WO2019074216A1 - 세균 메타게놈 분석을 통한 알츠하이머치매 진단방법 - Google Patents

세균 메타게놈 분석을 통한 알츠하이머치매 진단방법 Download PDF

Info

Publication number
WO2019074216A1
WO2019074216A1 PCT/KR2018/010776 KR2018010776W WO2019074216A1 WO 2019074216 A1 WO2019074216 A1 WO 2019074216A1 KR 2018010776 W KR2018010776 W KR 2018010776W WO 2019074216 A1 WO2019074216 A1 WO 2019074216A1
Authority
WO
WIPO (PCT)
Prior art keywords
derived
bacterial
extracellular vesicles
group
alzheimer
Prior art date
Application number
PCT/KR2018/010776
Other languages
English (en)
French (fr)
Inventor
김윤근
한평림
박진영
Original Assignee
주식회사 엠디헬스케어
이화여자대학교 산학협력단
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020180060753A external-priority patent/KR102130485B1/ko
Application filed by 주식회사 엠디헬스케어, 이화여자대학교 산학협력단 filed Critical 주식회사 엠디헬스케어
Priority to EP18866818.0A priority Critical patent/EP3696284A4/en
Priority to CN201880066002.7A priority patent/CN111417732B/zh
Priority to US16/755,190 priority patent/US20210277443A1/en
Priority to JP2020520015A priority patent/JP7116426B2/ja
Publication of WO2019074216A1 publication Critical patent/WO2019074216A1/ko

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6876Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes
    • C12Q1/6888Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms
    • C12Q1/6895Nucleic acid products used in the analysis of nucleic acids, e.g. primers or probes for detection or identification of organisms for plants, fungi or algae

Definitions

  • the present invention relates to a method for diagnosing Alzheimer's dementia through the analysis of a bacterial meta genome, and more specifically, by analyzing a bacterial meta genome using a normal person and a sample derived from a subject, And a method for diagnosing dementia.
  • Dementia is a disease that causes progressive degeneration of major brain functions and memory.
  • Alzheimer's dementia is the most common form of dementia, with 75% of Alzheimer's patients with dementia.
  • Alzheimer's dementia is present in elderly people, ranging from 10 to 65 years of age and from 30 to 50% of those over 85 years of age.
  • Alzheimer's dementia The cause of Alzheimer's dementia is not completely understood, but neuronal neuronal overgrowth of b-amyloid plaques and overexpression of hyperphosphorylated tau protein in neurons It is defined as a degenerative neurological disorder in which progressive cognitive dysfunction occurs due to neurological dysfunction such as nerve plasticity and neuronal cell death accompanied by pathological symptoms.
  • the invention of Alzheimer ' s dementia is broadly divided into genetic and environmental causes. Mutations of the amyloid precursor protein (APP), presenilin 1 (PS1), and presenilin 2 (PS2) genes are known to be genetic causes, and usually induce premature dementia, but the incidence is only about 1% of all Alzheimer's dementia Do not.
  • APP amyloid precursor protein
  • PS1 presenilin 1
  • PS2 presenilin 2
  • Apolipoprtein E4 genotype is a genetic risk factor that increases the incidence of dementia by 10% -35% in the elderly over 65 years.
  • Many researchers have recognized Alzheimer's disease as a complex disease caused by various non-genetic environmental factors such as aging and stress besides the genetic cause.
  • the mechanism of Alzheimer's dementia due to non-holistic and environmental causes is still well known .
  • Alzheimer's dementia due to genetic causes can also occur in the 20s and 40s, but is exceptional, and most dementia is diagnosed at age 65 or older.
  • Alzheimer's disease is a neurodegenerative neurological disease with neuropathologic findings
  • current clinical diagnosis is based on neuropsychological tests and psychological tests, which show a diagnostic accuracy of 80-90%.
  • potential dementia patients or dementia patients have disadvantages such as a severe psychological rejection of the repeated diagnosis by this method. It is possible to diagnose Alzheimer's dementia by imaging the b-amyloid deposited in the brain with fMRI, but this method is only used at the present study level.
  • studies on imaging of b-amyloid deposited in the brain using fMRI in patients with Alzheimer's dementia and normal persons have shown that the presence of b-amyloid deposits in the brain results in a true Alzheimer's dementia Of the patients, and 80% -85% of the patients.
  • microorganisms that are symbiotic to the human body is 10 times more than that of human cells, and the number of microorganisms is known to be over 100 times that of human genes.
  • Microbiota refers to microbial communities that include bacteria, archaea, and eukarya in a given settlement. Intestinal microbial guns play an important role in human physiology , And it is known to have a great influence on human health and disease through interaction with human cells. Bacteria that coexist in our body secrete nanometer-sized vesicles to exchange information such as genes, proteins, and low molecular compounds into other cells.
  • the mucous membrane forms a physical barrier that can not pass through particles of 200 nanometers (nm) or larger and can not pass through the mucous membrane when the bacteria are symbiotic to the mucous membrane.
  • the bacterial-derived vesicles are usually 100 nanometers or less in size, The mucous membrane is freely absorbed into our bodies.
  • Metagenomics also called environmental genomics, is an analysis of metagenomic data from samples taken in the environment.
  • 16s ribosomal RNA (16s rRNA) base sequence-based method has been able to catalog the bacterial composition of human microbial genome.
  • the 16s rDNA nucleotide sequence of 16s ribosomal RNA can be sequenced by next generation sequencing , NGS) platform.
  • NGS next generation sequencing
  • the present inventors In order to diagnose the causative factors of Alzheimer's dementia and the risk of the onset of the disease, the present inventors extracted genes from bacterial-derived extracellular vesicles present in blood, which is a sample derived from normal persons and subjects, and conducted metagenome analysis thereof. As a result, Derived vesicles capable of acting as a causative factor of the present invention. Based on these findings, the present invention has been completed.
  • the present invention provides a method for providing information for diagnosing Alzheimer's disease, comprising the following steps.
  • the present invention also provides a method for diagnosing Alzheimer's dementia comprising the steps of:
  • the present invention also provides a method for predicting the onset risk of Alzheimer ' s dementia comprising the steps of:
  • At least one phylum bacterial-derived cell selected from the group consisting of Deferribacteres, SR1, Synergistetes, and Thermi in step (c) It is possible to compare the increase and decrease of the contents of vesicles.
  • step (c) at least one selected from the group consisting of Alphaproteobacteria, Flavobacterias, Deferribacteres, and Deinococci It is possible to compare the increase or decrease in the content of extracellular vesicles derived from a class of bacteria.
  • the increase or decrease in the content of extracellular vesicles derived from an order bacterium selected from the group consisting of Rickettsiales in the step (c) can be compared.
  • step (c) Sphingomonadaceae, Deferribacteraceae, Weeksellaceae, Peptococcaceae, Rhodobacteria, For example, Rhodobacteraceae, Nocardiaceae, Neisseriaceae, Tissierellaceae, Flavobacteriaceae, Paraprevotellaceae, But are not limited to, Oxalobacteraceae, Gemellaceae, Aerococcaceae, Leptotrichiaceae, Rhodocyclaceae, Williamsiaceae, , And Deinococcaceae can be compared with those obtained from one or more family members of the bacterium.
  • the normal person and the subject sample are blood
  • step (c) one or more phylum bacterial-derived extracellular vesicles selected from the group consisting of Deferribacteres, SR1, Synergistetes, and Thermi,
  • Extracellular vesicles derived from one or more classes of bacteria selected from the group consisting of Alphaproteobacteria, Flavobacterias, Deferribacteres and Deinococci,
  • step (c) as compared with a sample derived from a normal person,
  • Extracellular vesicles derived from one or more classes of bacteria selected from the group consisting of Alphaproteobacteria and Deferribacteres,
  • Such as Sphingomonas, Mucispirillum, rc4-4, Paracoccus, Porphyromonas, Prevotella, Tepidimonas, Leptotrichia, ), Adlercreutzia, and Williamsia can be diagnosed as Alzheimer's disease if the content of one or more genus bacterial extracellular vesicles is increased.
  • step (c) as compared with a sample derived from a normal person,
  • SR1 Synergistetes, and Thermi, as well as one or more phylum bacterial extracellular vesicles selected from the group consisting of:
  • Extracellular vesicles derived from one or more classes of bacteria selected from the group consisting of Flavobacterias, Deinococci,
  • Extracellular vesicles derived from one or more family members selected from the group consisting of Aerococcaceae, Rhodocyclaceae and Deinococcaceae, or
  • Cloacibacterium Collinsella, Rothia, Dechloromonas, Rhodococcus, Neisseria, Citrobacter, Can be diagnosed as Alzheimer's dementia when the content of one or more genus bacterial-derived extracellular vesicles selected from the group consisting of Anaerococcus, Capnocytophaga and Deinococcus is reduced .
  • the present invention provides a method of providing information for diagnosis of mild cognitive impairment, comprising the steps of:
  • the invention also provides a method of diagnosing mild cognitive impairment comprising the steps of:
  • the invention also provides a method for predicting the onset risk of a mild cognitive impairment comprising the steps of:
  • step (c) the group consisting of Fusobacteria, Cyanobacteria, SR1, TM7, Thermi, Chloroflexi, and Armatimonadetes It is possible to compare the increase or decrease in the content of the selected extracellular vesicles derived from one or more phylum bacteria.
  • the amount of the extracellular vesicles derived from at least one class of bacteria can be compared.
  • step (c) at least one selected from the group consisting of Weeksellaceae, Fusobacteriaceae, Xanthomonadaceae, Rhodocyclaceae, For example, from the group consisting of Odoribacteraceae, Rhodobacteraceae, Nocardiaceae, Oxalobacteraceae, Microbacteriaceae, Deinococcaceae, It is possible to compare the increase or decrease in the content of one or more family-derived extracellular vesicles selected from the group consisting of Paenibacillaceae, Rhizobiaceae, and Fimbriimonadaceae.
  • the normal person and the subject sample are blood
  • step (c) one or more doors selected from the group consisting of Fusobacteria, Cyanobacteria, SR1, TM7, Thermi, Chloroflexi, and Armatimonadetes (phylum) bacterial extracellular vesicles,
  • At least one river selected from the group consisting of Betaproteobacteria, Fusobacteriia, Chloroplast, TM7-3, Deinococci, and Fimbriimonadia (class) germ-derived extracellular vesicles,
  • One or more order bacterial extracellular vesicles selected from the group consisting of Streptophyta, and Rickettsiales,
  • Cloacibacterium Fusobacterium, Lactococcus, Stenotrophomonas, Dechloromonas, Odoribacter, Rhodococcus, One or more genus bacterial strains selected from the group consisting of Flavobacterium, Deinococcus, Paenibacillus, Citrobacter, and Fimbriimonas. The increase or decrease in the content of extracellular vesicles can be compared.
  • step (c) as compared with a sample derived from a normal person,
  • microorganisms belonging to the genus Fusobacteriaceae, Odoribacteraceae, Rhodobacteraceae, Microbacteriaceae, Paenibacillaceae, and Rhizobiaceae One or more family bacterial extracellular vesicles selected from the group consisting of
  • One or more genus bacterial derived cells selected from the group consisting of Fusobacterium, Lactococcus, Odoribacter, Flavobacterium, and Paenibacillus. If the content of outer vesicles is increased, it can be diagnosed as a mild cognitive impairment.
  • step (c) as compared with a sample derived from a normal person,
  • One or more phylum bacterial-derived extracellular vesicles selected from the group consisting of Cyanobacteria, SR1, TM7, Thermi, Chloroflexi, and Armatimonadetes,
  • At least one class bacterial derived cell selected from the group consisting of Betaproteobacteria, Chloroplast, TM7-3, Deinococci, and Fimbriimonadia Outside parcels,
  • Streptophyta and Rickettsiales order bacterial extracellular vesicles
  • Cloacibacterium Stenotrophomonas, Dechloromonas, Rhodococcus, Deinococcus, Citrobacter, and Fimbriimonas
  • Cloacibacterium Stenotrophomonas
  • Dechloromonas Rhodococcus
  • Deinococcus Citrobacter
  • Fimbriimonas Fimbriimonas
  • the present invention provides a method for providing information for diagnosing Alzheimer's disease, comprising the following steps.
  • the present invention also provides a method for diagnosing Alzheimer's dementia comprising the steps of:
  • the present invention also provides a method for predicting the onset risk of Alzheimer ' s dementia comprising the steps of:
  • step (c) one or more phylum bacterial-derived extracellular vesicles selected from the group consisting of Fusobacteria, Deferribacteres, and Armatimonadetes, Can be compared.
  • step (c) at least one class of bacterium-derived cells selected from the group consisting of Fusobacterias, Deferribacteres, and Alphaproteobacteria It is possible to compare the increase and decrease of the contents of vesicles.
  • the increase or decrease in the amount of extracellular vesicles derived from an order bacterium selected from the group consisting of Methanobacteriales in the step (c) can be compared.
  • microbacteriaceae in step (c), microbacteriaceae, Fusobacteriaceae, Aerococcaceae, Bifidobacteriaceae, Bifidobacteriaceae, Deferribacteraceae, Sphingomonadaceae, Flavobacteriaceae, Rhizobiaceae, Leptotrichiaceae, and Micrococcaceae have been reported to be effective against the disease, The increase or decrease in the content of one or more kinds of extracellular vesicles derived from one or more family members selected from the group consisting of
  • step (c) in step (c), at least one selected from the group consisting of Fusobacterium, Collinsella, Sphingomonas, Bifidobacterium, Mucispirillum, Such as Paracoccus, Flavobacterium, Blautia, Tepidimonas, Odoribacter, Veillonella, Porphyromonas, and Lepto
  • Fusobacterium, Collinsella, Sphingomonas, Bifidobacterium, Mucispirillum Such as Paracoccus, Flavobacterium, Blautia, Tepidimonas, Odoribacter, Veillonella, Porphyromonas, and Lepto
  • the increase or decrease in the content of one or more genus bacterial-derived extracellular vesicles selected from the group consisting of Leptotrichia can be compared.
  • the patient with mild cognitive impairment and the sample of the subject are blood
  • step (c) one or more phylum bacterial-derived extracellular vesicles selected from the group consisting of Fusobacteria, Deferribacteres, and Armatimonadetes,
  • Extracellular vesicles derived from one or more classes of bacteria selected from the group consisting of Fusobacterium, Deferribacteres, and Alphaproteobacteria,
  • Microbacteriaceae Fusobacteriaceae, Aerococcaceae, Bifidobacteriaceae, Deferribacteraceae, Sphingomonadaceae, Bifidobacteriaceae, Bacillus thuringiensis, One or more family bacterial derived cells selected from the group consisting of Flavobacteriaceae, Rhizobiaceae, Leptotrichiaceae, and Micrococcaceae, Outside parcel, or
  • Fusobacterium Collinsella, Sphingomonas, Bifidobacterium, Mucispirillum, Paracoccus, Flavobacterium, One or more species selected from the group consisting of Blautia, Tepidimonas, Odoribacter, Veillonella, Porphyromonas, and Leptotrichia and the increase or decrease in the content of germ-derived extracellular vesicles can be compared.
  • step (c) compared to a sample derived from a patient with mild cognitive impairment,
  • Deferrable bacteria Deferribacteres, and Armatimonadetes, and at least one phylum bacterial-derived extracellular vesicle,
  • Extracellular vesicles derived from one or more classes of bacteria selected from the group consisting of Deferribacteres, Alphaproteobacteria,
  • One or more family-derived bacterial extracellular vesicles selected from the group consisting of Deferribacteraceae, Sphingomonadaceae, and Leptotrichiaceae, or
  • step (c) in the step (c), compared to a sample derived from a patient with mild cognitive impairment,
  • Microbacteriaceae Fusobacteriaceae, Aerococcaceae, Bifidobacteriaceae, Flavobacteriaceae, Rhizobiaceae, and the like are also known as microbacteria, , And Micrococcaceae, or an extracellular vesicle-derived extracellular vesicle from the family, or
  • the blood may be whole blood, serum, plasma, or blood mononuclear cells.
  • the extracellular vesicles secreted by bacteria present in the environment are absorbed into the body to directly affect Alzheimer's dementia.
  • Alzheimer's disease is difficult to be diagnosed before the onset of symptoms.
  • a human-derived sample according to the present invention by analyzing the metagenomic analysis of bacterial-derived extracellular vesicles using a human-derived sample according to the present invention, it is possible to diagnose and predict the risk group of Alzheimer's dementia in advance by diagnosing the causative factors of Alzheimer's dementia and the risk of the onset thereof, Management can slow the onset of the disease or prevent the outbreak.
  • it is possible to diagnose Alzheimer's dementia early after the onset so that the incidence of Alzheimer's dementia can be lowered and the treatment effect can be enhanced.
  • the mild cognitive impairment meta genome analysis can be used to diagnose the risk group of mild cognitive impairment early, to delay the onset of the disease or to prevent the onset of disease through proper management, and to diagnose the onset of mild cognitive impairment There is an advantage in that the treatment effect can be lowered.
  • Fig. 1 (a) is a photograph of distribution patterns of bacteria and vesicles after oral administration of intestinal bacteria and bacterial-derived vesicles (EVs) to a mouse, and Fig. 1 (b) And various organs were extracted to evaluate the distribution patterns of bacteria and vesicles in the body.
  • EVs intestinal bacteria and bacterial-derived vesicles
  • FIG. 2 is a graph showing the distribution of bacterial-derived vesicles (EVs) having a diagnostic performance at the phylum level by performing a metagenome analysis after separating bacterial-derived vesicles from Alzheimer's patients with dementia and normal human blood.
  • EVs bacterial-derived vesicles
  • FIG. 3 is a graph showing the distribution of bacterial-derived vesicles (EVs) with diagnostic performance at the class level by performing a metagenome analysis after separating bacterial-derived vesicles from Alzheimer's patients with dementia and normal human blood.
  • EVs bacterial-derived vesicles
  • FIG. 4 shows the distribution of bacterial-derived vesicles (EVs) with diagnostic performance at the order level by performing a metagenome analysis after separating bacterial-derived vesicles from Alzheimer's patients with dementia and normal human blood.
  • EVs bacterial-derived vesicles
  • FIG. 5 is a graph showing the distribution of bacterial-derived vesicles (EVs), which has a diagnostic performance at a family level, by performing a metagenome analysis after separating bacterial-derived vesicles from Alzheimer's patients with dementia and normal human blood.
  • EVs bacterial-derived vesicles
  • FIG. 6 is a graph showing the distribution of bacterial-derived vesicles (EVs) in which the diagnostic performance is significant at the genus level by performing a metagenome analysis after separating bacterial-derived vesicles from Alzheimer's patients with dementia and normal human blood.
  • EVs bacterial-derived vesicles
  • FIG. 7 shows the distribution of bacterial-derived vesicles (EVs) with diagnostic performance at the phylum level by performing a metagenome analysis after separating bacterial-derived vesicles from patients with mild cognitive impairment and normal blood.
  • EVs bacterial-derived vesicles
  • Figure 8 shows the distribution of bacterial-derived vesicles (EVs) with diagnostic performance at the class level by performing a metagenome analysis after isolating bacterial-derived vesicles from patients with mild cognitive impairment and normal blood.
  • EVs bacterial-derived vesicles
  • FIG. 9 shows the distribution of bacterial-derived vesicles (EVs) with diagnostic performance at the order level by performing a metagenome analysis after isolating bacterial-derived vesicles from patients with mild cognitive impairment and normal blood.
  • EVs bacterial-derived vesicles
  • FIG. 10 shows the distribution of bacterial-derived vesicles (EVs) with diagnostic performance at the family level by performing a metagenome analysis after isolating bacterial-derived vesicles from patients with mild cognitive impairment and normal blood.
  • EVs bacterial-derived vesicles
  • FIG. 11 shows the distribution of bacterial-derived vesicles (EVs) with diagnostic performance at the genus level by performing the metagenome analysis after isolating bacterial-derived vesicles from patients with mild cognitive impairment and normal blood.
  • EVs bacterial-derived vesicles
  • Figure 12 shows the distribution of bacterial-derived vesicles (EVs) with diagnostic performance at the phylum level by performing a metagenome analysis after isolating bacterial-derived vesicles from the blood of patients with mild cognitive impairment and Alzheimer's dementia to be.
  • EVs bacterial-derived vesicles
  • Figure 13 shows the distribution of bacterial-derived vesicles (EVs) with diagnostic performance at the class level by performing the metagenomic analysis after isolating bacterial-derived vesicles from the blood of patients with mild cognitive impairment and Alzheimer ' s dementia to be.
  • EVs bacterial-derived vesicles
  • EVs bacterial-derived vesicles
  • EVs bacterial-derived vesicles
  • FIG. 16 is a graph showing the distribution of bacterial-derived vesicles (EVs) having a diagnostic performance at the genus level by performing a metagenome analysis after isolating bacterial-derived vesicles from patients with mild cognitive impairment and Alzheimer's disease patients to be.
  • EVs bacterial-derived vesicles
  • the present invention relates to a method for diagnosing Alzheimer ' s dementia and mild cognitive impairment through the analysis of bacterial metagenomes.
  • the present inventors extracted genes from bacterial-derived extracellular vesicles using normal and subject-derived samples, , And identified extracellular vesicles derived from bacteria that could act as causative factors for Alzheimer 's dementia and hard cognitive dysfunction.
  • the present invention provides a method for detecting abnormalities in a sample, comprising the steps of: (a) extracting DNA from extracellular vesicles present in a normal person and a sample of a subject;
  • the present invention also relates to a method for screening a sample for the treatment of mild cognitive impairment, comprising the steps of: (a) extracting DNA from an extracellular vesicle isolated from a patient with mild cognitive impairment and a subject;
  • diagnosis of Alzheimer ' s dementia " as used in the present invention means to determine whether a patient is likely to develop Alzheimer's dementia, whether the likelihood of Alzheimer's dementia is relatively high, or whether Alzheimer's dementia has already developed .
  • the method of the present invention can be used to slow the onset or prevent the onset of disease through special and appropriate management as a patient at high risk of developing Alzheimer ' s dementia for any particular patient.
  • the method of the present invention can be clinically used to determine treatment by early diagnosis of Alzheimer ' s dementia and by selecting the most appropriate treatment regime.
  • &quot mild cognitive impairment &quot
  • cognitive impairment is a risk factor for dementia, as it is known that it differs from dementia in daily life, and in the elderly with mild cognitive impairment, it progresses from 10% to dementia.
  • diagnosis of mild cognitive impairment means to determine whether a mild cognitive impairment is likely to occur in a patient, whether a mild cognitive disorder is more likely to occur, or whether a mild cognitive impairment has already occurred do.
  • the method of the present invention can be used to slow the onset or prevent the onset of disease through special and appropriate management as a patient with a high risk of developing mild cognitive impairment for any particular patient.
  • the methods of the present invention can be used clinically to determine treatment by early diagnosis of a mild cognitive impairment and by selecting the most appropriate treatment regimen.
  • metagenome refers to the total of genomes including all viruses, bacteria, fungi, etc. in an isolated area such as soil, It is used as a concept of a genome to explain the identification of many microorganisms at once by using a sequencer to analyze microorganisms that are not cultured mainly.
  • a metagenome is not a genome or a genome of a species, but a kind of mixed genome as a dielectric of all species of an environmental unit. This is a term derived from the viewpoint that when defining a species in the course of omics biology development, it functions not only as an existing species but also as a species that interacts with various species to form a complete species.
  • metagenomic analysis was carried out preferably using extracellular vesicles derived from bacteria isolated from blood.
  • the normal person and the subject sample may be blood or urine, and the blood may be preferably whole blood, serum, plasma, or blood mononuclear cells, but is not limited thereto.
  • the metagenomic analysis of the extracellular vesicles derived from the bacterium was performed and analyzed at the level of phylum, class, order, family, and genus, respectively To identify bacterial-derived vesicles that could actually act as a cause of Alzheimer's dementia.
  • the germ metagenomes were analyzed at the door level for vesicles present in a blood sample from a subject, and as a result, Deferribacteres, SR1, Synergistes, Thermi) germ-derived extracellular vesicles were significantly different between Alzheimer ' s dementia patients and normal subjects (see Example 4).
  • the bacterial metagenomes were analyzed at the river level for the vesicles present in blood samples from the subject, and as a result, it was found that the expression levels of alphaproteobacteria, Flavobacterias, Deferribacteres, and Deinococci strong bacterial extracellular vesicles were significantly different between Alzheimer ' s dementia patients and normal subjects (see Example 4).
  • the analysis of the bacterial metagenomes at the neck level against the vesicles present in the blood sample from the subject revealed that the content of extracellular vesicles derived from Rickettsiales bacillus was higher in patients with Alzheimer ' There was a significant difference between normal subjects (see Example 4).
  • the bacterial metagenomes were analyzed at high levels for vesicles present in a blood sample from a subject, and as a result, Sphingomonadaceae, Deferribacteraceae, For example, Weeksellaceae, Peptococcaceae, Rhodobacteraceae, Nocardiaceae, Neisseriaceae, Tissierellaceae, Flavobacterium, But are not limited to, Flavobacteriaceae, Paraprevotellaceae, Oxalobacteraceae, Gemellaceae, Aerococcaceae, Leptotrichiaceae, ), Rhodocyclaceae, Williamsiaceae, and Deinococcaceae and bacterial-derived extracellular vesicle content were significantly different between Alzheimer's patients and normal subjects See 4 o'clock).
  • the genome-level analysis of the bacterial metagenomes for vesicles present in a blood sample from a subject shows that Sphingomonas, Mucispirillum, (Cloacibacterium), rc4-4, Collinsella, Rothia, Dechloromonas, Rhodococcus, Neisseria, Paracoccus, Citrobacter ), Porphyromonas, Anaerococcus, Prevotella, Tepidimonas, Leptotrichia, Capnocytophaga, Adlerocutia, The content of extracellular vesicles derived from Adlercreutzia, Williamsia, and Deinococcus was significantly different between Alzheimer ' s dementia patients and normal subjects (see Example 4).
  • the metagenomic analysis of the extracellular vesicles derived from the bacterium was carried out and analyzed at the level of phylum, class, order, family, and genus Were analyzed to identify bacterial-derived vesicles that could actually act as a cause of hardness cognitive dysfunction.
  • the bacterial metagenomes were analyzed at the door level against the vesicles present in the blood samples from the subject. As a result, it was found that Fusobacteria, Cyanobacteria, SR1, TM7, Thermi ), Chloroflexi, and Armatimonadetes germ cell-derived extracellular vesicles were significantly different between the patients with mild cognitive impairment and the normal subjects (see Example 5).
  • bacterial metagenomes were analyzed at a river level against vesicles present in a blood sample from a subject, and as a result, Betaproteobacteria, Fusobacterias, The content of extracellular vesicles derived from bacteria such as Chloroplast, TM7-3, Deinococci, and Fimbriimonadia strong bacteria was significantly different between mild cognitive impairment patients and normal persons (see Example 5) .
  • the analysis of the bacterial metagenomes at the neck level against the vesicles present in the blood samples from the subject resulted in the detection of extracellular vesicles from Streptophyta, Rickettsiales, (See Example 5). ≪ tb > < TABLE >
  • the bacterial metagenomes were analyzed at a high level against vesicles present in a blood sample from a subject, and as a result, it was confirmed that the viruses such as Weeksellaceae, Fusobacteriaceae, (Xanthomonadaceae), Rhodocyclaceae, Odoribacteraceae, Rhodobacteraceae, Nocardiaceae, Oxalobacteraceae, Microorganisms such as microorganisms, The content of microbacteriaceae, Deinococcaceae, Paenibacillaceae, Rhizobiaceae, and Fimbriimonadaceae and bacterial-derived extracellular vesicles were measured in terms of hardness There was a significant difference between cognitively impaired and normal subjects (see Example 5).
  • the viruses such as Weeksellaceae, Fusobacteriaceae, (Xanthomonadaceae), Rhodocyclaceae, Odoribacteraceae, Rhodobacteraceae
  • the genome-level analysis of bacterial metagenomes for vesicles present in a blood sample from a subject has revealed that Cloacibacterium, Fusobacterium, For example, Lactococcus, Stenotrophomonas, Dechloromonas, Odoribacter, Rhodococcus, Flavobacterium, Deinococcus, Fanny Bacillus,
  • Cloacibacterium, Fusobacterium For example, Lactococcus, Stenotrophomonas, Dechloromonas, Odoribacter, Rhodococcus, Flavobacterium, Deinococcus, Fanny Bacillus
  • the content of extracellular vesicles derived from bacteria such as Paenibacillus, Citrobacter, and Fimbriimonas was significantly different between the patients with mild cognitive impairment and the normal subjects (see Example 5).
  • the metagenomic analysis of the extracellular vesicles derived from the bacterium was carried out and analyzed at the level of phylum, class, order, family, and genus Each was analyzed to identify bacterial-derived vesicles that could actually cause Alzheimer's dementia.
  • the germ metagenomes were analyzed at the door level against vesicles present in a blood sample from a subject, and as a result, it was found that Fusobacteria, Deferribacteres, and Armatimonadetes ) The amount of bacterial-derived extracellular vesicles was significantly different between patients with Alzheimer's disease and those with mild cognitive impairment (see Example 6).
  • the bacterial metagenomes were analyzed at the river level against vesicles present in a blood sample from a subject, and as a result, peptides such as Fusobacterias, Deferribacteres, and Alpha proteobacteria
  • peptides such as Fusobacterias, Deferribacteres, and Alpha proteobacteria
  • the content of extracellular vesicles derived from strong bacterium Alphaproteobacteria was significantly different between Alzheimer's dementia patients and patients with mild cognitive impairment (see Example 6).
  • the analysis of the bacterial metagenomes at the neck level against the vesicles present in the blood sample from the subject revealed that the content of extracellular vesicles derived from the bacterium Methanobacteriales was higher than that of Alzheimer's dementia There were significant differences between patients and patients with mild cognitive impairment (see Example 6).
  • the bacterial metagenomes were analyzed at a high level against vesicles present in a blood sample from a subject, and as a result, microbacteriaceae, Fusobacteriaceae, (Eg, Aerococcaceae, Bifidobacteriaceae, Deferribacteraceae, Sphingomonadaceae, Flavobacteriaceae, Rhizobiaceae, Leptoviruses, The content of Leptotrichiaceae, Micrococcaceae and bacterial-derived extracellular vesicles was significantly different between Alzheimer's dementia patients and patients with mild cognitive impairment (see Example 6).
  • a genome-wide analysis of the bacterial metagenomes for vesicles present in blood samples from a subject has shown that Fusobacterium, Collinsella, Sphingomonas Bifidobacterium, Mucispirillum, Paracoccus, Flavobacterium, Blautia, Tepidimonas, Odoribacter, and the like), Bifidobacterium, Mucispirillum, Paracoccus, , Veillonella, Porphyromonas, and Leptotrichia were significantly different between patients with Alzheimer ' s dementia and those with mild cognitive impairment (Example 6 Reference).
  • Example 1 Analysis of intestinal absorption, distribution, and excretion of intestinal bacteria and bacterial-derived vesicles
  • Example 2 Separation of extracellular vesicles from blood and DNA extraction
  • blood was first added to a 10 ml tube and centrifuged (3,500 xg, 10 min, 4 ° C) to resuspend the supernatant and recover the supernatant. I moved.
  • Bacteria and foreign substances were removed from the recovered supernatant using a 0.22 mu m filter, transferred to centripreigugal filters 50 kD, centrifuged at 1500 xg for 15 minutes at 4 DEG C to discard substances smaller than 50 kD, ≪ / RTI > After removing bacteria and debris using a 0.22 ⁇ m filter, the supernatant was discarded using a Type 90 rotator at 150,000 x g for 3 hours at 4 ° C, and the supernatant was discarded. The pellet was dissolved in physiological saline (PBS) A vesicle was obtained.
  • PBS physiological saline
  • PCR was performed using the 16S rDNA primer shown in Table 1 to amplify the gene and perform sequencing (Illumina MiSeq sequencer).
  • the result is output to the Standard Flowgram Format (SFF) file and the SFF file is converted into the sequence file (.fasta) and the nucleotide quality score file using the GS FLX software (v2.9) (20 bps) and less than 99% of the average base call accuracy (Phred score ⁇ 20).
  • SFF Standard Flowgram Format
  • GS FLX software v2.9
  • clustering is performed based on sequence similarity of 94% for the genus, 90% for the family, 85% for the order, 80% for the class, and 75% for the phylum Bacteria with a sequence similarity of 97% or more were analyzed using the 16S DNA sequence database (108,453 sequence) of BLASTN and GreenGenes (QIIME).
  • Example 4 Normal people Alzheimer's patients with dementia Blood-separated Bacterial origin parcel Meta genome Analysis based Alzheimer's dementia Diagnostic model
  • metagenomic sequencing was carried out after separating vesicles from blood of 70 normal people matched with age and gender of 67 patients with Alzheimer's disease.
  • the diagnostic model first the p value between the two groups was less than 0.05 and the difference between the two groups was more than 2 times, and the logistic regression analysis was used to determine the diagnostic performance index AUC under curve, sensitivity, and specificity.
  • Rhodobacteraceae For example, Rhodobacteraceae, Nocardiaceae, Neisseriaceae, Tissierellaceae, Flavobacteriaceae, Paraprevotellaceae, But are not limited to, Oxalobacteraceae, Gemellaceae, Aerococcaceae, Leptotrichiaceae, Rhodocyclaceae, Williamsiaceae, ), And Deinococcaceae and bacterial biomarkers, the diagnostic performance of Alzheimer's dementia was significant (see Table 5 and Figure 5).
  • Example 5 Healthy people Patients with mild cognitive impairment Blood-separated Bacterial origin parcel Meta genome Analysis based Mild cognitive impairment Diagnostic model
  • Metagenomic sequencing was performed by separating the vesicles from blood of 70 normal persons matched for age and gender with 65 patients with mild cognitive impairment by the method of Example 3 above.
  • the p value between the two groups was less than 0.05 and the difference between the two groups was more than 2 times, and the logistic regression analysis was used to determine the diagnostic performance index AUC under curve, sensitivity, and specificity.
  • Cloacibacterium Fusobacterium, Lactococcus, Stenotrophomonas, Such as Dechloromonas, Odoribacter, Rhodococcus, Flavobacterium, Deinococcus, Paenibacillus, Citrobacter, and Fimbriimonas, ) Diagnostic bacterium, the diagnostic performance of the mild cognitive impairment was significant (see Table 11 and Figure 11).
  • Example 6 Patients with mild cognitive impairment Alzheimer's patients with dementia Blood-separated Bacterial origin parcel Meta genome Analysis-based Alzheimer's Dementia Diagnostic Model
  • Metagenomic sequencing was performed by separating vesicles from the blood of 65 patients with mild cognitive impairment that matched age and gender with 67 patients with Alzheimer's disease by the method of Example 3 above.
  • the diagnostic model first the p value between the two groups was less than 0.05 and the difference between the two groups was more than 2 times, and the logistic regression analysis was used to determine the diagnostic performance index AUC under curve, sensitivity, and specificity.
  • Bacterial-derived vesicles in the blood were analyzed at the family level and found to be microbacteriaceae, Fusobacteriaceae, Aerococcaceae, Bifidobacteriaceae, , Deferribacteraceae, Sphingomonadaceae, Flavobacteriaceae, Rhizobiaceae, Leptotrichiaceae, and Micrococcaceae.
  • the present invention also relates to a method for producing the above- And bacterium biomarkers, the diagnostic performance of Alzheimer's dementia was significant (see Table 15 and Figure 15).
  • a method for providing information on the diagnosis of Alzheimer's disease by analyzing a bacterial metagenome comprises analyzing a bacterial metagenome using a sample derived from a normal person and an examinee to analyze changes in the content of a specific bacterium-derived extracellular vesicle, It can be used to predict and diagnose the risk of developing mild cognitive impairment.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Health & Medical Sciences (AREA)
  • Biotechnology (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Immunology (AREA)
  • Mycology (AREA)
  • Microbiology (AREA)
  • Molecular Biology (AREA)
  • Botany (AREA)
  • Biophysics (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • General Engineering & Computer Science (AREA)
  • General Health & Medical Sciences (AREA)
  • Genetics & Genomics (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)

Abstract

본 발명은 세균 메타게놈 분석을 통해 알츠하이머치매를 진단하는 방법에 관한 것으로서, 보다 구체적으로는 정상인 및 피검자 유래 샘플을 이용해 세균 메타게놈 분석을 수행하여 특정 세균 유래 세포밖 소포의 함량 증감을 분석함으로써 알츠하이머치매 및 경도인지장애를 진단하는 방법 등에 관한 것이다. 환경에 존재하는 세균에서 분비되는 세포밖 소포는 체내에 흡수되어 뇌조직으로 침투하여 알츠하이머치매와 같은 인지기능에 직접적인 영향을 미칠 수 있으며, 알츠하이머치매는 증상이 나타나기 전 조기진단이 어려워 효율적인 치료가 어려운 실정이다. 이에, 본 발명에 따른 인체 유래 샘플을 이용한 세균 유래 세포밖 소포의 메타게놈 분석을 통해 경도인지장애 및 알츠하이머치매 발병의 위험도를 미리 예측함으로써 알츠하이머치매의 위험군을 조기에 진단 및 예측하여 적절한 관리를 통해 발병 시기를 늦추거나 발병을 예방할 수 있으며, 발병 후에도 조기진단 할 수 있어 알츠하이머치매의 발병률을 낮추고 치료효과를 높일 수 있다.

Description

세균 메타게놈 분석을 통한 알츠하이머치매 진단방법
본 발명은 세균 메타게놈 분석을 통해 알츠하이머치매를 진단하는 방법에 관한 것으로서, 보다 구체적으로는 정상인 및 피검자 유래 샘플을 이용해 세균 메타게놈 분석을 수행하여 특정 세균 유래 세포밖 소포의 함량 증감을 분석함으로써 알츠하이머치매를 진단하는 방법 등에 관한 것이다.
치매 (dementia)는 주요 뇌기능 및 기억력의 점진적인 퇴행을 가져오는 병이다. 알츠하이머치매는 치매의 가장 흔한 형태이며, 75%의 치매환자가 알츠하이머치매이다. 알츠하이머 치매는 65세 이상의 10%, 85세 이상의 30-50%에 이르는 노인들에서 나타난다.
알츠하이머치매의 발병 원인은 완전히 이해되지 않은 상태이나, 병리적 기전으로 신경세포 밖에 베타-아밀로이드(b-amyloid) 플라그의 과다 침착 및 신경세포 내 과인산화된 타우(tau) 단백질의 과다 형성등의 신경병리 증상이 수반되고, 그로 인한 신경가소성 등의 신경세포의 기능 손상 및 신경세포사 등으로 인해 점진적인 인지기능 장애가 나타나는 퇴행성 신경계 질환으로 정의된다. 알츠하이머 치매의 발명은 유전적인 원인과 환경적 원인에 의한 것으로 대별된다. 유전적인 원인의 경우로서 Amyloid precursor protein (APP), presenilin 1 (PS1), presenilin 2 (PS2) 유전자의 돌연변이 예들이 알려져 있으며, 대체로 조발성치매를 유도하나 그 빈도는 전체 알츠하이머 치매의 1% 전후에 지나지 않는다. Apolipoprtein E4 유전자형 (allele)은 유전적 위험인자로서 65세 이상의 노인에서 치매 발병 비율을 10%-35% 가량 증가시키는 유전적 위험인자이다. 많은 연구자들은 알츠하이머 치매가 유전적 원인 이외에 노화, 스트레스 등의 다양한 비유전적 환경인자에 의해 비롯되는 복합적인 질환으로 인식하고 있으나, 아직까지 비유전적, 환경적 원인에 의한 알츠하이머 치매의 기전은 아직 잘 밝혀지지 않았다. 유전적 원인에 의한 조발성 알츠하이머 치매는 20-40대에도 나타날 수 있으나 예외적이며, 대부분의 치매는 65세 이상에서 진단을 받는다.
알츠하이머 치매는 신경병리적 소견이 수반되는 퇴행성 신경계 병임에도 불구하고 현재 임상적으로 적용하는 진단은 신경정신과적 검사, 심리검사 등을 통해 이루어지는데, 80-90%의 진단 정확도를 나타낸다. 또한 잠재적인 치매 환자, 또는 치매 환자들은 이 방법에 의한 반복 진단에 대해 심한 심리적 거부감을 나타내는 등의 단점이 있다. fMRI로 뇌에 침착되는 b-amyloid를 영상적으로 탐지하여 알츠하이머 치매를 진단하는 것이 가능하나 이 방법은 현재 연구용 수준에서만 사용된다. 또한, 알츠하이머 치매 환자 및 정상인을 대상으로 fMRI를 사용하여 뇌에 침착되는 b-amyloid를 영상적으로 탐지하는 연구들에 따르면 뇌에 b-amyloid 침착의 영상적 소견이 있는 경우 중 실제 알츠하이머 치매로 판정되는 비율은 80%-85% 정도이며, 또한 정상인의 경우에도 10% 이상은 b-amyloid 침착의 영상적 소견이 있는 것으로 보고되었다. 이러한 결과들을 종합해 보면 fMRI를 사용하여 b-amyloid를 영상적으로 탐지하는 방법만으로 알츠하이머 치매를 진단하는 것이 최선의 방법이 아닌 것으로 보인다. 전 지구적으로 노인 인구의 증가로 인해 알츠하이머 치매 환자의 수가 급격히 증가하고 있으나 아직까지 알츠하이머 치매의 주된 진단 방법이 신경정신과적 심리검사의 의존하고 있어, 비용적, 기술적인 면에서 건강 및 의료 친화적인 새로운 진단 방법의 개발을 매우 긴요하게 필요로 하고 있다(한국등록특허 10-0595494).
한편, 인체에 공생하는 미생물은 100조에 이르러 인간 세포보다 10배 많으며, 미생물의 유전자수는 인간 유전자수의 100배가 넘는 것으로 알려지고 있다. 미생물총(microbiota)은 주어진 거주지에 존재하는 세균(bacteria), 고세균(archaea), 진핵생물(eukarya)을 포함한 미생물 군집(microbial community)을 말하고, 장내 미생물총은 사람의 생리현상에 중요한 역할을 하며, 인체 세포와 상호작용을 통해 인간의 건강과 질병에 큰 영향을 미치는 것으로 알려져 있다. 우리 몸에 공생하는 세균은 다른 세포로의 유전자, 단백질, 저분자화합물 등의 정보를 교환하기 위하여 나노미터 크기의 소포(vesicle)를 분비한다. 점막은 200 나노미터(nm) 크기 이상의 입자는 통과할 수 없는 물리적인 방어막을 형성하여 점막에 공생하는 세균인 경우에는 점막을 통과하지 못하지만, 세균 유래 소포는 크기가 대개 100 나노미터 크기 이하라서 비교적 자유롭게 점막을 통화하여 우리 몸에 흡수된다.
환경 유전체학이라고도 불리는 메타게놈학은 환경에서 채취한 샘플에서 얻은 메타게놈 자료에 대한 분석학이라고 할 수 있다. 최근 16s 리보솜 RNA(16s rRNA) 염기서열을 기반으로 한 방법으로 인간의 미생물총의 세균 구성을 목록화하는 것이 가능해졌으며, 16s 리보솜 RNA의 유전자인 16s rDNA 염기서열을 차세대 염기서열분석 (next generation sequencing, NGS) 플랫폼을 이용하여 분석한다. 그러나 아직까지 알츠하이머치매 발병에 있어서, 혈액 또는 소변 등의 인체 유래물에서 세균 유래 소포에 존재하는 메타게놈 분석을 통해 치매의 원인인자를 동정하고 치매를 예측하거나 혹은 진단하는 방법에 대해서는 보고된 바가 없다.
본 발명자들은 알츠하이머치매의 원인인자 및 발병 위험도를 미리 진단하기 위하여, 정상인 및 피검자 유래 샘플인 혈액에 존재하는 세균 유래 세포밖 소포로부터 유전자를 추출하고 이에 대하여 메타게놈 분석을 수행하였으며, 그 결과 알츠하이머치매의 원인인자로 작용할 수 있는 세균 유래 세포밖 소포를 동정하였는바, 이에 기초하여 본 발명을 완성하였다.
이에, 본 발명은 세균 유래 세포밖 소포에 대한 메타게놈 분석을 통해 알츠하이머치매를 진단하기 위한 정보제공방법, 알츠하이머치매 진단방법, 및 알츠하이머치매 발병 위험도 예측방법 등을 제공하는 것을 목적으로 한다.
또한, 본 발명은 세균 유래 세포밖 소포에 대한 메타게놈 분석을 통해 경도인지장애를 진단하기 위한 정보제공방법, 경도인지장애 진단방법, 및 경도인지장애 발병 위험도 예측방법 등을 제공하는 것을 목적으로 한다.
그러나 본 발명이 이루고자 하는 기술적 과제는 이상에서 언급한 과제에 제한되지 않으며, 언급되지 않은 또 다른 과제들은 아래의 기재로부터 당업자에게 명확하게 이해될 수 있을 것이다.
상기와 같은 본 발명의 목적을 달성하기 위하여, 본 발명은 하기의 단계를 포함하는, 알츠하이머치매 진단을 위한 정보제공방법을 제공한다.
(a) 정상인 및 피검자 샘플에서 분리한 세포밖 소포로부터 DNA를 추출하는 단계;
(b) 상기 추출한 DNA에 대하여 서열번호 1 및 서열번호 2의 프라이머 쌍을 이용하여 PCR(Polymerase chain reaction)을 수행하는 단계; 및
(c) 상기 PCR 산물의 서열분석을 통하여 정상인 유래 샘플과 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계.
또한, 본 발명은 하기의 단계를 포함하는, 알츠하이머치매 진단방법을 제공한다:
(a) 정상인 및 피검자 샘플에서 분리한 세포밖 소포로부터 DNA를 추출하는 단계;
(b) 상기 추출한 DNA에 대하여 서열번호 1 및 서열번호 2의 프라이머 쌍을 이용하여 PCR(Polymerase chain reaction)을 수행하는 단계; 및
(c) 상기 PCR 산물의 서열분석을 통하여 정상인 유래 샘플과 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계.
또한, 본 발명은 하기의 단계를 포함하는, 알츠하이머치매의 발병 위험도 예측방법을 제공한다:
(a) 정상인 및 피검자 샘플에서 분리한 세포밖 소포로부터 DNA를 추출하는 단계;
(b) 상기 추출한 DNA에 대하여 서열번호 1 및 서열번호 2의 프라이머 쌍을 이용하여 PCR(Polymerase chain reaction)을 수행하는 단계; 및
(c) 상기 PCR 산물의 서열분석을 통하여 정상인 유래 샘플과 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계.
본 발명의 구현예로, 상기 (c) 단계에서 탈철간균(Deferribacteres), SR1, 시너지스테테스(Synergistetes), 및 써미(Thermi)로 이루어진 군으로부터 선택되는 1종 이상의 문(phylum) 세균 유래 세포밖 소포의 함량 증감을 비교할 수 있다.
본 발명의 구현예로, 상기 (c) 단계에서 알파프로테오박테리아(Alphaproteobacteria), 플라보박테리아(Flavobacteriia), 탈철간균(Deferribacteres), 및 데이노코키(Deinococci)로 이루어진 군으로부터 선택되는 1종 이상의 강(class) 세균 유래 세포밖 소포의 함량 증감을 비교할 수 있다.
본 발명의 또 다른 구현예로, 상기 (c) 단계에서 리케치아레스(Rickettsiales)로 이루어진 군으로부터 선택되는 목(order) 세균 유래 세포밖 소포의 함량 증감을 비교할 수 있다.
본 발명의 또 다른 구현예로, 상기 (c) 단계에서 스핑고모나다시에(Sphingomonadaceae), 탈철간균과(Deferribacteraceae), 위크셀라시에(Weeksellaceae), 펩토코카시에(Peptococcaceae), 로도박테라시에(Rhodobacteraceae), 노카르디아시에(Nocardiaceae), 나이세리아시에(Neisseriaceae), 티시에렐라시에(Tissierellaceae), 플라보박테리아시에(Flavobacteriaceae), 파라프레보텔라시에(Paraprevotellaceae), 옥살로박테라시에(Oxalobacteraceae), 제멜라시에(Gemellaceae), 아에로코카시에(Aerococcaceae), 렙토트리치아시에(Leptotrichiaceae), 로도사이클라시에(Rhodocyclaceae), 윌리암시아시에(Williamsiaceae), 및 데이노코카시에(Deinococcaceae)로 이루어진 군으로부터 선택되는 1종 이상의 과(family) 세균 유래 세포밖 소포의 함량 증감을 비교할 수 있다.
본 발명의 또 다른 구현예로, 상기 (c) 단계에서 스핑고모나스(Sphingomonas), 뮤시스피릴룸(Mucispirillum), 클로시박테리움(Cloacibacterium), rc4-4, 콜린셀라(Collinsella), 로티아(Rothia), 데클로로모나스(Dechloromonas), 로도코커스(Rhodococcus), 나이세리아(Neisseria), 파라코커스(Paracoccus), 시트로박터(Citrobacter), 포르피로모나스(Porphyromonas), 아나에로코커스(Anaerococcus), 프레보텔라(Prevotella), 테피디모나스(Tepidimonas), 렙토트리치아(Leptotrichia), 카프노시토파가(Capnocytophaga), 아들러크레우치아(Adlercreutzia), 윌리암시아(Williamsia), 및 데이노코커스(Deinococcus)로 이루어진 군으로부터 선택되는 1종 이상의 속(genus) 세균 유래 세포밖 소포의 함량 증감을 비교할 수 있다.
본 발명의 일구현예로, 상기 정상인 및 피검자 샘플은 혈액이고,
상기 (c) 단계에서, 탈철간균(Deferribacteres), SR1, 시너지스테테스(Synergistetes), 및 써미(Thermi)로 이루어진 군으로부터 선택되는 1종 이상의 문(phylum) 세균 유래 세포밖 소포,
알파프로테오박테리아(Alphaproteobacteria), 플라보박테리아(Flavobacteriia), 탈철간균(Deferribacteres), 및 데이노코키(Deinococci)로 이루어진 군으로부터 선택되는 1종 이상의 강(class) 세균 유래 세포밖 소포,
리케치아레스(Rickettsiales) 목(order) 세균 유래 세포밖 소포,
스핑고모나다시에(Sphingomonadaceae), 탈철간균과(Deferribacteraceae), 위크셀라시에(Weeksellaceae), 펩토코카시에(Peptococcaceae), 로도박테라시에(Rhodobacteraceae), 노카르디아시에(Nocardiaceae), 나이세리아시에(Neisseriaceae), 티시에렐라시에(Tissierellaceae), 플라보박테리아시에(Flavobacteriaceae), 파라프레보텔라시에(Paraprevotellaceae), 옥살로박테라시에(Oxalobacteraceae), 제멜라시에(Gemellaceae), 아에로코카시에(Aerococcaceae), 렙토트리치아시에(Leptotrichiaceae), 로도사이클라시에(Rhodocyclaceae), 윌리암시아시에(Williamsiaceae), 및 데이노코카시에(Deinococcaceae)로 이루어진 군으로부터 선택되는 1종 이상의 과(family) 세균 유래 세포밖 소포, 또는
스핑고모나스(Sphingomonas), 뮤시스피릴룸(Mucispirillum), 클로시박테리움(Cloacibacterium), rc4-4, 콜린셀라(Collinsella), 로티아(Rothia), 데클로로모나스(Dechloromonas), 로도코커스(Rhodococcus), 나이세리아(Neisseria), 파라코커스(Paracoccus), 시트로박터(Citrobacter), 포르피로모나스(Porphyromonas), 아나에로코커스(Anaerococcus), 프레보텔라(Prevotella), 테피디모나스(Tepidimonas), 렙토트리치아(Leptotrichia), 카프노시토파가(Capnocytophaga), 아들러크레우치아(Adlercreutzia), 윌리암시아(Williamsia), 및 데이노코커스(Deinococcus)로 이루어진 군으로부터 선택되는 1종 이상의 속(genus) 세균 유래 세포밖 소포의 함량 증감을 비교할 수 있다.
본 발명의 다른 구현예로, 상기 (c) 단계에서, 정상인 유래 샘플과 비교하여,
탈철간균(Deferribacteres) 문(phylum) 세균 유래 세포밖 소포,
알파프로테오박테리아(Alphaproteobacteria) 및 탈철간균(Deferribacteres)으로 이루어진 군으로부터 선택되는 1종 이상의 강(class) 세균 유래 세포밖 소포,
스핑고모나다시에(Sphingomonadaceae), 탈철간균과(Deferribacteraceae), 펩토코카시에(Peptococcaceae), 로도박테라시에(Rhodobacteraceae), 파라프레보텔라시에(Paraprevotellaceae), 제멜라시에(Gemellaceae), 렙토트리치아시에(Leptotrichiaceae), 및 윌리암시아시에(Williamsiaceae)로 이루어진 군으로부터 선택되는 1종 이상의 과(family) 세균 유래 세포밖 소포, 또는
스핑고모나스(Sphingomonas), 뮤시스피릴룸(Mucispirillum), rc4-4, 파라코커스(Paracoccus), 포르피로모나스(Porphyromonas), 프레보텔라(Prevotella), 테피디모나스(Tepidimonas), 렙토트리치아(Leptotrichia), 아들러크레우치아(Adlercreutzia), 및 윌리암시아(Williamsia)로 이루어진 군으로부터 선택되는 1종 이상의 속(genus) 세균 유래 세포밖 소포의 함량이 증가되어 있는 경우 알츠하이머치매로 진단할 수 있다.
본 발명의 또 다른 구현예로, 상기 (c) 단계에서, 정상인 유래 샘플과 비교하여,
SR1, 시너지스테테스(Synergistetes), 및 써미(Thermi)로 이루어진 군으로부터 선택되는 1종 이상의 문(phylum) 세균 유래 세포밖 소포,
플라보박테리아(Flavobacteriia), 및 데이노코키(Deinococci)로 이루어진 군으로부터 선택되는 1종 이상의 강(class) 세균 유래 세포밖 소포,
리케치아레스(Rickettsiales) 목(order) 세균 유래 세포밖 소포,
위크셀라시에(Weeksellaceae), 노카르디아시에(Nocardiaceae), 나이세리아시에(Neisseriaceae), 티시에렐라시에(Tissierellaceae), 플라보박테리아시에(Flavobacteriaceae), 옥살로박테라시에(Oxalobacteraceae), 아에로코카시에(Aerococcaceae), 로도사이클라시에(Rhodocyclaceae) 및 데이노코카시에(Deinococcaceae)로 이루어진 군으로부터 선택되는 1종 이상의 과(family) 세균 유래 세포밖 소포, 또는
클로시박테리움(Cloacibacterium), 콜린셀라(Collinsella), 로티아(Rothia), 데클로로모나스(Dechloromonas), 로도코커스(Rhodococcus), 나이세리아(Neisseria), 시트로박터(Citrobacter), 아나에로코커스(Anaerococcus), 카프노시토파가(Capnocytophaga) 및 데이노코커스(Deinococcus)로 이루어진 군으로부터 선택되는 1종 이상의 속(genus) 세균 유래 세포밖 소포의 함량이 감소되어 있는 경우 알츠하이머치매로 진단할 수 있다.
상기와 같은 본 발명의 목적을 달성하기 위하여, 본 발명은 하기의 단계를 포함하는, 경도인지장애 진단을 위한 정보제공방법을 제공한다.
(a) 정상인 및 피검자 샘플에서 분리한 세포밖 소포로부터 DNA를 추출하는 단계;
(b) 상기 추출한 DNA에 대하여 서열번호 1 및 서열번호 2의 프라이머 쌍을 이용하여 PCR(Polymerase chain reaction)을 수행하는 단계; 및
(c) 상기 PCR 산물의 서열분석을 통하여 정상인 유래 샘플과 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계.
또한, 본 발명은 하기의 단계를 포함하는, 경도인지장애 진단방법을 제공한다:
(a) 정상인 및 피검자 샘플에서 분리한 세포밖 소포로부터 DNA를 추출하는 단계;
(b) 상기 추출한 DNA에 대하여 서열번호 1 및 서열번호 2의 프라이머 쌍을 이용하여 PCR(Polymerase chain reaction)을 수행하는 단계; 및
(c) 상기 PCR 산물의 서열분석을 통하여 정상인 유래 샘플과 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계.
또한, 본 발명은 하기의 단계를 포함하는, 경도인지장애의 발병 위험도 예측방법을 제공한다:
(a) 정상인 및 피검자 샘플에서 분리한 세포밖 소포로부터 DNA를 추출하는 단계;
(b) 상기 추출한 DNA에 대하여 서열번호 1 및 서열번호 2의 프라이머 쌍을 이용하여 PCR(Polymerase chain reaction)을 수행하는 단계; 및
(c) 상기 PCR 산물의 서열분석을 통하여 정상인 유래 샘플과 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계.
본 발명의 구현예로, 상기 (c) 단계에서 푸조박테리아(Fusobacteria), 남세균(Cyanobacteria), SR1, TM7, 써미(Thermi), 클로로플렉시(Chloroflexi), 및 아르마티모나스(Armatimonadetes)로 이루어진 군으로부터 선택되는 1종 이상의 문(phylum) 세균 유래 세포밖 소포의 함량 증감을 비교할 수 있다.
본 발명의 구현예로, 상기 (c) 단계에서 베타프로테오박테리아(Betaproteobacteria), 푸조박테리아(Fusobacteriia), 클로로플라스트(Chloroplast), TM7-3, 데이노코키(Deinococci), 및 핌브리모나디아(Fimbriimonadia)로 이루어진 군으로부터 선택되는 1종 이상의 강(class) 세균 유래 세포밖 소포의 함량 증감을 비교할 수 있다.
본 발명의 또 다른 구현예로, 상기 (c) 단계에서 스트렙토피타(Streptophyta), 및 리케치아레스(Rickettsiales)로 이루어진 군으로부터 선택되는 1종 이상의 목(order) 세균 유래 세포밖 소포의 함량 증감을 비교할 수 있다.
본 발명의 또 다른 구현예로, 상기 (c) 단계에서 위크셀라시에(Weeksellaceae), 푸조박테리아시에(Fusobacteriaceae), 산토모나다시에(Xanthomonadaceae), 로도사이클라시에(Rhodocyclaceae), 오도리박테라시에(Odoribacteraceae), 로도박테라시에(Rhodobacteraceae), 노가르디아시에(Nocardiaceae), 옥살로박테라시에(Oxalobacteraceae), 마이크로박테리아시에(Microbacteriaceae), 데이노코카시에(Deinococcaceae), 패니바실라시에(Paenibacillaceae), 리조비움과(Rhizobiaceae), 및 핌브리모나다시에(Fimbriimonadaceae)로 이루어진 군으로부터 선택되는 1종 이상의 과(family) 세균 유래 세포밖 소포의 함량 증감을 비교할 수 있다.
본 발명의 또 다른 구현예로, 상기 (c) 단계에서 클로시박테리움(Cloacibacterium), 푸조박테리움(Fusobacterium), 락토코쿠스(Lactococcus), 스테노트로포모나스(Stenotrophomonas), 데클로로모나스(Dechloromonas), 오도리박터(Odoribacter), 로도코커스(Rhodococcus), 플라보박테리움(Flavobacterium), 데이노코커스(Deinococcus), 패니바실러스(Paenibacillus), 시트로박터(Citrobacter), 및 핌브리모나스(Fimbriimonas)로 이루어진 군으로부터 선택되는 1종 이상의 속(genus) 세균 유래 세포밖 소포의 함량 증감을 비교할 수 있다.
본 발명의 일구현예로, 상기 정상인 및 피검자 샘플은 혈액이고,
상기 (c) 단계에서, 푸조박테리아(Fusobacteria), 남세균(Cyanobacteria), SR1, TM7, 써미(Thermi), 클로로플렉시(Chloroflexi), 및 아르마티모나스(Armatimonadetes)로 이루어진 군으로부터 선택되는 1종 이상의 문(phylum) 세균 유래 세포밖 소포,
베타프로테오박테리아(Betaproteobacteria), 푸조박테리아(Fusobacteriia), 클로로플라스트(Chloroplast), TM7-3, 데이노코키(Deinococci), 및 핌브리모나디아(Fimbriimonadia)로 이루어진 군으로부터 선택되는 1종 이상의 강(class) 세균 유래 세포밖 소포,
스트렙토피타(Streptophyta), 및 리케치아레스(Rickettsiales)로 이루어진 군으로부터 선택되는 1종 이상의 목(order) 세균 유래 세포밖 소포,
위크셀라시에(Weeksellaceae), 푸조박테리아시에(Fusobacteriaceae), 산토모나다시에(Xanthomonadaceae), 로도사이클라시에(Rhodocyclaceae), 오도리박테라시에(Odoribacteraceae), 로도박테라시에(Rhodobacteraceae), 노가르디아시에(Nocardiaceae), 옥살로박테라시에(Oxalobacteraceae), 마이크로박테리아시에(Microbacteriaceae), 데이노코카시에(Deinococcaceae), 패니바실라시에(Paenibacillaceae), 리조비움과(Rhizobiaceae), 및 핌브리모나다시에(Fimbriimonadaceae)로 이루어진 군으로부터 선택되는 1종 이상의 과(family) 세균 유래 세포밖 소포, 또는
클로시박테리움(Cloacibacterium), 푸조박테리움(Fusobacterium), 락토코쿠스(Lactococcus), 스테노트로포모나스(Stenotrophomonas), 데클로로모나스(Dechloromonas), 오도리박터(Odoribacter), 로도코커스(Rhodococcus), 플라보박테리움(Flavobacterium), 데이노코커스(Deinococcus), 패니바실러스(Paenibacillus), 시트로박터(Citrobacter), 및 핌브리모나스(Fimbriimonas)로 이루어진 군으로부터 선택되는 1종 이상의 속(genus) 세균 유래 세포밖 소포의 함량 증감을 비교할 수 있다.
본 발명의 다른 구현예로, 상기 (c) 단계에서, 정상인 유래 샘플과 비교하여,
푸조박테리아(Fusobacteria) 문(phylum) 세균 유래 세포밖 소포,
푸조박테리아(Fusobacteriia) 강(class) 세균 유래 세포밖 소포,
푸조박테리아시에(Fusobacteriaceae), 오도리박테라시에(Odoribacteraceae), 로도박테라시에(Rhodobacteraceae), 마이크로박테리아시에(Microbacteriaceae), 패니바실라시에(Paenibacillaceae), 및 리조비움과(Rhizobiaceae)로 이루어진 군으로부터 선택되는 1종 이상의 과(family) 세균 유래 세포밖 소포, 또는
푸조박테리움(Fusobacterium), 락토코쿠스(Lactococcus), 오도리박터(Odoribacter), 플라보박테리움(Flavobacterium), 및 패니바실러스(Paenibacillus)로 이루어진 군으로부터 선택되는 1종 이상의 속(genus) 세균 유래 세포밖 소포의 함량이 증가되어 있는 경우 경도인지장애로 진단할 수 있다.
본 발명의 또 다른 구현예로, 상기 (c) 단계에서, 정상인 유래 샘플과 비교하여,
남세균(Cyanobacteria), SR1, TM7, 써미(Thermi), 클로로플렉시(Chloroflexi), 및 아르마티모나스(Armatimonadetes)로 이루어진 군으로부터 선택되는 1종 이상의 문(phylum) 세균 유래 세포밖 소포,
베타프로테오박테리아(Betaproteobacteria), 클로로플라스트(Chloroplast), TM7-3, 데이노코키(Deinococci), 및 핌브리모나디아(Fimbriimonadia)로 이루어진 군으로부터 선택되는 1종 이상의 강(class) 세균 유래 세포밖 소포,
스트렙토피타(Streptophyta), 및 리케치아레스(Rickettsiales) 목(order) 세균 유래 세포밖 소포,
위크셀라시에(Weeksellaceae), 산토모나다시에(Xanthomonadaceae), 로도사이클라시에(Rhodocyclaceae), 노가르디아시에(Nocardiaceae), 옥살로박테라시에(Oxalobacteraceae), 데이노코카시에(Deinococcaceae), 및 핌브리모나다시에(Fimbriimonadaceae)로 이루어진 군으로부터 선택되는 1종 이상의 과(family) 세균 유래 세포밖 소포, 또는
클로시박테리움(Cloacibacterium), 스테노트로포모나스(Stenotrophomonas), 데클로로모나스(Dechloromonas), 로도코커스(Rhodococcus), 데이노코커스(Deinococcus), 시트로박터(Citrobacter), 및 핌브리모나스(Fimbriimonas)로 이루어진 군으로부터 선택되는 1종 이상의 속(genus) 세균 유래 세포밖 소포의 함량이 감소되어 있는 경우 경도인지장애로 진단할 수 있다.
상기와 같은 본 발명의 목적을 달성하기 위하여, 본 발명은 하기의 단계를 포함하는, 알츠하이머치매 진단을 위한 정보제공방법을 제공한다.
(a) 경도인지장애환자 및 피검자 샘플에서 분리한 세포밖 소포로부터 DNA를 추출하는 단계;
(b) 상기 추출한 DNA에 대하여 서열번호 1 및 서열번호 2의 프라이머 쌍을 이용하여 PCR(Polymerase chain reaction)을 수행하는 단계; 및
(c) 상기 PCR 산물의 서열분석을 통하여 경도인지장애환자 유래 샘플과 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계.
또한, 본 발명은 하기의 단계를 포함하는, 알츠하이머치매 진단방법을 제공한다:
(a) 경도인지장애환자 및 피검자 샘플에서 분리한 세포밖 소포로부터 DNA를 추출하는 단계;
(b) 상기 추출한 DNA에 대하여 서열번호 1 및 서열번호 2의 프라이머 쌍을 이용하여 PCR(Polymerase chain reaction)을 수행하는 단계; 및
(c) 상기 PCR 산물의 서열분석을 통하여 경도인지장애환자 유래 샘플과 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계.
또한, 본 발명은 하기의 단계를 포함하는, 알츠하이머치매의 발병 위험도 예측방법을 제공한다:
(a) 경도인지장애환자 및 피검자 샘플에서 분리한 세포밖 소포로부터 DNA를 추출하는 단계;
(b) 상기 추출한 DNA에 대하여 서열번호 1 및 서열번호 2의 프라이머 쌍을 이용하여 PCR(Polymerase chain reaction)을 수행하는 단계; 및
(c) 상기 PCR 산물의 서열분석을 통하여 경도인지장애환자 유래 샘플과 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계.
본 발명의 구현예로, 상기 (c) 단계에서 푸조박테리아(Fusobacteria), 탈철간균(Deferribacteres), 및 아르마티모나스(Armatimonadetes)로 이루어진 군으로부터 선택되는 1종 이상의 문(phylum) 세균 유래 세포밖 소포의 함량 증감을 비교할 수 있다.
본 발명의 구현예로, 상기 (c) 단계에서 푸조박테리아(Fusobacteriia), 탈철간균(Deferribacteres), 및 알파프로테오박테리아(Alphaproteobacteria)로 이루어진 군으로부터 선택되는 1종 이상의 강(class) 세균 유래 세포밖 소포의 함량 증감을 비교할 수 있다.
본 발명의 또 다른 구현예로, 상기 (c) 단계에서 메타노박테리알레스(Methanobacteriales)로 이루어진 군으로부터 선택되는 목(order) 세균 유래 세포밖 소포의 함량 증감을 비교할 수 있다.
본 발명의 또 다른 구현예로, 상기 (c) 단계에서 마이크로박테리아시에(Microbacteriaceae), 푸조박테리아시에(Fusobacteriaceae), 아에로코카시에(Aerococcaceae), 비피도박테리움과(Bifidobacteriaceae), 탈철간균과(Deferribacteraceae), 스핑고모나다시에(Sphingomonadaceae), 플라보박테리아시에(Flavobacteriaceae), 리조비움과(Rhizobiaceae), 렙토트리치아시에(Leptotrichiaceae), 및 마이크로코카시에(Micrococcaceae)로 이루어진 군으로부터 선택되는 1종 이상의 과(family) 세균 유래 세포밖 소포의 함량 증감을 비교할 수 있다.
본 발명의 또 다른 구현예로, 상기 (c) 단계에서 푸조박테리움(Fusobacterium), 콜린셀라(Collinsella), 스핑고모나스(Sphingomonas), 비피도박테리움(Bifidobacterium), 뮤시스피릴룸(Mucispirillum), 파라코커스(Paracoccus), 플라보박테리움(Flavobacterium), 블라우티아(Blautia), 테피디모나스(Tepidimonas), 오도리박터(Odoribacter), 베일로넬라(Veillonella), 포르피로모나스(Porphyromonas), 및 렙토트리치아(Leptotrichia)로 이루어진 군으로부터 선택되는 1종 이상의 속(genus) 세균 유래 세포밖 소포의 함량 증감을 비교할 수 있다.
본 발명의 일구현예로, 상기 경도인지장애환자 및 피검자 샘플은 혈액이고,
상기 (c) 단계에서, 푸조박테리아(Fusobacteria), 탈철간균(Deferribacteres), 및 아르마티모나스(Armatimonadetes)로 이루어진 군으로부터 선택되는 1종 이상의 문(phylum) 세균 유래 세포밖 소포,
푸조박테리아(Fusobacteriia), 탈철간균(Deferribacteres), 및 알파프로테오박테리아(Alphaproteobacteria)로 이루어진 군으로부터 선택되는 1종 이상의 강(class) 세균 유래 세포밖 소포,
메타노박테리알레스(Methanobacteriales) 목(order) 세균 유래 세포밖 소포,
마이크로박테리아시에(Microbacteriaceae), 푸조박테리아시에(Fusobacteriaceae), 아에로코카시에(Aerococcaceae), 비피도박테리움과(Bifidobacteriaceae), 탈철간균과(Deferribacteraceae), 스핑고모나다시에(Sphingomonadaceae), 플라보박테리아시에(Flavobacteriaceae), 리조비움과(Rhizobiaceae), 렙토트리치아시에(Leptotrichiaceae), 및 마이크로코카시에(Micrococcaceae)로 이루어진 군으로부터 선택되는 1종 이상의 과(family) 세균 유래 세포밖 소포, 또는
푸조박테리움(Fusobacterium), 콜린셀라(Collinsella), 스핑고모나스(Sphingomonas), 비피도박테리움(Bifidobacterium), 뮤시스피릴룸(Mucispirillum), 파라코커스(Paracoccus), 플라보박테리움(Flavobacterium), 블라우티아(Blautia), 테피디모나스(Tepidimonas), 오도리박터(Odoribacter), 베일로넬라(Veillonella), 포르피로모나스(Porphyromonas), 및 렙토트리치아(Leptotrichia)로 이루어진 군으로부터 선택되는 1종 이상의 속(genus) 세균 유래 세포밖 소포의 함량 증감을 비교할 수 있다.
본 발명의 다른 구현예로, 상기 (c) 단계에서, 경도인지장애환자 유래 샘플과 비교하여,
탈철간균(Deferribacteres), 및 아르마티모나스(Armatimonadetes)로 이루어진 군으로부터 선택되는 1종 이상의 문(phylum) 세균 유래 세포밖 소포,
탈철간균(Deferribacteres), 및 알파프로테오박테리아(Alphaproteobacteria)로 이루어진 군으로부터 선택되는 1종 이상의 강(class) 세균 유래 세포밖 소포,
탈철간균과(Deferribacteraceae), 스핑고모나다시에(Sphingomonadaceae), 및 렙토트리치아시에(Leptotrichiaceae)로 이루어진 군으로부터 선택되는 1종 이상의 과(family) 세균 유래 세포밖 소포, 또는
스핑고모나스(Sphingomonas), 뮤시스피릴룸(Mucispirillum), 파라코커스(Paracoccus), 테피디모나스(Tepidimonas), 포르피로모나스(Porphyromonas), 및 렙토트리치아(Leptotrichia)로 이루어진 군으로부터 선택되는 1종 이상의 속(genus) 세균 유래 세포밖 소포의 함량이 증가되어 있는 경우 알츠하이머치매로 진단할 수 있다.
본 발명의 또 다른 구현예로, 상기 (c) 단계에서, 경도인지장애환자 유래 샘플과 비교하여,
푸조박테리아(Fusobacteria) 문(phylum) 세균 유래 세포밖 소포,
푸조박테리아(Fusobacteriia) 강(class) 세균 유래 세포밖 소포,
메타노박테리알레스(Methanobacteriales) 목(order) 세균 유래 세포밖 소포,
마이크로박테리아시에(Microbacteriaceae), 푸조박테리아시에(Fusobacteriaceae), 아에로코카시에(Aerococcaceae), 비피도박테리움과(Bifidobacteriaceae), 플라보박테리아시에(Flavobacteriaceae), 리조비움과(Rhizobiaceae), 및 마이크로코카시에(Micrococcaceae)로 이루어진 군으로부터 선택되는 1종 이상의 과(family) 세균 유래 세포밖 소포, 또는
푸조박테리움(Fusobacterium), 콜린셀라(Collinsella), 비피도박테리움(Bifidobacterium), 플라보박테리움(Flavobacterium), 블라우티아(Blautia), 오도리박터(Odoribacter), 및 베일로넬라(Veillonella)로 이루어진 군으로부터 선택되는 1종 이상의 속(genus) 세균 유래 세포밖 소포의 함량이 감소되어 있는 경우 알츠하이머치매로 진단할 수 있다.
본 발명의 또 다른 구현예로, 상기 혈액은 전혈, 혈청, 혈장, 또는 혈액 단핵구일 수 있다.
환경에 존재하는 세균에서 분비되는 세포밖 소포는 체내에 흡수되어 알츠하이머치매 발생에 직접적인 영향을 미칠 수 있으며, 알츠하이머치매는 증상이 나타나기 전 조기진단이 어려워 효율적인 치료가 어려운 실정이다. 이에, 본 발명에 따른 인체 유래 샘플을 이용한 세균 유래 세포밖 소포의 메타게놈 분석을 통해 알츠하이머치매의 원인인자 및 발병의 위험도를 미리 진단함으로써 알츠하이머치매의 위험군을 조기에 진단 및 예측 가능하며, 또한 적절한 관리를 통해 발병 시기를 늦추거나 발병을 예방할 수 있다. 이에 더하여, 발병 후에도 조기진단 할 수 있어 알츠하이머치매의 발병률을 낮추고 치료효과를 높일 수 있을 뿐 아니라, 알츠하이머치매로 진단받은 환자에서 메타게놈 분석을 통해 원인인자를 진단하여 이에 대한 노출을 피함으로써 질병의 경과를 좋게 하거나, 재발을 막을 수 있다는 장점이 있다. 이에 더하여, 경도인지장애도 메타게놈 분석을 통해 경도인지장애의 위험군을 조기에 진단하여 적절한 관리를 통해 발병 시기를 늦추거나 발병을 예방할 수 있으며, 발병 후에도 조기진단 할 수 있어 경도인지장애의 발병률을 낮추고 치료효과를 높일 수 있다는 장점이 있다.
도 1a는, 마우스에 장내 세균과 세균 유래 소포 (EVs)를 구강으로 투여한 후, 시간별로 세균과 소포의 분포양상을 촬영한 사진이고, 도 1b는 구강으로 투여한 후 12시간째에, 혈액 및 여러 장기를 적출하여, 세균과 소포의 체내 분포양상을 평가한 그림이다.
도 2는 알츠하이머치매환자 및 정상인 혈액에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 문(phylum) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.
도 3은 알츠하이머치매환자 및 정상인 혈액에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 강(class) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.
도 4는 알츠하이머치매환자 및 정상인 혈액에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 목(order) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.
도 5는 알츠하이머치매환자 및 정상인 혈액에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 과(family) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.
도 6은 알츠하이머치매환자 및 정상인 혈액에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 속(genus) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.
도 7은 경도인지장애환자 및 정상인 혈액에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 문(phylum) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.
도 8은 경도인지장애환자 및 정상인 혈액에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 강(class) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.
도 9는 경도인지장애환자 및 정상인 혈액에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 목(order) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.
도 10은 경도인지장애환자 및 정상인 혈액에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 과(family) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.
도 11은 경도인지장애환자 및 정상인 혈액에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 속(genus) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.
도 12는 경도인지장애환자 및 알츠하이머치매환자 혈액에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 문(phylum) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.
도 13은 경도인지장애환자 및 알츠하이머치매환자 혈액에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 강(class) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.
도 14는 경도인지장애환자 및 알츠하이머치매환자 혈액에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 목(order) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.
도 15는 경도인지장애환자 및 알츠하이머치매환자 혈액에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 과(family) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.
도 16은 경도인지장애환자 및 알츠하이머치매환자 혈액에서 세균 유래 소포를 분리한 후, 메타게놈 분석을 수행하여 속(genus) 수준에서 진단적 성능이 유의한 세균 유래 소포(EVs)의 분포를 나타낸 결과이다.
본 발명은 세균 메타게놈 분석을 통해 알츠하이머치매 및 경도인지장애를 진단하는 방법에 관한 것으로서, 본 발명자들은 정상인 및 피검자 유래 샘플을 이용해 세균 유래 세포밖 소포로부터 유전자를 추출하고 이에 대하여 메타게놈 분석을 수행하였으며, 알츠하이머치매 및 경도인지장애의 원인인자로 작용할 수 있는 세균 유래 세포밖 소포를 동정하였다.
이에, 본 발명은 (a) 정상인 및 피검자 샘플에 존재하는 세포밖 소포로부터 DNA를 추출하는 단계;
(b) 상기 추출한 DNA에 대하여 서열번호 1 및 서열번호 2의 프라이머 쌍을 이용하여 PCR을 수행하는 단계; 및
(c) 상기 PCR 산물의 서열분석을 통하여 정상인 유래 샘플과 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계를 포함하는 알츠하이머치매를 진단하기 위한 정보제공방법을 제공한다.
또한, 본 발명은 (a) 정상인 및 피검자 샘플에 존재하는 세포밖 소포로부터 DNA를 추출하는 단계;
(b) 상기 추출한 DNA에 대하여 서열번호 1 및 서열번호 2의 프라이머 쌍을 이용하여 PCR을 수행하는 단계; 및
(c) 상기 PCR 산물의 서열분석을 통하여 정상인 유래 샘플과 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계를 포함하는 경도인지장애를 진단하기 위한 정보제공방법을 제공한다.
또한, 본 발명은 (a) 경도인지장애환자 및 피검자 샘플에서 분리한 세포밖 소포로부터 DNA를 추출하는 단계;
(b) 상기 추출한 DNA에 대하여 서열번호 1 및 서열번호 2의 프라이머 쌍을 이용하여 PCR(Polymerase chain reaction)을 수행하는 단계; 및
(c) 상기 PCR 산물의 서열분석을 통하여 경도인지장애환자 유래 샘플과 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계를 포함하는 알츠하이머치매를 진단하기 위한 정보제공방법을 제공한다.
본 발명에서 사용되는 용어, "알츠하이머치매 진단" 이란 환자에 대하여 알츠하이머치매가 발병할 가능성이 있는지, 알츠하이머치매가 발병할 가능성이 상대적으로 높은지, 또는 알츠하이머치매가 이미 발병하였는지 여부를 판별하는 것을 의미한다. 본 발명의 방법은 임의의 특정 환자에 대한 알츠하이머치매 발병 위험도가 높은 환자로써 특별하고 적절한 관리를 통하여 발병 시기를 늦추거나 발병하지 않도록 하는데 사용할 수 있다. 또한, 본 발명의 방법은 알츠하이머치매를 조기에 진단하여 가장 적절한 치료방식을 선택함으로써 치료를 결정하기 위해 임상적으로 사용될 수 있다.
본 발명에서 사용되는 용어, “경도인지장애” 란 정상적인 노화현상으로 인한 인지능력의 감퇴되는 것으로서 동일한 연령대에 비해 인지 능력이 저하되어 있는 상태로 정의한다. 치매와 다른 점은 일상생활이 가능한 것이고, 경도인지장애 노인의 경우 10%에서 치매로 진행하는 것으로 알려져 있어, 경도인지장애는 치매의 위험인자로 알려져 있다.
본 발명에서 사용되는 용어, "경도인지장애 진단" 이란 환자에 대하여 경도인지장애가 발병할 가능성이 있는지, 경도인지장애가 발병할 가능성이 상대적으로 높은지, 또는 경도인지장애가 이미 발병하였는지 여부를 판별하는 것을 의미한다. 본 발명의 방법은 임의의 특정 환자에 대한 경도인지장애 발병 위험도가 높은 환자로써 특별하고 적절한 관리를 통하여 발병 시기를 늦추거나 발병하지 않도록 하는데 사용할 수 있다. 또한, 본 발명의 방법은 경도인지장애를 조기에 진단하여 가장 적절한 치료방식을 선택함으로써 치료를 결정하기 위해 임상적으로 사용될 수 있다.
본 발명에서 사용되는 용어, "메타게놈(metagenome)"이란 "군유전체"라고도 하며, 흙, 동물의 장 등 고립된 지역 내의 모든 바이러스, 세균, 곰팡이 등을 포함하는 유전체의 총합을 의미하는 것으로, 주로 배양이 되지 않는 미생물을 분석하기 위해서 서열분석기를 사용하여 한꺼번에 많은 미생물을 동정하는 것을 설명하는 유전체의 개념으로 쓰인다. 특히, 메타게놈은 한 종의 게놈 또는 유전체를 말하는 것이 아니라, 한 환경단위의 모든 종의 유전체로서 일종의 혼합유전체를 말한다. 이는 오믹스적으로 생물학이 발전하는 과정에서 한 종을 정의할 때 기능적으로 기존의 한 종뿐만 아니라, 다양한 종이 서로 상호작용하여 완전한 종을 만든다는 관점에서 나온 용어이다. 기술적으로는 빠른 염기서열분석법을 이용해서, 종에 관계없이 모든 DNA, RNA를 분석하여, 한 환경 내에서의 모든 종을 동정하고, 상호작용, 대사작용을 규명하는 기법의 대상이다. 본 발명에서는 바람직하게 혈액에서 분리한 세균 유래 세포밖 소포를 이용하여 메타게놈 분석을 실시하였다.
본 발명에 있어서, 상기 정상인 및 피검자 샘플은 혈액 또는 소변일 수 있고, 상기 혈액은 바람직하게 전혈, 혈청, 혈장, 또는 혈액 단핵구일 수 있으나, 이것으로 제한되는 것은 아니다.
본 발명의 실시예에서는 상기 세균 유래 세포밖 소포에 대한 메타게놈 분석을 실시하였으며, 문(phylum), 강(class), 목(order), 과(family), 및 속(genus) 수준에서 각각 분석하여 실제로 알츠하이머치매 발생의 원인으로 작용할 수 있는 세균 유래 소포를 동정하였다.
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 혈액 샘플에 존재하는 소포에 대하여 세균 메타게놈을 문 수준에서 분석한 결과, 탈철간균(Deferribacteres), SR1, 시너지스테테스(Synergistetes), 및 써미(Thermi) 문 세균 유래 세포밖 소포의 함량이 알츠하이머치매환자와 정상인 사이에 유의한 차이가 있었다(실시예 4 참조).
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 혈액 샘플에 존재하는 소포에 대하여 세균 메타게놈을 강 수준에서 분석한 결과, 알파프로테오박테리아(Alphaproteobacteria), 플라보박테리아(Flavobacteriia), 탈철간균(Deferribacteres), 및 데이노코키(Deinococci) 강 세균 유래 세포밖 소포의 함량이 알츠하이머치매환자와 정상인 사이에 유의한 차이가 있었다(실시예 4 참조).
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 혈액 샘플에 존재하는 소포에 대하여 세균 메타게놈을 목 수준에서 분석한 결과, 리케치아레스(Rickettsiales) 목 세균 유래 세포밖 소포의 함량이 알츠하이머치매환자와 정상인 사이에 유의한 차이가 있었다(실시예 4 참조).
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 혈액 샘플에 존재하는 소포에 대하여 세균 메타게놈을 과 수준에서 분석한 결과, 스핑고모나다시에(Sphingomonadaceae), 탈철간균과(Deferribacteraceae), 위크셀라시에(Weeksellaceae), 펩토코카시에(Peptococcaceae), 로도박테라시에(Rhodobacteraceae), 노카르디아시에(Nocardiaceae), 나이세리아시에(Neisseriaceae), 티시에렐라시에(Tissierellaceae), 플라보박테리아시에(Flavobacteriaceae), 파라프레보텔라시에(Paraprevotellaceae), 옥살로박테라시에(Oxalobacteraceae), 제멜라시에(Gemellaceae), 아에로코카시에(Aerococcaceae), 렙토트리치아시에(Leptotrichiaceae), 로도사이클라시에(Rhodocyclaceae), 윌리암시아시에(Williamsiaceae), 및 데이노코카시에(Deinococcaceae) 과 세균 유래 세포밖 소포의 함량이 알츠하이머치매환자와 정상인 사이에 유의한 차이가 있었다(실시예 4 참조).
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 혈액 샘플에 존재하는 소포에 대하여 세균 메타게놈을 속 수준에서 분석한 결과, 스핑고모나스(Sphingomonas), 뮤시스피릴룸(Mucispirillum), 클로시박테리움(Cloacibacterium), rc4-4, 콜린셀라(Collinsella), 로티아(Rothia), 데클로로모나스(Dechloromonas), 로도코커스(Rhodococcus), 나이세리아(Neisseria), 파라코커스(Paracoccus), 시트로박터(Citrobacter), 포르피로모나스(Porphyromonas), 아나에로코커스(Anaerococcus), 프레보텔라(Prevotella), 테피디모나스(Tepidimonas), 렙토트리치아(Leptotrichia), 카프노시토파가(Capnocytophaga), 아들러크레우치아(Adlercreutzia), 윌리암시아(Williamsia), 및 데이노코커스(Deinococcus) 속 세균 유래 세포밖 소포의 함량이 알츠하이머치매환자와 정상인 사이에 유의한 차이가 있었다(실시예 4 참조).
본 발명의 또 다른 실시예에서는 상기 세균 유래 세포밖 소포에 대한 메타게놈 분석을 실시하였으며, 문(phylum), 강(class), 목(order), 과(family), 및 속(genus) 수준에서 각각 분석하여 실제로 경도인지장애 발생의 원인으로 작용할 수 있는 세균 유래 소포를 동정하였다.
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 혈액 샘플에 존재하는 소포에 대하여 세균 메타게놈을 문 수준에서 분석한 결과, 푸조박테리아(Fusobacteria), 남세균(Cyanobacteria), SR1, TM7, 써미(Thermi), 클로로플렉시(Chloroflexi), 및 아르마티모나스(Armatimonadetes) 문 세균 유래 세포밖 소포의 함량이 경도인지장애환자와 정상인 사이에 유의한 차이가 있었다(실시예 5 참조).
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 혈액 샘플에 존재하는 소포에 대하여 세균 메타게놈을 강 수준에서 분석한 결과, 베타프로테오박테리아(Betaproteobacteria), 푸조박테리아(Fusobacteriia), 클로로플라스트(Chloroplast), TM7-3, 데이노코키(Deinococci), 및 핌브리모나디아(Fimbriimonadia) 강 세균 유래 세포밖 소포의 함량이 경도인지장애환자와 정상인 사이에 유의한 차이가 있었다(실시예 5 참조).
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 혈액 샘플에 존재하는 소포에 대하여 세균 메타게놈을 목 수준에서 분석한 결과, 스트렙토피타(Streptophyta), 및 리케치아레스(Rickettsiales) 목 세균 유래 세포밖 소포의 함량이 경도인지장애환자와 정상인 사이에 유의한 차이가 있었다(실시예 5 참조).
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 혈액 샘플에 존재하는 소포에 대하여 세균 메타게놈을 과 수준에서 분석한 결과, 위크셀라시에(Weeksellaceae), 푸조박테리아시에(Fusobacteriaceae), 산토모나다시에(Xanthomonadaceae), 로도사이클라시에(Rhodocyclaceae), 오도리박테라시에(Odoribacteraceae), 로도박테라시에(Rhodobacteraceae), 노가르디아시에(Nocardiaceae), 옥살로박테라시에(Oxalobacteraceae), 마이크로박테리아시에(Microbacteriaceae), 데이노코카시에(Deinococcaceae), 패니바실라시에(Paenibacillaceae), 리조비움과(Rhizobiaceae), 및 핌브리모나다시에(Fimbriimonadaceae) 과 세균 유래 세포밖 소포의 함량이 경도인지장애환자와 정상인 사이에 유의한 차이가 있었다(실시예 5 참조).
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 혈액 샘플에 존재하는 소포에 대하여 세균 메타게놈을 속 수준에서 분석한 결과, 클로시박테리움(Cloacibacterium), 푸조박테리움(Fusobacterium), 락토코쿠스(Lactococcus), 스테노트로포모나스(Stenotrophomonas), 데클로로모나스(Dechloromonas), 오도리박터(Odoribacter), 로도코커스(Rhodococcus), 플라보박테리움(Flavobacterium), 데이노코커스(Deinococcus), 패니바실러스(Paenibacillus), 시트로박터(Citrobacter), 및 핌브리모나스(Fimbriimonas) 속 세균 유래 세포밖 소포의 함량이 경도인지장애환자와 정상인 사이에 유의한 차이가 있었다(실시예 5 참조).
본 발명의 또 다른 실시예에서는 상기 세균 유래 세포밖 소포에 대한 메타게놈 분석을 실시하였으며, 문(phylum), 강(class), 목(order), 과(family), 및 속(genus) 수준에서 각각 분석하여 실제로 알츠하이머치매 발생의 원인으로 작용할 수 있는 세균 유래 소포를 동정하였다.
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 혈액 샘플에 존재하는 소포에 대하여 세균 메타게놈을 문 수준에서 분석한 결과, 푸조박테리아(Fusobacteria), 탈철간균(Deferribacteres), 및 아르마티모나스(Armatimonadetes) 세균 유래 세포밖 소포의 함량이 알츠하이머치매환자와 경도인지장애환자 사이에 유의한 차이가 있었다(실시예 6 참조).
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 혈액 샘플에 존재하는 소포에 대하여 세균 메타게놈을 강 수준에서 분석한 결과, 푸조박테리아(Fusobacteriia), 탈철간균(Deferribacteres), 및 알파프로테오박테리아(Alphaproteobacteria) 강 세균 유래 세포밖 소포의 함량이 알츠하이머치매환자와 경도인지장애환자 사이에 유의한 차이가 있었다(실시예 6 참조).
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 혈액 샘플에 존재하는 소포에 대하여 세균 메타게놈을 목 수준에서 분석한 결과, 메타노박테리알레스(Methanobacteriales) 목 세균 유래 세포밖 소포의 함량이 알츠하이머치매환자와 경도인지장애환자 사이에 유의한 차이가 있었다(실시예 6 참조).
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 혈액 샘플에 존재하는 소포에 대하여 세균 메타게놈을 과 수준에서 분석한 결과, 마이크로박테리아시에(Microbacteriaceae), 푸조박테리아시에(Fusobacteriaceae), 아에로코카시에(Aerococcaceae), 비피도박테리움과(Bifidobacteriaceae), 탈철간균과(Deferribacteraceae), 스핑고모나다시에(Sphingomonadaceae), 플라보박테리아시에(Flavobacteriaceae), 리조비움과(Rhizobiaceae), 렙토트리치아시에(Leptotrichiaceae), 및 마이크로코카시에(Micrococcaceae) 과 세균 유래 세포밖 소포의 함량이 알츠하이머치매환자와 경도인지장애환자 사이에 유의한 차이가 있었다(실시예 6 참조).
보다 구체적으로 본 발명의 일실시예에서는, 피검자 유래 혈액 샘플에 존재하는 소포에 대하여 세균 메타게놈을 속 수준에서 분석한 결과, 푸조박테리움(Fusobacterium), 콜린셀라(Collinsella), 스핑고모나스(Sphingomonas), 비피도박테리움(Bifidobacterium), 뮤시스피릴룸(Mucispirillum), 파라코커스(Paracoccus), 플라보박테리움(Flavobacterium), 블라우티아(Blautia), 테피디모나스(Tepidimonas), 오도리박터(Odoribacter), 베일로넬라(Veillonella), 포르피로모나스(Porphyromonas), 및 렙토트리치아(Leptotrichia) 속 세균 유래 세포밖 소포의 함량이 알츠하이머치매환자와 경도인지장애환자 사이에 유의한 차이가 있었다(실시예 6 참조).
상기 실시예 결과를 통해 상기 동정된 세균 유래 세포밖 소포의 분포 변수가 알츠하이머치매 또는 경도인지장애 발생 예측에 유용하게 이용될 수 있음을 확인하였다.
이하, 본 발명의 이해를 돕기 위하여 바람직한 실시예를 제시한다. 그러나 하기의 실시예는 본 발명을 보다 쉽게 이해하기 위하여 제공되는 것일 뿐, 하기 실시예에 의해 본 발명의 내용이 한정되는 것은 아니다.
[실시예]
실시예 1. 장내 세균 및 세균 유래 소포의 체내 흡수, 분포, 및 배설 양상 분석
장내 세균과 세균 유래 소포가 위장관을 통해 전신적으로 흡수되는 지를 평가하기 위하여 다음과 같은 방법으로 실험을 수행하였다. 마우스의 위장에 형광으로 표지한 장내세균과 장내 세균 유래 소포를 각각 50 μg의 용량으로 위장관으로 투여하고 0분, 5분, 3시간, 6시간, 12시간 후에 형광을 측정하였다. 마우스 전체 이미지를 관찰한 결과, 도 1a에 나타낸 바와 같이, 상기 세균(Bacteria)인 경우에는 전신적으로 흡수되지 않았지만, 세균 유래 소포(EV)인 경우에는, 투여 후 5분에 전신적으로 흡수되었고, 투여 3시간 후에는 방광에 형광이 진하게 관찰되어, 소포가 비뇨기계로 배설됨을 알 수 있었다. 또한, 소포는 투여 12시간까지 체내에 존재함을 알 수 있었다.
장내세균과 장내 세균유래 소포가 전신적으로 흡수된 후, 여러 장기로 침윤된 양상을 평가하기 위하여, 형광으로 표지한 50 μg의 세균과 세균유래 소포를 상기의 방법과 같이 투여한 다음 12시간째에 마우스로부터 혈액(Blood), 심장(Heart), 폐(Lung), 간(Liver), 신장(Kidney), 비장(Spleen), 지방조직(Adipose tissue), 및 근육(Muscle)을 적출하였다. 상기 적출한 조직들에서 형광을 관찰한 결과, 도1b에 나타낸 바와 같이, 상기 장내 세균(Bacteria)은 각 장기에 흡수되지 않은 반면, 상기 장내 세균 유래 세포밖 소포(EV)는 혈액, 심장, 폐, 간, 신장, 비장, 지방조직, 및 근육에 분포하는 것을 확인하였다.
실시예 2. 혈액으로부터 세포밖 소포 분리 및 DNA 추출
혈액에 존재하는 소포를 분리하고 DNA를 추출하기 위해, 먼저 10 ㎖ 튜브에 혈액을 넣고 원심분리(3,500 x g, 10min, 4℃)를 실시하여 부유물을 가라앉혀 상등액만을 회수한 후 새로운 10 ㎖ 튜브에 옮겼다. 0.22 ㎛ 필터를 사용하여 상기 회수한 상등액으로부터 세균 및 이물질을 제거한 후, 센트리프랩튜브(centripreigugal filters 50 kD)에 옮기고 1500 x g, 4℃에서 15분간 원심분리하여 50 kD 보다 작은 물질은 버리고 10 ㎖까지 농축 시켰다. 다시 한 번 0.22 ㎛ 필터를 사용하여 박테리아 및 이물질을 제거한 후, Type 90ti 로터로 150,000 x g, 4℃에서 3시간 동안 초고속원심분리방법을 사용하여 상등액을 버리고 덩어리진 pellet을 생리식염수(PBS)로 녹여 소포를 수득하였다.
상기 방법에 따라 혈액으로부터 분리한 소포 100 ㎕를 100℃에서 끓여서 내부의 DNA를 지질 밖으로 나오게 한 후 얼음에 5분 동안 식혔다. 다음으로 남은 부유물을 제거하기 위하여 10,000 x g, 4℃에서 30분간 원심분리하고 상등액 만을 모은 후 Nanodrop을 이용하여 DNA 양을 정량하였다. 이후 상기 추출된 DNA에 세균 유래 DNA가 존재하는지 확인하기 위하여 하기 표 1에 나타낸 16s rDNA primer로 PCR을 수행하여 상기 추출된 유전자에 세균 유래 유전자가 존재하는 것을 확인하였다.
primer 서열 서열번호
16S rDNA 16S_V3_F 5'-TCGTCGGCAGCGTCAGATGTGTATAAGAGACAGCCTACGGGNGGCWGCAG-3' 1
16S_V4_R 5'-GTCTCGTGGGCTCGGAGATGTGTATAAGAGACAGGACTACHVGGGTATCTAATCC-3 2
실시예 3. 혈액에서 추출한 DNA를 이용한 메타게놈 분석
상기 실시예 2의 방법으로 유전자를 추출한 후, 상기 표1에 나타낸 16S rDNA 프라이머를 사용하여 PCR을 실시하여 유전자를 증폭시키고 시퀀싱(Illumina MiSeq sequencer)을 수행하였다. 결과를 Standard Flowgram Format(SFF) 파일로 출력하고 GS FLX software(v2.9)를 이용하여 SFF 파일을 sequence 파일(.fasta)과 nucleotide quality score 파일로 변환한 다음 리드의 신용도 평가를 확인하고, window(20 bps) 평균 base call accuracy가 99% 미만(Phred score <20)인 부분을 제거하였다. 질이 낮은 부분을 제거한 후, 리드의 길이가 300 bps 이상인 것만 이용하였으며(Sickle version 1.33), 결과 분석을 위해 Operational Taxonomy Unit(OTU)은 UCLUST와 USEARCH를 이용하여 시퀀스 유사도에 따라 클러스터링을 수행하였다. 구체적으로 속(genus)은 94%, 과(family)는 90%, 목(order)은 85%, 강(class)은 80%, 문(phylum)은 75% 시퀀스 유사도를 기준으로 클러스터링을 하고 각 OTU의 문, 강, 목, 과, 속 레벨의 분류를 수행하고, BLASTN와 GreenGenes의 16S DNA 시퀀스 데이터베이스(108,453 시퀀스)를 이용하여 97% 이상의 시퀀스 유사도 갖는 박테리아를 분석하였다(QIIME).
실시예 4. 정상인과 알츠하이머치매환자 혈액에서 분리한 세균유래 소포 메타게놈 분석 기반 알츠하이머치매 진단모형
상기 실시예 3의 방법으로, 알츠하이머치매환자 67명과 나이와 성별을 매칭한 정상인 70명의 혈액에서 소포를 분리한 후 메타게놈 시퀀싱을 수행하였다. 진단모형 개발은 먼저 t-test에서 두 군 사이의 p값이 0.05 이하이고, 두 군 사이에 2배 이상 차이가 나는 균주를 선정하고 난 후, logistic regression analysis 방법으로 진단적 성능 지표인 AUC(area under curve), 민감도, 및 특이도를 산출하였다.
혈액 내 세균유래 소포를 문(phylum) 수준에서 분석한 결과, 탈철간균(Deferribacteres), SR1, 시너지스테테스(Synergistetes), 및 써미(Thermi) 문 세균 바이오마커로 진단모형을 개발하였을 때, 알츠하이머치매에 대한 진단적 성능이 유의하게 나타났다 (표 2 및 도 2 참조).
  정상 알츠하이머치매 t-test Training Set Test Set
Phylum Mean SD Mean SD p-value Ratio AUC sensitivity specificity AUC sensitivity specificity
Deferribacteres 0.0049 0.0028 0.0109 0.0088 0.0001 2.23 1.00 1.00 1.00 1.00 1.00 1.00
SR1 0.0024 0.0054 0.0001 0.0004 0.0018 0.05 1.00 1.00 1.00 1.00 1.00 1.00
Synergistetes 0.0001 0.0003 0.0000 0.0000 0.0282 0.00 1.00 1.00 1.00 1.00 1.00 1.00
[Thermi] 0.0011 0.0019 0.0004 0.0008 0.0127 0.38 1.00 1.00 1.00 0.99 1.00 0.90
혈액 내 세균유래 소포를 강(class) 수준에서 분석한 결과, 알파프로테오박테리아(Alphaproteobacteria), 플라보박테리아(Flavobacteriia), 탈철간균(Deferribacteres), 및 데이노코키(Deinococci) 강 세균 바이오마커로 진단모형을 개발하였을 때, 알츠하이머치매에 대한 진단적 성능이 유의하게 나타났다 (표 3 및 도 3 참조).
  정상 알츠하이머치매 t-test Training Set Test Set
Class Mean SD Mean SD p-value Ratio AUC sensitivity specificity AUC sensitivity specificity
Alphaproteobacteria 0.0098 0.0066 0.0470 0.0639 0.0003 4.78 1.00 1.00 1.00 1.00 1.00 0.90
Flavobacteriia 0.0106 0.0106 0.0040 0.0030 0.0000 0.38 1.00 1.00 1.00 1.00 1.00 1.00
Deferribacteres 0.0049 0.0028 0.0109 0.0088 0.0001 2.23 1.00 1.00 1.00 1.00 1.00 1.00
Deinococci 0.0011 0.0019 0.0004 0.0008 0.0127 0.38 1.00 1.00 1.00 0.99 1.00 0.90
혈액 내 세균유래 소포를 목(order) 수준에서 분석한 결과, 리케치아레스(Rickettsiales) 목 세균 바이오마커로 진단모형을 개발하였을 때, 알츠하이머치매에 대한 진단적 성능이 유의하게 나타났다 (표 4 및 도 4 참조).
  정상 알츠하이머치매 t-test Training Set Test Set
Order Mean SD Mean SD p-value Ratio AUC sensitivity specificity AUC sensitivity specificity
Rickettsiales 0.0016 0.0037 0.0000 0.0001 0.0023 0.01 1.00 1.00 1.00 1.00 1.00 1.00
혈액 내 세균유래 소포를 과(family) 수준에서 분석한 결과, 스핑고모나다시에(Sphingomonadaceae), 탈철간균과(Deferribacteraceae), 위크셀라시에(Weeksellaceae), 펩토코카시에(Peptococcaceae), 로도박테라시에(Rhodobacteraceae), 노카르디아시에(Nocardiaceae), 나이세리아시에(Neisseriaceae), 티시에렐라시에(Tissierellaceae), 플라보박테리아시에(Flavobacteriaceae), 파라프레보텔라시에(Paraprevotellaceae), 옥살로박테라시에(Oxalobacteraceae), 제멜라시에(Gemellaceae), 아에로코카시에(Aerococcaceae), 렙토트리치아시에(Leptotrichiaceae), 로도사이클라시에(Rhodocyclaceae), 윌리암시아시에(Williamsiaceae), 및 데이노코카시에(Deinococcaceae) 과 세균 바이오마커로 진단모형을 개발하였을 때, 알츠하이머치매에 대한 진단적 성능이 유의하게 나타났다 (표 5 및 도 5 참조).
  정상 알츠하이머치매 t-test Training Set Test Set
Family Mean SD Mean SD p-value Ratio AUC sensitivity specificity AUC sensitivity specificity
Sphingomonadaceae 0.0037 0.0028 0.0407 0.0639 0.0003 11.03 1.00 1.00 1.00 1.00 1.00 1.00
Deferribacteraceae 0.0049 0.0028 0.0109 0.0088 0.0001 2.23 1.00 1.00 1.00 1.00 1.00 1.00
[Weeksellaceae] 0.0094 0.0107 0.0035 0.0030 0.0001 0.37 1.00 1.00 1.00 1.00 1.00 1.00
Peptococcaceae 0.0026 0.0025 0.0052 0.0053 0.0032 2.02 1.00 1.00 1.00 1.00 1.00 1.00
Rhodobacteraceae 0.0005 0.0008 0.0019 0.0024 0.0005 3.84 1.00 1.00 1.00 1.00 1.00 1.00
Nocardiaceae 0.0027 0.0030 0.0007 0.0011 0.0000 0.26 1.00 1.00 1.00 1.00 1.00 1.00
Neisseriaceae 0.0021 0.0033 0.0009 0.0013 0.0145 0.43 1.00 1.00 1.00 1.00 1.00 1.00
[Tissierellaceae] 0.0015 0.0015 0.0007 0.0008 0.0012 0.49 1.00 1.00 1.00 1.00 1.00 1.00
Flavobacteriaceae 0.0011 0.0016 0.0005 0.0006 0.0062 0.42 1.00 1.00 1.00 1.00 1.00 1.00
[Paraprevotellaceae] 0.0005 0.0007 0.0013 0.0017 0.0059 2.53 1.00 1.00 1.00 1.00 1.00 1.00
Oxalobacteraceae 0.0017 0.0028 0.0005 0.0011 0.0042 0.30 1.00 1.00 1.00 1.00 1.00 1.00
Gemellaceae 0.0004 0.0009 0.0010 0.0018 0.0432 2.72 1.00 1.00 1.00 1.00 1.00 1.00
Aerococcaceae 0.0004 0.0008 0.0001 0.0003 0.0356 0.36 1.00 1.00 1.00 1.00 1.00 1.00
Leptotrichiaceae 0.0002 0.0004 0.0008 0.0014 0.0064 3.94 1.00 1.00 1.00 1.00 1.00 1.00
Rhodocyclaceae 0.0042 0.0057 0.0017 0.0017 0.0018 0.40 1.00 1.00 1.00 0.99 1.00 0.90
Williamsiaceae 0.0004 0.0008 0.0013 0.0021 0.0124 2.97 1.00 1.00 1.00 0.96 0.92 1.00
Deinococcaceae 0.0010 0.0019 0.0004 0.0008 0.0184 0.38 1.00 1.00 1.00 0.95 0.92 0.90
혈액 내 세균유래 소포를 속(genus) 수준에서 분석한 결과, 스핑고모나스(Sphingomonas), 뮤시스피릴룸(Mucispirillum), 클로시박테리움(Cloacibacterium), rc4-4, 콜린셀라(Collinsella), 로티아(Rothia), 데클로로모나스(Dechloromonas), 로도코커스(Rhodococcus), 나이세리아(Neisseria), 파라코커스(Paracoccus), 시트로박터(Citrobacter), 포르피로모나스(Porphyromonas), 아나에로코커스(Anaerococcus), 프레보텔라(Prevotella), 테피디모나스(Tepidimonas), 렙토트리치아(Leptotrichia), 카프노시토파가(Capnocytophaga), 아들러크레우치아(Adlercreutzia), 윌리암시아(Williamsia), 및 데이노코커스(Deinococcus) 속 세균 바이오마커로 진단모형을 개발하였을 때, 알츠하이머치매에 대한 진단적 성능이 유의하게 나타났다 (표 6 및 도 6 참조).
  정상 알츠하이머치매 t-test Training Set Test Set
Genus Mean SD Mean SD p-value Ratio AUC sensitivity specificity AUC sensitivity specificity
Sphingomonas 0.0026 0.0024 0.0397 0.0639 0.0003 15.50 1.00 1.00 1.00 1.00 1.00 1.00
Mucispirillum 0.0049 0.0028 0.0109 0.0088 0.0001 2.23 1.00 1.00 1.00 1.00 1.00 1.00
Cloacibacterium 0.0091 0.0106 0.0033 0.0029 0.0002 0.37 1.00 1.00 1.00 1.00 1.00 1.00
rc4-4 0.0026 0.0025 0.0052 0.0053 0.0032 2.03 1.00 1.00 1.00 1.00 1.00 1.00
Collinsella 0.0047 0.0053 0.0016 0.0021 0.0001 0.35 1.00 1.00 1.00 1.00 1.00 1.00
Rothia 0.0020 0.0036 0.0009 0.0014 0.0405 0.47 1.00 1.00 1.00 1.00 1.00 1.00
Dechloromonas 0.0032 0.0043 0.0012 0.0014 0.0012 0.37 1.00 1.00 1.00 1.00 1.00 0.90
Rhodococcus 0.0027 0.0030 0.0007 0.0011 0.0000 0.24 1.00 1.00 1.00 1.00 1.00 1.00
Neisseria 0.0015 0.0031 0.0005 0.0007 0.0155 0.33 1.00 1.00 1.00 1.00 1.00 1.00
Paracoccus 0.0005 0.0008 0.0018 0.0024 0.0005 4.08 1.00 1.00 1.00 1.00 1.00 1.00
Citrobacter 0.0015 0.0021 0.0004 0.0015 0.0018 0.24 1.00 1.00 1.00 1.00 1.00 1.00
Porphyromonas 0.0005 0.0012 0.0012 0.0018 0.0283 2.49 1.00 1.00 1.00 1.00 1.00 1.00
Anaerococcus 0.0010 0.0013 0.0003 0.0007 0.0010 0.34 1.00 1.00 1.00 1.00 1.00 1.00
[Prevotella] 0.0003 0.0006 0.0009 0.0012 0.0031 2.92 1.00 1.00 1.00 1.00 1.00 1.00
Tepidimonas 0.0002 0.0004 0.0011 0.0015 0.0003 5.63 1.00 1.00 1.00 1.00 1.00 0.90
Leptotrichia 0.0002 0.0004 0.0007 0.0013 0.0073 4.27 1.00 1.00 1.00 1.00 1.00 1.00
Capnocytophaga 0.0006 0.0014 0.0001 0.0003 0.0174 0.22 1.00 1.00 1.00 1.00 1.00 0.90
Adlercreutzia 0.0017 0.0016 0.0037 0.0048 0.0094 2.15 1.00 1.00 1.00 0.99 1.00 0.90
Williamsia 0.0004 0.0008 0.0013 0.0021 0.0124 2.97 1.00 1.00 1.00 0.96 0.92 1.00
Deinococcus 0.0010 0.0019 0.0004 0.0008 0.0184 0.38 1.00 1.00 1.00 0.95 0.92 0.90
실시예 5. 정상인과 경도인지장애환자 혈액에서 분리한 세균유래 소포 메타게놈 분석 기반 경도인지장애 진단모형
상기 실시예 3의 방법으로, 경도인지장애환자 65명과 나이와 성별을 매칭한 정상인 70명의 혈액에서 소포를 분리한 후 메타게놈 시퀀싱을 수행하였다. 진단모형 개발은 먼저 t-test에서 두 군 사이의 p값이 0.05 이하이고, 두 군 사이에 2배 이상 차이가 나는 균주를 선정하고 난 후, logistic regression analysis 방법으로 진단적 성능 지표인 AUC(area under curve), 민감도, 및 특이도를 산출하였다.
혈액 내 세균유래 소포를 문(phylum) 수준에서 분석한 결과, 푸조박테리아(Fusobacteria), 남세균(Cyanobacteria), SR1, TM7, 써미(Thermi), 클로로플렉시(Chloroflexi), 및 아르마티모나스(Armatimonadetes) 문 세균 바이오마커로 진단모형을 개발하였을 때, 경도인지장애에 대한 진단적 성능이 유의하게 나타났다 (표 7 및 도 7 참조).
  정상 경도인지장애 t-test Training Set Test Set
Phylum Mean SD Mean SD p-value Ratio AUC sensitivity specificity AUC sensitivity specificity
Fusobacteria 0.0019 0.0020 0.0100 0.0093 0.0000 5.31 1.00 1.00 1.00 1.00 1.00 1.00
Cyanobacteria 0.0016 0.0019 0.0007 0.0015 0.0034 0.43 1.00 1.00 1.00 1.00 1.00 1.00
SR1 0.0024 0.0054 0.0002 0.0005 0.0029 0.09 1.00 1.00 1.00 1.00 1.00 1.00
TM7 0.0007 0.0013 0.0003 0.0004 0.0244 0.41 1.00 1.00 1.00 1.00 1.00 1.00
[Thermi] 0.0011 0.0019 0.0002 0.0004 0.0005 0.18 1.00 1.00 1.00 1.00 1.00 1.00
Chloroflexi 0.0005 0.0012 0.0001 0.0003 0.0275 0.27 1.00 1.00 1.00 1.00 1.00 0.92
Armatimonadetes 0.0005 0.0009 0.0000 0.0001 0.0001 0.04 1.00 1.00 1.00 1.00 1.00 1.00
혈액 내 세균유래 소포를 강(class) 수준에서 분석한 결과, 베타프로테오박테리아(Betaproteobacteria), 푸조박테리아(Fusobacteriia), 클로로플라스트(Chloroplast), TM7-3, 데이노코키(Deinococci), 및 핌브리모나디아(Fimbriimonadia) 강 세균 바이오마커로 진단모형을 개발하였을 때, 경도인지장애에 대한 진단적 성능이 유의하게 나타났다 (표 8 및 도 8 참조).
  정상 경도인지장애 t-test Training Set Test Set
Class Mean SD Mean SD p-value Ratio AUC sensitivity specificity AUC sensitivity specificity
Betaproteobacteria 0.0284 0.0317 0.0141 0.0055 0.0011 0.50 1.00 1.00 1.00 1.00 1.00 1.00
Fusobacteriia 0.0019 0.0020 0.0100 0.0093 0.0000 5.31 1.00 1.00 1.00 1.00 1.00 1.00
Chloroplast 0.0012 0.0017 0.0006 0.0014 0.0334 0.49 1.00 1.00 1.00 1.00 1.00 1.00
TM7-3 0.0007 0.0013 0.0003 0.0004 0.0198 0.38 1.00 1.00 1.00 1.00 1.00 1.00
Deinococci 0.0011 0.0019 0.0002 0.0004 0.0005 0.18 1.00 1.00 1.00 1.00 1.00 1.00
[Fimbriimonadia] 0.0005 0.0009 0.0000 0.0001 0.0001 0.04 1.00 1.00 1.00 1.00 1.00 1.00
혈액 내 세균유래 소포를 목(order) 수준에서 분석한 결과, 스트렙토피타(Streptophyta), 및 리케치아레스(Rickettsiales) 목 세균 바이오마커로 진단모형을 개발하였을 때, 경도인지장애에 대한 진단적 성능이 유의하게 나타났다 (표 9 및 도 9 참조).
  정상 경도인지장애 t-test Training Set Test Set
Order Mean SD Mean SD p-value Ratio AUC sensitivity specificity AUC sensitivity specificity
Streptophyta 0.0012 0.0017 0.0006 0.0014 0.0366 0.50 1.00 1.00 1.00 1.00 1.00 1.00
Rickettsiales 0.0016 0.0037 0.0000 0.0001 0.0026 0.02 1.00 1.00 1.00 1.00 1.00 1.00
혈액 내 세균유래 소포를 과(family) 수준에서 분석한 결과, 위크셀라시에(Weeksellaceae), 푸조박테리아시에(Fusobacteriaceae), 산토모나다시에(Xanthomonadaceae), 로도사이클라시에(Rhodocyclaceae), 오도리박테라시에(Odoribacteraceae), 로도박테라시에(Rhodobacteraceae), 노가르디아시에(Nocardiaceae), 옥살로박테라시에(Oxalobacteraceae), 마이크로박테리아시에(Microbacteriaceae), 데이노코카시에(Deinococcaceae), 패니바실라시에(Paenibacillaceae), 리조비움과(Rhizobiaceae), 및 핌브리모나다시에(Fimbriimonadaceae) 과 세균 바이오마커로 진단모형을 개발하였을 때, 경도인지장애에 대한 진단적 성능이 유의하게 나타났다 (표 10 및 도 10 참조).
  정상 경도인지장애 t-test Training Set Test Set
Family Mean SD Mean SD p-value Ratio AUC sensitivity specificity AUC sensitivity specificity
[Weeksellaceae] 0.0094 0.0107 0.0039 0.0031 0.0003 0.41 1.00 1.00 1.00 1.00 1.00 1.00
Fusobacteriaceae 0.0017 0.0019 0.0098 0.0093 0.0000 5.85 1.00 1.00 1.00 1.00 1.00 1.00
Xanthomonadaceae 0.0042 0.0082 0.0018 0.0031 0.0364 0.42 1.00 1.00 1.00 1.00 1.00 1.00
Rhodocyclaceae 0.0042 0.0057 0.0015 0.0015 0.0007 0.36 1.00 1.00 1.00 1.00 1.00 1.00
[Odoribacteraceae] 0.0006 0.0008 0.0037 0.0031 0.0000 6.08 1.00 1.00 1.00 1.00 1.00 1.00
Rhodobacteraceae 0.0005 0.0008 0.0023 0.0049 0.0083 4.59 1.00 1.00 1.00 1.00 1.00 1.00
Nocardiaceae 0.0027 0.0030 0.0009 0.0011 0.0000 0.32 1.00 1.00 1.00 1.00 0.91 1.00
Oxalobacteraceae 0.0017 0.0028 0.0003 0.0005 0.0003 0.17 1.00 1.00 1.00 1.00 1.00 1.00
Microbacteriaceae 0.0004 0.0006 0.0015 0.0016 0.0000 4.17 1.00 1.00 1.00 1.00 1.00 1.00
Deinococcaceae 0.0010 0.0019 0.0002 0.0004 0.0008 0.17 1.00 1.00 1.00 1.00 1.00 1.00
Paenibacillaceae 0.0002 0.0004 0.0006 0.0014 0.0385 2.80 1.00 1.00 1.00 1.00 1.00 1.00
Rhizobiaceae 0.0002 0.0003 0.0008 0.0011 0.0001 4.53 1.00 1.00 1.00 1.00 1.00 1.00
[Fimbriimonadaceae] 0.0005 0.0009 0.0000 0.0001 0.0001 0.04 1.00 1.00 1.00 1.00 1.00 1.00
혈액 내 세균유래 소포를 속(genus) 수준에서 분석한 결과, 클로시박테리움(Cloacibacterium), 푸조박테리움(Fusobacterium), 락토코쿠스(Lactococcus), 스테노트로포모나스(Stenotrophomonas), 데클로로모나스(Dechloromonas), 오도리박터(Odoribacter), 로도코커스(Rhodococcus), 플라보박테리움(Flavobacterium), 데이노코커스(Deinococcus), 패니바실러스(Paenibacillus), 시트로박터(Citrobacter), 및 핌브리모나스(Fimbriimonas) 속 세균 바이오마커로 진단모형을 개발하였을 때, 경도인지장애에 대한 진단적 성능이 유의하게 나타났다 (표 11 및 도 11 참조).
  정상 경도인지장애 t-test Training Set Test Set
Genus Mean SD Mean SD p-value Ratio AUC Accuracy sensitivity specificity AUC Accuracy sensitivity specificity
Cloacibacterium 0.0091 0.0106 0.0037 0.0031 0.0004 0.41 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Fusobacterium 0.0017 0.0019 0.0098 0.0093 0.0000 5.88 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Lactococcus 0.0025 0.0022 0.0062 0.0038 0.0000 2.49 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Stenotrophomonas 0.0034 0.0074 0.0013 0.0025 0.0367 0.37 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Dechloromonas 0.0032 0.0043 0.0010 0.0011 0.0003 0.30 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Odoribacter 0.0005 0.0007 0.0035 0.0031 0.0000 6.81 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Rhodococcus 0.0027 0.0030 0.0009 0.0011 0.0000 0.32 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Flavobacterium 0.0005 0.0010 0.0014 0.0021 0.0045 2.71 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Deinococcus 0.0010 0.0019 0.0002 0.0004 0.0008 0.17 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Paenibacillus 0.0002 0.0004 0.0006 0.0014 0.0363 3.18 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Citrobacter 0.0015 0.0021 0.0005 0.0010 0.0015 0.33 1.00 1.00 1.00 1.00 0.96 0.96 0.93 1.00
Fimbriimonas 0.0005 0.0009 0.0000 0.0001 0.0001 0.04 1.00 1.00 1.00 1.00 0.96 0.92 0.86 1.00
실시예 6. 경도인지장애환자와 알츠하이머치매환자 혈액에서 분리한 세균유래 소포 메타게놈 분석 기반 알츠하이머치매 진단모형
상기 실시예 3의 방법으로, 알츠하이머치매환자 67명과 나이와 성별을 매칭한 경도인지장애환자 65명의 혈액에서 소포를 분리한 후 메타게놈 시퀀싱을 수행하였다. 진단모형 개발은 먼저 t-test에서 두 군 사이의 p값이 0.05 이하이고, 두 군 사이에 2배 이상 차이가 나는 균주를 선정하고 난 후, logistic regression analysis 방법으로 진단적 성능 지표인 AUC(area under curve), 민감도, 및 특이도를 산출하였다.
혈액 내 세균유래 소포를 문(phylum) 수준에서 분석한 결과, 푸조박테리아(Fusobacteria), 탈철간균(Deferribacteres), 및 아르마티모나스(Armatimonadetes) 문 세균 바이오마커로 진단모형을 개발하였을 때, 알츠하이머치매에 대한 진단적 성능이 유의하게 나타났다 (표 12 및 도 12 참조).
  경도인지장애 알츠하이머치매 t-test Training Set Test Set
Phylum Mean SD Mean SD p-value Ratio Auc Accuracy sensitivity specificity Auc Accuracy sensitivity specificity
Fusobacteria 0.0100 0.0093 0.0018 0.0019 0.0000 0.18 0.82 0.73 0.69 0.78 0.83 0.77 0.75 0.80
Deferribacteres 0.0040 0.0026 0.0109 0.0088 0.0000 2.71 0.80 0.75 0.88 0.58 0.75 0.68 0.67 0.70
Armatimonadetes 0.0000 0.0001 0.0003 0.0008 0.0352 15.14 0.60 0.65 0.92 0.31 0.45 0.64 0.92 0.30
혈액 내 세균유래 소포를 강(class) 수준에서 분석한 결과, 푸조박테리아(Fusobacteriia), 탈철간균(Deferribacteres), 및 알파프로테오박테리아(Alphaproteobacteria) 강 세균 바이오마커로 진단모형을 개발하였을 때, 알츠하이머치매에 대한 진단적 성능이 유의하게 나타났다 (표 13 및 도 13 참조).
  경도인지장애 알츠하이머치매 t-test Training Set Test Set
Class Mean SD Mean SD p-value Ratio AUC Accuracy sensitivity specificity Auc Accuracy sensitivity specificity
Fusobacteriia 0.0100 0.0093 0.0018 0.0019 0.0000 0.18 0.82 0.73 0.69 0.78 0.83 0.77 0.75 0.80
Deferribacteres 0.0040 0.0026 0.0109 0.0088 0.0000 2.71 0.80 0.75 0.88 0.58 0.75 0.68 0.67 0.70
Alphaproteobacteria 0.0128 0.0305 0.0470 0.0639 0.0015 3.67 0.76 0.70 0.90 0.44 0.71 0.68 0.92 0.40
혈액 내 세균유래 소포를 목(order) 수준에서 분석한 결과, 메타노박테리알레스(Methanobacteriales) 목 세균 바이오마커로 진단모형을 개발하였을 때, 알츠하이머치매에 대한 진단적 성능이 유의하게 나타났다 (표 14 및 도 14 참조).
  경도인지장애 알츠하이머치매 t-test Training Set Test Set
Order Mean SD Mean SD p-value Ratio AUC Accuracy sensitivity specificity AUC Accuracy sensitivity specificity
Methanobacteriales 0.0011 0.0020 0.0005 0.0006 0.0295 0.42 0.64 0.55 0.55 0.55 0.60 0.55 0.50 0.67
혈액 내 세균유래 소포를 과(family) 수준에서 분석한 결과, 마이크로박테리아시에(Microbacteriaceae), 푸조박테리아시에(Fusobacteriaceae), 아에로코카시에(Aerococcaceae), 비피도박테리움과(Bifidobacteriaceae), 탈철간균과(Deferribacteraceae), 스핑고모나다시에(Sphingomonadaceae), 플라보박테리아시에(Flavobacteriaceae), 리조비움과(Rhizobiaceae), 렙토트리치아시에(Leptotrichiaceae), 및 마이크로코카시에(Micrococcaceae) 과 세균 바이오마커로 진단모형을 개발하였을 때, 알츠하이머치매에 대한 진단적 성능이 유의하게 나타났다 (표 15 및 도 15 참조).
  경도인지장애 알츠하이머치매 t-test Training Set Test Set
Family Mean SD Mean SD p-value Ratio AUC Accuracy sensitivity specificity AUC Accuracy sensitivity specificity
Microbacteriaceae 0.0015 0.0016 0.0002 0.0006 0.0000 0.11 0.83 0.77 0.69 0.89 0.92 0.86 0.83 0.90
Fusobacteriaceae 0.0098 0.0093 0.0010 0.0011 0.0000 0.10 0.86 0.75 0.73 0.78 0.91 0.77 0.75 0.80
Aerococcaceae 0.0007 0.0010 0.0001 0.0003 0.0000 0.19 0.68 0.62 0.60 0.64 0.80 0.77 0.75 0.80
Bifidobacteriaceae 0.0210 0.0138 0.0096 0.0057 0.0000 0.45 0.78 0.75 0.77 0.72 0.79 0.73 0.83 0.60
Deferribacteraceae 0.0040 0.0026 0.0109 0.0088 0.0000 2.71 0.80 0.75 0.88 0.58 0.75 0.68 0.67 0.70
Sphingomonadaceae 0.0060 0.0265 0.0407 0.0639 0.0011 6.78 0.83 0.79 0.94 0.58 0.74 0.73 0.92 0.50
Flavobacteriaceae 0.0018 0.0022 0.0005 0.0006 0.0001 0.26 0.70 0.61 0.63 0.58 0.72 0.73 0.58 0.90
Rhizobiaceae 0.0008 0.0011 0.0002 0.0004 0.0001 0.20 0.70 0.65 0.60 0.72 0.69 0.68 0.67 0.70
Leptotrichiaceae 0.0002 0.0004 0.0008 0.0014 0.0054 4.25 0.70 0.71 0.90 0.47 0.52 0.59 0.75 0.40
Micrococcaceae 0.0040 0.0067 0.0020 0.0019 0.0304 0.49 0.69 0.67 0.79 0.50 0.46 0.41 0.42 0.40
혈액 내 세균유래 소포를 속(genus) 수준에서 분석한 결과, 푸조박테리움(Fusobacterium), 콜린셀라(Collinsella), 스핑고모나스(Sphingomonas), 비피도박테리움(Bifidobacterium), 뮤시스피릴룸(Mucispirillum), 파라코커스(Paracoccus), 플라보박테리움(Flavobacterium), 블라우티아(Blautia), 테피디모나스(Tepidimonas), 오도리박터(Odoribacter), 베일로넬라(Veillonella), 포르피로모나스(Porphyromonas), 및 렙토트리치아(Leptotrichia) 속 세균 바이오마커로 진단모형을 개발하였을 때, 경도인지장애에 대한 진단적 성능이 유의하게 나타났다 (표 16 및 도 16 참조).
  경도인지장애 알츠하이머치매 t-test Training Set Test Set
Genus Mean SD Mean SD p-value Ratio AUC Accuracy sensitivity specificity AUC Accuracy sensitivity specificity
Fusobacterium 0.0098 0.0093 0.0010 0.0011 0.0000 0.10 0.86 0.75 0.73 0.78 0.91 0.77 0.75 0.80
Collinsella 0.0046 0.0040 0.0016 0.0021 0.0000 0.35 0.76 0.73 0.73 0.72 0.88 0.73 0.75 0.70
Sphingomonas 0.0050 0.0262 0.0397 0.0639 0.0011 7.88 0.86 0.83 0.92 0.72 0.78 0.73 0.92 0.50
Bifidobacterium 0.0210 0.0138 0.0094 0.0057 0.0000 0.45 0.78 0.73 0.75 0.69 0.78 0.77 0.83 0.70
Mucispirillum 0.0040 0.0026 0.0109 0.0088 0.0000 2.71 0.80 0.75 0.88 0.58 0.75 0.68 0.67 0.70
Paracoccus 0.0005 0.0009 0.0018 0.0024 0.0006 3.88 0.69 0.69 0.90 0.42 0.75 0.73 0.83 0.60
Flavobacterium 0.0014 0.0021 0.0003 0.0006 0.0004 0.23 0.66 0.67 0.75 0.56 0.74 0.59 0.67 0.50
Blautia 0.0048 0.0039 0.0018 0.0016 0.0000 0.37 0.78 0.74 0.75 0.72 0.73 0.64 0.67 0.60
Tepidimonas 0.0002 0.0003 0.0011 0.0015 0.0003 5.86 0.75 0.69 0.88 0.44 0.65 0.59 0.67 0.50
Odoribacter 0.0035 0.0031 0.0017 0.0043 0.0212 0.48 0.73 0.68 0.85 0.44 0.61 0.45 0.67 0.20
Veillonella 0.0110 0.0240 0.0035 0.0059 0.0235 0.32 0.69 0.67 0.79 0.50 0.60 0.50 0.67 0.30
Porphyromonas 0.0006 0.0009 0.0012 0.0018 0.0406 2.09 0.59 0.65 0.90 0.33 0.59 0.55 0.75 0.30
Leptotrichia 0.0002 0.0004 0.0007 0.0013 0.0053 4.85 0.69 0.69 0.88 0.44 0.56 0.64 0.83 0.40
상기 진술한 본 발명의 설명은 예시를 위한 것이며, 본 발명이 속하는 기술분야의 통상의 지식을 가진 자는 본 발명의 기술적 사상이나 필수적인 특징을 변경하지 않고서 다른 구체적인 형태로 쉽게 변형이 가능하다는 것을 이해할 수 있을 것이다. 그러므로 이상에서 기술한 실시예들은 모든 면에서 예시적인 것이며 한정적이 아닌 것으로 이해해야만 한다.
본 발명에 따른 세균 메타게놈 분석을 통해 알츠하이머치매 진단에 대한 정보를 제공하는 방법은 정상인 및 피검자 유래 샘플을 이용해 세균 메타게놈 분석을 수행하여 특정 세균 유래 세포밖 소포의 함량 증감을 분석함으로써 알츠하이머치매 및 경도인지장애의 발병 위험도를 예측하고 진단하는데 이용할 수 있다.

Claims (18)

  1. 하기의 단계를 포함하는, 알츠하이머치매 진단을 위한 정보제공방법:
    (a) 정상인 및 피검자 샘플에서 분리한 세포밖 소포로부터 DNA를 추출하는 단계;
    (b) 상기 추출한 DNA에 대하여 서열번호 1 및 서열번호 2의 프라이머 쌍을 이용하여 PCR(polymerase chain reaction)을 수행하는 단계; 및
    (c) 상기 PCR 산물의 서열분석을 통하여 정상인 유래 샘플과 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계.
  2. 제1항에 있어서,
    상기 정상인 및 피검자 샘플은 혈액이고,
    상기 (c) 단계에서, 탈철간균(Deferribacteres), SR1, 시너지스테테스(Synergistetes), 및 써미(Thermi)로 이루어진 군으로부터 선택되는 1종 이상의 문(phylum) 세균 유래 세포밖 소포,
    알파프로테오박테리아(Alphaproteobacteria), 플라보박테리아(Flavobacteriia), 탈철간균(Deferribacteres), 및 데이노코키(Deinococci)로 이루어진 군으로부터 선택되는 1종 이상의 강(class) 세균 유래 세포밖 소포,
    리케치아레스(Rickettsiales) 목(order) 세균 유래 세포밖 소포,
    스핑고모나다시에(Sphingomonadaceae), 탈철간균과(Deferribacteraceae), 위크셀라시에(Weeksellaceae), 펩토코카시에(Peptococcaceae), 로도박테라시에(Rhodobacteraceae), 노카르디아시에(Nocardiaceae), 나이세리아시에(Neisseriaceae), 티시에렐라시에(Tissierellaceae), 플라보박테리아시에(Flavobacteriaceae), 파라프레보텔라시에(Paraprevotellaceae), 옥살로박테라시에(Oxalobacteraceae), 제멜라시에(Gemellaceae), 아에로코카시에(Aerococcaceae), 렙토트리치아시에(Leptotrichiaceae), 로도사이클라시에(Rhodocyclaceae), 윌리암시아시에(Williamsiaceae), 및 데이노코카시에(Deinococcaceae)로 이루어진 군으로부터 선택되는 1종 이상의 과(family) 세균 유래 세포밖 소포, 또는
    스핑고모나스(Sphingomonas), 뮤시스피릴룸(Mucispirillum), 클로시박테리움(Cloacibacterium), rc4-4, 콜린셀라(Collinsella), 로티아(Rothia), 데클로로모나스(Dechloromonas), 로도코커스(Rhodococcus), 나이세리아(Neisseria), 파라코커스(Paracoccus), 시트로박터(Citrobacter), 포르피로모나스(Porphyromonas), 아나에로코커스(Anaerococcus), 프레보텔라(Prevotella), 테피디모나스(Tepidimonas), 렙토트리치아(Leptotrichia), 카프노시토파가(Capnocytophaga), 아들러크레우치아(Adlercreutzia), 윌리암시아(Williamsia), 및 데이노코커스(Deinococcus)로 이루어진 군으로부터 선택되는 1종 이상의 속(genus) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것을 특징으로 하는, 알츠하이머치매 진단을 위한 정보제공방법.
  3. 제2항에 있어서,
    상기 (c) 단계에서, 정상인 유래 샘플과 비교하여,
    탈철간균(Deferribacteres) 문(phylum) 세균 유래 세포밖 소포,
    알파프로테오박테리아(Alphaproteobacteria) 및 탈철간균(Deferribacteres)으로 이루어진 군으로부터 선택되는 1종 이상의 강(class) 세균 유래 세포밖 소포,
    스핑고모나다시에(Sphingomonadaceae), 탈철간균과(Deferribacteraceae), 펩토코카시에(Peptococcaceae), 로도박테라시에(Rhodobacteraceae), 파라프레보텔라시에(Paraprevotellaceae), 제멜라시에(Gemellaceae), 렙토트리치아시에(Leptotrichiaceae), 및 윌리암시아시에(Williamsiaceae)로 이루어진 군으로부터 선택되는 1종 이상의 과(family) 세균 유래 세포밖 소포, 또는
    스핑고모나스(Sphingomonas), 뮤시스피릴룸(Mucispirillum), rc4-4, 파라코커스(Paracoccus), 포르피로모나스(Porphyromonas), 프레보텔라(Prevotella), 테피디모나스(Tepidimonas), 렙토트리치아(Leptotrichia), 아들러크레우치아(Adlercreutzia), 및 윌리암시아(Williamsia)로 이루어진 군으로부터 선택되는 1종 이상의 속(genus) 세균 유래 세포밖 소포의 함량이 증가되어 있는 경우 알츠하이머치매로 진단하는 것을 특징으로 하는, 알츠하이머치매 진단을 위한 정보제공방법.
  4. 제2항에 있어서,
    상기 (c) 단계에서, 정상인 유래 샘플과 비교하여,
    SR1, 시너지스테테스(Synergistetes), 및 써미(Thermi)로 이루어진 군으로부터 선택되는 1종 이상의 문(phylum) 세균 유래 세포밖 소포,
    플라보박테리아(Flavobacteriia), 및 데이노코키(Deinococci)로 이루어진 군으로부터 선택되는 1종 이상의 강(class) 세균 유래 세포밖 소포,
    리케치아레스(Rickettsiales) 목(order) 세균 유래 세포밖 소포,
    위크셀라시에(Weeksellaceae), 노카르디아시에(Nocardiaceae), 나이세리아시에(Neisseriaceae), 티시에렐라시에(Tissierellaceae), 플라보박테리아시에(Flavobacteriaceae), 옥살로박테라시에(Oxalobacteraceae), 아에로코카시에(Aerococcaceae), 로도사이클라시에(Rhodocyclaceae) 및 데이노코카시에(Deinococcaceae)로 이루어진 군으로부터 선택되는 1종 이상의 과(family) 세균 유래 세포밖 소포, 또는
    클로시박테리움(Cloacibacterium), 콜린셀라(Collinsella), 로티아(Rothia), 데클로로모나스(Dechloromonas), 로도코커스(Rhodococcus), 나이세리아(Neisseria), 시트로박터(Citrobacter), 아나에로코커스(Anaerococcus), 카프노시토파가(Capnocytophaga) 및 데이노코커스(Deinococcus)로 이루어진 군으로부터 선택되는 1종 이상의 속(genus) 세균 유래 세포밖 소포의 함량이 감소되어 있는 경우 알츠하이머치매로 진단하는 것을 특징으로 하는, 알츠하이머치매 진단을 위한 정보제공방법.
  5. 제2항에 있어서,
    상기 혈액은 전혈, 혈청, 혈장, 또는 혈액 단핵구인 것을 특징으로 하는, 알츠하이머치매 진단을 위한 정보제공방법.
  6. 하기의 단계를 포함하는, 알츠하이머치매 진단방법:
    (a) 정상인 및 피검자 샘플에서 분리한 세포밖 소포로부터 DNA를 추출하는 단계;
    (b) 상기 추출한 DNA에 대하여 서열번호 1 및 서열번호 2의 프라이머 쌍을 이용하여 PCR(polymerase chain reaction)을 수행하는 단계; 및
    (c) 상기 PCR 산물의 서열분석을 통하여 정상인 유래 샘플과 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계.
  7. 하기의 단계를 포함하는, 경도인지장애 진단을 위한 정보제공방법:
    (a) 정상인 및 피검자 샘플에서 분리한 세포밖 소포로부터 DNA를 추출하는 단계;
    (b) 상기 추출한 DNA에 대하여 서열번호 1 및 서열번호 2의 프라이머 쌍을 이용하여 PCR(polymerase chain reaction)을 수행하는 단계; 및
    (c) 상기 PCR 산물의 서열분석을 통하여 정상인 유래 샘플과 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계.
  8. 제7항에 있어서,
    상기 정상인 및 피검자 샘플은 혈액이고,
    상기 (c) 단계에서, 푸조박테리아(Fusobacteria), 남세균(Cyanobacteria), SR1, TM7, 써미(Thermi), 클로로플렉시(Chloroflexi), 및 아르마티모나스(Armatimonadetes)로 이루어진 군으로부터 선택되는 1종 이상의 문(phylum) 세균 유래 세포밖 소포,
    베타프로테오박테리아(Betaproteobacteria), 푸조박테리아(Fusobacteriia), 클로로플라스트(Chloroplast), TM7-3, 데이노코키(Deinococci), 및 핌브리모나디아(Fimbriimonadia)로 이루어진 군으로부터 선택되는 1종 이상의 강(class) 세균 유래 세포밖 소포,
    스트렙토피타(Streptophyta), 및 리케치아레스(Rickettsiales)로 이루어진 군으로부터 선택되는 1종 이상의 목(order) 세균 유래 세포밖 소포,
    위크셀라시에(Weeksellaceae), 푸조박테리아시에(Fusobacteriaceae), 산토모나다시에(Xanthomonadaceae), 로도사이클라시에(Rhodocyclaceae), 오도리박테라시에(Odoribacteraceae), 로도박테라시에(Rhodobacteraceae), 노가르디아시에(Nocardiaceae), 옥살로박테라시에(Oxalobacteraceae), 마이크로박테리아시에(Microbacteriaceae), 데이노코카시에(Deinococcaceae), 패니바실라시에(Paenibacillaceae), 리조비움과(Rhizobiaceae), 및 핌브리모나다시에(Fimbriimonadaceae)로 이루어진 군으로부터 선택되는 1종 이상의 과(family) 세균 유래 세포밖 소포, 또는
    클로시박테리움(Cloacibacterium), 푸조박테리움(Fusobacterium), 락토코쿠스(Lactococcus), 스테노트로포모나스(Stenotrophomonas), 데클로로모나스(Dechloromonas), 오도리박터(Odoribacter), 로도코커스(Rhodococcus), 플라보박테리움(Flavobacterium), 데이노코커스(Deinococcus), 패니바실러스(Paenibacillus), 시트로박터(Citrobacter), 및 핌브리모나스(Fimbriimonas)로 이루어진 군으로부터 선택되는 1종 이상의 속(genus) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것을 특징으로 하는, 경도인지장애 진단을 위한 정보제공방법.
  9. 제8항에 있어서,
    상기 (c) 단계에서, 정상인 유래 샘플과 비교하여,
    푸조박테리아(Fusobacteria) 문(phylum) 세균 유래 세포밖 소포,
    푸조박테리아(Fusobacteriia) 강(class) 세균 유래 세포밖 소포,
    푸조박테리아시에(Fusobacteriaceae), 오도리박테라시에(Odoribacteraceae), 로도박테라시에(Rhodobacteraceae), 마이크로박테리아시에(Microbacteriaceae), 패니바실라시에(Paenibacillaceae), 및 리조비움과(Rhizobiaceae)로 이루어진 군으로부터 선택되는 1종 이상의 과(family) 세균 유래 세포밖 소포, 또는
    푸조박테리움(Fusobacterium), 락토코쿠스(Lactococcus), 오도리박터(Odoribacter), 플라보박테리움(Flavobacterium), 및 패니바실러스(Paenibacillus)로 이루어진 군으로부터 선택되는 1종 이상의 속(genus) 세균 유래 세포밖 소포의 함량이 증가되어 있는 경우 경도인지장애로 진단하는 것을 특징으로 하는, 경도인지장애 진단을 위한 정보제공방법.
  10. 제8항에 있어서,
    상기 (c) 단계에서, 정상인 유래 샘플과 비교하여,
    남세균(Cyanobacteria), SR1, TM7, 써미(Thermi), 클로로플렉시(Chloroflexi), 및 아르마티모나스(Armatimonadetes)로 이루어진 군으로부터 선택되는 1종 이상의 문(phylum) 세균 유래 세포밖 소포,
    베타프로테오박테리아(Betaproteobacteria), 클로로플라스트(Chloroplast), TM7-3, 데이노코키(Deinococci), 및 핌브리모나디아(Fimbriimonadia)로 이루어진 군으로부터 선택되는 1종 이상의 강(class) 세균 유래 세포밖 소포,
    스트렙토피타(Streptophyta), 및 리케치아레스(Rickettsiales) 목(order) 세균 유래 세포밖 소포,
    위크셀라시에(Weeksellaceae), 산토모나다시에(Xanthomonadaceae), 로도사이클라시에(Rhodocyclaceae), 노가르디아시에(Nocardiaceae), 옥살로박테라시에(Oxalobacteraceae), 데이노코카시에(Deinococcaceae), 및 핌브리모나다시에(Fimbriimonadaceae)로 이루어진 군으로부터 선택되는 1종 이상의 과(family) 세균 유래 세포밖 소포, 또는
    클로시박테리움(Cloacibacterium), 스테노트로포모나스(Stenotrophomonas), 데클로로모나스(Dechloromonas), 로도코커스(Rhodococcus), 데이노코커스(Deinococcus), 시트로박터(Citrobacter), 및 핌브리모나스(Fimbriimonas)로 이루어진 군으로부터 선택되는 1종 이상의 속(genus) 세균 유래 세포밖 소포의 함량이 감소되어 있는 경우 경도인지장애로 진단하는 것을 특징으로 하는, 경도인지장애 진단을 위한 정보제공방법.
  11. 제8항에 있어서,
    상기 혈액은 전혈, 혈청, 혈장, 또는 혈액 단핵구인 것을 특징으로 하는, 경도인지장애 진단을 위한 정보제공방법.
  12. 하기의 단계를 포함하는, 경도인지장애 진단방법:
    (a) 정상인 및 피검자 샘플에서 분리한 세포밖 소포로부터 DNA를 추출하는 단계;
    (b) 상기 추출한 DNA에 대하여 서열번호 1 및 서열번호 2의 프라이머 쌍을 이용하여 PCR(polymerase chain reaction)을 수행하는 단계; 및
    (c) 상기 PCR 산물의 서열분석을 통하여 정상인 유래 샘플과 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계.
  13. 하기의 단계를 포함하는, 알츠하이머치매 진단을 위한 정보제공방법:
    (a) 경도인지장애환자 및 피검자 샘플에서 분리한 세포밖 소포로부터 DNA를 추출하는 단계;
    (b) 상기 추출한 DNA에 대하여 서열번호 1 및 서열번호 2의 프라이머 쌍을 이용하여 PCR(polymerase chain reaction)을 수행하는 단계; 및
    (c) 상기 PCR 산물의 서열분석을 통하여 경도인지장애환자 유래 샘플과 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계.
  14. 제13항에 있어서,
    상기 경도인지장애환자 및 피검자 샘플은 혈액이고,
    상기 (c) 단계에서, 푸조박테리아(Fusobacteria), 탈철간균(Deferribacteres), 및 아르마티모나스(Armatimonadetes)로 이루어진 군으로부터 선택되는 1종 이상의 문(phylum) 세균 유래 세포밖 소포,
    푸조박테리아(Fusobacteriia), 탈철간균(Deferribacteres), 및 알파프로테오박테리아(Alphaproteobacteria)로 이루어진 군으로부터 선택되는 1종 이상의 강(class) 세균 유래 세포밖 소포,
    메타노박테리알레스(Methanobacteriales) 목(order) 세균 유래 세포밖 소포,
    마이크로박테리아시에(Microbacteriaceae), 푸조박테리아시에(Fusobacteriaceae), 아에로코카시에(Aerococcaceae), 비피도박테리움과(Bifidobacteriaceae), 탈철간균과(Deferribacteraceae), 스핑고모나다시에(Sphingomonadaceae), 플라보박테리아시에(Flavobacteriaceae), 리조비움과(Rhizobiaceae), 렙토트리치아시에(Leptotrichiaceae), 및 마이크로코카시에(Micrococcaceae)로 이루어진 군으로부터 선택되는 1종 이상의 과(family) 세균 유래 세포밖 소포, 또는
    푸조박테리움(Fusobacterium), 콜린셀라(Collinsella), 스핑고모나스(Sphingomonas), 비피도박테리움(Bifidobacterium), 뮤시스피릴룸(Mucispirillum), 파라코커스(Paracoccus), 플라보박테리움(Flavobacterium), 블라우티아(Blautia), 테피디모나스(Tepidimonas), 오도리박터(Odoribacter), 베일로넬라(Veillonella), 포르피로모나스(Porphyromonas), 및 렙토트리치아(Leptotrichia)로 이루어진 군으로부터 선택되는 1종 이상의 속(genus) 세균 유래 세포밖 소포의 함량 증감을 비교하는 것을 특징으로 하는, 알츠하이머치매 진단을 위한 정보제공방법.
  15. 제14항에 있어서,
    상기 (c) 단계에서, 경도인지장애환자 유래 샘플과 비교하여,
    탈철간균(Deferribacteres), 및 아르마티모나스(Armatimonadetes)으로 이루어진 군으로부터 선택되는 1종이상의 문(phylum) 세균 유래 세포밖 소포,
    탈철간균(Deferribacteres), 및 알파프로테오박테리아(Alphaproteobacteria)로 이루어진 군으로부터 선택되는 1종이상의 강(class) 세균 유래 세포밖 소포,
    탈철간균과(Deferribacteraceae), 스핑고모나다시에(Sphingomonadaceae), 및 렙토트리치아시에(Leptotrichiaceae)로 이루어진 군으로부터 선택되는 1종이상의 과(family) 세균 유래 세포밖 소포, 또는
    스핑고모나스(Sphingomonas), 뮤시스피릴룸(Mucispirillum), 파라코커스(Paracoccus), 테피디모나스(Tepidimonas), 포르피로모나스(Porphyromonas), 및 렙토트리치아(Leptotrichia)로 이루어진 군으로부터 선택되는 1종 이상의 속(genus) 세균 유래 세포밖 소포의 함량이 증가되어 있는 경우 알츠하이머치매로 진단하는 것을 특징으로 하는, 알츠하이머치매 진단을 위한 정보제공방법.
  16. 제14항에 있어서,
    상기 (c) 단계에서, 경도인지장애환자 유래 샘플과 비교하여,
    푸조박테리아(Fusobacteria) 문(phylum) 세균 유래 세포밖 소포,
    푸조박테리아(Fusobacteriia) 강(class) 세균 유래 세포밖 소포,
    메타노박테리알레스(Methanobacteriales) 목(order) 세균 유래 세포밖 소포,
    마이크로박테리아시에(Microbacteriaceae), 푸조박테리아시에(Fusobacteriaceae), 아에로코카시에(Aerococcaceae), 비피도박테리움과(Bifidobacteriaceae), 플라보박테리아시에(Flavobacteriaceae), 리조비움과(Rhizobiaceae), 및 마이크로코카시에(Micrococcaceae)로 이루어진 군으로부터 선택되는 1종 이상의 과(family) 세균 유래 세포밖 소포, 또는
    푸조박테리움(Fusobacterium), 콜린셀라(Collinsella), 비피도박테리움(Bifidobacterium), 플라보박테리움(Flavobacterium), 블라우티아(Blautia), 오도리박터(Odoribacter), 및 베일로넬라(Veillonella)로 이루어진 군으로부터 선택되는 1종 이상의 속(genus) 세균 유래 세포밖 소포의 함량이 감소되어 있는 경우 알츠하이머치매로 진단하는 것을 특징으로 하는, 알츠하이머치매 진단을 위한 정보제공방법.
  17. 제14항에 있어서,
    상기 혈액은 전혈, 혈청, 혈장, 또는 혈액 단핵구인 것을 특징으로 하는, 알츠하이머치매 진단을 위한 정보제공방법.
  18. 하기의 단계를 포함하는, 알츠하이머치매 진단방법:
    (a) 경도인지장애환자 및 피검자 샘플에서 분리한 세포밖 소포로부터 DNA를 추출하는 단계;
    (b) 상기 추출한 DNA에 대하여 서열번호 1 및 서열번호 2의 프라이머 쌍을 이용하여 PCR(polymerase chain reaction)을 수행하는 단계; 및
    (c) 상기 PCR 산물의 서열분석을 통하여 경도인지장애환자 유래 샘플과 세균 유래 세포밖 소포의 함량 증감을 비교하는 단계.
PCT/KR2018/010776 2017-10-13 2018-09-13 세균 메타게놈 분석을 통한 알츠하이머치매 진단방법 WO2019074216A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP18866818.0A EP3696284A4 (en) 2017-10-13 2018-09-13 METHOD FOR DIAGNOSING ALZHEIMER'S DEMENTIA VIA BACTERIAL METAGENOMIC ANALYSIS
CN201880066002.7A CN111417732B (zh) 2017-10-13 2018-09-13 通过细菌宏基因组分析来诊断阿尔茨海默氏症的方法
US16/755,190 US20210277443A1 (en) 2017-10-13 2018-09-13 Method for diagnosing alzheimer dementia via bacterial metagenomic analysis
JP2020520015A JP7116426B2 (ja) 2017-10-13 2018-09-13 細菌メタゲノム分析を通したアルツハイマー型認知症の診断方法

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2017-0133372 2017-10-13
KR20170133372 2017-10-13
KR10-2018-0060753 2018-05-28
KR1020180060753A KR102130485B1 (ko) 2017-10-13 2018-05-28 세균 메타게놈 분석을 통한 알츠하이머치매 진단방법

Publications (1)

Publication Number Publication Date
WO2019074216A1 true WO2019074216A1 (ko) 2019-04-18

Family

ID=66101403

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/010776 WO2019074216A1 (ko) 2017-10-13 2018-09-13 세균 메타게놈 분석을 통한 알츠하이머치매 진단방법

Country Status (1)

Country Link
WO (1) WO2019074216A1 (ko)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112654722A (zh) * 2018-12-10 2021-04-13 Md保健株式会社 来源于鞘氨醇单胞菌属细菌的纳米囊泡及其用途
JP2022543013A (ja) * 2019-08-06 2022-10-07 シャンハイ、グリーン、バレー、ファーマスーティカル、カンパニー、リミテッド 腸内微生物を調節することによりアルツハイマー病を治療するための方法
JP2022543014A (ja) * 2019-08-06 2022-10-07 シャンハイ、グリーン、バレー、ファーマスーティカル、カンパニー、リミテッド アミノ酸レベルを調節することによりアルツハイマー病を治療するための方法
JP2022543223A (ja) * 2019-08-06 2022-10-11 シャンハイ、グリーン、バレー、ファーマスーティカル、カンパニー、リミテッド アルツハイマー病を有する患者において炭水化物薬感受性患者を鑑別するための方法

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100595494B1 (ko) 2003-02-24 2006-07-03 (주) 디지탈바이오텍 혈액 내 베타-아밀로이드 항체 농도를 이용한 알츠하이머병 진단키트
KR20110025603A (ko) * 2009-09-04 2011-03-10 주식회사이언메딕스 그람 양성 세균유래 세포밖 소포체 및 이의 용도
KR20120114872A (ko) * 2011-04-08 2012-10-17 주식회사이언메딕스 아시네토박터 속 세균유래 세포밖 소포체 및 이의 용도
KR20130021920A (ko) * 2011-08-24 2013-03-06 포항공과대학교 산학협력단 Akkermansia muciniphila 또는 Bacteroides acidifaciens 유래 세포밖 소포체를 유효성분으로 함유하는 염증성 질환의 치료 또는 예방용 조성물
KR20160073157A (ko) * 2014-12-16 2016-06-24 이화여자대학교 산학협력단 세균 유래의 나노소포체를 이용한 세균성 감염질환 원인균 동정방법
KR20160101521A (ko) * 2015-02-17 2016-08-25 이화여자대학교 산학협력단 세균 유래 세포밖 소포체를 이용한 호흡기 염증성 질환의 진단방법
JP2017178929A (ja) * 2016-03-29 2017-10-05 Umiウェルネス株式会社 腸内細菌叢のバランスを改善するための組成物及び方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100595494B1 (ko) 2003-02-24 2006-07-03 (주) 디지탈바이오텍 혈액 내 베타-아밀로이드 항체 농도를 이용한 알츠하이머병 진단키트
KR20110025603A (ko) * 2009-09-04 2011-03-10 주식회사이언메딕스 그람 양성 세균유래 세포밖 소포체 및 이의 용도
KR20120114872A (ko) * 2011-04-08 2012-10-17 주식회사이언메딕스 아시네토박터 속 세균유래 세포밖 소포체 및 이의 용도
KR20130021920A (ko) * 2011-08-24 2013-03-06 포항공과대학교 산학협력단 Akkermansia muciniphila 또는 Bacteroides acidifaciens 유래 세포밖 소포체를 유효성분으로 함유하는 염증성 질환의 치료 또는 예방용 조성물
KR20160073157A (ko) * 2014-12-16 2016-06-24 이화여자대학교 산학협력단 세균 유래의 나노소포체를 이용한 세균성 감염질환 원인균 동정방법
KR20160101521A (ko) * 2015-02-17 2016-08-25 이화여자대학교 산학협력단 세균 유래 세포밖 소포체를 이용한 호흡기 염증성 질환의 진단방법
JP2017178929A (ja) * 2016-03-29 2017-10-05 Umiウェルネス株式会社 腸内細菌叢のバランスを改善するための組成物及び方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
EMERY, D. C. ET AL.: "16S rRNA Next Generation Sequencing Analysis Shows Bacteria in Alzheimer's Post-mortem Brain", FRONTIERS IN AGING NEUROSCIENCE, vol. 9, June 2017 (2017-06-01), pages 1 - 13, XP055592746 *
HO, DONG HWAN ET AL.: "Extracellular Vesicles and Neurological Diseases", JOURNAL OF THE KOREAN NEUROLOGICAL ASSOCIATION, vol. 33, no. 2, 2015, pages 75 - 81, XP055592747 *
See also references of EP3696284A4 *
SHEN, LIANG; LIU, LU; JI, HONG-FANG: "Alzheimer's Disease Histological and Behavioral Manifestations in Transgenic Mice Correlate with Specific Gut Microbiome State", JOURNAL OF ALZHEIMER'S DISEASE, vol. 56, no. 1, 12 January 2017 (2017-01-12), pages 385 - 390, XP009520261, DOI: 10.3233/JAD-160884 *

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112654722A (zh) * 2018-12-10 2021-04-13 Md保健株式会社 来源于鞘氨醇单胞菌属细菌的纳米囊泡及其用途
EP3896174A4 (en) * 2018-12-10 2022-08-17 MD Healthcare Inc. NANOVESICLES OF THE SPHINGOMONAS GENUS DERIVED FROM BACTERIA AND USES THEREOF
US11529377B2 (en) 2018-12-10 2022-12-20 Md Healthcare Inc. Nano-vesicles derived from genus Sphingomonas bacteria and use thereof
US11944652B2 (en) 2018-12-10 2024-04-02 Md Healthcare Inc. Nano-vesicles derived from genus Sphingomonas bacteria and use thereof
JP2022543013A (ja) * 2019-08-06 2022-10-07 シャンハイ、グリーン、バレー、ファーマスーティカル、カンパニー、リミテッド 腸内微生物を調節することによりアルツハイマー病を治療するための方法
JP2022543014A (ja) * 2019-08-06 2022-10-07 シャンハイ、グリーン、バレー、ファーマスーティカル、カンパニー、リミテッド アミノ酸レベルを調節することによりアルツハイマー病を治療するための方法
JP2022543223A (ja) * 2019-08-06 2022-10-11 シャンハイ、グリーン、バレー、ファーマスーティカル、カンパニー、リミテッド アルツハイマー病を有する患者において炭水化物薬感受性患者を鑑別するための方法

Similar Documents

Publication Publication Date Title
WO2019074216A1 (ko) 세균 메타게놈 분석을 통한 알츠하이머치매 진단방법
WO2018124606A1 (ko) 미생물 메타게놈 분석을 통한 유방암 진단방법
WO2018111040A1 (ko) 세균 메타게놈 분석을 통한 위암 진단방법
WO2019160284A1 (ko) 세균 메타게놈 분석을 통한 뇌졸중 진단방법
WO2019066599A2 (ko) 신규 유산균 및 이의 용도
WO2018155960A1 (ko) 미생물 메타게놈 분석을 통한 난소암 진단방법
WO2018008895A1 (ko) 프로피오니박테리움 속 세균 유래 나노소포 및 이의 용도
WO2018155961A1 (ko) 세균 메타게놈 분석을 통한 파킨슨병 진단방법
WO2019199105A1 (ko) 알츠하이머성 치매가 발병될 가능성 평가방법
WO2018155950A1 (ko) 세균 메타게놈 분석을 통한 당뇨병 진단 방법
KR102130485B1 (ko) 세균 메타게놈 분석을 통한 알츠하이머치매 진단방법
Proschinger et al. The effect of exercise on regulatory T cells: A systematic review of human and animal studies with future perspectives and methodological recommendations.
WO2018230960A2 (ko) 신규한 비피도박테리움 비피덤 균주 및 균주 유래 다당체
Deng et al. Colonization with two different Blastocystis subtypes in DSS-induced colitis mice is associated with strikingly different microbiome and pathological features
WO2018111028A1 (ko) 세균 메타게놈 분석을 통한 심장질환 진단방법
WO2019147080A1 (ko) 세균 메타게놈 분석을 통한 우울증 진단방법
WO2015108246A1 (ko) 루테리알 및 그 분리·배양 방법
WO2022097844A1 (ko) 유전자 복제수 변이 정보를 이용하여 췌장암 환자의 생존 예후를 예측하는 방법
WO2021006523A1 (ko) 세균 메타게놈 분석을 통한 뇌종양 진단방법
WO2023234659A1 (ko) 퇴행성 턱관절염의 진단 또는 예후 예측용 유전자 마커 및 이의 용도
WO2021020920A2 (ko) 비알코올성 지방간 질환의 예측 또는 진단용 키트, 및 진단방법
WO2018155967A1 (ko) 세균 메타게놈 분석을 통한 만성폐쇄성기도질환 진단 방법
WO2018124735A1 (ko) 세균 메타게놈 분석을 통한 대장종양 진단 방법
KR20180098154A (ko) 미생물 메타게놈 분석을 통한 난소암 진단방법
WO2021049834A1 (ko) 세포밖 소포의 메타게놈 및 대사체 기반 대장암 진단방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18866818

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020520015

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018866818

Country of ref document: EP

Effective date: 20200513