WO2018137313A1 - 一种光源装置 - Google Patents

一种光源装置 Download PDF

Info

Publication number
WO2018137313A1
WO2018137313A1 PCT/CN2017/090350 CN2017090350W WO2018137313A1 WO 2018137313 A1 WO2018137313 A1 WO 2018137313A1 CN 2017090350 W CN2017090350 W CN 2017090350W WO 2018137313 A1 WO2018137313 A1 WO 2018137313A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light guide
wavelength conversion
conversion layer
source device
Prior art date
Application number
PCT/CN2017/090350
Other languages
English (en)
French (fr)
Inventor
李屹
胡飞
郭祖强
Original Assignee
深圳市绎立锐光科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市绎立锐光科技开发有限公司 filed Critical 深圳市绎立锐光科技开发有限公司
Publication of WO2018137313A1 publication Critical patent/WO2018137313A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/007Array of lenses or refractors for a cluster of light sources, e.g. for arrangement of multiple light sources in one plane
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/61Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using light guides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/64Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction using wavelength conversion means distinct or spaced from the light-generating element, e.g. a remote phosphor layer
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/69Details of refractors forming part of the light source
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • F21V19/001Fastening of light sources or lamp holders the light sources being semiconductors devices, e.g. LEDs
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/008Combination of two or more successive refractors along an optical axis
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B6/00Light guides; Structural details of arrangements comprising light guides and other optical elements, e.g. couplings
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors

Definitions

  • the present invention relates to the field of illumination, and in particular to a light source device.
  • LED lighting has gradually replaced incandescent lamps and energy-saving lamps as the mainstream in the field of lighting with high luminous efficiency and long life.
  • the LED lighting lamp basically adopts a blue LED chip and a yellow phosphor coated on the LED light emitting surface, so that the blue light emitted by the LED chip and the yellow light emitted by the yellow fluorescent powder absorb the blue light are mixed to realize the white light.
  • the LED chip performs electro-optical conversion itself to generate heat, and on the other hand, the process of the phosphor absorbing blue light to emit yellow light generates a large amount of heat.
  • the LED chip is adjacent to the phosphor, and the heat generated by the two is superimposed, so that the temperature of the light-emitting position rises.
  • the luminous efficiency of the phosphor is sensitive to temperature, as the temperature rises, the luminous efficiency of the phosphor decreases, which seriously affects the luminous efficiency of the LED light source. Therefore, the heat dissipation problem has become an important factor restricting the application of LED lighting in the field of high brightness.
  • the LED chip can be separated from the phosphor to solve the heat dissipation problem of the LED illumination by remote excitation.
  • the light emitted by the LED is approximately Lambertian, and the beam divergence angle is large, which is disadvantageous for coupling into the light guide.
  • the coupling efficiency is very low, and it is difficult to efficiently guide the light emitted from the LED chip to the phosphor.
  • LD Laser The Diode (laser diode) light source
  • the optical power density of the single LD is much higher than the optical power density of the LED.
  • the beam divergence angle is small and suitable for remote transmission, which is very suitable for remote excitation lighting technology.
  • the phosphor is generally placed at the end of the remote transmission light guide, in the application scene of high-intensity illumination, heat is concentrated on the phosphor at the end, which also causes a problem of low luminous efficiency of the phosphor.
  • the present invention provides a light source device with high luminous efficiency, which comprises: a light emitting element for emitting excitation light; and a light guide disposed on the optical path of the excitation light, at least partially The excitation light is totally reflected and propagated within the light guide along an optical axis of the light guide, the light guide comprising at least one light leakage region disposed on a side of the light guide for guiding at least a portion of the light from the Emitting in the light guide; the wavelength conversion layer is disposed in the light guide along the optical axis direction of the light guide or disposed near the light leakage region outside the light guide for absorbing at least part of the excitation light and converting it into different wavelength ranges Subject to laser.
  • the light emitting element includes a laser unit and a light shaping unit for guiding excitation light emitted by the laser unit to a light incident surface of the light guide;
  • the laser unit is a laser diode An array
  • the light shaping unit comprising a first cylindrical lens array, a second cylindrical lens array, and a converging lens, the axial direction of the first cylindrical lens array being perpendicular to an axial direction of the second cylindrical lens array.
  • the first cylindrical lens array includes a first cylindrical lens that corresponds one-to-one with the laser diode array, and/or the second cylindrical lens array includes a one-to-one correspondence with the laser diode array. Second cylindrical lens.
  • the light leakage region is provided with an anti-reflection film, or the light leakage region is provided with a roughness structure.
  • the wavelength conversion layer is external to the light guide, and the wavelength conversion layer is spaced apart from the light leakage region.
  • the wavelength conversion layer is disposed in the light leakage region, the wavelength conversion layer is disposed inside the light guide; or the wavelength conversion layer is disposed in the light leakage region, and the wavelength conversion layer is disposed on The light guide is external, and the wavelength conversion layer is connected to the side of the light guide.
  • the wavelength conversion layer is distributed in a segmented manner along the optical axis of the light guide.
  • the wavelength conversion layer is continuously distributed along the optical axis direction of the light guide.
  • the light guide is the same element as the wavelength conversion layer, and the wavelength conversion layer is a fluorescent ceramic.
  • a reflective surface is included at the end of the light guide and the reflective surface intersects the optical axis of the light guide.
  • a second illuminating element is included at the end of the light guide for emitting a second excitation light that is incident into the light guide from the end of the light guide.
  • the present invention includes the following beneficial effects: by providing at least one light leakage region on the side of the light guide such that the excitation light emitted by the light emitting element can partially leak out when propagating along the axis within the light guide;
  • the wavelength conversion layer is disposed by arranging a wavelength conversion layer in the light guide or a light leakage region outside the light guide, and the excitation light is converted into a laser light by the wavelength conversion layer, so that the functional material of the wavelength conversion layer can be distributed over a larger area.
  • the heat accumulation caused by excessive concentration is avoided, so that the functional material of the wavelength conversion layer can have higher luminous efficiency, and the luminous efficiency and brightness of the light source device are improved.
  • FIG. 1 is a schematic structural view of an embodiment of a light source device according to the present invention.
  • FIG. 2 is a schematic structural view of another embodiment of a light source device according to the present invention.
  • FIG. 3 is a schematic structural view of another embodiment of a light source device according to the present invention.
  • FIG. 4 is a schematic structural view of another embodiment of a light source device according to the present invention.
  • Fig. 5 is a schematic view showing the structure of another embodiment of the light source device of the present invention.
  • Fig. 6 is a view showing the configuration of an embodiment of a light-emitting element of a light source device of the present invention.
  • Fig. 7 is a schematic structural view of another embodiment of a light source device according to the present invention.
  • FIG. 8 is a schematic structural view of another embodiment of a light source device according to the present invention.
  • Fig. 9 is a schematic structural view of another embodiment of a light source device according to the present invention.
  • Figure 10 is a schematic view showing the structure of another embodiment of the light source device of the present invention.
  • the idea of the present invention is to disperse the fluorescent material instead of being concentrated at the end of the light guide, and to continuously emit light by the excitation light traveling along the light guide, so that the heat generated by the photoluminescence of the fluorescent material is more uniformly dispersed to The different positions along the direction of the light guide avoid the problem of the decrease in the luminous efficiency of the fluorescent material caused by the heat concentration, thereby improving the luminous efficiency of the light source device.
  • FIG. 1 is a schematic structural view of an embodiment of a light source device according to the present invention.
  • the light source device 10 includes a light emitting element 110, a light guide 120, and a wavelength conversion layer 130.
  • the excitation light emitted from the light-emitting element 110 enters the light guide 120 from the light entrance of the light guide 120, and is continuously reflected and propagated in the light guide 120 due to total reflection.
  • the light guide 120 includes at least one light leakage region 1201 on the side of the light guide 120. Light incident on the light leakage region 1201 is emitted from the side surface of the light guide 120, and the emitted light enters the wavelength conversion layer 130 disposed in the vicinity of the light leakage region 1201, and is at least partially absorbed and converted into laser light having different wavelength ranges.
  • the light-converting layer 130 acts, and the unabsorbed excitation light and the received laser light are emitted from the wavelength conversion layer 130 to form the light emitted from the light source device 10.
  • the light-emitting element is used to emit excitation light.
  • the light guide is disposed on the optical path of the excitation light, and at least a portion of the excitation light is totally reflected and propagated in the light guide along the optical axis of the light guide.
  • the light guide includes at least one light leakage region, and the light leakage region is disposed at a side of the light guide for guiding at least part of the light to exit from the light guide. .
  • the light emitting element includes a laser unit and a light shaping unit.
  • the laser unit may be a laser diode or a laser diode array.
  • the light emitted by the laser diode is substantially an elliptical spot. This is because the light exit surface of the laser diode has a rectangular shape, and the light divergence angle of the outgoing light along the long axis direction and the short axis direction is largely different. If the light emitted by the laser diode enters the light guide without being processed, the light path will be different in both the long axis and the short axis, resulting in uneven beam.
  • the light shaping unit shapes the excitation light before it enters the light guide for the excitation light emitted by the laser unit to enter the light guide with an approximately circular spot.
  • the light-emitting element 110 includes a laser unit 111 and a light shaping unit 112, wherein (a) is a view of the light-emitting element 110 in a direction parallel to the long axis, ( b) is a view of the light-emitting element 110 in a direction parallel to the short-axis direction, and (c) is a view facing the laser unit 111 in a direction parallel to the optical axis of the laser unit 111.
  • the laser unit 111 is a 4 ⁇ 2 laser diode array
  • the short axis direction is parallel to the row direction (ie, the direction of four rows)
  • the long axis direction is parallel to the column direction (ie, the direction of two columns).
  • the light shaping unit 112 includes a first cylindrical lens array composed of 4 ⁇ 2 first cylindrical lenses 1121, and includes a second cylindrical lens array composed of 4 ⁇ 2 second cylindrical lenses 1122, and further includes a converging lens 1123.
  • the first cylindrical lens array is in one-to-one correspondence with the laser diode array for collimating the excitation light of the large divergence angle emitted by each laser diode in parallel to the short-axis direction to approximately parallel light of a small divergence angle; the second cylindrical lens array One-to-one correspondence with the laser diode array for collimating the light of the large divergence angle emitted by the first cylindrical lens array parallel to the long axis direction to approximately parallel light of a small divergence angle.
  • each of the laser diodes has a first cylindrical lens and a second cylindrical lens corresponding to one-to-one correspondence, so that the respective light beams are parallel to the main optical axis before being incident on the converging lens 1123, so that the respective beams can The converging lens 1123 converges and then merges into one spot.
  • the number of laser diodes in the laser diode array is not limited to 4 ⁇ 2, and may be other numbers.
  • the laser diode array is an array of laser diodes of an M ⁇ N matrix, where M is the number of laser diodes parallel to the short axis direction, N is the number of laser diodes parallel to the long axis direction, and the first cylindrical lens array is also The M ⁇ N matrix is in one-to-one correspondence with the laser diode array, and the second cylindrical lens array is also an M ⁇ N matrix, which is in one-to-one correspondence with the laser diode array.
  • the laser diode array is an array of laser diodes of an M x N matrix, where M is the number of laser diodes parallel to the short axis direction and N is the number of laser diodes parallel to the long axis direction.
  • the first cylindrical lens array includes only M first cylindrical lenses, each first cylindrical lens corresponding to N laser diodes, the axial direction of the first cylindrical lens is parallel to the long axis direction of the laser diode;
  • the second cylindrical lens array includes only N A second cylindrical lens, each of the second cylindrical lenses corresponding to M laser diodes, the axial direction of the second cylindrical lens being parallel to the short axis direction of the laser diode.
  • the axial direction of the first cylindrical lens array is perpendicular to the axis of the second cylindrical lens array.
  • the divergence angle of each of the light beams becomes smaller, and the beam cross-sectional area is smaller.
  • the enlargement is such that the individual sub-beams form an array of closely arranged beams, and the adjacent sub-beams are spatially connected.
  • the beam is easily concentrated by the condenser lens into a spot of high light energy density, which is suitable for the field of high brightness illumination.
  • the laser unit of the light-emitting element is a blue laser unit that emits a blue laser
  • the blue laser can serve as a visible light component of the emitted light
  • the blue laser has a shorter wavelength and can excite the fluorescent material to obtain a wavelength. Longer visible light.
  • the light guide functions to propagate light along the longitudinal direction of the light guide (i.e., the optical axis direction of the light guide).
  • the light guide may be an optical fiber or a light guide rod such as a cylindrical integrator rod, a square integrator rod, or the like.
  • the light guide includes at least a high refractive index medium in which excitation light propagates, and when incident on a boundary surface of the high refractive index medium, at least a portion of the excitation light is totally reflected to continue to propagate in the high refractive index medium.
  • the surface of the light guide extending in the direction of the optical axis is the side of the light guide.
  • the side of the light guide includes one or more light leakage regions, at least part of which leaks out of the light guide when light is incident on the region.
  • the side of the light guide includes a plurality of light leakage regions, the plurality of light leakage regions being spaced apart.
  • the light leakage region can be distributed 360° around the optical axis of the light guide, ie completely covering the side of the light guide between the two cut planes perpendicular to the optical axis. In another embodiment, the light leakage region may also cover only the side of less than 360° about the optical axis of the light guide.
  • the light leakage area is different from the structure of other areas on the light guide.
  • the light leakage region 1201 is provided with an anti-reflection film 121, which is provided with a plurality of high-level refractive index layers, so that part of the light does not totally reflect in the light leakage region 1201, but is refracted and transmitted.
  • the light leakage region 1201 passes through to form an outgoing light.
  • the light leakage rate of the light leakage region can be more accurately controlled to improve the uniformity of the emitted light of the light source device.
  • the light leakage region is a rough region of the surface of the light guide, and the roughness of the incident angle of the light incident on the light leakage region is changed, so that the incident angle of the partial light is greater than the total reflection angle, thereby being transmitted.
  • the light leakage region forms an outgoing light.
  • the rough region can be fabricated by physical or chemical means such as etching or etching.
  • the wavelength conversion layer is used to convert excitation light into laser light having different wavelength ranges.
  • the wavelength conversion layer may be a layer composed of a fluorescent material such as a phosphor and a binder, wherein the binders are connected to each other in a continuous body to encapsulate the fluorescent material.
  • the fluorescent material may be a phosphor such as Ce:YAG
  • the adhesive may be an organic binder such as silica gel or epoxy resin, or an inorganic binder such as glass.
  • the wavelength converting layer is a fluorescent ceramic.
  • the fluorescent ceramics may be pure phase fluorescent ceramics, specifically various oxide ceramics, nitride ceramics or oxynitride ceramics, and formed by incorporating a trace amount of activator elements (such as lanthanides) into the ceramic preparation process. center. Since the doping amount of a general activator element is small (generally less than 1%), such a fluorescent ceramic is usually a transparent or translucent luminescent ceramic, and excitation light is easily propagated in the luminescent ceramic without changing direction.
  • the fluorescent ceramic may be a Ce doped YAG ceramic or a Ce doped LuAG ceramic.
  • the fluorescent ceramic may also be a composite ceramic layer having a transparent/translucent ceramic as a matrix in which luminescent ceramic particles (such as phosphor particles) are distributed.
  • the transparent/translucent ceramic substrate may be various oxide ceramics (such as alumina ceramics, Y 3 Al 5 O 12 ceramics), nitride ceramics (such as aluminum nitride ceramics) or oxynitride ceramics, and the role of the ceramic matrix is to Light and heat conduct, so that the excitation light can be incident on the luminescent ceramic particles, and the laser light can be emitted from the luminescent ceramic layer; the luminescent ceramic particles bear the main illuminating function of the luminescent ceramic layer, and are used to absorb the excitation light and convert it. For the laser.
  • the granules of the luminescent ceramic particles have a large grain size, and the doping amount of the activator element is large (for example, 1 to 5%), so that the luminescence efficiency is high; and the luminescent ceramic particles are dispersed in the ceramic matrix, thereby avoiding the presence of the fluorescent ceramics.
  • the luminescent ceramic particles in the deep position cannot be irradiated by the excitation light, and the poisoning of the activator element concentration caused by the large doping amount of the pure phase fluorescent ceramic is avoided, thereby improving the luminous efficiency of the luminescent ceramic layer.
  • scattering particles may be added to distribute the scattering particles in the ceramic matrix.
  • the scattering particles may be scattering particles such as alumina, cerium oxide, zirconium oxide, cerium oxide, titanium oxide, zinc oxide, barium sulfate, etc., either as scattering particles of a single material or as a combination of two or more kinds. It is characterized by an apparent white color, which is capable of scattering visible light, and is stable in material and capable of withstanding high temperatures.
  • the particle size is of the same order of magnitude or an order of magnitude lower than the wavelength of the excitation light.
  • the fluorescent ceramic may also be another composite ceramic layer which differs from the composite ceramic layer described above only in the ceramic matrix.
  • the ceramic substrate is a pure phase fluorescent ceramic, that is, the ceramic substrate itself has an activator capable of emitting a laser light under irradiation of excitation light.
  • the technical scheme combines the advantages of the luminescent ceramic particles of the above composite ceramic layer with high luminous efficiency and the above-mentioned pure phase fluorescent ceramics having the luminescent property, and simultaneously illuminating by using the luminescent ceramic particles and the ceramic matrix, thereby further improving the luminescent ceramic layer.
  • the luminous efficiency, and the ceramic matrix has a certain amount of activator doping, but the doping amount is low, and the ceramic substrate can ensure sufficient light transmittance.
  • the light guide 120 passes through a plurality of light leakage regions 1201 distributed along the optical axis direction thereof, and the light leakage region 1201 is provided with an anti-reflection film 121, so that different positions of the light guides are respectively emitted.
  • Excitation light The wavelength conversion layer 130 is disposed outside the light guide 120 by converting the excitation light from the light leakage region 1201 of the light guide 120 into laser light to constitute illumination light of the light source device 10.
  • the wavelength conversion layer 130 is disposed in the vicinity of the light leakage region outside the light guide along the optical axis direction of the light guide 120, and the wavelength conversion layer 130 is spaced apart from the antireflection film 121.
  • This technical solution makes the opposite sides of the anti-reflection film 121 have a significant refractive index difference to ensure the realization of the function of the anti-reflection film 121.
  • assembly, disassembly, and replacement can be facilitated, and the use cost of the light source device can be reduced.
  • the wavelength conversion layer 130 may also be directly disposed on the anti-reflection film 121 without considering the above beneficial effects.
  • FIG. 2 is a schematic structural view of another embodiment of a light source device according to the present invention.
  • the light source device 20 includes a light emitting element 210, a light guide 220, and a wavelength conversion layer 230, and the light guide 220 includes at least one light leakage region 2201.
  • the excitation light emitted by the light-emitting element 210 enters the light guide 220 from the light entrance of the light guide 220, and is continuously reflected and propagated in the light guide 220 due to total reflection.
  • the light guide 220 includes at least one light leakage region 2201 on the side of the light guide 220. Light incident on the light leakage region 2201 is partially emitted from the side surface of the light guide 120.
  • the wavelength conversion layer 230 is disposed inside the light guide 220 along the optical axis direction of the light guide 220 and at a position of the light leakage region 2201 .
  • the excitation light is conducted to the light leakage region 2201, part of the excitation light is converted into a laser light by the wavelength conversion layer 230, and the laser light is emitted from the luminescence center of the wavelength conversion layer 230 with a light of approximately Lambertian distribution, which is incident at a small incident angle.
  • the light on the side of the light guide leaks from the light guide and becomes the light emitted from the light source device 20; further, part of the excitation light is not absorbed after being incident on the wavelength conversion layer 230, but is scattered by the wavelength conversion layer 230, and also becomes a light similar to the Lambertian distribution.
  • the light incident on the side of the light guide at a small incident angle leaks from the light guide and also becomes the light emitted from the light source device 20.
  • the wavelength conversion layer 230 can be fabricated by doping the wavelength converting material into the raw material of the light guide during the preparation of the light guide 220.
  • the light guide 220 is a hollow light guide, and the wavelength conversion layer 230 is disposed in the hollow of the light guide to obtain the technical solution of the embodiment shown in FIG. 2.
  • an anti-reflection film or roughness is additionally provided in the light leakage region 2201 of the light guide 220 to change the amount of emitted light.
  • the description of the light-emitting element 210, the light guide 220, and the wavelength conversion layer 230 can be referred to the description of the ⁇ light-emitting element>, the ⁇ light guide>, and the ⁇ wavelength conversion layer> in the above embodiment.
  • FIG. 3 is a schematic structural view of another embodiment of a light source device according to the present invention.
  • the light source device 30 includes a light emitting element 310, a light guide 320, and a wavelength conversion layer 330, and the light guide 320 includes at least one light leakage region 3201.
  • the wavelength conversion layer 330 is disposed outside the light guide 320 and at the position of the light leakage region 3201.
  • the wavelength conversion layer 330 is directly connected to the side surface of the light guide 320. It is not necessary to increase the anti-reflection film 121 in the light leakage region 1201 or to roughen the light leakage region in the embodiment shown in FIG. This is because the refractive index of the wavelength conversion layer 330 and the light guide 320 are close to each other, and the ratio of total reflection of light incident on the light leakage region 3201 is lower than that of the embodiment shown in FIG.
  • the excitation light When the excitation light is incident into the wavelength conversion layer 330 through the light leakage region 3201, part of the excitation light is absorbed and converted into a laser light, which is emitted from the luminescence center of the wavelength conversion layer 330 by an approximately Lambertian distribution; The light is not absorbed, but is scattered by the wavelength conversion layer 330 and exits with a light that approximates the Lambertian distribution; and some of the excitation light is directly reflected back to the light guide and continues to propagate through the light guide. The light that is emitted from the wavelength conversion layer 330 to the outside of the light guide becomes the light emitted from the light source device 30.
  • the wavelength conversion layer 330 is disposed outside the light guide, which reduces the difficulty of the manufacturing process. Moreover, the present embodiment utilizes the characteristic that the wavelength conversion layer 330 has a refractive index close to that of the light guide 320, and guides part of the light from the light guide 320. It is not necessary to provide an anti-reflection film or a rough structure, which further reduces the process difficulty and cost.
  • an anti-reflection film or a roughness structure may be additionally provided on the surface of the wavelength conversion layer 330 away from the light guide 320 to improve the emitted light.
  • the description of the light-emitting element 310, the light guide 320, and the wavelength conversion layer 330 can be referred to the description of the ⁇ light-emitting element>, the ⁇ light guide>, and the ⁇ wavelength conversion layer> in the above embodiment.
  • FIG. 4 is a schematic structural view of another embodiment of a light source device according to the present invention.
  • the light source device 40 includes a light emitting element 410, a light guide 420, and a wavelength conversion layer 430, and the light guide 420 includes at least one light leakage region 4201.
  • the wavelength conversion layer 430 is disposed inside the light guide 420.
  • the technical solution can be achieved by doping the light guide with the fluorescent material during the preparation of the light guide or by laying the wavelength conversion layer in the hollow light guide.
  • the wavelength conversion layer 430 is distributed around the optical axis of the light guide 420 by less than 360° (such as, but not limited to, 90°), while the light leakage region 4201 is disposed opposite the wavelength conversion layer 430, and the light leakage region 4201 is around the optical axis 420.
  • the optical axis is also distributed at less than 360°.
  • the wavelength converting layer is distributed 360° around the optical axis of the light guide.
  • the wavelength conversion layer 130 is distributed in a segmented manner along the optical axis direction of the light guide 120, and in the embodiment shown in FIG. 4, the wavelength conversion layer 430 is along the optical axis 420.
  • the axial direction is continuously distributed.
  • the laser is more uniformly distributed in the light guide, and the laser light is partially transmitted along the optical axis of the light guide along with the excitation light, and leaks out at the position of the light leakage region 4201 on the side of the light guide 420 to become the light emitted from the light source device 40. .
  • the anti-reflection film 421 is disposed at the position of the light leakage region 4201. As described in the above embodiments, the anti-reflection film 421 may also be provided in a rough structure, which will not be described herein.
  • the description of the light-emitting element 410, the light guide 420, and the wavelength conversion layer 430 can be referred to the description of the ⁇ light-emitting element>, the ⁇ light guide>, and the ⁇ wavelength conversion layer> in the above embodiment.
  • FIG. 5 is a schematic structural view of another embodiment of a light source device according to the present invention.
  • the light source device 50 includes a light emitting element 510, a light guide 520, and a wavelength conversion layer 530, and the light guide 520 includes at least one light leakage region 5201.
  • the excitation light emitted by the light-emitting element 510 enters the light guide 520 from the light entrance of the light guide 520, and is continuously reflected and propagated in the light guide 520 due to total reflection.
  • the light guide 520 includes at least one light leakage region 5201 on the side of the light guide 520. Light incident on the light leakage region 5201 is emitted from the side surface of the light guide 520.
  • the light guide 520 and the wavelength conversion layer 530 are the same element, that is, the light guide 520 exists simultaneously as a light guide for light guiding and a wavelength conversion layer for wavelength conversion.
  • the light guide 520 (wavelength conversion layer 530) is a pure phase fluorescent ceramic, which is transparent or translucent.
  • the propagation path of the unabsorbed excitation light is the same as the propagation path in the light guide not including the wavelength conversion layer, that is, the partial excitation light is only at the light guide 520 (wavelength conversion layer 530).
  • the light leakage region 5201 leaks out and is totally reflected at other side positions to continue to propagate in the optical axis direction.
  • the light guide 520 (wavelength conversion layer 530) is a Ce:YAG ceramic crystal having a high transmittance for excitation light.
  • the excitation light emitted from the light-emitting element 510 propagates through the light guide 520 (wavelength conversion layer 530)
  • part of the excitation light is absorbed by the light-emitting center in the light guide 520 (wavelength conversion layer 530), and is converted into a laser light.
  • the light emitted by the illuminating center is light distributed in the Lambertian.
  • the laser light leaks out from the light leakage region 5201, and becomes the light emitted from the light source device 50 together with the excitation light.
  • the anti-reflection film 521 is disposed at the position of the light leakage region 5201. As described in the above embodiments, the anti-reflection film 521 may also be provided in a rough structure, which will not be described herein.
  • the description of the light-emitting element 510 can be referred to the description of the ⁇ light-emitting element> in the above embodiment.
  • FIG. 7 is a schematic structural view of another embodiment of a light source device according to the present invention.
  • the light source device 60 includes a light-emitting element 610, a light guide 620, and a wavelength conversion layer 630.
  • the light guide 620 includes at least one light leakage region 6201, and the light leakage region 6201 is provided with an anti-reflection film 621.
  • This embodiment is similar to the embodiment shown in FIG. 5, and the light guide 620 and the wavelength conversion layer 630 are the same element.
  • the present embodiment differs from the embodiment shown in FIG. 5 in that, in the present embodiment, the end of the light guide 620 is provided with a reflective surface 640 that intersects the optical axis of the light guide 620.
  • the excitation light and the laser light propagating along the optical axis of the light guide 620 leak out part of the light in the light leakage region 6201 during the propagation.
  • the reflective surface 640 reflects the portion of the light, so that the excitation light and the laser light continue to propagate backward along the optical axis of the light guide 620, and leak out in the light leakage region 6201 during propagation. .
  • the farther the light is transmitted along the optical axis of the light guide the lower the light energy density in the light guide, which may result in less light leakage from the farther region of the light-emitting element, resulting in light from the light source device. Not uniform.
  • the light can be folded back and then propagated, and the leaked light when propagating in both the forward and reverse directions is superimposed, and becomes more uniform.
  • a reflection surface may be added to the end of the light guide, and the effect of uniform light emission from the light source device is also achieved.
  • FIG. 8 is a schematic structural view of another embodiment of a light source device according to the present invention.
  • the light source device 70 includes a light-emitting element 710, a light guide 720, and a wavelength conversion layer 730.
  • the light guide 720 includes at least one light leakage region 7201, and the light leakage region 7201 is provided with an anti-reflection film 721.
  • This embodiment is similar to the embodiment shown in FIG. 7, and the light guide 720 and the wavelength conversion layer 730 are the same element.
  • the embodiment is different from the embodiment shown in FIG. 7 in that, in the embodiment, the end of the light guide 720 is not provided with a reflective surface, but is provided with a second light-emitting element 710 ′, and the second light-emitting element 710 ′ emits
  • the second excitation light of the light-emitting element 710 is oppositely incident from the end of the light guide 720, and the excitation light emitted by the second light-emitting element 710' follows the same propagation mode as the excitation light emitted by the light-emitting element 710. That is, the excitation light emitted by the second light-emitting element 710' leaks in the light leakage region 7201 and propagates along the light guide 720 due to total reflection in other regions.
  • the uniformity of the emitted light of the light source device 70 can be improved, and the problem of uneven distribution of the emitted light due to the attenuation of the light along the light guide can be avoided.
  • a second light-emitting element may be added to the end of the light guide, and the effect of uniform light emission from the light source device is also achieved.
  • the light source device of the invention can be used for general lighting, such as household lighting, office lighting, and also for special lighting, such as street lighting, factory lighting.
  • the light source device has a large light-emitting area and excellent heat dissipation performance, and can be applied to high-intensity illumination.
  • the light-emitting element may be disposed at the bottom of the street lamp, and then the excitation light emitted from the light-emitting element is guided to the position of the light-emitting head of the street lamp through the optical fiber.
  • the street light pole portion no light leakage region is provided on the side of the light guiding fiber, so that the excitation light can be almost completely transmitted to the lamp cap.
  • FIG. 9 is a schematic structural view of another embodiment of a light source device according to the present invention.
  • the light source device 80 is a street lamp (street light) including a light emitting element 810, a light guide 820, and a wavelength conversion layer 830.
  • the light guide 820 comprises two parts, the first part is a vertical part (corresponding to the light pole) in the figure, the side of the part of the light guide has no light leakage area, and the light emitted by the light-emitting element 810 is propagated upward by total reflection in the first part;
  • the portion is a horizontal portion (corresponding to the lamp head) in the figure, and the portion of the light guide is the same component as the wavelength conversion layer 830.
  • the side of the portion of the light guide is provided with a light leakage region 8201 for transmitting at least part of the excitation light and the wavelength conversion layer 830. Laser to achieve the function of lighting.
  • the light-emitting element in the present embodiment can be referred to the description in the above-mentioned ⁇ light-emitting element>.
  • the second portion of the light guide 820 in the present embodiment may also be replaced with the above-described embodiments of the light guide and the wavelength conversion layer in FIGS. 1 to 5.
  • FIG. 10 is a schematic structural view of another embodiment of a light source device according to the present invention.
  • the light source device 90 is a street lamp (street light) including a light emitting element 910, a light guide 920, and a wavelength conversion layer 930.
  • the light guide 920 also includes two parts, the first part is a light guide part where no light leakage area is provided, and the second part is a light guide part provided with a light leakage area.
  • the second part can select the light guide and the wavelength conversion layer in any of the light source devices of FIGS. 1 to 5 and 7 as the technical solution of the present embodiment.
  • the present embodiment differs from the embodiment shown in FIG. 9 in that the light emitted by the light-emitting element 910 is a light beam having a small divergence angle, and the light beam does not pass through the total reflection of the first portion of the light guide 920, but directly propagates upward through the light guide.
  • the upper reflective layer 9202 reflects and changes direction, entering the position of the second portion of the light guide 920.
  • the light guide has no first portion (light pole portion), and the excitation light emitted by the light-emitting element is directly transmitted from the bottom to a position substantially horizontal with the lamp head, and then reflected by a mirror to change direction and enter Light guide (lamp part).
  • FIGS. 9 and 10 above are examples of application of the light source device of the present invention to a street lamp.
  • the application of the invention is not limited to street lights. It is also within the technical scope of the present invention to arbitrarily provide an optical element such as a mirror or a lens between the light-emitting element and the light guide in addition to the above-described FIGS. 1 to 5 and 7 to 8.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • General Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Nonlinear Science (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Planar Illumination Modules (AREA)
  • Semiconductor Lasers (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

一种光源装置(10),包括:发光元件(110),用于发出激发光;光导(120),设置在激发光的光路上,至少部分激发光沿光导(120)的光轴在光导(120)内全反射传播,光导(120)至少包括一个漏光区域(1201),漏光区域(1201)设置在光导(120)的侧面,用于引导至少部分光从光导(120)中出射;波长转换层(130),沿光导(120)的光轴方向设置在光导(120)内或者设置在光导(120)外的漏光区域(1201)附近,用于吸收至少部分激发光并将其转换为波长范围不同的受激光。光源装置(10)散热更加均匀,适于高亮度照明。

Description

一种光源装置 技术领域
本发明涉及照明领域,特别是涉及一种光源装置。
背景技术
近年来,随着节能环保概念的推广,凭借着高发光效率和长寿命,LED照明逐渐取代白炽灯、节能灯成为照明领域的主流。
技术问题
然而,在高亮度照明领域,LED要达到出射高亮度光,需要多颗LED组合实现。现在的LED照明灯,基本都是采用蓝光LED芯片配合涂覆在LED发光面上的黄色荧光粉,使得LED芯片出射的蓝光与黄色荧光粉吸收蓝光后发射的黄光混合,实现出射白光。一方面,LED芯片进行电光转换本身产生热量,另一方面,荧光粉吸收蓝光发射黄光的过程产生大量的热。LED芯片与荧光粉近邻,两者产生的热积累叠加,使得发光位置的温度上升。由于荧光粉的发光效率对温度敏感,随着温度的上升,荧光粉发光效率下降,严重影响了LED光源的发光效率。因此,散热问题成为制约LED照明在高亮度领域应用的重要因素。
有人提出,可以将LED芯片与荧光粉分离,通过远程激发的方式解决LED照明的散热问题。然而,LED的出射光呈近似朗伯分布的光,光束发散角很大,不利于耦合到光导中,耦合效率很低,难以将LED芯片发出的光高效的引导至荧光粉。
LD(Laser Diode,激光二极管)光源与LED光源同为冷光源,而且单颗LD的光功率密度远高于LED的光功率密度,其光束发散角小,适于远程传输,非常适用于远程激发照明技术。但是,由于一般将荧光粉置于远程传输光导的末端,在高亮度照明的应用场景下,热量集中在末端的荧光粉上,同样会造成荧光粉发光效率低的问题。
因此,一种发光效率高的光源装置亟待开发。
技术解决方案
针对上述现有技术的光源发光效率低的缺陷,本发明提供一种发光效率高的光源装置,包括:发光元件,用于发出激发光;光导,设置在所述激发光的光路上,至少部分所述激发光沿所述光导的光轴在所述光导内全反射传播,所述光导至少包括一个漏光区域,所述漏光区域设置在所述光导的侧面,用于引导至少部分光从所述光导中出射;波长转换层,沿所述光导的光轴方向设置在所述光导内或者设置在所述光导外的漏光区域附近,用于吸收至少部分激发光并将其转换为波长范围不同的受激光。
在一个实施方式中,所述发光元件包括激光单元和光整形单元,所述光整形单元用于将所述激光单元发出的激发光引导至所述光导的光入射面;所述激光单元为激光二极管阵列,所述光整形单元包括第一柱透镜阵列、第二柱透镜阵列和会聚透镜,所述第一柱透镜阵列的轴向与所述第二柱透镜阵列的轴向垂直。
在一个实施方式中,所述第一柱透镜阵列包括与所述激光二极管阵列一一对应的第一柱透镜,和/或所述第二柱透镜阵列包括与所述激光二极管阵列一一对应的第二柱透镜。
在一个实施方式中,所述漏光区域设置有增透膜,或者所述漏光区域设置有粗糙结构。
在一个实施方式中,所述波长转换层位于所述光导外部,且所述波长转换层与所述漏光区域间隔设置。
在一个实施方式中,所述波长转换层设置于所述漏光区域,所述波长转换层设置于所述光导内部;或者所述波长转换层设置于所述漏光区域,所述波长转换层设置于所述光导外部,且所述波长转换层与所述光导侧面相连接。
在一个实施方式中,所述波长转换层沿所述光导的光轴方向呈分段式分布。
在一个实施方式中,所述波长转换层沿所述光导的光轴方向连续分布。
在一个实施方式中,所述光导与所述波长转换层为同一元件,所述波长转换层为荧光陶瓷。
在一个实施方式中,包括反射面,位于所述光导的末端,且所述反射面与所述光导的光轴相交。
在一个实施方式中,包括第二发光元件,位于所述光导的末端,用于发出第二激发光,该第二激发光从所述光导的末端入射到所述光导内。
有益效果
与现有技术相比,本发明包括如下有益效果:通过在光导的侧面设置至少一个漏光区域,使得发光元件发出的激发光能够在光导内沿轴线传播时部分的泄漏出射;在沿光导的光轴方向,通过在光导内布置波长转换层或者在光导外的漏光区域布置波长转换层,并用波长转换层将激发光转换为受激光,使得波长转换层的功能材料能够分布于更大的面积内,避免了过于集中而造成的热量堆积,从而使得波长转换层的功能材料能够具有较高的发光效率,提高了光源装置的发光效率和亮度。
附图说明
图1为本发明光源装置的一个实施方式的结构示意图。
图2为本发明光源装置的另一个实施方式的结构示意图。
图3为本发明光源装置的另一个实施方式的结构示意图。
图4为本发明光源装置的另一个实施方式的结构示意图。
图5为本发明光源装置的另一个实施方式的结构示意图。
图6为本发明光源装置的发光元件的一个实施方式的结构示意图。
图7为本发明光源装置的另一个实施方式的结构示意图。
图8为本发明光源装置的另一个实施方式的结构示意图。
图9为本发明光源装置的另一个实施方式的结构示意图。
图10为本发明光源装置的另一个实施方式的结构示意图。
本发明的最佳实施方式
本发明的构思在于,将荧光材料分散,而非集中设置于光导的末端,通过在激发光沿光导传播的光路上持续出光,使得荧光材料因光致发光而产生的热更为均匀的分散到沿光导方向的各个不同位置,从而避免了热量集中带来的荧光材料发光效率下降的问题,进而提高了光源装置的发光效率。
下面结合附图和实施方式对本发明实施例进行详细说明。
请参见图1,图1为本发明光源装置的一个实施方式的结构示意图。光源装置10包括发光元件110、光导120和波长转换层130。
发光元件110发出的激发光从光导120的进光口进入光导120,在光导120内因全反射作用而不断反射传播。光导120上至少包括一个漏光区域1201,位于光导120的侧面上。入射到漏光区域1201的光从光导120的侧面出射,出射光进入设置在漏光区域1201附近的波长转换层130上,至少部分被吸收并转换为波长范围不同的受激光。经波长转换层130作用,未被吸收的激发光和光转换后得到的受激光一通从波长转换层130中出射,形成光源装置10的出射光。
本发明中,发光元件用于发出激发光。光导设置在激发光的光路上,至少部分激发光沿光导的光轴在光导内全反射传播,光导至少包括一个漏光区域,漏光区域设置在光导的侧面,用于引导至少部分光从光导中出射。
下面对光源装置的各个部件进行一一详细说明。
<发光元件>
在本发明中,发光元件包括激光单元和光整形单元。其中,激光单元可以为激光二极管或者激光二极管阵列。激光二极管出射的光大致呈椭圆形光斑,这是由于激光二极管的光出射面呈长方形,出射光沿长轴方向和短轴方向的光发散角差别较大。如果激光二极管发出的光不经过处理直接进入光导,则将使得光束在长轴和短轴两个方向光程不同,进而导致光束不均匀。光整形单元在用于激光单元发出的激发光进入光导之前对激发光进行整形,使其以近似圆形光斑进入光导。
如图6所示,为本发明的发光元件的一个实施方式的结构示意图,发光元件110包括激光单元111和光整形单元112,其中(a)为发光元件110沿平行于长轴方向的视图,(b)为发光元件110沿平行于短轴方向的视图,(c)为沿平行于激光单元111出射光光轴方向面向激光单元111的视图。本实施方式中,激光单元111为一个4×2的激光二极管阵列,短轴方向平行于行方向(即4个一行的方向),长轴方向平行于列方向(即2个一列的方向)。光整形单元112包括由4×2个第一柱透镜1121组成的第一柱透镜阵列,包括由4×2个第二柱透镜1122组成的第二柱透镜阵列,还包括一个会聚透镜1123。第一柱透镜阵列与激光二极管阵列一一对应,用于在平行于短轴方向上将各个激光二极管发出的大发散角的激发光准直为小发散角的近似平行光;第二柱透镜阵列与激光二极管阵列一一对应,用于在平行于长轴方向上将第一柱透镜阵列发出的大发散角的光准直为小发散角的近似平行光。分别经第一柱透镜阵列和第二柱透镜阵列作用,激光二极管阵列发出的光在短轴和长轴方向的发散角都减小,成为平行的小发散角光进入会聚透镜1123。会聚透镜1123将入射的平行光会聚到光导的入射面,形成近似圆形的光斑。在本实施方式中,每一个激光二极管都有一个第一柱透镜和一个第二柱透镜与之一一对应,使得各光束在入射到会聚透镜1123之前主光轴方向平行,以便于各光束能够经会聚透镜1123会聚后重合为一个光斑。可以理解,激光二极管阵列中的激光二极管的数量不限于4×2,也可以为其他数目。例如,激光二极管阵列为一M×N矩阵的激光二极管阵列,其中M为平行于短轴方向上激光二极管的数量,N为平行于长轴方向上的激光二极管的数量,第一柱透镜阵列也为M×N矩阵,与激光二极管阵列一一对应,第二柱透镜阵列也为M×N矩阵,与激光二极管阵列一一对应,上述实施方式即为M=4,N=2的实例。
在另一个实施方式中,激光二极管阵列为一M×N矩阵的激光二极管阵列,其中M为平行于短轴方向上激光二极管的数量,N为平行于长轴方向上的激光二极管的数量。第一柱透镜阵列仅包括M个第一柱透镜,每个第一柱透镜对应N个激光二极管,第一柱透镜的轴向平行于激光二极管的长轴方向;第二柱透镜阵列仅包括N个第二柱透镜,每个第二柱透镜对应M个激光二极管,第二柱透镜的轴向平行于激光二极管的短轴方向。该技术方案减少了第一柱透镜和第二柱透镜的数量,虽然增加了用料成本,但是减少了工艺成本。当然,可以理解,也可以将本实施方式与图6的实施方式相结合,将第一柱透镜阵列或第二柱透镜阵列中的任一替换为M×N矩阵的柱透镜阵列。
由于激光二极管的长轴和短轴方向相互垂直,因此第一柱透镜阵列的轴向与第二柱透镜阵列的轴线垂直。
在本发明的一个实施方式中,激光单元发出的一束束彼此分离的子光束经第一柱透镜阵列和第二柱透镜阵列准直后,每个光束的发散角都变小,光束截面积变大,使得各个子光束彼此组成密排布的光束阵列,各个相邻的子光束在空间上连接。该光束容易被会聚透镜会聚为高光能量密度的光斑,适用于高亮度照明领域。
在本发明的一个实施方式中,发光元件的激光单元为蓝光激光单元,出射蓝色激光,蓝色激光能够作为出射光的可见光成分,同时蓝色激光的波长较短,能够激发荧光材料获得波长较长的可见光。
<光导>
本发明中,光导的作用在于将光引导沿着光导的长度方向(也即光导的光轴方向)进行传播。光导可以是光纤,也可以是导光棒,如圆柱形积分棒、方形积分棒等。
光导至少包括高折射率介质,激发光在该高折射率介质中传播,当入射到该高折射率介质的边界面时,至少部分激发光发生全反射以继续在高折射率介质中传播。
光导沿光轴方向延伸的表面为光导的侧面。本发明中,光导的侧面上包括一个或多个漏光区域,当光入射到该区域时,至少部分光从光导中泄漏出去。在本发明的一个实施方式中,光导的侧面包括多个漏光区域,该多个漏光区域间隔设置。
漏光区域可以绕光导的光轴呈360°分布,即在垂直于光轴的两个切面之间完全覆盖光导的侧面。在另一个实施方式中,漏光区域也可以绕光导的光轴仅覆盖小于360°的侧面。
漏光区域与光导上的其他区域的结构不同。如图1所示的实施方式中,漏光区域1201设置有增透膜121,该增透膜通过设置多层高地折射率层,使得部分光在漏光区域1201没有发生全反射,而是折射并透射过漏光区域1201,从而形成出射光。通过设置增透膜的方式形成漏光区域,能够更为精确的控制漏光区域的漏光率,以提高光源装置的出射光均匀性。
在另一个实施方式中,漏光区域为光导表面的粗糙区域,通过这种粗糙结构,使得入射到该漏光区域的光的入射角发生变化,从而部分光的入射角大于全反射角,从而得以透射过漏光区域形成出射光。该粗糙区域可以通过刻蚀、腐蚀等物理或化学手段制作。
<波长转换层>
本发明中,波长转换层用于将激发光转换为波长范围不同的受激光。波长转换层可以是由荧光粉等荧光材料与粘接剂组成的层,其中粘接剂彼此连成一个连续体,将荧光材料包裹。荧光材料可以是如Ce:YAG的荧光粉,粘接剂可以是硅胶、环氧树脂等有机粘接剂,也可以是玻璃等无机粘接剂。
在一个实施方式中,波长转换层为荧光陶瓷。荧光陶瓷可以是纯相的荧光陶瓷,具体可以是各种氧化物陶瓷、氮化物陶瓷或氮氧化物陶瓷,通过在陶瓷制备过程中掺入微量的激活剂元素(如镧系元素),形成发光中心。由于一般激活剂元素的掺杂量较小(一般小于1%),该类荧光陶瓷通常是透明或半透明发光陶瓷,激发光容易在该发光陶瓷中传播而不改变方向。例如,荧光陶瓷可以是Ce掺杂YAG陶瓷或Ce掺杂LuAG陶瓷。
荧光陶瓷还可以是复合陶瓷层,其以透明/半透明陶瓷作为基质,在陶瓷基质内分布着发光陶瓷颗粒(如荧光粉颗粒)。透明/半透明陶瓷基质可以是各种氧化物陶瓷(如氧化铝陶瓷、Y3Al5O12陶瓷)、氮化物陶瓷(如氮化铝陶瓷)或氮氧化物陶瓷,陶瓷基质的作用在于对光和热进行传导,使得激发光能够入射到发光陶瓷颗粒上,并使受激光能够从发光陶瓷层中出射;发光陶瓷颗粒承担发光陶瓷层的主要发光功能,用于吸收激发光并将其转换为受激光。发光陶瓷颗粒的晶粒粒径较大,而且激活剂元素的掺杂量较大(如1~5%),使得其发光效率高;而且发光陶瓷颗粒分散于陶瓷基质中,避免了位于荧光陶瓷较深位置的发光陶瓷颗粒无法被激发光照射到的情况,还避免了纯相荧光陶瓷整体掺杂量较大而导致的激活剂元素浓度中毒的情况,从而提高了发光陶瓷层的发光效率。进一步的,上述荧光陶瓷中还可以增加散射颗粒,使散射颗粒分布于陶瓷基质中。散射颗粒可以是散射粒子,如氧化铝,氧化钇,氧化锆,氧化镧,氧化钛,氧化锌,硫酸钡等,既可以是单一材料的散射颗粒,也可以是两种或两种以上的组合,其特点为表观白色,能够对可见光进行散射,而且材料稳定,能够承受高温,粒径与激发光波长处于同一数量级或低一个数量级。
荧光陶瓷还可以是另外一种复合陶瓷层,该复合陶瓷层与上述复合陶瓷层的区别仅在于陶瓷基质不同。在本实施方式中,陶瓷基质是纯相的荧光陶瓷,即陶瓷基质本身具有激活剂,能够在激发光的照射下发出受激光。该技术方案综合了上述复合陶瓷层的发光陶瓷颗粒具有高发光效率的优势以及上述纯相的荧光陶瓷具有发光性能的优势,同时利用发光陶瓷颗粒与陶瓷基质进行发光,进一步提高了发光陶瓷层的发光效率,而且该陶瓷基质虽然具有一定的激活剂掺杂量,但是掺杂量较低,能够保证该陶瓷基质具有足够的透光性。在该发光陶瓷层中,同样可以增加散射颗粒增强发光陶瓷层的内部散射。
回到图1所示的实施方式,在图1中,光导120通过沿其光轴方向分布的多个漏光区域1201,漏光区域1201设置有增透膜121,使光导的不同的位置分别出射部分激发光。波长转换层130设置在光导120的外部,通过将来自光导120的漏光区域1201的激发光转换成受激光以构成光源装置10的照明光。
在本实施方式中,波长转换层130沿光导120的光轴方向设置在光导外的漏光区域附近,波长转换层130与增透膜121间隔设置。该技术方案使增透膜121的相对两侧有明显的折射率差,以保证增透膜121功能的实现。而且,通过将波长转换层与增透膜分离,可以便于组装、拆卸和更换,降低光源装置的使用成本。可以理解,在另一个实施方式中,不考虑上述有益效果的情况下,波长转换层130也可以直接设置在增透膜121上。
请参见图2,图2为本发明光源装置的另一实施方式的结构示意图。光源装置20包括发光元件210、光导220和波长转换层230,光导220包括至少一个漏光区域2201。
发光元件210发出的激发光从光导220的进光口进入光导220,在光导220内因全反射作用而不断反射传播。光导220上至少包括一个漏光区域2201,位于光导220的侧面上。入射到漏光区域2201的光部分地从光导120的侧面出射。
与图1所示的实施方式不同的是,本实施方式中,波长转换层230沿光导220的光轴方向设置在光导220内部,且位于漏光区域2201的位置。当激发光传导至漏光区域2201,部分激发光被波长转换层230转换为受激光,该受激光从波长转换层230的发光中心以近似朗伯分布的光出射,其中以较小入射角入射到光导侧面的光从光导中泄漏,成为光源装置20的出射光;此外,部分激发光入射到波长转换层230后未被吸收,而是被波长转换层230散射,同样成为近似朗伯分布的光,其中以较小入射角入射到光导侧面的光从光导中泄漏,也成为光源装置20的出射光。
在本实施方式中,波长转换层230可以通过制备光导220过程中将波长转换材料掺杂进入光导的原材料中的方式制得。在另一个实施方式中,光导220为空心光导,通过将波长转换层230设置在光导的空心内,以得到图2所示的实施方式的技术方案。
在本实施方式的一个变形实施方式中,在光导220的漏光区域2201额外设置增透膜或粗糙结构,以改变出射光的量。
图2所示的实施方式中,发光元件210、光导220及波长转换层230的描述可以参见上述实施方式中<发光元件>、<光导>和<波长转换层>的描述。
请参见图3,图3为本发明光源装置的另一实施方式的结构示意图。光源装置30包括发光元件310、光导320和波长转换层330,光导320包括至少一个漏光区域3201。
与图2所示的实施方式不同的是,图3所示的实施方式中,波长转换层330设置在光导320外部,且位于漏光区域3201的位置。在本实施方式中,波长转换层330直接与光导320的侧面紧密连接,不必如图1所示的实施方式中在漏光区域1201增加增透膜121或者将漏光区域表明粗糙化。这是由于,波长转换层330与光导320的折射率接近,入射到漏光区域3201的光发生全反射的比例低于上述图1所示实施方式。当激发光通过漏光区域3201入射到波长转换层330内,部分激发光被吸收后转换为受激光,该受激光从波长转换层330的发光中心以近似朗伯分布的光出射;另有部分激发光未被吸收,而是被波长转换层330散射后以近似朗伯分布的光出射;还有部分激发光直接被反射回光导,继续在光导中传播。从波长转换层330出射到光导外部的光成为光源装置30的出射光。
本实施方式中,波长转换层330设置在光导外部,降低了制作工艺难度。而且,本实施方式利用波长转换层330与光导320折射率相近的特性,将部分光从光导320中引导出来,不必设置增透膜或粗糙结构,进一步降低了工艺难度和成本。
在本实施方式的变形实施方式中,可以额外在波长转换层330远离光导320的表面设置增透膜或粗糙结构,以改善出射光。
图3所示的实施方式中,发光元件310、光导320及波长转换层330的描述可以参见上述实施方式中<发光元件>、<光导>和<波长转换层>的描述。
请参见图4,图4为本发明光源装置的另一实施方式的结构示意图。光源装置40包括发光元件410、光导420和波长转换层430,光导420包括至少一个漏光区域4201。
与图1所示的实施方式不同的是,本实施方式中,波长转换层430设置在光导420内部。如上所述,该技术方案可以通过在制备光导过程中对光导进行掺杂荧光材料,或者通过在空心光导内铺设波长转换层的方式实现。在一个实施方式中,波长转换层430绕光导420的光轴以小于360°分布(例如但不限于90°),而漏光区域4201与波长转换层430相对设置,且漏光区域4201绕光轴420的光轴也以小于360°分布。在另一个实施方式中,波长转换层绕光导的光轴呈360°分布。
如图1~3所示的实施方式中,波长转换层130沿光导120的光轴方向呈分段式分布,而在图4所示的实施方式中,波长转换层430沿光轴420的光轴方向连续分布。该技术方案中,受激光在光导内的分布更为均匀,部分受激光随同激发光一同沿光导的光轴方向传播,并在光导420侧面的漏光区域4201位置泄漏出射成为光源装置40的出射光。
在本实施例中,漏光区域4201位置设置有增透膜421,如上述各实施方式所述,增透膜421也可以设置为粗糙结构,此处不再赘述。
图4所示的实施方式中,发光元件410、光导420及波长转换层430的描述可以参见上述实施方式中<发光元件>、<光导>和<波长转换层>的描述。
请参见图5,图5为本发明光源装置的另一个实施方式的结构示意图。光源装置50包括发光元件510、光导520和波长转换层530,光导520包括至少一个漏光区域5201。
发光元件510发出的激发光从光导520的进光口进入光导520,在光导520内因全反射作用而不断反射传播。光导520上至少包括一个漏光区域5201,位于光导520的侧面上。入射到漏光区域5201的光从光导520的侧面出射。
与上述各实施方式不同的是,本实施方式中,光导520与波长转换层530为同一元件,即光导520同时作为导光作用的光导和波长转换作用的波长转换层而存在。
本实施方式中,光导520(波长转换层530)为纯相荧光陶瓷,呈透明或半透明。在光导520(波长转换层530)中,未被吸收的激发光的传播路径与在不包含波长转换层的光导中的传播路径相同,即该部分激发光仅在光导520(波长转换层530)的漏光区域5201泄漏出射,而在其他侧面位置被全反射而继续沿光导光轴方向传播。在本实施方式的一个优选实施例中,光导520(波长转换层530)为Ce:YAG陶瓷晶体,该陶瓷晶体对激发光的透射率高。
本实施方式中,发光元件510出射的激发光在光导520(波长转换层530)中传播时,部分激发光被光导520(波长转换层530)中的发光中心吸收而转换为受激光出射,从发光中心发出的光为呈朗伯分布的光。受激光从漏光区域5201泄漏出射,与激发光一同成为光源装置50的出射光。
在本实施方式中,漏光区域5201位置设置有增透膜521,如上述各实施方式所述,增透膜521也可以设置为粗糙结构,此处不再赘述。
本实施方式中,发光元件510的描述可以参见上述实施方式中<发光元件>描述。
请参见图7,图7为本发明光源装置的另一个实施方式的结构示意图。如图所示,光源装置60包括发光元件610、光导620和波长转换层630,光导620包括至少一个漏光区域6201,漏光区域6201设置有增透膜621。本实施方式与图5所示的实施方式类似,光导620和波长转换层630为同一元件。
本实施方式与图5所示的实施方式不同之处在于,本实施方式中,光导620的末端设置有一反射面640,该反射面640与光导620的光轴相交。本实施方式中,沿光导620的光轴传播的激发光和受激光在传播过程中于漏光区域6201泄漏出射部分光。当到达光导620末端时,还剩余部分光未出射,反射面640将这部分光反射,使激发光和受激光继续沿光导620的光轴反向传播,在传播过程中于漏光区域6201泄漏出射。由于随着光的传播和不断的泄漏,沿光导光轴传播的越远,光导中的光能量密度越低,将可能导致距离发光元件较远的区域泄漏的光量较少,导致光源装置出射光不均匀。本实施方式通过在光导620末端设置一反射面640,使得光能够折返后继续传播,沿正反两个方向传播时的泄漏的光经过叠加,将变得更加的均匀。
可以理解,在上述图1~图4的各实施方式中,也可以在光导末端增设一反射面,同样实现光源装置出射光均匀的效果。
请参见图8,图8为本发明光源装置的另一个实施方式的结构示意图。如图所示,光源装置70包括发光元件710、光导720和波长转换层730,光导720包括至少一个漏光区域7201,漏光区域7201设置有增透膜721。本实施方式与图7所示的实施方式类似,光导720和波长转换层730为同一元件。
本实施方式与图7所示的实施方式不同之处在于,本实施方式中,光导720末端设置的不是反射面,而是设置有第二发光元件710’,该第二发光元件710’发射与发光元件710相同的第二激发光,该第二激发光从光导720的末端反向入射,而且第二发光元件710’发射的激发光遵循与发光元件710发出的激发光相同的传播方式。即第二发光元件710’发射的激发光在漏光区域7201泄漏,并在其他区域因全反射而沿光导720传播。
本实施方式中,通过在光导720两端分别设置发光元件,能够改善光源装置70的出射光均匀性,避免了因光沿光导传播衰减带来的出射光分布不均匀的问题。
可以理解,在上述图1~图5的各实施方式中,也可以在光导末端增设一第二发光元件,同样实现光源装置出射光均匀的效果。
本发明的光源装置可以用于普通照明,如家用照明、办公室照明,也可以用于特种照明,如路灯照明、厂房照明。该光源装置的发光面积大,散热性能优良,能够适用于高亮度照明。
在路灯照明等长距离照明中,可以将发光元件设置在路灯的底部,然后通过光导光纤将发光元件发出的激发光引导至路灯的顶端发光的灯头位置。在路灯灯杆部分,光导光纤的侧面不设置漏光区域,使得激发光能够几乎完全传递到灯头。
如图9所示,为本发明光源装置的另一个实施方式的结构示意图。光源装置80为一路灯(街灯),包括发光元件810、光导820和波长转换层830。其中,光导820包括两个部分,第一部分为图中垂直部分(对应灯杆),该部分光导的侧面没有漏光区域,发光元件810发出的光在该第一部分中通过全反射向上传播;第二部分为图中的水平部分(对应灯头),该部分光导与波长转换层830为同一元件,该部分光导的侧面设置有漏光区域8201,用于透射至少部分激发光和波长转换层830发出的受激光,从而实现照明的功能。
本实施方式中的发光元件可以参照上述<发光元件>中的描述。本实施方式中的光导820的第二部分也可以替换为上述图1~图5中的光导和波长转换层的技术方案。
请参见图10,图10为本发明光源装置的另一个实施方式的结构示意图。光源装置90为一路灯(街灯),包括发光元件910、光导920和波长转换层930。
本实施方式中,光导920同样包括两部分,第一部分为不设置漏光区域的光导部分,第二部分为设置有漏光区域的光导部分。其中第二部分可以选择图1~5及7中任一光源装置中的光导和波长转换层作为本实施方式的技术方案。
本实施方式与图9所示的实施方式不同之处在于,发光元件910发出的光为小发散角的光束,该光束不经过光导920的第一部分的全反射,而是直接向上传播,经光导上的反射层9202反射后改变方向,进入光导920的第二部分的灯头位置。
在本实施方式的一个变形实施方式中,光导没有第一部分(灯杆部分),发光元件发出的激发光直接从底部传递到与灯头大致水平的位置,然后经一反射镜反射后改变方向,进入光导(灯头部分)。
以上图9、图10为本发明的光源装置在路灯上的应用实例。当然,本发明的应用不限于路灯。可以在上述图1~图5、图7~图8的基础上,在发光元件与光导之间任意设置反射镜、透镜等光学元件,也在本发明的技术范围内。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
以上所述仅为本发明的实施方式,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (11)

1、一种光源装置,其特征在于,包括:
发光元件,用于发出激发光;
光导,设置在所述激发光的光路上,至少部分所述激发光沿所述光导的光轴在所述光导内全反射传播,所述光导至少包括一个漏光区域,所述漏光区域设置在所述光导的侧面,用于引导至少部分光从所述光导中出射;
波长转换层,沿所述光导的光轴方向设置在所述光导内或者设置在所述光导外的漏光区域附近,用于吸收至少部分激发光并将其转换为波长范围不同的受激光。
2、根据权利要求1所述的光源装置,其特征在于,所述发光元件包括激光单元和光整形单元,所述光整形单元用于将所述激光单元发出的激发光引导至所述光导的光入射面;
所述激光单元为激光二极管阵列,所述光整形单元包括第一柱透镜阵列、第二柱透镜阵列和会聚透镜,所述第一柱透镜阵列的轴向与所述第二柱透镜阵列的轴向垂直。
3、根据权利要求2所述的光源装置,其特征在于,所述第一柱透镜阵列包括与所述激光二极管阵列一一对应的第一柱透镜,和/或所述第二柱透镜阵列包括与所述激光二极管阵列一一对应的第二柱透镜。
4、根据权利要求1所述的光源装置,其特征在于,所述漏光区域设置有增透膜,或者所述漏光区域设置有粗糙结构。
5、根据权利要求1至4中任一项所述的光源装置,其特征在于,所述波长转换层位于所述光导外部,且所述波长转换层与所述漏光区域间隔设置。
6、根据权利要求1至4中任一项所述的光源装置,其特征在于,所述波长转换层设置于所述漏光区域,所述波长转换层设置于所述光导内部;或者
所述波长转换层设置于所述漏光区域,所述波长转换层设置于所述光导外部,且所述波长转换层与所述光导侧面相连接。
7、根据权利要求1至4中任一项所述的光源装置,其特征在于,所述波长转换层沿所述光导的光轴方向呈分段式分布。
8、根据权利要求1至4中任一项所述的光源装置,其特征在于,所述波长转换层沿所述光导的光轴方向连续分布。
9、根据权利要求1至4中任一项所述的光源装置,其特征在于,所述光导与所述波长转换层为同一元件,所述波长转换层为荧光陶瓷。
10、根据权利要求1至4中任一项所述的光源装置,其特征在于,包括反射面,位于所述光导的末端,且所述反射面与所述光导的光轴相交。
11、根据权利要求1至4中任一项所述的光源装置,其特征在于,包括第二发光元件,位于所述光导的末端,用于发出第二激发光,该第二激发光从所述光导的末端入射到所述光导内。
PCT/CN2017/090350 2017-01-25 2017-06-27 一种光源装置 WO2018137313A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710061044.9 2017-01-25
CN201710061044.9A CN108361566A (zh) 2017-01-25 2017-01-25 一种光源装置

Publications (1)

Publication Number Publication Date
WO2018137313A1 true WO2018137313A1 (zh) 2018-08-02

Family

ID=62978815

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/090350 WO2018137313A1 (zh) 2017-01-25 2017-06-27 一种光源装置

Country Status (2)

Country Link
CN (1) CN108361566A (zh)
WO (1) WO2018137313A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11256018B2 (en) 2019-07-03 2022-02-22 Varroc Lighting Systems, s.r.o Light assembly including an illuminating utility segment and a visual stimulant segment

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020019714A1 (zh) * 2018-07-26 2020-01-30 深圳市绎立锐光科技开发有限公司 照明装置
WO2020048153A1 (zh) * 2018-09-04 2020-03-12 深圳市绎立锐光科技开发有限公司 一种发光装置
CN109185775A (zh) * 2018-09-10 2019-01-11 深圳市昂特尔太阳能投资有限公司 激光路灯结构
CN116368408A (zh) * 2021-10-28 2023-06-30 京东方科技集团股份有限公司 发光基板及其制备方法和发光装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103791455A (zh) * 2014-02-14 2014-05-14 京东方科技集团股份有限公司 侧边式背光模组及其制作方法、显示装置
CN104048221A (zh) * 2014-06-30 2014-09-17 纳晶科技股份有限公司 背光模组
CN105158972A (zh) * 2015-09-10 2015-12-16 深圳市华星光电技术有限公司 导光板及导光板的制备方法
US20150378216A1 (en) * 2014-06-27 2015-12-31 Lg Electronics Inc. Backlight unit and display device having the same
CN205404870U (zh) * 2016-02-29 2016-07-27 厦门市益津鹭科技有限公司 一种基于量子点的菲涅尔透镜阵列型导光板
CN205404869U (zh) * 2016-02-29 2016-07-27 厦门市益津鹭科技有限公司 一种基于量子点的菲涅尔透镜阵列型导光板

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4411732B2 (ja) * 2000-03-02 2010-02-10 日亜化学工業株式会社 面状発光装置
CN101482247A (zh) * 2008-01-11 2009-07-15 富士迈半导体精密工业(上海)有限公司 照明装置
JP5809498B2 (ja) * 2010-10-19 2015-11-11 キヤノン株式会社 光源ユニットの調整装置及び製造方法
JP2012174551A (ja) * 2011-02-22 2012-09-10 Harison Toshiba Lighting Corp 発光装置
JP6327035B2 (ja) * 2013-08-12 2018-05-23 大日本印刷株式会社 照明装置、投射装置、レンズアレイおよび光学モジュール
CN104730614A (zh) * 2013-12-19 2015-06-24 纬创资通股份有限公司 导光单元及侧光式背光模块
CN204631362U (zh) * 2015-05-11 2015-09-09 宁波远明激光技术有限公司 半导体激光器光束准直装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103791455A (zh) * 2014-02-14 2014-05-14 京东方科技集团股份有限公司 侧边式背光模组及其制作方法、显示装置
US20150378216A1 (en) * 2014-06-27 2015-12-31 Lg Electronics Inc. Backlight unit and display device having the same
CN104048221A (zh) * 2014-06-30 2014-09-17 纳晶科技股份有限公司 背光模组
CN105158972A (zh) * 2015-09-10 2015-12-16 深圳市华星光电技术有限公司 导光板及导光板的制备方法
CN205404870U (zh) * 2016-02-29 2016-07-27 厦门市益津鹭科技有限公司 一种基于量子点的菲涅尔透镜阵列型导光板
CN205404869U (zh) * 2016-02-29 2016-07-27 厦门市益津鹭科技有限公司 一种基于量子点的菲涅尔透镜阵列型导光板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11256018B2 (en) 2019-07-03 2022-02-22 Varroc Lighting Systems, s.r.o Light assembly including an illuminating utility segment and a visual stimulant segment

Also Published As

Publication number Publication date
CN108361566A (zh) 2018-08-03

Similar Documents

Publication Publication Date Title
WO2018137313A1 (zh) 一种光源装置
US7350953B2 (en) Phosphor based illumination system having a short pass reflector and method of making same
US7377679B2 (en) Phosphor based illumination system having a plurality of light guides and a display using same
US7357554B2 (en) Phosphor based illumination system having a light guide, an interference reflector and a display
US7407313B2 (en) Phosphor based illumination system having a plurality of light guides and a display using same
US7357555B2 (en) Phosphor based illumination system having an interference reflector and a display
WO2017121233A1 (zh) 一种波长转换装置、光源系统以及投影装置
EP2064489B1 (en) Brightness enhancement method and apparatus of light emitting diodes
US20060002108A1 (en) Phosphor based illumination system having a short pass reflector and method of making same
WO2014163269A1 (ko) 레이저 광원장치
CN1901186A (zh) 结合光致发光材料使用多光源发射输出光的装置和方法
WO2011060618A1 (zh) 封装固态发光芯片的方法、结构及使用该封装结构的光源装置
WO2018214288A1 (zh) 光源系统及显示设备
WO2018137312A1 (zh) 一种荧光模块及相关光源
WO2016126005A1 (ko) 발광 장치
KR100784352B1 (ko) 광섬유 조명장치
WO2020156294A1 (zh) 一种发光装置及应用其车灯
WO2019203520A1 (ko) 형광체 모듈
CN111288307A (zh) Led光源模块及灯具
CN110645541B (zh) 光源装置及车灯
CN211694744U (zh) 一种基于光纤导光的封装结构、光纤导光系统
JP2013211252A (ja) 固体照明装置
TWI667431B (zh) 雷射照明裝置
WO2020019714A1 (zh) 照明装置
WO2019071767A1 (zh) 一种发光装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17894130

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17894130

Country of ref document: EP

Kind code of ref document: A1