WO2019073848A1 - 繊維強化樹脂成形品の製造方法 - Google Patents

繊維強化樹脂成形品の製造方法 Download PDF

Info

Publication number
WO2019073848A1
WO2019073848A1 PCT/JP2018/036771 JP2018036771W WO2019073848A1 WO 2019073848 A1 WO2019073848 A1 WO 2019073848A1 JP 2018036771 W JP2018036771 W JP 2018036771W WO 2019073848 A1 WO2019073848 A1 WO 2019073848A1
Authority
WO
WIPO (PCT)
Prior art keywords
reinforced resin
fiber
mold
base material
resin base
Prior art date
Application number
PCT/JP2018/036771
Other languages
English (en)
French (fr)
Inventor
倫靖 鳥山
Original Assignee
株式会社 Monopost
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社 Monopost filed Critical 株式会社 Monopost
Priority to US16/755,241 priority Critical patent/US20200238638A1/en
Priority to KR1020207010534A priority patent/KR102363817B1/ko
Priority to CN201880065885.XA priority patent/CN111201122B/zh
Priority to EP18866490.8A priority patent/EP3695947A4/en
Publication of WO2019073848A1 publication Critical patent/WO2019073848A1/ja
Priority to IL273897A priority patent/IL273897A/en

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/44Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
    • B29C70/446Moulding structures having an axis of symmetry or at least one channel, e.g. tubular structures, frames
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • B29C43/3642Bags, bleeder sheets or cauls for isostatic pressing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3821Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process composed of particles enclosed in a bag
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/38Moulds or cores; Details thereof or accessories therefor characterised by the material or the manufacturing process
    • B29C33/3828Moulds made of at least two different materials having different thermal conductivities
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C33/00Moulds or cores; Details thereof or accessories therefor
    • B29C33/44Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles
    • B29C33/54Moulds or cores; Details thereof or accessories therefor with means for, or specially constructed to facilitate, the removal of articles, e.g. of undercut articles made of powdered or granular material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/003Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor characterised by the choice of material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/10Isostatic pressing, i.e. using non-rigid pressure-exerting members against rigid parts or dies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/18Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles incorporating preformed parts or layers, e.g. compression moulding around inserts or for coating articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/52Heating or cooling
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/56Compression moulding under special conditions, e.g. vacuum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/02Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles for articles of definite length, i.e. discrete articles
    • B29C44/12Incorporating or moulding on preformed parts, e.g. inserts or reinforcements
    • B29C44/14Incorporating or moulding on preformed parts, e.g. inserts or reinforcements the preformed part being a lining
    • B29C44/16Incorporating or moulding on preformed parts, e.g. inserts or reinforcements the preformed part being a lining shaped by the expansion of the material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/3403Foaming under special conditions, e.g. in sub-atmospheric pressure, in or on a liquid
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C44/00Shaping by internal pressure generated in the material, e.g. swelling or foaming ; Producing porous or cellular expanded plastics articles
    • B29C44/34Auxiliary operations
    • B29C44/36Feeding the material to be shaped
    • B29C44/38Feeding the material to be shaped into a closed space, i.e. to make articles of definite length
    • B29C44/44Feeding the material to be shaped into a closed space, i.e. to make articles of definite length in solid form
    • B29C44/445Feeding the material to be shaped into a closed space, i.e. to make articles of definite length in solid form in the form of expandable granules, particles or beads
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/40Shaping or impregnating by compression not applied
    • B29C70/42Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles
    • B29C70/44Shaping or impregnating by compression not applied for producing articles of definite length, i.e. discrete articles using isostatic pressure, e.g. pressure difference-moulding, vacuum bag-moulding, autoclave-moulding or expanding rubber-moulding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C70/00Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts
    • B29C70/04Shaping composites, i.e. plastics material comprising reinforcements, fillers or preformed parts, e.g. inserts comprising reinforcements only, e.g. self-reinforcing plastics
    • B29C70/28Shaping operations therefor
    • B29C70/54Component parts, details or accessories; Auxiliary operations, e.g. feeding or storage of prepregs or SMC after impregnation or during ageing
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J9/00Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof
    • C08J9/32Working-up of macromolecular substances to porous or cellular articles or materials; After-treatment thereof from compositions containing microballoons, e.g. syntactic foams
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • B29C43/10Isostatic pressing, i.e. using non-rigid pressure-exerting members against rigid parts or dies
    • B29C2043/106Isostatic pressing, i.e. using non-rigid pressure-exerting members against rigid parts or dies using powder material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C2043/3205Particular pressure exerting means for making definite articles
    • B29C2043/3261Particular pressure exerting means for making definite articles thermal expansion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/32Component parts, details or accessories; Auxiliary operations
    • B29C43/36Moulds for making articles of definite length, i.e. discrete articles
    • B29C43/3642Bags, bleeder sheets or cauls for isostatic pressing
    • B29C2043/3652Elastic moulds or mould parts, e.g. cores or inserts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29CSHAPING OR JOINING OF PLASTICS; SHAPING OF MATERIAL IN A PLASTIC STATE, NOT OTHERWISE PROVIDED FOR; AFTER-TREATMENT OF THE SHAPED PRODUCTS, e.g. REPAIRING
    • B29C43/00Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor
    • B29C43/02Compression moulding, i.e. applying external pressure to flow the moulding material; Apparatus therefor of articles of definite length, i.e. discrete articles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2063/00Use of EP, i.e. epoxy resins or derivatives thereof, as moulding material
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/0076Microcapsules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/04Condition, form or state of moulded material or of the material to be shaped cellular or porous
    • B29K2105/048Expandable particles, beads or granules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/0809Fabrics
    • B29K2105/0845Woven fabrics
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2105/00Condition, form or state of moulded material or of the material to be shaped
    • B29K2105/06Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts
    • B29K2105/08Condition, form or state of moulded material or of the material to be shaped containing reinforcements, fillers or inserts of continuous length, e.g. cords, rovings, mats, fabrics, strands or yarns
    • B29K2105/0872Prepregs
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2307/00Use of elements other than metals as reinforcement
    • B29K2307/04Carbon
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B29WORKING OF PLASTICS; WORKING OF SUBSTANCES IN A PLASTIC STATE IN GENERAL
    • B29KINDEXING SCHEME ASSOCIATED WITH SUBCLASSES B29B, B29C OR B29D, RELATING TO MOULDING MATERIALS OR TO MATERIALS FOR MOULDS, REINFORCEMENTS, FILLERS OR PREFORMED PARTS, e.g. INSERTS
    • B29K2309/00Use of inorganic materials not provided for in groups B29K2303/00 - B29K2307/00, as reinforcement
    • B29K2309/08Glass

Definitions

  • the present invention relates to a method for producing a fiber-reinforced resin molded article, and more particularly to a method for producing a fiber-reinforced resin molded article without using an apparatus such as a heat press or an autoclave.
  • a fiber-reinforced resin base material in which a reinforcing fiber is impregnated with a liquid thermosetting resin composition is disposed in a mold, and then heat and pressure are applied to cure the resin or heat
  • a method of disposing a fiber reinforced resin base material in which a plastic resin is melted and impregnated into reinforcing fibers is placed in a mold, and then heat and pressure are applied for molding, or impregnating a thermosetting resin composition into reinforcing fibers.
  • the composition is semi-cured, or the thermoplastic resin is melted and impregnated into reinforcing fibers, and then cooled and solidified to form a sheet-like fiber-reinforced resin substrate, so-called prepreg sheet or stampable sheet , And a method of molding by heating and pressing.
  • the heating and pressurizing step requires heating and pressurizing devices such as a heating press and an autoclave, and in the case of manufacturing a large-sized molded product, a large-sized facility is required, and a large amount of capital investment is required. I needed it.
  • a prepreg sheet is laminated on the inner surface of an open mold as a method of forming a large-sized fiber-reinforced resin molded product without requiring a large investment in equipment, and the whole is covered with a heat resistant bagging material.
  • a method has been proposed in which the air between the bagging material and the inner surface of the mold is discharged to form a vacuum state, and heating and pressing is performed while the prepreg sheet is in close contact with the inner surface of the open mold.
  • the pressure for bringing the prepreg sheet into close contact with the mold is atmospheric pressure, it is at most about 0.1 MPa, and there is a limit to obtaining a molded product excellent in accuracy and quality.
  • nylon film, silicone rubber, etc. are all used in order to bring the fiber reinforced resin substrate such as prepreg sheet or stampable sheet into close contact with the inner surface of the mold.
  • Bagging is done using a bagging material, and the inside of the bagging is evacuated and closely attached.
  • the bagging material will be scratched, air will leak even if you try to exhaust the inside of the bagging, and adhesion will not be performed sufficiently, and pressurization will not be performed uniformly in the autoclave, and vacuum In the case of using air, air leaks and pressurization is not sufficiently performed.
  • the handling of the sealing tape at the time of bagging is also the same, and since the adhesion of dust, oil stains and the like between the inner surface of the mold and the bagging material causes a leak, a careful operation is required.
  • Patent Document 3 proposes a method of forming a composite material capable of forming a molded article having high strength, and the method of forming includes a plurality of fibers impregnated with a thermosetting resin or a thermoplastic resin. Between the prepregs, a laminate in which thermally expandable microcapsules (thermally expandable microspheres) are interposed is formed, and the laminate is heated to expand the thermally expandable microcapsules and to form the prepreg. The composite material is formed by curing.
  • a resin of high viscosity can be used as a resin for the matrix, and the plastic strength of the molded product can be improved and the thermal expansion in the matrix It is possible to suppress the mixing of the sex. Furthermore, expansion of the heat-expandable microcapsules can lower the density of the composite material, thereby increasing the second moment of the molded article and improving the bending strength. Thus, this method improves the bending strength of a molded article by using thermally expanded microcapsules as a component of the molded article.
  • a fiber-reinforced resin base material containing a matrix resin in reinforcing fibers is disposed on the inner surface of a mold, and the core space of the type in which the fiber-reinforced resin base material is disposed.
  • the powder is filled with a flowable powder mixture consisting of a thermally expandable microphone capsule and other powders, the mold is sealed, and then heated to a temperature above the thermal expansion start temperature of the thermally expandable capsule and below the maximum expansion temperature And the thermally expandable capsule is expanded to press the fiber-reinforced resin substrate against the inner surface of the mold.
  • the content of the thermally expandable microcapsule in the powder mixture is preferably 20 to 80% by weight, and the powder other than the thermally expandable microcapsule is an organic powder, an inorganic powder, a chopped fiber, or a mixture thereof Is preferred. Then, it is preferable to fill 250 g to 600 g of the powder mixture per 1 L of the volume of the space portion in the core space portion of the mold in which the fiber reinforced resin base material is disposed, and the powder mixture of this amount is filled. This allows the powder mixture to occupy 25 to 60% of the core space volume. In this case, although the volume occupied varies depending on the apparent specific gravity of the powder, it can be adjusted by adjusting the filling amount.
  • the work of bringing the fiber reinforced resin base material into close contact with the inner surface of the mold the work of discharging the air between the fiber reinforced resin base material disposed on the inner surface of the mold and the inner surface of the mold is preferable. be able to.
  • a release material is disposed between the fiber reinforced resin base placed on the inner surface of the mold and the powder mixture, and after the mold is sealed, the fiber reinforced resin base and the mold By exhausting the air between the inner surface and the inner surface, the substrate and the inner surface can be brought into close contact with each other.
  • films such as a fluorine resin film and a silicone film are used as the mold release material.
  • a thermally expandable microcapsule is a powder composed of particles in which a volatile solvent is encapsulated inside a shell made of a thermoplastic resin, and the average particle diameter is 5 to 300 ⁇ m, preferably 5 to 150 ⁇ m. is there.
  • thermoplastic resin constituting the shell polyvinylidene chloride resin, acrylic resin, AN copolymer resin are used, and as the volatile solvent, low boiling point hydrocarbon or the like is used.
  • the powder other than the thermally expandable microcapsules constituting the powder mixture is preferably an organic powder or inorganic powder having an average particle diameter of 1 to 200 ⁇ m, or a fiber diameter of 1 to 20 ⁇ m, and a length of 0.5 to 5 mm, Is a chopped fiber cut into 0.5 to 3 mm, or a mixture of these.
  • the powder mixture is required to have fluidity, and if it is not, the filling operation is difficult, and the expansion power of the thermally expandable microcapsule is transmitted to the fiber reinforced resin substrate Trouble will occur. Fluidity means that the powder mixture can slide down on slopes of less than 90 ° and flow.
  • the heat-expandable microcapsules are heated to soften the thermoplastic resin constituting the shell, and the encapsulated volatile solvent evaporates to gasify and the pressure inside the heat-expandable microcapsules rises.
  • the volume of the thermally expandable microcapsules is 50 times or more.
  • a molded article is produced by pressing the fiber-reinforced resin substrate against the inner surface of the mold by the force of thermal expansion of the heat-expandable microcapsules.
  • the thermally expandable microcapsule expands its volume as the temperature rises, but when it reaches a certain temperature, the thickness of the shell becomes thin, and the volatile solvent gas permeates and diffuses out of the microcapsule,
  • the temperature at which the microcapsules start to expand is called the thermal expansion start temperature
  • the temperature at which the volume of the microcapsules is maximum is called the maximum expansion temperature. Because of these properties, unexpanded (unheated) thermally expandable microcapsules are filled into the enclosed space, and the pressure inside the enclosed space is raised by heating above the thermal expansion start temperature and below the maximum expansion temperature. The pressure can be raised to 0.5 MPa or more.
  • the pressure in the shell of the thermally expandable microcapsule is about 3 MPa at the maximum expansion, so it is not impossible to raise the pressure to the pressure, but the internal pressure in the enclosed space is usually 0.1 to 0.6 MPa. If the amount of thermally expandable microcapsules to be filled is increased, 1 MPa or more is also possible.
  • the thermally expandable microcapsules are used by mixing with other powders.
  • the present inventor further reduces the pressure increase associated with heating compared to the case of the thermally expandable microcapsule alone.
  • the present invention is based on the finding that the method can be performed in time, and the force of pressing the fiber reinforced resin base material to the inner surface of the mold can be maintained.
  • Glass fibers, carbon fibers, aramid fibers and the like are preferably used as reinforcing fibers used for the fiber reinforced resin base material. It is possible to impregnate the matrix resin as a fiber bundle made of rovings or yarns by aligning these fibers in one direction and a cloth obtained by weaving and knitting the fibers. Furthermore, it can also be mixed with matrix resin as chopped fiber which cut the fiber, and can also be used as a fiber reinforced resin base material.
  • thermosetting resins and thermoplastic resins can be used as a matrix resin used for a fiber reinforced resin base material.
  • a thermosetting resin is usually used as a resin composition to which a curing agent or the like is added, is often used as a liquid resin composition, is impregnated with reinforcing fibers, and contains a fiber reinforced resin base material containing a matrix resin can do.
  • the thermosetting resin composition can be semi-cured or the like to be used as a prepreg sheet.
  • various prepreg sheets are also commercially available, and fiber-reinforced resin substrates using a thermoplastic resin as a matrix resin are also commercially available as stampable sheets, and they can also be used.
  • the core space portion of the type in which the fiber reinforced resin base material is disposed is filled with the powder mixture containing the thermally expandable microcapsules, and the mold is sealed to reach a predetermined temperature to achieve fiber reinforcement.
  • Resin molded articles can be manufactured. Therefore, it is a manufacturing method which can obtain a molded article excellent in accuracy and quality without using a large apparatus, and there is no need for careful operation like the bagging operation in the above-mentioned prior art, and the operation is simple. Production method, and stable products can be produced as industrial products.
  • FIG. 3 it is a cross-sectional explanatory view showing a state in which the expanded powder mixture is pressing the fiber reinforced resin base material. It is cross-sectional explanatory drawing which shows the manufacturing method using the type
  • FIG. 7 is an explanatory sectional view showing a state in which the upper mold is closed in FIG.
  • the core space portion of the mold in which the fiber reinforced resin base material is disposed on the inner surface is filled with a flowable powder mixture composed of the thermally expandable microphone capsule and the other powder.
  • the mold is sealed, and then heated to a temperature above the thermal expansion start temperature and below the maximum expansion temperature of the thermally expandable capsule to expand the thermally expandable capsule and press the fiber-reinforced resin substrate against the inner surface of the mold.
  • FIG. 1 shows the manufacturing method of the present invention, in which the fiber reinforced resin base material 1 is disposed in close contact with the inner surface of the lower mold 3 and then a release material 8 such as a fluorine resin film is used as a fiber reinforced resin base material.
  • the core space portion 5 inside the mold release material 8 is placed in close contact with the inner surface of the material 1, and the unexpanded powder mixture 2a composed of unexpanded thermally expandable microcapsules and other powders is filled,
  • the lower mold 3 is covered with the upper mold 4 and the rubber packing material 9 is sandwiched and fastened with the fastening member 7 such as a bolt and nut to seal the mold, or fastening instead of using the rubber packing material 9
  • the fastening member 7 such as a bolt and nut to seal the mold, or fastening instead of using the rubber packing material 9
  • air between the mold release film 8 and the inner surface of the lower mold 3 is provided at the vacuum suction port 6 provided in the upper mold.
  • Vacuum suction (In FIG. 1, although both the case where the rubber packing material 9 is used and the case where the bagging material 12 is used is illustrated, either method may be used.)
  • the opening of the lower mold 3 is the upper mold 4 Prior to covering with a fiber, as shown in the figure, the end of the release film 8 is tightly sealed with a sealing material 11 such as a sealing tape to prevent air leakage, and a fiber reinforced resin base material and Improve the seal between the lower mold and ensure vacuum suction.
  • a sealing material 11 such as a sealing tape to prevent air leakage
  • a fiber reinforced resin base material Improve the seal between the lower mold and ensure vacuum suction.
  • the valve of the vacuum suction port 6 may be fastened, but it is preferable to continue the vacuum suction continuously. Further, in this method, after the fiber reinforced resin base material 1 is placed in close contact with the inner surface of the lower mold 3 by vacuum suction, the fiber reinforced resin base is obtained by the pressing force of the powder mixture 2a filled in the core space 5. There is no need for careful work to form the material 1 as in the conventional bagging operation described above.
  • the rubber packing material 9 used for fastening the upper and lower molds heat-resistant silicone rubber and fluorine rubber are preferably used, but the invention is not limited thereto. Further, as described above, as a seal between the upper mold and the lower mold, bagging is performed by the bagging film 12 and the sealing material 13 as shown in the fastening portion of FIG. it can.
  • the unexpanded powder mixture 2a does not completely fill the core space 5, but is filled so as to occupy a part of the space.
  • the filling amount 250 to 600 g per 1 L of the volume of the core space 5 and containing 20 to 80% by weight of the expandable microcapsule in the powder mixture 2a
  • the pressure can be 0.1 to 0.6 MPa, and if the conditions are adjusted, the pressure can be increased as described above.
  • the entire mold including the fiber-reinforced resin substrate 1 and the powder mixture 2a is heated to the thermal expansion start temperature or more and the maximum expansion temperature or less of the thermally expandable microcapsule, and is contained in the powder mixture 2a.
  • the thermally expandable microcapsules are expanded, and the expanded powder mixture 2 b is tightly packed in the entire core space 5.
  • the fiber reinforced resin base material 1 can be pressed against the inner surface of the lower mold 3 by the pressure generated by the expanded powder mixture 2b as it expands, and a molded article conforming to the shape of the inner surface can be obtained.
  • the internal pressure of the core space 5 after expansion can be 0.1 to 0.6 MPa or more as described above, and the air between the bagging material and the inner surface of the mold can be made as in the prior art. Apply a pressure several to 10 times higher than that of the conventional method of forming a vacuum state and making the prepreg sheet in close contact with the inner surface of the open mold while heating and pressing it using atmospheric pressure. Thus, a molded article conforming to the inner surface shape of the lower mold 3 can be obtained without using an apparatus such as an autoclave.
  • the pressure generated with the expansion of the thermally expandable microcapsule can be adjusted by the content of the thermally expandable microcapsule in the powder mixture, the filling amount of the powder mixture filled in the core space, and the like.
  • various types of thermally expandable microcapsules are commercially available, and thermal expansion start temperature is 115 to 140 from low to medium temperature expansion type having thermal expansion start temperature of 80 to 110 ° C and maximum expansion temperature of 115 to 140 ° C.
  • thermal expansion start temperature is 115 to 140 from low to medium temperature expansion type having thermal expansion start temperature of 80 to 110 ° C and maximum expansion temperature of 115 to 140 ° C.
  • the molding temperature can be selected by selecting the type of thermally expandable microcapsule in consideration of the appropriate molding temperature of the fiber reinforced resin base material.
  • the core space is filled with not only the thermally expandable microcapsules alone but also a mixture with other powders.
  • the pressure increase associated with heating can be performed in a shorter time, and the force for pressing the fiber-reinforced resin substrate against the inner surface of the mold It is based on the finding that it can be maintained.
  • the core space portion 5 is filled with the powder mixture 2 a and molding is performed, a cavity is provided in the lower mold 3, but the upper mold 4 Since it is not necessary to provide a core in this case, as long as the core space 5 can be sealed, it is sufficient to fasten and seal both molds with a fastening member as a flat lid.
  • the matrix resin used for the material 1 is a liquid or paste-like thermosetting resin, it prevents the particles of the powder mixture from entering the fiber reinforced resin substrate 1 when the powder mixture 2a is filled. There is also an effect and an effect of making the filling operation of the powder mixture smooth.
  • the mold release material 8 does not cover the entire surface of the fiber reinforced resin base material 1.
  • the mold release material 8 and the fiber reinforced resin base material 1 are sealed by the sealing material 11, the air between the fiber reinforced resin base material 1 and the inner surface of the mold is sucked, and both are adhered. Deploy.
  • the rubber packing material 9 is sandwiched between the upper and lower mold fastening parts and the fastening members 7 are fastened to seal the two mold fastening parts, thereby enhancing the sealing performance inside the mold. , Vacuum suction is done reliably.
  • FIG. 4 shows a state in which the thermally expandable microcapsules contained in the powder mixture 2a are expanded and the expanded powder mixture 2b is tightly packed in the entire core space 5, and the fiber reinforced resin base is shown in FIG.
  • the material 1 is pressurized and heated to form a molded product.
  • a fiber-reinforced resin molded product is obtained in which the powder mixture 2b after expansion is filled and bonded to the inside, and a molded product is formed with the inside of a porous body.
  • FIG. 5 shows a method of manufacturing a molded article using a lower mold 3a having an inner surface structure convex toward the inside as a lower mold.
  • This production method is preferably applied to the production of molded articles in which the surface structure of the inner surface of the molded article is emphasized.
  • the manufacturing method and process shown in FIGS. 1 and 2 are the same, only the shape of the mold is different, and the method shown in FIGS. 3 and 4 can also be applied.
  • the shape of the lower mold is not particularly limited, and various types of lower molds can be used by appropriately designing according to the shape of a molded article to be produced. Furthermore, as shown in FIGS. 6 and 7, using the fiber reinforced resin base material 1 having a larger area than the inner surface of the lower mold 3, the base material 1 is adhered to the inner surface of the upper mold 4a and molded. It is also possible. As shown in the figure, the upper mold 4a is connected to the lower mold 3 by a hinge 9 so as to be openable and closable. First, as shown in FIG. 6, the fiber reinforced resin base material 1 is continuously disposed from the inner surface of the lower mold 3 to the inner surface of the upper mold 4a.
  • connection portion by the hinge 10 is sealed by bagging with the bagging material 12 and the sealing material 13 and the surface of the arranged fiber reinforced resin base material 1 is covered with the release material 8 as in FIG.
  • the core space portion is filled with the unexpanded powder mixture 2a, and then the upper mold 4a is closed, and the end of the mold release material 8 is sealed with the sealing material 11, and the upper mold 4a and the lower mold 3 are fastened.
  • the rubber packing material 9 is sandwiched in the part, and both molds are fastened by the fastening material 7. As shown in FIG.
  • the air between the fiber reinforced resin base material 1 and the inner surfaces of the upper and lower molds 3 and 4 a is sucked by the vacuum suction port 6 after fastening of both types, as shown in FIG.
  • the base material 1 can be brought into close contact with the inner surface of the mold, and the unexpanded powder mixture 2 a can be filled with the powder mixture 2 a in the closed space of the fiber reinforced resin substrate 1.
  • the powder mixture 2a is expanded by heating the entire mold including the fiber-reinforced resin substrate 1 and the powder mixture 2a to the thermal expansion start temperature or more and the maximum expansion temperature or less of the thermally expandable microcapsules,
  • the fiber reinforced resin base material 1 can be formed by pressing the inner surface of the upper and lower molds 3 and 4a.
  • the powder mixture after expansion is present in the core space of the molded product, but after heating to produce a fiber-reinforced resin molded product, the powder mixture after expansion may be removed Alternatively, it may be a molded article having a porous inside as it is. In the case of a hollow molded article as shown in FIGS. 6 and 7, the expanded powder mixture may be taken out from the opening 14 shown in FIG. 7, and a hollow molded article having a porous body inside as it is. It can also be done. When taking out the powder mixture after expansion, the expansion can be facilitated by contracting the expanded capsule at a temperature equal to or higher than the maximum expansion temperature of the thermally expandable microcapsule.
  • Powders other than thermally expandable microcapsules in the powder mixture are, as organic powders, various cereal flours (wheat flour, rice flour, soy flour, etc.), starch (starch flour, corn starch, etc.), fish flour, horseradish flour, wood flour, bamboo Powder and the like can be used as inorganic powder such as sodium chloride, calcium carbonate, silica, alumina, talc, gypsum, silica sand, glass, etc. Powders of thermosetting resin products such as FRP can also be used be able to. Further, as the chopped fiber, one obtained by cutting various fibers into lengths of 1 to 3 mm can be used.
  • the organic powder those used for food and feed are exemplified, but they are easy to discard after use and can be reused.
  • the powder other than the thermally expandable microcapsule a powder which does not melt at the molding temperature or becomes sticky on the surface and does not impair the flowability of the powder mixture is used.
  • thermosetting resins and thermoplastic resins can be used as the matrix resin used for the fiber reinforced resin base material.
  • the thermosetting resin unsaturated polyester resin, epoxy resin, phenol resin, vinyl ester resin and the like are used.
  • a thermosetting resin is usually used as a resin composition to which a curing agent or the like is added, is often used as a liquid resin composition, is impregnated with reinforcing fibers, and contains a fiber reinforced resin base material containing a matrix resin can do.
  • the thermosetting resin composition can be semi-cured or the like to be used as a prepreg sheet.
  • various prepreg sheets are also commercially available, and fiber-reinforced resin substrates using a thermoplastic resin as a matrix resin are also commercially available as stampable sheets, and they can also be used.
  • the heating means of the mold a known method such as a method of heating by providing an electric heater or a conduit of a heat medium in the mold, a high frequency induction heating method, a radiation heating method can be used.
  • a cooling means can be provided such as switching the cooling water or the cooling oil to a heat medium and passing it through a conduit in the mold, and by using the mold provided with the cooling means in addition to the heating means, better gloss of the molded article It is also possible to obtain a surface.
  • Glass fibers, carbon fibers, aramid fibers and the like are preferably used as reinforcing fibers used for the fiber-reinforced resin base material, but boron fibers, ceramic fibers, silicon carbide fibers and the like may be used.
  • thermoplastic resin polypropylene (PP), polyethylene terephthalate (PET), polybutylene terephthalate (PBT), polyamide (PA), polyacetal (POM), polycarbonate (PC), acrylonitrile butadiene styrene copolymer ( Examples include ABS), polyphenylene sulfide (PPS), polyetheretherketone (PEEK) and the like.
  • thermoplastic resins and thermosetting resins used for fiber reinforced resin base materials from the viewpoint of waste treatment of fiber reinforced resin molded products Can facilitate waste disposal.
  • Example 1 Using a carbon fiber reinforced epoxy resin prepreg prepared by impregnating a carbon fiber cross with a 130 ° C. curing type epoxy resin varnish as a fiber reinforced resin base material, thermally expandable microcapsules [Expancel (registered trademark) as a powder mixture] , Expansel) 031-40DU, thermal expansion start temperature 80-90 ° C., maximum expansion temperature 125-135 ° C., average particle diameter 10-16 ⁇ m] and dried dry chestnut flour (average particle diameter about 30 ⁇ m) 50 weight each The molded product was manufactured by the method shown to FIG.1, 2 using the powder mixture made to contain%.
  • the above-mentioned fiber reinforced resin base material is disposed inside the lower mold, and a fluorine resin film as a mold release film is disposed thereon, and the core space portion inside the mold release film is 1 liter of volume of the space portion.
  • a fluorine resin film as a mold release film is disposed thereon, and the core space portion inside the mold release film is 1 liter of volume of the space portion.
  • the internal pressure in the core space was 0.3 to 0.5 MPa. After cooling, it was removed from the mold, and the mold release film inside the core space and the powder mixture after expansion were removed to obtain a molded article having a shape faithful to the inner surface of the lower mold.
  • the mixed foam formed of the expanded powder mixture is filled and functions as a heat insulating material, so be careful not to give the powder mixture more heat energy than necessary.
  • the expanded thermally expandable capsule starts shrinking when the temperature of the powder mixture reaches or exceeds the set temperature, so the set temperature was maintained by paying particular attention to the temperature rise in the vicinity of the mold. Even when using a 130 ° C curing type epoxy resin varnish, if the object temperature inside the mold tends to rise due to the shape of the mold, etc., the maximum expansion temperature is 138 to 146 ° C as a thermally expandable capsule. Good results were obtained using an Expansel (registered trademark, expancel) 053-40DU.
  • Example 2 In Example 1, the temperature of the core space was maintained at 130 ° C. for 60 minutes, and then the temperature was further raised by 10 to 15 ° C. to shrink the expanded microcapsules, and after cooling, the molded article was removed from the mold. However, a molded article similar to that of Example 1 was obtained.
  • Example 3 In Example 1, a molded article was obtained by the same heating operation as in Example 1 according to the method shown in FIGS. 3 and 4 without covering the fiber reinforced resin base material with a release film. This molded article is a molded article filled with a porous material inside.
  • Example 4 A glass fiber reinforced polypropylene sheet in which plain woven glass cloth is impregnated with polypropylene as a fiber reinforced resin base material, Expansel (registered trademark, made by Expancel Co., Ltd.) 092-40 DU as thermally expandable microcapsule, thermal expansion start The core space temperature is started from 125 ° C. and maintained for 30 minutes as heating conditions using a temperature of 123 ° to 133 ° C., maximum expansion temperature of 170 ° to 180 ° C., and average particle diameter of 10 to 16 ⁇ m. The same operation as in Example 1 was carried out except for holding for 60 minutes, and a molded article faithful to the inner surface of the lower mold was obtained.
  • Expansel registered trademark, made by Expancel Co., Ltd. 092-40 DU as thermally expandable microcapsule
  • the core space temperature is started from 125 ° C. and maintained for 30 minutes as heating conditions using a temperature of 123 ° to 133 ° C., maximum expansion temperature of 1

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Composite Materials (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Casting Or Compression Moulding Of Plastics Or The Like (AREA)
  • Moulding By Coating Moulds (AREA)
  • Molding Of Porous Articles (AREA)
  • Manufacture Of Porous Articles, And Recovery And Treatment Of Waste Products (AREA)

Abstract

(課題)維強化樹脂成形品の製造方法において、マトリックス樹脂を含有する繊維強化樹脂基材を加熱加圧して成形するに際して、大型装置を用いることなく、精度や品質に優れた成形品を得ることのでき、作業も簡便な製造方法の提供。 (解決手段)強化用繊維にマトリックス樹脂を含有させた繊維強化樹脂基材1を下型3の内面に配置し、前記繊維強化樹脂基材1が配置された型のコア空間部5に熱膨張性マイクカプセルとそれ以外の粉体とから成る流動性を有する粉体混合物2aを充填し、下型3と上型4とを密閉し、次いで熱膨張性カプセルの熱膨張開始温度以上、最大膨張温度以下に加熱して、熱膨張性カプセルを膨張させ、前記繊維強化樹脂基材1を下型3の内面に押圧して成形品を製造する。

Description

繊維強化樹脂成形品の製造方法
 本発明は繊維強化樹脂成形品の製造方法に関し、特に熱プレス機やオートクレーブなどの装置を用いることなく繊維強化樹脂成形品の製造する方法に関する。
 繊維強化樹脂成形品の製造方法は、強化用繊維に液状の熱硬化性樹脂組成物を含浸させた繊維強化樹脂基材を型に配置して、次いで加熱加圧して樹脂を硬化させたり、熱可塑性樹脂を溶融して強化用繊維に含浸させた繊維強化樹脂基材を型に配置して、次いで加熱加圧して成形させたりする方法や、熱硬化性樹脂組成物を強化用繊維に含浸させた後、該組成物を半硬化させるか、又は熱可塑性樹脂を溶融して強化用繊維に含浸させ後、冷却固化してシート状とした繊維強化樹脂基材、いわゆるプレプリグシート又はスタンパブルシート、を加熱加圧して成形する方法などが行われている。しかし、これらの方法において、加熱加圧する工程では、加熱プレスやオートクレーブなどの加熱加圧装置を必要とし、大型の成形品を製造する場合では、大きな大型設備が必要であり、巨額の設備投資を要していた。
 そのため、特許文献1には、大型の繊維強化樹脂成形品を、巨額の設備投資をしなくとも成形できる方法として、プレプリグシートをオープンモールドの内面に積層し、耐熱性バギング材で全体を覆った後、バギング材とモールド内面との間の空気を排出して真空状態とし、プレプレグシートをオープンモールドの内面に密着させながら、加熱加圧して成形する方法が提案されている。しかし、この方法ではプレプレグシートをモールドに密着させる圧力は、大気圧によるものであるため、最大でも約0.1MPaであり、精度や品質に優れた成形品を得るには限界がある。
 さらに、前記のオートクレーブを用いる方法や上記の真空を利用した方法では、いずれもプレプレグシートやスタンパブルシート等の繊維強化樹脂基材を型の内面に密着させるためにナイロンフィルムやシリコンゴムなどのバギング材を使用してバギングを行い、バギング内部を排気して密着する。このときバギング材の扱いを丁寧に行わないとバギング材にキズが付き、バギング内を排気しようとしても空気がリークし、密着が十分に行われず、オートクレーブでは加圧が均一に行われず、また真空を利用する場合では、空気漏れが発生し加圧が十分に行われない。また、バギングに際してのシールテープの扱いも同様で型の内面とバギング材の間にゴミ、油性の汚れ等の付着がリークの原因となるため、丁寧な作業が必要となる。
 一方、特許文献2には、繊維補強樹脂複合材料により所定の形状の成形された表層部と多孔質コアとを有する複合成形物を製造するに当たり、型の内面付近に補強用繊維を配置し、その内側のコア部分に熱膨張性マイクロカプセルなどの熱膨張性粒子と熱溶融性マトリックス樹脂との混合物を存在させ、しかる後、型を加熱して、上記マトリックス樹脂を溶融すると共に、上記熱膨張性粒子を発泡膨張させながら表層部を成形する製造方法が提案されている。しかし、この方法では、熱膨張性粒子の膨張力により、加熱により溶融させたマトリックス樹脂を補強用繊維に含浸させながら成形を行う必要があり、加熱条件の設定が難しく、また、熱膨張性粒子の膨張後の粒子は通さないが、溶融したマトリックス樹脂を通す多孔質から成る分離層を設けるなど複雑な構成とする必要がある。
 また、特許文献3には、強度の高い成形品を成形することができる複合材料の成形方法が提案されており、その成形方法は繊維に熱硬化性樹脂又は熱可塑性樹脂を含浸させた複数のプレプリグの間に、熱膨張性マイクロカプセル(熱膨張性マイクロスフェア)を介在させた積層体を形成し、この積層体を加熱することで、熱膨張性マイクロカプセルを膨張させること共に、前記プレプリグを硬化させることにより複合材料を成形するものである。この成形方法では、予め繊維に樹脂を含浸させたプレプリグを用いるために、マトリックス用の樹脂として高粘度のものが使用でき、成形品のプラスチック強度を向上させることができると共に、マトリックス内に熱膨張性が混入することを抑えることができる。さらには、熱膨張性マイクロカプセルが膨張することで複合材料の密度を低下させることができ、これにより成形品の2次モーメントを大きくして曲げ強度を向上させることができる。このように本方法は、熱膨張したマイクロカプセルを成形品の構成部分とすることで、成形品の曲げ強度を向上させるものである。
特開2004-276471号公報 特開平3-288629 特開2015-112805
 本発明の課題は、繊維強化樹脂成形品の製造方法において、マトリックス樹脂を含有する繊維強化樹脂基材を加熱加圧して成形するに際して、大型装置を用いることなく、精度や品質に優れた成形品を得ることのでき、作業も簡便な製造方法を提供することである。
 本発明の繊維強化樹脂成形品の製造方法は、強化用繊維にマトリックス樹脂を含有させた繊維強化樹脂基材を型の内面に配置し、前記繊維強化樹脂基材が配置された型のコア空間部に熱膨張性マイクカプセルとそれ以外の粉体とから成る流動性を有する粉体混合物を充填し、型を密閉し、次いで熱膨張性カプセルの熱膨張開始温度以上、最大膨張温度以下に加熱して、熱膨張性カプセルを膨張させ、前記繊維強化樹脂基材を型の内面に押圧することを特徴とする。
 前記粉体混合物における熱膨張性マイクロカプセルの含有量は20~80重量%であることが好ましく、熱膨張性マイクロカプセル以外の粉体は有機物粉体、無機物粉体、チョップドファイバー、又はそれらの混合物であることが好ましい。そして、前記繊維強化樹脂基材が配置された型のコア空間部に、該空間部の容積1L当たり250g~600gの前記粉体混合物を充填することが好ましく、この量の粉体混合物を充填することで、粉体混合物がコア空間部容積の25~60%を占めるようにできる。この場合紛体の見掛比重により、占める容積は変動するが、充填量を加減することで調整できる。
 さらに、繊維強化樹脂基材を型の内面に密着させる作業としては、型の内面に配置された繊維強化樹脂基材と型の内面との間の空気を排出する作業が好ましく、簡単に密着させることができる。そして、この密着させる作業に当たっては、型の内面に配置した繊維強化樹脂基材と前記粉体混合物との間に離形材を配置し、型を密閉した後、繊維強化樹脂基材と型の内面との間の空気を排気することにより、該基材と該内面とを密着させることができる。この場合、離形材としては、フッ素樹脂フィルムやシリコーンフィルムなどのフィルム類が用いられる。離形材を用いることにより、加熱により膨張した粉体混合物を繊維強化樹脂成形品から容易に除去することができる。
 熱膨張性マイクロカプセルとは熱可塑性樹脂から成る殻(シェル)の内部に揮発性溶剤を内封した粒子で構成される粉体であり、平均粒径は5~300μm、好ましくは5~150μmである。殻を構成する熱可塑性樹脂としてはポリ塩化ビニリデン系樹脂、アクリル系樹脂、AN系共重合体系樹脂が用いられ、揮発性溶剤としては低沸点炭化水素などが用いられる。
 粉体混合物を構成する熱膨張性マイクロカプセル以外の粉体としては、平均粒径1~200μmの有機粉体もしくは無機粉体、又は繊維径が1~20μm、長さ0.5~5mm、好ましくは0.5~3mmにカットしたチョップドファイバー、或いはこれらの混合物が用いられる。そして、粉体混合物は流動性を有することが必要であり、流動性がない場合には、充填作業が困難であり、また、熱膨張性マイクロカプセルの膨張力を繊維強化樹脂基材に伝達するのに支障が生ずる。流動性を有するとは粉体混合物が90°未満の斜面上で滑り下り、流動できることである。
 熱膨張性マイクロカプセルは加熱されることで、殻を構成する熱可塑性樹脂が軟化すると共に、内封された揮発性溶剤が蒸発してガス化することで熱膨張性マイクロカプセル内部の圧力が上昇して、熱膨張性マイクロカプセルの体積は50倍以上となる。本発明では熱膨張性マイクロカプセルが加熱により膨張する力によって、繊維強化樹脂基材を型の内面に押圧することで成形品を製造する。また、熱膨張性マイクロカプセルは温度が高くなるにつれて、その体積を膨張させるが、ある温度以上となると、殻の厚さが薄くなり、揮発性溶剤のガスがマイクロカプセルの外部に透過拡散し、収縮する性質を持っており、マイクロカプセルが膨張を開始する温度を熱膨張開始温度、マイクロカプセルの体積が最大となる温度を最大膨張温度と称されている。このような特性を持っているため、未膨張(未加熱)の熱膨張性マイクロカプセルを密閉空間内に充填し、熱膨張開始温度以上、最大膨張温度以下に加熱することで密閉空間内部の圧力を上昇することができ、その圧力を0.5MPa以上に上昇させることができる。熱膨張性マイクロカプセルの殻内の圧力は最大膨張時には3MPa程度となるため、その圧力まで上昇させることも不可能ではないが密閉空間内の内部圧力は、通常0.1~0.6MPaであり、充填する熱膨張性マイクロカプセルの量を増やせば1MPa以上も可能である。
 本発明においては、熱膨張性マイクロカプセルはこれ以外の粉体と混合して用いる。本発明者は、この粉体混合物を繊維強化樹脂基材のコア空間部に充填して加熱を行うことにより、熱膨張性マイクロカプセル単独の場合と比べて、加熱に伴う圧力の上昇をより短時間で行うことができ、さらに繊維強化樹脂基材を型の内面へ押圧する力を維持することができることを見出し、本発明を成したものである。
 繊維強化樹脂基材に用いられる強化用繊維としてはガラス繊維、炭素繊維、アラミド繊維などが好ましく用いられる。これらの繊維を一方向に引きそろえてロービングやヤーンとした繊維束や、繊維を織編したクロスとして、マトリックス樹脂を含浸させることができる。さらに、繊維をカットしたチョップドファイバーとして、マトリックス樹脂に混合して繊維強化樹脂基材とすることもできる。
 繊維強化樹脂基材に用いられるマトリックス樹脂としては、各種の熱硬化性樹脂や熱可塑性樹脂を用いることができる。熱硬化性樹脂は、通常硬化剤等が加えられた樹脂組成物として用いられ、液状樹脂組成物として用いられることが多く、強化用繊維に含浸させ、マトリックス樹脂を含有する繊維強化樹脂基材とすることができる。この場合、熱硬化性樹脂組成物を半硬化させるなどして、プレプリグシートとして用いることができる。また、各種のプリプレグシートも市販されており、マトリックス樹脂として熱可塑性樹脂を用いた繊維強化樹脂基材もスタンパブルシートして市販されており、それらを利用することもできる。
 本発明では、繊維強化樹脂基材の配置された型のコア空間部に熱膨張性マイクロカプセルを含有する粉体混合物を充填し、型を密閉して既定の温度に到達させることで、繊維強化樹脂成形品を製造することができる。そのため、大型装置を用いることなく、精度や品質に優れた成形品を得ることのできる製造方法であり、また、前記した従来技術におけるバギング作業のような丁寧な操作の必要がなく、作業も簡便な製造方法となり、工業製品として安定したものが製造できる。
本発明の製造法を示す断面説明図である。 膨張済の粉体混合物が繊維強化樹脂基材を加圧している状態を示す断面説明図である。 粉体混合物と繊維強化樹脂基材との間に離形材を配置しない製造方法を示す断面説明図である。 図3において、膨張済の粉体混合物が繊維強化樹脂基材を加圧している状態を示す断面説明図である。 内側に向かって凸形状の内面構造の型を用いた製造法を示す断面説明図である。 上型を開閉可能として、下型と上型の両内面に繊維強化樹脂基材を密着して成形する方法における、上型を開いた状態を示す断面説明図である。 図6において、上型を閉じた状態を示す断面説明図である。
 以下、本発明を実施するための形態に付、さらに詳細に説明を行う。
 本発明では前記したように、内面に繊維強化樹脂基材が配置された型のコア空間部に、熱膨張性マイクカプセルとそれ以外の粉体とから成る流動性を有する粉体混合物を充填し、型を密閉し、次いで熱膨張性カプセルの熱膨張開始温度以上、最大膨張温度以下に加熱して、熱膨張性カプセルを膨張させて前記繊維強化樹脂基材を型の内面に押圧することで、繊維強化樹脂成形品を製造する。
 図1は、本発明の製造方法を示したものであり、繊維強化樹脂基材1を下型3の内面に密着配置し、次いで、フッ素系樹脂フィルムなどの離型材8を、繊維強化樹脂基材1の内面に密着配置して、離形材8の内側のコア空間部5に未膨張の熱膨張性マイクロカプセルとそれ以外の粉体とからなる未膨張の粉体混合物2aを充填し、次いで下型3の開口部を上型4で覆い、ボルトナットなどの締結部材7にてゴムパッキング材9を挟み込んで締結して型を密閉するか、或いはゴムパッキング材9を用いる代わりに、締結部周辺を図に示すようにバギング材12とシール材13にてバギングを行った後、離形フィルム8と下型3の内面との間の空気を上型に設けた真空吸引口6にて真空吸引する。(図1では、ゴムパッキング材9を用いる場合とバギング材12を用いる場合の両方を図示しているがいずれかの方法を用いればよい。)この場合、下型3の開口部を上型4で覆いをするのに先立ち、図で示すように、離形フィルム8の端部をシールテープなどのシール材11によりしっかりとシールを行い、空気漏れのないようにして、繊維強化樹脂基材と下型との間の密閉性を上げ、真空吸引が確実に行えるようにする。
 この真空吸引は繊維強化樹脂基材1の下型の内面への密着が十分になれば、真空吸引口6のバルブを締結してもよいが、継続して真空吸引を続けることが好ましい。また、この方法では、真空吸引により繊維強化樹脂基材1を下型3の内面に密着配置した後、コア空間部5に充填した粉体混合物2aの膨張力による押圧力でもって繊維強化樹脂基材1を成形するため、前記した従来のバギング操作のように、丁寧な作業は必要がない。
 上型と下型の締結に際して用いられるゴムパッキン材9としては、耐熱性のあるシリコンゴムやフッ素ゴムが好ましく用いられるが、これらに限定されるものではない。また、上型と下型との間のシールとして、上記したように、図1の締結部に示したようにバギングフィルム12とシール材13とによりバギングを行い、両型のシールを行うこともできる。
 図1では未膨張の粉体混合物2aはコア空間部5を完全に満たすのではなく、空間の一部を占めるようにして充填されている。この充填量をコア空間部5の容積1L当たり250~600gとし、この粉体混合物2aに膨張性マイクロカプセルを20~80重量%含有させておくことで、加熱後にコア空間部5の内部圧を0.1~0.6MPaとすることができ、条件を整えれば、前記したようにそれ以上の圧力とすることができる。
 図2は、繊維強化樹脂基材1と粉体混合物2aとを含む型全体を熱膨張性マイクロカプセルの熱膨張開始温度以上、最大膨張温度以下に加熱し、粉体混合物2aに含有されている熱膨張性マイクロカプセルを膨張させ、膨張した粉体混合物2bがコア空間部5全体に緊密に充填された状態を示している。この状態では、膨張した粉体混合物2bが膨張に伴い発生する圧力により、繊維強化樹脂基材1を下型3の内面に押圧して、内面の形状に従った成形品とすることができる。膨張後のコア空間部5の内部圧力は前記したように0.1~0.6MPa、またはそれ以上とすることができ、前記の従来技術のようにバギング材とモールド内面との間の空気を排出して真空状態とし、プレプレグシートをオープンモールドの内面に密着させながら、大気圧を利用して加熱加圧して成形する従来の方法に比べて数倍ないしは10倍以上の押圧力を加えることができるため、オートクレーブなどの装置を用いることなく、下型3の内面形状に忠実に従った成形品とすることができる。
 熱膨張性マイクロカプセルの膨張に伴い発生する圧力は、粉体混合物における熱膨張性マイクロカプセルの含有量や、コア空間部に充填する紛体混合物の充填量などで調整することができる。また、熱膨張性マイクロカプセルは各種のタイプが市販されており、熱膨張開始温度が80~110℃、最大膨張温度が115~140℃の低中温度膨張タイプから熱膨張開始温度が115~140℃、最大膨張温度が170~200℃の中高温度膨張タイプがあり、さらには、熱膨張開始温度が180~230℃、最大膨張温度が210~275℃の超高温度膨張タイプなども市販されている。そのため、繊維強化樹脂基材の適正成形温度を考慮して、熱膨張性マイクロカプセルのタイプを選択して、成形温度を選択することができる。
 本発明においては、コア空間部に充填するのは熱膨張性マイクロカプセル単独でなく、その他の粉体との混合物である。これは前記したように、熱膨張性マイクロカプセル単独の場合と比べて、加熱に伴う圧力の上昇をより短時間で行うことができ、さらに繊維強化樹脂基材を型の内面に押圧する力を維持することができるとの知見に基づいている。
 図1、2に示したように、本発明においては、コア空間部5に粉体混合品2aを充填して、成形を行うため、下型3にはキャビティーが設けられるが、上型4にはコアは設ける必要がなく、コア空間部5を密閉することができればよいため、平板状の蓋体として、締結部材で両型を締結して密閉すればよい。
 図1、2に示したように離型材8を使用する態様においては、加熱成型後、膨張後の粉体混合物を成形品の内部より除去することが容易となるだけでなく、繊維強化樹脂基材1に用いられるマトリックス樹脂が液状ないしはペースト状の熱硬化性樹脂であるプレプリグの場合には、粉体混合物2aの充填に際して、粉体混合物の粒子が繊維強化樹脂基材1に入り込むのを防ぐ効果や粉体混合物の充填作業をスムーズにさせる効果もある。
 図3、4に示す態様では、繊維強化樹脂基材1を下型3の内面に密着配置する際に、離形材8は、繊維強化樹脂基材1の表面全体を覆うことなく、繊維強化樹脂基材1と真空吸引口6との間をつなぎ、繊維強化樹脂基材1と下型3の内面との間の空気を上型に設けた真空吸引口6にて真空吸引できるようにするためのものであり、離形材8と繊維強化樹脂基材1とをシール材11にてシールを行い、繊維強化樹脂基材1と金型内面との間の空気を吸引し、両者を密着配置する。この場合、図で示すように、上下の両型の締結部にゴムパッキング材9を挟み込み、締結部材7で締結することで、両型の締結部のシールを行い、型内部の密閉性を上げ、真空吸引を確実に行っている。
 図4は、粉体混合物2aに含有されている熱膨張性マイクロカプセルを膨張させ、膨張した粉体混合物2bがコア空間部5全体に緊密に充填された状態を示しており、繊維強化樹脂基材1が加圧加熱されて成形品となっている。この態様では、内部に膨張後の粉体混合物2bが充填結合した繊維強化樹脂成形品が得られ、内部が多孔質体から構成されている成形品となる。
 図5は、下型として内側に向かって凸形状の内面構造を持つ下型3aを用いた成形品の製造方法を示したものである。この製造方法は成形品の内面の表面構造が重視される成形品の製造に好ましく応用される。図1、2に示される製造法とプロセスは同じであり、型の形状が異なるだけであり、図3、4に示された方法にも適用することができる。
 下型の形状は、特に限定されず、製造する成形品の形状に応じて適宜設計することで、種々の形状の下型を使用することができる。さらには、図6及び図7に示すように、下型3の内面より大きな面積を持つ繊維強化樹脂基材1を用いて、上型4aの内面にまで該基材1を密着させて、成形することも可能である。図に示すように、上型4aは下型3に蝶番9により開閉可能に連結している。まず、図6に示すように下型3の内面から、上型4aの内面にまで、繊維強化樹脂基材1を連続して配置する。この場合、蝶番10による連結部分をバギング材12とシール材13にてバギングしてシールし、さらに図1と同様に、配置した繊維強化樹脂基材1の表面を離形材8で覆ったのち、コア空間部に未膨張の粉体混合物2aを充填し、次いで上型4aを閉じると共に、離形材8の端部をシール材11にてシールし、上型4aと下型3との締結部にゴムパッキング材9を挟み込み、締結材7にて両型を締結する。両型の締結後、繊維強化樹脂基材1と上下の両金型3,4aの内面との間の空気を真空吸引口6により吸引することにより、図7に示されるように、繊維強化樹脂基材1を型の内面に密着させ、未膨張の粉体混合物2aを繊維強化樹脂基材1の密閉空間内に粉体混合物2aが充填された状態とすることができる。この状態で、繊維強化樹脂基材1と粉体混合物2aとを含む型全体を熱膨張性マイクロカプセルの熱膨張開始温度以上、最大膨張温度以下に加熱することで、粉末混合物2aを膨張させ、繊維強化樹脂基材1を上下両型3、4aの内面に押圧して成形することができる。
 以上説明したいずれの方法においても、膨張後の粉末混合物は成形品のコア空間内に存在するが、加熱して繊維強化樹脂成形品を製造した後、この膨張後の粉末混合物を取り除いてもよく、そのまま残して、内部が多孔質体となっている成形品としてもよい。図6、7に示したような中空体の成形品では、図7に示される開口部14より、膨張後の粉末混合物を取り出してもよく、そのまま残して内部に多孔質体を有する中空成形品とすることもできる。膨張後の粉体混合物の取り出しに際しては、熱膨張性マイクロカプセルの最大膨張温度以上の温度として、膨張したカプセルを収縮させることにより、取り出しを容易にすることができる。
 粉末混合物における熱膨張性マイクロカプセル以外の粉末は、有機粉体としては、各種の穀物粉(小麦粉、米粉、大豆粉等)、でんぷん(片栗粉、コーンスターチ等)、魚粉、ワサビ粉、木粉、竹粉等が、無機粉体としては、塩化ナトリウム、炭酸カルシウム、シリカ、アルミナ、タルク、石膏、珪砂、ガラス等の粉末を用いることができ、その他FRP等の熱硬化樹脂製品の粉砕粉末も使用することができる。また、チョップドファイバーとしては、各種の繊維を1~3mmの長さにカットしたものが用いることができる。有機粉体としては、食物や飼料に用いられるものなどを例示したが、これらは使用後、廃棄するのが容易であり、また再利用することもできる。そして、熱膨張性マイクロカプセル以外の粉末は、成形温度において溶融したり、表面が粘着性となったりして、粉末混合物の流動性を損なうことのないものが使用される。
 繊維強化樹脂基材に用いられるマトリックス樹脂としては、前記したように各種の熱硬化性樹脂や熱可塑性樹脂を用いることができる。熱硬化性樹脂としては、不飽和ポリエステル樹脂、エポキシ樹脂、フェノール樹脂、ビニルエステル樹脂などが用いられる。熱硬化性樹脂は、通常硬化剤等が加えられた樹脂組成物として用いられ、液状樹脂組成物として用いられることが多く、強化用繊維に含浸させ、マトリックス樹脂を含有する繊維強化樹脂基材とすることができる。この場合、熱硬化性樹脂組成物を半硬化させるなどして、プレプリグシートとして用いることができる。また、各種のプリプレグシートも市販されており、マトリックス樹脂として熱可塑性樹脂を用いた繊維強化樹脂基材もスタンパブルシートして市販されており、それらを利用することもできる。
 型の加熱手段は、型に電熱ヒーターや熱媒の導管を設けて加熱する方式、高周波誘導加熱方式、輻射加熱方式などの公知の手段を用いることができる。さらに、型に冷却水や冷却オイルを熱媒に切り替えて導管に通すなどの冷却手段を設けることもでき、加熱手段に加えて冷却手段を付与した型を用いることにより、成形品のより良い光沢表面を得ることもできる。
 繊維強化樹脂基材に用いられる強化用繊維としてはガラス繊維、炭素繊維、アラミド繊維などが好ましく用いられるが、そのボロン繊維、セラミック繊維、炭化ケイ素繊維等であってもよい。
 また、熱可塑性樹脂としては、ポリプロピレン(PP)、ポリエチレンテレフタレート(PET)、ポリブチレンテレフタレート(PBT)、ポリアミド(PA)、ポリアセタール(POM)、ポリカーボネート(PC)、アクリロニトリル・ブタジエン・スチレン共重合体(ABS)、ポリフェニレンサルファイド(PPS)、ポリエーテルエーテルケトン(PEEK)などを例示することができる。
 一方、繊維強化樹脂成形品の廃棄物処理の観点から、繊維強化樹脂基材に用いられる強化用繊維、熱可塑性樹脂、熱硬化性樹脂として、生分解性繊維や生分解性樹脂を使用することで、廃棄物の処理を容易にすることができる。
 以下、本発明を具体的に説明するために実施例を示す。
 [実施例1]
 繊維強化樹脂基材として、カーボンファーバークロスに130℃硬化タイプのエポキシ樹脂ワニスを含浸させ作成したカーボン繊維強化エポキシ樹脂プレプリグを用い、粉体混合物として、熱膨張性マイクロカプセル[エクスパンセル(登録商標、エクスパンセル社製)031-40DU、熱膨張開始温度80~90℃、最大膨張温度125~135℃、平均粒子径10-16μm]と乾燥した片栗粉(平均粒子径約30μm)をそれぞれ50重量%含有させた粉体混合物を用いて、図1、2に示す方法にて、成形品の製造を行った。
 先ず、上記の繊維強化樹脂基材を下型の内部に配置し、その上を離形フィルムとしてのフッ素樹脂フィルムを配置し、離形フィルム内部のコア空間部に、該空間部の容積1L当たり280gの粉体混合物を充填し、離形フィルムの端部をシールテープにシールした後、上型で覆い上型と下型とを、締結部にゴムパッキング材をはみ込むことで密閉して、離形フィルムと下型の間の空気を真空吸引し、両者を密着配置した。次いで、繊維強化樹脂基材の配置された型を加熱して、コア空間部の温度を80℃からスタートし30分間保ち、次いで型温度を130℃で60分間保持して成形を行った。その間、コア空間部の内部圧力は0.3~0.5MPaであった。冷却後、型から取り出し、コア空間内部の離形フィルムと膨張後の粉体混合物とを除去して、下型の内面に忠実な形状の成形品を得た。
 又、130℃に保持する場合、膨張後の粉体混合物で形成された混合発泡体が充填されており、断熱材として機能するため、粉体混合物に必要以上に熱エネルギーを与えないように注意をして、設定温度を維持する必要がある。粉体混合物の温度が設定温度以上となると膨張した熱膨張性カプセルが収縮を始めるため、とくに、型の近傍では温度上昇に注意をして設定温度を維持した。130℃硬化タイプのエポキシ樹脂ワニスを使用した場合でも、型の形状等で、型の内部の物体温度が上昇しやすい場合には、熱膨張性カプセルとして、最大膨張温度が138~146℃であるエクスパンセル(登録商標、エクスパンセル社製)053-40DUを使用して、良好な結果を得た。
 [実施例2]
 実施例1において、コア空間部の温度を130℃に60分間保った後、温度をさらに10~15℃上昇させて、膨張後のマイクロカプセルを収縮させ、冷却後、成形品を型から取り出したが、実施例1と同様な成形品が得られた。
 [実施例3]
 実施例1において、繊維強化樹脂基材を離形フィルムで覆うことなく、図3、4に示す方法にて実施例1と同様な加熱操作にて成形品を得た。この成形品は内部が多孔性物質で充填された成形品である。
 [実施例4]
 繊維強化樹脂基材として、平織ガラスクロスにポリプロピレンを含浸させたガラス繊維強化ポリプロピレンシートを用い、熱膨張性マイクロカプセルとしてエクスパンセル(登録商標、エクスパンセル社製)092-40DU、熱膨張開始温度123~133℃、最大膨張温度170~180℃、平均粒子径10-16μm]を用いて、加熱条件としてコア空間部の温度を125℃からスタートし30分間保ち、次いで型温度を160℃で60分間保持する他は実施例1と同様な操作を行い、下型の内面に忠実な形状の成形品を得た。
1  繊維強化樹脂基材
2a 粉体混合物(未膨張)
2b 粉体混合物(膨張済)
3、3a  下型
4、4a  上型
5  コア空間部
6  真空吸引口
7  締結部材
8  離型材
9  ゴムパッキング材
10 蝶番
11 離形材用シール材
12 バギング材
13 バギング用シール材
14 開口部

Claims (5)

  1.  強化用繊維にマトリックス樹脂を含有させた繊維強化樹脂基材を型の内面に配置し、前記繊維強化樹脂基材が配置された型のコア空間部に熱膨張性マイクカプセルとそれ以外の粉体とからなる流動性を有する粉体混合物を充填し、型を密閉し、次いで熱膨張性カプセルの熱膨張開始温度以上、最大膨張温度以下に加熱して、熱膨張性カプセルを膨張させ、前記繊維強化樹脂基材を加熱加圧することを特徴とする繊維強化樹脂成形品の製造方法。
  2.  前記粉体混合物における熱膨張性マイクロカプセルの含有量は20~80重量%であることを特徴とする請求項1に記載の繊維強化樹脂成形品の製造方法。
  3.  前記繊維強化樹脂基材が配置された型のコア空間部に、該空間部容積1L当たり200g~600gの前記粉体混合物を充填することを特徴とする請求項1又は2に記載の繊維樹脂強化樹脂成形品の製造方法。
  4.  型の内面に配置した繊維強化樹脂基材と前記粉体混合物との間に離形材を配置し、型を密閉した後、繊維強化樹脂基材と型の内面との間の空気を排気することにより、該基材と該内面とを密着させることを特徴とする請求項1~3のいずれか一項に記載の繊維強化樹脂成形品の製造方法。
  5.  熱膨張性マイクロカプセル以外の粉体は有機物粉体、無機物粉体、チョップドファイバー、又はそれらの混合物からなることを特徴とする請求項1~4のいずれか一項に記載の繊維強化樹脂成形品の製造方法。
PCT/JP2018/036771 2017-10-11 2018-10-02 繊維強化樹脂成形品の製造方法 WO2019073848A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/755,241 US20200238638A1 (en) 2017-10-11 2018-10-02 Production method for fiber-reinforced resin molded object
KR1020207010534A KR102363817B1 (ko) 2017-10-11 2018-10-02 섬유 강화 수지 성형품의 제조 방법
CN201880065885.XA CN111201122B (zh) 2017-10-11 2018-10-02 纤维增强树脂模制品的制造方法
EP18866490.8A EP3695947A4 (en) 2017-10-11 2018-10-02 METHOD OF MANUFACTURING A MOLDED ARTICLE OF FIBER REINFORCED RESIN
IL273897A IL273897A (en) 2017-10-11 2020-04-07 Production method of a fiber-reinforced resin molded object

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017197468A JP6405433B1 (ja) 2017-10-11 2017-10-11 繊維強化樹脂成形品の製造方法
JP2017-197468 2017-10-11

Publications (1)

Publication Number Publication Date
WO2019073848A1 true WO2019073848A1 (ja) 2019-04-18

Family

ID=63855106

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036771 WO2019073848A1 (ja) 2017-10-11 2018-10-02 繊維強化樹脂成形品の製造方法

Country Status (7)

Country Link
US (1) US20200238638A1 (ja)
EP (1) EP3695947A4 (ja)
JP (1) JP6405433B1 (ja)
KR (1) KR102363817B1 (ja)
CN (1) CN111201122B (ja)
IL (1) IL273897A (ja)
WO (1) WO2019073848A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113004572A (zh) * 2019-12-19 2021-06-22 波音公司 用于回收膨胀的聚合物工具的方法
CN114340879A (zh) * 2019-09-05 2022-04-12 恩普乐股份有限公司 纤维强化树脂成型品的制造方法以及纤维强化树脂成型品
US11298892B2 (en) 2019-07-01 2022-04-12 The Boeing Company Expandable tooling systems and methods

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11426951B2 (en) 2019-01-02 2022-08-30 The Boeing Company Expandable bladders as tooling for composite parts
JP2022080870A (ja) * 2020-11-18 2022-05-30 ザ・ボーイング・カンパニー 複合構造を処理するための装置及び方法
CN112592244B (zh) * 2020-12-18 2022-11-25 大同市农产品质量安全检验检测中心 一种蔬菜有机肥及其制备方法
US20230079888A1 (en) * 2021-09-13 2023-03-16 Rohr, Inc. Tooling element and methods for forming and using same
CN114379077B (zh) * 2022-01-25 2023-03-24 西安交通大学 低成本的纤维增强热固性复合材料3d打印构件后固化方法
CN114536797A (zh) * 2022-02-24 2022-05-27 烟台正海合泰科技股份有限公司 Phc产品的生产方法和装置
WO2024047461A1 (en) * 2022-08-29 2024-03-07 ALIA MENTIS S.r.l. Hot molding method

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03288629A (ja) 1990-04-04 1991-12-18 Teijin Ltd 複合成形物の製造方法
JPH0427532A (ja) * 1989-07-12 1992-01-30 Teijin Ltd 複合成形品の製造方法
JPH08118481A (ja) * 1994-10-19 1996-05-14 Kasai Kogyo Co Ltd 自動車用内装部品並びにその製造方法
JP2004276471A (ja) 2003-03-17 2004-10-07 Toyobo Co Ltd 繊維強化熱可塑性複合成形品およびその成形方法
JP2005088428A (ja) * 2003-09-18 2005-04-07 Toyota Boshoku Corp 発泡積層体の製造方法および製造装置
JP2012196899A (ja) * 2011-03-22 2012-10-18 Teijin Ltd 炭素繊維強化熱可塑性樹脂サンドイッチ成形体、およびその製造方法
JP2012533442A (ja) * 2009-06-18 2012-12-27 ジーン コーポレーション 繊維複合材およびその製造方法
JP2015112805A (ja) 2013-12-12 2015-06-22 川崎重工業株式会社 複合材料の成形方法及び複合材料から成る成形品
JP2017094559A (ja) * 2015-11-20 2017-06-01 トヨタ自動車株式会社 接合体の製造方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3365315A (en) * 1963-08-23 1968-01-23 Minnesota Mining & Mfg Glass bubbles prepared by reheating solid glass partiles
US3902944A (en) * 1974-02-14 1975-09-02 Fiber Science Inc Noncircular filament wound article of manufacture and method of making same
US4671909A (en) * 1978-09-21 1987-06-09 Torobin Leonard B Method for making hollow porous microspheres
US4424183A (en) * 1982-07-06 1984-01-03 Baker International Corporation Destructible core structure and method for using same
US4755341A (en) * 1986-09-10 1988-07-05 United Technologies Corporation Method of vacuum bagging using a solid flowable polymer
US4782098A (en) * 1987-06-12 1988-11-01 General Electric, Co. Expandable thermoplastic resin beads
US5242637A (en) * 1989-07-12 1993-09-07 Teijin Limited Process for the production of composite molded articles
JP3440537B2 (ja) * 1994-03-17 2003-08-25 富士通株式会社 インモールドコート射出成形方法及び射出成形装置
DE10241942A1 (de) * 2002-09-10 2004-03-18 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Mikrokapseln für die Kautschukherstellung und Verfahren zu deren Herstellung
EP1403024A1 (en) * 2002-09-27 2004-03-31 Lantor B.V. Improved core material
US9314941B2 (en) * 2007-07-13 2016-04-19 Advanced Ceramics Manufacturing, Llc Aggregate-based mandrels for composite part production and composite part production methods
JP5082122B2 (ja) * 2008-01-29 2012-11-28 トヨタ紡織株式会社 繊維複合体の製造方法
CN102612427B (zh) * 2009-06-18 2016-08-03 Xene公司 一种纤维复合材料和生产工艺
JP6191776B2 (ja) * 2015-06-02 2017-09-06 三菱ケミカル株式会社 繊維強化プラスチック成形体の製造方法
CN105522676A (zh) * 2015-11-26 2016-04-27 徐建昇 一种碳纤维或玻璃纤维的成型方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0427532A (ja) * 1989-07-12 1992-01-30 Teijin Ltd 複合成形品の製造方法
JPH03288629A (ja) 1990-04-04 1991-12-18 Teijin Ltd 複合成形物の製造方法
JPH08118481A (ja) * 1994-10-19 1996-05-14 Kasai Kogyo Co Ltd 自動車用内装部品並びにその製造方法
JP2004276471A (ja) 2003-03-17 2004-10-07 Toyobo Co Ltd 繊維強化熱可塑性複合成形品およびその成形方法
JP2005088428A (ja) * 2003-09-18 2005-04-07 Toyota Boshoku Corp 発泡積層体の製造方法および製造装置
JP2012533442A (ja) * 2009-06-18 2012-12-27 ジーン コーポレーション 繊維複合材およびその製造方法
JP2012196899A (ja) * 2011-03-22 2012-10-18 Teijin Ltd 炭素繊維強化熱可塑性樹脂サンドイッチ成形体、およびその製造方法
JP2015112805A (ja) 2013-12-12 2015-06-22 川崎重工業株式会社 複合材料の成形方法及び複合材料から成る成形品
JP2017094559A (ja) * 2015-11-20 2017-06-01 トヨタ自動車株式会社 接合体の製造方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3695947A4

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11298892B2 (en) 2019-07-01 2022-04-12 The Boeing Company Expandable tooling systems and methods
US11833766B2 (en) 2019-07-01 2023-12-05 The Boeing Company Expandable tooling systems and methods
CN114340879A (zh) * 2019-09-05 2022-04-12 恩普乐股份有限公司 纤维强化树脂成型品的制造方法以及纤维强化树脂成型品
CN113004572A (zh) * 2019-12-19 2021-06-22 波音公司 用于回收膨胀的聚合物工具的方法
EP3838537A3 (en) * 2019-12-19 2021-09-29 The Boeing Company Methods for recovering expanded polymer tooling
US11872776B2 (en) 2019-12-19 2024-01-16 The Boeing Company Methods for recovering expanded polymer tooling

Also Published As

Publication number Publication date
EP3695947A1 (en) 2020-08-19
CN111201122A (zh) 2020-05-26
EP3695947A4 (en) 2021-07-07
US20200238638A1 (en) 2020-07-30
IL273897A (en) 2020-05-31
JP6405433B1 (ja) 2018-10-17
JP2019069579A (ja) 2019-05-09
CN111201122B (zh) 2022-04-12
KR20200047710A (ko) 2020-05-07
KR102363817B1 (ko) 2022-02-16

Similar Documents

Publication Publication Date Title
WO2019073848A1 (ja) 繊維強化樹脂成形品の製造方法
US5131834A (en) Silicone gel isostatic pressurizing bag and method of use and manufacture
US5134002A (en) Mold liners for resin transfer molding
JP5252433B2 (ja) バルク樹脂注入システム装置および方法
JP5877156B2 (ja) ロータブレードの製造方法及びその製造装置
JP5670381B2 (ja) 制御された大気圧樹脂注入プロセス
US5820894A (en) Method and apparatus for consolidating a workpiece at elevated temperature
EP0277456B1 (en) Method for molding precured high temperature resins
US4853172A (en) Method of fabricating tubular composite structures
WO2005113213A3 (en) Double vacuum bag process for resin matrix composite manufacturing
JP2019529194A (ja) 半自動の膜利用圧縮成形処理
CA2842142A1 (en) Composite material including fiber reinforced resin and lightweight core and production method and device therefor
US5226997A (en) Mold liners for resin transfer molding
JP2023064479A (ja) 繊維強化樹脂製中空成形品の成形方法
CN114340879A (zh) 纤维强化树脂成型品的制造方法以及纤维强化树脂成型品
JP7374458B2 (ja) 繊維強化樹脂シートと樹脂発泡シートから成る積層複合シートの成形方法
JP3834628B2 (ja) 繊維強化複合材料製造用の樹脂充填体及びそれを用いた繊維強化複合材料製造方法
WO2002058917A2 (en) Use of a liquid during centrifugal processing to improve consolidation of a composite structure
KR101663154B1 (ko) Frp 제조방법
JP2005262560A (ja) 繊維強化複合材の製造方法およびその製造装置
KR20020020071A (ko) 헬멧본체의 제조방법 및 장치
JP2022112362A (ja) 中空翼構造の成形方法および中空翼構造
JP2776973B2 (ja) 複合成形物の製造方法
JPH08187785A (ja) 多孔質コアを有する複合成形品の製造方法およびその成形材料

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18866490

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207010534

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018866490

Country of ref document: EP

Effective date: 20200511