zh) * 2020-03-31 2022-03-08 宁波瑞凌新能源科技有限公司 反射膜、其制备方法及应用
CN114077134A (zh) * 2020-08-17 2022-02-22 深圳市绎立锐光科技开发有限公司 波长转换装置及其制备方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003004919A (ja) * 2001-06-21 2003-01-08 Canon Inc 高反射ミラー
CN104968995A (zh) * 2013-02-08 2015-10-07 优志旺电机株式会社 荧光光源装置
CN104969370A (zh) * 2013-02-04 2015-10-07 优志旺电机株式会社 荧光光源装置
CN105738994A (zh) * 2014-12-10 2016-07-06 深圳市绎立锐光科技开发有限公司 波长转换装置及相关照明装置、荧光色轮和投影装置
CN105762239A (zh) * 2016-04-12 2016-07-13 杨阳 光转换装置及其制备方法和应用
WO2016158088A1 (ja) * 2015-03-31 2016-10-06 ウシオ電機株式会社 蛍光光源装置
CN107193180A (zh) * 2012-08-02 2017-09-22 日亚化学工业株式会社 波长转换装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101251815B1 (ko) * 2011-11-07 2013-04-09 엘지이노텍 주식회사 광학 시트 및 이를 포함하는 표시장치
CN203489180U (zh) * 2013-10-15 2014-03-19 深圳市光峰光电技术有限公司 波长转换装置及其光源系统、投影系统
CN104566230B (zh) * 2013-10-15 2017-07-11 深圳市光峰光电技术有限公司 波长转换装置及其光源系统、投影系统
CN105278225B (zh) * 2014-07-21 2018-05-15 深圳市光峰光电技术有限公司 波长转换装置及其制备方法、相关发光装置和投影装置
CN105805699B (zh) * 2014-12-30 2019-01-08 深圳市光峰光电技术有限公司 波长转换装置的制备方法
CN105716039B (zh) * 2016-04-12 2018-06-15 杨阳 光转换装置及其制备方法和应用

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003004919A (ja) * 2001-06-21 2003-01-08 Canon Inc 高反射ミラー
CN107193180A (zh) * 2012-08-02 2017-09-22 日亚化学工业株式会社 波长转换装置
CN104969370A (zh) * 2013-02-04 2015-10-07 优志旺电机株式会社 荧光光源装置
CN104968995A (zh) * 2013-02-08 2015-10-07 优志旺电机株式会社 荧光光源装置
CN105738994A (zh) * 2014-12-10 2016-07-06 深圳市绎立锐光科技开发有限公司 波长转换装置及相关照明装置、荧光色轮和投影装置
WO2016158088A1 (ja) * 2015-03-31 2016-10-06 ウシオ電機株式会社 蛍光光源装置
CN105762239A (zh) * 2016-04-12 2016-07-13 杨阳 光转换装置及其制备方法和应用

Also Published As

Publication number Publication date
CN109681846A (zh) 2019-04-26
CN109681846B (zh) 2021-01-05

Similar Documents

Publication Publication Date Title
JP5079932B2 (ja) 実装用基板及びその製造方法、発光モジュール並びに照明装置
KR101549736B1 (ko) 파장 변환용 무기 성형체 및 그 제조 방법, 및 발광 장치
JP5362777B2 (ja) 発光装置、照明装置
WO2018205694A1 (zh) 波长转换装置和激光荧光转换型光源
JP4962270B2 (ja) 発光装置及びこれの製造方法
US9966522B2 (en) Light-emitting device substrate, light-emitting device, and method for manufacturing light-emitting device substrate
JP6203942B2 (ja) 発光装置用基板の製造方法、発光装置の製造方法、及び照明装置の製造方法
CN108930919B (zh) 一种波长转换装置及其制备方法、光源
US11043615B2 (en) Light-emitting device having a dielectric multilayer film arranged on the side surface of the light-emitting element
JP2017117858A (ja) 発光装置
JP4443188B2 (ja) 発光素子収納用パッケージおよび発光装置
JP5454154B2 (ja) 発光装置および発光装置の製造方法
WO2019075939A1 (zh) 波长转换装置及其制备方法
JP4480407B2 (ja) 発光素子収納用パッケージおよび発光装置
JP6985615B2 (ja) 発光装置
WO2019010910A1 (zh) 一种波长转换装置及光源
JP6607036B2 (ja) 発光装置
JP2005209959A (ja) 発光素子収納用パッケージおよび発光装置
JP2016184653A (ja) 発光素子収納用パッケージおよび発光装置
WO2013021518A1 (ja) 発光装置
CN212060849U (zh) 波长转换装置、发光装置和投影装置
JP2011155127A (ja) 発光装置
JP2005159058A (ja) 発光装置
JP6235045B2 (ja) 発光装置用基板、及び、発光装置
JP2023160372A (ja) 半導体発光装置及び波長変換部材の製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18867396

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18867396

Country of ref document: EP

Kind code of ref document: A1