WO2019071767A1 - 一种发光装置 - Google Patents

一种发光装置 Download PDF

Info

Publication number
WO2019071767A1
WO2019071767A1 PCT/CN2017/114755 CN2017114755W WO2019071767A1 WO 2019071767 A1 WO2019071767 A1 WO 2019071767A1 CN 2017114755 W CN2017114755 W CN 2017114755W WO 2019071767 A1 WO2019071767 A1 WO 2019071767A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light guide
wavelength conversion
conversion element
guide
Prior art date
Application number
PCT/CN2017/114755
Other languages
English (en)
French (fr)
Inventor
徐梦梦
胡飞
郭祖强
李屹
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2019071767A1 publication Critical patent/WO2019071767A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/61Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using light guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/68Details of reflectors forming part of the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/69Details of refractors forming part of the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • F21V29/503Cooling arrangements characterised by the adaptation for cooling of specific components of light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/85Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems characterised by the material
    • F21V29/89Metals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V7/00Reflectors for light sources
    • F21V7/22Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors
    • F21V7/24Reflectors for light sources characterised by materials, surface treatments or coatings, e.g. dichroic reflectors characterised by the material
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the present invention relates to the field of optical technologies, and in particular, to a light emitting device.
  • the HLD (High Lumen Density) light source developed by Philips uses a highly transparent luminescent material to have a shorter wavelength. The light is converted into longer-wavelength light, and the longer-wavelength light is extracted from the small surface, thereby breaking the conservation of the optical spread and realizing the light output with high brightness and small optical expansion.
  • Patent EP 2 947 484 discloses a lighting device comprising at least two light sources, a waveguide and a light-emitting element on the light exit surface.
  • the waveguide is configured to convert the light of the first wavelength distribution emitted by the first light source into light of the third wavelength distribution and derive the light, and simultaneously guide the light of the second wavelength distribution emitted by the second light source to the light emitting element at the light exiting surface to emit light
  • the element converts the light of the second wavelength distribution into light of the fourth wavelength distribution and derives therefrom, whereby white light output can be achieved.
  • Patent WO2014198619 discloses a high efficiency white light output illumination device comprising a light source and two light guides, the first light guide directing a portion of the light of the first wavelength distribution emitted by the light source to the end face output and the other portion to the second light guide And converted by the second light guide into a light output of the second wavelength distribution, thereby reducing optical loss and achieving efficient white light output.
  • the light guide functions as both concentrating and wavelength converting, and a plurality of light guides are used in combination to realize white light output. Since the light guide simultaneously functions as a wavelength conversion, the heat caused by the Stokes shift during the wavelength conversion is concentrated inside the light guide, which affects the optical performance of the entire device, and thus requires good thermal performance of the light guide. In addition, different light guides are required to achieve different light outputs. In order to reduce light loss, the light guide is generally required to be a high-performance luminescent material that does not contain scattering particles and is highly transparent, and thus the light guide preparation process is complicated.
  • the main object of the present invention is to provide a light-emitting device.
  • the light guide By separating the wavelength conversion element and the light guide, the light guide only functions as a light gathering and shimming, thereby avoiding the influence of the heat generated by the light guide as the wavelength conversion element on the performance of the light-emitting device; Regardless of the effect of wavelength conversion, the selectivity of the light guide is greater, versatile, and easy to achieve low-cost mass production.
  • the present invention provides a light emitting device comprising: a light source, a wavelength conversion element and a light guide, the wavelength conversion element being located between the light source and the light guide;
  • the excitation light emitted by the light source is irradiated to the wavelength conversion element, and the wavelength conversion element absorbs at least part of the excitation light to convert it into a laser beam;
  • the laser-received and unconverted excitation light is output to a light incident surface of the light guide, enters the light guide through the light incident surface, and is output through a total light reflection through a light exit surface of the light guide;
  • the area of the light incident surface of the light guide is larger than the area of the light exit surface of the light guide.
  • the wavelength conversion element outputs an output surface of the laser-received and unconverted excitation light opposite to a light incident surface of the light guide, and an area of the output surface is equivalent to an area of the light incident surface
  • the size error of the two is within a preset first area threshold.
  • the wavelength conversion component is a panel-like component including the output surface and a receiving surface on a back surface of the output surface;
  • the excitation light emitted from the light source is irradiated to the receiving surface.
  • the area of the receiving surface illuminated by the excitation light to cover the receiving surface is greater than a preset second area threshold.
  • the light source is in non-optical contact with the wavelength converting element and the wavelength converting element is in non-optical contact with the light guide.
  • the wavelength conversion element includes a first wavelength conversion element and a second wavelength conversion element, the first wavelength conversion element being non-optically in contact with the second wavelength conversion element;
  • the first wavelength converting element is non-optically in contact with the light source, and the first wavelength converting element includes a first light incident surface and a first light exit surface;
  • the second wavelength converting element is in non-optical contact with the light guide, and the second wavelength converting element includes a second light incident surface and a second light exit surface;
  • the excitation light enters the first wavelength conversion element through the first light incident surface, and the first wavelength conversion element absorbs at least part of the excitation light to convert it into a first laser beam;
  • the first laser-received and unconverted excitation light exits from the first light exit surface, enters the second wavelength conversion element through the second light incident surface, and the second wavelength conversion element absorbs at least a portion of the The converted excitation light and/or the first received laser light converts it into a second received laser light, unconverted excitation light, unconverted first received laser light, and the second received laser light from the second light
  • the exit surface exits and enters the light guide through the light entrance face of the light guide.
  • a reflective layer facing a part or all of the surface of the light guide except the light incident surface and the light exit surface, a reflective layer is disposed; an air gap is disposed between the reflective layer and a surface it faces;
  • the reflective layer is a specular reflective layer or a diffuse reflective layer.
  • a diffuse reflection layer is disposed at a first surface of the light guide opposite to the light incident surface, and an air gap is disposed between the diffuse reflection layer and the first surface.
  • a specular reflection layer is disposed at a second surface of the light guide opposite to the light exit surface, and an air gap is disposed between the specular reflection layer and the second surface.
  • an optical coupling element is disposed at least at a position between the light source and the wavelength conversion element, between the wavelength conversion element and a light incident surface of the light guide, and at a light exit surface of the light guide,
  • the optical coupling element is disposed in optical connection with the optical element adjacent thereto, and the optical coupling element is disposed to have a lower refractive index than the optical element adjacent thereto.
  • optical coupling element is optically connected to the optical element adjacent thereto, and the refractive index of the optical coupling element is set to be higher than Adjacent optical elements have a low refractive index.
  • a reflective layer is disposed on a part or all of the surface of the wavelength conversion element except the receiving surface of the received light and the output surface of the output light.
  • the light source is a surface light source, and the light source comprises a substrate and a plurality of light emitting chips disposed on the substrate.
  • the reflectivity of the substrate is greater than 90%
  • the light emitting chip is a laser light source, an LED light source, or an OLED light source.
  • the light guide is a transparent light guide, and the light guide has a refractive index greater than 1.2.
  • the surface roughness of the light guide is less than 100 nm.
  • the material of the light guide is YAG single crystal, sapphire, YAG transparent ceramic, Al 2 O 3 transparent ceramic, silica gel or glass.
  • the distance between the second wavelength conversion element and the light guide ranges from 100 ⁇ m to 1000 ⁇ m.
  • a heat sink is disposed immediately adjacent to a surface of the reflective layer that faces away from the light guide.
  • a light-emitting device includes: a light source, a wavelength conversion element, and a light guide, the wavelength conversion element being located between the light source and the light guide; and excitation light emitted by the light source is irradiated to the wavelength conversion element,
  • the wavelength conversion element absorbs at least a portion of the excitation light to convert it into a laser beam;
  • the laser-received and unconverted excitation light is output to a light incident surface of the light guide, and enters the light guide through the light incident surface Internally, and outputted by the total internal reflection through the light exit surface of the light guide;
  • the area of the light incident surface of the light guide is larger than the area of the light exit surface of the light guide, and the light guide is only provided by separating the wavelength conversion element and the light guide It plays a role of light gathering and averaging, avoiding the influence of the heat generated by the light guide as a wavelength conversion component on the performance of the illuminating device; without considering the effect of wavelength conversion, the selectivity of the light
  • FIG. 1 is a schematic diagram showing the structure and optical transmission of a light emitting device according to Embodiment 1 of the present invention
  • FIG. 2 is a schematic diagram showing the structure and optical transmission of a light-emitting device according to Embodiment 2 of the present invention
  • FIG. 3 is a schematic diagram showing the structure and optical transmission of a light-emitting device according to Embodiment 3 of the present invention.
  • FIG. 4 is a schematic diagram showing the structure and optical transmission of a light-emitting device according to Embodiment 4 of the present invention.
  • 2-wavelength conversion element 21-first wavelength conversion element, 22-second wavelength conversion element, 211-first light incident surface, 212-first light exit surface, 221-second light incident surface, 222-second Light exit surface
  • 3-light guide 31-light incident surface, 32-first surface, 33-light exit surface;
  • 5-reflective layer 6-first optical coupling element, 7-second optical coupling element, 8-third optical coupling element, 9-fourth optical coupling element.
  • a light emitting device includes: a light source 1, a wavelength conversion element 2, and a light guide 3, the wavelength conversion element 2 being located between the light source 1 and the light guide 3;
  • the excitation light emitted by the light source 1 is irradiated to the wavelength conversion element 2, and the wavelength conversion element 2 absorbs at least part of the excitation light to convert it into a laser beam;
  • the laser-received and unconverted excitation light is output to the light incident surface 31 of the light guide 3, enters the interior of the light guide 3 through the light incident surface 31, and is emitted through the light of the light guide 3 by total internal reflection.
  • the surface 33 is output; the area of the light incident surface 31 of the light guide 3 is larger than the area of the light exit surface 33 of the light guide 3.
  • the light guide 3 by separately arranging the wavelength conversion element 2 and the light guide 3, the light guide 3 only functions as a light gathering and a light concentrating, thereby avoiding the influence of the heat generated by the light guide 3 as the wavelength conversion element 2 on the performance of the light-emitting device; Considering the effect of wavelength conversion, the light guide 3 has greater selectivity and versatility, and is easy to realize low-cost mass production.
  • the output surface of the wavelength conversion element 2 that outputs the laser light and the unconverted excitation light is disposed opposite to the light incident surface 31 of the light guide 3, and the area of the output surface and the light The area of the incident surface 31 is equivalent, and the magnitude error of the two is within a preset first area threshold.
  • the size error of the area of the output surface and the area of the light incident surface is less than 1% of either one.
  • the wavelength conversion element 2 is a panel-like element comprising the output face and a receiving face on the back side of the output face;
  • the excitation light emitted by the light source 1 is irradiated to the receiving surface, and the area of the light irradiated to the receiving surface by the excitation light covering the receiving surface is greater than a preset second area threshold. It can be understood that the light spot is basically Covering the receiving surface, the uncovered area is within a preset range.
  • the light source 1 is in non-optical contact with the wavelength conversion element 2 and the wavelength conversion element 2 is in non-optical contact with the light guide 3.
  • non-optical contact between the two components described herein is understood to mean that the distance between the two components is greater than the wavelength of light conducted between the two components.
  • non-optical contact between the two components described herein can be understood as the distance between the two components being greater than the wavelength of visible light.
  • non-optical contact between the two components described herein can be understood as the distance between the two components being greater than 800 nm.
  • the wavelength conversion element 2 comprises a first wavelength conversion element 21 and a second wavelength conversion element 22, the first wavelength conversion element 21 being in non-optical contact with the second wavelength conversion element 22;
  • the first wavelength conversion element 21 is in non-optical contact with the light source 1.
  • the first wavelength conversion element 21 includes a first light incident surface 211 and a first light exit surface 212; the first light incident surface 211 is The receiving surface of the above wavelength conversion element;
  • the second wavelength conversion element 22 is in non-optical contact with the light guide 3, and the second wavelength conversion element 22 includes a second light incident surface 221 and a second light exit surface 222; the second light exit surface 222 is The output surface of the above wavelength conversion element;
  • the excitation light enters the first wavelength conversion element 21 through the first light incident surface 211, and the first wavelength conversion element 21 absorbs part of the excitation light to convert it into a first laser beam;
  • the first laser-received and unconverted excitation light exits the first light exit surface 212 and enters the second wavelength conversion element 22 through the second light incident surface 221, the second wavelength conversion element 22 Absorbing at least a portion of the unconverted excitation light and/or the first received laser light to convert it into a second received laser light, unconverted excitation light, unconverted first received laser light, and said second received laser light source
  • the second light exit surface 222 exits and enters the light guide 3 through the light incident surface 31 of the light guide 3.
  • the number of the wavelength conversion elements 2 may be one or more than three, and is set by the user or the manufacturer as needed.
  • the excitation light is L1 in FIG. 1, preferably light having a wavelength in the range of 400-500 nm
  • the first received laser light is L2 in FIG. 1
  • the wavelength of L2 is greater than the wavelength of L1, preferably 460. -560 nm, such as may be green light
  • the second laser is L3 in FIG. 3
  • the wavelength of L3 is greater than the wavelength of L2, preferably 500-660 nm, such as red light, mixed light of L1, L2 and L3
  • the light incident surface 31 enters the light guide 3, and is guided by the total internal reflection to be emitted to the light exit surface 33 to obtain high-intensity L1+L2+L3 mixed light.
  • the relative proportions of L1, L2, and L3 in the L1+L2+L3 mixed light can be adjusted to achieve high White light output of color rendering index.
  • the constituent material of the wavelength conversion element 2 may be an inorganic phosphor, an organic fluorescent powder, an organic fluorescent dye, a luminescent quantum dot or the like encapsulated by a single crystal or ceramic, a glass or a silica gel.
  • the light source 1 is a surface light source, and the light source 1 includes a substrate 10 and a plurality of light emitting chips 11 disposed on the substrate 10, the substrate 10 being made of a high reflectivity material.
  • the reflectance of the substrate 10 is greater than 90%, and can simultaneously function as a heat sink.
  • the light-emitting chip 11 is a laser light source, an LED light source or an OLED light source.
  • the light guide 3 is a transparent non-wavelength conversion light guide 3 made of a material transparent in the visible light region, such as YAG single crystal, sapphire, YAG transparent ceramic, Al2O3 transparent ceramic, organic polymer such as silica gel, glass.
  • the light guide 3 is preferably prepared using a high refractive index material having a refractive index greater than 1.2, preferably greater than 1.5, the surface of the light guide 3. The roughness is less than 100 nm, preferably less than 50 nm.
  • the distance between the second wavelength converting element 22 and the light guide 3 ranges from 50 ⁇ m to 2000 ⁇ m.
  • the distance between the second wavelength conversion element 22 and the light guide 3 ranges from 100 ⁇ m to 1000 ⁇ m, and the distance is too small to facilitate heat dissipation. If the distance is too large, the size of the light emitting device is increased.
  • a reflective layer 5 facing a part or all of the surface of the light guide 3 excluding the light incident surface 31 and the light exit surface 33, a reflective layer 5 is provided; the reflective layer 5 and the surface it faces An air gap is provided therebetween; the reflective layer 5 is a specular reflection layer 42 or a diffuse reflection layer 41.
  • the light guide 3 is a hexahedron, and the reflective layer 5 may be disposed on the other four surfaces except the light incident surface 31 and the light exit surface 33.
  • a diffuse reflection layer 41 is disposed at the first surface 32 of the light guide 3 opposite to the light incident surface 31, and air is disposed between the diffuse reflection layer 41 and the first surface 32. Gap.
  • a specular reflection layer 42 is disposed at a second surface of the light guide 3 opposite to the light exit surface 33, and an air gap is disposed between the specular reflection layer 42 and the second surface.
  • the light incident surface 31 of the light guide 3 and the light exit surface 33 are not opposite but perpendicular, and the surface opposite to the light incident surface 31 is The surface of the first surface 32 opposite to the light exit surface 33 is the second surface.
  • the diffuse reflection layer 41 has a reflectance of more than 90%; an air gap, that is, a non-optical contact, is disposed between the diffuse reflection layer 41 and the first surface 32 because the diffuse reflection layer 41 has a certain Absorption rate, if the diffuse reflection layer 41 is directly in optical contact with the first surface 32, the diffuse reflection layer 41 absorbs more light; and if an air gap is provided between the diffuse reflection layer 41 and the first surface 32, Part of the light has been reflected back into the light guide 3 by the first surface 32, and only the portion of the light that is emitted will illuminate the diffuse reflection layer 41, which can reduce the absorption of the diffuse reflection layer 41.
  • An air gap is provided between the diffuse reflection layer 41 and the first surface 32, which is equivalent to having two layers of protection, the first layer being the reflection of the first surface 32 of the light guide 3 and the second layer diffusing the reflection layer 41.
  • the provision of the diffuse reflection layer 41 can reduce the light escaping from the surfaces other than the light incident surface 31 and the light exit surface 33 of the light guide 3, and increase the intensity of the white light emitted from the light exit surface 33.
  • the specular reflection layer 42 has a reflectance greater than 95%, and is also non-optical contact with the second surface, for the same reason as described above.
  • At least one of the optical coupling elements is disposed, and the optical coupling elements are optically coupled to the optical elements adjacent thereto, and the optical coupling elements are disposed to have a lower refractive index than the optical elements adjacent thereto.
  • the light source 1 and the wavelength conversion element 2 can also be understood as being between the light source 1 and the receiving surface of the wavelength conversion element 2; the wavelength conversion element 2 and the light of the light guide 3
  • the entrance surface 31 can also be understood to be between the output face of the wavelength conversion element 2 and the light entry face 31 of the light guide 3; both the light source 1, the wavelength conversion element 2 and the light guide 3 belong to the optical element.
  • an optical coupling element is disposed at least at a position between the light incident surface 31 of the light guide 3 and the light exit surface 33 of the light guide 3, and the disposed light coupling element is optically connected to the optical element adjacent thereto, and The optical coupling element is disposed to have a lower refractive index than the optical element adjacent thereto.
  • the function of the optical coupling element is to cause more incident light L1 to couple into the wavelength conversion element 2, and to cause more of the mixed light L1+L2+L3 to exit from the wavelength conversion element 2, through the light guide 3
  • Light is transmitted to the light exit surface 33 of the light guide 3, and the light-emitting element is further improved in light-emitting efficiency to obtain white light of high luminance.
  • the optical coupling component may be a lens or a lens array, or may be a coupling structure, and the optical coupling component may be disposed at any one or more of the above-mentioned optical coupling component mounting positions, preferably at each position. There are optical coupling components to maximize light extraction efficiency.
  • the optical coupling element between the light source 1 and the first wavelength conversion element 21 is a first optical coupling element 6, and the first wavelength conversion element 21 and the second wavelength conversion
  • the optical coupling element between the elements 22 is a second optical coupling element 7, the optical coupling element between the second wavelength converting element 22 and the light guide 3 is a third optical coupling element 8, the light exit surface 33 of the light guide 3
  • the upper optical coupling element is the fourth optical coupling element 9;
  • the refractive index of each optical coupling element is related to the refractive indices of the light source 1, the wavelength converting element 2 and the light guide 3, preferably, the refractive index of the first optical coupling element 6 is lower than
  • the refractive indices of the light source 1 and the first wavelength conversion element 21, the refractive index of the second optical coupling element 7 is lower than the refractive indices of the first wavelength conversion element 21 and the second wavelength conversion element 22, and the refractive index of the third optical coupling element 8 Below the refractive index of the second wavelength
  • a reflective layer 5 is disposed on a part or all of the surface of the wavelength conversion element 2 except the receiving surface of the received light and the output surface of the output light; the reflective layer 5; Located on at least one side surface of the wavelength conversion element 2, the side surface is perpendicular to the light incident surface 31 and the light exit surface 33 of the wavelength conversion element 2.
  • the reflective layer 5 is specular or diffuse, and the reflective layer 5 is in non-optical contact with the wavelength converting element 2 with a reflectivity greater than 90%.
  • the reflective layer 5 may be disposed on the two non-light exiting and incident surfaces of the wavelength converting element 2, or may be disposed on all of the four non-light emitting and incident surfaces.
  • the reflective layer 5 may also be disposed on the heat sink of the light emitting device to improve the heat dissipation function of the wavelength conversion element 2; the so-called heat sink means that its temperature does not change with the magnitude of the heat energy transmitted to it. It can be an object such as the atmosphere or the earth.
  • the so-called heat sink means that its temperature does not change with the magnitude of the heat energy transmitted to it. It can be an object such as the atmosphere or the earth.
  • a copper column with high thermal conductivity is used to guide the heat to the outside of the package. This LED copper column is also called a heat sink.
  • a heat sink is disposed immediately adjacent to the surface of the reflective layer 5 that faces away from the light guide 3.
  • the foregoing embodiment method can be implemented by means of software plus a necessary general hardware platform, and of course, can also be through hardware, but in many cases, the former is better.
  • Implementation Based on such understanding, the technical solution of the present invention, which is essential or contributes to the prior art, may be embodied in the form of a software product stored in a storage medium (such as ROM/RAM, disk,
  • the optical disc includes a number of instructions for causing a terminal device (which may be a cell phone, a computer, a server, an air conditioner, or a network device, etc.) to perform the methods described in various embodiments of the present invention.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Optical Couplings Of Light Guides (AREA)
  • Planar Illumination Modules (AREA)
  • Semiconductor Lasers (AREA)

Abstract

一种发光装置,包括:光源(1)、波长转换元件(2)和光导(3),波长转换元件(2)位于光源(1)和光导(3)之间;光源(1)发出的激发光照射至波长转换元件(2),波长转换元件(2)吸收至少部分激发光而将其转换为受激光;受激光和未转换的激发光输出至光导(3)的光入射面,通过光入射面进入光导(3)内部,并通过全内反射作用经光导(3)的光出射面输出;光导(3)的光入射面的面积大于光导(3)的光出射面的面积,通过将波长转换元件(2)和光导(3)分开设置,光导(3)只起到光聚集及匀光作用,避免了光导作为波长转换元件(2)产生的热量对发光装置性能的影响;不用考虑波长转换的作用,使得光导(3)的选择性更大,具有通用性,易于实现低成本批量化生产。

Description

一种发光装置 技术领域
本发明涉及光学技术领域,尤其涉及一种发光装置。
 
背景技术
在聚光照明、投影等领域,如何得到高亮度的光源特别是白光光源一直是研究的重点,飞利浦开发的HLD(High Lumen Density,高流明密度)光源利用高度透明的发光材料将具有较短波长的光转换为较长波长的光,并将较长波长的光从小的表面提取,由此打破了光学扩展量守恒,实现了高亮度、小光学扩展量的光输出。
专利EP2947484公开了一种发光装置,该发光装置包括至少两个光源,一个波导和一个位于光出射表面的发光元件。波导用于将第一光源发出的第一波长分布的光转换为第三波长分布的光并导出,同时将第二光源发出的第二波长分布的光导光至光出射表面处的发光元件,发光元件将第二波长分布的光转换为第四波长分布的光并导出,由此,可以实现白光输出。
专利WO2014198619公开了一种高效白光输出的发光装置,该发光装置包括光源和两个光导,第一光导将光源发出的第一波长分布的光一部分导光至端面输出,另一部分耦合至第二光导,并被第二光导转换为第二波长分布的光输出,由此减少光损耗,实现高效白光输出。
技术问题
现有技术中,光导同时起到聚光和波长转换两个作用,多个光导联合使用,实现白光输出。由于光导同时起到波长转换作用,波长转换过程中斯托克斯位移引起的热量聚集在光导内部,会影响了整个器件的光学性能,因而要求光导具有良好的热学性能。此外,实现不同颜色的光输出需要使用不同的光导,为减少光损失,通常要求光导是不含散射粒子、高度透明的高性能发光材料,因而光导制备流程复杂。
 
技术解决方案
本发明的主要目的在于提出一种发光装置,通过将波长转换元件和光导分开设置,光导只起到光聚集及匀光作用,避免了光导作为波长转换元件产生的热量对发光装置性能的影响;不用考虑波长转换的作用,使得光导的选择性更大,具有通用性,易于实现低成本批量化生产。
为实现上述目的,本发明提供的一种发光装置,包括:光源、波长转换元件和光导,所述波长转换元件位于所述光源和所述光导之间;
所述光源发出的激发光照射至所述波长转换元件,所述波长转换元件吸收至少部分所述激发光而将其转换为受激光;
所述受激光和未转换的激发光输出至所述光导的光入射面,通过所述光入射面进入所述光导内部,并通过全内反射作用经所述光导的光出射面输出;所述光导的光入射面的面积大于所述光导的光出射面的面积。
可选地,所述波长转换元件输出所述受激光和未转换的激发光的输出面与所述光导的光入射面相对设置,且所述输出面的面积与所述光入射面的面积相当,二者的大小误差在预设的第一面积阈值内。
可选地,所述波长转换元件为面板状元件,其包括所述输出面和处于所述输出面的背面的接收面;
所述光源发出的激发光照射至所述接收面。
可选的,所述激发光照射至所述接收面的光斑覆盖所述接收面的面积大于预设的第二面积阈值。
可选地,所述光源与所述波长转换元件非光学接触,且所述波长转换元件与所述光导非光学接触。
可选地,所述波长转换元件包括第一波长转换元件和第二波长转换元件,所述第一波长转换元件与所述第二波长转换元件非光学接触;
所述第一波长转换元件与所述光源非光学接触,所述第一波长转换元件包括第一光入射面和第一光出射面;
所述第二波长转换元件与所述光导非光学接触,所述第二波长转换元件包括第二光入射面和第二光出射面;
所述激发光通过所述第一光入射面进入所述第一波长转换元件,所述第一波长转换元件吸收至少部分所述激发光而将其转换为第一受激光;
所述第一受激光和未转换的激发光从所述第一光出射面出射、通过所述第二光入射面进入所述第二波长转换元件,所述第二波长转换元件吸收至少部分未转换的激发光和/或所述第一受激光而将其转换为第二受激光,未转换的激发光、未转换的第一受激光、和所述第二受激光从所述第二光出射面出射,通过所述光导的光入射面进入所述光导。
可选地,面对所述光导的除所述光入射面和光出射面之外的部分或全部表面,设置有反射层;所述反射层与其所面对的表面之间设置有空气隙;所述反射层为镜面反射层或漫反射层。
可选地,所述光导的与所述光入射面相对的第一表面处设置有漫反射层,所述漫反射层与所述第一表面之间设置有空气隙。
可选地,所述光导的与光出射面相对的第二表面处设置有镜面反射层,所述镜面反射层与所述第二表面之间设置有空气隙。
可选地,所述光源与所述波长转换元件之间、所述波长转换元件与所述光导的光入射面之间、所述光导的光出射面处的至少一处设置有光耦合元件,所设置的光耦合元件与其所邻近的光学元件光学连接,且所设置的光耦合元件的折射率比其所邻近的光学元件的折射率低。
可选地,所述光源与所述第一波长转换元件之间、所述第一波长转换元件与所述第二波长转换元件之间、所述第二波长转换元件与所述光导的光入射面之间、所述光导的光出射面处的至少一处设置有光耦合元件,所设置的光耦合元件与其所邻近的光学元件光学连接,且所设置的光耦合元件的折射率比其所邻近的光学元件的折射率低。
可选地,所述波长转换元件的除接收光的接收面和输出光的输出面之外的部分或全部表面上设置有反射层。
可选地,所述光源为面光源,所述光源包括衬底和设置于衬底上的多个发光芯片。
可选地,所述衬底的反射率大于90%,所述发光芯片为激光光源、LED光源或OLED光源。
可选地,所述光导为透明光导,所述光导的折射率大于1.2。
可选地,所述光导的表面粗糙度小于100nm。
可选地,所述光导的材料为YAG单晶、蓝宝石、YAG透明陶瓷、Al2O3透明陶瓷、硅胶或玻璃。
可选地,所述第二波长转换元件与所述光导之间的距离范围为100μm-1000μm。
可选地,部分或者全部所述反射层的背对所述光导的表面上紧邻设置有热沉。
有益效果
本发明提出的一种发光装置,包括:光源、波长转换元件和光导,所述波长转换元件位于所述光源和所述光导之间;所述光源发出的激发光照射至所述波长转换元件,所述波长转换元件吸收至少部分所述激发光而将其转换为受激光;所述受激光和未转换的激发光输出至所述光导的光入射面,通过所述光入射面进入所述光导内部,并通过全内反射作用经所述光导的光出射面输出;所述光导的光入射面的面积大于所述光导的光出射面的面积,通过将波长转换元件和光导分开设置,光导只起到光聚集及匀光作用,避免了光导作为波长转换元件产生的热量对发光装置性能的影响;不用考虑波长转换的作用,使得光导的选择性更大,具有通用性,易于实现低成本批量化生产。
附图说明
图1为本发明实施例一提供的一种发光装置的结构及光传输示意图;
图2为本发明实施例二提供的一种发光装置的结构及光传输示意图;
图3为本发明实施例三提供的一种发光装置的结构及光传输示意图;
图4为本发明实施例四提供的一种发光装置的结构及光传输示意图。
 
附图标记为:
1-光源,10-衬底,11-发光芯片;
2-波长转换元件,21-第一波长转换元件,22-第二波长转换元件,211-第一光入射面,212-第一光出射面,221-第二光入射面,222-第二光出射面;
3-光导,31-光入射面,32-第一表面,33-光出射面;
41-漫反射层,42-镜面反射层;
5-反射层;6-第一光耦合元件,7-第二光耦合元件,8-第三光耦合元件,9-第四光耦合元件。
本发明目的的实现、功能特点及优点将结合实施例,参照附图做进一步说明。
本发明的实施方式
应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
如图1所示,在一个实施例中,一种发光装置,包括: 光源1、波长转换元件2和光导3,所述波长转换元件2位于所述光源1和所述光导3之间;
所述光源1发出的激发光照射至所述波长转换元件2,所述波长转换元件2吸收至少部分所述激发光而将其转换为受激光;
所述受激光和未转换的激发光输出至所述光导3的光入射面31,通过所述光入射面31进入所述光导3内部,并通过全内反射作用经所述光导3的光出射面33输出;所述光导3的光入射面31的面积大于所述光导3的光出射面33的面积。
在本实施例中,通过将波长转换元件2和光导3分开设置,光导3只起到光聚集及匀光作用,避免了光导3作为波长转换元件2产生的热量对发光装置性能的影响;不用考虑波长转换的作用,使得光导3的选择性更大,具有通用性,易于实现低成本批量化生产。
在一个实施例中,所述波长转换元件2输出所述受激光和未转换的激发光的输出面与所述光导3的光入射面31相对设置,且所述输出面的面积与所述光入射面31的面积相当,二者的大小误差在预设的第一面积阈值内。例如,输出面的面积与光入射面的面积的大小误差小于二者中任意一个的1% 。
在一个实施例中,所述波长转换元件2为面板状元件,其包括所述输出面和处于所述输出面的背面的接收面;
所述光源1发出的激发光照射至所述接收面,且所述激发光照射至所述接收面的光斑覆盖所述接收面的面积大于预设的第二面积阈值,可以理解为,光斑基本覆盖所述接收面,未覆盖的面积在预设范围内。
在一个实施例中,所述光源1与所述波长转换元件2非光学接触,且所述波长转换元件2与所述光导3非光学接触。在一种实施方式中,本文所述的两个部件之间非光学接触,可以理解为该两个部件之间的距离大于在该两个部件之间传导的光的波长。在一种实施方式中,本文所述的两个部件之间非光学接触,可以理解为两个部件之间的距离大于可见光的波长。在一种实施方式中,本文所述的两个部件之间非光学接触,可以理解为两个部件之间的距离大于800nm。
在一个实施例中,所述波长转换元件2包括第一波长转换元件21和第二波长转换元件22,所述第一波长转换元件21与所述第二波长转换元件22非光学接触;
所述第一波长转换元件21与所述光源1非光学接触,所述第一波长转换元件21包括第一光入射面211和第一光出射面212;所述第一光入射面211即为上述的波长转换元件的接收面;
所述第二波长转换元件22与所述光导3非光学接触,所述第二波长转换元件22包括第二光入射面221和第二光出射面222;所述第二光出射面222即为上述的波长转换元件的输出面;
所述激发光通过所述第一光入射面211进入所述第一波长转换元件21,所述第一波长转换元件21吸收部分所述激发光而将其转换为第一受激光;
所述第一受激光和未转换的激发光从所述第一光出射面212出射、通过所述第二光入射面221进入所述第二波长转换元件22,所述第二波长转换元件22吸收至少部分未转换的激发光和/或所述第一受激光而将其转换为第二受激光,未转换的激发光、未转换的第一受激光、和所述第二受激光从所述第二光出射面222出射,并通过所述光导3的光入射面31进入所述光导3。
作为另一种实施例,所述波长转换元件2的数量可以为一个或大于等于三个,由用户或厂家根据需要自行设置。
在一个实施例中,激发光为图1中的L1,优选为波长范围为400-500nm的光,所述第一受激光为图1中的L2,L2的波长大于L1的波长,优选为460-560nm,比如可以为绿光,所述第二受激光为图3中的L3,L3的波长大于L2的波长,优选为500-660nm,比如可以为红光,L1、L2和L3的混合光经光入射面31进入光导3,在全内反射的作用下,被导光至光出射面33出射,得到高亮度的L1+L2+L3混合光。
在一个实施例中,改变波长转换元件2的组成材料中的参杂浓度、波长转换元件2的厚度等参数,可以调节L1+L2+L3混合光中L1、L2、L3的相对比例,实现高显色指数的白光输出。
在一个实施例中,所述波长转换元件2的组成材料可以为发光单晶或陶瓷,玻璃或硅胶等封装的无机荧光粉、有机荧光粉、有机荧光染料,发光量子点等。
在一个实施例中,所述光源1为面光源,所述光源1包括衬底10和设置于衬底10上的多个发光芯片11,所述衬底10为高反射率材料制成,所述衬底10的反射率大于90%,可同时起到热沉的作用,所述发光芯片11为激光光源、LED光源或OLED光源。
在一个实施例中,所述光导3为透明非波长转换光导3,由在可见光区域透明的材料制成,比如YAG单晶、蓝宝石、YAG透明陶瓷、Al2O3透明陶瓷、硅胶等有机聚合物、玻璃等,为增加入射光在光导3与周围介质的界面处的全反射,光导3优选使用高折射率材料制备,所述光导3的折射率大于1.2,优选为大于1.5,所述光导3的表面粗糙度小于100nm,优选的小于50nm。
在一个实施例中,所述第二波长转换元件22与所述光导3之间的距离范围为50μm-2000μm。优选的,所述第二波长转换元件22与所述光导3之间的距离范围为100μm-1000μm,距离太小不利于散热,距离太大则会增加发光装置的尺寸。
在一个实施例中,面对所述光导3的除所述光入射面31和光出射面33之外的部分或全部表面,设置有反射层5;所述反射层5与其所面对的表面之间设置有空气隙;所述反射层5为镜面反射层42或漫反射层41。
在一个实施例中,所述光导3是个六面体,除了光入射面31和光出射面33,其他4个表面都可以设置反射层5。
在一个实施例中,所述光导3的与所述光入射面31相对的第一表面32处设置有漫反射层41,所述漫反射层41与所述第一表面32之间设置有空气隙。
在一个实施例中,所述光导3的与光出射面33相对的第二表面处设置有镜面反射层42,所述镜面反射层42与所述第二表面之间设置有空气隙。
在一个实施例中,由图2可知,所述光导3的光入射面31与所述光出射面33并非是相对的,而是垂直的,而与所述光入射面31相对的表面为所述第一表面32,与所述光出射面33相对的表面为所述第二表面。
所述漫反射层41的反射率为大于90%;所述漫反射层41与所述第一表面32之间设置有空气隙,也即非光学接触,原因是因为漫反射层41有一定的吸收率,如果直接将漫反射层41设置的与第一表面32光学接触的话,漫反射层41会吸收较多的光;而在漫反射层41和第一表面32之间设置了空气隙的话,部分光已经被第一表面32反射回光导3内,只有出射的那部分光会照射至漫反射层41,可以减少漫反射层41的吸收。漫反射层41与第一表面32之间设置空气隙,相当于有了两层保障,第一层是光导3的第一表面32的反射,第二层漫反射层41。
设置漫反射层41可以减少从光导3的光入射面31和光出射面33以外的表面逸出的光,提高从光出射面33出射的白光的强度。
所述镜面反射层42的反射率大于95%,其与第二表面之间也非光学接触,原因同上,兹不赘述。
在一个实施例中,所述光源1与所述波长转换元件2之间、所述波长转换元件2与所述光导3的光入射面31之间、所述光导3的光出射面33处的至少一处设置有光耦合元件,所设置的光耦合元件与其所邻近的光学元件光学连接,且所设置的光耦合元件的折射率比其所邻近的光学元件的折射率低。
在一个实施例中,所述光源1与所述波长转换元件2之间也可以理解为在光源1与波长转换元件2的接收面之间;所述波长转换元件2与所述光导3的光入射面31之间也可以理解为在波长转换元件2的输出面与光导3的光入射面31之间;所述光源1、波长转换元件2和光导3都属于光学元件。
在一个实施例中,所述光源1与所述第一波长转换元件21之间、所述第一波长转换元件21与所述第二波长转换元件22之间、所述第二波长转换元件22与所述光导3的光入射面31之间、所述光导3的光出射面33处的至少一处设置有光耦合元件,所设置的光耦合元件与其所邻近的光学元件光学连接,且所设置的光耦合元件的折射率比其所邻近的光学元件的折射率低。
在本实施例中,光耦合元件的作用是使得更多的入射光L1耦合进入波长转换元件2,并使得更多的混合光L1+L2+L3从波长转换元件2中出射,经光导3导光到光导3的光出射面33,通过光耦合元件,进一步提高出光效率,得到高亮度的白光。
在一个实施例中,光耦合元件可以是透镜或透镜阵列,也可以是耦合结构,光耦合元件可以设置在上述任一一处或多处光耦合元件安装位,优选为每个位置上都设置有光耦合元件,这样可以最大提高出光效率。
在一个实施例中,如图3所示,光源1与所述第一波长转换元件21之间的光耦合元件为第一光耦合元件6,第一波长转换元件21与所述第二波长转换元件22之间的光耦合元件为第二光耦合元件7,第二波长转换元件22与所述光导3之间的光耦合元件为第三光耦合元件8,所述光导3的光出射面33上的光耦合元件为第四光耦合元件9;各个光耦合元件的折射率与光源1、波长转换元件2和光导3的折射率有关,优选的,第一光耦合元件6的折射率低于光源1及第一波长转换元件21的折射率,第二光耦合元件7的折射率低于第一波长转换元件21和第二波长转换元件22的折射率,第三光耦合元件8的折射率低于第二波长转换元件22和光导3的折射率,第四光耦合元件9的折射率低于光导3的折射率 。
如图4所示,在一个实施例中,所述波长转换元件2的除接收光的接收面和输出光的输出面之外的部分或全部表面上设置有反射层5;所述反射层5位于所述波长转换元件2的至少一个侧面上,所述侧面与所述波长转换元件2的光入射面31及光出射面33垂直。
在一个实施例中,反射层5为镜面反射或漫反射,反射层5与波长转换元件2非光学接触,反射率为大于90%。
如图4所示,反射层5可以设置在波长转换元件2的两个非光出射和入射表面上,也可以设置在所有4个非光出射和入射表面上。
作为另一种实施例,反射层5还可以设置在发光装置的热沉上,以改善波长转换元件2的散热功能;所谓热沉是指它的温度不随传递到它的热能的大小变化,它可以是大气、大地等物体,目前LED照明封装中,由于LED发光时会产生高热量,会使用高导热率的铜柱,使热量导向封装体外面。此LED铜柱也叫热沉。
在一个实施例中,部分或者全部所述反射层5的背对所述光导3的表面上紧邻设置有热沉。
 
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。
上述本发明实施例序号仅仅为了描述,不代表实施例的优劣。
 
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本发明各个实施例所述的方法。
以上仅为本发明的优选实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
 

Claims (20)

1、一种发光装置,其特征在于,包括: 光源、波长转换元件和光导,所述波长转换元件位于所述光源和所述光导之间;
所述光源发出的激发光照射至所述波长转换元件,所述波长转换元件吸收至少部分所述激发光而将其转换为受激光;
所述受激光和未转换的激发光输出至所述光导的光入射面,通过所述光入射面进入所述光导内部,并通过全内反射作用经所述光导的光出射面输出;所述光导的光入射面的面积大于所述光导的光出射面的面积。
2、根据权利要求1所述的发光装置,其特征在于,所述波长转换元件输出所述受激光和未转换的激发光的输出面与所述光导的光入射面相对设置,且所述输出面的面积与所述光入射面的面积相当,二者的大小误差在预设的第一面积阈值内。
3、根据权利要求2所述的发光装置,其特征在于,所述波长转换元件为面板状元件,其包括所述输出面和处于所述输出面的背面的接收面;
所述光源发出的激发光照射至所述接收面。
4、根据权利要求3所述的发光装置,其特征在于,所述激发光照射至所述接收面的光斑覆盖所述接收面的面积大于预设的第二面积阈值。
5、根据权利要求1所述的发光装置,其特征在于,所述光源与所述波长转换元件非光学接触,且所述波长转换元件与所述光导非光学接触。
6、根据权利要求1所述的一种发光装置,其特征在于,所述波长转换元件包括第一波长转换元件和第二波长转换元件,所述第一波长转换元件与所述第二波长转换元件非光学接触;
所述第一波长转换元件与所述光源非光学接触,所述第一波长转换元件包括第一光入射面和第一光出射面;
所述第二波长转换元件与所述光导非光学接触,所述第二波长转换元件包括第二光入射面和第二光出射面;
所述激发光通过所述第一光入射面进入所述第一波长转换元件,所述第一波长转换元件吸收至少部分所述激发光而将其转换为第一受激光;
所述第一受激光和未转换的激发光从所述第一光出射面出射、通过所述第二光入射面进入所述第二波长转换元件,所述第二波长转换元件吸收至少部分未转换的激发光和/或所述第一受激光而将其转换为第二受激光,未转换的激发光、未转换的第一受激光、和所述第二受激光从所述第二光出射面出射,并通过所述光导的光入射面进入所述光导。
7、根据权利要求1所述的发光装置,其特征在于,面对所述光导的除所述光入射面和光出射面之外的部分或全部表面,设置有反射层;所述反射层与其所面对的表面之间设置有空气隙;所述反射层为镜面反射层或漫反射层。
8、根据权利要求7所述的一种发光装置,其特征在于,所述光导的与所述光入射面相对的第一表面处设置有漫反射层,所述漫反射层与所述第一表面之间设置有空气隙。
9、根据权利要求7所述的一种发光装置,其特征在于,所述光导的与光出射面相对的第二表面处设置有镜面反射层,所述镜面反射层与所述第二表面之间设置有空气隙。
10、根据权利要求1所述的发光装置,其特征在于,所述光源与所述波长转换元件之间、所述波长转换元件与所述光导的光入射面之间、所述光导的光出射面处的至少一处设置有光耦合元件,所设置的光耦合元件与其所邻近的光学元件光学连接,且所设置的光耦合元件的折射率比其所邻近的光学元件的折射率低。
11、根据权利要求2所述的一种发光装置,其特征在于,所述光源与所述第一波长转换元件之间、所述第一波长转换元件与所述第二波长转换元件之间、所述第二波长转换元件与所述光导的光入射面之间、所述光导的光出射面处的至少一处设置有光耦合元件,所设置的光耦合元件与其所邻近的光学元件光学连接,且所设置的光耦合元件的折射率比其所邻近的光学元件的折射率低。
12、根据权利要求1所述的一种发光装置,其特征在于,所述波长转换元件的除接收光的接收面和输出光的输出面之外的部分或全部表面上设置有反射层。
13、根据权利要求1所述的一种发光装置,其特征在于,所述光源为面光源,所述光源包括衬底和设置于衬底上的多个发光芯片。
14、根据权利要求13所述的一种发光装置,其特征在于,所述衬底的反射率大于90%,所述发光芯片为激光光源、LED光源或OLED光源。
15、根据权利要求1所述的一种发光装置,其特征在于,所述光导为透明光导,所述光导的折射率大于1.2。
16、根据权利要求1所述的一种发光装置,其特征在于,所述光导的表面粗糙度小于100nm。
17、根据权利要求1所述的一种发光装置,其特征在于,所述光导的材料为YAG单晶、蓝宝石、YAG透明陶瓷、Al2O3透明陶瓷、硅胶或玻璃。
18、根据权利要求6所述的一种发光装置,其特征在于,所述第二波长转换元件与所述光导之间的距离范围为50μm-2000μm。
19、根据权利要求18所述的一种发光装置,其特征在于,所述第二波长转换元件与所述光导之间的距离范围为100μm-1000μm。
20、根据权利要求7所述的一种发光装置,其特征在于,部分或者全部所述反射层的背对所述光导的表面上紧邻设置有热沉。
 
 
 
PCT/CN2017/114755 2017-10-10 2017-12-06 一种发光装置 WO2019071767A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710936742.9A CN109654385A (zh) 2017-10-10 2017-10-10 一种发光装置
CN201710936742.9 2017-10-10

Publications (1)

Publication Number Publication Date
WO2019071767A1 true WO2019071767A1 (zh) 2019-04-18

Family

ID=66100350

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114755 WO2019071767A1 (zh) 2017-10-10 2017-12-06 一种发光装置

Country Status (2)

Country Link
CN (1) CN109654385A (zh)
WO (1) WO2019071767A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101539270A (zh) * 2008-03-17 2009-09-23 绎立锐光科技开发(深圳)有限公司 具有发射角度选择特性的光波长转换方法
US20100321951A1 (en) * 2009-06-22 2010-12-23 June-Jei Huang Hybrid light source system
CN102721005A (zh) * 2012-02-11 2012-10-10 深圳市光峰光电技术有限公司 波长转换装置和发光装置
WO2013140484A1 (ja) * 2012-03-21 2013-09-26 東芝ライテック株式会社 発光装置
CN103615671A (zh) * 2013-10-28 2014-03-05 吴震 光源
CN104020633A (zh) * 2013-02-28 2014-09-03 深圳市绎立锐光科技开发有限公司 发光装置及相关投影系统
JP2016157096A (ja) * 2015-02-20 2016-09-01 株式会社リコー 照明装置及び画像投射装置
CN207364677U (zh) * 2017-10-10 2018-05-15 深圳市绎立锐光科技开发有限公司 一种发光装置

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101539270A (zh) * 2008-03-17 2009-09-23 绎立锐光科技开发(深圳)有限公司 具有发射角度选择特性的光波长转换方法
US20100321951A1 (en) * 2009-06-22 2010-12-23 June-Jei Huang Hybrid light source system
CN102721005A (zh) * 2012-02-11 2012-10-10 深圳市光峰光电技术有限公司 波长转换装置和发光装置
WO2013140484A1 (ja) * 2012-03-21 2013-09-26 東芝ライテック株式会社 発光装置
CN104020633A (zh) * 2013-02-28 2014-09-03 深圳市绎立锐光科技开发有限公司 发光装置及相关投影系统
CN103615671A (zh) * 2013-10-28 2014-03-05 吴震 光源
JP2016157096A (ja) * 2015-02-20 2016-09-01 株式会社リコー 照明装置及び画像投射装置
CN207364677U (zh) * 2017-10-10 2018-05-15 深圳市绎立锐光科技开发有限公司 一种发光装置

Also Published As

Publication number Publication date
CN109654385A (zh) 2019-04-19

Similar Documents

Publication Publication Date Title
US8328406B2 (en) Low-profile illumination device
EP1769193B1 (en) High efficiency light source using solid-state emitter and down-conversion material
JP5415622B2 (ja) 広い角度分布を備えた発光ダイオードデバイス
CA2652240C (en) Illumination system and method for recycling light to increase the brightness of the light source
US7709811B2 (en) Light emitting diode illumination system
EP2064489B1 (en) Brightness enhancement method and apparatus of light emitting diodes
US20130329448A1 (en) Lighting apparatus with phosphor element
US10443800B2 (en) Laser-based light source with heat conducting outcoupling dome
CN108235720A (zh) 用于产生高亮度光的光学设备
JP2017526192A (ja) 発光デバイス
WO2018137313A1 (zh) 一种光源装置
WO2018137312A1 (zh) 一种荧光模块及相关光源
WO2019165747A1 (zh) 光源系统及照明装置
WO2019071767A1 (zh) 一种发光装置
WO2013175752A1 (ja) 波長変換部材、光学素子、発光装置、及び投影装置
CN211694744U (zh) 一种基于光纤导光的封装结构、光纤导光系统
JP6085204B2 (ja) 発光装置
TWI818418B (zh) 發光裝置
WO2021037225A1 (zh) 光源系统及照明装置
CN109798489B (zh) 一种照明装置和汽车照明灯具
CN113725716A (zh) 一种高饱和功率密度的绿光光源
JP6088160B2 (ja) 発光装置および当該発光装置を備えたバックライト
CN117287663A (zh) 一种高显指激光照明系统
WO2019144545A1 (zh) 一种波长转换装置、发光组件及照明装置
JP2020160366A (ja) 波長変換素子及び照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17928135

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17928135

Country of ref document: EP

Kind code of ref document: A1