WO2022088978A1 - 显示基板及其制备方法、显示装置 - Google Patents

显示基板及其制备方法、显示装置 Download PDF

Info

Publication number
WO2022088978A1
WO2022088978A1 PCT/CN2021/116259 CN2021116259W WO2022088978A1 WO 2022088978 A1 WO2022088978 A1 WO 2022088978A1 CN 2021116259 W CN2021116259 W CN 2021116259W WO 2022088978 A1 WO2022088978 A1 WO 2022088978A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
adhesion
transition
sub
encapsulation
Prior art date
Application number
PCT/CN2021/116259
Other languages
English (en)
French (fr)
Inventor
王涛
孙韬
秦成杰
张子予
张嵩
王有为
洪瑞
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to US17/787,604 priority Critical patent/US20220416202A1/en
Publication of WO2022088978A1 publication Critical patent/WO2022088978A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/131Interconnections, e.g. wiring lines or terminals
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass

Definitions

  • the present disclosure relates to, but is not limited to, the field of display technology, and more particularly, to a display substrate, a method for manufacturing the same, and a display device.
  • OLED Organic Light Emitting Diode
  • TFT Thin Film Transistor
  • the organic light-emitting material Since the water and oxygen in the outside air invades the light-emitting device, the organic light-emitting material will be eroded by water and oxygen, and an oxidation reaction will occur, resulting in pixel shrinkage or no light emission, deterioration of device performance, and impact on the service life of the display device.
  • Packaging has very high requirements. At present, flexible OLEDs usually adopt thin-film packaging. Although thin-film packaging has the characteristics of being light, thin, and easy to bend, the packaging film of thin-film packaging has problems such as interface peeling, which reduces the yield and service life.
  • the present disclosure provides a display substrate, comprising a base, a light-emitting structure layer disposed on the base, and an encapsulation structure layer disposed on a side of the light-emitting structure layer away from the base;
  • the encapsulation structure layer includes an encapsulation layer and At least one transition layer, the side of the transition layer adjacent to the substrate is in contact with the first side film layer, the side of the transition layer away from the substrate is in contact with the second side film layer, and the at least one transition layer is in contact with the second side film layer.
  • the adhesion is greater than the adhesion of one of the first side film layer and the second side film layer, and smaller than the adhesion of the other film layer of the first side film layer and the second side film layer .
  • the encapsulation layer includes a first encapsulation layer, a second encapsulation layer and a third encapsulation layer that are sequentially arranged along a direction away from the substrate, and the transition layer includes any one or more of the following: a first transition layer, a second transition layer and a third transition layer, the first transition layer is arranged between the cathode of the light emitting structure layer and the first encapsulation layer, the second transition layer is arranged on the Between the first encapsulation layer and the second encapsulation layer, the third transition layer is disposed between the second encapsulation layer and the third encapsulation layer.
  • the adhesion of the first transition layer is greater than the adhesion of the cathode of the light emitting structure layer, and the adhesion of the first transition layer is smaller than the adhesion of the first encapsulation layer.
  • the adhesion of the second transition layer is greater than the adhesion of the first encapsulation layer, and the adhesion of the second transition layer is less than the adhesion of the second encapsulation layer.
  • the adhesion of the third transition layer is smaller than the adhesion of the second encapsulation layer, and the adhesion of the third transition layer is greater than the adhesion of the third encapsulation layer.
  • the first transition layer includes a first sub-transition layer and a second sub-transition layer, and the first encapsulation layer includes a first water blocking layer;
  • the first sub-transition layer is arranged on the side of the cathode of the light-emitting structure layer away from the substrate, and the adhesion of the first sub-transition layer is greater than the adhesion of the cathode of the light-emitting structure layer;
  • the second sub-transition layer The sub-transition layer is arranged on the side of the first sub-transition layer away from the substrate, the adhesion of the second sub-transition layer is greater than the adhesion of the first sub-transition layer;
  • the first water blocking layer is arranged On the side of the second sub-transition layer away from the substrate, the adhesion of the first water blocking layer is greater than the adhesion of the second sub-transition layer.
  • the first transition layer includes a first sub-transition layer and a second sub-transition layer
  • the first encapsulation layer includes a first sub-water blocking layer and a second sub-water blocking layer
  • the first sub-transition layer is arranged on the side of the cathode of the light-emitting structure layer away from the substrate, and the adhesion of the first sub-transition layer is greater than the adhesion of the cathode of the light-emitting structure layer;
  • the first sub-transition layer The sub-water-blocking layer is arranged on the side of the first sub-transition layer away from the substrate, and the adhesion of the first sub-water-blocking layer is greater than the adhesion of the first sub-transition layer;
  • the second sub-transition layer The layer is arranged on the side of the first sub-water-blocking layer away from the substrate;
  • the second sub-water-blocking layer is arranged on the side of the second sub-transition layer away from the substrate, and the second sub-water-blocking layer is arranged on the side away from the substrate.
  • the adhesion of the water layer is greater than the adhesion of the second sub-transition layer.
  • the density of the first sub-transition layer is smaller than the density of the first sub-water blocking layer; or, the modulus of the first sub-transition layer is smaller than that of the first sub-water blocking layer modulus; or, the hardness of the first sub-transition layer is smaller than the hardness of the first sub-water blocking layer.
  • the present disclosure also provides a display device including the aforementioned display substrate.
  • the present disclosure also provides a method for preparing a display substrate, comprising:
  • An encapsulation structure layer is formed on the light emitting structure layer, the encapsulation structure layer includes an encapsulation layer and at least one transition layer, a side of the transition layer adjacent to the substrate is in contact with the first side film layer, and the transition layer is far from One side of the substrate is in contact with the second side film layer, and the adhesion force of the at least one transition layer is greater than the adhesion force of one film layer of the first side film layer and the second side film layer, and is smaller than the adhesion force of the first side film layer and the second side film layer. Adhesion of the first side film layer and the other of the second side film layers.
  • forming an encapsulation structure layer on the light emitting structure layer includes:
  • a first transition layer is formed on the cathode of the light-emitting structure layer, and the adhesion of the first transition layer is greater than the adhesion of the cathode of the light-emitting structure layer; a first encapsulation layer is formed on the first transition layer, The adhesion of the first encapsulation layer is greater than the adhesion of the first transition layer; a second encapsulation layer and a third encapsulation layer are sequentially formed on the first encapsulation layer; or,
  • a first encapsulation layer is formed on the cathode of the light emitting structure layer; a second transition layer is formed on the first encapsulation layer, and the adhesion of the second transition layer is greater than the adhesion of the first encapsulation layer; A second encapsulation layer and a third encapsulation layer are sequentially formed on the second transition layer, and the adhesion of the second encapsulation layer is greater than the adhesion of the second transition layer; or,
  • a first encapsulation layer and a second encapsulation layer are sequentially formed on the cathode of the light-emitting structure layer; a third transition layer is formed on the second encapsulation layer, and the adhesion of the third transition layer is smaller than that of the second encapsulation layer adhesion; a third encapsulation layer is formed on the third transition layer, and the adhesion of the third encapsulation layer is smaller than the adhesion of the third transition layer; or,
  • a first transition layer is formed on the cathode of the light-emitting structure layer, and the adhesion of the first transition layer is greater than the adhesion of the cathode of the light-emitting structure layer; a first encapsulation layer is formed on the first transition layer, The adhesion of the first encapsulation layer is greater than the adhesion of the first transition layer; a second transition layer is formed on the first encapsulation layer, and the adhesion of the second transition layer is greater than that of the first encapsulation layer A second encapsulation layer and a third encapsulation layer are sequentially formed on the second transition layer, and the adhesion of the second encapsulation layer is greater than the adhesion of the second transition layer; or,
  • a first transition layer is formed on the cathode of the light-emitting structure layer, and the adhesion of the first transition layer is greater than the adhesion of the cathode of the light-emitting structure layer; a first encapsulation layer is sequentially formed on the first transition layer and a second encapsulation layer, the adhesion of the first encapsulation layer is greater than that of the first transition layer; a third transition layer is formed on the second encapsulation layer, and the adhesion of the third transition layer is less than the adhesion of the second encapsulation layer; a third encapsulation layer is formed on the third transition layer, and the adhesion of the third encapsulation layer is smaller than the adhesion of the third transition layer; or,
  • a first encapsulation layer is formed on the cathode of the light emitting structure layer; a second transition layer is formed on the first encapsulation layer, and the adhesion of the second transition layer is greater than the adhesion of the first encapsulation layer; A second encapsulation layer is formed on the second transition layer, and the adhesion of the second encapsulation layer is greater than that of the second transition layer; a third transition layer is formed on the second encapsulation layer, and the first transition layer is formed on the second transition layer.
  • the adhesion of the three transition layers is smaller than the adhesion of the second encapsulation layer; a third encapsulation layer is formed on the third transition layer, and the adhesion of the third encapsulation layer is smaller than the adhesion of the third transition layer ;or,
  • a first transition layer is formed on the cathode of the light-emitting structure layer, and the adhesion of the first transition layer is greater than the adhesion of the cathode of the light-emitting structure layer; a first encapsulation layer is formed on the first transition layer, The adhesion of the first encapsulation layer is greater than the adhesion of the first transition layer; a second transition layer is formed on the first encapsulation layer, and the adhesion of the second transition layer is greater than that of the first encapsulation layer forming a second encapsulation layer on the second transition layer, and the adhesion of the second encapsulation layer is greater than that of the second transition layer; forming a third transition layer on the second encapsulation layer layer, the adhesion of the third transition layer is smaller than that of the second encapsulation layer; a third encapsulation layer is formed on the third transition layer, and the adhesion of the third encapsulation layer is smaller than that of the third encapsulation layer Ad
  • the first transition layer includes a first sub-transition layer and a second sub-transition layer
  • the first encapsulation layer includes a first water blocking layer
  • a first water blocking layer is formed on the cathode of the light emitting structure layer.
  • the adhesion of the first sub-transition layer is greater than the adhesion of the cathode of the light-emitting structure layer
  • the adhesion of the second sub-transition layer is greater than the adhesion of the first sub-transition layer
  • a first water blocking layer is formed on the second sub-transition layer, and the adhesion of the first water-blocking layer is greater than the adhesion of the second sub-transition layer.
  • the first transition layer includes a first sub-transition layer and a second sub-transition layer
  • the first encapsulation layer includes a first water-blocking layer and a second sub-water-blocking layer
  • a first transition layer and a first encapsulation layer are formed on the cathode of the structural layer, including:
  • the adhesion of the first sub-transition layer is greater than the adhesion of the cathode of the light-emitting structure layer
  • first sub-water-blocking layer on the first sub-transition layer, and the adhesion of the first sub-water-blocking layer is greater than that of the first sub-transition layer;
  • a second sub-water-blocking layer is formed on the second sub-transition layer, and the adhesion of the second sub-water-blocking layer is greater than that of the second sub-transition layer.
  • the density of the first sub-transition layer is smaller than the density of the first sub-water blocking layer; or, the modulus of the first sub-transition layer is smaller than that of the first sub-water blocking layer modulus; or, the hardness of the first sub-transition layer is smaller than the hardness of the first sub-water blocking layer.
  • FIG. 1 is a schematic structural diagram of an OLED display device
  • FIG. 2 is a schematic plan view of a display substrate
  • 3 is an equivalent circuit diagram of a pixel driving circuit
  • FIG. 4 is a schematic cross-sectional structure diagram of a display substrate
  • FIG. 5 is a schematic structural diagram of a display substrate according to an exemplary embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of the present disclosure after forming a driving circuit layer pattern
  • FIG. 7 is a schematic diagram of the present disclosure after forming a light-emitting device
  • FIG. 8 is a schematic diagram of the present disclosure after forming a first composite encapsulation layer pattern
  • FIG. 9 is a schematic diagram of the present disclosure after forming the second and third composite encapsulation layer patterns
  • FIG. 10 is a schematic structural diagram of another display substrate according to an exemplary embodiment of the present disclosure.
  • FIG. 11 is a schematic structural diagram of still another display substrate according to an exemplary embodiment of the present disclosure.
  • FIG. 12 is a schematic structural diagram of still another display substrate according to an exemplary embodiment of the present disclosure.
  • FIG. 13 is a schematic structural diagram of still another display substrate according to an exemplary embodiment of the present disclosure.
  • 30 light-emitting device
  • 40 encapsulation structure layer
  • 50 first composite encapsulation layer
  • 51 the first water-blocking layer
  • 51-1 the first sub-water-blocking layer
  • 51-2 the second sub-water-blocking layer
  • 60 the second composite encapsulation layer
  • 61 the second transition layer
  • 62 the first organic layer
  • 70 the third composite encapsulation layer
  • 71 the third transition layer
  • 72 the third water blocking layer
  • 81 the first transition layer
  • 81-1 the first sub-transition layer
  • 81-2 the second sub-transition layer
  • 100 OLED display substrate
  • 101 first transistor
  • 102 storage capacitor
  • the terms “installed”, “connected” and “connected” should be construed in a broad sense. For example, it may be a fixed connection, or a detachable connection, or an integral connection; it may be a mechanical connection, or an electrical connection; it may be a direct connection, or an indirect connection through an intermediate piece, or an internal communication between two elements.
  • installed should be construed in a broad sense. For example, it may be a fixed connection, or a detachable connection, or an integral connection; it may be a mechanical connection, or an electrical connection; it may be a direct connection, or an indirect connection through an intermediate piece, or an internal communication between two elements.
  • a transistor refers to an element including at least three terminals of a gate electrode, a drain electrode, and a source electrode.
  • a transistor has a channel region between a drain electrode (drain electrode terminal, drain region, or drain electrode) and a source electrode (source electrode terminal, source region, or source electrode), and current can flow through the drain electrode, the channel region, and the source electrode .
  • the channel region refers to a region through which current mainly flows.
  • the first electrode may be the drain electrode and the second electrode may be the source electrode, or the first electrode may be the source electrode and the second electrode may be the drain electrode.
  • the functions of the "source electrode” and the “drain electrode” may be interchanged when using transistors of opposite polarities or when the direction of the current changes during circuit operation. Therefore, in this specification, “source electrode” and “drain electrode” may be interchanged with each other.
  • electrically connected includes a case where constituent elements are connected together by an element having a certain electrical effect.
  • the "element having a certain electrical effect” is not particularly limited as long as it can transmit and receive electrical signals between the connected constituent elements.
  • Examples of “elements having a certain electrical effect” include not only electrodes and wirings, but also switching elements such as transistors, resistors, inductors, capacitors, other elements having various functions, and the like.
  • parallel refers to a state where the angle formed by two straight lines is -10° or more and 10° or less, and therefore includes a state where the angle is -5° or more and 5° or less.
  • perpendicular refers to the state where the angle formed by two straight lines is 80° or more and 100° or less, and therefore includes the state where the angle is 85° or more and 95° or less.
  • film and “layer” are interchangeable.
  • conductive layer may be replaced by “conductive film” in some cases.
  • insulating film may be replaced with “insulating layer” in some cases.
  • FIG. 1 is a schematic structural diagram of an OLED display device.
  • the OLED display device may include a scan signal driver, a data signal driver, a lighting signal driver, an OLED display substrate 100 , a first power supply unit, a second power supply unit and an initial power supply unit.
  • the OLED display substrate includes at least a plurality of scan signal lines (S1 to SN), a plurality of data signal lines (D1 to DM), and a plurality of light emission signal lines (EM1 to EMN), and the scan signal driver is configured
  • the data signal driver is configured to supply the data signals to the plurality of data signal lines (D1 to DM)
  • the light emission signal driver is configured to sequentially supply the plurality of light emission signals Lines (EM1 to EMN) provide lighting control signals.
  • the plurality of scan signal lines and the plurality of light emitting signal lines extend in the horizontal direction
  • the plurality of data signal lines extend in the vertical direction.
  • the display device includes a plurality of sub-pixels, at least one sub-pixel includes a pixel driving circuit and a light-emitting device, the pixel driving circuit is respectively connected with the scanning signal line, the data signal line and the light-emitting signal line, and the pixel driving circuit may include a plurality of transistors and storage capacitors , the pixel driving circuit is configured to, under the control of the scanning signal line and the light-emitting signal line, receive the data voltage transmitted by the data signal line, and output a corresponding current to the light-emitting device, and the light-emitting device is configured to respond to the pixel driving of the sub-pixel where it is located The current output by the circuit emits light of corresponding brightness.
  • the first power supply unit, the second power supply unit and the initial power supply unit are respectively configured to supply the first power supply voltage, the second power supply
  • FIG. 2 is a schematic plan view of a display substrate.
  • the display substrate may include a plurality of pixel units P arranged in a matrix, and at least one of the plurality of pixel units P includes a first sub-pixel P1 that emits light of a first color, and a sub-pixel P1 that emits light of a second color.
  • the second sub-pixel P2 and the third sub-pixel P3 emitting light of the third color.
  • the pixel unit P may include red (R) sub-pixels, green (G) sub-pixels, and blue (B) sub-pixels, or may include red sub-pixels, green sub-pixels, and blue sub-pixels and white (W) sub-pixels, which are not limited in this disclosure.
  • the shape of the sub-pixels in the pixel unit may be rectangular, diamond, pentagon or hexagonal.
  • the pixel unit includes three sub-pixels, the three sub-pixels can be arranged horizontally, vertically, or in a zigzag manner.
  • the pixel unit includes four sub-pixels, the four sub-pixels can be arranged in a horizontal, vertical, or square manner. The arrangement is not limited in this disclosure.
  • the pixel driving circuit may be a 3T1C, 4T1C, 5T1C, 5T2C, 6T1C or 7T1C structure.
  • FIG. 3 is an equivalent circuit diagram of a pixel driving circuit.
  • the pixel driving circuit may include 7 switching transistors (the first transistor T1 to the seventh transistor T7), 1 storage capacitor C and 8 signal lines (the data signal line DATA, the first scan signal line S1, The second scan signal line S2, the first initial signal line INIT1, the second initial signal line INIT2, the first power supply line VSS, the second power supply line VDD, and the light emitting signal line EM).
  • the first initial signal line INIT1 and the second initial signal line INIT2 may be the same signal line.
  • the control electrode of the first transistor T1 is connected to the second scan signal line S2, the first electrode of the first transistor T1 is connected to the first initial signal line INIT1, and the second electrode of the first transistor is connected to the second scan signal line S2.
  • Node N2 is connected.
  • the control electrode of the second transistor T2 is connected to the first scan signal line S1, the first electrode of the second transistor T2 is connected to the second node N2, and the second electrode of the second transistor T2 is connected to the third node N3.
  • the control electrode of the third transistor T3 is connected to the second node N2, the first electrode of the third transistor T3 is connected to the first node N1, and the second electrode of the third transistor T3 is connected to the third node N3.
  • the control electrode of the fourth transistor T4 is connected to the first scan signal line S1, the first electrode of the fourth transistor T4 is connected to the data signal line DATA, and the second electrode of the fourth transistor T4 is connected to the first node N1.
  • the control electrode of the fifth transistor T5 is connected to the light-emitting signal line EM, the first electrode of the fifth transistor T5 is connected to the second power supply line VDD, and the second electrode of the fifth transistor T5 is connected to the first node N1.
  • the control electrode of the sixth transistor T6 is connected to the light emitting signal line EM, the first electrode of the sixth transistor T6 is connected to the third node N3, and the second electrode of the sixth transistor T6 is connected to the first electrode of the light emitting device.
  • the control electrode of the seventh transistor T7 is connected to the first scan signal line S1, the first electrode of the seventh transistor T7 is connected to the second initial signal line INIT2, and the second electrode of the seventh transistor T7 is connected to the first electrode of the light emitting device.
  • the first end of the storage capacitor C is connected to the second power line VDD, and the second end of the storage capacitor C is connected to the second node N2.
  • the first to seventh transistors T1 to T7 may be P-type transistors, or may be N-type transistors. Using the same type of transistors in the pixel driving circuit can simplify the process flow, reduce the process difficulty of the display panel, and improve the product yield. In some possible implementations, the first to seventh transistors T1 to T7 may include P-type transistors and N-type transistors.
  • the second pole of the light emitting device is connected to the first power supply line VSS, the signal of the first power supply line VSS is a low-level signal, and the signal of the second power supply line VDD is a continuous high-level signal.
  • the first scan signal line S1 is the scan signal line in the pixel driving circuit of the display row
  • the second scan signal line S2 is the scan signal line in the pixel driving circuit of the previous display row, that is, for the nth display row, the first scan signal
  • the line S1 is S(n)
  • the second scanning signal line S2 is S(n-1)
  • the second scanning signal line S2 of this display line is the same as the first scanning signal line S1 in the pixel driving circuit of the previous display line
  • the signal lines can reduce the signal lines of the display panel and realize the narrow frame of the display panel.
  • FIG. 4 is a schematic cross-sectional structure diagram of a display substrate.
  • the display substrate may include a driving circuit layer 20 disposed on the substrate 10 , a light emitting device 30 disposed on the driving circuit layer 20 , and a package disposed on the light emitting device 30 Structural layer 40 .
  • the display substrate may include other film layers, such as spacer columns, etc., which are not limited in the present disclosure.
  • the encapsulation structure layer includes a stacked first encapsulation layer, a second encapsulation layer and a third encapsulation layer, the first encapsulation layer and the third encapsulation layer are made of inorganic materials, the second encapsulation layer is made of organic materials, and the third encapsulation layer is made of inorganic materials.
  • the two encapsulation layers are disposed between the first encapsulation layer and the third encapsulation layer.
  • the interface peeling phenomenon between the first encapsulation layer and the cathode is easy to occur during use, which reduces the reliability of the thin film encapsulation.
  • the interface between the first encapsulation layer and the second encapsulation layer, and the relationship between the second encapsulation layer and the third encapsulation layer will also occur during use. The peeling phenomenon of the interface between the two leads to the failure of the package.
  • a display substrate may include a base, a light emitting structure layer disposed on the base, and an encapsulation structure layer disposed on a side of the light emitting structure layer away from the base; the encapsulation structure layer may include an encapsulation structure layer and at least one transition layer, the side of the transition layer adjacent to the substrate is in contact with the first side film layer, the side of the transition layer away from the substrate is in contact with the second side film layer, the at least one transition layer
  • the adhesion of the layers is greater than the adhesion of one of the first side film layer and the second side film layer, and less than the adhesion of the other film layer of the first side film layer and the second side film layer. adhesion.
  • the encapsulation layer may include a first encapsulation layer, a second encapsulation layer and a third encapsulation layer arranged in sequence along a direction away from the substrate, and the transition layer may include any one or more of the following Type: a first transition layer, a second transition layer and a third transition layer, the first transition layer is arranged between the cathode of the light emitting structure layer and the first encapsulation layer, and the second transition layer is arranged at Between the first encapsulation layer and the second encapsulation layer, the third transition layer is disposed between the second encapsulation layer and the third encapsulation layer.
  • the adhesion of the first transition layer is greater than the adhesion of the cathode of the light emitting structure layer, and the adhesion of the first transition layer is smaller than the adhesion of the first encapsulation layer.
  • the adhesion of the second transition layer is greater than the adhesion of the first encapsulation layer, and the adhesion of the second transition layer is less than the adhesion of the second encapsulation layer.
  • the adhesion of the third transition layer is smaller than the adhesion of the second encapsulation layer, and the adhesion of the third transition layer is greater than the adhesion of the third side film layer.
  • the first transition layer, the second transition layer, and the third transition layer may be inorganic material layers with water blocking capability, or may be inorganic material layers without water blocking capability.
  • each of the first transition layer, the second transition layer, and the third transition layer may include a plurality of sub-transition layers.
  • the first encapsulation layer and the third encapsulation layer may each include a plurality of sub-water blocking layers, and the second encapsulation layer may include a plurality of sub-organic layers.
  • the adhesion force is the mutual attraction between the contact parts of two different substances, and the adhesion force is generated when the two objects are brought together to achieve close interfacial molecular contact so as to generate a new interfacial layer.
  • Adhesion involves physical effects and chemical reactions at the "interface", each observable surface is associated with several layers of physically or chemisorbed molecules, when a material is applied to a film and dried and cured Adhesion is generated, and the magnitude of the adhesion depends to a certain extent on the properties of the material, so the adhesion is to a certain extent the properties of the material itself.
  • the present disclosure provides a display substrate.
  • a transition layer in an encapsulation structure layer among two film layers contacted by at least one transition layer, the adhesion of one film layer is greater than that of the transition layer, and the adhesion of the other film layer is greater than that of the transition layer.
  • the adhesion is less than the adhesion of the transition layer, which reduces the adhesion difference between the film layers, reduces the stress mismatch between the film layers, effectively avoids the peeling of the interface between the film layers, and ensures the reliability of the film packaging. It can not only greatly improve the reliability of thin film packaging, but also greatly improve the bending resistance and curling ability of the display substrate, which provides a guarantee for display devices with long life requirements.
  • FIG. 5 is a schematic structural diagram of a display substrate according to an exemplary embodiment of the present disclosure.
  • the display substrate may include a substrate 10 , a driving circuit layer 20 disposed on the substrate 10 , a light emitting device 30 disposed on a side of the driving circuit layer 20 away from the substrate 10 , and a The encapsulation structure layer on the side of the light emitting device 30 away from the substrate 10 .
  • the encapsulation structure layer may include a first composite encapsulation layer 50 disposed on a side of the light emitting device 30 away from the substrate 10 , and a second composite encapsulation layer 60 disposed on a side of the first composite encapsulation layer 50 away from the substrate 10 . , and a third compound encapsulation layer 70 disposed on the side of the second compound encapsulation layer 60 away from the substrate 10 .
  • the driving circuit layer 20 and the light emitting device 30 constitute a light emitting structure layer.
  • the first composite encapsulation layer 50 may include a first transition layer and a first encapsulation layer, and the first encapsulation layer may include a first water blocking layer.
  • the first composite encapsulation layer 50 may include a first transition layer 81 disposed on the side of the light emitting device 30 away from the substrate 10 and a first encapsulation layer disposed on the side of the first transition layer 81 away from the substrate 10 as a first encapsulation layer
  • the first water blocking layer 51 and the second composite encapsulation layer 60 are disposed on the surface of the first water blocking layer 51 on the side away from the substrate 10 .
  • the adhesion of the first transition layer 81 is greater than that of the cathode in the light emitting device 30 , but smaller than that of the first water blocking layer 51 .
  • the material of the first transition layer 81 may include, but is not limited to, silicon oxide (SiOx), silicon carbon nitride (SiCN), or silicon nitride (SiNx), and the thickness may be about to
  • the first transition layer 81 is configured to reduce the adhesion difference between the film layers, reduce the stress mismatch between the film layers, so as to avoid the interface peeling between the film layers, or, is configured to both reduce the difference between the film layers
  • the adhesion difference between the films reduces the stress mismatch between the film layers, and in order to isolate water and oxygen, improve the water and oxygen barrier function.
  • the material of the first water blocking layer 51 may include, but is not limited to, silicon nitride (SiNx), silicon oxynitride (SiONx), or aluminum oxide (AlO), etc., and the thickness may be about to
  • the first water blocking layer 51 is configured to isolate water and oxygen, so as to improve the water and oxygen blocking function, and ensure that external water vapor cannot enter the light-emitting device.
  • the second composite encapsulation layer 60 may include a second encapsulation layer, the material of the second encapsulation layer may include but is not limited to acrylate or epoxy, and the thickness of the second composite encapsulation layer 60 may be about 1.0 ⁇ m to 3.0 ⁇ m.
  • the third composite encapsulation layer 70 may include a third encapsulation layer, and the material of the third encapsulation layer may include but not limited to silicon carbonitride, silicon nitride, silicon oxynitride or aluminum oxide, and the thickness may be about for to
  • the following is an exemplary description through the preparation process of the display substrate.
  • the "patterning process” mentioned in this disclosure includes photoresist coating, mask exposure, development, etching, stripping photoresist and other treatments, for organic materials, including Processes such as coating organic materials, mask exposure and development.
  • Deposition can use any one or more of sputtering, evaporation, chemical vapor deposition
  • coating can use any one or more of spraying, spin coating and inkjet printing
  • etching can use dry etching and wet Any one or more of the engravings are not limited in the present disclosure.
  • “Film” refers to a thin film made of a material on a substrate by deposition, coating, or other processes.
  • the "thin film” may also be referred to as a "layer”. If the "thin film” needs a patterning process in the whole manufacturing process, it is called a "thin film” before the patterning process, and a “layer” after the patterning process.
  • the “layer” after the patterning process contains at least one "pattern”.
  • “A and B are arranged in the same layer” means that A and B are simultaneously formed through the same patterning process, and the "thickness" of the film layer is the dimension of the film layer in the direction perpendicular to the display substrate.
  • the orthographic projection of B is within the range of the orthographic projection of A" or "the orthographic projection of A includes the orthographic projection of B” means that the boundary of the orthographic projection of B falls within the orthographic projection of A or the boundary of the orthographic projection of A overlaps the boundary of the orthographic projection of B.
  • the manufacturing process of the display substrate may include the following operations.
  • the substrate 10 is prepared on the glass carrier plate 1 .
  • the substrate 10 may include a first flexible material layer, a first inorganic material layer, a semiconductor layer, a second flexible material layer, and a second inorganic material layer stacked on the glass carrier 1 .
  • the materials of the first and second flexible material layers can be polyimide (PI), polyethylene terephthalate (PET) or surface-treated soft polymer films, and the first and second inorganic materials
  • the material of the layer can be silicon nitride (SiNx) or silicon oxide (SiOx), etc., to improve the water and oxygen resistance of the substrate.
  • the first and second inorganic material layers are also called barrier layers.
  • the preparation process may include: firstly coating a layer of polyimide on the glass carrier 1, and curing to form a film Then, a first flexible (PI1) layer is formed; then a barrier film is deposited on the first flexible layer to form a first barrier (Barrier1) layer covering the first flexible layer; then an amorphous layer is deposited on the first barrier layer A silicon film to form an amorphous silicon (a-si) layer covering the first barrier layer; then a layer of polyimide is coated on the amorphous silicon layer, and a second flexible (PI2) layer is formed after curing into a film; Then, a barrier film is deposited on the second flexible layer to form a second barrier (Barrier 2 ) layer covering the second flexible layer to complete the preparation of the substrate 10 .
  • preparing the driving circuit layer pattern on the substrate 10 may include:
  • a first insulating film and a semiconductor film are sequentially deposited on the substrate 10, and the semiconductor film is patterned through a patterning process to form a first insulating layer covering the entire substrate 10, and a semiconductor layer pattern disposed on the first insulating layer.
  • the layer pattern includes at least an active layer in each subpixel.
  • a second insulating film and a first metal film are sequentially deposited, and the first metal film is patterned through a patterning process to form a second insulating layer covering the pattern of the semiconductor layer, and a first metal film disposed on the second insulating layer A layer pattern, the first metal layer pattern at least includes a gate electrode and a first capacitor electrode located in each sub-pixel.
  • a third insulating film and a second metal film are sequentially deposited, and the second metal film is patterned through a patterning process to form a third insulating layer covering the first metal layer, and a second insulating layer disposed on the third insulating layer.
  • a metal layer pattern, the second metal layer pattern at least includes a second capacitor electrode located in each sub-pixel, and the orthographic projection of the second capacitor electrode on the substrate and the orthographic projection of the first capacitor electrode on the substrate have an overlapping area.
  • a fourth insulating film is deposited, a plurality of first via patterns are formed by a patterning process, the fourth insulating layer, the third insulating layer and the second insulating layer in the first vias are etched away, exposing the active both ends of the layer.
  • a third metal thin film depositing a third metal thin film, patterning the third metal thin film through a patterning process, forming a third metal layer pattern on the fourth insulating layer, the third metal layer pattern at least including a source electrode located in each sub-pixel and a The drain electrode, the source electrode and the drain electrode are respectively connected with the active layer through the first via hole.
  • a flat film is coated, and the flat film is patterned by a patterning process to form a flat layer, a second via hole is formed on the flat layer, and the flat layer in the second via hole is removed, exposing the flat layer in each sub-pixel drain electrode.
  • the pattern of the driving circuit layer 20 is prepared on the substrate 10 , as shown in FIG. 6 .
  • the active layer, the gate electrode, the source electrode and the drain electrode constitute the first transistor 101
  • the first capacitor electrode and the second capacitor electrode constitute the storage capacitor 102 .
  • the first transistor 101 may be a driving transistor in a pixel driving circuit
  • the driving transistor may be a thin film transistor (Thin Film Transistor, TFT for short).
  • the first insulating layer, the second insulating layer, the third insulating layer, and the fourth insulating layer may adopt silicon oxide (SiOx), silicon nitride (SiNx), and silicon oxynitride (SiON) Any one or more of them may be a single layer, multiple layers or composite layers.
  • the first insulating layer is called the buffer layer, which is used to improve the water and oxygen resistance of the substrate
  • the second insulating layer and the third insulating layer are called the gate insulating (GI) layer
  • the fourth insulating layer is called the interlayer insulation ( ILD) layer.
  • the first metal thin film, the second metal thin film and the third metal thin film can be made of metal materials, such as any one of silver (Ag), copper (Cu), aluminum (Al), titanium (Ti) and molybdenum (Mo) or More, or alloy materials of the above metals, such as aluminum neodymium alloy (AlNd) or molybdenum niobium alloy (MoNb), can be a single-layer structure, or a multi-layer composite structure, such as Ti/Al/Ti and the like.
  • metal materials such as any one of silver (Ag), copper (Cu), aluminum (Al), titanium (Ti) and molybdenum (Mo) or More, or alloy materials of the above metals, such as aluminum neodymium alloy (AlNd) or molybdenum niobium alloy (MoNb)
  • AlNd aluminum neodymium alloy
  • MoNb molybdenum niobium alloy
  • the active layer film can be made of amorphous indium gallium zinc oxide (a-IGZO), zinc oxynitride (ZnON), indium zinc tin oxide (IZTO), amorphous silicon (a-Si), polycrystalline silicon (p-Si) , hexathiophene, polythiophene and other materials, that is, the present disclosure is applicable to transistors manufactured based on oxide technology, silicon technology and organic technology.
  • a-IGZO amorphous indium gallium zinc oxide
  • ZnON zinc oxynitride
  • IZTO indium zinc tin oxide
  • a-Si amorphous silicon
  • p-Si polycrystalline silicon
  • hexathiophene polythiophene and other materials
  • the driving circuit layer 20 may further include film layers such as a fifth insulating layer, a fourth metal layer, a second flat layer, and the like, and each sub-pixel may further include structures such as power lines, connection electrodes, and the like, the present disclosure is herein Not limited.
  • fabricating the light emitting device on the substrate forming the aforementioned pattern may include:
  • a transparent conductive film is deposited on the substrate formed with the aforementioned pattern, and the transparent conductive film is patterned through a patterning process to form an anode pattern, and the anode is connected to the drain electrode of the first transistor 101 through a second via hole.
  • a pixel definition film is coated, and the pixel definition film is patterned by a patterning process to form a pixel definition layer pattern.
  • the pixel definition layer is formed with a pixel opening in each sub-pixel, and the pixel definition layer in the pixel opening is removed to expose the surface of the anode.
  • the inorganic thin film is coated, and the inorganic thin film is patterned through a patterning process to form a pattern of isolation columns, and the isolation columns are arranged on the pixel definition layer.
  • an organic light-emitting layer and a cathode are formed in sequence, the organic light-emitting layer is connected to the anode in the pixel opening, and the cathode is connected to the organic light-emitting layer, so that the organic light-emitting layer is driven by the anode and the cathode to emit light of a corresponding color.
  • the pattern of the light emitting device 30 is prepared on the driving circuit layer 20 , as shown in FIG. 7 .
  • structures such as isolation dams may be formed during the preparation of the light emitting device, which is not limited in the present disclosure.
  • the organic light-emitting layer in the light-emitting device 30 may include an emission layer (Emitting Layer, referred to as EML), and a hole injection layer (Hole Injection Layer, referred to as HIL), a hole transport layer (Hole Transport Layer) , referred to as HTL), hole blocking layer (Hole Block Layer, referred to as HBL), electron blocking layer (Electron Block Layer, referred to as EBL), electron injection layer (Electron Injection Layer, referred to as EIL), electron transport layer (Electron Transport Layer, abbreviated as ETL) in one or more film layers.
  • EML emission layer
  • HIL hole injection layer
  • HTL hole transport layer
  • HBL hole blocking layer
  • EBL electron blocking layer
  • EIL electron injection layer
  • ETL electron transport layer
  • the light emitting layers of the light emitting devices 30 of different colors are different.
  • a red light-emitting element includes a red light-emitting layer
  • a green light-emitting element includes a green light-emitting layer
  • a blue light-emitting element includes a blue light-emitting layer.
  • the hole injection layer and the hole transport layer on one side of the light emitting layer can use a common layer
  • the electron injection layer and the electron transport layer on the other side of the light emitting layer can use a common layer.
  • any one or more of the hole injection layer, hole transport layer, electron injection layer, and electron transport layer may be fabricated by one process (one evaporation process or one inkjet printing process), However, isolation is achieved by the surface step difference of the formed film layer or by means of surface treatment.
  • any one or more of the hole injection layer, hole transport layer, electron injection layer and electron transport layer corresponding to adjacent sub-pixels may be isolated.
  • the organic light-emitting layer may be formed by using a fine metal mask (FMM, Fine Metal Mask) or an open mask (Open Mask) evaporation deposition, or by using an inkjet process.
  • FMM fine metal mask
  • Open Mask Open Mask
  • the transparent conductive film may include indium tin oxide (ITO) or indium zinc oxide (IZO).
  • ITO indium tin oxide
  • IZO indium zinc oxide
  • the pixel definition layer can be made of polyimide, acrylic, polyethylene terephthalate, or the like.
  • the cathode can be made of any one or more of magnesium (Mg), silver (Ag), aluminum (Al), copper (Cu) and lithium (Li), or any one or more of the above metals. alloy.
  • a first composite encapsulation layer is formed on the substrate on which the aforementioned pattern is formed.
  • forming the first composite encapsulation layer on the substrate on which the aforementioned patterns are formed may include: on the substrate on which the aforementioned patterns are formed, firstly depositing a transition film to form a first transition layer covering the cathode of the light emitting device 30 81. Subsequently, a water blocking film is deposited on the first transition layer 81 to form a first water blocking layer 51 covering the first transition layer 81 , as shown in FIG. 8 .
  • the coverage areas of the first transition layer 81 and the first water blocking layer 51 may be the same, or may be different, and the orthographic projection of the first transition layer 81 on the substrate is located on the substrate of the first water blocking layer 51 within the range of the orthographic projection.
  • the material of the first transition layer 81 may include silicon carbonitride, the adhesion of the silicon carbonitride is about 0.6N to 0.7N, and the material of the first water blocking layer 51 may include silicon nitride,
  • the adhesion of silicon nitride is about 1.3N to 1.9N, the adhesion of the first transition layer 81 is greater than that of the cathode of the light-emitting device 30 , and the adhesion of the first transition layer 81 is smaller than that of the first water blocking layer 51 . .
  • the thickness of the first transition layer 81 may be approximately to The thickness of the first water blocking layer 51 may be about to
  • the thickness of the first transition layer 81 may be approximately to The thickness of the first water blocking layer 51 may be about to
  • the thickness of the silicon carbonitride can be about
  • the thickness of the silicon nitride can be approximately
  • the thickness of the silicon carbonitride may be approximately
  • the thickness of the silicon nitride can be approximately
  • the density of silicon carbonitride is about 1.6 g/cm 3 to 1.9 g/cm 3
  • the density of silicon nitride is about 2.2 g/cm 3 to 2.5 g/cm 3
  • the first transition layer The density of 81 is smaller than that of the first water blocking layer 51 .
  • the modulus of silicon carbonitride is about 10 Gpa to 40 Gpa
  • the modulus of silicon nitride is about 60 Gpa to 100 Gpa
  • the modulus of the first transition layer 81 is smaller than that of the first water blocking layer 51 . .
  • the hardness of silicon carbonitride is about 1 Gpa to 4 Gpa
  • the hardness of silicon nitride is about 6 Gpa to 11 Gpa
  • the hardness of the first transition layer 81 is smaller than that of the first water blocking layer 51 .
  • a first encapsulation layer using silicon nitride is directly formed on a cathode of a light-emitting device, and the difference in adhesion between the first encapsulation layer and the cathode is about 1.3N. Due to the large difference in adhesion between the two film layers, there is a serious stress mismatch between the first encapsulation layer and the cathode, which easily leads to peeling of the interface between the first encapsulation layer and the cathode, resulting in encapsulation failure.
  • a first composite encapsulation layer including a first transition layer and a first water blocking layer is provided, and the first transition layer is disposed between the cathode and the first water blocking layer, and the first transition layer adopts an adhesion force of about 0.6N To 0.7N silicon carbonitride, the difference in adhesion between the cathode and the first transition layer is about 0.6N, and the difference in adhesion between the first transition layer and the first water blocking layer is about 0.7N To about 1.2N, the adhesion difference between the film layers is reduced, the stress mismatch between the film layers is reduced, the peeling of the interface between the film layers is effectively avoided, and the reliability of the film packaging is ensured.
  • film stress is divided into tensile stress and compressive stress.
  • tensile stress is positive and compressive stress is negative.
  • PECVD plasma enhanced chemical vapor deposition
  • the film stress of silicon carbonitride in the low temperature PECVD deposition process is about -20Mpa to 100Mpa , compressive stress is small, and even tends to tensile stress.
  • the silicon carbonitride material is used as the first transition layer, when the first transition layer is formed on the cathode, the film stress applied by the first transition layer to the cathode is small, or no film stress is applied to the cathode, or even a thin film stress is applied to the cathode.
  • the material of the first transition layer may include silicon carbonitride
  • the material of the first water blocking layer may include silicon oxynitride
  • the material of the first transition layer may include silicon nitride
  • the material of the first water blocking layer may include silicon oxynitride.
  • a second composite encapsulation layer and a third composite encapsulation layer are formed on the substrate on which the aforementioned pattern is formed.
  • forming the second composite encapsulation layer and the third composite encapsulation layer on the substrate forming the aforementioned pattern may include: forming the second composite encapsulation layer on the first composite encapsulation layer by coating or inkjet printing 60. Subsequently, a layer of encapsulation film is deposited to form a third composite encapsulation layer 70 covering the second composite encapsulation layer 60, as shown in FIG. 9 .
  • the second composite encapsulation layer 60 may include a second encapsulation layer, and the second encapsulation layer may be made of materials such as acrylate or epoxy, and the thickness may be about 1.0 ⁇ m to 3.0 ⁇ m.
  • the third composite encapsulation layer 70 includes a third encapsulation layer, and the third encapsulation layer can be silicon oxynitride, silicon nitride, silicon oxynitride or aluminum oxide, etc., and the thickness can be about to
  • the display substrate may include a display area and a frame area located at the periphery of the display area, and the second encapsulation layer is formed in the display area, which is not limited in the present disclosure.
  • the display substrate provided by the present disclosure is provided with a first composite encapsulation layer including a first transition layer and a first water blocking layer, and the first transition layer is disposed on the cathode
  • the adhesion of the first transition layer is greater than that of the cathode, but smaller than that of the first water blocking layer, thus reducing the adhesion difference between adjacent membrane layers and reducing the The stress mismatch between the film layers is avoided, the peeling of the interface between the film layers is effectively avoided, the reliability of the thin film packaging is ensured, and the yield rate is improved.
  • the preparation process of the substrate has good process compatibility, and the process is simple to implement, easy to implement, high in production efficiency, and low in production cost.
  • FIG. 10 is a schematic structural diagram of another display substrate according to an exemplary embodiment of the present disclosure.
  • the display substrate may include a substrate 10, a driving circuit layer 20 disposed on the substrate 10, a light emitting device 30 disposed on a side of the driving circuit layer 20 away from the substrate 10, and a The encapsulation structure layer on the side of the light emitting device 30 away from the substrate 10 .
  • the encapsulation structure layer may include a first composite encapsulation layer 50 disposed on a side of the light emitting device 30 away from the substrate 10 , and a second composite encapsulation layer 60 disposed on a side of the first composite encapsulation layer 50 away from the substrate 10 . , and a third compound encapsulation layer 70 disposed on the side of the second compound encapsulation layer 60 away from the substrate 10 .
  • the first composite encapsulation layer 50 may include a first transition layer and a first encapsulation layer, the first transition layer may include a first sub-transition layer and a second sub-transition layer, and the first encapsulation layer may include a first transition layer and a second sub-transition layer.
  • a water-blocking layer may be included in the first composite encapsulation layer 50 .
  • the first composite encapsulation layer 50 may include a first sub-transition layer 81-1 disposed on a side of the light emitting device 30 away from the substrate 10, and a first sub-transition layer 81-1 disposed on a side of the first sub-transition layer 81-1 away from the substrate.
  • the second sub-transition layer 81-2 and the first water-blocking layer 51 disposed on the side of the second sub-transition layer 81-2 away from the substrate, the second composite encapsulation layer 60 is disposed on the first water-blocking layer 51 away from the substrate 10 on one side of the surface.
  • the adhesion of the first sub-transition layer 81-1 is greater than that of the cathode in the light emitting device 30, but smaller than that of the second sub-transition layer 81-2.
  • the adhesion of the second sub-transition layer 81-2 is greater than that of the first sub-transition layer 81-1, but smaller than that of the first water blocking layer 51.
  • the material of the first sub-transition layer 81-1 may include silicon carbonitride, and the adhesion of the silicon carbonitride is about 0.6N to 0.7N, and the material of the second sub-transition layer 81-2 may be It includes silicon nitride, and the adhesion force of the silicon nitride is about 1.3N to 1.9N.
  • the material of the first water blocking layer 51 may include silicon oxynitride, and the adhesion force of the silicon oxynitride is about 2.5N to 2.8N.
  • the adhesion of the first sub-transition layer 81-1 is greater than the adhesion of the cathode in the light-emitting device 30, but smaller than the adhesion of the second sub-transition layer 81-2, and the adhesion of the second sub-transition layer 81-2 is smaller than that of the first resistance. Adhesion of the water layer 51 .
  • the thickness of the first sub-transition layer 81-1 may be approximately to The thickness of the second sub-transition layer 81-2 may be about to The thickness of the first water blocking layer 51 may be about to The first sub-transition layer 81-1 and the second sub-transition layer 81-2 are configured to reduce the adhesion difference between the film layers, reduce the stress mismatch between the film layers, and avoid interfacial peeling between the film layers .
  • the first water blocking layer 51 is configured to isolate water and oxygen, so as to improve the water and oxygen blocking function, and ensure that external water vapor cannot enter the light-emitting device.
  • the thickness of the first sub-transition layer 81-1 may be about to The thickness of the second sub-transition layer 81-2 may be about to The thickness of the first water blocking layer 51 may be about to
  • the thickness of the silicon carbonitride can be about The thickness of the silicon nitride can be approximately The thickness of the silicon oxynitride can be approximately
  • the thickness of the silicon carbonitride may be approximately The thickness of the silicon nitride can be approximately The thickness of the silicon oxynitride can be approximately
  • silicon carbonitride has a density of about 1.6 g/cm 3 to 1.9 g/cm 3
  • silicon nitride has a density of about 2.2 g/cm 3 to 2.5 g/cm 3
  • silicon oxynitride has a density of about 2.2 g/cm 3 to 2.5 g/cm 3 .
  • the density is about 2.0 g/cm 3 to 2.3 g/cm 3
  • the density of the first sub-transition layer 81-1 is smaller than that of the second sub-transition layer 81-2.
  • the modulus of silicon carbonitride is about 10 Gpa to 40 Gpa
  • the modulus of silicon nitride is about 60 Gpa to 100 Gpa
  • the modulus of silicon oxynitride is about 30 Gpa to 70 Gpa
  • the first sub-transition layer 81 The modulus of -1 is smaller than the modulus of the second sub-transition layer 81-2.
  • the hardness of silicon carbonitride is about 1 Gpa to 4 Gpa
  • the hardness of silicon nitride is about 6 Gpa to 11 Gpa
  • the hardness of silicon oxynitride is about 4 Gpa to 7 Gpa
  • the hardness of the first sub-transition layer 81-1 The hardness is smaller than that of the second sub-transition layer 81-2.
  • the materials and structures of the second composite encapsulation layer 60 and the third composite encapsulation layer 70 may be similar to those of the foregoing embodiments.
  • the preparation process of the display substrate in this embodiment is similar to the preparation process of the previous embodiment, the difference is that in the process of forming the first composite encapsulation layer, the first sub-transition film and the second sub-transition film are sequentially deposited Films and water-blocking films.
  • the first encapsulation layer using silicon oxynitride is directly formed on the cathode of the light-emitting device, and the adhesion difference between the first encapsulation layer and the cathode is about 2.5N or more, which is easy to cause the first encapsulation layer and the cathode. Debonding occurs at the interface between the cathodes.
  • a first encapsulation layer including a first sub-transition layer, a second sub-transition layer and a first water blocking layer
  • the first sub-transition layer is disposed between the cathode and the second sub-transition layer
  • the second sub-transition layer The layer is arranged between the first sub-transition layer and the first water blocking layer.
  • the first sub-transition layer adopts silicon carbonitride with an adhesion of about 0.6N to 0.7N
  • the second sub-transition layer adopts an adhesion of about 1.3N.
  • the first water blocking layer adopts silicon oxynitride with an adhesion of about 2.5N to 2.8N, so that the adhesion difference between the cathode and the first sub-transition layer is about 0.6N.
  • the adhesion difference between the first sub-transition layer and the second sub-transition layer is about 0.7N to 1.2N, and the adhesion difference between the second sub-transition layer and the first water blocking layer is about 0.9N to 1.2 About N, the adhesion difference between the film layers is reduced, the stress mismatch between the film layers is reduced, the peeling of the interface between the film layers is effectively avoided, and the reliability of the film packaging is ensured.
  • the first sub-transition layer when the silicon carbonitride material is used as the first sub-transition layer, when the first sub-transition layer is formed on the cathode, the first sub-transition layer exerts less film stress on the cathode, or does not apply any film stress to the cathode, or even applies the film stress to the cathode.
  • the cathode exerts tensile stress that can offset the lamination stress of other films, thus not only effectively reducing the film stress mismatch between the cathode and the encapsulation layer, effectively avoiding the peeling of the interface between the film layers, but also improving the bending resistance of the display substrate.
  • the performance and curling ability improve the working reliability and service life of the display substrate.
  • the material of the first sub-transition layer may include silicon oxide
  • the material of the second sub-transition layer may include silicon carbonitride
  • the material of the first water blocking layer may include silicon nitride
  • the material of the first sub-transition layer may include silicon oxide
  • the material of the second sub-transition layer may include silicon nitride
  • the material of the first water blocking layer may include silicon oxynitride.
  • FIG. 11 is a schematic structural diagram of still another display substrate according to an exemplary embodiment of the present disclosure.
  • the display substrate may include a substrate 10 , a driving circuit layer 20 disposed on the substrate 10 , a light emitting device 30 disposed on a side of the driving circuit layer 20 away from the substrate 10 , and a The encapsulation structure layer on the side of the light emitting device 30 away from the substrate 10 .
  • the encapsulation structure layer may include a first composite encapsulation layer 50 disposed on a side of the light emitting device 30 away from the substrate 10 , and a second composite encapsulation layer 60 disposed on a side of the first composite encapsulation layer 50 away from the substrate 10 . , and a third compound encapsulation layer 70 disposed on the side of the second compound encapsulation layer 60 away from the substrate 10 .
  • the first composite encapsulation layer 50 may include a first transition layer and a first encapsulation layer, the first transition layer may include a first sub-transition layer and a second sub-transition layer, and the first encapsulation layer may include a first transition layer and a second sub-transition layer.
  • the first composite encapsulation layer 50 may include a first sub-transition layer 81-1 disposed on a side of the light emitting device 30 away from the substrate 10, and a first sub-transition layer 81-1 disposed on a side of the first sub-transition layer 81-1 away from the substrate
  • the second sub-water-blocking layer 51-2 on the side of the second sub-water-blocking layer 51-2, and the second composite encapsulation layer 60 is disposed on the surface of the second sub-water-blocking layer 51-2 on the side away from the substrate 10.
  • the adhesion of the first sub-transition layer 81-1 is greater than that of the cathode in the light emitting device 30, but smaller than that of the first sub-water blocking layer 51-1.
  • the adhesion of the first sub-water blocking layer 51-1 is greater than that of the first sub-transition layer 81-1, but smaller than that of the second sub-transition layer 81-2.
  • the adhesion of the second sub-transition layer 81-2 is greater than that of the first sub-water blocking layer 51-1, but smaller than the adhesion of the second sub-water blocking layer 51-2.
  • the material of the first sub-transition layer 81-1 may include silicon oxide, the adhesion of the silicon oxide is about 0.2N to 0.4N, and the material of the first sub-water blocking layer 51-1 may include carbon nitride Silicon carbide, the adhesion of silicon carbonitride is about 0.6N to 0.7N, the material of the second sub-transition layer 81-2 may include silicon nitride, the adhesion of silicon nitride is about 1.3N to 1.9N, and the second sub-transition layer 81-2 may include silicon nitride.
  • the material of the sub-water blocking layer 51-2 may include silicon oxynitride, and the adhesion force of the silicon oxynitride is about 2.5N to 2.8N.
  • the adhesion of the first sub-transition layer 81-1 is greater than the adhesion of the cathode in the light-emitting device 30, but smaller than the adhesion of the first sub-water blocking layer 51-1, and the adhesion of the first sub-water blocking layer 51-1 is smaller than that of the first sub-water blocking layer 51-1.
  • the adhesion of the two sub-transition layers 81-2, the adhesion of the second sub-transition layer 81-2 is smaller than the adhesion of the second sub-water blocking layer 51-2.
  • the thickness of the first sub-transition layer 81-1 may be approximately to The thickness of the second sub-transition layer 81-2 may be about to The thickness of the first sub-water blocking layer 51-1 may be about to The thickness of the second sub water blocking layer 51-2 may be about to The first sub-transition layer 81-1 and the second sub-transition layer 81-2 are configured to reduce the adhesion difference between the film layers, reduce the stress mismatch between the film layers, and avoid interfacial peeling between the film layers .
  • the first sub-water-blocking layer 51-1 and the second sub-water-blocking layer 51-2 are configured to block water and oxygen, so as to improve the water and oxygen blocking function, and ensure that external water vapor cannot enter the light-emitting device.
  • the thickness of the first sub-transition layer 81-1 may be about to The thickness of the second sub-transition layer 81-2 may be about to The thickness of the first sub-water blocking layer 51-1 may be about to The thickness of the second sub water blocking layer 51-2 may be about to
  • the thickness of silicon oxide can be about The thickness of the silicon nitride can be approximately The thickness of the silicon carbonitride can be approximately The thickness of the silicon oxynitride can be approximately
  • the thickness of the silicon oxide may be approximately The thickness of the silicon nitride can be approximately The thickness of the silicon carbonitride can be approximately The thickness of the silicon oxynitride can be approximately
  • the materials and structures of the second composite encapsulation layer 60 and the third composite encapsulation layer 70 may be similar to those of the foregoing embodiments.
  • the preparation process of the display substrate of this embodiment is similar to the preparation process of the previous embodiment, the difference is that in the process of forming the first composite encapsulation layer, the first sub-transition film and the first sub-resistance film are sequentially deposited.
  • a water film, a second sub-transition film, and a second sub-water blocking film are sequentially deposited.
  • the present disclosure provides a first encapsulation layer including a first sub-transition layer, a first sub-transition layer, a second sub-transition layer, and a second sub-water-blocking layer, and the first sub-transition layer is disposed between the cathode and the second sub-transition Between layers, the second sub-transition layer is arranged between the first sub-water blocking layer and the second sub-water blocking layer, the first sub-transition layer adopts silicon oxide with an adhesion of about 0.2N to 0.4N, and the first sub-transition layer is The water layer adopts silicon carbonitride with an adhesion of about 0.6N to 0.7N, the second sub-transition layer adopts silicon nitride with an adhesion of about 1.3N to 1.9N, and the second sub-water blocking layer adopts an adhesion of about 2.5 N to 2.8N silicon oxynitride, so that the difference in adhesion between the cathode and the first sub-transition layer is about 0.2N,
  • the adhesion difference between the film layers is about 0.9N to 1.2N, which reduces the adhesion difference between the film layers, reduces the stress mismatch between the film layers, effectively avoids the peeling of the interface between the film layers, and ensures
  • the reliability of the thin film package is improved, the bending resistance and curling ability of the display substrate can be improved, and the working reliability and service life of the display substrate can be improved.
  • the materials of the first sub-transition layer 81-1 and the second sub-transition layer 81-2 may both include silicon nitride
  • the first sub-water blocking layer 51-1 and Materials of the second sub-water blocking layer 51-2 may each include silicon oxynitride.
  • the thicknesses of the first sub-transition layer 81-1 and the second sub-transition layer 81-2 may be about to The thickness of the first sub water blocking layer 51-1 and the second sub water blocking layer 51-2 may be about to The first sub-transition layer 81-1 and the second sub-transition layer 81-2 are configured to not only reduce the adhesion difference between the film layers, reduce the stress mismatch between the film layers, but also to isolate water and oxygen, To improve the water and oxygen barrier function.
  • the first sub-water-blocking layer 51-1 and the second sub-water-blocking layer 51-2 are configured to block water and oxygen, so as to improve the water and oxygen blocking function, and ensure that external water vapor cannot enter the light-emitting device.
  • the thickness of the first sub-transition layer 81-1 may be about to The thickness of the second sub-transition layer 81-2 may be about to The thickness of the first sub-water blocking layer 51-1 may be about to The thickness of the second sub water blocking layer 51-2 may be about to
  • the thickness of the silicon nitride can be about The thickness of the silicon oxynitride can be approximately
  • the thickness of the silicon nitride may be approximately The thickness of the silicon oxynitride can be approximately
  • the present disclosure provides a first encapsulation layer including a first sub-transition layer, a first sub-transition layer, a second sub-transition layer, and a second sub-water-blocking layer, and the first sub-transition layer and the second sub-transition layer adopt the attached Focus on silicon nitride with a force of about 1.3N to 1.9N, and use silicon oxynitride with an adhesion of about 2.5N to 2.8N for the first sub-water blocking layer and the second sub-water blocking layer, so that the adhesion between the film layers is poor.
  • the value is less than 2N, which reduces the adhesion difference between the film layers, reduces the stress mismatch between the film layers, effectively avoids the peeling of the interface between the film layers, ensures the reliability of the film packaging, and can improve the The bending resistance and curling ability of the display substrate improve the working reliability and service life of the display substrate.
  • the life comparison test shows that silicon oxynitride SiON is used in the first composite encapsulation layer with a thickness of The failure time is 4 hours for the single-layer structure. Silicon nitride SiNx is used in the first composite encapsulation layer with a thickness of The failure time is 24 hours when the single-layer structure is used. Silicon nitride SiNx is used in the first composite encapsulation layer -Silicon oxynitride SiON The failure time is 40 hours when the double-layer composite film structure is used.
  • Silicon nitride SiNx is used in the first composite encapsulation layer -Silicon oxynitride SiON -Silicon nitride SiNx -Silicon oxynitride SiON When the four-layer composite film structure is used, the failure time is 48 hours. Silicon nitride SiNx is used in the first composite encapsulation layer -Silicon oxynitride SiON -Silicon nitride SiNx -Silicon oxynitride SiON When the four-layer composite film structure is used, the failure time is 48 hours.
  • XY or XYXY refers to the film layers stacked in sequence on the cathode along the direction away from the substrate.
  • the adhesion of silicon oxynitride SiON is 2.5N to 2.8N
  • the difference in adhesion between the silicon oxynitride SiON and the cathode is about 2.5N.
  • the adhesion difference between them is large, so there is a serious stress mismatch between the two films, and the interface between the cathode and the silicon oxynitride SiON is prone to peel off, and the failure time is short.
  • the adhesion of silicon nitride SiN is 1.3N to 1.9N
  • the difference in adhesion between silicon nitride SiN and the cathode is about 1.3N, which is smaller than that of silicon oxynitride.
  • the difference in adhesion between SiON and the cathode, so the interface between the cathode and the silicon oxide SiON is not easy to peel off, and the failure time is longer.
  • the difference in adhesion between silicon nitride SiN and the cathode is about 1.3N.
  • the interface between the cathode and silicon nitride SiN is not easy to peel off, the difference in adhesion between silicon oxynitride SiON and silicon nitride SiN is about 1.1N, and the interface between silicon nitride SiN and silicon oxynitride SiON is not easy to peel off , and the number of interfaces is increased, and the overall adhesion of the first composite encapsulation layer is improved, thereby greatly increasing the failure time.
  • the adhesion measurement shows that when a single film of silicon oxynitride SiON is directly formed on the cathode, the overall adhesion of the silicon oxynitride SiON film layer is about 2.69N.
  • silicon nitride SiNx is formed on the cathode -Silicon oxynitride SiON -Silicon nitride SiNx -Silicon oxynitride SiON
  • the overall adhesion of the four-layer composite film is about 4.215. Therefore, the composite film layer formed by using silicon nitride SiNx as the adhesion transition layer can improve the overall adhesion of the first composite encapsulation layer, and can effectively avoid the peeling of the interface between the film layers.
  • the first sub-transition layer, the first sub-transition layer, the second sub-transition layer, and the second sub-water-blocking layer can also use other inorganic materials, as long as the adhesion of the first sub-transition layer is moderate Between the cathode and the first sub-water blocking layer, the effect of avoiding the interface peeling between the film layers can also be achieved.
  • FIG. 12 is a schematic structural diagram of still another display substrate according to an exemplary embodiment of the present disclosure.
  • the display substrate may include a substrate 10, a driving circuit layer 20 disposed on the substrate 10, a light emitting device 30 disposed on a side of the driving circuit layer 20 away from the substrate 10, and a The encapsulation structure layer on the side of the light emitting device 30 away from the substrate 10 .
  • the encapsulation structure layer may include a first composite encapsulation layer 50 disposed on a side of the light emitting device 30 away from the substrate 10 , and a second composite encapsulation layer 60 disposed on a side of the first composite encapsulation layer 50 away from the substrate 10 . , and a third compound encapsulation layer 70 disposed on the side of the second compound encapsulation layer 60 away from the substrate 10 .
  • the second composite encapsulation layer 60 may include a second transition layer and a first organic layer.
  • the second composite encapsulation layer 60 may include a second transition layer 61 disposed on a side of the first composite encapsulation layer 50 away from the substrate 10 and a first transition layer 61 disposed on a side of the second transition layer 61 away from the substrate
  • the organic layer 62 and the third composite encapsulation layer 70 are disposed on the surface of the first organic layer 62 on the side away from the substrate 10 .
  • the adhesion of the second transition layer 61 is greater than the adhesion of the first composite encapsulation layer 50 , but less than the adhesion of the first organic layer 62 .
  • the thickness of the second transition layer 61 may be approximately to The second transition layer 61 is configured to reduce the difference in adhesion between the film layers, reduce the stress mismatch between the film layers, and avoid interfacial peeling between the film layers.
  • the material of the first organic layer 62 having the stress buffering function may include any one or more of the following: acrylate and epoxy, and the thickness may be about 1.0 ⁇ m to 3.0 ⁇ m.
  • the adhesion of acrylates and epoxy is about 10N or more, while the adhesion of the first composite encapsulation layer 50 using the composite film layer structure is about 4N to 5N, so the second transition layer 61
  • the material can use a material with an adhesion of about 6N to 9N.
  • a material with an adhesion force of about 6N to 9N can be achieved by adding adhesion additives to silicon nitride or silicon oxynitride, or changing deposition process parameters, etc., in a manner well known in the art.
  • the peeling phenomenon of the interface between the first encapsulation layer and the second encapsulation layer also occurs during use, resulting in encapsulation. invalid.
  • the present disclosure provides a second composite encapsulation layer including a second transition layer and a first organic layer, and the second transition layer is disposed between the first composite encapsulation layer and the first organic layer, and the adhesion of the second transition layer is greater than that of the second transition layer.
  • the adhesion of a composite encapsulation layer is smaller than that of the first organic layer, which reduces the adhesion difference between the film layers, reduces the stress mismatch between the film layers, and effectively avoids the interface between the film layers.
  • the peeling of the film ensures the reliability of the film packaging.
  • the second composite encapsulation layer may include a plurality of sub-transition layers and a plurality of sub-organic layers, so as to minimize the difference in adhesion between the film layers and minimize the peeling of the interface between the film layers .
  • FIG. 13 is a schematic structural diagram of still another display substrate according to an exemplary embodiment of the present disclosure.
  • the display substrate may include a substrate 10 , a driving circuit layer 20 disposed on the substrate 10 , a light emitting device 30 disposed on a side of the driving circuit layer 20 away from the substrate 10 , and a The encapsulation structure layer on the side of the light emitting device 30 away from the substrate 10 .
  • the encapsulation structure layer may include a first composite encapsulation layer 50 disposed on a side of the light emitting device 30 away from the substrate 10 , and a second composite encapsulation layer 60 disposed on a side of the first composite encapsulation layer 50 away from the substrate 10 . , and a third compound encapsulation layer 70 disposed on the side of the second compound encapsulation layer 60 away from the substrate 10 .
  • the third composite encapsulation layer 70 may include a third transition layer and a third water blocking layer.
  • the third composite encapsulation layer 70 may include a third transition layer 71 disposed on a side of the second composite encapsulation layer 60 away from the substrate 10 and a third transition layer 71 disposed on a side of the third transition layer 71 away from the substrate The third water blocking layer 72 of the three encapsulation layers.
  • the adhesion of the third transition layer 71 is smaller than the adhesion of the second composite encapsulation layer 60 , but greater than the adhesion of the third water blocking layer 72 .
  • the thickness of the third transition layer 71 may be approximately to The thickness of the third water blocking layer 72 may be about to The third transition layer 71 is configured to reduce the adhesion difference between the film layers, reduce the stress mismatch between the film layers, and avoid interface peeling between the film layers.
  • the third water blocking layer 72 is configured to isolate water and oxygen, so as to improve the water and oxygen blocking function, and ensure that external water vapor cannot enter the light-emitting device.
  • the third water blocking layer 72 may be a single-layer film structure using silicon nitride, silicon oxynitride or silicon carbonitride, or may be a composite film layer structure using the above-mentioned materials.
  • the adhesion of the layer structure is about 2N to 3N, and the adhesion of the composite film layer structure is about 4N to 5N. Since the adhesion of the second composite encapsulation layer 60 is about 10N or more, the material of the third transition layer 71 can be a material with an adhesion of about 6N to 9N.
  • a material with an adhesion force of about 6N to 9N can be achieved by adding adhesion additives to silicon nitride or silicon oxynitride, or changing deposition process parameters, etc., in a manner well known in the art.
  • the peeling phenomenon of the interface between the second encapsulation layer and the third encapsulation layer also occurs during use, resulting in encapsulation. invalid.
  • the adhesion of the third transition layer It is smaller than the adhesion of the second encapsulation layer, but greater than the adhesion of the third water blocking layer, which reduces the adhesion difference between the film layers, reduces the stress mismatch between the film layers, and effectively avoids the difference between the film layers.
  • the peeling of the interface ensures the reliability of the thin film package.
  • the third composite encapsulation layer may include a plurality of sub-transition layers and a plurality of sub-water blocking layers, so as to minimize the difference in adhesion between the film layers and avoid the interface between the film layers to the greatest extent. stripped.
  • the encapsulation structure layer may include: a stacked first transition layer, a first encapsulation layer, a second transition layer, a second encapsulation layer and a third encapsulation layer, or a stacked first transition layer, a first encapsulation layer, a second transition layer, a second encapsulation layer and a third encapsulation layer.
  • a transition layer a first encapsulation layer, a second encapsulation layer, a third transition layer and a third encapsulation layer, or a first encapsulation layer, a second transition layer, a second encapsulation layer, a third transition layer and a Three encapsulation layers, including a stacked first transition layer, a first encapsulation layer, a second transition layer, a second encapsulation layer, a third transition layer and a third encapsulation layer.
  • At least one transition layer may include a plurality of sub-transition layers
  • at least one encapsulation layer may include a plurality of sub-encapsulation layers, a plurality of sub-transition layers and a plurality of sub-encapsulation layers.
  • the present disclosure also provides a preparation method of a display substrate.
  • the preparation method includes:
  • An encapsulation structure layer is formed on the light emitting structure layer, the encapsulation structure layer includes an encapsulation layer and at least one transition layer, and a side of the transition layer adjacent to the substrate is in contact with the first side film layer, and the transition layer is in contact with the first side film layer.
  • the side of the layer away from the substrate is in contact with the second side film layer, and the adhesion force of the at least one transition layer is greater than the adhesion force of one of the first side film layer and the second side film layer, and is less than Adhesion of the other of the first side film layer and the second side film layer.
  • the light emitting structure layer may include a driving circuit layer disposed on the substrate and a light emitting device disposed on a side of the driving circuit layer away from the substrate.
  • step S2 may include:
  • a first transition layer is formed on the cathode of the light-emitting structure layer, and the adhesion of the first transition layer is greater than the adhesion of the cathode of the light-emitting structure layer; a first encapsulation layer is formed on the first transition layer, The adhesion of the first encapsulation layer is greater than the adhesion of the first transition layer; a second encapsulation layer and a third encapsulation layer are sequentially formed on the first encapsulation layer.
  • step S2 may include:
  • a first encapsulation layer is formed on the cathode of the light emitting structure layer; a second transition layer is formed on the first encapsulation layer, and the adhesion of the second transition layer is greater than the adhesion of the first encapsulation layer; A second encapsulation layer and a third encapsulation layer are sequentially formed on the second transition layer, and the adhesion of the second encapsulation layer is greater than the adhesion of the second transition layer.
  • step S2 may include:
  • a first encapsulation layer and a second encapsulation layer are sequentially formed on the cathode of the light-emitting structure layer; a third transition layer is formed on the second encapsulation layer, and the adhesion of the third transition layer is smaller than that of the second encapsulation layer adhesion; a third encapsulation layer is formed on the third transition layer, and the adhesion of the third encapsulation layer is smaller than the adhesion of the third transition layer.
  • step S2 may include:
  • a first transition layer is formed on the cathode of the light-emitting structure layer, and the adhesion of the first transition layer is greater than the adhesion of the cathode of the light-emitting structure layer; a first encapsulation layer is formed on the first transition layer, The adhesion of the first encapsulation layer is greater than the adhesion of the first transition layer; a second transition layer is formed on the first encapsulation layer, and the adhesion of the second transition layer is greater than that of the first encapsulation layer A second encapsulation layer and a third encapsulation layer are sequentially formed on the second transition layer, and the adhesion of the second encapsulation layer is greater than the adhesion of the second transition layer.
  • step S2 may include:
  • a first transition layer is formed on the cathode of the light-emitting structure layer, and the adhesion of the first transition layer is greater than the adhesion of the cathode of the light-emitting structure layer; a first encapsulation layer is sequentially formed on the first transition layer and a second encapsulation layer, the adhesion of the first encapsulation layer is greater than that of the first transition layer; a third transition layer is formed on the second encapsulation layer, and the adhesion of the third transition layer is less than The adhesion of the second encapsulation layer; a third encapsulation layer is formed on the third transition layer, and the adhesion of the third encapsulation layer is smaller than the adhesion of the third transition layer.
  • step S2 may include:
  • a first encapsulation layer is formed on the cathode of the light emitting structure layer; a second transition layer is formed on the first encapsulation layer, and the adhesion of the second transition layer is greater than the adhesion of the first encapsulation layer; A second encapsulation layer is formed on the second transition layer, and the adhesion of the second encapsulation layer is greater than that of the second transition layer; a third transition layer is formed on the second encapsulation layer, and the first transition layer is formed on the second transition layer.
  • the adhesion of the three transition layers is smaller than the adhesion of the second encapsulation layer; a third encapsulation layer is formed on the third transition layer, and the adhesion of the third encapsulation layer is smaller than the adhesion of the third transition layer .
  • step S2 may include:
  • a first transition layer is formed on the cathode of the light-emitting structure layer, and the adhesion of the first transition layer is greater than the adhesion of the cathode of the light-emitting structure layer; a first encapsulation layer is formed on the first transition layer, The adhesion of the first encapsulation layer is greater than the adhesion of the first transition layer; a second transition layer is formed on the first encapsulation layer, and the adhesion of the second transition layer is greater than that of the first encapsulation layer forming a second encapsulation layer on the second transition layer, and the adhesion of the second encapsulation layer is greater than that of the second transition layer; forming a third transition layer on the second encapsulation layer layer, the adhesion of the third transition layer is smaller than that of the second encapsulation layer; a third encapsulation layer is formed on the third transition layer, and the adhesion of the third encapsulation layer is smaller than that of the third encapsulation layer Ad
  • the first transition layer includes a first sub-transition layer and a second sub-transition layer
  • the first encapsulation layer includes a first water blocking layer
  • a first water blocking layer is formed on the cathode of the light emitting structure layer.
  • the adhesion of the first sub-transition layer is greater than the adhesion of the cathode of the light-emitting structure layer
  • the adhesion of the second sub-transition layer is greater than the adhesion of the first sub-transition layer
  • a first water blocking layer is formed on the second sub-transition layer, and the adhesion of the first water-blocking layer is greater than the adhesion of the second sub-transition layer.
  • the first transition layer includes a first sub-transition layer and a second sub-transition layer
  • the first encapsulation layer includes a first water-blocking layer and a second sub-water-blocking layer
  • a first transition layer and a first encapsulation layer are formed on the cathode of the structural layer, including:
  • the adhesion of the first sub-transition layer is greater than the adhesion of the cathode of the light-emitting structure layer
  • first sub-water-blocking layer on the first sub-transition layer, and the adhesion of the first sub-water-blocking layer is greater than that of the first sub-transition layer;
  • a second sub-water-blocking layer is formed on the second sub-transition layer, and the adhesion of the second sub-water-blocking layer is greater than that of the second sub-transition layer.
  • the density of the first sub-transition layer is smaller than the density of the first sub-water blocking layer; or, the modulus of the first sub-transition layer is smaller than that of the first sub-water blocking layer modulus; or, the hardness of the first sub-transition layer is smaller than the hardness of the first sub-transition layer; the material of the first sub-transition layer includes silicon carbonitride.
  • the present disclosure provides a method for preparing a display substrate.
  • a transition layer in an encapsulation structure layer, at least one of the two film layers in contact with the transition layer has an adhesion force greater than that of the transition layer, and the adhesion force of the other film layer is greater than that of the transition layer.
  • the adhesion of the film layer is smaller than that of the transition layer, which reduces the adhesion difference between the film layers, reduces the stress mismatch between the film layers, effectively avoids the peeling of the interface between the film layers, and ensures that the film
  • the reliability of the package can not only greatly improve the reliability of the thin film package, but also greatly improve the bending resistance and curling ability of the display substrate, which provides a guarantee for the display device that requires a long life.
  • Exemplary embodiments of the present disclosure show that the preparation method of the substrate has good process compatibility, simple process realization, easy implementation, high production efficiency, and low production cost.
  • the present disclosure also provides a display device including the display substrate of the foregoing embodiments.
  • the display device can be any product or component with a display function, such as a mobile phone, a tablet computer, a TV, a monitor, a notebook computer, a digital photo frame, or a navigator.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)

Abstract

本公开提供了一种显示基板及其制备方法、显示装置。显示基板包括基底、设置在基底上的发光结构层以及设置在发光结构层上的封装结构层;封装结构层包括封装层和至少一个过渡层,过渡层邻近基底的一侧与第一侧膜层接触,过渡层远离基底的一侧与第二侧膜层接触,至少一个过渡层的附着力大于第一侧膜层和第二侧膜层中一个膜层的附着力,小于第一侧膜层和第二侧膜层中另一个膜层的附着力。

Description

显示基板及其制备方法、显示装置
本申请要求于2020年10月30日提交中国专利局、申请号为202011187132.1、发明名称为“显示基板及其制备方法、显示装置”的中国专利申请的优先权,其内容应理解为通过引用的方式并入本申请中。
技术领域
本公开涉及但不限于显示技术领域,尤指一种显示基板及其制备方法、显示装置。
背景技术
有机发光二极管(Organic Light Emitting Diode,简称OLED)为主动发光显示器件,具有自发光、广视角、高对比度、低耗电、极高反应速度、轻薄、可弯曲和成本低等优点。随着显示技术的不断发展,以OLED为发光器件、由薄膜晶体管(Thin Film Transistor,简称TFT)进行信号控制的柔性显示装置(Flexible Display)已成为目前显示领域的主流产品。
由于外界空气中的水氧入侵到发光器件会使有机发光材料受水氧侵蚀,发生氧化反应,致使像素收缩或不发光,器件性能劣化,影响显示装置的使用寿命,因此基于有机材料的OLED对封装有非常高的要求。目前,柔性OLED通常采用薄膜封装方式,虽然薄膜封装方式具有轻薄、易弯折等特点,但薄膜封装方式的封装膜层存在界面剥离等问题,降低了良品率和使用寿命。
发明内容
以下是对本文详细描述的主题的概述。本概述并非是为了限制权利要求的保护范围。
本公开提供了一种显示基板,包括基底、设置在所述基底上的发光结构层以及设置在所述发光结构层远离所述基底一侧的封装结构层;所述封装结 构层包括封装层和至少一个过渡层,所述过渡层邻近所述基底的一侧与第一侧膜层接触,所述过渡层远离所述基底的一侧与第二侧膜层接触,所述至少一个过渡层的附着力大于所述第一侧膜层和所述第二侧膜层中一个膜层的附着力,小于所述第一侧膜层和所述第二侧膜层中另一个膜层的附着力。
在示例性实施方式中,所述封装层包括沿着远离所述基底方向依次设置的第一封装层、第二封装层和第三封装层,所述过渡层包括如下任意一种或多种:第一过渡层、第二过渡层和第三过渡层,所述第一过渡层设置在所述发光结构层的阴极与所述第一封装层之间,所述第二过渡层设置在所述第一封装层与所述第二封装层之间,所述第三过渡层设置在所述第二封装层与所述第三封装层之间。
在示例性实施方式中,所述第一过渡层的附着力大于所述发光结构层的阴极的附着力,所述第一过渡层的附着力小于所述第一封装层的附着力。
在示例性实施方式中,所述第二过渡层的附着力大于所述第一封装层的附着力,所述第二过渡层的附着力小于所述第二封装层的附着力。
在示例性实施方式中,所述第三过渡层的附着力小于所述第二封装层的附着力,所述第三过渡层的附着力大于所述第三封装层的附着力。
在示例性实施方式中,所述第一过渡层包括第一子过渡层和第二子过渡层,所述第一封装层包括第一阻水层;
所述第一子过渡层设置在所述发光结构层的阴极远离所述基底的一侧,所述第一子过渡层的附着力大于所述发光结构层的阴极的附着力;所述第二子过渡层设置在所述第一子过渡层远离所述基底的一侧,所述第二子过渡层的附着力大于所述第一子过渡层的附着力;所述第一阻水层设置在所述第二子过渡层远离所述基底的一侧,所述第一阻水层的附着力大于所述第二子过渡层的附着力。
在示例性实施方式中,所述第一过渡层包括第一子过渡层和第二子过渡层,所述第一封装层包括第一子阻水层和第二子阻水层;
所述第一子过渡层设置在所述发光结构层的阴极远离所述基底的一侧,所述第一子过渡层的附着力大于所述发光结构层的阴极的附着力;所述第一 子阻水层设置在所述第一子过渡层远离所述基底的一侧,所述第一子阻水层的附着力大于所述第一子过渡层的附着力;所述第二子过渡层设置在所述第一子阻水层远离所述基底的一侧;所述第二子阻水层设置在所述第二子过渡层远离所述基底的一侧,所述第二子阻水层的附着力大于所述第二子过渡层的附着力。
在示例性实施方式中,所述第一子过渡层的密度小于所述第一子阻水层的密度;或者,所述第一子过渡层的模量小于所述第一子阻水层的模量;或者,所述第一子过渡层的硬度小于所述第一子阻水层的硬度。
本公开还提供了一种显示装置,包括前述的显示基板。
本公开还提供了一种显示基板的制备方法,包括:
在基底上形成发光结构层;
在所述发光结构层上形成封装结构层,所述封装结构层包括封装层和至少一个过渡层,所述过渡层邻近所述基底的一侧与第一侧膜层接触,所述过渡层远离所述基底的一侧与第二侧膜层接触,所述至少一个过渡层的附着力大于所述第一侧膜层和所述第二侧膜层中一个膜层的附着力,小于所述第一侧膜层和所述第二侧膜层中另一个膜层的附着力。
在示例性实施方式中,在所述发光结构层上形成封装结构层,包括:
在所述发光结构层的阴极上形成第一过渡层,所述第一过渡层的附着力大于所述发光结构层的阴极的附着力;在所述第一过渡层上形成第一封装层,所述第一封装层的附着力大于所述第一过渡层的附着力;在所述第一封装层依次形成第二封装层和第三封装层;或者,
在所述发光结构层的阴极上形成第一封装层;在所述第一封装层上形成第二过渡层,所述第二过渡层的附着力大于所述第一封装层的附着力;在所述第二过渡层上依次形成第二封装层和第三封装层,所述第二封装层的附着力大于所述第二过渡层的附着力;或者,
在所述发光结构层的阴极上依次形成第一封装层和第二封装层;在所述第二封装层上形成第三过渡层,所述第三过渡层的附着力小于所述第二封装 层的附着力;在所述第三过渡层上形成第三封装层,所述第三封装层的附着力小于所述第三过渡层的附着力;或者,
在所述发光结构层的阴极上形成第一过渡层,所述第一过渡层的附着力大于所述发光结构层的阴极的附着力;在所述第一过渡层上形成第一封装层,所述第一封装层的附着力大于所述第一过渡层的附着力;在所述第一封装层上形成第二过渡层,所述第二过渡层的附着力大于所述第一封装层的附着力;在所述第二过渡层上依次形成第二封装层和第三封装层,所述第二封装层的附着力大于所述第二过渡层的附着力;或者,
在所述发光结构层的阴极上形成第一过渡层,所述第一过渡层的附着力大于所述发光结构层的阴极的附着力;在所述第一过渡层上依次形成第一封装层和第二封装层,所述第一封装层的附着力大于所述第一过渡层的附着力;在所述第二封装层上形成第三过渡层,所述第三过渡层的附着力小于所述第二封装层的附着力;在所述第三过渡层上形成第三封装层,所述第三封装层的附着力小于所述第三过渡层的附着力;或者,
在所述发光结构层的阴极上形成第一封装层;在所述第一封装层上形成第二过渡层,所述第二过渡层的附着力大于所述第一封装层的附着力;在所述第二过渡层上形成第二封装层,所述第二封装层的附着力大于所述第二过渡层的附着力;在所述第二封装层上形成第三过渡层,所述第三过渡层的附着力小于所述第二封装层的附着力;在所述第三过渡层上形成第三封装层,所述第三封装层的附着力小于所述第三过渡层的附着力;或者,
在所述发光结构层的阴极上形成第一过渡层,所述第一过渡层的附着力大于所述发光结构层的阴极的附着力;在所述第一过渡层上形成第一封装层,所述第一封装层的附着力大于所述第一过渡层的附着力;在所述第一封装层上形成第二过渡层,所述第二过渡层的附着力大于所述第一封装层的附着力;在所述第二过渡层上形成第二封装层,所述第二封装层的附着力大于所述第二过渡层的附着力;在所述第二封装层上形成第三过渡层,所述第三过渡层的附着力小于所述第二封装层的附着力;在所述第三过渡层上形成第三封装层,所述第三封装层的附着力小于所述第三过渡层的附着力。
在示例性实施方式中,所述第一过渡层包括第一子过渡层和第二子过渡 层,所述第一封装层包括第一阻水层;在所述发光结构层的阴极上形成第一过渡层和第一封装层,包括:
在所述发光结构层的阴极上形成第一子过渡层,所述第一子过渡层的附着力大于所述发光结构层的阴极的附着力;
在所述第一子过渡层上形成第二子过渡层,所述第二子过渡层的附着力大于所述第一子过渡层的附着力;
在所述第二子过渡层上形成第一阻水层,所述第一阻水层的附着力大于所述第二子过渡层的附着力。
在示例性实施方式中,所述第一过渡层包括第一子过渡层和第二子过渡层,所述第一封装层包括第一阻水层和第二子阻水层;在所述发光结构层的阴极上形成第一过渡层和第一封装层,包括:
在所述发光结构层的阴极上形成第一子过渡层,所述第一子过渡层的附着力大于所述发光结构层的阴极的附着力;
在所述第一子过渡层上形成第一子阻水层,所述第一子阻水层的附着力大于所述第一子过渡层的附着力;
在所述第一子阻水层上形成第二子过渡层;
在所述第二子过渡层上形成第二子阻水层,所述第二子阻水层的附着力大于所述第二子过渡层的附着力。
在示例性实施方式中,所述第一子过渡层的密度小于所述第一子阻水层的密度;或者,所述第一子过渡层的模量小于所述第一子阻水层的模量;或者,所述第一子过渡层的硬度小于所述第一子阻水层的硬度。
在阅读并理解了附图和详细描述后,可以明白其他方面。
附图说明
附图用来提供对本公开技术方案的进一步理解,并且构成说明书的一部分,与本公开的实施例一起用于解释本公开的技术方案,并不构成对本公开的技术方案的限制。附图中各部件的形状和大小不反映真实比例,目的只是 示意说明本公开内容。
图1为一种OLED显示装置的结构示意图;
图2为一种显示基板的平面结构示意图;
图3为一种像素驱动电路的等效电路图;
图4为一种显示基板的剖面结构示意图;
图5为本公开示例性实施例一种显示基板的结构示意图;
图6为本公开形成驱动电路层图案后的示意图;
图7为本公开形成发光器件后的示意图;
图8为本公开形成第一复合封装层图案后的示意图;
图9为本公开形成第二、第三复合封装层图案后的示意图;
图10为本公开示例性实施例另一种显示基板的结构示意图;
图11为本公开示例性实施例又一种显示基板的结构示意图;
图12为本公开示例性实施例又一种显示基板的结构示意图;
图13为本公开示例性实施例又一种显示基板的结构示意图。
附图标记说明:
1—玻璃载板;          10—基底;             20—驱动电路层;
30—发光器件;         40—封装结构层;       50—第一复合封装层;
51—第一阻水层;       51-1—第一子阻水层;   51-2—第二子阻水层;
60—第二复合封装层;   61—第二过渡层;       62—第一有机层;
70—第三复合封装层;   71—第三过渡层;       72—第三阻水层;
81—第一过渡层;       81-1—第一子过渡层;   81-2—第二子过渡层;
100—OLED显示基板;    101—第一晶体管;      102—存储电容。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚明白,下文中将结合附图 对本公开的实施例进行详细说明。注意,实施方式可以以多个不同形式来实施。所属技术领域的普通技术人员可以很容易地理解一个事实,就是方式和内容可以在不脱离本公开的宗旨及其范围的条件下被变换为各种各样的形式。因此,本公开不应该被解释为仅限定在下面的实施方式所记载的内容中。在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互任意组合。
在附图中,有时为了明确起见,夸大表示了各构成要素的大小、层的厚度或区域。因此,本公开的一个方式并不一定限定于该尺寸,附图中各部件的形状和大小不反映真实比例。此外,附图示意性地示出了理想的例子,本公开的一个方式不局限于附图所示的形状或数值等。
本说明书中的“第一”、“第二”、“第三”等序数词是为了避免构成要素的混同而设置,而不是为了在数量方面上进行限定的。
在本说明书中,为了方便起见,使用“中部”、“上”、“下”、“前”、“后”、“竖直”、“水平”、“顶”、“底”、“内”、“外”等指示方位或位置关系的词句以参照附图说明构成要素的位置关系,仅是为了便于描述本说明书和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本公开的限制。构成要素的位置关系根据描述各构成要素的方向适当地改变。因此,不局限于在说明书中说明的词句,根据情况可以适当地更换。
在本说明书中,除非另有明确的规定和限定,术语“安装”、“相连”、“连接”应做广义理解。例如,可以是固定连接,或可拆卸连接,或一体地连接;可以是机械连接,或电连接;可以是直接相连,或通过中间件间接相连,或两个元件内部的连通。对于本领域的普通技术人员而言,可以具体情况理解上述术语在本公开中的具体含义。
在本说明书中,晶体管是指至少包括栅电极、漏电极以及源电极这三个端子的元件。晶体管在漏电极(漏电极端子、漏区域或漏电极)与源电极(源电极端子、源区域或源电极)之间具有沟道区域,并且电流能够流过漏电极、沟道区域以及源电极。注意,在本说明书中,沟道区域是指电流主要流过的区域。
在本说明书中,第一极可以为漏电极、第二极可以为源电极,或者第一极可以为源电极、第二极可以为漏电极。在使用极性相反的晶体管的情况或电路工作中的电流方向变化的情况等下,“源电极”及“漏电极”的功能有时互相调换。因此,在本说明书中,“源电极”和“漏电极”可以互相调换。
在本说明书中,“电连接”包括构成要素通过具有某种电作用的元件连接在一起的情况。“具有某种电作用的元件”只要可以进行连接的构成要素间的电信号的授受,就对其没有特别的限制。“具有某种电作用的元件”的例子不仅包括电极和布线,而且还包括晶体管等开关元件、电阻器、电感器、电容器、其它具有各种功能的元件等。
在本说明书中,“平行”是指两条直线形成的角度为-10°以上且10°以下的状态,因此,也包括该角度为-5°以上且5°以下的状态。另外,“垂直”是指两条直线形成的角度为80°以上且100°以下的状态,因此,也包括85°以上且95°以下的角度的状态。
在本说明书中,“膜”和“层”可以相互调换。例如,有时可以将“导电层”换成为“导电膜”。与此同样,有时可以将“绝缘膜”换成为“绝缘层”。
本公开中的“约”,是指不严格限定界限,允许工艺和测量误差范围内的数值。
图1为一种OLED显示装置的结构示意图。如图1所示,OLED显示装置可以包括扫描信号驱动器、数据信号驱动器、发光信号驱动器、OLED显示基板100、第一电源单元、第二电源单元和初始电源单元。在示例性实施方式中,OLED显示基板至少包括多个扫描信号线(S1到SN)、多个数据信号线(D1到DM)和多个发光信号线(EM1到EMN),扫描信号驱动器被配置为依次向多个扫描信号线(S1到SN)提供扫描信号,数据信号驱动器被配置为向多个数据信号线(D1到DM)提供数据信号,发光信号驱动器被配置为依次向多个发光信号线(EM1到EMN)提供发光控制信号。在示例性实施方式中,多个扫描信号线和多个发光信号线沿着水平方向延伸,多个数据信号线沿着竖直方向延伸。所述显示装置包括多个子像素,至少一个子像素包括像素驱动电路和发光器件,像素驱动电路分别与扫描信号线、数据信号线和发光信号线连接,像素驱动电路可以包括多个晶体管和存储电容, 像素驱动电路被配置为在扫描信号线和发光信号线的控制下,接收数据信号线传输的数据电压,向所述发光器件输出相应的电流,发光器件被配置为响应所在子像素的像素驱动电路输出的电流发出相应亮度的光。第一电源单元、第二电源单元和初始电源单元分别被配置为通过第一电源线、第二电源线和初始信号线向像素驱动电路提供第一电源电压、第二电源电压和初始电源电压。
图2为一种显示基板的平面结构示意图。如图2所示,显示基板可以包括以矩阵方式排布的多个像素单元P,多个像素单元P的至少一个中包括出射第一颜色光线的第一子像素P1、出射第二颜色光线的第二子像素P2和出射第三颜色光线的第三子像素P3。在示例性实施方式中,像素单元P中可以包括红色(R)子像素、绿色(G)子像素和蓝色(B)子像素,或者可以包括红色子像素、绿色子像素、蓝色子像素和白色(W)子像素,本公开在此不做限定。在示例性实施方式中,像素单元中子像素的形状可以是矩形状、菱形、五边形或六边形。像素单元包括三个子像素时,三个子像素可以采用水平并列、竖直并列或品字方式排列,像素单元包括四个子像素时,四个子像素可以采用水平并列、竖直并列或正方形(Square)方式排列,本公开在此不做限定。
在示例性实施方式中,像素驱动电路可以是3T1C、4T1C、5T1C、5T2C、6T1C或7T1C结构。图3为一种像素驱动电路的等效电路图。如图3所示,像素驱动电路可以包括7个开关晶体管(第一晶体管T1到第七晶体管T7)、1个存储电容C和8个信号线(数据信号线DATA、第一扫描信号线S1、第二扫描信号线S2、第一初始信号线INIT1、第二初始信号线INIT2、第一电源线VSS、第二电源线VDD和发光信号线EM)。其中,第一初始信号线INIT1、第二初始信号线INIT2可以为同一条信号线。
在示例性实施方式中,第一晶体管T1的控制极与第二扫描信号线S2连接,第一晶体管T1的第一极与第一初始信号线INIT1连接,第一晶体管的第二极与第二节点N2连接。第二晶体管T2的控制极与第一扫描信号线S1连接,第二晶体管T2的第一极与第二节点N2连接,第二晶体管T2的第二极与第三节点N3连接。第三晶体管T3的控制极与第二节点N2连接,第三 晶体管T3的第一极与第一节点N1连接,第三晶体管T3的第二极与第三节点N3连接。第四晶体管T4的控制极与第一扫描信号线S1连接,第四晶体管T4的第一极与数据信号线DATA连接,第四晶体管T4的第二极与第一节点N1连接。第五晶体管T5的控制极与发光信号线EM连接,第五晶体管T5的第一极与第二电源线VDD连接,第五晶体管T5的第二极与第一节点N1连接。第六晶体管T6的控制极与发光信号线EM连接,第六晶体管T6的第一极与第三节点N3连接,第六晶体管T6的第二极与发光器件的第一极连接。第七晶体管T7的控制极与第一扫描信号线S1连接,第七晶体管T7的第一极与第二初始信号线INIT2连接,第七晶体管T7的第二极与发光器件的第一极连接。存储电容C的第一端与第二电源线VDD连接,存储电容C的第二端与第二节点N2连接。
在示例性实施方式中,第一晶体管T1到第七晶体管T7可以是P型晶体管,或者可以是N型晶体管。像素驱动电路中采用相同类型的晶体管可以简化工艺流程,减少显示面板的工艺难度,提高产品的良率。在一些可能的实现方式中,第一晶体管T1到第七晶体管T7可以包括P型晶体管和N型晶体管。
在示例性实施方式中,发光器件的第二极与第一电源线VSS连接,第一电源线VSS的信号为低电平信号,第二电源线VDD的信号为持续提供高电平信号。第一扫描信号线S1为本显示行像素驱动电路中的扫描信号线,第二扫描信号线S2为上一显示行像素驱动电路中的扫描信号线,即对于第n显示行,第一扫描信号线S1为S(n),第二扫描信号线S2为S(n-1),本显示行的第二扫描信号线S2与上一显示行像素驱动电路中的第一扫描信号线S1为同一信号线,可以减少显示面板的信号线,实现显示面板的窄边框。
图4为一种显示基板的剖面结构示意图。如图4所示,在垂直于显示基板的平面上,显示基板可以包括设置在基底10上的驱动电路层20、设置在驱动电路层20上的发光器件30以及设置在发光器件30上的封装结构层40。在一些可能的实现方式中,显示基板可以包括其它膜层,如隔垫柱等,本公开在此不做限定。
一种显示基板中,封装结构层包括叠设的第一封装层、第二封装层和第三封装层,第一封装层和第三封装层采用无机材料,第二封装层采用有机材料,第二封装层设置在第一封装层和第三封装层之间。研究发现,该种叠层封装结构中,由于无机材料的第一封装层邻近基底的一侧的表面与金属材料的阴极搭接,而无机材料膜层与金属材料膜层之间的附着力相差较大,因而使用中易出现第一封装层与阴极之间界面剥离现象,降低了薄膜封装的可靠性。此外,由于无机材料膜层与有机材料膜层之间的附着力也有一定差距,因而使用中也会出现第一封装层与第二封装层之间界面、第二封装层与第三封装层之间界面的剥离现象,导致封装失效。
本公开提供了一种显示基板。在示例性实施方式中,显示基板可以包括基底、设置在所述基底上的发光结构层以及设置在所述发光结构层远离所述基底一侧的封装结构层;所述封装结构层可以包括封装层和至少一个过渡层,所述过渡层邻近所述基底的一侧与第一侧膜层接触,所述过渡层远离所述基底的一侧与第二侧膜层接触,所述至少一个过渡层的附着力大于所述第一侧膜层和所述第二侧膜层中一个膜层的附着力,小于所述第一侧膜层和所述第二侧膜层中另一个膜层的附着力。
在示例性实施方式中,所述封装层可以包括沿着远离所述基底方向依次设置的第一封装层、第二封装层和第三封装层,所述过渡层可以包括如下任意一种或多种:第一过渡层、第二过渡层和第三过渡层,所述第一过渡层设置在所述发光结构层的阴极与所述第一封装层之间,所述第二过渡层设置在所述第一封装层与所述第二封装层之间,所述第三过渡层设置在所述第二封装层与所述第三封装层之间。
在示例性实施方式中,所述第一过渡层的附着力大于所述发光结构层的阴极的附着力,所述第一过渡层的附着力小于所述第一封装层的附着力。
在示例性实施方式中,所述第二过渡层的附着力大于所述第一封装层的附着力,所述第二过渡层的附着力小于所述第二封装层的附着力。
在示例性实施方式中,所述第三过渡层的附着力小于所述第二封装层的附着力,所述第三过渡层的附着力大于所述第三侧膜层的附着力。
在示例性实施方式中,第一过渡层、第二过渡层和第三过渡层可以是具有阻水能力的无机材料层,或者可以是不具有阻水能力的无机材料层。
在示例性实施方式中,所述第一过渡层、第二过渡层和第三过渡层均可以包括多个子过渡层。
在示例性实施方式中,所述第一封装层和第三封装层均可以包括多个子阻水层,第二封装层可以包括多个子有机层。
通常,附着力是两种不同物质接触部分间的相互吸引力,当两物体被放在一起达到紧密的界面分子接触以至生成新的界面层时就会生成附着力。附着力涉及到“界面”的物理效应和化学反应,每一可观察到的表面都与好几层物理或化学吸附的分子有关,当一种材料施加在一个膜层并在干燥和固化的过程中就生成了附着力,附着力的大小在一定程度上取决于材料的性质,因此附着力在一定程度上是材料的自身属性。
本公开提供了一种显示基板,通过在封装结构层中设置过渡层,至少一个过渡层所接触的两个膜层中,一个膜层的附着力大于过渡层的附着力,另一个膜层的附着力小于过渡层的附着力,减小了膜层之间的附着力差值,降低了膜层之间的应力不匹配,有效避免了膜层之间界面的剥离,保证了薄膜封装的信赖性,不仅可以大幅度提高薄膜封装的可靠性,而且可以大幅度提升显示基板的耐弯折性能和卷曲能力,为长寿命需求的显示装置提供了保证。
图5为本公开示例性实施例一种显示基板的结构示意图。如图5所示,在示例性实施方式中,显示基板可以包括基底10,设置在基底10上的驱动电路层20、设置在驱动电路层20远离基底10一侧的发光器件30,以及设置在发光器件30远离基底10一侧的封装结构层。在示例性实施方式中,封装结构层可以包括设置在发光器件30远离基底10一侧的第一复合封装层50,设置在第一复合封装层50远离基底10一侧的第二复合封装层60,以及设置在第二复合封装层60远离基底10一侧的第三复合封装层70。
在示例性实施方式中,驱动电路层20和发光器件30构成发光结构层。
在示例性实施方式中,第一复合封装层50可以包括第一过渡层和第一封装层,第一封装层可以包括第一阻水层。
在示例性实施方式中,第一复合封装层50可以包括设置在发光器件30远离基底10一侧的第一过渡层81和设置在第一过渡层81远离基底10一侧的作为第一封装层的第一阻水层51,第二复合封装层60设置在第一阻水层51远离基底10一侧的表面上。
在示例性实施方式中,第一过渡层81的附着力大于发光器件30中阴极的附着力,但小于第一阻水层51的附着力。
在示例性实施方式中,第一过渡层81的材料可以包括但不限于氧化硅(SiOx)、碳氮化硅(SiCN)或者氮化硅(SiNx),厚度可以约为
Figure PCTCN2021116259-appb-000001
Figure PCTCN2021116259-appb-000002
第一过渡层81配置为减小膜层之间的附着力差值,降低膜层之间的应力不匹配,以避免膜层之间的界面剥离,或者,配置为既减小膜层之间的附着力差值,降低膜层之间的应力不匹配,又为隔绝水氧,提高水氧阻隔功能。
在示例性实施方式中,第一阻水层51的材料可以包括但不限于氮化硅(SiNx)、氮氧化硅(SiONx)或者氧化铝(AlO)等,厚度可以约为
Figure PCTCN2021116259-appb-000003
Figure PCTCN2021116259-appb-000004
第一阻水层51配置为隔绝水氧,以提高水氧阻隔功能,保证外界水汽无法进入发光器件。
在示例性实施方式中,第二复合封装层60可以包括第二封装层,第二封装层的材料可以包括但不限于丙烯酸酯类或者环氧,第二复合封装层60的厚度可以约为1.0μm至3.0μm。
在示例性实施方式中,第三复合封装层70可以包括第三封装层,第三封装层的材料可以包括但不限于碳氮化硅、氮化硅、氮氧化硅或者氧化铝,厚度可以约为
Figure PCTCN2021116259-appb-000005
Figure PCTCN2021116259-appb-000006
下面通过显示基板的制备过程进行示例性说明。本公开所说的“图案化工艺”,对于金属材料、无机材料或透明导电材料,包括涂覆光刻胶、掩模曝光、显影、刻蚀、剥离光刻胶等处理,对于有机材料,包括涂覆有机材料、掩模曝光和显影等处理。沉积可以采用溅射、蒸镀、化学气相沉积中的任意一种或多种,涂覆可以采用喷涂、旋涂和喷墨打印中的任意一种或多种,刻蚀可以采用干刻和湿刻中的任意一种或多种,本公开不做限定。“薄膜”是指将某 一种材料在基底上利用沉积、涂覆或其它工艺制作出的一层薄膜。若在整个制作过程当中该“薄膜”无需图案化工艺,则该“薄膜”还可以称为“层”。若在整个制作过程当中该“薄膜”需图案化工艺,则在图案化工艺前称为“薄膜”,图案化工艺后称为“层”。经过图案化工艺后的“层”中包含至少一个“图案”。本公开所说的“A和B同层设置”是指,A和B通过同一次图案化工艺同时形成,膜层的“厚度”为膜层在垂直于显示基板方向上的尺寸。本公开示例性实施例中,“B的正投影位于A的正投影的范围之内”或者“A的正投影包含B的正投影”,是指B的正投影的边界落入A的正投影的边界范围内,或者A的正投影的边界与B的正投影的边界重叠。
在示例性实施方式中,以每个子像素中包括一个驱动晶体管和一个存储电容为例,显示基板的制备过程可以包括如下操作。
(1)在玻璃载板1上制备基底10。在示例性实施方式中,基底10可以包括在玻璃载板1上叠设的第一柔性材料层、第一无机材料层、半导体层、第二柔性材料层和第二无机材料层。第一、第二柔性材料层的材料可以采用聚酰亚胺(PI)、聚对苯二甲酸乙二酯(PET)或经表面处理的聚合物软膜等材料,第一、第二无机材料层的材料可以采用氮化硅(SiNx)或氧化硅(SiOx)等,用于提高基底的抗水氧能力,第一、第二无机材料层也称为阻挡(Barrier)层,半导体层的材料可以采用非晶硅(a-si)。在示例性实施方式中,以叠层结构PI1/Barrier1/a-si/PI2/Barrier2为例,其制备过程可以包括:先在玻璃载板1上涂布一层聚酰亚胺,固化成膜后形成第一柔性(PI1)层;随后在第一柔性层上沉积一层阻挡薄膜,形成覆盖第一柔性层的第一阻挡(Barrier1)层;然后在第一阻挡层上沉积一层非晶硅薄膜,形成覆盖第一阻挡层的非晶硅(a-si)层;然后在非晶硅层上再涂布一层聚酰亚胺,固化成膜后形成第二柔性(PI2)层;然后在第二柔性层上沉积一层阻挡薄膜,形成覆盖第二柔性层的第二阻挡(Barrier2)层,完成基底10的制备。
(2)在基底10上制备驱动电路层图案。在示例性实施方式中,在基底10上制备驱动电路层图案可以包括:
在基底10上依次沉积第一绝缘薄膜和半导体薄膜,通过图案化工艺对半导体薄膜进行图案化,形成覆盖整个基底10的第一绝缘层,以及设置在第一 绝缘层上的半导体层图案,半导体层图案至少包括位于每个子像素中的有源层。
随后,依次沉积第二绝缘薄膜和第一金属薄膜,通过图案化工艺对第一金属薄膜进行图案化,形成覆盖半导体层图案的第二绝缘层,以及设置在第二绝缘层上的第一金属层图案,第一金属层图案至少包括位于每个子像素中的栅电极和第一电容电极。
随后,依次沉积第三绝缘薄膜和第二金属薄膜,通过图案化工艺对第二金属薄膜进行图案化,形成覆盖第一金属层的第三绝缘层,以及设置在第三绝缘层上的第二金属层图案,第二金属层图案至少包括位于每个子像素中的第二电容电极,第二电容电极在基底上的正投影与第一电容电极在基底上的正投影存在重叠区域。
随后,沉积第四绝缘薄膜,通过图案化工艺形成多个第一过孔图案,第一过孔内的第四绝缘层、第三绝缘层和第二绝缘层被刻蚀掉,暴露出有源层的两端。
随后,沉积第三金属薄膜,通过图案化工艺对第三金属薄膜进行图案化,在第四绝缘层上形成第三金属层图案,第三金属层图案至少包括位于每个子像素中的源电极和漏电极,源电极和漏电极分别通过第一过孔与有源层连接。
随后,涂覆平坦薄膜,通过图案化工艺对平坦薄膜进行图案化,形成平坦层,平坦层上形成有第二过孔,第二过孔内的平坦层被去掉,暴露出每个子像素中的漏电极。
至此,在基底10上制备完成驱动电路层20图案,如图6所示。在示例性实施方式中,有源层、栅电极、源电极和漏电极组成第一晶体管101,第一电容电极和第二电容电极组成存储电容102。在示例性实施方式中,第一晶体管101可以是像素驱动电路中的驱动晶体管,驱动晶体管可以是薄膜晶体管(Thin Film Transistor,简称TFT)。
在示例性实施方式中,第一绝缘层、第二绝缘层、第三绝缘层和第四绝缘层可以采用硅氧化物(SiOx)、硅氮化物(SiNx)和氮氧化硅(SiON)中的任意一种或更多种,可以是单层、多层或复合层。第一绝缘层称为缓冲 (Buffer)层,用于提高基底的抗水氧能力,第二绝缘层和第三绝缘层称为栅绝缘(GI)层,第四绝缘层称为层间绝缘(ILD)层。第一金属薄膜、第二金属薄膜和第三金属薄膜可以采用金属材料,如银(Ag)、铜(Cu)、铝(Al)、钛(Ti)和钼(Mo)中的任意一种或更多种,或上述金属的合金材料,如铝钕合金(AlNd)或钼铌合金(MoNb),可以是单层结构,或者多层复合结构,如Ti/Al/Ti等。有源层薄膜可以采用非晶态氧化铟镓锌材料(a-IGZO)、氮氧化锌(ZnON)、氧化铟锌锡(IZTO)、非晶硅(a-Si)、多晶硅(p-Si)、六噻吩、聚噻吩等各种材料,即本公开适用于基于氧化物Oxide技术、硅技术以及有机物技术制造的晶体管。
在示例性实施方式中,驱动电路层20还可以包括第五绝缘层、第四金属层、第二平坦层等膜层,每个子像素还可以包括电源线、连接电极等结构,本公开在此不做限定。
(3)在形成前述图案的基底上制备发光器件。在示例性实施方式中,在形成前述图案的基底上制备发光器件可以包括:
在形成前述图案的基底上沉积透明导电薄膜,通过图案化工艺对透明导电薄膜进行图案化,形成阳极图案,阳极通过第二过孔与第一晶体管101的漏电极连接。
随后,涂覆像素定义薄膜,通过图案化工艺对像素定义薄膜进行图案化,形成像素定义层图案,像素定义层在每个子像素形成有像素开口,像素开口内的像素定义层被去掉,暴露出阳极的表面。
随后,涂覆无机薄膜,通过图案化工艺对无机薄膜进行图案化,形成隔离柱图案,隔离柱设置在像素定义层上。
随后,依次形成有机发光层和阴极,有机发光层与像素开口内的阳极连接,阴极与有机发光层连接,使有机发光层在阳极和阴极驱动下出射相应颜色的光线。
至此,在驱动电路层20上制备完成发光器件30图案,如图7所示。在示例性实施方式中,制备发光器件过程中可以形成隔离坝等结构,本公开在此不做限定。
在示例性实施方式中,发光器件30中的有机发光层可以包括发光层(Emitting Layer,简称EML),以及包括空穴注入层(Hole Injection Layer,简称HIL)、空穴传输层(Hole Transport Layer,简称HTL)、空穴阻挡层(Hole Block Layer,简称HBL)、电子阻挡层(Electron Block Layer,简称EBL)、电子注入层(Electron Injection Layer,简称EIL)、电子传输层(Electron Transport Layer,简称ETL)中的一个或多个膜层。在阳极和阴极的电压驱动下,利用有机发光层的发光特性根据需要的灰度发光。
在示例性实施方式中,不同颜色的发光器件30的发光层不同。例如,红色发光元件包括红色发光层,绿色发光元件包括绿色发光层,蓝色发光元件包括蓝色发光层。为了降低工艺难度和提升良率,位于发光层一侧的空穴注入层和空穴传输层可以采用共通层,位于发光层另一侧的电子注入层和电子传输层可以采用共通层。在示例性实施方式中,空穴注入层、空穴传输层、电子注入层和电子传输层中的任意一层或多层可以通过一次工艺(一次蒸镀工艺或一次喷墨打印工艺)制作,但通过形成的膜层表面段差或者通过表面处理等手段实现隔离。例如,相邻子像素对应的空穴注入层、空穴传输层、电子注入层和电子传输层中的任意一层或多层可以是隔离的。在示例性实施方式中,有机发光层可以通过采用精细金属掩模版(FMM,Fine Metal Mask)或者开放式掩膜版(Open Mask)蒸镀制备形成,或者采用喷墨工艺制备形成。
在示例性实施方式中,透明导电薄膜可以包括氧化铟锡(ITO)或氧化铟锌(IZO)。像素定义层可以采用聚酰亚胺、亚克力或聚对苯二甲酸乙二醇酯等。阴极可以采用镁(Mg)、银(Ag)、铝(Al)、铜(Cu)和锂(Li)中的任意一种或多种,或采用上述金属中任意一种或多种制成的合金。
(4)在形成前述图案的基底上形成第一复合封装层。在示例性实施方式中,在形成前述图案的基底上形成第一复合封装层可以包括:在形成前述图案的基底上,先沉积一层过渡薄膜,形成覆盖发光器件30的阴极的第一过渡层81。随后,在第一过渡层81上沉积一层阻水薄膜,形成覆盖第一过渡层81的第一阻水层51,如图8所示。
在示例性实施方式中,第一过渡层81和第一阻水层51的覆盖面积可以 相同,或者可以不同,第一过渡层81在基底上的正投影位于第一阻水层51在基底上的正投影的范围之内。
在示例性实施方式中,第一过渡层81的材料可以包括碳氮化硅,碳氮化硅的附着力约为0.6N至0.7N,第一阻水层51的材料可以包括氮化硅,氮化硅的附着力约为1.3N至1.9N,第一过渡层81的附着力大于发光器件30的阴极的附着力,第一过渡层81的附着力小于第一阻水层51的附着力。
在示例性实施方式中,第一过渡层81的厚度可以约为
Figure PCTCN2021116259-appb-000007
Figure PCTCN2021116259-appb-000008
第一阻水层51的厚度可以约为
Figure PCTCN2021116259-appb-000009
Figure PCTCN2021116259-appb-000010
在一些可能的实现方式中,第一过渡层81的厚度可以约为
Figure PCTCN2021116259-appb-000011
Figure PCTCN2021116259-appb-000012
第一阻水层51的厚度可以约为
Figure PCTCN2021116259-appb-000013
Figure PCTCN2021116259-appb-000014
例如,碳氮化硅的厚度可以约为
Figure PCTCN2021116259-appb-000015
氮化硅的厚度可以约为
Figure PCTCN2021116259-appb-000016
又如,碳氮化硅的厚度可以约为
Figure PCTCN2021116259-appb-000017
氮化硅的厚度可以约为
Figure PCTCN2021116259-appb-000018
在示例性实施方式中,碳氮化硅的密度约为1.6g/cm 3至1.9g/cm 3,氮化硅的密度约为2.2g/cm 3至2.5g/cm 3,第一过渡层81的密度小于第一阻水层51的密度。
在示例性实施方式中,碳氮化硅的模量约为10Gpa至40Gpa,氮化硅的模量约为60Gpa至100Gpa,第一过渡层81的模量小于第一阻水层51的模量。
在示例性实施方式中,碳氮化硅的硬度约为1Gpa至4Gpa,氮化硅的硬度约为6Gpa至11Gpa,第一过渡层81的硬度小于第一阻水层51的硬度。
一种显示基板中,采用氮化硅的第一封装层直接形成在发光器件的阴极上,第一封装层与阴极之间的附着力差值约为1.3N左右。由于两个膜层之间的附着力差值较大,第一封装层与阴极之间存在较严重的应力不匹配,因而容易导致第一封装层与阴极之间界面出现剥离,造成封装失效。
本公开通过设置包括第一过渡层和第一阻水层的第一复合封装层,且第一过渡层设置在阴极与第一阻水层之间,第一过渡层采用附着力约为0.6N至0.7N的碳氮化硅,使得阴极与第一过渡层之间的附着力差值约为0.6N左右,第一过渡层与第一阻水层之间的附着力差值约为0.7N至1.2N左右,减小了 膜层之间的附着力差值,降低了膜层之间的应力不匹配,有效避免了膜层之间界面的剥离,保证了薄膜封装的信赖性。
研究发现,蒸镀工艺制备的阴极的附着力较小,减小与阴极接触的膜层的薄膜应力,可以有效降低膜层之间的应力不匹配。通常,薄膜应力分为拉应力和压应力,在数学上表示中,拉应力为正,压应力为负。其中,采用低温(<100℃)离子体增强化学气相沉积(PECVD)沉积工艺中,氮化硅的薄膜应力约为-100Mpa至90Mpa,倾向于压应力。由于碳氮化硅的分子组成,以及其附着力、密度、模量和硬度等力学属性均小于氮化硅,因而采用低温PECVD沉积工艺中,碳氮化硅的薄膜应力约为-20Mpa至100Mpa,压应力较小,甚至倾向于拉应力。这样,采用碳氮化硅材料作为第一过渡层,在阴极上形成第一过渡层时,第一过渡层对阴极施加的薄膜应力较小,或者对阴极不施加薄膜应力,甚至对阴极施加可以抵消其它膜层压应力的拉应力,因而不仅有效降低阴极与封装层之间的薄膜应力不匹配,有效避免膜层之间界面的剥离,而且可以提高显示基板的耐弯折性能和卷曲能力,提升了显示基板的工作可靠性和使用寿命。
在示例性实施方式中,第一过渡层和第一阻水层也可以采用其它无机材料,只需第一过渡层的附着力介于阴极和第一阻水层之间,同样可以实现避免膜层之间界面剥离的效果。例如,第一过渡层的材料可以包括碳氮化硅,第一阻水层的材料可以包括氮氧化硅。又如,第一过渡层的材料可以包括氮化硅,第一阻水层的材料可以包括氮氧化硅。
(5)在形成前述图案的基底上形成第二复合封装层和第三复合封装层。在示例性实施方式中,在形成前述图案的基底上形成第二复合封装层和第三复合封装层可以包括:通过涂覆或喷墨打印方式在第一复合封装层上形成第二复合封装层60,随后,沉积一层封装薄膜,形成覆盖第二复合封装层60的第三复合封装层70,如图9所示。
在示例性实施方式中,第二复合封装层60可以包括第二封装层,第二封装层可以采用丙烯酸酯或环氧等材料,厚度可以约为1.0μm至3.0μm。第三复合封装层70包括第三封装层,第三封装层可以可以采用氮氧化硅、氮化硅、氮氧化硅或者氧化铝等,厚度可以约为
Figure PCTCN2021116259-appb-000019
Figure PCTCN2021116259-appb-000020
在示例性实施方式中,显示基板可以包括显示区域和位于显示区域外围的边框区域,第二封装层形成在显示区域,本公开在此不做限定。
从以上描述的显示基板的结构以及制备过程可以看出,本公开提供的显示基板,通过设置包括第一过渡层和第一阻水层的第一复合封装层,且第一过渡层设置在阴极与第一阻水层之间,第一过渡层的附着力大于阴极的附着力,但小于第一阻水层的附着力,因而减小了相邻膜层之间的附着力差值,降低了膜层之间的应力不匹配,有效避免了膜层之间界面的剥离,保证了薄膜封装的信赖性,提高了良品率。此外,通过设置第一过渡层和第一阻水层的材料,提高了显示基板的耐弯折性能和卷曲能力,提升了显示基板的工作可靠性和使用寿命,为长寿命需求的显示装置提供了保证。本公开示例性实施例显示基板的制备过程具有良好的工艺兼容性,工艺实现简单,易于实施,生产效率高,生产成本低。
图10为本公开示例性实施例另一种显示基板的结构示意图。如图10所示,在示例性实施方式中,显示基板可以包括基底10,设置在基底10上的驱动电路层20、设置在驱动电路层20远离基底10一侧的发光器件30,以及设置在发光器件30远离基底10一侧的封装结构层。在示例性实施方式中,封装结构层可以包括设置在发光器件30远离基底10一侧的第一复合封装层50,设置在第一复合封装层50远离基底10一侧的第二复合封装层60,以及设置在第二复合封装层60远离基底10一侧的第三复合封装层70。
在示例性实施方式中,第一复合封装层50可以包括第一过渡层和第一封装层,第一过渡层可以包括第一子过渡层和第二子过渡层,第一封装层可以包括第一阻水层。
在示例性实施方式中,第一复合封装层50可以包括设置在发光器件30远离基底10一侧的第一子过渡层81-1、设置在第一子过渡层81-1远离基底的一侧的第二子过渡层81-2以及设置在第二子过渡层81-2远离基底的一侧的第一阻水层51,第二复合封装层60设置在第一阻水层51远离基底10一侧的表面上。
在示例性实施方式中,第一子过渡层81-1的附着力大于发光器件30中阴极的附着力,但小于第二子过渡层81-2的附着力。第二子过渡层81-2的 附着力大于第一子过渡层81-1的附着力,但小于第一阻水层51的附着力。
在示例性实施方式中,第一子过渡层81-1的材料可以包括碳氮化硅,碳氮化硅的附着力约为0.6N至0.7N,第二子过渡层81-2的材料可以包括氮化硅,氮化硅的附着力约为1.3N至1.9N,第一阻水层51的材料可以包括氮氧化硅,氮氧化硅的附着力约为2.5N至2.8N。第一子过渡层81-1的附着力大于发光器件30中阴极的附着力,但小于第二子过渡层81-2的附着力,第二子过渡层81-2的附着力小于第一阻水层51的附着力。
在示例性实施方式中,第一子过渡层81-1的厚度可以约为
Figure PCTCN2021116259-appb-000021
Figure PCTCN2021116259-appb-000022
第二子过渡层81-2的厚度可以约为
Figure PCTCN2021116259-appb-000023
Figure PCTCN2021116259-appb-000024
第一阻水层51的厚度可以约为
Figure PCTCN2021116259-appb-000025
Figure PCTCN2021116259-appb-000026
第一子过渡层81-1和第二子过渡层81-2配置为减小膜层之间的附着力差值,降低膜层之间的应力不匹配,以避免膜层之间的界面剥离。第一阻水层51配置为隔绝水氧,以提高水氧阻隔功能,保证外界水汽无法进入发光器件。
在一些可能的实现方式中,第一子过渡层81-1的厚度可以约为
Figure PCTCN2021116259-appb-000027
Figure PCTCN2021116259-appb-000028
第二子过渡层81-2的厚度可以约为
Figure PCTCN2021116259-appb-000029
Figure PCTCN2021116259-appb-000030
第一阻水层51的厚度可以约为
Figure PCTCN2021116259-appb-000031
Figure PCTCN2021116259-appb-000032
例如,碳氮化硅的厚度可以约为
Figure PCTCN2021116259-appb-000033
氮化硅的厚度可以约为
Figure PCTCN2021116259-appb-000034
氮氧化硅的厚度可以约为
Figure PCTCN2021116259-appb-000035
又如,碳氮化硅的厚度可以约为
Figure PCTCN2021116259-appb-000036
氮化硅的厚度可以约为
Figure PCTCN2021116259-appb-000037
氮氧化硅的厚度可以约为
Figure PCTCN2021116259-appb-000038
在示例性实施方式中,碳氮化硅的密度约为1.6g/cm 3至1.9g/cm 3,氮化硅的密度约为2.2g/cm 3至2.5g/cm 3,氮氧化硅的密度约为2.0g/cm 3至2.3g/cm 3,第一子过渡层81-1的密度小于第二子过渡层81-2的密度。
在示例性实施方式中,碳氮化硅的模量约为10Gpa至40Gpa,氮化硅的模量约为60Gpa至100Gpa,氮氧化硅的模量约为30Gpa至70Gpa,第一子过渡层81-1的模量小于第二子过渡层81-2的模量。
在示例性实施方式中,碳氮化硅的硬度约为1Gpa至4Gpa,氮化硅的硬度约为6Gpa至11Gpa,氮氧化硅的硬度约为4Gpa至7Gpa,第一子过渡层81-1的硬度小于第二子过渡层81-2的硬度。
在示例性实施方式中,第二复合封装层60和第三复合封装层70的材料和结构可以与前述实施例的材料和结构类似。
在示例性实施方式中,本实施例显示基板的制备过程与前述实施例的制备过程类似,所不同的是,形成第一复合封装层过程中,依次沉积第一子过渡薄膜、第二子过渡薄膜和阻水薄膜。
一种显示基板中,采用氮氧化硅的第一封装层直接形成在发光器件的阴极上,第一封装层与阴极之间的附着力差值约为2.5N以上,容易导致第一封装层与阴极之间界面出现剥离。
本公开通过设置包括第一子过渡层、第二子过渡层和第一阻水层的第一封装层,且第一子过渡层设置在阴极与第二子过渡层之间,第二子过渡层设置在第一子过渡层与第一阻水层之间,第一子过渡层采用附着力约为0.6N至0.7N的碳氮化硅,第二子过渡层采用附着力约为1.3N至1.9N的氮化硅,第一阻水层采用附着力约为2.5N至2.8N的氮氧化硅,使得阴极与第一子过渡层之间的附着力差值约为0.6N左右,第一子过渡层与第二子过渡层之间的附着力差值约为0.7N至1.2N左右,第二子过渡层与第一阻水层之间的附着力差值约为0.9N至1.2N左右,减小了膜层之间的附着力差值,降低了膜层之间的应力不匹配,有效避免了膜层之间界面的剥离,保证了薄膜封装的信赖性。
同样,采用碳氮化硅材料作为第一子过渡层,在阴极上形成第一子过渡层时,第一子过渡层对阴极施加的薄膜应力较小,或者对阴极不施加薄膜应力,甚至对阴极施加可以抵消其它膜层压应力的拉应力,因而不仅有效降低了阴极与封装层之间的薄膜应力不匹配,有效避免了膜层之间界面的剥离,而且可以提高显示基板的耐弯折性能和卷曲能力,提升了显示基板的工作可靠性和使用寿命。
在示例性实施方式中,第一子过渡层、第二子过渡层和第一阻水层也可以采用其它无机材料,只需第一子过渡层的附着力介于阴极和第二子过渡层之间,第二子过渡层的附着力介于第一子过渡层和第一阻水层之间,同样可以实现避免膜层之间界面剥离的效果。例如,第一子过渡层的材料可以包括氧化硅,第二子过渡层的材料可以包括碳氮化硅,第一阻水层的材料可以包 括氮化硅。又如,第一子过渡层的材料可以包括氧化硅,第二子过渡层的材料可以包括氮化硅,第一阻水层的材料可以包括氮氧化硅。
图11为本公开示例性实施例又一种显示基板的结构示意图。如图11所示,在示例性实施方式中,显示基板可以包括基底10,设置在基底10上的驱动电路层20、设置在驱动电路层20远离基底10一侧的发光器件30,以及设置在发光器件30远离基底10一侧的封装结构层。在示例性实施方式中,封装结构层可以包括设置在发光器件30远离基底10一侧的第一复合封装层50,设置在第一复合封装层50远离基底10一侧的第二复合封装层60,以及设置在第二复合封装层60远离基底10一侧的第三复合封装层70。
在示例性实施方式中,第一复合封装层50可以包括第一过渡层和第一封装层,第一过渡层可以包括第一子过渡层和第二子过渡层,第一封装层可以包括第一子阻水层和第二子阻水层。
在示例性实施方式中,第一复合封装层50可以包括设置在发光器件30远离基底10一侧的第一子过渡层81-1、设置在第一子过渡层81-1远离基底的一侧的第一子阻水层51-1,设置在第一子阻水层51-1远离基底的一侧的第二子过渡层81-2,以及设置在第二子过渡层81-2远离基底的一侧的第二子阻水层51-2,第二复合封装层60设置在第二子阻水层51-2远离基底10一侧的表面上。
在示例性实施方式中,第一子过渡层81-1的附着力大于发光器件30中阴极的附着力,但小于第一子阻水层51-1的附着力。第一子阻水层51-1的附着力大于第一子过渡层81-1的附着力,但小于第二子过渡层81-2的附着力。第二子过渡层81-2的附着力大于第一子阻水层51-1的附着力,但小于第二子阻水层51-2的附着力。
在示例性实施方式中,第一子过渡层81-1的材料可以包括氧化硅,氧化硅的附着力约为0.2N至0.4N,第一子阻水层51-1的材料可以包括碳氮化硅,碳氮化硅的附着力约为0.6N至0.7N,第二子过渡层81-2的材料可以包括氮化硅,氮化硅的附着力约为1.3N至1.9N,第二子阻水层51-2的材料可以包括氮氧化硅,氮氧化硅的附着力约为2.5N至2.8N。第一子过渡层81-1的附着力大于发光器件30中阴极的附着力,但小于第一子阻水层51-1的附着力, 第一子阻水层51-1的附着力小于第二子过渡层81-2的附着力,第二子过渡层81-2的附着力小于第二子阻水层51-2的附着力。
在示例性实施方式中,第一子过渡层81-1的厚度可以约为
Figure PCTCN2021116259-appb-000039
Figure PCTCN2021116259-appb-000040
第二子过渡层81-2的厚度可以约为
Figure PCTCN2021116259-appb-000041
Figure PCTCN2021116259-appb-000042
第一子阻水层51-1的厚度可以约为
Figure PCTCN2021116259-appb-000043
Figure PCTCN2021116259-appb-000044
第二子阻水层51-2的厚度可以约为
Figure PCTCN2021116259-appb-000045
Figure PCTCN2021116259-appb-000046
第一子过渡层81-1和第二子过渡层81-2配置为减小膜层之间的附着力差值,降低膜层之间的应力不匹配,以避免膜层之间的界面剥离。第一子阻水层51-1和第二子阻水层51-2配置为隔绝水氧,以提高水氧阻隔功能,保证外界水汽无法进入发光器件。
在一些可能的实现方式中,第一子过渡层81-1的厚度可以约为
Figure PCTCN2021116259-appb-000047
Figure PCTCN2021116259-appb-000048
第二子过渡层81-2的厚度可以约为
Figure PCTCN2021116259-appb-000049
Figure PCTCN2021116259-appb-000050
第一子阻水层51-1的厚度可以约为
Figure PCTCN2021116259-appb-000051
Figure PCTCN2021116259-appb-000052
第二子阻水层51-2的厚度可以约为
Figure PCTCN2021116259-appb-000053
Figure PCTCN2021116259-appb-000054
例如,氧化硅的厚度可以约为
Figure PCTCN2021116259-appb-000055
氮化硅的厚度可以约为
Figure PCTCN2021116259-appb-000056
碳氮化硅的厚度可以约为
Figure PCTCN2021116259-appb-000057
氮氧化硅的厚度可以约为
Figure PCTCN2021116259-appb-000058
又如,氧化硅的厚度可以约为
Figure PCTCN2021116259-appb-000059
氮化硅的厚度可以约为
Figure PCTCN2021116259-appb-000060
碳氮化硅的厚度可以约为
Figure PCTCN2021116259-appb-000061
氮氧化硅的厚度可以约为
Figure PCTCN2021116259-appb-000062
在示例性实施方式中,第二复合封装层60和第三复合封装层70的材料和结构可以与前述实施例的材料和结构类似。
在示例性实施方式中,本实施例显示基板的制备过程与前述实施例的制备过程类似,所不同的是,形成第一复合封装层过程中,依次沉积第一子过渡薄膜、第一子阻水薄膜、第二子过渡薄膜和第二子阻水薄膜。
本公开通过设置包括第一子过渡层、第一子阻水层、第二子过渡层和第二子阻水层的第一封装层,且第一子过渡层设置在阴极与第二子过渡层之间,第二子过渡层设置在第一子阻水层与第二子阻水层之间,第一子过渡层采用附着力约为0.2N至0.4N的氧化硅,第一子阻水层采用附着力约为0.6N至0.7N的碳氮化硅,第二子过渡层采用附着力约为1.3N至1.9N的氮化硅,第二子阻水层采用附着力约为2.5N至2.8N的氮氧化硅,使得阴极与第一子过渡层之间的附着力差值约为0.2N左右,第一子过渡层与第一子阻水层之间的附着力差值约为0.3N至0.4N左右,第一子阻水层与第二子过渡层之间的附 着力差值约为0.7N至1.2N左右,第二子过渡层与第二子阻水层之间的附着力差值约为0.9N至1.2N左右,减小了膜层之间的附着力差值,降低了膜层之间的应力不匹配,有效避免了膜层之间界面的剥离,保证了薄膜封装的信赖性,且可以提高显示基板的耐弯折性能和卷曲能力,提升了显示基板的工作可靠性和使用寿命。
在示例性实施方式中,图11所示结构中,第一子过渡层81-1和第二子过渡层81-2的材料可以均包括氮化硅,第一子阻水层51-1和第二子阻水层51-2的材料可以均包括氮氧化硅。
在示例性实施方式中,第一子过渡层81-1和第二子过渡层81-2的厚度可以约为
Figure PCTCN2021116259-appb-000063
Figure PCTCN2021116259-appb-000064
第一子阻水层51-1和第二子阻水层51-2的厚度可以约为
Figure PCTCN2021116259-appb-000065
Figure PCTCN2021116259-appb-000066
第一子过渡层81-1和第二子过渡层81-2配置为既可以减小膜层之间的附着力差值,降低膜层之间的应力不匹配,又可以为隔绝水氧,以提高水氧阻隔功能。第一子阻水层51-1和第二子阻水层51-2配置为隔绝水氧,以提高水氧阻隔功能,保证外界水汽无法进入发光器件。
在一些可能的实现方式中,第一子过渡层81-1的厚度可以约为
Figure PCTCN2021116259-appb-000067
Figure PCTCN2021116259-appb-000068
第二子过渡层81-2的厚度可以约为
Figure PCTCN2021116259-appb-000069
Figure PCTCN2021116259-appb-000070
第一子阻水层51-1的厚度可以约为
Figure PCTCN2021116259-appb-000071
Figure PCTCN2021116259-appb-000072
第二子阻水层51-2的厚度可以约为
Figure PCTCN2021116259-appb-000073
Figure PCTCN2021116259-appb-000074
例如,氮化硅的厚度可以约为
Figure PCTCN2021116259-appb-000075
氮氧化硅的厚度可以约为
Figure PCTCN2021116259-appb-000076
又如,氮化硅的厚度可以约为
Figure PCTCN2021116259-appb-000077
氮氧化硅的厚度可以约为
Figure PCTCN2021116259-appb-000078
本公开通过设置包括第一子过渡层、第一子阻水层、第二子过渡层和第二子阻水层的第一封装层,且第一子过渡层和第二子过渡层采用附着力约为1.3N至1.9N的氮化硅,第一子阻水层和第二子阻水层采用附着力约为2.5N至2.8N的氮氧化硅,使膜层之间的附着力差值小于2N,减小了膜层之间的附着力差值,降低了膜层之间的应力不匹配,有效避免了膜层之间界面的剥离,保证了薄膜封装的信赖性,且可以提高显示基板的耐弯折性能和卷曲能力,提升了显示基板的工作可靠性和使用寿命。
寿命对比试验表明,在第一复合封装层采用氮氧化硅SiON、厚度为
Figure PCTCN2021116259-appb-000079
的单一膜层结构时,失效时间是4小时。在第一复合封装层采用氮化 硅SiNx、厚度为
Figure PCTCN2021116259-appb-000080
的单一膜层结构时,失效时间是24小时。在第一复合封装层采用氮化硅SiNx
Figure PCTCN2021116259-appb-000081
-氮氧化硅SiON
Figure PCTCN2021116259-appb-000082
的双层复合膜层结构时,失效时间是40小时。在第一复合封装层采用氮化硅SiNx
Figure PCTCN2021116259-appb-000083
-氮氧化硅SiON
Figure PCTCN2021116259-appb-000084
-氮化硅SiNx
Figure PCTCN2021116259-appb-000085
-氮氧化硅SiON
Figure PCTCN2021116259-appb-000086
的四层复合膜层结构时,失效时间是48小时。在第一复合封装层采用氮化硅SiNx
Figure PCTCN2021116259-appb-000087
-氮氧化硅SiON
Figure PCTCN2021116259-appb-000088
-氮化硅SiNx
Figure PCTCN2021116259-appb-000089
-氮氧化硅SiON
Figure PCTCN2021116259-appb-000090
的四层复合膜层结构时,失效时间是48小时。其中,X-Y或X-Y-X-Y是指阴极上沿着远离基底的方向依次叠设的膜层。
由于氮氧化硅SiON的附着力为2.5N至2.8N,当氮氧化硅SiON直接形成在阴极上时,氮氧化硅SiON与阴极之间的附着力差值约为2.5N左右,两个膜层之间的附着力差值较大,因而两个膜层之间存在较严重的应力不匹配,阴极与氮氧化硅SiON之间界面容易出现剥离,失效时间较短。由于氮化硅SiN的附着力为1.3N至1.9N,当氮化硅SiN直接形成在阴极上时,氮化硅SiN与阴极之间的附着力差值约为1.3N左右,小于氮氧化硅SiON与阴极之间的附着力差值,因而阴极与氧化硅SiON之间界面不容易出现剥离,失效时间较长。
对于氮化硅SiN直接形成在阴极上、氮氧化硅SiON直接形成在氮化硅SiN上的两层复合膜层结构,氮化硅SiN与阴极之间的附着力差值约为1.3N左右,阴极与氮化硅SiN之间界面不容易出现剥离,氮氧化硅SiON与氮化硅SiN之间的附着力差值1.1N左右,氮化硅SiN与氮氧化硅SiON之间界面不容易出现剥离,而且增加了界面数量,提高了第一复合封装层整体的附着力,因而大幅度增加了失效时间。
对于氮化硅SiNx-氮氧化硅SiON-氮化硅SiNx-氮氧化硅SiON的四层复合膜层结构,不仅相邻膜层之间的附着力差值较小,相邻膜层之间界面不容易出现剥离,而且进一步增加了界面数量,进一步提高了第一复合封装层整体的附着力,因而较两层复合膜层结构进一步增加了失效时间。
附着力测量表明,当阴极上直接形成氮氧化硅SiON的单一膜层时,氮氧化硅SiON膜层的整体附着力约为2.69N。当阴极上形成氮化硅SiNx
Figure PCTCN2021116259-appb-000091
-氮氧化硅SiON
Figure PCTCN2021116259-appb-000092
-氮化硅SiNx
Figure PCTCN2021116259-appb-000093
-氮氧化硅SiON
Figure PCTCN2021116259-appb-000094
的四层复合膜层结构时,四层复合膜层的整体附着力约为4.215。因此,以氮化硅SiNx作为附着力过渡层形成的复合膜层,可以提高第一复合封装层的整体附着力,可以有效避免膜层之间界面的剥离。
在示例性实施方式中,第一子过渡层、第一子阻水层、第二子过渡层和第二子阻水层也可以采用其它无机材料,只需第一子过渡层的附着力介于阴极和第一子阻水层之间,同样可以实现避免膜层之间界面剥离的效果。
图12为本公开示例性实施例又一种显示基板的结构示意图。如图12所示,在示例性实施方式中,显示基板可以包括基底10,设置在基底10上的驱动电路层20、设置在驱动电路层20远离基底10一侧的发光器件30,以及设置在发光器件30远离基底10一侧的封装结构层。在示例性实施方式中,封装结构层可以包括设置在发光器件30远离基底10一侧的第一复合封装层50,设置在第一复合封装层50远离基底10一侧的第二复合封装层60,以及设置在第二复合封装层60远离基底10一侧的第三复合封装层70。
在示例性实施方式中,第二复合封装层60可以包括第二过渡层和第一有机层。
在示例性实施方式中,第二复合封装层60可以包括设置在第一复合封装层50远离基底10一侧的第二过渡层61和设置在第二过渡层61远离基底的一侧的第一有机层62,第三复合封装层70设置在第一有机层62远离基底10一侧的表面上。
在示例性实施方式中,第二过渡层61的附着力大于第一复合封装层50的附着力,但小于第一有机层62的附着力。
在示例性实施方式中,第二过渡层61的厚度可以约为
Figure PCTCN2021116259-appb-000095
Figure PCTCN2021116259-appb-000096
第二过渡层61配置为减小膜层之间的附着力差值,降低膜层之间的应力不匹配,以避免膜层之间的界面剥离。
在示例性实施方式中,具有应力缓冲功能的第一有机层62的材料可以包括如下任意一种或多种:丙烯酸酯类和环氧,厚度可以约为1.0μm至3.0μm。
在示例性实施方式中,丙烯酸酯类和环氧的附着力约为10N以上,而采用复合膜层结构的第一复合封装层50的附着力约为4N至5N左右,因而第 二过渡层61的材料可以采用附着力约为6N至9N左右的材料。在示例性实施方式中,附着力约为6N至9N左右的材料可以采用在氮化硅或者氮氧化硅中添加附着力添加剂或者改变沉积工艺参数等本领域熟知的方式实现。
在示例性实施方式中,由于无机材料膜层与有机材料膜层之间的附着力也有一定差距,因而使用中也会出现第一封装层与第二封装层之间界面的剥离现象,导致封装失效。本公开通过设置包括第二过渡层和第一有机层的第二复合封装层,且第二过渡层设置在第一复合封装层与第一有机层之间,第二过渡层的附着力大于第一复合封装层的附着力,但小于第一有机层的附着力,减小了膜层之间的附着力差值,降低了膜层之间的应力不匹配,有效避免了膜层之间界面的剥离,保证了薄膜封装的信赖性。
在示例性实施方式中,第二复合封装层可以包括多个子过渡层和多个子有机层,最大限度地减小膜层之间的附着力差值,最大限度地避免膜层之间界面的剥离。
图13为本公开示例性实施例又一种显示基板的结构示意图。如图13所示,在示例性实施方式中,显示基板可以包括基底10,设置在基底10上的驱动电路层20、设置在驱动电路层20远离基底10一侧的发光器件30,以及设置在发光器件30远离基底10一侧的封装结构层。在示例性实施方式中,封装结构层可以包括设置在发光器件30远离基底10一侧的第一复合封装层50,设置在第一复合封装层50远离基底10一侧的第二复合封装层60,以及设置在第二复合封装层60远离基底10一侧的第三复合封装层70。
在示例性实施方式中,第三复合封装层70可以包括第三过渡层和第三阻水层。
在示例性实施方式中,第三复合封装层70可以包括设置在第二复合封装层60远离基底10一侧的第三过渡层71和设置在第三过渡层71远离基底的一侧的作为第三封装层的第三阻水层72。
在示例性实施方式中,第三过渡层71的附着力小于第二复合封装层60的附着力,但大于第三阻水层72的附着力。
在示例性实施方式中,第三过渡层71的厚度可以约为
Figure PCTCN2021116259-appb-000097
Figure PCTCN2021116259-appb-000098
第三阻水层72的厚度可以约为
Figure PCTCN2021116259-appb-000099
Figure PCTCN2021116259-appb-000100
第三过渡层71配置为减小膜层之间的附着力差值,降低膜层之间的应力不匹配,以避免膜层之间的界面剥离。第三阻水层72配置为隔绝水氧,以提高水氧阻隔功能,保证外界水汽无法进入发光器件。
在示例性实施方式中,第三阻水层72可以是采用氮化硅、氮氧化硅或者碳氮化硅的单层膜层结构,或者可以是采用上述材料的复合膜层结构,单层膜层结构的附着力约为2N至3N左右,复合膜层结构的附着力约为4N至5N左右。由于第二复合封装层60的附着力约为10N以上,因而第三过渡层71的材料可以采用附着力约为6N至9N左右的材料。在示例性实施方式中,附着力约为6N至9N左右的材料可以采用在氮化硅或者氮氧化硅中添加附着力添加剂或者改变沉积工艺参数等本领域熟知的方式实现。
在示例性实施方式中,由于无机材料膜层与有机材料膜层之间的附着力也有一定差距,因而使用中也会出现第二封装层与第三封装层之间界面的剥离现象,导致封装失效。本公开通过设置包括第三过渡层和第三阻水层的第三复合封装层,且第三过渡层设置在第二复合封装层与第三阻水层之间,第三过渡层的附着力小于第二封装层的附着力,但大于第三阻水层的附着力,减小了膜层之间的附着力差值,降低了膜层之间的应力不匹配,有效避免了膜层之间界面的剥离,保证了薄膜封装的信赖性。
在示例性实施方式中,第三复合封装层可以包括多个子过渡层和多个子阻水层,最大限度地减小膜层之间的附着力差值,最大限度地避免膜层之间界面的剥离。
在示例性实施方式中,可以通过前述实施例的任意组合形成本公开示例性实施例显示基板的多种技术方案。例如,在阴极远离基底的方向上,封装结构层可以包括:叠设的第一过渡层、第一封装层、第二过渡层、第二封装层和第三封装层,或者包括叠设的第一过渡层、第一封装层、第二封装层、第三过渡层和第三封装层,或者包括叠设的第一封装层、第二过渡层、第二封装层、第三过渡层和第三封装层,包括叠设的第一过渡层、第一封装层、第二过渡层、第二封装层、第三过渡层和第三封装层。在示例性实施方式中,至少一个过渡层可以包括多个子过渡层,至少一个封装层可以包括多个子封 装层,多个子过渡层和多个子封装层,通过多个子过渡层和多个子封装层的各种组合,最大限度地减小膜层之间的附着力差值,最大限度地避免膜层之间界面的剥离。
本公开还提供了一种显示基板的制备方法。在示例性实施方式中,所述制备方法包括:
S1、在基底上形成发光结构层;
S2、在所述发光结构层上形成封装结构层,所述封装结构层包括封装层和至少一个过渡层,所述过渡层邻近所述基底的一侧与第一侧膜层接触,所述过渡层远离所述基底的一侧与第二侧膜层接触,所述至少一个过渡层的附着力大于所述第一侧膜层和所述第二侧膜层中一个膜层的附着力,小于所述第一侧膜层和所述第二侧膜层中另一个膜层的附着力。
在示例性实施方式中,发光结构层可以包括设置在所述基底上的驱动电路层和设置在所述驱动电路层远离所述基底一侧的发光器件。
在示例性实施方式中,步骤S2可以包括:
在所述发光结构层的阴极上形成第一过渡层,所述第一过渡层的附着力大于所述发光结构层的阴极的附着力;在所述第一过渡层上形成第一封装层,所述第一封装层的附着力大于所述第一过渡层的附着力;在所述第一封装层依次形成第二封装层和第三封装层。
在示例性实施方式中,步骤S2可以包括:
在所述发光结构层的阴极上形成第一封装层;在所述第一封装层上形成第二过渡层,所述第二过渡层的附着力大于所述第一封装层的附着力;在所述第二过渡层上依次形成第二封装层和第三封装层,所述第二封装层的附着力大于所述第二过渡层的附着力。
在示例性实施方式中,步骤S2可以包括:
在所述发光结构层的阴极上依次形成第一封装层和第二封装层;在所述第二封装层上形成第三过渡层,所述第三过渡层的附着力小于所述第二封装层的附着力;在所述第三过渡层上形成第三封装层,所述第三封装层的附着 力小于所述第三过渡层的附着力。
在示例性实施方式中,步骤S2可以包括:
在所述发光结构层的阴极上形成第一过渡层,所述第一过渡层的附着力大于所述发光结构层的阴极的附着力;在所述第一过渡层上形成第一封装层,所述第一封装层的附着力大于所述第一过渡层的附着力;在所述第一封装层上形成第二过渡层,所述第二过渡层的附着力大于所述第一封装层的附着力;在所述第二过渡层上依次形成第二封装层和第三封装层,所述第二封装层的附着力大于所述第二过渡层的附着力。
在示例性实施方式中,步骤S2可以包括:
在所述发光结构层的阴极上形成第一过渡层,所述第一过渡层的附着力大于所述发光结构层的阴极的附着力;在所述第一过渡层上依次形成第一封装层和第二封装层,所述第一封装层的附着力大于所述第一过渡层的附着力;在所述第二封装层上形成第三过渡层,所述第三过渡层的附着力小于所述第二封装层的附着力;在所述第三过渡层上形成第三封装层,所述第三封装层的附着力小于所述第三过渡层的附着力。
在示例性实施方式中,步骤S2可以包括:
在所述发光结构层的阴极上形成第一封装层;在所述第一封装层上形成第二过渡层,所述第二过渡层的附着力大于所述第一封装层的附着力;在所述第二过渡层上形成第二封装层,所述第二封装层的附着力大于所述第二过渡层的附着力;在所述第二封装层上形成第三过渡层,所述第三过渡层的附着力小于所述第二封装层的附着力;在所述第三过渡层上形成第三封装层,所述第三封装层的附着力小于所述第三过渡层的附着力。
在示例性实施方式中,步骤S2可以包括:
在所述发光结构层的阴极上形成第一过渡层,所述第一过渡层的附着力大于所述发光结构层的阴极的附着力;在所述第一过渡层上形成第一封装层,所述第一封装层的附着力大于所述第一过渡层的附着力;在所述第一封装层上形成第二过渡层,所述第二过渡层的附着力大于所述第一封装层的附着力;在所述第二过渡层上形成第二封装层,所述第二封装层的附着力大于所述第 二过渡层的附着力;在所述第二封装层上形成第三过渡层,所述第三过渡层的附着力小于所述第二封装层的附着力;在所述第三过渡层上形成第三封装层,所述第三封装层的附着力小于所述第三过渡层的附着力。
在示例性实施方式中,所述第一过渡层包括第一子过渡层和第二子过渡层,所述第一封装层包括第一阻水层;在所述发光结构层的阴极上形成第一过渡层和第一封装层,包括:
在所述发光结构层的阴极上形成第一子过渡层,所述第一子过渡层的附着力大于所述发光结构层的阴极的附着力;
在所述第一子过渡层上形成第二子过渡层,所述第二子过渡层的附着力大于所述第一子过渡层的附着力;
在所述第二子过渡层上形成第一阻水层,所述第一阻水层的附着力大于所述第二子过渡层的附着力。
在示例性实施方式中,所述第一过渡层包括第一子过渡层和第二子过渡层,所述第一封装层包括第一阻水层和第二子阻水层;在所述发光结构层的阴极上形成第一过渡层和第一封装层,包括:
在所述发光结构层的阴极上形成第一子过渡层,所述第一子过渡层的附着力大于所述发光结构层的阴极的附着力;
在所述第一子过渡层上形成第一子阻水层,所述第一子阻水层的附着力大于所述第一子过渡层的附着力;
在所述第一子阻水层上形成第二子过渡层;
在所述第二子过渡层上形成第二子阻水层,所述第二子阻水层的附着力大于所述第二子过渡层的附着力。
在示例性实施方式中,所述第一子过渡层的密度小于所述第一子阻水层的密度;或者,所述第一子过渡层的模量小于所述第一子阻水层的模量;或者,所述第一子过渡层的硬度小于所述第一子阻水层的硬度;所述第一子过渡层的材料包括碳氮化硅。
本公开提供了一种显示基板的制备方法,通过在封装结构层中设置过渡 层,至少一个过渡层所接触的两个膜层中,一个膜层的附着力大于过渡层的附着力,另一个膜层的附着力小于过渡层的附着力,减小了膜层之间的附着力差值,降低了膜层之间的应力不匹配,有效避免了膜层之间界面的剥离,保证了薄膜封装的信赖性,不仅可以大幅度提高薄膜封装的可靠性,而且可以大幅度提升显示基板的耐弯折性能和卷曲能力,为长寿命需求的显示装置提供了保证。本公开示例性实施例显示基板的制备方法具有良好的工艺兼容性,工艺实现简单,易于实施,生产效率高,生产成本低。
本公开还提供了一种显示装置,包括前述实施例的显示基板。显示装置可以为:手机、平板电脑、电视机、显示器、笔记本电脑、数码相框或导航仪等任何具有显示功能的产品或部件。
虽然本公开所揭露的实施方式如上,但所述的内容仅为便于理解本公开而采用的实施方式,并非用以限定本公开。任何本公开所属领域内的技术人员,在不脱离本公开所揭露的精神和范围的前提下,可以在实施的形式及细节上进行任何的修改与变化,但本申请的专利保护范围,仍须以所附的权利要求书所界定的范围为准。

Claims (13)

  1. 一种显示基板,包括基底、设置在所述基底上的发光结构层以及设置在所述发光结构层远离所述基底一侧的封装结构层;所述封装结构层包括封装层和至少一个过渡层,所述过渡层邻近所述基底的一侧与第一侧膜层接触,所述过渡层远离所述基底的一侧与第二侧膜层接触,所述至少一个过渡层的附着力大于所述第一侧膜层和所述第二侧膜层中一个膜层的附着力,小于所述第一侧膜层和所述第二侧膜层中另一个膜层的附着力。
  2. 根据权利要求1所述的显示基板,其中,所述封装层包括沿着远离所述基底方向依次设置的第一封装层、第二封装层和第三封装层,所述过渡层包括如下任意一种或多种:第一过渡层、第二过渡层和第三过渡层,所述第一过渡层设置在所述发光结构层的阴极与所述第一封装层之间,所述第二过渡层设置在所述第一封装层与所述第二封装层之间,所述第三过渡层设置在所述第二封装层与所述第三封装层之间。
  3. 根据权利要求2所述的显示基板,其中,所述第一过渡层的附着力大于所述发光结构层的阴极的附着力,所述第一过渡层的附着力小于所述第一封装层的附着力。
  4. 根据权利要求2所述的显示基板,其中,所述第二过渡层的附着力大于所述第一封装层的附着力,所述第二过渡层的附着力小于所述第二封装层的附着力。
  5. 根据权利要求2所述的显示基板,其中,所述第三过渡层的附着力小于所述第二封装层的附着力,所述第三过渡层的附着力大于所述第三封装层的附着力。
  6. 根据权利要求2所述的显示基板,其中,所述第一过渡层包括第一子过渡层和第二子过渡层,所述第一封装层包括第一阻水层;
    所述第一子过渡层设置在所述发光结构层的阴极远离所述基底的一侧,所述第一子过渡层的附着力大于所述发光结构层的阴极的附着力;所述第二子过渡层设置在所述第一子过渡层远离所述基底的一侧,所述第二子过渡层的附着力大于所述第一子过渡层的附着力;所述第一阻水层设置在所述第二 子过渡层远离所述基底的一侧,所述第一阻水层的附着力大于所述第二子过渡层的附着力。
  7. 根据权利要求2所述的显示基板,其中,所述第一过渡层包括第一子过渡层和第二子过渡层,所述第一封装层包括第一子阻水层和第二子阻水层;
    所述第一子过渡层设置在所述发光结构层的阴极远离所述基底的一侧,所述第一子过渡层的附着力大于所述发光结构层的阴极的附着力;所述第一子阻水层设置在所述第一子过渡层远离所述基底的一侧,所述第一子阻水层的附着力大于所述第一子过渡层的附着力;所述第二子过渡层设置在所述第一子阻水层远离所述基底的一侧;所述第二子阻水层设置在所述第二子过渡层远离所述基底的一侧,所述第二子阻水层的附着力大于所述第二子过渡层的附着力。
  8. 根据权利要求6或7所述的显示基板,其中,所述第一子过渡层的密度小于所述第一子阻水层的密度;或者,所述第一子过渡层的模量小于所述第一子阻水层的模量;或者,所述第一子过渡层的硬度小于所述第一子阻水层的硬度。
  9. 一种显示装置,包括如权利要求1至8任一项所述的显示基板。
  10. 一种显示基板的制备方法,包括:
    在基底上形成发光结构层;
    在所述发光结构层上形成封装结构层,所述封装结构层包括封装层和至少一个过渡层,所述过渡层邻近所述基底的一侧与第一侧膜层接触,所述过渡层远离所述基底的一侧与第二侧膜层接触,所述至少一个过渡层的附着力大于所述第一侧膜层和所述第二侧膜层中一个膜层的附着力,小于所述第一侧膜层和所述第二侧膜层中另一个膜层的附着力。
  11. 根据权利要求10所述的制备方法,其中,在所述发光结构层上形成封装结构层,包括:
    在所述发光结构层的阴极上形成第一过渡层,所述第一过渡层的附着力大于所述发光结构层的阴极的附着力;在所述第一过渡层上形成第一封装层, 所述第一封装层的附着力大于所述第一过渡层的附着力;在所述第一封装层依次形成第二封装层和第三封装层;或者,
    在所述发光结构层的阴极上形成第一封装层;在所述第一封装层上形成第二过渡层,所述第二过渡层的附着力大于所述第一封装层的附着力;在所述第二过渡层上依次形成第二封装层和第三封装层,所述第二封装层的附着力大于所述第二过渡层的附着力;或者,
    在所述发光结构层的阴极上依次形成第一封装层和第二封装层;在所述第二封装层上形成第三过渡层,所述第三过渡层的附着力小于所述第二封装层的附着力;在所述第三过渡层上形成第三封装层,所述第三封装层的附着力小于所述第三过渡层的附着力;或者,
    在所述发光结构层的阴极上形成第一过渡层,所述第一过渡层的附着力大于所述发光结构层的阴极的附着力;在所述第一过渡层上形成第一封装层,所述第一封装层的附着力大于所述第一过渡层的附着力;在所述第一封装层上形成第二过渡层,所述第二过渡层的附着力大于所述第一封装层的附着力;在所述第二过渡层上依次形成第二封装层和第三封装层,所述第二封装层的附着力大于所述第二过渡层的附着力;或者,
    在所述发光结构层的阴极上形成第一过渡层,所述第一过渡层的附着力大于所述发光结构层的阴极的附着力;在所述第一过渡层上依次形成第一封装层和第二封装层,所述第一封装层的附着力大于所述第一过渡层的附着力;在所述第二封装层上形成第三过渡层,所述第三过渡层的附着力小于所述第二封装层的附着力;在所述第三过渡层上形成第三封装层,所述第三封装层的附着力小于所述第三过渡层的附着力;或者,
    在所述发光结构层的阴极上形成第一封装层;在所述第一封装层上形成第二过渡层,所述第二过渡层的附着力大于所述第一封装层的附着力;在所述第二过渡层上形成第二封装层,所述第二封装层的附着力大于所述第二过渡层的附着力;在所述第二封装层上形成第三过渡层,所述第三过渡层的附着力小于所述第二封装层的附着力;在所述第三过渡层上形成第三封装层,所述第三封装层的附着力小于所述第三过渡层的附着力;或者,
    在所述发光结构层的阴极上形成第一过渡层,所述第一过渡层的附着力大于所述发光结构层的阴极的附着力;在所述第一过渡层上形成第一封装层,所述第一封装层的附着力大于所述第一过渡层的附着力;在所述第一封装层上形成第二过渡层,所述第二过渡层的附着力大于所述第一封装层的附着力;在所述第二过渡层上形成第二封装层,所述第二封装层的附着力大于所述第二过渡层的附着力;在所述第二封装层上形成第三过渡层,所述第三过渡层的附着力小于所述第二封装层的附着力;在所述第三过渡层上形成第三封装层,所述第三封装层的附着力小于所述第三过渡层的附着力。
  12. 根据权利要求11所述的制备方法,其中,所述第一过渡层包括第一子过渡层和第二子过渡层,所述第一封装层包括第一阻水层;在所述发光结构层的阴极上形成第一过渡层和第一封装层,包括:
    在所述发光结构层的阴极上形成第一子过渡层,所述第一子过渡层的附着力大于所述发光结构层的阴极的附着力;
    在所述第一子过渡层上形成第二子过渡层,所述第二子过渡层的附着力大于所述第一子过渡层的附着力;
    在所述第二子过渡层上形成第一阻水层,所述第一阻水层的附着力大于所述第二子过渡层的附着力。
  13. 根据权利要求11所述的制备方法,其中,所述第一过渡层包括第一子过渡层和第二子过渡层,所述第一封装层包括第一阻水层和第二子阻水层;在所述发光结构层的阴极上形成第一过渡层和第一封装层,包括:
    在所述发光结构层的阴极上形成第一子过渡层,所述第一子过渡层的附着力大于所述发光结构层的阴极的附着力;
    在所述第一子过渡层上形成第一子阻水层,所述第一子阻水层的附着力大于所述第一子过渡层的附着力;
    在所述第一子阻水层上形成第二子过渡层;
    在所述第二子过渡层上形成第二子阻水层,所述第二子阻水层的附着力大于所述第二子过渡层的附着力。
PCT/CN2021/116259 2020-10-30 2021-09-02 显示基板及其制备方法、显示装置 WO2022088978A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US17/787,604 US20220416202A1 (en) 2020-10-30 2021-09-02 Display substrate, preparation method therefor, and display apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202011187132.1A CN112310318A (zh) 2020-10-30 2020-10-30 显示基板及其制备方法、显示装置
CN202011187132.1 2020-10-30

Publications (1)

Publication Number Publication Date
WO2022088978A1 true WO2022088978A1 (zh) 2022-05-05

Family

ID=74332390

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/116259 WO2022088978A1 (zh) 2020-10-30 2021-09-02 显示基板及其制备方法、显示装置

Country Status (3)

Country Link
US (1) US20220416202A1 (zh)
CN (1) CN112310318A (zh)
WO (1) WO2022088978A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112310318A (zh) * 2020-10-30 2021-02-02 京东方科技集团股份有限公司 显示基板及其制备方法、显示装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100112270A1 (en) * 2008-10-30 2010-05-06 Samsung Electronics Co., Ltd. Multilayer film, method for manufacture thereof and articles including the same
CN107302014A (zh) * 2017-07-17 2017-10-27 上海天马有机发光显示技术有限公司 一种有机发光显示面板,其显示装置及其制作方法
CN110943182A (zh) * 2019-11-22 2020-03-31 武汉华星光电半导体显示技术有限公司 有机电致发光器件
CN111129339A (zh) * 2019-11-25 2020-05-08 合肥维信诺科技有限公司 一种薄膜封装结构、制备方法和柔性显示屏
CN111129349A (zh) * 2019-12-26 2020-05-08 武汉华星光电半导体显示技术有限公司 显示面板及其制作方法
CN112310318A (zh) * 2020-10-30 2021-02-02 京东方科技集团股份有限公司 显示基板及其制备方法、显示装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20100112270A1 (en) * 2008-10-30 2010-05-06 Samsung Electronics Co., Ltd. Multilayer film, method for manufacture thereof and articles including the same
CN107302014A (zh) * 2017-07-17 2017-10-27 上海天马有机发光显示技术有限公司 一种有机发光显示面板,其显示装置及其制作方法
CN110943182A (zh) * 2019-11-22 2020-03-31 武汉华星光电半导体显示技术有限公司 有机电致发光器件
CN111129339A (zh) * 2019-11-25 2020-05-08 合肥维信诺科技有限公司 一种薄膜封装结构、制备方法和柔性显示屏
CN111129349A (zh) * 2019-12-26 2020-05-08 武汉华星光电半导体显示技术有限公司 显示面板及其制作方法
CN112310318A (zh) * 2020-10-30 2021-02-02 京东方科技集团股份有限公司 显示基板及其制备方法、显示装置

Also Published As

Publication number Publication date
CN112310318A (zh) 2021-02-02
US20220416202A1 (en) 2022-12-29

Similar Documents

Publication Publication Date Title
US9548343B2 (en) Flexible display
WO2022042059A1 (zh) Oled显示面板及其制备方法、显示装置
WO2022042046A1 (zh) 显示基板及其制备方法、显示装置
US10529790B2 (en) Organic light-emitting diode display and method of manufacturing the same with no cladding process
WO2022166306A1 (zh) 显示基板及其制备方法、显示装置
WO2021227040A1 (zh) 显示基板及其制备方法、显示装置
WO2024055785A1 (zh) 显示基板及显示装置
WO2021189483A1 (zh) 显示基板及其制备方法、显示装置
WO2022051994A1 (zh) 显示基板及其制备方法、显示装置
WO2022017394A1 (zh) 显示基板及其制备方法、显示装置
WO2022088978A1 (zh) 显示基板及其制备方法、显示装置
US20240081115A1 (en) Display substrate, manufacturing method thereof, and display device
WO2021189484A9 (zh) 显示基板及其制作方法、显示装置
CN113555400A (zh) 显示基板及其制备方法、显示装置
WO2021189480A1 (zh) 显示基板及其制备方法、显示装置
WO2022222070A1 (zh) 显示基板及其制备方法、显示装置
WO2022266887A1 (zh) 显示基板及其制备方法、显示装置
WO2022178827A1 (zh) 显示基板及其制备方法、显示装置
CN113594389B (zh) 显示基板及其制备方法、显示装置
CN112349864B (zh) 显示基板及其制备方法、显示装置
CN215342614U (zh) 显示基板和显示装置
WO2022204918A1 (zh) 显示基板及其制备方法、显示装置
WO2021169568A1 (zh) 显示母板及其制备方法、显示基板和显示装置
WO2022104739A1 (zh) 显示基板及其制备方法、显示装置
WO2023137709A1 (zh) 显示基板及其制备方法、显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21884709

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205 DATED 14/08/2023)

122 Ep: pct application non-entry in european phase

Ref document number: 21884709

Country of ref document: EP

Kind code of ref document: A1