WO2019075815A1 - 一种显示器件及oled显示面板 - Google Patents

一种显示器件及oled显示面板 Download PDF

Info

Publication number
WO2019075815A1
WO2019075815A1 PCT/CN2017/111296 CN2017111296W WO2019075815A1 WO 2019075815 A1 WO2019075815 A1 WO 2019075815A1 CN 2017111296 W CN2017111296 W CN 2017111296W WO 2019075815 A1 WO2019075815 A1 WO 2019075815A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
metal
metal layer
oled
display device
Prior art date
Application number
PCT/CN2017/111296
Other languages
English (en)
French (fr)
Inventor
方俊雄
吴元均
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Priority to US15/579,955 priority Critical patent/US10340322B2/en
Publication of WO2019075815A1 publication Critical patent/WO2019075815A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/121Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements
    • H10K59/1216Active-matrix OLED [AMOLED] displays characterised by the geometry or disposition of pixel elements the pixel elements being capacitors

Definitions

  • the present invention relates to the field of flat panel display manufacturing technologies, and in particular, to a display device and an OLED display panel.
  • an organic light-emitting diode In the flat panel display technology, an organic light-emitting diode (Organic Light-Emitting Diode, OLED) displays many advantages such as light and thin, active illumination, fast response, large viewing angle, wide color gamut, high brightness and low power consumption. It has gradually become the third generation display technology after liquid crystal display. Relative to LCD ( Liquid crystal displays, OLEDs have the advantages of more power saving, thinner, and wider viewing angle. This is LCD. incomparable. At present, people are increasingly demanding the level of detail, that is, the resolution, but the production of high-quality, high-resolution OLED displays still faces many challenges.
  • the device generally has a storage capacitor between two transistors.
  • Figure 1 shows the structure of the existing active OLED device.
  • the OLED display panel includes a thin film transistor layer and an OLED display layer. 10, wherein the thin film transistor layer comprises a thin film transistor switching region 20, a thin film transistor driving region 30, and a storage capacitor 40; an equivalent circuit diagram thereof is shown in FIG. 2, in the thin film transistor T1 A storage capacitor Cst is sandwiched between the thin film transistor T2 and the thin film transistor T2.
  • the thin film transistors T1 and T2 are field effect transistors.
  • the signal switching transistor is used for the transmission and disconnection of the data signal; the thin film transistor T2 is a driving transistor which is connected to the organic light emitting diode D.
  • the gate of the signal switching transistor T1 receives the scan signal Vgate, the source receives the data signal Vdata, the drain is connected to the gate of the driving transistor T2; the source of the driving transistor T2 is connected to the power supply Vdd, and the drain is connected to the organic light emitting diode D
  • the anode; the cathode ground of the organic light-emitting diode D is Vss; the storage capacitor Cst is connected between the drain of the signal switching transistor T1 and the source of the driving transistor T2.
  • the working principle of the circuit is that when the scanning signal Vgate arrives, the signal switching transistor T1 is turned on, and the data signal Vdata The gate of the input driving transistor T2 is amplified by the driving transistor T2 to drive the organic light emitting diode D for display.
  • the storage capacitor Cst It is the main means to maintain the potential of the pixel electrode. Uniformly increasing the storage capacitor can effectively improve the uniformity of the picture and improve the display quality.
  • the storage capacitor in the existing display device is composed of a gate metal, a source/drain metal, and an insulating layer or a source/drain metal between the two, a pixel electrode, and an insulating layer between the two, FIG.
  • the storage capacitor shown in the figure is composed of a gate metal, a source/drain metal, and an insulating layer between the two.
  • Such a storage capacitor requires a large number of gates and gate lines to be disposed in the thin film transistor layer, occupying a large amount of
  • the layout area makes the maximum resolution corresponding to the existing display device limited, and the corresponding high-resolution product also sacrifices the luminous aperture ratio.
  • the invention provides a display device and an OLED
  • the display panel solves the problem that the array layout of the storage capacitor occupies a large area in the existing display device, and the maximum resolution corresponding to the existing display device is limited.
  • the present invention provides a display device, the display device comprising:
  • An interlayer insulating layer is formed on the first buffer layer
  • a first metal layer forming a surface of the interlayer insulating layer, the first metal layer being a first electrode constituting a storage capacitor of the display device;
  • the second metal layer is a second electrode constituting the storage capacitor
  • the storage capacitor is formed by patterning a pixel defining layer and a flat layer corresponding to the first metal layer to form an opening, and depositing the conductive layer and the second metal layer.
  • the display device further includes:
  • the first metal layer is a part of the source and drain metal layers in the switching region of the thin film transistor, the inorganic film layer is a passivation layer, and the conductive layer is the An electron transport functional layer in the OLED display layer, the second metal layer being a cathode layer in the OLED layer.
  • the storage capacitor is formed by patterning the passivation layer and the flat layer corresponding to a portion of the first metal layer to form an opening to expose the first metal layer. And depositing an inorganic pixel defining layer and the pixel defining layer, stripping the pixel defining layer corresponding to the opening, and depositing the conductive layer and the second metal layer to form.
  • the first metal layer is a source/drain metal layer in a thin film transistor layer
  • the inorganic film layer is the inorganic pixel defining layer
  • the conductive layer is an OLED.
  • An electron transport layer in the display layer, the second metal layer being a cathode layer in the OLED layer.
  • the invention also provides an OLED display panel, the OLED
  • the display panel includes a display device and a thin film transistor layer, wherein the display device comprises:
  • An interlayer insulating layer is formed on the first buffer layer
  • first metal layer forming a surface of the interlayer insulating layer, wherein the first metal layer is a first electrode constituting a storage capacitor of the display device;
  • a second metal layer is formed on the surface of the conductive layer, wherein the second metal layer is a second electrode constituting the storage capacitor.
  • the storage capacitor is formed by patterning a pixel defining layer and a flat layer corresponding to the first metal layer to form an opening, and depositing a conductive layer and a second metal layer.
  • the display device further includes:
  • the first metal layer is a part of the source and drain metal layers in the switching region of the thin film transistor, the inorganic film layer is a passivation layer, and the conductive layer is the An electron transport layer in the OLED display layer, the second metal layer being a cathode layer in the OLED layer.
  • the storage capacitor is formed by patterning the passivation layer and the flat layer corresponding to a portion of the first metal layer to form an opening to expose the first metal layer. And depositing an inorganic pixel defining layer and the pixel defining layer, stripping the pixel defining layer corresponding to the opening, and depositing the conductive layer and the second metal layer to form.
  • the first metal layer is a source/drain metal layer in a thin film transistor layer
  • the inorganic film layer is the inorganic pixel defining layer
  • the conductive layer is an OLED.
  • An electron transport functional layer in the display layer, the second metal layer being a cathode layer in the OLED layer.
  • the present invention also provides a display device, wherein the display device comprises:
  • An interlayer insulating layer is formed on the first buffer layer
  • first metal layer forming a surface of the interlayer insulating layer, wherein the first metal layer is a first electrode constituting a storage capacitor of the display device;
  • a second metal layer is formed on the surface of the conductive layer, wherein the second metal layer is a second electrode constituting the storage capacitor.
  • the display device further includes:
  • the first metal layer is a part of the source and drain metal layers in the switching region of the thin film transistor, the inorganic film layer is a passivation layer, and the conductive layer is the An electron transport functional layer in the OLED display layer, the second metal layer being a cathode layer in the OLED layer.
  • the storage capacitor is formed by patterning the passivation layer and the flat layer corresponding to a portion of the first metal layer to form an opening to expose the first metal layer. And depositing an inorganic pixel defining layer and the pixel defining layer, stripping the pixel defining layer corresponding to the opening, and depositing the conductive layer and the second metal layer to form.
  • the first metal layer is a source/drain metal layer in a thin film transistor layer
  • the inorganic film layer is the inorganic pixel defining layer
  • the conductive layer is an OLED.
  • An electron transport layer in the display layer, the second metal layer being a cathode layer in the OLED layer.
  • the present invention converts an OLED by forming a source-drain metal layer in a portion of the thin film transistor layer as a first electrode of a storage capacitor in a display device.
  • a cathode layer in the display layer constituting a second electrode of the storage capacitor, and an electron transport functional layer, a passivation layer or an inorganic pixel defining layer disposed between the first electrode and the second electrode, the novel storage
  • the capacitor structure makes the layout position of the storage capacitor coincide with the array traces in some of the thin film transistors, improves the degree of freedom of line layout in the entire display device, and also increases the light-emitting aperture ratio, and enables the display device to Achieve higher resolution.
  • FIG. 1 is a structural view of a film layer of an OLED display panel in the prior art of the present invention
  • FIG. 3 is a structural diagram of a film layer of a display device according to a preferred embodiment of the present invention.
  • Fig. 4 is a view showing a structure of a film layer of a display device according to a preferred embodiment of the present invention.
  • the present invention is directed to an existing OLED display panel due to the existing display device
  • the storage capacitor needs to arrange a large number of gates and gate lines in the thin film transistor layer to form a first electrode of the storage capacitor, occupying a large layout area, so that the maximum resolution corresponding to the existing display device is limited, and correspondingly High-resolution products also sacrifice technical issues such as luminous aperture ratio.
  • This embodiment can solve the technical problem.
  • the display device of the present invention comprises a thin film transistor switching region, a thin film transistor driving region and a storage capacitor.
  • the display device includes a base substrate 301, a first buffer layer 302, and an interlayer insulating layer 303. a first metal layer 304, at least one inorganic film layer 305, a conductive layer 306, and a second metal layer 307.
  • the first buffer layer 302 and the interlayer insulating layer 303 are sequentially formed on the base substrate 301.
  • the first buffer layer 302 is an oxide film, such as silicon dioxide, and the oxide is an insulator;
  • the interlayer insulating layer 303 is a protective layer, wherein the thin film transistor switching region and the thin film transistor driving region are the interlayer insulating layer Covered by 303, the thin film transistor switching region and the thin film transistor driving region include an active layer 308, a gate insulating layer 309, a gate layer 310, an interlayer insulating layer 303, and a source/drain layer 311. ;
  • the active layer 308 is formed on the first buffer layer 302.
  • the active layer 308 is a metal oxide film, such as indium gallium zinc oxide, and the oxide is a semiconductor; Active layer 308 through mask process Process processing to form a predetermined pattern on the buffer layer;
  • the active layer 308 A first active layer region including a portion of the active layer 308 by a predetermined process, and a second active layer region a result of the reaction of the region with the active metal; preferably, the predetermined step is a high temperature annealing step, wherein the high temperature annealing step can be performed in an aerobic or oxygen-free environment, and the temperature range corresponding to the high temperature annealing step is 200 °C to 400 °C;
  • the active metal which is not peeled off and the active layer 308 which is not blocked by the gate insulating layer 309 are subjected to a high temperature annealing process.
  • the active metal reacts with the oxygen element in the active layer 308 to form a corresponding metal oxide, and the active layer 308 generates oxygen hole due to the loss of oxygen element, thereby reducing the active layer.
  • 308 a resistance such that a portion of the active layer 308 that is reacted is converted from a semiconductor to a conductor to form the first active layer region, wherein the second active layer region is a region where no reaction occurs;
  • the gate insulating layer 309 is formed on the active layer 308.
  • the gate insulating layer 309 The material is silicon nitride, and materials such as silicon oxide and silicon oxynitride can also be used;
  • the gate layer 310 is formed on the gate insulating layer 309, and the gate layer 310 A gated insulating layer 309 may be utilized on the gate insulating layer 309, the gate layer 310
  • the metal material may be a metal such as molybdenum, aluminum, aluminum-nickel alloy, molybdenum-tungsten alloy, chromium, or copper, or a combination structure of the above-mentioned materials;
  • the interlayer insulating layer 303 is disposed on the surface of the gate layer 310, and completely covers the gate layer 310, the gate insulating layer 309, and the active layer 308 for using the gate layer 310 and
  • the source and drain layers 311 are isolated;
  • the interlayer insulating layer via 312 is formed by an etching process such that the source and drain layer 311 is electrically connected to the first active layer region through the interlayer insulating layer via 312.
  • the metal material of the source and drain layer 311 is the same as the gate layer 310, and a portion of the source and drain layers 311 are the first metal layer 304 of the storage capacitor in the display device, that is, the storage is configured. a first electrode of the capacitor;
  • the passivation layer is formed on the source/drain metal layer, and the passivation layer is an inorganic film layer 305.
  • the passivation layer material is a cerium nitride compound, wherein the passivation layer constitutes a dielectric material between the first electrode and the second electrode of the storage capacitor, and the inorganic film layer 305 may be a plurality of layers, as the case may be;
  • the planarization layer 313 is formed on the passivation layer, first using a yellow light process to the planarization layer 313 Performing a patterning process, and then performing an etching process on the passivation layer to form a first via 314; wherein the first via 314 causes a source/drain metal layer of the thin film transistor driving region and the OLED
  • the anode layer 315 in the display layer is electrically connected;
  • the display device further includes an OLED display layer, wherein the anode layer 315 of the OLED display layer Formed on the passivation layer, the anode layer 315 is patterned to form at least two anodes arranged in an array, wherein, the anode layer 315 is mainly used to provide holes for absorbing electrons, and the anode layer 315 is generally a transparent material and allows the emitted light to pass through;
  • the light emitting layer 316 is formed on the anode layer 315, and the light emitting layer 316 is patterned to form at least two light emitting units separated from each other, each of the light emitting units corresponding to each of the anodes;
  • the layer 316 is an organic semiconductor having a special energy band structure, and after absorbing the electrons migrated from the anode, a photon of a certain wavelength is emitted, and the photons entering our eyes are the colors we see;
  • the pixel defining layer 317 is formed on the anode layer 315 to cover the anode layer 315 And the passivation layer, the pixel defining layer 317 corresponding to the light emitting layer 316 and the flattening layer 313 corresponding to the first metal layer 304 and the pixel defining layer respectively under the same mask process 317 performing a yellow light process to form an opening, and after curing at a high temperature, depositing a conductive layer 306 and a second metal layer 307;
  • the second metal layer 307 is a cathode layer in the OLED display layer, and the conductive layer 306 is the An electron transport functional layer in the OLED display layer, wherein the second metal layer 307 constitutes a second electrode of the storage capacitor;
  • the electron transporting functional layer is formed on the pixel defining layer 317, and the electron transporting functional layer may be composed of one layer of material or two or more layers of materials; in this embodiment, the electron
  • the transfer function layer includes an electron injection layer and an electron transport layer, and the electron injection layer and the electron transport layer are sequentially stacked in a direction away from the anode layer 315, and functions of the electron injection layer and the electron transport layer Similar, can be collectively referred to as the electronic transmission function layer;
  • the cathode layer is generally an alloy of low work function, which generates electrons at a given voltage, and the electrons are combined with holes in the light-emitting layer 316 through an electron injection layer and an electron transport layer; preferably, in the present embodiment
  • the cathode layer is a material having a high reflectance
  • part of the source and drain layers 311 constitute a first electrode of the storage capacitor
  • the cathode layer constitutes a second electrode of the storage capacitor
  • the functional layer and the passivation layer constitute a dielectric material of the storage capacitor.
  • the display device including a base substrate 401 and a first buffer layer 402, an interlayer insulating layer 403, a first metal layer 404, at least one inorganic film layer 405, a conductive layer 406, and a second metal layer 407.
  • the film structure of the thin film transistor layer in the second embodiment is the same as that of the first embodiment.
  • the thin film transistor switching region and the thin film transistor driving region all include an active layer 408, a gate insulating layer 409, a gate layer 410, an interlayer insulating layer 403, and a source/drain layer 411;
  • planarization layer 413 After forming the planarization layer 413, in addition to forming a source/drain metal layer and an OLED that drive the thin film transistor driving region
  • the planarization layer 413 corresponding to the first metal layer 404 is outside the first via electrically connected to the anode layer 415 in the display layer.
  • the passivation layer 405 is etched to form an opening to expose the first metal layer 404;
  • an inorganic pixel defining layer 418 is deposited on the base substrate 401, and the light emitting layer is peeled off 161 a surface of the inorganic pixel defining layer 418, and depositing a pixel defining layer 417, a conductive layer 406, and a second metal layer 407, wherein the inorganic pixel defining layer 418
  • the material of the first buffer layer 402 is the same as that of the second buffer layer 402 in the second embodiment, such as silicon dioxide;
  • the conductive layer 406 is an electron transport functional layer in the OLED display layer, and the second metal layer 407 A cathode layer in the OLED display layer.
  • the storage capacitor includes: a portion of the source/drain layer 411 constituting the first electrode of the storage capacitor. Forming the cathode layer of the second electrode of the storage capacitor, and further, an electron transport functional layer and an inorganic pixel defining layer 418 between the first electrode and the second electrode constitute a dielectric material of the storage capacitor .
  • the storage capacitor needs to arrange a large number of gates and gate lines in the thin film transistor layer to form a first electrode of the storage capacitor, occupying a large layout area, so that the maximum resolution corresponding to the existing display device is limited, and correspondingly High-resolution products also sacrifice technical issues such as luminous aperture ratio;
  • the OLED is formed by forming a source/drain metal layer in a portion of the thin film transistor layer as a first electrode of a storage capacitor in the display device.
  • a cathode layer in the display layer constituting a second electrode of the storage capacitor, and an electron transport functional layer, a passivation layer or an inorganic pixel defining layer disposed between the first electrode and the second electrode, the novel storage
  • the capacitor structure makes the layout position of the storage capacitor coincide with the array traces in some of the thin film transistors, improves the degree of freedom of line layout in the entire display device, and also increases the light-emitting aperture ratio, and enables the display device to Achieve higher resolution.
  • the present invention also provides an OLED display panel, the OLED display panel comprising a display device, a thin film transistor layer,
  • the display device includes a base substrate, a first buffer layer, an interlayer insulating layer, a first metal layer, at least one inorganic film layer, a conductive layer, and a second metal layer.
  • the present invention provides a display device and an OLED display panel, wherein the OLED
  • the display panel includes a display device including a base substrate, a first buffer layer, an interlayer insulating layer, a first metal layer, at least one inorganic film layer, a conductive layer, and a second metal layer; a source/drain metal layer in the thin film transistor layer constitutes a first electrode of a storage capacitor in the display device, the OLED a cathode layer in the display layer constitutes a second electrode of the storage capacitor, and an electron transport functional layer, a passivation layer or an inorganic pixel defining layer disposed between the first electrode and the second electrode constitutes the storage capacitor Dielectric material, the novel storage capacitor structure makes the layout position of the storage capacitor coincide with the array traces in some of the thin film transistors, thereby improving the degree of freedom of circuit layout in the entire display device, and also increasing the illumination The aperture ratio and enables the display device to achieve higher resolution.

Landscapes

  • Physics & Mathematics (AREA)
  • Geometry (AREA)
  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

一种显示器件及OLED显示面板,显示器件包括存储电容,其中,部分薄膜晶体管层中的源漏极金属层(311、304、411)构成显示器件中存储电容的第一电极,OLED显示层中的阴极层(307)构成存储电容的第二电极,设置于第一电极和第二电极之间的电子传输功能层(306)、钝化层(305、405)或无机像素定义层(418)构成存储电容的介电材料。

Description

一种显示器件及 OLED 显示面板 技术领域
本发明涉及平板显示器制造技术领域,特别涉及一种显示器件及 OLED 显示面板。
背景技术
在平板显示技术中,有机发光二极管( Organic Light-Emitting Diode , OLED )显示器具有轻薄、主动发光、响应速度快、可视角大、色域宽、亮度高和功耗低等众多优点,逐渐成为继液晶显示器后的第三代显示技术。 相对于 LCD ( Liquid crystal displays ,液晶显示器) , OLED 具有更省电,更薄,且视角宽的优势,这是 LCD 无法比拟的。目前,人们对显示的细腻程度即分辨率要求越来越高,但生产高质量、高分辨率的 OLED 显示屏仍然面临着许多挑战。
OLED 按照驱动类型可分为无源 OLED 和有源 OLED 。 而 现有的有源 OLED 器件一般为两个电晶体之间夹着一个存储电容,图 1 所示为现有的有源 OLED 器件的膜层结构图,所述 OLED 显示面板包括薄膜晶体管层、 OLED 显示层 10 ,其中,所述薄膜晶体管层包括薄膜晶体管切换区 20 、薄膜晶体管驱动区 30 以及存储电容 40 ;其等效电路图如图 2 所示,在薄膜晶体管 T1 与薄膜晶体管 T2 之间夹着一个存储电容 Cst 。薄膜晶体管 T1 、 T2 均为场效应晶体管。薄膜晶体管 T1 为信号切换晶体管,其用于数据信号的传送和切断;薄膜晶体管 T2 为驱动晶体管,其与有机发光二级管 D 连接。具体的,信号切换晶体管 T1 的栅极接收扫描信号 Vgate ,源极接收数据信号 Vdata ,漏极与驱动晶体管 T2 的栅极连接;驱动晶体管 T2 的源极接电源 Vdd ,漏极接有机发光二级管 D 的阳极;有机发光二级管 D 的阴极接地 Vss ;存储电容 Cst 连接在信号切换晶体管 T1 的漏极与驱动晶体管 T2 的源极之间。
该电路的工作原理是,当扫描信号 Vgate 到来时,信号切换晶体管 T1 导通,数据信号 Vdata 输入驱动晶体管 T2 的栅极,经该驱动晶体管 T2 放大后驱动有机发光二极管 D 进行显示。当扫描信号结束后,存储电容 Cst 是维持像素电极电位的主要手段,统一增大存储电容可以有效的改善画面的均一性,提升显示质量。
现有显示器件中的存储电容由栅极金属、源漏极金属及二者之间的绝缘层或源漏极金属、像素电极及二者之间的绝缘层构成,图 1 所示中所述存储电容由栅极金属、源漏极金属及二者之间的绝缘层构成,此类存储电容需要在所述薄膜晶体管层布置大量的栅极与栅线,占据了大量的布局面积,使得现有的显示器件所对应的最大分辨率受到限制,同时对应高分辨率产品也牺牲了发光开口率。
技术问题
本发明提供了一种显示器件及 OLED 显示面板,以解决现有显示器件中因存储电容的阵列布局占据大量的面积,导致现有的显示器件所对应的最大分辨率受到限制。
技术解决方案
为解决上述方案,本发明提供的技术方案如下:
本发明提供 一种显示器件,所述显示器件包括:
衬底基板;
第一缓冲层,形成于所述衬底基板上;
层间绝缘层,形成于所述第一缓冲层上;
第一金属层,形成所述层间绝缘层表面,所述第一金属层为构成所述显示器件的存储电容的第一电极;
至少一无机膜层,形成于所述第一金属层表面;
导电层,形成于所述无机膜层表面;
第二金属层,形成于所述导电层表面,所述第二金属层为构成所述存储电容的第二电极,
其中,所述存储电容是通过对所述第一金属层对应的像素定义层、平坦层进行图案化处理以形成开口,并沉积所述导电层以及所述第二金属层来形成的。
根据本发明一优选实施例,所述显示器件还包括:
OLED 显示层;
所述第一金属层为薄膜晶体管切换区中的部分源漏极金属层,所述无机膜层为钝化层,所述导电层为所述 OLED 显示层中的电子传输功能层,所述第二金属层为所述 OLED 层中的阴极层。
根据本发明一优选实施例,所述存储电容是通过对部分所述第一金属层对应的所述钝化层、所述平坦层进行图案化处理以形成开口,以露出所述第一金属层,沉积无机像素定义层以及所述像素定义层,剥离所述开口所对应的像素定义层,并沉积所述导电层以及所述第二金属层来形成的。
根据本发明一优选实施例,所述第一金属层为薄膜晶体管层中的源漏极金属层,所述无机膜层为所述无机像素定义层,所述导电层为 OLED 显示层中的电子传输层,所述第二金属层为所述 OLED 层中的阴极层。
本发明还提供了一种 OLED 显示面板,所述 OLED 显示面板包括显示器件、薄膜晶体管层,其中,所述显示器件包括:
衬底基板;
第一缓冲层,形成于所述衬底基板上;
层间绝缘层,形成于所述第一缓冲层上;
第一金属层,形成所述层间绝缘层表面,其中,所述第一金属层为构成所述显示器件的存储电容的第一电极;
至少一无机膜层,形成于所述第一金属层表面;
导电层,形成于所述无机膜层表面;
第二金属层,形成于所述导电层表面,其中,所述第二金属层为构成所述存储电容的第二电极。
根据本发明一优选实施例,所述存储电容是通过对所述第一金属层对应的像素定义层、平坦层进行图案化处理以形成开口,并沉积导电层以及第二金属层来形成的。
根据本发明一优选实施例,所述显示器件还包括:
OLED 显示层;
所述第一金属层为薄膜晶体管切换区中的部分源漏极金属层,所述无机膜层为钝化层,所述导电层为所述 OLED 显示层中的电子传输层,所述第二金属层为所述 OLED 层中的阴极层。
根据本发明一优选实施例,所述存储电容是通过对部分所述第一金属层对应的所述钝化层、所述平坦层进行图案化处理以形成开口,以露出所述第一金属层,沉积无机像素定义层以及所述像素定义层,剥离所述开口所对应的像素定义层,并沉积所述导电层以及所述第二金属层来形成的。
根据本发明一优选实施例,所述第一金属层为薄膜晶体管层中的源漏极金属层,所述无机膜层为所述无机像素定义层,所述导电层为 OLED 显示层中的电子传输功能层,所述第二金属层为所述 OLED 层中的阴极层。
本发明还提出了一种显示器件,其中,所述显示器件包括:
衬底基板;
第一缓冲层,形成于所述衬底基板上;
层间绝缘层,形成于所述第一缓冲层上;
第一金属层,形成所述层间绝缘层表面,其中,所述第一金属层为构成所述显示器件的存储电容的第一电极;
至少一无机膜层,形成于所述第一金属层表面;
导电层,形成于所述无机膜层表面;
第二金属层,形成于所述导电层表面,其中,所述第二金属层为构成所述存储电容的第二电极。
根据本发明一优选实施例,所述显示器件还包括:
OLED 显示层;
所述第一金属层为薄膜晶体管切换区中的部分源漏极金属层,所述无机膜层为钝化层,所述导电层为所述 OLED 显示层中的电子传输功能层,所述第二金属层为所述 OLED 层中的阴极层。
根据本发明一优选实施例,所述存储电容是通过对部分所述第一金属层对应的所述钝化层、所述平坦层进行图案化处理以形成开口,以露出所述第一金属层,沉积无机像素定义层以及所述像素定义层,剥离所述开口所对应的像素定义层,并沉积所述导电层以及所述第二金属层来形成的。
根据本发明一优选实施例,其中,所述第一金属层为薄膜晶体管层中的源漏极金属层,所述无机膜层为所述无机像素定义层,所述导电层为 OLED 显示层中的电子传输层,所述第二金属层为所述 OLED 层中的阴极层。
有益效果
本发明的有益效果:相比于现有技术,本发明通过将部分薄膜晶体管层中的源漏极金属层构成显示器件中存储电容的第一电极,将 OLED 显示层中的阴极层构成存储电容的第二电极,以及设置于所述第一电极和所述第二电极之间的电子传输功能层、钝化层或者无机像素定义层,所述新型的存储电容结构使得所述存储电容的布局位置与部分所述薄膜晶体管中的阵列走线重合,提高了整个显示器件中线路布局的自由度,同时也增加了发光开口率,并使得所述显示器件能够达到更高的分辨率。
附图说明
为了更清楚地说明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单介绍,显而易见地,下面描述中的附图仅仅是发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图 1 所示为本发明现有技术中一种 OLED 显示面板的膜层结构图 ;
图 2 所示为本发明现有技术中一种 OLED 显示面板的等效电路图;
图 3 所示为本发明优选实施例一一种显示器件的膜层结构图 ;
图 4 所示为本发明优选实施例二一种显示器件的膜层结构图 。
本发明的最佳实施方式
以下各实施例的说明是参考附加的图示,用以例示本发明可用以实施的特定实施例。本发明所提到的方向用语,例如 [ 上 ] 、 [ 下 ] 、 [ 前 ] 、 [ 后 ] 、 [ 左 ] 、 [ 右 ] 、 [ 内 ] 、 [ 外 ] 、 [ 侧面 ] 等,仅是参考附加图式的方向。因此,使用的方向用语是用以说明及理解本发明,而非用以限制本发明。在图中,结构相似的单元是用以相同标号表示。
本发明针对现有的 OLED 显示面板,因现有显示器件中的 存储电容需要在所述薄膜晶体管层布置大量的栅极与栅线构成存储电容的第一电极,占据了大量的布局面积,使得现有的显示器件所对应的最大分辨率收到限制,同时对应高分辨率产品也牺牲了发光开口率等技术问题, 本实施例能够解决该技术问题 。
图 3 所示为本发明优选实施例一一种显示器件的膜层结构图, 其中,本发明的显示器件包括薄膜晶体管切换区、薄膜晶体管驱动区以及存储电容。
如图 3 所示,所述显示器件包括 衬底基板 301 、第一缓冲层 302 、层间绝缘层 303 、第一金属层 304 、至少一无机膜层 305 、导电层 306 以及第二金属层 307 。
在本实施例中,所述第一缓冲层 302 、所述层间绝缘层 303 依次形成于所述衬底基板 301 之上,其中,所述第一缓冲层 302 为一层氧化物薄膜,例如二氧化硅,所述氧化物为绝缘体;
所述层间绝缘层 303 为保护层,其中,所述薄膜晶体管切换区、所述薄膜晶体管驱动区被所述层间绝缘层 303 所覆盖,所述薄膜晶体管切换区、所述薄膜晶体管驱动区包括有源层 308 、栅绝缘层 309 、栅极层 310 、层间绝缘层 303 、源漏极层 311 ;
所述有源层308形成于所述第一缓冲层302上,在本实施例中,所述有源层308为金属氧化物薄膜,例如铟镓锌氧化物,所述氧化物为半导体;所述有源层308经光罩制程 工艺处理,在所述缓冲层上形成预定的图形;
所述有源层 308 包括第一有源层区域和第二有源层区域,所述第一有源层区域为利用预定工序使所述部分有源层 308 区域与活性金属反应的结果;优选的,所述预定工序为高温退火工序,其中,所述高温退火工序可以在有氧或者无氧的环境下进行,所述高温退火工序所对应的温度范围为 200 ℃至 400 ℃;
另外,在利用高温退火工序使未被剥离的所述活性金属与未被所述栅绝缘层 309 遮挡的所述有源层 308 反应中,所述活性金属与所述有源层 308 中的氧元素反应生成对应的金属氧化物,所述有源层 308 因失去氧元素而产生氧元素空穴,降低了所述有源层 308 的电阻,使得发生反应的部分所述有源层 308 从半导体转化为导体,以形成所述第一有源层区域,其中,所述第二有源层区域为未发生反应的区域;
所述栅绝缘层 309 形成于所述有源层 308 上,在本实施例中, 所述栅绝缘层 309 的材料为氮化硅,也可以使用氧化硅和氮氧化硅等材料;
所述栅极层 310 形成于所述栅绝缘层 309 上,所述栅极层 310 可以利用磁控溅射工艺在所述栅绝缘层 309 上,所述栅极层 310 的金属材料可以采用钼、铝、铝镍合金、钼钨合金、铬、或铜等金属,也可以使用上述几种材料薄膜的组合结构;
所述层间绝缘层303,设置于所述栅极层310表面,将所述栅极层310、所述栅绝缘层309、有源层308完全覆盖,用以将所述栅极层310与所述源漏极层311隔离;
所述层间绝缘层过孔312采用蚀刻工艺形成,使得所述源漏极层311通过所述层间绝缘层过孔312与所述第一有源层区域电性连接。
所述源漏极层311的金属材料与所述栅极层310相同,其中部分所述源漏极层311为所述显示器件中存储电容的所述第一金属层304,即构成所述存储电容的第一电极;
所述钝化层形成于所述源漏极金属层之上,所述钝化层为一无机膜层 305 ,优选的,所述钝化层材料为 氮化矽化合物,其中所述钝化层构成所述存储电容第一电极与第二电极之间的介电材料,根据具体情况,所述无机膜层 305 可以为多层;
所述平坦化层 313 形成于所述钝化层之上,首先采用黄光制程对所述平坦化层 313 进行图案化处理,然后对所述钝化层进行蚀刻工艺,以形成第一过孔 314 ;其中,所述第一过孔 314 使得所述薄膜晶体管驱动区的源漏极金属层与 OLED 显示层中的阳极层 315 电性连接;
所述显示器件还包括 OLED 显示层,其中所述 OLED 显示层的所述阳极层 315 形成于所述钝化层上,所述阳极层 315 经图案化处理形成呈阵列分布的至少两个阳极, 其中,所述阳极层315主要用于提供吸收电子的空穴,所述阳极层315通常为透明材料,并允许放出来的光通过;
所述发光层316形成于所述阳极层315上,所述发光层316经图案化处理形成相互分离的至少两个发光单元,每一所述发光单元与每一所述阳极对应;所述发光层316为有机物半导体,其具有特殊的能带结构,可以在吸收所述阳极迁移过来的电子后,再散发出来一定波长的光子,而这些光子进入我们眼睛就是我们看到的色彩;
所述像素定义层 317 形成于所述阳极层 315 上,覆盖所述阳极层 315 与所述钝化层,在同一道光罩制程下,分别对所述发光层 316 所对应的像素定义层 317 以及所述第一金属层 304 对应的平坦化层 313 与所述像素定义层 317 进行黄光制程工艺以形成开口,经高温固化后,沉积导电层 306 与第二金属层 307 ;
在本实施例中,所述第二金属层 307 为所述 OLED 显示层中的阴极层,所述导电层 306 为所述 OLED 显示层中的电子传输功能层,其中,所述第二金属层 307 构成所述存储电容的第二电极;
所述电子传输功能层形成于所述像素定义层317上,所述电子传输功能层可以由一层材料构成,也可以是两层或以上的材料层构成;在本实施例中,所述电子传输功能层包括电子注入层和电子传输层,所述电子注入层和所述电子传输层按照远离所述阳极层315的方向依次叠层设置,所述电子注入层和所述电子传输层的功能相近,可以统称为电子传输功能层;
所述阴极层通常是低逸出功的合金,在给定电压下产生电子,所述电子经过电子注入层和电子传输层在所述发光层316中与空穴结合;优选的,在本实施例,所述阴极层为反射率高的材料;
因此,部分所述源漏极层311构成所述存储电容的第一电极,所述阴极层构成所述存储电容的第二电极,所述第一电极和所述第二电极之间的电子传输功能层和钝化层构成所述存储电容的介电材料。
图4为本发明优选实施例二一种显示器件的膜层结构, 所述显示器件包括 衬底基板 401 、第一缓冲层 402 、层间绝缘层 403 、第一金属层 404 、至少一无机膜层 405 、导电层 406 以及第二金属层 407 。
其中,实施例二中的薄膜晶体管层的膜层结构与实施例一的相同, 所述薄膜晶体管切换区、所述薄膜晶体管驱动区都包括有源层 408 、栅绝缘层 409 、栅极层 410 、层间绝缘层 403 、源漏极层 411 ;
在形成所述平坦化层 413 后,除了 形成使所述薄膜晶体管驱动区的源漏极金属层与 OLED 显示层中的阳极层 415 电性连接的所述第一过孔外,对所述第一金属层 404 所对应的所述平坦化层 413 采用黄光制程并进行图案化处理,经高温固化处理后,对所述钝化层 405 进行蚀刻工艺,形成开口,以露出所述第一金属层 404 ;
在形成阳极层 415 后,在所述衬底基板 401 上沉积无机像素定义层 418 ,并剥离所述发光层 416 表面的无机像素定义层 418 ,并沉积像素定义层 417 、导电层 406 以及第二金属层 407 ,其中所述无机像素定义层 418 的材料与实施例二中的第一缓冲层 402 的材料相同,例如二氧化硅;
与实施例一相同,所述导电层 406 为所述 OLED 显示层中的电子传输功能层,所述第二金属层 407 为所述 OLED 显示层中的阴极层。
在本实施例中,所述存储电容包括:构成所述存储电容第一电极的部分所述源漏极层 411 ,构成所述存储电容第二电极的所述阴极层,另外, 所述第一电极和所述第二电极之间的电子传输功能层和无机像素定义层418构成所述存储电容的介电材料。
在现有技术中, 显示器件中的 存储电容需要在所述薄膜晶体管层布置大量的栅极与栅线构成存储电容的第一电极,占据了大量的布局面积,使得现有的显示器件所对应的最大分辨率收到限制,同时对应高分辨率产品也牺牲了发光开口率等技术问题;
而 本发明通过将部分薄膜晶体管层中的源漏极金属层构成显示器件中存储电容的第一电极,将 OLED 显示层中的阴极层构成存储电容的第二电极,以及设置于所述第一电极和所述第二电极之间的电子传输功能层、钝化层或无机像素定义层,所述新型的存储电容结构使得所述存储电容的布局位置与部分所述薄膜晶体管中的阵列走线重合,提高了整个显示器件中线路布局的自由度,同时也增加了发光开口率,并使得所述显示器件能够达到更高的分辨率。
本发明还提供了一种 OLED 显示面板,所述 OLED 显示面板包括显示器件、薄膜晶体管层, 其中,所述显示器件包括 衬底基板、第一缓冲层、层间绝缘层、第一金属层、至少一无机膜层、导电层以及第二金属层。
本发明的具体实施例与实施例一、实施例二相同,此处不再一一赘述。
本发明提出了一种显示器件及 OLED 显示面板,其中,所述 OLED 显示面板包括显示器件,所述显示器件包括 衬底基板、第一缓冲层、层间绝缘层、第一金属层、至少一无机膜层、导电层以及第二金属层;其中,部分所述 薄膜晶体管层中的源漏极金属层构成所述显示器件中存储电容的第一电极, OLED 显示层中的阴极层构成所述存储电容的第二电极,设置于所述第一电极和所述第二电极之间的电子传输功能层、钝化层或无机像素定义层构成所述存储电容的介电材料,所述新型的存储电容结构使得所述存储电容的布局位置与部分所述薄膜晶体管中的阵列走线重合,提高了整个显示器件中线路布局的自由度,同时也增加了发光开口率,并使得所述显示器件能够达到更高的分辨率。
综上所述,虽然本发明已以优选实施例揭露如上,但上述优选实施例并非用以限制本发明,本领域的普通技术人员,在不脱离本发明的精神和范围内,均可作各种更动与润饰,因此本发明的保护范围以权利要求界定的范围为准。

Claims (13)

  1. 一种显示器件,其中,所述显示器件包括:
    衬底基板;
    第一缓冲层,形成于所述衬底基板上;
    层间绝缘层,形成于所述第一缓冲层上;
    第一金属层,形成所述层间绝缘层表面,所述第一金属层为构成所述显示器件的存储电容的第一电极;
    至少一无机膜层,形成于所述第一金属层表面;
    导电层,形成于所述无机膜层表面;
    第二金属层,形成于所述导电层表面,所述第二金属层为构成所述存储电容的第二电极,
    其中,所述存储电容是通过对所述第一金属层对应的像素定义层、平坦层进行图案化处理以形成开口,并沉积所述导电层以及所述第二金属层来形成的。
  2. 根据权利要求 1 所述的显示器件,其中,所述显示器件还包括:
    OLED 显示层;
    所述第一金属层为薄膜晶体管切换区中的部分源漏极金属层,所述无机膜层为钝化层,所述导电层为所述 OLED 显示层中的电子传输功能层,所述第二金属层为所述 OLED 层中的阴极层。
  3. 根据权利要求 1 所述的显示器件,其中,所述存储电容是通过对部分所述第一金属层对应的所述钝化层、所述平坦层进行图案化处理以形成开口,以露出所述第一金属层,沉积无机像素定义层以及所述像素定义层,剥离所述开口所对应的像素定义层,并沉积所述导电层以及所述第二金属层来形成的。
  4. 根据权利要求 3 所述的显示器件,其中,所述第一金属层为薄膜晶体管层中的源漏极金属层,所述无机膜层为所述无机像素定义层,所述导电层为 OLED 显示层中的电子传输层,所述第二金属层为所述 OLED 层中的阴极层。
  5. 一种 OLED 显示面板,所述 OLED 显示面板包括显示器件、薄膜晶体管层,其中,所述显示器件包括:
    衬底基板;
    第一缓冲层,形成于所述衬底基板上;
    层间绝缘层,形成于所述第一缓冲层上;
    第一金属层,形成所述层间绝缘层表面,其中,所述第一金属层为构成所述显示器件的存储电容的第一电极;
    至少一无机膜层,形成于所述第一金属层表面;
    导电层,形成于所述无机膜层表面;
    第二金属层,形成于所述导电层表面,其中,所述第二金属层为构成所述存储电容的第二电极。
  6. 根据权利要求 5 所述的 OLED 显示面板,其中,所述存储电容是通过对所述第一金属层对应的像素定义层、平坦层进行图案化处理以形成开口,并沉积所述导电层以及所述第二金属层来形成的。
  7. 根据权利要求 6 所述的 OLED 显示面板,其中,所述显示器件还包括:
    OLED 显示层;
    所述第一金属层为薄膜晶体管切换区中的部分源漏极金属层,所述无机膜层为钝化层,所述导电层为所述 OLED 显示层中的电子传输功能层,所述第二金属层为所述 OLED 层中的阴极层。
  8. 根据权利要求 5 所述的 OLED 显示面板,其中,所述存储电容是通过对部分所述第一金属层对应的所述钝化层、所述像素定义层进行图案化处理以形成开口,以露出所述第一金属层,沉积无机像素定义层以及所述像素定义层,剥离所述开口所对应的像素定义层,并沉积所述导电层以及所述第二金属层来形成的。
  9. 根据权利要求 8 所述的 OLED 显示面板,其中,所述第一金属层为薄膜晶体管层中的源漏极金属层,所述无机膜层为所述无机像素定义层,所述导电层为 OLED 显示层中的电子传输层,所述第二金属层为所述 OLED 层中的阴极层。
  10. 一种显示器件,其中,所述显示器件包括:
    衬底基板;
    第一缓冲层,形成于所述衬底基板上;
    层间绝缘层,形成于所述第一缓冲层上;
    第一金属层,形成所述层间绝缘层表面,其中,所述第一金属层为构成所述显示器件的存储电容的第一电极;
    至少一无机膜层,形成于所述第一金属层表面;
    导电层,形成于所述无机膜层表面;
    第二金属层,形成于所述导电层表面,其中,所述第二金属层为构成所述存储电容的第二电极。
  11. 根据权利要求 10 所述的显示器件,其中,所述显示器件还包括:
    OLED 显示层;
    所述第一金属层为薄膜晶体管切换区中的部分源漏极金属层,所述无机膜层为钝化层,所述导电层为所述 OLED 显示层中的电子传输功能层,所述第二金属层为所述 OLED 层中的阴极层。
  12. 根据权利要求 10 所述的显示器件,其中,所述存储电容是通过对部分所述第一金属层对应的所述钝化层、所述平坦层进行图案化处理以形成开口,以露出所述第一金属层,沉积无机像素定义层以及所述像素定义层,剥离所述开口所对应的像素定义层,并沉积所述导电层以及所述第二金属层来形成的。
  13. 根据权利要求12 所述的显示器件,其中,所述第一金属层为薄膜晶体管层中的源漏极金属层,所述无机膜层为所述无机像素定义层,所述导电层为OLED 显示层中的电子传输层,所述第二金属层为所述 OLED 层中的阴极层。
PCT/CN2017/111296 2017-10-18 2017-11-16 一种显示器件及oled显示面板 WO2019075815A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US15/579,955 US10340322B2 (en) 2017-10-18 2017-11-16 Display device and organic light emitting diode (OLED) display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710970745.4A CN107910347A (zh) 2017-10-18 2017-10-18 一种显示器件及oled显示面板
CN201710970745.4 2017-10-18

Publications (1)

Publication Number Publication Date
WO2019075815A1 true WO2019075815A1 (zh) 2019-04-25

Family

ID=61840595

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/111296 WO2019075815A1 (zh) 2017-10-18 2017-11-16 一种显示器件及oled显示面板

Country Status (2)

Country Link
CN (1) CN107910347A (zh)
WO (1) WO2019075815A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111969015A (zh) * 2020-08-19 2020-11-20 福建华佳彩有限公司 一种阵列基板膜层结构及其制备方法
CN116669477A (zh) * 2023-07-26 2023-08-29 合肥维信诺科技有限公司 显示面板及其制作方法和显示装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108899339B (zh) * 2018-05-07 2021-04-30 武汉天马微电子有限公司 显示面板和显示装置
WO2019230261A1 (ja) * 2018-05-31 2019-12-05 株式会社ジャパンディスプレイ 表示装置及びアレイ基板
CN109585520B (zh) * 2018-12-28 2024-05-14 深圳市华星光电半导体显示技术有限公司 显示面板及显示模组、电子装置
CN109860147B (zh) * 2019-02-22 2021-08-27 福建省福联集成电路有限公司 一种叠状电容制作方法及半导体器件
CN109873085B (zh) * 2019-02-27 2020-11-10 深圳市华星光电半导体显示技术有限公司 底发射白光有机发光二极管显示面板及其制作方法、显示装置
CN110429114A (zh) * 2019-07-23 2019-11-08 武汉华星光电半导体显示技术有限公司 显示面板的制备方法、显示面板及显示装置
US11094719B2 (en) 2019-07-23 2021-08-17 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Method of manufacturing display panel, display panel, and display device
CN113611700B (zh) * 2021-07-21 2023-11-28 武汉华星光电技术有限公司 显示面板母板
CN114695494A (zh) * 2022-03-23 2022-07-01 深圳市华星光电半导体显示技术有限公司 Oled显示面板及其制作方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1457220A (zh) * 2002-06-03 2003-11-19 Lg.菲利浦Lcd株式会社 有源矩阵型有机电致发光显示装置及其制造方法
US20060061290A1 (en) * 2004-09-23 2006-03-23 Au Optronics Corp. Organic electroluminescent device and method for fabricating the same
CN102738171A (zh) * 2012-06-15 2012-10-17 深圳市华星光电技术有限公司 显示面板及其制造方法
CN103839973A (zh) * 2014-02-24 2014-06-04 京东方科技集团股份有限公司 有源矩阵有机发光二极管阵列基板及制作方法和显示装置
CN103985736A (zh) * 2014-04-30 2014-08-13 京东方科技集团股份有限公司 Amoled阵列基板及制作方法和显示装置
CN104752637A (zh) * 2013-12-31 2015-07-01 乐金显示有限公司 有机发光显示装置及其制造方法
CN105529334A (zh) * 2014-10-16 2016-04-27 三星显示有限公司 薄膜晶体管阵列基底及其制造方法和有机发光显示设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6825496B2 (en) * 2001-01-17 2004-11-30 Semiconductor Energy Laboratory Co., Ltd. Light emitting device
TWI467531B (zh) * 2004-09-16 2015-01-01 Semiconductor Energy Lab 顯示裝置和其驅動方法
CN103489824B (zh) * 2013-09-05 2016-08-17 京东方科技集团股份有限公司 一种阵列基板及其制备方法与显示装置
JP6577224B2 (ja) * 2015-04-23 2019-09-18 株式会社ジャパンディスプレイ 表示装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1457220A (zh) * 2002-06-03 2003-11-19 Lg.菲利浦Lcd株式会社 有源矩阵型有机电致发光显示装置及其制造方法
US20060061290A1 (en) * 2004-09-23 2006-03-23 Au Optronics Corp. Organic electroluminescent device and method for fabricating the same
CN102738171A (zh) * 2012-06-15 2012-10-17 深圳市华星光电技术有限公司 显示面板及其制造方法
CN104752637A (zh) * 2013-12-31 2015-07-01 乐金显示有限公司 有机发光显示装置及其制造方法
CN103839973A (zh) * 2014-02-24 2014-06-04 京东方科技集团股份有限公司 有源矩阵有机发光二极管阵列基板及制作方法和显示装置
CN103985736A (zh) * 2014-04-30 2014-08-13 京东方科技集团股份有限公司 Amoled阵列基板及制作方法和显示装置
CN105529334A (zh) * 2014-10-16 2016-04-27 三星显示有限公司 薄膜晶体管阵列基底及其制造方法和有机发光显示设备

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111969015A (zh) * 2020-08-19 2020-11-20 福建华佳彩有限公司 一种阵列基板膜层结构及其制备方法
CN116669477A (zh) * 2023-07-26 2023-08-29 合肥维信诺科技有限公司 显示面板及其制作方法和显示装置
CN116669477B (zh) * 2023-07-26 2023-10-24 合肥维信诺科技有限公司 显示面板及其制作方法和显示装置

Also Published As

Publication number Publication date
CN107910347A (zh) 2018-04-13

Similar Documents

Publication Publication Date Title
WO2019075815A1 (zh) 一种显示器件及oled显示面板
JP7483107B2 (ja) 半導体装置
CN100375312C (zh) 有机电致发光显示面板装置及其制造方法
CN104576957A (zh) 有机电致发光显示设备及其制造方法
US7105999B2 (en) Organic electroluminescent display device and method of fabricating the same
US9773823B2 (en) Display device and method of manufacturing the same
WO2016201729A1 (zh) 一种阵列基板及其制作方法、液晶显示器
CN100524799C (zh) 有源式有机发光二极管显示装置及其制造方法
WO2020238288A1 (zh) 阵列基板及其制备方法、显示装置
KR20110065852A (ko) 유기 발광 표시 장치 및 그 제조 방법
US9214476B1 (en) Pixel structure
WO2021249105A1 (zh) 显示基板及显示装置
WO2024012329A1 (zh) 显示基板及显示装置
WO2019178928A1 (zh) 一种显示面板的制作方法、显示面板及显示装置
WO2020122332A1 (ko) 디스플레이 장치
WO2024055785A1 (zh) 显示基板及显示装置
CN103247658A (zh) 有机发光二极管显示器
US20190006617A1 (en) Display device and method of manufacturing display device
WO2019056524A1 (zh) 一种oled显示面板及其制作方法
WO2015027532A1 (zh) 有机发光二极管阳极连接结构及其制作方法
US20050236972A1 (en) Light emitting display (LED) and method of manufacture
WO2016078112A1 (zh) 薄膜晶体管基板的制作方法及制造设备
US9640554B2 (en) Pixel structure
WO2022199034A1 (zh) 显示基板及其制备方法、显示装置
WO2022088978A1 (zh) 显示基板及其制备方法、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17929329

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17929329

Country of ref document: EP

Kind code of ref document: A1