WO2019165747A1 - 光源系统及照明装置 - Google Patents

光源系统及照明装置 Download PDF

Info

Publication number
WO2019165747A1
WO2019165747A1 PCT/CN2018/095490 CN2018095490W WO2019165747A1 WO 2019165747 A1 WO2019165747 A1 WO 2019165747A1 CN 2018095490 W CN2018095490 W CN 2018095490W WO 2019165747 A1 WO2019165747 A1 WO 2019165747A1
Authority
WO
WIPO (PCT)
Prior art keywords
optical waveguide
light source
waveguide medium
light
source system
Prior art date
Application number
PCT/CN2018/095490
Other languages
English (en)
French (fr)
Inventor
余新
王霖
胡飞
周萌
李屹
Original Assignee
深圳市绎立锐光科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市绎立锐光科技开发有限公司 filed Critical 深圳市绎立锐光科技开发有限公司
Publication of WO2019165747A1 publication Critical patent/WO2019165747A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/20Light sources comprising attachment means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V13/00Producing particular characteristics or distribution of the light emitted by means of a combination of elements specified in two or more of main groups F21V1/00 - F21V11/00
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • F21V19/001Fastening of light sources or lamp holders the light sources being semiconductors devices, e.g. LEDs
    • F21V19/0015Fastening arrangements intended to retain light sources
    • F21V19/002Fastening arrangements intended to retain light sources the fastening means engaging the encapsulation or the packaging of the semiconductor device
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • F21V29/503Cooling arrangements characterised by the adaptation for cooling of specific components of light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/85Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems characterised by the material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape
    • F21V5/045Refractors for light sources of lens shape the lens having discontinuous faces, e.g. Fresnel lenses
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/30Semiconductor lasers

Definitions

  • the present application relates to the field of lighting technologies, and in particular, to a light source system and a lighting device.
  • the solid-state light source in the field of illumination is mainly a light-emitting diode (LED).
  • LED light-emitting diode
  • the use of a blue-chip chip and a phosphor of different colors to realize white light output is currently the mainstream scheme of white LED illumination, but the blue LED has "efficiency".
  • Laser DiodeLD Laser Diode laser
  • Light sources using LDs can achieve brightness that is several times higher than LEDs.
  • LDs have inherent advantages as a light source.
  • Blu-ray LD has many advantages as an excitation source: (1) There is no "significant dip” phenomenon, so the cost of the light source can be reduced by increasing the light output intensity of a single chip; (2) Near monochromaticity, suitable fluorescence can be matched according to the LD output wavelength. Body to achieve high conversion efficiency; (3) smaller size, higher brightness, easier to design terminal lighting; (4) with better controllability, including adjustable color, time space controllable.
  • Blu-ray LD may be the best replacement for blue LEDs.
  • blue LD chip and wavelength conversion material heat dissipation problem such as blue LD chip and wavelength conversion material heat dissipation problem, blue LD safety problem, mixed light uniformity problem and the like.
  • the application provides a light source system and a lighting device, which realizes a white light illumination source with high energy, high brightness and small volume, and can solve the problem of heat dissipation of the laser chip and heat dissipation of the wavelength conversion material.
  • a technical solution adopted by the present application is to provide a light source system, the light source system comprising: at least one laser light source for emitting excitation light; and an optical waveguide medium disposed at the laser light source An optical microstructure is disposed on one side of the optical waveguide medium for totally reflecting the excitation light incident into the optical waveguide medium; and the heat dissipation substrate is recessed to form a first recess.
  • the bottom of the first groove is recessed to form a second groove, the first groove is for placing the optical waveguide medium, and a wavelength conversion layer is disposed in the second groove for converting part of the
  • the excitation light emitted from the optical waveguide medium forms a laser light, and the laser light and the excitation light not converted by the wavelength conversion layer form illumination light.
  • another technical solution adopted by the present application is to provide a lighting device, which comprises the light source system of any of the above.
  • the utility model has the beneficial effects of providing a light source system and a lighting device by encapsulating a laser source and a wavelength conversion layer together by using the same heat dissipation substrate, and by setting an optical waveguide medium, passing through the optical waveguide medium and entering the wavelength conversion layer
  • the laser is more uniform, and the mixed light emitted through the wavelength conversion layer is also more uniform, and the white light illumination source with high energy, high brightness and small volume can be realized, and the problem of heat dissipation of the laser chip and heat dissipation of the wavelength conversion material can be solved.
  • FIG. 1 is a side view showing a first embodiment of a light source system of the present application
  • FIG. 2 is a schematic top plan view of a first embodiment of a light source system of the present application
  • FIG. 3 is a schematic structural view of a first embodiment of an optical microstructure of the present application.
  • FIG. 4 is a schematic structural view of a second embodiment of the optical microstructure of the present application.
  • FIG. 5 is a schematic structural view of a third embodiment of the optical microstructure of the present application.
  • FIG. 6 is a schematic structural view of a fourth embodiment of the optical microstructure of the present application.
  • Figure 7 is a top plan view showing a second embodiment of the light source system of the present application.
  • FIG. 8 is a schematic structural view of an embodiment of a lighting device of the present application.
  • FIG. 1 is a schematic side sectional structural view of a first embodiment of a light source system according to the present application
  • FIG. 2 is a schematic top plan view of a first embodiment of the light source system of the present application
  • the improved light source in the present embodiment System 10 includes:
  • the wavelength conversion layer 13 for wavelength conversion is used, the heat dissipation substrate 14 for heat dissipation, and the structure of the heat dissipation substrate 14 is specifically configured as a groove.
  • the laser light source 11 is encapsulated on the heat dissipation substrate 14. Specifically, the recessed light is disposed on the surface of the heat dissipation substrate 14.
  • the laser light source in this embodiment uses a blue laser diode.
  • the blue laser diode of the present application has the advantages of high efficiency, small volume and long life, and the emitted light is highly concentrated. In other embodiments, a violet laser diode can also be used, which is not further limited herein.
  • the number of the laser light sources 11 may be one or more. In the present embodiment, the number of the laser light sources 11 is two.
  • the light source system 10 may further include a laser shaping deflection device A disposed on the outgoing light path of the laser light source 11 for emitting excitation light to the laser light source 11
  • the beam is shaped and deflected, specifically, the beam of the excitation light is shaped such that the divergence angle of the excitation beam is effectively compressed to become a beam of a desired shape, and the deflection angle of the excitation beam is adjusted so that the excitation beam can be It is coupled into the optical waveguide medium 12 at a certain angle.
  • the laser shaping deflection device A may be one of a microprism and a micro aspheric lens.
  • the optical waveguide medium 12 is disposed on the outgoing optical path of the laser light source 11, and the optical waveguide medium 12 is provided with an optical microstructure B for totally reflecting the excitation light incident on the optical waveguide medium 12.
  • the optical waveguide medium 12 in the present application may be a transparent low-loss optical medium, and the sidewalls of the optical waveguide medium 12 are all provided with a total reflection film (not shown), which can emit the laser light source.
  • the excitation light is transmitted at a small angle, and the laser light after passing through the wavelength conversion layer 13 and a portion of the excitation light that is not converted by the scattering are emitted from the optical waveguide 12, and the excitation light that is not converted by the wavelength conversion layer 13 is large.
  • the angle is incident into the optical waveguide medium 12 and eventually also exits from the optical waveguide.
  • a total reflection film is disposed around the optical waveguide medium 12 such that the optical waveguide medium 12 forms a resonant cavity, and the excitation light emitted from the laser light source 11 is coupled into the optical waveguide through the total reflection film of the sidewall of the optical waveguide medium 12.
  • the medium 12 in order to improve the utilization of the blue laser, it may of course be ultraviolet light in other embodiments, which is not further limited.
  • the optical microstructure B in the present application may be a Fresnel structure for totally reflecting the excitation light incident on the surface thereof, and the optical microstructure B can also ensure that the light reflected therethrough is in the optical waveguide.
  • the side of the medium 12 remote from the optical microstructure B does not satisfy the total reflection and is incident into the wavelength conversion layer 13.
  • the Fresnel structure in this embodiment may change as the incident angle of the excitation light changes.
  • the apex angle of the Fresnel structure and the incident angle of the excitation light incident into the optical waveguide medium satisfy different degrees.
  • the reflection condition may be specifically set as one of decreasing the apex angle along its symmetrical center line, increasing or decreasing the apex angle along its symmetrical center line, or apex angle. The specific situation is as follows:
  • the incident angle of the excitation light incident into the optical waveguide medium is successively decreased, and the apex angle of the Fresnel structure is successively decreased along its symmetrical center line.
  • FIG. 3 is a schematic structural diagram of the first embodiment of the optical microstructure of the present application.
  • the optical microstructure B can cause total light incident on the upper surface thereof to be totally reflected, and at the same time ensure that the light reflected by the upper surface does not satisfy the full emission condition on the lower surface, and both can be from the optical waveguide medium 12.
  • the table below is emitted to enter the wavelength conversion layer 13.
  • the incident angle ⁇ of the excitation light and the double prism apex angle ⁇ of the Fresnel structure on the upper surface of the optical waveguide medium have the following relationship:
  • n is the refractive index of the optical waveguide medium 12
  • a is the incident angle at which the excitation light is incident into the optical waveguide medium 12, that is, the angle between the excitation light and the horizontal direction of the optical waveguide medium 12.
  • the incident angle a may be any range of 0° to 90°.
  • the incident angle a is sequentially increased, that is, ⁇ 1 > ⁇ 0 > ⁇ m is satisfied, and the top of the Fresnel structure is The angle ⁇ has the following relationship ⁇ 1 &gt ; ⁇ 2 > ⁇ m .
  • FIG. 4 is a schematic structural view of a second embodiment of the optical microstructure of the present application.
  • the optical microstructure B in this embodiment is further extended on the basis of the first embodiment of the optical microstructure.
  • the optical microstructure B in this embodiment may be periodically as shown in FIG.
  • the apex angle ⁇ of the Fresnel structure has the following relationship ⁇ 1> ⁇ 2> ⁇ m.
  • an advantage of the present embodiment is that excitation light can be cross-incident to the upper surface of the optical waveguide medium 12, reflected by the upper surface of the optical waveguide medium 12, and emitted from the lower surface, so that illumination is performed on the wavelength conversion layer 13. The excitation light is more uniform.
  • the incident angle of the excitation light incident into the optical waveguide medium is successively decreased, and the apex angles of the Fresnel structure are equal.
  • FIG. 5 is a schematic structural diagram of a third embodiment of the optical microstructure of the present application.
  • the optical microstructure B in this embodiment is further extended on the basis of the first embodiment of the optical microstructure.
  • the optical microstructure B in this embodiment may be periodically as shown in FIG.
  • the apex angle of the optical microstructure B is related to the maximum value a max of the incident angle of the excitation light, and the two satisfy the following relationship:
  • n is the refractive index of the optical waveguide medium 12
  • such a design can ensure that all of the excitation light emitted by the excitation light source 11 can be totally reflected on the upper surface of the optical waveguide medium 12, and both can be from the lower surface of the optical waveguide medium 12.
  • the processing of the Fresnel structure in this embodiment is simpler and easier, and the same effect can be obtained.
  • FIG. 6 is a schematic structural diagram of a fourth embodiment of the optical microstructure of the present application.
  • the optical microstructure B in this embodiment is further extended on the basis of the first embodiment of the optical microstructure.
  • the optical microstructure B in this embodiment may be periodically as shown in FIG. Arrangement structure, the apex angle ⁇ of the Fresnel structure satisfies the following:
  • n is the refractive index of the optical waveguide medium 12
  • the apex angle of the optical microstructure B is related to the maximum value a max of the incident angle of the excitation light, and the principle is similar to the above-described first to third embodiments, and is no longer here. Narration.
  • the optical microstructure B in this embodiment is disposed in a manner different from the above-described one to three embodiments, and the arrangement enables the excitation light to be incident on the upper surface of the optical waveguide medium 12, and the processing complexity can be reduced to some extent. degree.
  • the specific structure of the optical microstructure described above may be changed correspondingly according to the specific arrangement of the excitation light source, so that all the excitation light emitted by the excitation source can be totally reflected on the optical microstructure of the optical waveguide medium 12 and from the optical waveguide. The lower surface of the medium 12 exits.
  • the heat dissipation substrate 14 is used for enhancing heat dissipation.
  • the heat dissipation substrate is made of a high thermal conductivity material, and specifically may be an aluminum nitride substrate, a silicon nitride substrate, a silicon carbide substrate, a boron nitride substrate, a metal copper substrate, and an aluminum substrate.
  • the heat dissipation base body is recessed to form a first groove X, and the bottom of the first groove is recessed to form a second groove Y for placing the optical waveguide medium 12.
  • the inner wall (including the side wall and the bottom wall) of the second groove Y is provided with a reflective layer D.
  • the reflective layer D may be made of a diffuse reflective material or a metal reflective material.
  • the inner wall of the second groove may be directly irradiated with excitation light to form an uneven reflective layer.
  • the wavelength conversion layer 13 is disposed in the second groove Y, and the excitation light for the conversion portion emanating from the optical waveguide medium 12 forms a laser beam, and the laser light and the excitation light not converted by the wavelength conversion layer 13 form illumination light.
  • the surface of the wavelength conversion layer 13 can be roughened to improve the light extraction efficiency of the fluorescent material and reduce the reflection loss at the time of large angle glancing.
  • the excitation light incident from the optical waveguide medium 12 is finally incident on the wavelength conversion layer 13, and by optimizing the thickness of the reflective layer 13 and the concentration of the fluorescent material in the fluorescent reflection layer 13, the incident can be made to Part of the excitation light of the wavelength conversion layer 13 is converted into a laser beam, and a part of the laser beam is mixed with the laser light and directly emitted from the lower surface of the optical waveguide medium 12, and the remaining excitation light and the laser beam are mixed and reflected by the inner wall of the second groove Y. After the layer is reflected, illumination light is generated by the optical waveguide medium 12 and emitted from the optical waveguide medium 12.
  • the wavelength conversion layer 13 when a blue laser diode is used as the laser light source, the wavelength conversion layer 13 may be composed of a yellow fluorescent material, and the yellow light is excited by the laser light source, and the yellow light and the blue light of the unexcited fluorescent material are excited. Mix and get white light illumination.
  • the material of the wavelength conversion layer 13 may also be a mixture of a red fluorescent material and a green fluorescent material.
  • the fluorescent conversion layer 13 may be a mixture of at least two colors of fluorescent materials, and may be a mixture of red, green and blue primary color fluorescent materials, and emit ultraviolet light in the light source. Under mixing to obtain white light illumination. Of course, it can also be a mixture of two fluorescent materials that complement each other, such as yellow + blue fluorescent material, magenta + green fluorescent material, red + cyan fluorescent material, and stimulate the synthesis of white light illumination under the action of ultraviolet light. .
  • the blue light emitted by the blue laser source 11 is adjusted by the laser shaping deflection device A to be incident on the optical waveguide medium 12, and is incident on the optical microstructure B of the upper surface of the optical waveguide medium 12 (Figne Total reflection occurs, and the apex angle of the Fresnel structure is related to the incident angle of the excitation light, so that the light incident on the Fresnel structure can be totally reflected, and at the same time, the light reflected by the upper surface is ensured.
  • the full emission condition is not satisfied on the lower surface, thereby entering the wavelength conversion layer 13.
  • part of the blue light incident on the wavelength conversion layer 13 is converted into excitation yellow light, and the remaining blue light is reflected by the reflection layer of the inner wall of the second groove and mixed with the excitation yellow light to generate illumination light, and is generated from the optical waveguide medium 12 Exit, achieve white light illumination.
  • the laser light source and the wavelength conversion layer are packaged together by the same heat dissipation substrate, and by providing the optical waveguide medium, the laser light entering the wavelength conversion layer after passing through the optical waveguide medium is more uniform, and at the same time, the wavelength conversion is performed.
  • the mixed light emitted after the layer is also more uniform to realize a high-energy, high-brightness, small-volume white light illumination source, and can solve the problem of heat dissipation of the laser chip and heat dissipation of the wavelength conversion material.
  • FIG. 7 is a schematic top plan view of a second embodiment of the light source system of the present application.
  • the light source system 20 improved in the present embodiment includes at least one laser light source 21, an optical waveguide medium 22, a heat dissipation substrate 24, and a wavelength conversion layer 23.
  • the laser source 21 is encapsulated on the heat dissipation substrate 24, and specifically, the first groove around the heat dissipation substrate 24 is disposed on the surface of the heat dissipation substrate 24.
  • the laser source in this embodiment uses a blue laser diode, which has high efficiency. The advantages of small size and long life, and the emitted light is highly concentrated. In other embodiments, a violet laser diode can also be used, which is not further limited herein.
  • the number of the laser light sources 21 may be one or more. In the present embodiment, the number of the laser light sources 21 is four. Of course, in other embodiments, it may be 8, 12, 16 or the like, which is not further limited herein.
  • the laser light source 21 in this embodiment is disposed around the optical waveguide medium 22, which is advantageous in that the excitation light emitted by the laser light source in this embodiment is After being coupled by the optical waveguide medium 22, it can be more uniformly irradiated onto the wavelength conversion layer 23.
  • the optical waveguide medium 22 is disposed on the outgoing optical path of the laser light source 21, and the optical waveguide medium 22 is provided with an optical microstructure for totally reflecting the excitation light incident on the optical waveguide medium 22.
  • the arrangement of the optical microstructures in this embodiment is related to the orientation of the laser light source 21 to ensure that all of the excitation light can be totally reflected on the upper surface of the optical waveguide medium 22 and exit from the lower surface of the optical waveguide medium 22.
  • the heat dissipation base body 24 is recessed to form a first groove, and the bottom of the first groove is recessed to form a second groove for placing the optical waveguide medium 22.
  • the wavelength conversion layer 23 is disposed in the second recess, and the excitation light for the conversion portion emanating from the optical waveguide medium forms a laser light, and the laser light and the excitation light not converted by the wavelength conversion layer form illumination light.
  • the laser light source and the wavelength conversion layer are packaged together by the same heat dissipation substrate, and the optical waveguide medium is disposed, so that the laser light entering the wavelength conversion layer after passing through the optical waveguide medium is more uniform, and at the same time, the wavelength is passed.
  • the mixed light emitted after the conversion layer is also more uniform, and the white light illumination source with high energy, high brightness and small volume can be realized, and the problem of heat dissipation of the laser chip and heat dissipation of the wavelength conversion material can be solved.
  • FIG. 8 is a schematic structural diagram of an embodiment of a lighting device of the present application.
  • the illumination device 30 in the present application may be a laser lamp such as an illumination lamp, a stage lamp, a lamp, and the like, and includes the light source system E of any of the above structures, and the specific structure and implementation principle of the light source system E can be referred to the above implementation. The specific description of the method will not be repeated here.
  • the present application provides a light source system and a lighting device, which can realize high energy, high brightness and small volume of white light by encapsulating the laser light source and the wavelength conversion layer together by the same heat dissipation substrate.
  • the illumination source can solve the problem of heat dissipation of the laser chip and heat dissipation of the wavelength conversion material.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Optics & Photonics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Power Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Semiconductor Lasers (AREA)
  • Planar Illumination Modules (AREA)

Abstract

本发明公开了一种光源系统及照明装置,包括:至少一个激光光源,用于发射激发光;光波导介质,设置于激光光源的出射光路上,光波导介质一面设置有光学微结构,用于将入射至光波导介质中的激发光进行全反射;散热基体,散热基体下凹形成第一凹槽,第一凹槽底部下凹以形成第二凹槽,第一凹槽用于放置光波导介质,波长转换层,设置于第二凹槽内,用于转换部分从光波导介质中出射的激发光形成受激光,受激光和未被波长转换层转换的激发光形成照明光。通过上述实施方式,本申请实现高能量高亮度小体积的白光照明光源,且可以解决激光芯片散热及波长转换材料散热的问题。

Description

光源系统及照明装置 技术领域
本申请涉及照明技术领域,特别是涉及一种光源系统及照明装置。
背景技术
目前,照明领域的固态光源主要是白光发光二极管(Light Emitting Diode,LED),其中采用蓝光芯片加不同颜色的荧光粉来实现白光输出是目前白光LED照明的主流方案,但是蓝光LED存在“效率骤降”现象,即随着驱动功率密度的增加,出光效率衰减很快,蓝光LED芯片只能在较小的驱动功率密度下工作,产生较小的光通量。
蓝光激光二极管(Laser DiodeLD)的发光原理是受激辐射,不存在“效率骤降”现象,能在高驱动功率密度下工作,产生较高光通量。使用LD的光源能够获得比LED高几十倍的亮度。对于体积和光学扩展量限制严格的应用,LD作为光源有着先天的优势。蓝光LD作为激发源具有很多优点:(1)无“效率骤降”现象,因此可以通过提高单个芯片的出光强度降低光源成本;(2)近单色性,可根据LD输出波长匹配合适的荧光体以实现高转换效率;(3)体积更小、亮度更高,更易设计终端照明体;(4)具有更好的可控性,包括光色可调、时间空间可控等。蓝光LD可能成为蓝光LED的最佳替代者。
目前,基于蓝光LD的固态光源仍存在一定的技术问题,如蓝光LD芯片及波长转换材料散热问题、蓝光LD安全性问题、混光均匀性问题等等。
发明内容
本申请提供一种光源系统及照明装置,实现高能量高亮度小体积的白光照明光源,且可以解决激光芯片散热及波长转换材料散热的问题。
为解决上述技术问题,本申请采用的一个技术方案是:提供一种光源 系统,所述光源系统包括:至少一个激光光源,用于发射激发光;光波导介质,设置于所述激光光源的出射光路上,所述光波导介质一面设置有光学微结构,用于将入射至所述光波导介质中的所述激发光进行全反射;散热基体,所述散热基体下凹形成第一凹槽,所述第一凹槽底部下凹以形成第二凹槽,所述第一凹槽用于放置所述光波导介质;波长转换层,设置于所述第二凹槽内,用于转换部分从所述光波导介质中出射的激发光形成受激光,所述受激光和未被所述波长转换层转换的激发光形成照明光。
为解决上述技术问题,本申请采用的另一个技术方案是:提供一种照明装置,所述照明装置包上述任一所述的光源系统。
本申请的有益效果是:提供一种光源系统及照明装置,通过将激光源和波长转换层利用同一块散热基体封装到一起,并通过设置光波导介质,使得通过光波导介质后进入波长转换层的激光更为均匀,同时使得通过波长转换层后出射的混合光也更均匀,可以实现高能量高亮度小体积的白光照明光源,且可以解决激光芯片散热及波长转换材料散热的问题。
附图说明
图1是本申请光源系统第一实施方式的侧视结构示意图;
图2是本申请光源系统第一实施方式的俯视结构示意图;
图3是本申请光学微结构第一实施方式的结构示意图;
图4是本申请光学微结构第二实施方式的结构示意图;
图5是本申请光学微结构第三实施方式的结构示意图;
图6是本申请光学微结构第四实施方式的结构示意图;
图7是本申请光源系统的第二实施例的俯视结构示意图;
图8是本申请照明装置一实施方式的结构示意图。
实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅是本申请的一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没 有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
请参阅图1以及图2,图1为本申请光源系统的第一实施方式的侧截面结构示意图,图2是本申请光源系统的第一实施方式的俯视结构示意图,本实施中所提高的光源系统10包括:
用于发射激发光的至少一个激光光源11,用于将激光光源11发射的激发光进行传导以及反射的光波导介质12,用于接收光波导介质12所传导反射过来的激发光并对激发光进行波长转换的波长转换层13,用于散热的散热基体14,且散热基体14的结构具体设置为一个凹槽。
其中,激光光源11,封装于散热基体14上,具体可以是围绕散热基体14的凹槽设置于散热基体14的表面,本实施例中的激光光源采用蓝光激光二极管。本申请采用蓝光激光二极管具有效率高、体积小、寿命长的优点,且发出的光线高度集中。在其它实施例中,也可以采用紫光激光二极管,此处不做进一步限定。且本申请中激光光源11的个数可以采用一个或者多个,本实施例中,激光光源11的个数为两个。
可选地,在具体实施方式中,该光源系统10还可以包括一激光整形偏转器件A,该激光整形偏转器件A设置于激光光源11的出射光路上,用于对激光光源11发出的激发光光束进行整形和偏转,具体可以是对激发光光束进行整形,使得激发光光束发散角有效的压缩,成为符合要求形状的光束,并对激发光光束的偏转角进行调节,以使得激发光光束可以按照一定的角度耦合进光波导介质12中。可选地,本实施例,激光整形偏转器件A可以为微棱镜以及微非球面透镜中的一种。
光波导介质12,设置于激光光源11的出射光路上,且光波导介质12一面设置有光学微结构B,用于将入射至光波导介质12中的激发光进行全反射。
可选地,本申请中光波导介质12可以为透明低损耗光学介质,且该光波导介质12的侧壁均设置有全反射膜(图未示),该全反射膜能够使激光光源发射的激发光进行小角度的透射,经过波长转换层13之后的受激光和经过散射的未被转换的一部分激发光会从光波导12中出射,且该未被波长 转换层13转换的激发光以大角度入射至光波导介质12中,最终也从光波导中出射。
本实施例中,在光波导介质12的四周设置全反射膜,使得该光波导介质12形成谐振腔,该激光光源11发出的激发光通过光波导介质12侧壁的全反射膜耦合进光波导介质12中,以提高蓝光激光的利用率,当然在其它实施例中还可以是紫外光,本申请不做进一步限定。
可选地,本申请中光学微结构B可以为菲涅尔结构,用于将入射到其表面上的激发光进行全反射,同时该光学微结构B还可以保证经过其反射的光在光波导介质12的远离所述光学微结构B的一面不满足全反射,进而入射至波长转换层13中。
本实施例中的菲涅尔结构可以随着激发光入射角度改变而改变,在具体实施例中,该菲涅尔结构的顶角和激发光入射至光波导介质中的入射角满足不同的全反射条件,具体可以设置为顶角沿其对称中心线依次递减变化、顶角沿其对称中心线依次递增或递减变化或顶角相等中的一种,具体情况描述如下:
1.激发光入射至光波导介质中的入射角依次递减,菲涅尔结构的顶角沿其对称中心线依次递减变化。
请一并参阅图3,图3为本申请光学微结构第一实施方式的结构示意图。如图3所示,该光学微结构B可以使得入射到其上表面的光能够发生全反射,且同时保证经过上表面反射的光在下表面不满足全发射条件,且均能从光波导介质12的下表出射,从而进入到波长转换层13中。本实施例中,激发光的入射角度α和光波导介质上表面的菲涅尔结构的双棱镜顶角θ存在如下关系:
Figure PCTCN2018095490-appb-000001
其中,n为光波导介质12的折射率,a为激发光入射至光波导介质12中的入射角,也就是激发光与光波导介质12水平方向的夹角。可选地,入射角a可以为0°到90°中的任一范围,本实施例中,入射角a是依次递 增,即满足α 10m,则菲涅尔结构的顶角θ存在如下关系θ 12m
请一并参阅图4,图4为本申请光学微结构第二实施方式的结构示意图。
如图4所示,本实施例中的光学微结构B是在光学微结构第一实施方式的基础上的进一步拓展,本实施例中的光学微结构B可以为如图4所示的周期性排列结构,菲涅尔结构的顶角θ存在如下关系θ1>θ2>θm。相比于第一实施方式,本实施例的优势在于激发光可以交叉入射至光波导介质12的上表面,经光波导介质12上表面反射并从下表面出射,使得照射在波长转换层13上的激发光更加均匀。
2.激发光入射至光波导介质中的入射角依次递减,菲涅尔结构的顶角相等。
请进一步参阅图5,图5为本申请光学微结构第三实施方式的结构示意图。
如图5所示,本实施例中的光学微结构B是在光学微结构第一实施方式的基础上的进一步拓展,本实施例中的光学微结构B可以为如图5所示的周期性排列结构,,菲涅尔结构的顶角θ存在如下关系θ1=θ2=θm。且该光学微结构B的顶角和激发光的入射角度的最大值a max相关,二者满足如下关系:
Figure PCTCN2018095490-appb-000002
其中,n为光波导介质12的折射率,此种设计可以保证激发光源11发射的所有激发光均能在光波导介质12的上表面发生全反射,且均能从光波导介质12的下表面出射。相对于第一实施方式中的光学微结构,本实施例中的菲涅尔结构的加工更加简单容易,且能到相同的效果。
请进一步参阅图6,图6为本申请光学微结构第四实施方式的结构示意图。
如图6所示,本实施例中的光学微结构B是在光学微结构第一实施方式的基础上的进一步拓展,本实施例中的光学微结构B可以为如图6所示的周期性排列结构,菲涅尔结构的顶角θ满足如下:
Figure PCTCN2018095490-appb-000003
其中,n为光波导介质12的折射率,且该光学微结构B的顶角和激发光的入射角度的最大值a max相关,原理和上述第一至第三实施例类似,此处不再赘述。且本实施例中的光学微结构B的设置方式相对于上述一至三实施方式,该设置方式能让激发光交叉入射至光波导介质12的上表面,也能在一定程度上减少加工工艺的复杂程度。
上述光学微结构的具体结构的设置可以随着激发光源的具体排列而做相应的改变,以激发光源发射的所有激发光均能在光波导介质12的上光学微结构发生全反射并从光波导介质12的下表面出射。
散热基体14,用于增强散热,该散热基体为高导热系数材料制成,具体可以采用氮化铝基板、氮化硅基板、碳化硅基板、氮化硼基板、金属铜基板、以及铝基板中的一种,此处不做进一步限定。可选地,该散热基体下凹形成第一凹槽X,第一凹槽底部下凹以形成第二凹槽Y,该第一凹槽X用于放置光波导介质12。其中,第二凹槽Y的内壁(包括侧壁和底壁)上均设置有反射层D,在具体实施例中该反射层D可以采用漫反射材料,也可以采用金属反射材料制成,当然在其它实施例中,也可以直接在该第二凹槽的内壁采用激发光照射的方式,使其形成凹凸不平的漫反射层。
波长转换层13设置于第二凹槽Y内,用于转换部分从光波导介质12中出射的激发光形成受激光,受激光和未被波长转换层13转换的激发光形成照明光。该波长转换层13的表面可以做粗糙化处理,以提高荧光材料的出光效率,减小大角度掠射时的反射损耗。在具体实施例中,从光波导介质12中入射的激发光最终会入射至该波长转换层13,通过优化该反射层13的厚度和该荧光反射层13中荧光材料的浓度,可以使得入射至该波长转换层13的部分激发光转换为受激光,一部分受激光与激光混合后直接从光波导介质12下表面出射,剩下的激发光以及受激光混合后经过第二凹槽Y内壁的反射层反射后由光波导介质12产生照明光,并从光波导介质12中出射。
在具体实施例中,当采用蓝光激光二极管作为激光光源时,该波长转 换层13可以为黄色荧光材料组成,在激光光源发出蓝光的作用下激发黄光,该黄光与未激发荧光材料的蓝光混合得到白光照明光。在其它实施例中,该波长转换层13的材料还可以是红色荧光材料和绿色荧光材料的混合。
当采用紫外激光二极管作为激光光源时,该荧光转换层13可以为至少为两种颜色的荧光材料混合而成,具体可以为红绿蓝三基色荧光材料混合而成,在光源发出紫外光的作用下混合得到白光照明光。当然,也可以是两种互为补色的荧光材料混合而成,例如黄色+蓝色荧光材料、品红+绿色荧光材料、红色+青色荧光材料混合,在紫外光的作用下激发合成白光照明光。
下面就上述光源系统的原理做简单描述:
以蓝光激光光源为例,蓝光激光光源11发出的蓝光经过激光整形偏转器件A对其偏转角进行调节后入射至光波导介质12,入射到光波导介质12上表面的光学微结构B(菲涅尔结构)时发生全反射,且该菲涅尔结构的顶角和激发光的入射角相关,可以使得入射至该菲涅尔结构的光能够发生全反射,且同时保证经过上表面反射的光在下表面不满足全发射条件,从而进入波长转换层13中。其中,入射至该波长转换层13的部分蓝光转换为激发黄光,剩下的蓝光经过第二凹槽内壁的反射层反射后与激发黄光混合后产生照明光,并从光波导介质12中出射,实现白光照明。
上述实施方式中,通过将激光光源和波长转换层利用同一块散热基体封装到一起,并通过设置光波导介质,使得通过光波导介质后进入波长转换层的激光更为均匀,同时使得通过波长转换层后出射的混合光也更均匀,以实现高能量高亮度小体积的白光照明光源,且可以解决激光芯片散热及波长转换材料散热的问题。
请参阅图7,图7是本申请光源系统的第二实施方式的俯视结构示意图。本实施中所提高的光源系统20包括:至少一个激光光源21、光波导介质22,散热基体24以及波长转换层23。
其中,激光光源21,封装于散热基体24上,具体可以是围绕散热基体24的第一凹槽设置于散热基体24的表面,本实施例中的激光光源采用蓝光激光二极管,其具有效率高、体积小、寿命长的优点,且发出的光线 高度集中。在其它实施例中,也可以采用紫光激光二极管,此处不做进一步限定。且本申请中激光光源21的个数可以采用一个或者多个,本实施例中,激光光源21的个数为四个。当然,在其它实施方式中,还可以是8个、12个、16个等等,此处不做进一步限定。
相比于第一实施方式中激光光源设置在两个方位的排布方式,本实施例中的激光光源21设置在光波导介质22的四周,其优势在于本实施例中激光光源发射的激发光经过光波导介质22耦合后,可以更加均匀的照射在波长转换层23上。
光波导介质22,设置于激光光源21的出射光路上,光波导介质22一面设置有光学微结构,用于将入射至光波导介质22中的激发光进行全反射。且本实施例中的光学微结构的设置和激光光源21的设置方位相关,以保证所有激发光均能在光波导介质22上表面发生全反射,并且从光波导介质22的下表面出射。
散热基体24,散热基体下凹形成第一凹槽,第一凹槽底部下凹以形成第二凹槽,第一凹槽用于放置光波导介质22。
波长转换层23,设置于第二凹槽内,用于转换部分从光波导介质中出射的激发光形成受激光,受激光和未被波长转换层转换的激发光形成照明光。
上述实施方式中光源系统的具体结构和原理详见本申请光源系统第一实施方式中的具体描述,此处不在赘述。
上述实施方式中,通过将激光光源和波长转换层利用同一块散热基体封装到一起,并通过设置光波导介质,使得激光通过光波导介质后进入波长转换层的激光更为均匀,同时使得通过波长转换层后出射的混合光也更均匀,可以实现高能量高亮度小体积的白光照明光源,且可以解决激光芯片散热及波长转换材料散热的问题。
请参阅图8,图8为本申请照明装置一实施方式的结构示意图。本申请中的照明装置30可以是照明灯,舞台灯,车灯等激光灯,且其包括了上述任一结构的光源系统E,且该光源系统E可以的具体结构和实现原理可以参见上述实施方式的具体描述,此处不再赘述。
综上所述,本领域技术人员容易理解,本申请提供一种光源系统及照明装置,通过将激光光源和波长转换层利用同一块散热基体封装到一起,可以实现高能量高亮度小体积的白光照明光源,且可以解决激光芯片散热及波长转换材料散热的问题。
以上仅为本申请的实施方式,并非因此限制本申请的专利范围,凡是利用本申请说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本申请的专利保护范围内。

Claims (11)

  1. 一种光源系统,其特征在于,所述光源系统包括:
    至少一个激光光源,用于发射激发光;
    光波导介质,设置于所述激光光源的出射光路上,所述光波导介质一面设置有光学微结构,用于将入射至所述光波导介质中的所述激发光进行全反射;
    散热基体,所述散热基体下凹形成第一凹槽,所述第一凹槽底部下凹以形成第二凹槽,所述第一凹槽用于放置所述光波导介质;
    波长转换层,设置于所述第二凹槽内,用于转换部分从所述光波导介质中出射的激发光形成受激光,所述受激光和未被所述波长转换层转换的激发光形成照明光。
  2. 根据权利要求1所述的光源系统,其特征在于,所述光学微结构为菲涅尔结构,所述菲涅尔结构的顶角和所述激发光入射至所述光波导介质中的入射角相关。
  3. 根据权利要求2所述的光源系统,其特征在于,所述激发光入射至所述光波导介质中的入射角依次递减,所述菲涅尔结构的顶角沿其对称中心线依次递减变化。
  4. 根据权利要求2所述的光源系统,其特征在于,所述激发光入射至所述光波导介质中的入射角依次递减,所述菲涅尔结构的顶角相等。
  5. 根据权利要求2-4中任一所述的光源系统,其特征在于,所述菲涅尔结构的顶角θ为:
    Figure PCTCN2018095490-appb-100001
    其中,n为所述光波导介质的折射率,a为所述激发光入射至所述光波导介质中的入射角。
  6. 根据权利要求2-4中任一所述的光源系统,其特征在于,所述菲涅尔结构的顶角θ为:
    Figure PCTCN2018095490-appb-100002
    其中,n为所述光波导介质的折射率,a max为所述激发光入射至所述光波导介质中的最大入射角。
  7. 根据权利要求2-4中任一所述的光源系统,其特征在于,所述菲涅尔结构的顶角θ为:
    Figure PCTCN2018095490-appb-100003
    其中,n为所述光波导介质的折射率,a max为所述激发光入射至所述光波导介质中的最大入射角。
  8. 根据权利要求1所述的光源系统,其特征在于,所述光波导介质的侧壁均设置有全反射膜,用于将所述激发光耦合进所述光波导介质。
  9. 根据权利要求1所述的光源系统,其特征在于,所述光源系统进一步包括反射层,所述反射层设置于所述第二凹槽的内壁。
  10. 根据权利要求1所述的光源系统,其特征在于,进一步包括激光整形偏转器件,所述激光整形偏转器件设置于所述激光光源和所述光波导介质之间。
  11. 一种照明装置,其特征在于,所述照明装置包括权利要求1~10中任一项所述的光源系统。
PCT/CN2018/095490 2018-02-28 2018-07-12 光源系统及照明装置 WO2019165747A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810166393.1A CN110207025B (zh) 2018-02-28 2018-02-28 光源系统及照明装置
CN201810166393.1 2018-02-28

Publications (1)

Publication Number Publication Date
WO2019165747A1 true WO2019165747A1 (zh) 2019-09-06

Family

ID=67778627

Family Applications (2)

Application Number Title Priority Date Filing Date
PCT/CN2018/094730 WO2019165741A1 (zh) 2018-02-28 2018-07-06 光源系统及照明装置
PCT/CN2018/095490 WO2019165747A1 (zh) 2018-02-28 2018-07-12 光源系统及照明装置

Family Applications Before (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/094730 WO2019165741A1 (zh) 2018-02-28 2018-07-06 光源系统及照明装置

Country Status (2)

Country Link
CN (1) CN110207025B (zh)
WO (2) WO2019165741A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116123485A (zh) * 2023-01-09 2023-05-16 福耀玻璃工业集团股份有限公司 车窗面板、车窗面板总成及车辆

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP4070154A1 (en) * 2019-12-03 2022-10-12 Signify Holding B.V. Compact laser beam combiner with micro-prism reflector
CN114530758B (zh) * 2022-01-19 2024-08-02 中国科学院上海微系统与信息技术研究所 一种激光器结构的制备方法及其结构
CN114877265B (zh) * 2022-05-06 2024-01-23 佛山电器照明股份有限公司 一种激光照明装置及其制造方法

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103026517A (zh) * 2010-10-26 2013-04-03 松下电器产业株式会社 照明装置
US20130314937A1 (en) * 2012-05-24 2013-11-28 Sharp Kabushiki Kaisha Light projecting device and vehicular headlamp
CN107561625A (zh) * 2016-06-30 2018-01-09 扬升照明股份有限公司 光源模组以及导光板

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120008060A (ko) * 2009-04-21 2012-01-25 코닌클리즈케 필립스 일렉트로닉스 엔.브이. 인광체를 갖는 조명 장치
JP2010272304A (ja) * 2009-05-20 2010-12-02 Alps Electric Co Ltd 面発光装置
JP5618379B2 (ja) * 2009-12-28 2014-11-05 シャープ株式会社 照明装置
DE202010001155U1 (de) * 2010-01-20 2010-04-22 Zumtobel Lighting Gmbh Lichtleiterplatte mit phosphorhaltigen Strukturelementen
CN102411206A (zh) * 2010-09-23 2012-04-11 鸿富锦精密工业(深圳)有限公司 投影系统
US10436969B2 (en) * 2013-01-30 2019-10-08 Ideal Industries Lighting Llc Optical waveguide and luminaire incorporating same
CN203190212U (zh) * 2013-03-21 2013-09-11 创维液晶器件(深圳)有限公司 背光模组
KR101592649B1 (ko) * 2013-12-24 2016-02-12 현대자동차주식회사 헤드램프용 레이저 광학계
CN205139526U (zh) * 2015-11-16 2016-04-06 北京工业大学 蓝光ld多齿反射传导背光照明模组结构
CN106594550A (zh) * 2016-12-01 2017-04-26 徐州奕创光电科技有限公司 一种线光源

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103026517A (zh) * 2010-10-26 2013-04-03 松下电器产业株式会社 照明装置
US20130314937A1 (en) * 2012-05-24 2013-11-28 Sharp Kabushiki Kaisha Light projecting device and vehicular headlamp
CN107561625A (zh) * 2016-06-30 2018-01-09 扬升照明股份有限公司 光源模组以及导光板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116123485A (zh) * 2023-01-09 2023-05-16 福耀玻璃工业集团股份有限公司 车窗面板、车窗面板总成及车辆

Also Published As

Publication number Publication date
WO2019165741A1 (zh) 2019-09-06
CN110207025A (zh) 2019-09-06
CN110207025B (zh) 2021-11-12

Similar Documents

Publication Publication Date Title
WO2019165747A1 (zh) 光源系统及照明装置
TWI252290B (en) Search-light and search-light element
KR101166664B1 (ko) 고성능 발광 다이오드 램프 시스템
US20200241190A1 (en) Lighting device for example for spot lighting applications
TW200912181A (en) Light source
KR20080085732A (ko) 백색 광원 장치
WO2017024654A1 (zh) 导光板和背光模组
JP6681882B2 (ja) 照明システム
KR20160101093A (ko) 균일한 인광체 조명을 갖는 led 모듈
JP6126606B2 (ja) 照明モジュール
US20220082225A1 (en) Laser phosphor light source for intelligent headlights and spotlights
WO2019128079A1 (zh) 光源系统及照明装置
CN211600585U (zh) 采用棱镜压缩激光束的激光照明模块及激光照明装置
CN207316491U (zh) 高显色指数激光白光获得装置
CN110094640B (zh) 光源系统及照明装置
KR20180000174A (ko) 형광체 플레이트 및 이를 포함하는 조명 장치
CN110778926B (zh) 照明装置
WO2018133325A1 (zh) 一种荧光芯片及其显示系统
JP2015028948A (ja) 発光装置
TWI818418B (zh) 發光裝置
WO2018010231A1 (zh) 受激光激发转化成白光的方法、装置及其应用
WO2019218704A1 (zh) 光源以及照明装置
KR101848842B1 (ko) 레이저 조명 장치
WO2020135290A1 (zh) 照明灯及其光源
CN117480343A (zh) 使用锥形光纤改善热管理的基于激光器的光引擎

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18908111

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18908111

Country of ref document: EP

Kind code of ref document: A1