WO2019075920A1 - 元器件极性检测方法、系统、计算机可读存储介质及设备 - Google Patents
元器件极性检测方法、系统、计算机可读存储介质及设备 Download PDFInfo
- Publication number
- WO2019075920A1 WO2019075920A1 PCT/CN2017/119359 CN2017119359W WO2019075920A1 WO 2019075920 A1 WO2019075920 A1 WO 2019075920A1 CN 2017119359 W CN2017119359 W CN 2017119359W WO 2019075920 A1 WO2019075920 A1 WO 2019075920A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- polarity
- symbol
- component
- component symbol
- correct
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/2801—Testing of printed circuits, backplanes, motherboards, hybrid circuits or carriers for multichip packages [MCP]
- G01R31/281—Specific types of tests or tests for a specific type of fault, e.g. thermal mapping, shorts testing
- G01R31/2813—Checking the presence, location, orientation or value, e.g. resistance, of components or conductors
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01R—MEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
- G01R31/00—Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
- G01R31/28—Testing of electronic circuits, e.g. by signal tracer
- G01R31/2801—Testing of printed circuits, backplanes, motherboards, hybrid circuits or carriers for multichip packages [MCP]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F18/00—Pattern recognition
- G06F18/20—Analysing
- G06F18/22—Matching criteria, e.g. proximity measures
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F30/00—Computer-aided design [CAD]
- G06F30/30—Circuit design
- G06F30/39—Circuit design at the physical level
- G06F30/398—Design verification or optimisation, e.g. using design rule check [DRC], layout versus schematics [LVS] or finite element methods [FEM]
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T7/00—Image analysis
- G06T7/0002—Inspection of images, e.g. flaw detection
- G06T7/0004—Industrial image inspection
- G06T7/001—Industrial image inspection using an image reference approach
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05K—PRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
- H05K1/00—Printed circuits
- H05K1/02—Details
- H05K1/0266—Marks, test patterns or identification means
- H05K1/0269—Marks, test patterns or identification means for visual or optical inspection
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06F—ELECTRIC DIGITAL DATA PROCESSING
- G06F2119/00—Details relating to the type or aim of the analysis or the optimisation
- G06F2119/18—Manufacturability analysis or optimisation for manufacturability
-
- G—PHYSICS
- G06—COMPUTING; CALCULATING OR COUNTING
- G06T—IMAGE DATA PROCESSING OR GENERATION, IN GENERAL
- G06T2207/00—Indexing scheme for image analysis or image enhancement
- G06T2207/30—Subject of image; Context of image processing
- G06T2207/30108—Industrial image inspection
- G06T2207/30141—Printed circuit board [PCB]
Definitions
- the invention belongs to the technical field of polarity detection of electronic components, and relates to a detection method and system, in particular to a method and system for detecting polarity of components, a computer readable storage medium and a device.
- an object of the present invention is to provide a component polarity detecting method, system, computer readable storage medium and device for solving the prior art to confirm component polarity by manual detection. This leads to problems of low efficiency, long time and high error rate.
- an aspect of the present invention provides a component polarity detecting method, including: selecting a graphic in a template library of a pre-created component polarity symbol from a PCB polarity pattern layer to be detected. a similar first component symbol, and selecting a second component symbol having a polarity from the selected first component symbol; traversing each second component symbol having a polarity to detect the pole Whether there is a polarity symbol stored in the template library on the second component symbol, and if so, whether the polarity position of the polarity symbol of the second component symbol is correct, and if not, the second component is output. The polarity position of the symbol's polarity symbol is incorrectly reported.
- the element The device polarity detection method before the step of selecting a first component symbol similar to the graphic in the template library of the pre-created component polarity symbol from the PCB polarity pattern layer to be detected, the element The device polarity detection method also includes creating a template library of the component polarity symbols.
- the similarity threshold is reached from the similarity between the component symbol in the PCB polarity pattern layer to be detected and the selected first component symbol.
- the component polarity detecting method further includes: selecting, according to a BOM attribute, a second component symbol having a polarity from the selected first component symbol; or receiving according to the received The name prefix of the component, and the second component symbol having polarity is selected from the selected first component symbol.
- the step of detecting that the polarity symbol of the template library is not stored on the second component symbol having polarity comprises: the pole having the second component symbol having no polarity A symbol of the character; or a polarity symbol not stored in the template library on the second component symbol having polarity.
- the output polarity symbol lacks a report; if the polarity of the second component symbol exists on the template If the library does not store the polarity symbol, an add instruction is output to add the unstored polarity symbol to the template library.
- the step of reviewing whether the polarity of the polarity symbol of the second component symbol is correct is: determining whether the second component symbol is a two-pin component symbol, if , according to the polarity symbol and the polarity direction of the two-pin component symbol, to check whether the polarity position of the polarity symbol of the second component symbol is correct, and if correct, continue to review the next second component symbol. Whether the polarity of the polarity symbol is correct. If not, the polarity position of the polarity symbol of the second component symbol is incorrectly reported; if not, the polarity symbol of the non-double-pin component symbol is detected.
- polarity pin is in the same position area to check whether the polarity position of the polarity symbol of the second component symbol is correct. If the polarity symbol and the polarity pin are in the same position area, the second element is examined. The polarity of the polarity symbol of the device symbol is correct; if the polarity symbol and the polarity pin are not in the same position area, the polarity of the polarity symbol of the second component symbol is incorrectly inspected. Polar position of the second polarity sign symbol error reporting component; wherein the first non-default polarity pin-pin-pin dual component.
- a polarity detecting system for a component comprising: a selecting module, which is configured to select a graphic similar to a graphic in a template library of a pre-created component polarity symbol from a PCB pattern to be detected.
- Yet another aspect of the present invention provides a computer readable storage medium having stored thereon a computer program that, when executed by a processor, implements the component polarity detecting method.
- a final aspect of the present invention provides an apparatus comprising: a processor and a memory; the memory for storing a computer program, the processor for executing the computer program of the memory storage, to cause the device to execute the component Polarity detection method.
- the component polarity detecting method, system, computer readable storage medium and device of the present invention have the following beneficial effects:
- the component polarity detecting method, system, computer readable storage medium and device according to the invention improve component polarity detection efficiency, shorten detection time and low error rate, and can not be ignored in promoting the intelligent process of the electronic industry.
- FIG. 1 is a schematic flow chart showing a component polarity detecting method according to an embodiment of the present invention.
- Figure 2A shows a schematic diagram of various component symbols of the present invention.
- 2B is a schematic diagram showing the polarity symbols of various components of the present invention.
- Fig. 3A shows a symbolic view of a component of the diode of the present invention.
- Figure 3B shows a symbolic view of the multi-pin component symbol U1 of the present invention.
- Figure 3C shows a symbolic view of the multi-pin component symbol U2 of the present invention.
- Figure 3D shows a symbolic view of the multi-pin component symbol U3 of the present invention.
- FIG. 4 is a schematic view showing the principle structure of the component polarity detecting system of the present invention in an embodiment.
- the embodiment provides a component polarity detecting method, including:
- FIG. 1A a schematic diagram of a process for detecting a component polarity in an embodiment is shown. As shown in FIG. 1A, the component polarity detecting method specifically includes the following steps:
- the template library of the component polarity symbol includes a graphic of the component and a component polarity symbol.
- FIG. 2A and FIG. 2B are respectively a schematic diagram of various component symbols and a schematic diagram of various component polarity symbols.
- a plurality of graphic similarity algorithms are used to select a first component symbol similar to the graphic in the template library of the pre-created component polarity symbol from the PCB polarity pattern layer to be detected.
- the similarity threshold is reached from the graphical similarity between the component symbol in the PCB polarity pattern layer to be detected and the selected first component symbol, for example, the similarity threshold is 90%.
- the symbols of all components in the PCB polarity pattern layer to be detected are referred to as first component symbols.
- a component symbol having a polarity symbol in the first component symbol is referred to as a second component symbol.
- the symbol of the PCB to be detected includes a diode, a MOS transistor, an IC chip, a resistor, an inductor, and the like, and the component symbol is a first component symbol.
- the diode, the MOS transistor, the IC chip and the like have a polarity symbol
- the selected diode, MOS transistor, IC chip, etc. are the second component symbols.
- the second component symbol having the polarity is selected from the selected first component symbols.
- the BOM attribute includes the component having a polarity attribute or the component having no polarity attribute.
- resistor components, inductor components, etc. do not have polarity properties, and components such as diodes, transistors, and MOS transistors have polar properties.
- the second component symbol having the polarity is selected from the selected first component symbols.
- the prefix of the received component prefix U1, U2, D1, etc. is U
- D is a polar component
- resistors R1 and R2 the names of components such as inductors L1 and L2 are R and L. Components without polarity.
- the output polarity symbol lacks a report; or if the template symbol library is not stored on the second component symbol having polarity
- the polarity symbol outputs an add instruction to add an unstored polarity symbol to the template library.
- the S13 specifically includes the following steps:
- step S132 Check whether the polarity position of the polarity symbol of the second component symbol is correct. If correct, according to the order of components in the PCB pattern layer to be tested, continue to check whether the polarity of the polarity symbol of the next second component symbol is correct until all components with polarity symbols are correct. The review is complete. If not, step S134 is executed to output a polarity position error report of the polarity symbol of the second component symbol.
- the S132 includes:
- Determining whether the second component symbol is a two-pin component symbol and if so, examining a pole of a polarity symbol of the second component symbol according to a polarity symbol and a polarity direction of the two-pin component symbol Whether the polarity position is correct, if it is correct, continue to check whether the polarity position of the polarity symbol of the next second component symbol is correct. If not, output the polarity position error report of the polarity symbol of the second component symbol.
- the polarity sign and the polarity pin of the non-dual-pin component symbol are in the same position area, to check whether the polarity position of the polarity symbol of the second component symbol is correct, if the polarity If the symbol and polarity pins are in the same position area, it is checked that the polarity of the polarity symbol of the second component symbol is correct; if the polarity symbol and the polarity pin are not located in the same location area, then the The polarity of the polarity symbol of the two component symbols is incorrect, and the polarity position of the polarity symbol of the second component symbol is output.
- the default polarity pin is the first pin of a non-dual-pin component.
- the two-pin component symbol is the sign of diode D.
- the symbol division area of the diode D is left, center, and right. If the polarity sign of the diode D found is in the polarity direction, the polarity position is preferentially checked in the polarity direction.
- Figure 3A shows the symbol of the component of the diode. As shown in FIG. 3A, the direction of D1 is to the right, and the diode requires the second pin to be in the polarity direction, and it is examined that the polarity of the polarity symbol of the diode symbol is correct. Or if the polarity symbol has no direction, the polarity symbol position of D1 is medium, and the component polarity pin 2 is on the right. If the polarity position of the polarity symbol of the diode symbol is inconsistent, the diode symbol is output. The polarity of the polarity symbol is incorrectly reported.
- FIGS. 3B and 3C are respectively shown as symbol diagrams of the multi-pin component symbols U1 and U2.
- the polarity symbol position of the multi-pin component symbol U1 is in the same position area as the first leg (as in the upper left region in FIG. 3B), and the pole of the second component symbol is examined. The polarity of the sex symbol is correct.
- the multi-pin component symbol U2 polarity symbol position is in a different position region from the first leg (the polarity symbol in the upper middle region is as shown in FIG. 3C, and the first leg is located in the lower right region), and then the review is performed.
- the polarity position of the polarity symbol to the second component symbol is incorrect, and the polarity position of the polarity symbol of the second component symbol is output.
- the polarity symbol is output. If there is a lack of a report; or there is a polarity symbol that is not stored in the template library on the second component symbol having polarity, an add instruction is output to add an unstored polarity symbol in the template library.
- the multi-pin component symbol U3 is divided into upper left, upper middle, upper right, left middle, middle, right middle, lower left, lower middle, and lower right by 1/3 of X and Y. Then traverse to U3 of Figure 3D, without any polarity symbol in the search area, it directly reports that U3 has no polarity symbol.
- the division of the positional area is divided on the body pattern of the component.
- the area of the component body of U3 (see the pin coverage area of Figure 3D) is expanded by 10% (10% can be set), which is 110% of the largest area of the component body (see the search area of Figure 3D).
- the size of the component's body is preferentially derived from the actual size of the physical model library. If there is no physical model library, the size of the component body frame in the CAD is used. If the footprint of all the components of the component has not been used, the body size is calculated.
- the embodiment further provides a computer readable storage medium, on which a computer program is stored, which is implemented by the processor to implement the component polarity detecting method.
- a computer program is stored in a computer readable storage medium.
- the program when executed, performs the steps including the foregoing method embodiments; and the foregoing storage medium includes various media that can store program codes, such as a ROM, a RAM, a magnetic disk, or an optical disk.
- the component polarity detecting method provided by the embodiment and the computer readable storage medium for realizing the component polarity detecting method improve the component polarity detecting efficiency, shorten the detecting time, and have a low error rate, and promote the intelligent process of the electronic industry. Play a role that cannot be ignored.
- This embodiment provides a component polarity detecting system, including:
- a processing module configured to traverse each second component symbol having a polarity to detect whether a polarity symbol stored in the template library exists on the second component symbol having polarity, and if so, review the second component Whether the polarity position of the polarity symbol of the component symbol is correct. If it is not correct, the polarity position of the polarity symbol of the second component symbol is output and the error is reported.
- each module of the above system is only a division of logical functions, and the actual implementation may be integrated into one physical entity in whole or in part, or may be physically separated.
- these modules can all be implemented by software in the form of processing component calls; or all of them can be implemented in hardware form; some modules can be realized by processing component calling software, and some modules are realized by hardware.
- the x module may be a separately set processing element, or may be integrated in one of the above-mentioned devices, or may be stored in the memory of the above device in the form of program code, by a processing element of the above device. Call and execute the functions of the above x modules.
- each step of the above method or each of the above modules may be completed by an integrated logic circuit of hardware in the processor element or an instruction in a form of software.
- the above modules may be one or more integrated circuits configured to implement the above method, for example, one or more specific integrated circuits (ASICs), or one or more microprocessors (digitalsingnal processors, referred to as DSP), or one or more Field Programmable Gate Arrays (FPGAs).
- ASICs application specific integrated circuits
- DSP digital signal processors
- FPGAs Field Programmable Gate Arrays
- the processing component may be a general-purpose processor, such as a central processing unit (CPU) or other processor that can call the program code.
- these modules can be integrated and implemented in the form of a system-on-a-chip (SOC).
- SOC system-on-a-chip
- the component polarity detecting system 4 includes a template library creating module 41, a sorting module 42, and a processing module 43.
- the template library creation module 41 is configured to create a template library of the component polarity symbols.
- the selecting module 42 coupled to the template library creating module 41 is configured to select, from the to-be-detected PCB polarity graphic layer, a first component symbol similar to the graphic in the template library of the pre-created component polarity symbol, and A second component symbol having polarity is selected from the selected first component symbols.
- the selection module 42 uses a plurality of graphic similarity algorithms to select a first component symbol similar to the graphic in the template library of the pre-created component polarity symbol from the PCB polarity pattern layer to be detected.
- the similarity threshold is reached from the graphical similarity between the component symbol in the PCB polarity pattern layer to be detected and the selected first component symbol, for example, the similarity threshold is 90%.
- the symbols of all components in the PCB polarity pattern layer to be detected are referred to as first component symbols.
- a component symbol having a polarity symbol in the first component symbol is referred to as a second component symbol.
- the selection module 42 selects a second component symbol having a polarity from the selected first component symbol according to a BOM attribute. Or the selection module 42 selects a second component symbol having a polarity from the selected first component symbols according to the received name prefix of the component.
- the processing module 43 coupled to the template library creation module 41 and the selection module 42 is configured to traverse each second component symbol having a polarity to detect whether a template library exists on the second component symbol having polarity
- the stored polarity symbol if present, is checked whether the polarity position of the polarity symbol of the second component symbol is correct, and if not, the polarity position error report of the polarity symbol of the second component symbol is output. If it is correct, continue to check whether the polarity of the polarity symbol of the next second component symbol is correct according to the order of components in the PCB pattern layer to be tested.
- the processing module 43 detects whether there is a polarity symbol stored in the template library on the second component symbol having the polarity, and if the template library exists on the second component symbol having the polarity detected The stored polarity symbol is performed to check whether the polarity position of the polarity symbol of the second component symbol is correct. If correct, according to the order of components in the PCB pattern layer to be tested, continue to check whether the polarity of the polarity symbol of the next second component symbol is correct until all components with polarity symbols are correct. The review is complete. If not, the polarity position error report of the polarity symbol of the second component symbol is output.
- the output polarity symbol lacks a report. Or if there is a polarity symbol that is not stored in the template library on the second component symbol having polarity, an add instruction is output to add an unstored polarity symbol in the template library.
- the processing module 43 is further configured to determine whether the second component symbol is a two-pin component symbol, and if yes, review the second component according to a polarity symbol and a polarity direction of the dual-pin component symbol. Whether the polarity of the polarity symbol of the device symbol is correct. If it is correct, continue to check whether the polarity of the polarity symbol of the next second component symbol is correct. If not, output the polarity of the second component symbol. The polarity position of the symbol is incorrectly reported; if not, the polarity sign and the polarity pin of the non-dual-pin symbol are detected in the same position area to examine the polarity of the second component symbol. Is the polarity position correct?
- the polarity of the polarity symbol of the second component symbol is checked correctly; if the polarity symbol and the polarity pin are not located at the same In the location area, it is checked that the polarity position of the polarity symbol of the second component symbol is incorrect, and the polarity position of the polarity symbol of the second component symbol is output.
- the default polarity pin is the first pin of a non-dual-pin component.
- the processing module 43 stops all operations until all components with polarity symbols are reviewed.
- the device includes: a processor, a memory, a transceiver, a communication interface, and a system bus; the memory and the communication interface are connected to the processor and the transceiver through the system bus, and complete communication with each other, the memory For storing a computer program, the communication interface is for communicating with other devices, and the processor and the transceiver are for running a computer program to cause the device to perform various steps of the component polarity detecting method as described above.
- the system bus mentioned above may be a Peripheral Pomponent Interconnect (PCI) bus or an Extended Industry Standard Architecture (EISA) bus.
- PCI Peripheral Pomponent Interconnect
- EISA Extended Industry Standard Architecture
- the system bus can be divided into an address bus, a data bus, a control bus, and the like. For ease of representation, only one thick line is shown in the figure, but it does not mean that there is only one bus or one type of bus.
- the communication interface is used to implement communication between the database access device and other devices such as clients, read-write libraries, and read-only libraries.
- the memory may include random access memory (RAM), and may also include non-volatile memory, such as at least one disk storage.
- the above processor may be a general-purpose processor, including a central processing unit (CPU), a network processor (Network Processor, NP for short), and the like; or a digital signal processor (DSP), an application specific integrated circuit (DSP). ApplicationSpecificIntegratedCircuit (ASIC), Field-Programmable Gate Array (FPGA) or other programmable logic devices, discrete gate or transistor logic devices, discrete hardware components.
- CPU central processing unit
- NP Network Processor
- DSP digital signal processor
- DSP application specific integrated circuit
- ASIC ApplicationSpecificIntegratedCircuit
- FPGA Field-Programmable Gate Array
- the component polarity detecting method, system, and computer readable storage medium and device improve component polarity detection efficiency, shorten detection time, and have low error rate, and promote the intelligent process of the electronic industry. It plays a role that cannot be ignored. Therefore, the present invention effectively overcomes various shortcomings in the prior art and has high industrial utilization value.
Landscapes
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Theoretical Computer Science (AREA)
- General Physics & Mathematics (AREA)
- Computer Hardware Design (AREA)
- General Engineering & Computer Science (AREA)
- Microelectronics & Electronic Packaging (AREA)
- Data Mining & Analysis (AREA)
- Evolutionary Computation (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Bioinformatics & Computational Biology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Evolutionary Biology (AREA)
- Artificial Intelligence (AREA)
- Life Sciences & Earth Sciences (AREA)
- Geometry (AREA)
- Quality & Reliability (AREA)
- Design And Manufacture Of Integrated Circuits (AREA)
- Tests Of Electronic Circuits (AREA)
- Supply And Installment Of Electrical Components (AREA)
Abstract
一种元器件极性检测方法、系统、计算机可读存储介质及设备,元器件极性检测方法包括:从待检测 PCB 极性图形层中挑选出与预创建的元器件极性符号的模板库中图形相似的第一元器件符号,并从挑选出的第一元器件符号中筛选出具有极性的第二元器件符号(S12);遍历每一具有极性的第二元器件符号,以检测所述具有极性的第二元器件符号上是否存在模板库已储存的极性符号(S131),若存在,审查该第二元器件符号的极性符号的极性位置是否正确(S132),若不正确,输出该第二元器件符号的极性符号的极性位置错误报告(S134)。该技术方案提高了元器件极性检测效率,缩短检测时间,出错率低。
Description
本发明属于电子元器件极性检测技术领域,涉及一种检测方法及系统,特别是涉及一种元器件极性检测方法、系统、计算机可读存储介质及设备。
随着电子行业智能化进程的推进,使得针对PCB的可制造性审查分析技术成为电子企业保证产品品质及实现敏捷制造的一个必要选择,它贯穿着开发、试制、试验、生产、维护的全过程。由于PCB的设计中对部分元器件是有极性方向要求的(比如集成电路IC,铝电容,二极管等),那么如何审查元器件是否有极性以及方向如何也将成为PCB可制造性分析技术的应有内容。目前,电子行业中针对元器件极性的检查都是通过人工方法进行,即通过工程师人工查看布线图上每个元器件是否有标示进行确认。而人工查看的方法存在以下缺点:
第一,效率低,耗时长;
第二,出错率高。
那么如何在PCB的可制造性审查分析技术中,创设一种智能的极性审查方法变得尤为必要。
因此,如何提供一种元器件极性检测方法、系统、计算机可读存储介质及设备,以解决现有技术通过人工检测确认元器件极性,导致效率低,耗时长,出错率高等缺陷,实已成为本领域技术人员亟待解决的技术问题。
发明内容
鉴于以上所述现有技术的缺点,本发明的目的在于提供一种元器件极性检测方法、系统、计算机可读存储介质及设备,用于解决现有技术通过人工检测确认元器件极性,导致效率低,耗时长,出错率高的问题。
为实现上述目的及其他相关目的,本发明一方面提供一种元器件极性检测方法,包括:从待检测PCB极性图形层中挑选出与预创建的元器件极性符号的模板库中图形相似的第一元器件符号,并从挑选出的第一元器件符号中筛选出具有极性的第二元器件符号;遍历每一具有极性的第二元器件符号,以检测所述具有极性的第二元器件符号上是否存在模板库已储存的极性符号,若存在,审查该第二元器件符号的极性符号的极性位置是否正确,若不正确,输出该第二元器件符号的极性符号的极性位置错误报告。
于本发明的一实施例中,在执行从待检测PCB极性图形层中挑选出与预创建的元器件极性符号的模板库中图形相似的第一元器件符号的步骤之前,所述元器件极性检测方法还包括创建所述元器件极性符号的模板库。
于本发明的一实施例中,从待检测PCB极性图形层中的元器件符号与挑选出的第一元器件符号的图形相似度达到相似度阈值。
于本发明的一实施例中,所述元器件极性检测方法还包括:根据BOM属性,从挑选出的第一元器件符号中筛选出具有极性的第二元器件符号;或根据所接收的元器件的名称前缀,从挑选出的第一元器件符号中筛选出具有极性的第二元器件符号。
于本发明的一实施例中,检测所述具有极性的第二元器件符号上不存在模板库已储存的极性符号的步骤包括:所述具有极性的第二元器件符号上没有极性符号;或所述具有极性的第二元器件符号上存在模板库未储存的极性符号。
于本发明的一实施例中,若所述具有极性的第二元器件符号上没有极性符号,则输出极性符号缺少报告;若所述具有极性的第二元器件符号上存在模板库未储存的极性符号,则输出添加指令,以添加未储存的极性符号于所述模板库中。
于本发明的一实施例中,所述审查该第二元器件符号的极性符号的极性位置是否正确的步骤包括:判断所述第二元器件符号是否为双引脚元器件符号,若是,则根据双引脚元器件符号的极性符号和极性方向,来审查该第二元器件符号的极性符号的极性位置是否正确,若正确,则继续审查下一第二元器件符号的极性符号的极性位置是否正确,若不正确,输出该第二元器件符号的极性符号的极性位置错误报告;若否,则检测非双引脚元器件符号的极性符号和极性引脚是否位于相同位置区域,以审查该第二元器件符号的极性符号的极性位置是否正确,若极性符号和极性引脚位于相同位置区域,则审查到该第二元器件符号的极性符号的极性位置正确;若极性符号和极性引脚未位于相同位置区域,则审查到该第二元器件符号的极性符号的极性位置不正确,输出该第二元器件符号的极性符号的极性位置错误报告;其中,默认极性引脚为非双引脚元器件的第一引脚。
本发明另一方面提供一种元器件的极性检测系统,包括:挑选模块,用于从待检测PCB极性图形层中挑选出与预创建的元器件极性符号的模板库中图形相似的第一元器件符号,并从挑选出的第一元器件符号中筛选出具有极性的第二元器件符号;处理模块,用于遍历每一具有极性的第二元器件符号,以检测所述具有极性的第二元器件符号上是否存在模板库已储存的极性符号,若存在,审查该第二元器件符号的极性符号的极性位置是否正确,若不正确,输出该第二元器件符号的极性符号的极性位置错误报告。
本发明又一方面提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现所述元器件极性检测方法。
本发明最后一方面提供一种设备,包括:处理器及存储器;所述存储器用于存储计算机程序,所述处理器用于执行所述存储器存储的计算机程序,以使所述设备执行所述元器件极性检测方法。
如上所述,本发明的元器件极性检测方法、系统、计算机可读存储介质及设备,具有以下有益效果:
本发明所述的元器件极性检测方法、系统、计算机可读存储介质及设备提高了元器件极性检测效率,缩短检测时间,出错率低,在推动电子行业智能化过程中发挥着不容忽视的作用。
图1显示为本发明的元器件极性检测方法于一实施例中的流程示意图。
图2A显示为本发明的多种元器件符号的示意图。
图2B显示为本发明的多种元器件极性符号的示意图。
图3A显示为本发明的二极管的元器件符号图。
图3B显示为本发明的多引脚元器件符号U1的符号图。
图3C显示为本发明的多引脚元器件符号U2的符号图。
图3D显示为本发明的多引脚元器件符号U3的符号图。
图4显示为本发明的元器件极性检测系统于一实施例中的原理结构示意图。
元件标号说明
4 元器件极性检测系统
41 模板库创建模块
42 挑选模块
43 处理模块
S11~S13 步骤
S131~S134 步骤
以下通过特定的具体实例说明本发明的实施方式,本领域技术人员可由本说明书所揭露 的内容轻易地了解本发明的其他优点与功效。本发明还可以通过另外不同的具体实施方式加以实施或应用,本说明书中的各项细节也可以基于不同观点与应用,在没有背离本发明的精神下进行各种修饰或改变。需说明的是,在不冲突的情况下,以下实施例及实施例中的特征可以相互组合。
需要说明的是,以下实施例中所提供的图示仅以示意方式说明本发明的基本构想,遂图式中仅显示与本发明中有关的组件而非按照实际实施时的组件数目、形状及尺寸绘制,其实际实施时各组件的型态、数量及比例可为一种随意的改变,且其组件布局型态也可能更为复杂。
实施例一
本实施例提供一种元器件极性检测方法,包括:
从待检测PCB极性图形层中挑选出与预创建的元器件极性符号的模板库中图形相似的第一元器件符号,并从挑选出的第一元器件符号中筛选出具有极性的第二元器件符号;
遍历每一具有极性的第二元器件符号,以检测所述具有极性的第二元器件符号上是否存在模板库已储存的极性符号,若存在,审查该第二元器件符号的极性符号的极性位置是否正确,若不正确,输出该第二元器件符号的极性符号的极性位置错误报告。
以下将结合图示对本实施例所提供的元器件极性检测方法进行详细描述。请参阅图1A,显示为元器件极性检测方法于一实施例中的流程示意图。如图1A所示,所述元器件极性检测方法具体包括以下几个步骤:
S11,创建所述元器件极性符号的模板库。在本实施例中,所述元器件极性符号的模板库中包括元器件的图形和元器件极性符号。请参阅图2A和图2B,分别显示为多种元器件符号的示意图和多种元器件极性符号的示意图。
S12,从待检测PCB极性图形层中挑选出与预创建的元器件极性符号的模板库中图形相似的第一元器件符号,并从挑选出的第一元器件符号中筛选出具有极性的第二元器件符号。
在本实施例中,利用多种图形相似算法从待检测PCB极性图形层中挑选出与预创建的元器件极性符号的模板库中图形相似的第一元器件符号。从待检测PCB极性图形层中的元器件符号与挑选出的第一元器件符号的图形相似度达到相似度阈值,例如,相似度阈值为90%。在本实施例中,将待检测PCB极性图形层中所有元器件的符号称为第一元器件符号。把第一元器件符号中具有极性符号的元器件符号称为第二元器件符号。例如,待检测PCB极性图形层中包括二极管,MOS管,IC芯片,电阻,电感等元器件符号为第一元器件符号。其中,二极管,MOS管,IC芯片等具有极性符号,那么筛选出的二极管,MOS管,IC芯片等为第 二元器件符号。
在本实施例中,根据BOM属性(Bill of Material,物料清单),从挑选出的第一元器件符号中筛选出具有极性的第二元器件符号。所述BOM属性包括元器件具有极性属性或元器件不具有极性属性。例如,电阻元器件,电感元器件等不具有极性属性,二极管,三极管,MOS管等元器件具有极性属性。
或根据所接收的元器件的名称前缀,从挑选出的第一元器件符号中筛选出具有极性的第二元器件符号。例如,接收的元器件的名称前缀U1,U2,D1等前缀为U,D的是有极性的元器件,电阻R1和R2,电感L1和L2等元器件的名称前缀为R和L的是不具有极性的元器件。
S13,遍历每一具有极性的第二元器件符号,以检测所述具有极性的第二元器件符号上是否存在模板库已储存的极性符号,若存在,审查该第二元器件符号的极性符号的极性位置是否正确,若不正确,则输出该第二元器件符号的极性符号的极性位置错误报告;若正确,按照待检测PCB极性图形层中元器件的排布顺序,继续审查下一个第二元器件符号的极性符号的极性位置是否正确。若不存在,若所述具有极性的第二元器件符号上没有极性符号,则输出极性符号缺少报告;或若所述具有极性的第二元器件符号上存在模板库未储存的极性符号,则输出添加指令,以添加未储存的极性符号于所述模板库中。
请继续参阅图1,如图1所示,所述S13具体包括以下几个步骤:
S131,检测所述具有极性的第二元器件符号上是否存在模板库已储存的极性符号,若是,则执行步骤S132,若否,则执行S133。
S132,审查该第二元器件符号的极性符号的极性位置是否正确。若正确,按照待检测PCB极性图形层中元器件的排布顺序,继续审查下一个第二元器件符号的极性符号的极性位置是否正确,直到所有的具有极性符号的元器件都审查完毕。若不正确,则执行步骤S134,输出该第二元器件符号的极性符号的极性位置错误报告。
具体地,所述S132包括:
判断所述第二元器件符号是否为双引脚元器件符号,若是,则根据双引脚元器件符号的极性符号和极性方向,来审查该第二元器件符号的极性符号的极性位置是否正确,若正确,则继续审查下一第二元器件符号的极性符号的极性位置是否正确,若不正确,输出该第二元器件符号的极性符号的极性位置错误报告;若否,则检测非双引脚元器件符号的极性符号和极性引脚是否位于相同位置区域,以审查该第二元器件符号的极性符号的极性位置是否正确,若极性符号和极性引脚位于相同位置区域,则审查到该第二元器件符号的极性符号的极性位 置正确;若极性符号和极性引脚未位于相同位置区域,则审查到该第二元器件符号的极性符号的极性位置不正确,输出该第二元器件符号的极性符号的极性位置错误报告。其中,默认极性引脚为非双引脚元器件的第一引脚。
例如,双引脚元器件符号为二极管D的符号。该二极管D的符号划分区域为左中右。如果找到的二极管D的极性符号是有极性方向的,优先按极性方向来审查极性位置。请参阅图图3A,显示为二极管的元器件符号图。如图3A所示,D1方向朝右,此二极管要求第二脚为极性方向,则审查到该二极管符号的极性符号的极性位置正确。或如果此极性符号无方向,D1的极性符号位置为中,元器件极性脚2在右,审查到该二极管符号的极性符号的极性位置不正确位置不一致,则输出该二极管符号的极性符号的极性位置错误报告。
请参阅图3B及3C,分别显示为多引脚元器件符号U1及U2的符号图。如图3B所示,多引脚元器件符号U1的极性符号位置与第一脚在相同位置区域(如图3B中的位置区域为左上区域),则审查到该第二元器件符号的极性符号的极性位置正确。
如图3C所示,多引脚元器件符号U2极性符号位置与第一脚在不同位置区域(如图3C中的极性符号位于中上区域,第一脚位于右下区域),则审查到该第二元器件符号的极性符号的极性位置不正确,输出该第二元器件符号的极性符号的极性位置错误报告。
S133,若检测所述具有极性的第二元器件符号上不存在模板库已储存的极性符号,即所述具有极性的第二元器件符号上没有极性符号,则输出极性符号缺少报告;或所述具有极性的第二元器件符号上存在模板库未储存的极性符号,则输出添加指令,以添加未储存的极性符号于所述模板库中。
如图3D所示,多引脚元器件符号U3按X和Y的1/3划定区域为左上、中上、右上、左中、中、右中、左下、中下、右下。再遍历到图3D的U3,在搜索区域内没有任何极性符号则直接报告U3没有极性符号。
在本实施例中,位置区域的划分是在元器件的本体图形上划分的。例如,U3的元器件本体的区域(见图3D引脚覆盖区域)扩大10%范围内(10%可以设定),也就是元器件本体大小最大区域的110%(见图3D的搜索区域)。元器件的本体大小优先来自实物模型库的实际大小,如果没有实物模型库,使用CAD内元器件本体框的大小,如果还没有使用元器件所有引脚的覆盖区域计算出本体大小。
实施本实施例所提供的元器件极性检测方法,将人工审查转为计算机大数据分析,不仅提升了审查的效率及正确率,而且也极大改善了工程师的工作环境;是实现工艺审查自动化的一个重要环节。以一块1000个元器件的PCB电路板举例,大概极性元器件10%,即100 颗,人工查看1一颗时间为10秒钟,那么100颗就需要人工查看16.7分钟;如遇到问题,还需要报告汇总,大概整个过程需要耗时30分钟;而工程师现在采用本发明方法,只需要1-3分钟就可实现,不仅效率提高好几倍,而且也极大地解放了工程师。
本实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述元器件极性检测方法。本领域普通技术人员可以理解:实现上述各方法实施例的全部或部分步骤可以通过计算机程序相关的硬件来完成。前述的计算机程序可以存储于一计算机可读存储介质中。该程序在执行时,执行包括上述各方法实施例的步骤;而前述的存储介质包括:ROM、RAM、磁碟或者光盘等各种可以存储程序代码的介质。
本实施例提供的元器件极性检测方法及实现元器件极性检测方法的计算机可读存储介质提高了元器件极性检测效率,缩短检测时间,出错率低,在推动电子行业智能化过程中发挥着不容忽视的作用。
实施例二
本实施例提供一种元器件极性检测系统,包括:
挑选模块,用于从待检测PCB极性图形层中挑选出与预创建的元器件极性符号的模板库中图形相似的第一元器件符号,并从挑选出的第一元器件符号中筛选出具有极性的第二元器件符号;
处理模块,用于遍历每一具有极性的第二元器件符号,以检测所述具有极性的第二元器件符号上是否存在模板库已储存的极性符号,若存在,审查该第二元器件符号的极性符号的极性位置是否正确,若不正确,输出该第二元器件符号的极性符号的极性位置错误报告。
以下将结合图示对本实施例提供的元器件极性检测系统进行详细描述。需要说明的是,应理解以上系统的各个模块的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些模块可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分模块通过处理元件调用软件的形式实现,部分模块通过硬件的形式实现。例如,x模块可以为单独设立的处理元件,也可以集成在上述装置的某一个芯片中实现,此外,也可以以程序代码的形式存储于上述装置的存储器中,由上述装置的某一个处理元件调用并执行以上x模块的功能。其它模块的实现与之类似。此外这些模块全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个模块可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些模块可以是被配置成实施以上方法的一个或多个集成电路,例如:一个 或多个特定集成电路(ApplicationSpecificIntegratedCircuit,简称ASIC),或,一个或多个微处理器(digitalsingnalprocessor,简称DSP),或,一个或者多个现场可编程门阵列(FieldProgrammableGateArray,简称FPGA)等。再如,当以上某个模块通过处理元件调度程序代码的形式实现时,该处理元件可以是通用处理器,例如中央处理器(CentralProcessingUnit,简称CPU)或其它可以调用程序代码的处理器。再如,这些模块可以集成在一起,以片上系统(system-on-a-chip,简称SOC)的形式实现。
请参阅图4,显示为元器件极性检测系统于一实施例中的原理结构示意图。如图4所示,所述元器件极性检测系统4包括模板库创建模块41、挑选模块42和处理模块43。
所述模板库创建模块41用于创建所述元器件极性符号的模板库。
与所述模板库创建模块41耦合的挑选模块42用于从待检测PCB极性图形层中挑选出与预创建的元器件极性符号的模板库中图形相似的第一元器件符号,并从挑选出的第一元器件符号中筛选出具有极性的第二元器件符号。
在本实施例中,所述挑选模块42利用多种图形相似算法从待检测PCB极性图形层中挑选出与预创建的元器件极性符号的模板库中图形相似的第一元器件符号。从待检测PCB极性图形层中的元器件符号与挑选出的第一元器件符号的图形相似度达到相似度阈值,例如,相似度阈值为90%。在本实施例中,将待检测PCB极性图形层中所有元器件的符号称为第一元器件符号。把第一元器件符号中具有极性符号的元器件符号称为第二元器件符号。
在本实施例中,所述挑选模块42根据BOM属性(Bill of Material,物料清单),从挑选出的第一元器件符号中筛选出具有极性的第二元器件符号。或所述挑选模块42根据所接收的元器件的名称前缀,从挑选出的第一元器件符号中筛选出具有极性的第二元器件符号。
与所述模板库创建模块41和挑选模块42耦合的处理模块43用于遍历每一具有极性的第二元器件符号,以检测所述具有极性的第二元器件符号上是否存在模板库已储存的极性符号,若存在,审查该第二元器件符号的极性符号的极性位置是否正确,若不正确,则输出该第二元器件符号的极性符号的极性位置错误报告;若正确,按照待检测PCB极性图形层中元器件的排布顺序,继续审查下一个第二元器件符号的极性符号的极性位置是否正确。
具体地,所述处理模块43检测所述具有极性的第二元器件符号上是否存在模板库已储存的极性符号,若检测所述具有极性的第二元器件符号上存在模板库已储存的极性符号,则执行审查该第二元器件符号的极性符号的极性位置是否正确。若正确,按照待检测PCB极性图形层中元器件的排布顺序,继续审查下一个第二元器件符号的极性符号的极性位置是否正确,直到所有的具有极性符号的元器件都审查完毕。若不正确,则输出该第二元器件符号的极性 符号的极性位置错误报告。若检测所述具有极性的第二元器件符号上不存在模板库已储存的极性符号,即所述具有极性的第二元器件符号上没有极性符号,则输出极性符号缺少报告;或所述具有极性的第二元器件符号上存在模板库未储存的极性符号,则输出添加指令,以添加未储存的极性符号于所述模板库中。
所述处理模块43还用于判断所述第二元器件符号是否为双引脚元器件符号,若是,则根据双引脚元器件符号的极性符号和极性方向,来审查该第二元器件符号的极性符号的极性位置是否正确,若正确,则继续审查下一第二元器件符号的极性符号的极性位置是否正确,若不正确,输出该第二元器件符号的极性符号的极性位置错误报告;若否,则检测非双引脚元器件符号的极性符号和极性引脚是否位于相同位置区域,以审查该第二元器件符号的极性符号的极性位置是否正确,若极性符号和极性引脚位于相同位置区域,则审查到该第二元器件符号的极性符号的极性位置正确;若极性符号和极性引脚未位于相同位置区域,则审查到该第二元器件符号的极性符号的极性位置不正确,输出该第二元器件符号的极性符号的极性位置错误报告。其中,默认极性引脚为非双引脚元器件的第一引脚。
在本实施例中,所述处理模块43直到所有的具有极性符号的元器件都审查完毕,停止运行。
实施例三
本实施例提供的一种设备,所述设备包括:处理器、存储器、收发器、通信接口和系统总线;存储器和通信接口通过系统总线与处理器和收发器连接并完成相互间的通信,存储器用于存储计算机程序,通信接口用于和其他设备进行通信,处理器和收发器用于运行计算机程序,使设备执行如上述元器件极性检测方法的各个步骤。
上述提到的系统总线可以是外设部件互连标准(PeripheralPomponentInterconnect,简称PCI)总线或扩展工业标准结构(ExtendedIndustryStandardArchitecture,简称EISA)总线等。该系统总线可以分为地址总线、数据总线、控制总线等。为便于表示,图中仅用一条粗线表示,但并不表示仅有一根总线或一种类型的总线。通信接口用于实现数据库访问装置与其他设备(例如客户端、读写库和只读库)之间的通信。存储器可能包含随机存取存储器(RandomAccessMemory,简称RAM),也可能还包括非易失性存储器(non-volatilememory),例如至少一个磁盘存储器。
上述的处理器可以是通用处理器,包括中央处理器(CentralProcessingUnit,简称CPU)、网络处理器(NetworkProcessor,简称NP)等;还可以是数字信号处理器(DigitalSignalProcessing,简称DSP)、专用集成电路(ApplicationSpecificIntegratedCircuit,简称ASIC)、现场可编程门阵 列(Field-ProgrammableGateArray,简称FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。
综上所述,本发明所述的元器件极性检测方法、系统、计算机可读存储介质及设备提高了元器件极性检测效率,缩短检测时间,出错率低,在推动电子行业智能化过程中发挥着不容忽视的作用。所以,本发明有效克服了现有技术中的种种缺点而具高度产业利用价值。
上述实施例仅例示性说明本发明的原理及其功效,而非用于限制本发明。任何熟悉此技术的人士皆可在不违背本发明的精神及范畴下,对上述实施例进行修饰或改变。因此,举凡所属技术领域中具有通常知识者在未脱离本发明所揭示的精神与技术思想下所完成的一切等效修饰或改变,仍应由本发明的权利要求所涵盖。
Claims (10)
- 一种元器件极性检测方法,其特征在于,包括:从待检测PCB极性图形层中挑选出与预创建的元器件极性符号的模板库中图形相似的第一元器件符号,并从挑选出的第一元器件符号中筛选出具有极性的第二元器件符号;遍历每一具有极性的第二元器件符号,以检测所述具有极性的第二元器件符号上是否存在模板库已储存的极性符号,若存在,审查该第二元器件符号的极性符号的极性位置是否正确,若不正确,输出该第二元器件符号的极性符号的极性位置错误报告。
- 根据权利要求1所述的元器件极性检测方法,其特征在于,在执行从待检测PCB极性图形层中挑选出与预创建的元器件极性符号的模板库中图形相似的第一元器件符号的步骤之前,所述元器件极性检测方法还包括创建所述元器件极性符号的模板库。
- 根据权利要求1所述的元器件极性检测方法,其特征在于,从待检测PCB极性图形层中的元器件符号与挑选出的第一元器件符号的图形相似度达到相似度阈值。
- 根据权利要求1所述的元器件极性检测方法,其特征在于,所述元器件极性检测方法还包括:根据BOM属性,从挑选出的第一元器件符号中筛选出具有极性的第二元器件符号;或根据所接收的元器件的名称前缀,从挑选出的第一元器件符号中筛选出具有极性的第二元器件符号。
- 根据权利要求1所述的元器件极性检测方法,其特征在于,检测所述具有极性的第二元器件符号上不存在模板库已储存的极性符号的步骤包括:所述具有极性的第二元器件符号上没有极性符号;或所述具有极性的第二元器件符号上存在模板库未储存的极性符号。
- 根据权利要求5所述的元器件极性检测方法,其特征在于,若所述具有极性的第二元器件符号上没有极性符号,则输出极性符号缺少报告;若所述具有极性的第二元器件符号上存在模板库未储存的极性符号,则输出添加指令,以添加未储存的极性符号于所述模板库中。
- 根据权利要求5所述的元器件极性检测方法,其特征在于,所述审查该第二元器件符号的极性符号的极性位置是否正确的步骤包括:判断所述第二元器件符号是否为双引脚元器件符号,若是,则根据双引脚元器件符号的极性符号和极性方向,来审查该第二元器件符号的极性符号的极性位置是否正确,若正确,则继续审查下一第二元器件符号的极性符号的极性位置是否正确,若不正确,输出该第二元器件符号的极性符号的极性位置错误报告;若否,则检测非双引脚元器件符号的极性符号和极性引脚是否位于相同位置区域,以审查该第二元器件符号的极性符号的极性位置是否正确,若极性符号和极性引脚位于相同位置区域,则审查到该第二元器件符号的极性符号的极性位置正确;若极性符号和极性引脚未位于相同位置区域,则审查到该第二元器件符号的极性符号的极性位置不正确,输出该第二元器件符号的极性符号的极性位置错误报告;其中,默认极性引脚为非双引脚元器件的第一引脚。
- 一种元器件的极性检测系统,其特征在于,包括:挑选模块,用于从待检测PCB极性图形层中挑选出与预创建的元器件极性符号的模板库中图形相似的第一元器件符号,并从挑选出的第一元器件符号中筛选出具有极性的第二元器件符号;处理模块,用于遍历每一具有极性的第二元器件符号,以检测所述具有极性的第二元器件符号上是否存在模板库已储存的极性符号,若存在,审查该第二元器件符号的极性符号的极性位置是否正确,若不正确,输出该第二元器件符号的极性符号的极性位置错误报告。
- 一种计算机可读存储介质,其上存储有计算机程序,其特征在于,该程序被处理器执行时实现权利要求1至7中任一项所述元器件极性检测方法。
- 一种设备,其特征在于,包括:处理器及存储器;所述存储器用于存储计算机程序,所述处理器用于执行所述存储器存储的计算机程序,以使所述设备执行如权利要求1至7中任一项所述元器件极性检测方法。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020521917A JP7097587B2 (ja) | 2017-10-19 | 2017-12-28 | 部品記号の極性記号検出方法、システム、コンピュータで読取可能な記憶媒体及びデバイス |
EP17928899.8A EP3699615A4 (en) | 2017-10-19 | 2017-12-28 | COMPONENT POLARITY DETECTION METHOD, SYSTEM AND APPARATUS, AND COMPUTER READABLE RECORDING MEDIA |
US16/648,635 US11330705B2 (en) | 2017-10-19 | 2017-12-28 | Method, system and apparatus for detecting polarity of component, and computer-readable storage medium |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710980261.8 | 2017-10-19 | ||
CN201710980261.8A CN107895064B (zh) | 2017-10-19 | 2017-10-19 | 元器件极性检测方法、系统、计算机可读存储介质及设备 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019075920A1 true WO2019075920A1 (zh) | 2019-04-25 |
Family
ID=61803679
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/119359 WO2019075920A1 (zh) | 2017-10-19 | 2017-12-28 | 元器件极性检测方法、系统、计算机可读存储介质及设备 |
Country Status (5)
Country | Link |
---|---|
US (1) | US11330705B2 (zh) |
EP (1) | EP3699615A4 (zh) |
JP (1) | JP7097587B2 (zh) |
CN (1) | CN107895064B (zh) |
WO (1) | WO2019075920A1 (zh) |
Families Citing this family (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN109632798A (zh) * | 2019-01-17 | 2019-04-16 | 鲁班嫡系机器人(深圳)有限公司 | 基于图像处理的极性检测装置及其方法 |
TWI692278B (zh) * | 2019-11-01 | 2020-04-21 | 頎邦科技股份有限公司 | 軟性線路板 |
TWI717886B (zh) * | 2019-11-01 | 2021-02-01 | 頎邦科技股份有限公司 | 軟性線路板 |
CN114429442A (zh) * | 2020-10-29 | 2022-05-03 | 技嘉科技股份有限公司 | 电容器极性状态判定方法 |
Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04133500A (ja) * | 1990-09-26 | 1992-05-07 | Nec Tohoku Ltd | 極性相違検出方法 |
TW381182B (en) * | 1998-12-31 | 2000-02-01 | Test Research Inc | Testing method of In-circuit testing with image recognition system |
US6480394B1 (en) * | 1999-02-11 | 2002-11-12 | Original Solutions Inc. | Method for the verification of the polarity, presence, alignment of components and short circuits on a printed circuits board |
CN102192715A (zh) * | 2010-02-01 | 2011-09-21 | 株式会社高永科技 | 三维形状检查方法 |
CN102339334A (zh) * | 2010-07-14 | 2012-02-01 | 英业达股份有限公司 | 防止错误标示元件极性的方法 |
CN102682166A (zh) * | 2012-05-09 | 2012-09-19 | 上海望友信息科技有限公司 | Smt设备快速制程系统及方法 |
TW201423088A (zh) * | 2012-12-07 | 2014-06-16 | Hon Hai Prec Ind Co Ltd | 電子元件檢查系統及檢查方法 |
CN106204602A (zh) * | 2016-07-13 | 2016-12-07 | 广州视源电子科技股份有限公司 | 元件反件检测方法和系统 |
CN106370671A (zh) * | 2016-10-12 | 2017-02-01 | 浙江理工大学 | 基于机器视觉的pcb上元器件检测系统及方法 |
Family Cites Families (12)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2870695B2 (ja) * | 1989-03-27 | 1999-03-17 | 株式会社日立製作所 | 実装極性部品の極性検査方法および実装基板外観検査方法 |
JP3107264B2 (ja) * | 1993-08-24 | 2000-11-06 | 株式会社日立製作所 | プリント板検査方法と装置およびプリント板集中検査システム |
JP3681843B2 (ja) * | 1996-11-20 | 2005-08-10 | 松下電器産業株式会社 | 電子部品の補正角度修正方法とそれを用いた電子部品 実装装置 |
JP4122170B2 (ja) * | 2002-04-22 | 2008-07-23 | 松下電器産業株式会社 | 部品実装方法及び部品実装装置 |
JP2005064423A (ja) * | 2003-08-20 | 2005-03-10 | Nec Tokin Corp | チップ型電子部品及びその識別方法 |
US7265822B2 (en) * | 2004-10-01 | 2007-09-04 | Test Coach Corporation | Method and apparatus for determining presence of a component in a printed circuit board |
US20160062954A1 (en) * | 2012-09-15 | 2016-03-03 | Numbergun Llc | Flexible high-speed generation and formatting of application-specified strings |
CN102929633B (zh) * | 2012-11-06 | 2016-03-16 | 上海望友信息科技有限公司 | 用于smt制程的程序转换方法及系统 |
CN204332130U (zh) * | 2014-08-29 | 2015-05-13 | 山东工业职业学院 | 一种元器件识别与检测技能训练装置 |
CN105045980A (zh) * | 2015-07-06 | 2015-11-11 | 浪潮集团有限公司 | 一种pcb中元器件库配置方法 |
US9946918B2 (en) * | 2015-11-16 | 2018-04-17 | MorphoTrak, LLC | Symbol detection for desired image reconstruction |
CN106650820B (zh) * | 2016-12-30 | 2020-04-24 | 山东大学 | 一种手写电气元器件符号与标准电气元器件符号的匹配识别方法 |
-
2017
- 2017-10-19 CN CN201710980261.8A patent/CN107895064B/zh active Active
- 2017-12-28 JP JP2020521917A patent/JP7097587B2/ja active Active
- 2017-12-28 EP EP17928899.8A patent/EP3699615A4/en active Pending
- 2017-12-28 WO PCT/CN2017/119359 patent/WO2019075920A1/zh unknown
- 2017-12-28 US US16/648,635 patent/US11330705B2/en active Active
Patent Citations (9)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04133500A (ja) * | 1990-09-26 | 1992-05-07 | Nec Tohoku Ltd | 極性相違検出方法 |
TW381182B (en) * | 1998-12-31 | 2000-02-01 | Test Research Inc | Testing method of In-circuit testing with image recognition system |
US6480394B1 (en) * | 1999-02-11 | 2002-11-12 | Original Solutions Inc. | Method for the verification of the polarity, presence, alignment of components and short circuits on a printed circuits board |
CN102192715A (zh) * | 2010-02-01 | 2011-09-21 | 株式会社高永科技 | 三维形状检查方法 |
CN102339334A (zh) * | 2010-07-14 | 2012-02-01 | 英业达股份有限公司 | 防止错误标示元件极性的方法 |
CN102682166A (zh) * | 2012-05-09 | 2012-09-19 | 上海望友信息科技有限公司 | Smt设备快速制程系统及方法 |
TW201423088A (zh) * | 2012-12-07 | 2014-06-16 | Hon Hai Prec Ind Co Ltd | 電子元件檢查系統及檢查方法 |
CN106204602A (zh) * | 2016-07-13 | 2016-12-07 | 广州视源电子科技股份有限公司 | 元件反件检测方法和系统 |
CN106370671A (zh) * | 2016-10-12 | 2017-02-01 | 浙江理工大学 | 基于机器视觉的pcb上元器件检测系统及方法 |
Non-Patent Citations (1)
Title |
---|
See also references of EP3699615A4 * |
Also Published As
Publication number | Publication date |
---|---|
US11330705B2 (en) | 2022-05-10 |
CN107895064A (zh) | 2018-04-10 |
CN107895064B (zh) | 2020-01-10 |
JP2020537358A (ja) | 2020-12-17 |
US20200288568A1 (en) | 2020-09-10 |
EP3699615A1 (en) | 2020-08-26 |
EP3699615A4 (en) | 2021-07-14 |
JP7097587B2 (ja) | 2022-07-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US11604916B2 (en) | Method, system, and electronic device for detecting open/short circuit of PCB design layout | |
WO2019075920A1 (zh) | 元器件极性检测方法、系统、计算机可读存储介质及设备 | |
JP5045595B2 (ja) | 回路設計支援装置、回路設計支援プログラム、回路設計支援方法 | |
WO2018018736A1 (zh) | 一种pcb网板制作方法及系统 | |
WO2020186851A1 (zh) | 光学基准点的选取方法、系统、计算机存储介质及设备 | |
CN110222381B (zh) | 用于pcb装配的动态安装指引文件生成方法、系统、介质及终端 | |
US20160004808A1 (en) | System and method for tracing a net | |
US12073164B2 (en) | Stencil step design method and system, computer readable storage medium, and device | |
WO2019128115A1 (zh) | 光学基准点识别方法、系统、计算机可读存储介质及设备 | |
CN112800716B (zh) | 一种集成电路版图布线中线网开路检测方法 | |
CN104978752B (zh) | 用于芯片缺陷扫描的关注区域划分方法 | |
TWI748184B (zh) | 瑕疵檢測方法、電子裝置及電腦可讀存儲介質 | |
CN104155594B (zh) | 模块并入的检测方法和装置 | |
US7370303B2 (en) | Method for determining the arrangement of contact areas on the active top side of a semiconductor chip | |
Perng et al. | Automated bonding position inspection on multi-layered wire IC using machine vision | |
CN115774982A (zh) | 一种布线质量检测方法、装置及存储介质 | |
CN114492295A (zh) | 一种总线检查方法及装置 | |
CN113393422B (zh) | 确定探针卡异常的方法、装置、终端设备及存储介质 | |
CN116504777A (zh) | 集成电路中电源通孔连接完整性的检测方法、装置及设备 | |
CN107656194A (zh) | 一种智慧型数字集成电路故障检测系统 | |
CN117669480A (zh) | 版图验证工具的测试方法及装置、设备以及存储介质 | |
CN118395939A (zh) | 芯片电源物理版图的缺陷检测方法、装置、设备及介质 | |
CN116298796A (zh) | 一种菊花链拓扑检测方法、装置、设备及存储介质 | |
WO2019119737A1 (zh) | 冷板的审查方法、系统、计算机可读存储介质及设备 | |
CN116702691A (zh) | 半导体数据处理方法、装置、电子设备以及存储介质 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17928899 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020521917 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2017928899 Country of ref document: EP Effective date: 20200519 |