WO2017121233A1 - 一种波长转换装置、光源系统以及投影装置 - Google Patents

一种波长转换装置、光源系统以及投影装置 Download PDF

Info

Publication number
WO2017121233A1
WO2017121233A1 PCT/CN2016/111704 CN2016111704W WO2017121233A1 WO 2017121233 A1 WO2017121233 A1 WO 2017121233A1 CN 2016111704 W CN2016111704 W CN 2016111704W WO 2017121233 A1 WO2017121233 A1 WO 2017121233A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength conversion
sub
light
conversion device
region
Prior art date
Application number
PCT/CN2016/111704
Other languages
English (en)
French (fr)
Inventor
田梓峰
郑鹏
许颜正
Original Assignee
深圳市光峰光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市光峰光电技术有限公司 filed Critical 深圳市光峰光电技术有限公司
Publication of WO2017121233A1 publication Critical patent/WO2017121233A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings

Definitions

  • the utility model relates to the field of optical technology, in particular to a wavelength conversion device, a light source system and a projection device.
  • the color purity of the partial fluorescence is insufficient, which in turn causes the color gamut of the light source to be insufficient.
  • the technical problem mainly solved by the utility model is to provide a wavelength conversion device, a light source system and a projection device, which can improve the color purity while taking into consideration high light efficiency.
  • the present invention adopts a technical solution to provide a wavelength conversion device, including: a first sub-wavelength conversion device, wherein the first sub-wavelength conversion device includes at least a phosphor material a wavelength conversion region; a second sub-wavelength conversion device, wherein the second sub-wavelength conversion device includes at least a first peak width modification region having a quantum dot material disposed corresponding to the first wavelength conversion region;
  • the peak wavelength of the luminescence of the powder material is smaller than the peak wavelength of the luminescence of the quantum dot material;
  • the driving device, the first sub-wavelength conversion device and the second sub-wavelength conversion device are relatively fixed, and the driving device drives the first sub- The wavelength conversion device periodically moves in synchronization with the second sub-wavelength conversion device.
  • the first sub-wavelength conversion device includes a first wavelength conversion region provided with a yellow phosphor material, a first reflection region provided with reflective particles, and a second reflection region provided with reflective particles;
  • the wavelength conversion device includes a first peak width modification region having a red light quantum dot material disposed corresponding to the first wavelength conversion region, the first reflection region, and the second reflection region, and a second peak width modification having a green light quantum dot material Area, light transmission area.
  • the first sub-wavelength conversion device includes a first wavelength conversion region, a first light transmission region, and a second light transmission region provided with a yellow phosphor material;
  • the second sub-wavelength conversion device includes the A first peak width modification region having a red light quantum dot material, a second peak width modification region having a green light quantum dot material, and a light transmission region corresponding to each of the wavelength conversion region, the first light transmission region and the second light transmission region.
  • the first sub-wavelength conversion device further includes a second wavelength conversion region provided with a green phosphor material; the second sub-wavelength conversion device further includes a third peak width modification region provided with a yellow light quantum dot material, The second wavelength conversion region is disposed corresponding to the third peak width modification region.
  • the reflective particles are at least one of TiO2 and Al2O3; and the quantum dot material is a Cd-containing quantum dot CdSe/ZnS, One of CdSe/CdZnS, or a Cd-free quantum dot CuInS2/ZnS.
  • the desired red, yellow and green light can be obtained by selecting quantum dots of different particle sizes.
  • the wavelength conversion region and the reflection region may be a silica gel phosphor film, a luminescent glass or a luminescent ceramic; the peak width modification region may be formed by mixing and curing a silica gel and a quantum dot.
  • the first light-transmitting region, the second light-transmitting region, and the light-transmitting region in the second sub-wavelength conversion device all have the function of diffusing light, and a scattering silica gel powder sheet may be used.
  • the scattering silica gel powder sheet is formed by mixing white diffuse reflection particles and silica gel uniformly and solidifying.
  • the surface of the quantum dot material of the first peak width modification region is provided with a first filter film, and the first filter film allows transmission of the emitted light of the first wavelength conversion region smaller than a predetermined angle, which is greater than a predetermined angle.
  • the outgoing light of the first wavelength conversion region reflects and reflects other color light having a wavelength different from that of the first wavelength conversion region.
  • the surface of the red light quantum dot material, the green light quantum dot material, the yellow light quantum dot material, and the light transmissive region on the second sub-wavelength conversion device are respectively provided with a first filter film, a second filter film, and a third Filter film, fourth filter film;
  • the first filter film (hereinafter referred to as "0° yellowpass”) allows yellow light transmission less than a predetermined angle, yellow light reflection greater than a predetermined angle, and reflects other color light;
  • the second filter film (hereinafter abbreviated as "0°bluepass”) and the fourth filter film (hereinafter referred to as "0°bluepass”) allow blue light transmission less than a predetermined angle, blue light reflection greater than a predetermined angle, and reflection Other shades of light;
  • the third filter film (hereinafter simply referred to as "0° greenpass") allows transmission of green light smaller than a predetermined angle, reflection of green light larger than a predetermined angle, and reflection of other colored lights.
  • the yellow light converted by the first sub-wavelength conversion device transmits the red light through the first filter film to excite the red light quantum dot material, wherein the unused yellow light is reflected back to the first filter film at the interface of the red light quantum dot material.
  • the large angle of yellow light is reflected back to the red light quantum dot material interface by the first filter film to excite the quantum dots to emit red light to improve the utilization of yellow light.
  • part of the red light is not transmitted, but is red light quantum dots.
  • the material interface is reflected to the first filter film, and the portion of the red light is reflected by the first filter film and transmitted through the second sub-wavelength conversion device, thereby increasing the light-emitting efficiency of the red light.
  • Other filter films also have a similar effect as the first filter film, thereby improving the light extraction efficiency of the respective colors of light in the wavelength conversion device.
  • the first sub-wavelength conversion device and the second sub-wavelength conversion device are two annular structures fixed coaxially.
  • the driving device is a rotating device having a rotating shaft, and the two annular structures are coaxially fixed on the rotating shaft.
  • each of the first sub-wavelength conversion devices and each of the second sub-wavelength conversion devices disposed corresponding thereto are at 0 degrees or 180 degrees with respect to the center of the two annular structures. Degree setting.
  • the first sub-wavelength conversion device is a cylindrical structure
  • the second sub-wavelength conversion device is a ring structure, and is coaxially fixed with the cylindrical structure
  • the first sub-wavelength conversion device Each of the regions is disposed on an outer sidewall of the tubular structure, and each region of the second sub-wavelength conversion device is disposed on the annular structure and located outside the tubular structure.
  • the first sub-wavelength conversion device and the second sub-wavelength conversion device are two strip structures that are connected end to end, each region of the first sub-wavelength conversion device and the second sub-wavelength conversion device The respective regions are arranged side by side on the two strip structures.
  • a technical solution adopted by the present invention is to provide a light source system including: an excitation light source for generating an excitation light; a wavelength conversion device as described above; and the wavelength conversion device at the driving device Driving, causing the first sub-wavelength conversion device to periodically move in synchronization with the second sub-wavelength conversion device, and the first sub-wavelength conversion device is disposed on a propagation path of the excitation light, and further Converting the excitation light into a first output light sequence formed by the alternately generated first output light; a guiding element located on a propagation path of the first output light for directing the first output light to be incident on the second sub a wavelength conversion device that causes the second sub-wavelength conversion device to generate a second output light; during the synchronous periodic motion of the first sub-wavelength conversion device and the second sub-wavelength conversion device, the light source system periodically A second output light sequence formed by the second output light is output; at any time, the wavelength of the first output light is less than the wavelength of the second output
  • the first sub-wavelength conversion device and the second sub-wavelength conversion device are two annular structures fixed coaxially.
  • the driving device is a rotating device having a rotating shaft, and the two annular structures are coaxially fixed on the rotating shaft.
  • each of the first sub-wavelength conversion devices and each of the second sub-wavelength conversion devices disposed corresponding thereto are disposed at a specific angle with respect to a center of the two annular structures, the guiding The element is disposed such that a spot formed by the excitation light on the first sub-wavelength conversion device and a spot formed by the first output light on the second sub-wavelength conversion device are opposite to the two annular structures
  • the center is also set at the specific angle.
  • the specific angle is 0 degrees or 180 degrees.
  • the guiding element comprises at least one reflecting device, the reflecting device reflects the first output light sequence to change a propagation direction of the first output light sequence, and the reflecting device is a planar reflecting device or It is a reflective device that is semi-ellipsoidal or hemispherical with the light-reflecting surface facing inward.
  • planar reflecting device comprises a dichroic mirror or a mirror.
  • the reflective device having a semi-ellipsoidal shape or a hemispherical shape and having a light reflecting surface facing inward is provided with an optical entrance, and the excitation light is incident on the wavelength conversion device through the optical entrance.
  • the first sub-wavelength conversion device is a cylindrical structure
  • the second sub-wavelength conversion device is a ring structure, and is coaxially fixed with the cylindrical structure
  • the first sub-wavelength conversion device Each of the regions is disposed on an outer sidewall of the tubular structure, and each region of the second sub-wavelength conversion device is disposed on the annular structure and located outside the tubular structure.
  • the first sub-wavelength conversion device and the second sub-wavelength conversion device are two strip structures that are connected end to end, each region of the first sub-wavelength conversion device and the second sub-wavelength conversion device The respective regions are arranged side by side on the two strip structures.
  • the excitation light source produces blue light.
  • the excitation light source is a blue laser, a blue laser diode or a blue laser diode array.
  • one technical solution adopted by the present invention is to provide a projection apparatus including the above light source system.
  • the wavelength conversion device, the light source system and the projection device provided by the utility model have the following beneficial effects compared with the prior art:
  • the phosphor material and the quantum dot material cooperate in the wavelength conversion device, and the phosphor material absorbs blue light and converts into longer wavelength fluorescence, and then converts into longer wavelength fluorescence through the quantum dot material; wherein the phosphor layer absorbs most of the blue light Because the thermal stability of the phosphor is generally high, it can withstand the irradiation of higher optical power density, and the quantum dot layer only absorbs fluorescence slightly shorter than its emission wavelength, and the spot diameter of the excited quantum dot layer is more exciting than that of the excited phosphor layer. Slightly larger, the structure of the wavelength conversion device can greatly reduce thermal effects.
  • the quantum dot material can absorb the fluorescence emitted by most of the fluorescent layer, and the conversion efficiency is high; and the quantum dot material has a narrow emission peak, which can be used instead of the modified sheet to improve the color purity on the basis of ensuring high light efficiency.
  • the afterglow time of quantum dot materials is generally several nanoseconds, while the afterglow time of phosphors is currently tens to hundreds of nanoseconds, and quantum dot materials are less prone to luminescence saturation than phosphors, thus enabling High brightness fluorescence emission.
  • FIG. 1 is a schematic structural view of a first embodiment of a light source system of the present invention
  • Figure 2 is a front elevational view of the wavelength conversion device in the light source system shown in Figure 1;
  • FIG. 3 is a schematic structural view of a second embodiment of the light source system of the present invention.
  • Figure 4 is a front elevational view of the wavelength conversion device in the light source system shown in Figure 3;
  • Figure 5 is a schematic structural view of a third embodiment of the light source system of the present invention.
  • FIG. 6 is a schematic structural view of a fourth embodiment of the light source system of the present invention.
  • Figure 7 is a schematic structural view of a fifth embodiment of the light source system of the present invention.
  • Figure 8 is a schematic structural view of a sixth embodiment of the light source system of the present invention.
  • Fig. 9 is a front elevational view showing the wavelength conversion device in the light source system shown in Fig. 8.
  • FIG. 1 is a schematic structural view of a first embodiment of a light source system of the present invention
  • FIG. 2 is a diagram A front view of a wavelength conversion device in a light source system shown in FIG.
  • the light source system 100 of the present embodiment mainly includes an excitation light source 101 and a dichroic mirror (dichroic). Mirror) 102 and mirror 104, lenses 103 and 105, wavelength conversion device, and homogenizing device 109; wherein the wavelength converting device includes a first sub-wavelength converting device 106.
  • a second sub-wavelength converting device 107 and a driving device 108 are examples of the wavelength conversion device.
  • the excitation light source 101 is used to generate an excitation light.
  • the excitation light source 101 is a blue laser or a blue light emitting diode to generate blue light excitation light.
  • the first sub-wavelength conversion device 106 is a ring structure including at least a first wavelength conversion region.
  • the first sub-wavelength conversion device 106 includes a first wavelength conversion region having a yellow phosphor disposed about a circumferential segment of its annular structure, a first reflection region having reflective particles, a second wavelength conversion region having a green phosphor, and a portion having reflective particles Two reflection zones.
  • the above phosphor material is capable of converting the wavelength of the blue excitation light incident thereon into a laser light of a corresponding color. Specifically, the yellow phosphor converts the blue excitation light incident thereon into a yellow laser light, and the green phosphor converts the blue excitation light incident thereon into a green laser light.
  • a reflective substrate is further disposed under the wavelength conversion material, and further the reflected laser light converted by the wavelength conversion material is reflected such that an exiting direction of the laser light from the wavelength conversion region and the excitation light are opposite to the wavelength conversion region.
  • the incident direction is opposite; at the same time, the first sub-wavelength conversion device further includes a first reflective region and a second reflective region provided with reflective particles, and an exiting direction and excitation light of the blue excitation light from the first reflective region and the second reflective region The incident direction is opposite to the above reflection region.
  • the reflective particles are at least one of TiO2 and Al2O3; and the wavelength conversion region and the reflection region may be a silica gel phosphor film, a luminescent glass or a luminescent ceramic.
  • the second sub-wavelength conversion device 107 is a ring structure and the first sub-wavelength conversion device.
  • the 106 is coaxially fixed and is specifically disposed outside the ring of the first sub-wavelength conversion device 106.
  • the second sub-wavelength conversion device 107 may also be disposed on the first sub-wavelength conversion device.
  • the second sub-wavelength converting means 107 includes at least a first peak width modifying area.
  • the second sub-wavelength conversion device 107 includes a first peak width modification region having a red light quantum dot disposed around a circumferential segment of the annular structure, a second peak width modification region having a green light quantum dot, a third peak width modification region having a yellow light quantum dot, and Light transmission area.
  • Each of the above regions and the first sub-wavelength conversion device The wavelength conversion area of each color on 106 is correspondingly set.
  • each region on the first sub-wavelength converting device 106 and each region corresponding to the second sub-wavelength converting device 107 are formed with respect to the center of the annular structure.
  • the light transmitting region is disposed at 180 degrees with respect to the center of the annular structure.
  • the manner in which the various regions are arranged in the present invention is deduced by analogy.
  • the above quantum dot material may be selected from one of Cd-based quantum dots CdSe/ZnS, CdSe/CdZnS, or from a Cd-free quantum dot CuInS2/ZnS.
  • the desired red, yellow and green light can be obtained by selecting quantum dots of different particle sizes.
  • the peak width modification region can be formed by mixing and curing a silica gel with a quantum dot material.
  • the light-transmitting regions all have the function of diffusing light, and a scattering silica gel powder sheet can be used. All of the light-transmitting regions in the present invention preferably have a function of light diffusion.
  • the scattering silica gel powder sheet is formed by mixing white diffuse reflection particles and silica gel uniformly and solidifying.
  • the white diffuse reflection particles are used to scatter incident light, and are generally salt or oxide powders such as barium sulfate powder, alumina powder, titanium oxide powder, zirconia powder, and the like.
  • the above-mentioned peak width modification region uses the quantum dot material because the quantum dot has a half-width of about 20 to 30 nm and a high color purity; although the phosphor has high stability compared with the phosphor, the phosphor has high stability.
  • the half width is very high, and the half width of the nitride red phosphor is about 80 to 90 nm. Therefore, the use of quantum dot materials can improve the color purity, but the thermal stability of the quantum dots is relatively low, which hinders its application to high power density light sources.
  • the light source system of the present embodiment utilizes the phosphor material to absorb blue light and convert into longer wavelengths.
  • Fluorescence which is converted to longer-wavelength fluorescence by quantum dot material, wherein the quantum dot layer absorbs only slightly shorter fluorescence than its emission wavelength, the energy density is lower, and the spot diameter of the excited quantum dot layer is slightly smaller than that of the excited phosphor layer. Large, and the larger diameter of the outer ring also increases the heat dissipation area, so this application can greatly reduce the thermal effect and improve the color purity.
  • each region on the first sub-wavelength conversion device 106 and the second sub-wavelength conversion device may also be disposed at other angles with respect to the center of the annular structure.
  • the driving device 108 is a rotating device having a rotating shaft 1081, such as a rotating motor.
  • First sub-wavelength conversion device The 106 and the second sub-wavelength converting means 107 are coaxially fixed to the rotating shaft 1081, and are synchronously rotated by the driving of the rotating shaft 1081.
  • the blue excitation light generated by the excitation light source 101 is passed through a dichroic mirror.
  • the transmission 102 is condensed by the lens 103 and incident on the first sub-wavelength conversion device 106, and a spot 101A as shown in Fig. 2 is formed on the first sub-wavelength conversion device 106.
  • First sub-wavelength conversion device The 106 and second sub-wavelength converting means 107 are synchronously rotated by the driving means 108, thereby causing the respective areas on the first sub-wavelength converting means 106 and the second sub-wavelength converting means. Each area on 107 rotates synchronously.
  • the first sub-wavelength conversion device during the rotation of the first sub-wavelength conversion device 106 and the second sub-wavelength conversion device 107 Each of the wavelength conversion regions and the reflection regions on the 106 are sequentially and periodically disposed on the excitation light source
  • the propagation path of the blue excitation light generated by 101 causes the blue excitation light to be sequentially converted into laser light of different colors under the action of each wavelength conversion region.
  • the laser beams of different colors are further reflected by the respective wavelength conversion regions, and the blue excitation light is reflected by the respective reflection regions and passes through the lens.
  • the guiding members composed of 103 and 105 and the dichroic mirror 102 and the mirror 104 are guided and incident on the second sub-wavelength converting means 107 to form a spot 101B as shown in Fig. 2.
  • the lens 103 and 105 is used to collect and condense the blue excitation light received by the laser and the reflection, respectively, to reduce the divergence angle of the laser.
  • Dichroic mirror 102 and mirror 104 is used to reflect the laser light to change the direction of propagation of the blue excitation light reflected by the laser and the reflected area.
  • the dichroic mirror 102 and the mirror 104 is set at 90 degrees to each other and is set at 45 degrees with respect to the incident direction of the laser.
  • the dichroic mirror 102 and the mirror Under the reflection of 104 the direction of propagation of the laser light is shifted by a predetermined distance and inverted by 180 degrees, and the spot 101A and the spot 101B are opposed to the first sub-wavelength conversion device 106 and the second sub-wavelength conversion device.
  • the center of the annular structure of 107 is set at 180 degrees.
  • the first sub-wavelength converting device 106 and the second sub-wavelength converting device 107 are relatively fixed, and the first sub-wavelength converting device
  • the respective regions corresponding to the second sub-wavelength conversion device 107 are also opposite to the center of the ring structure of the first sub-wavelength conversion device 106 and the second sub-wavelength conversion device 107.
  • the 180 degree setting and the synchronous rotation can ensure that the emitted light which is acted upon by the respective regions of the first sub-wavelength converting device 106 passes through the dichroic mirror 102 and the mirror 104 and is incident on the second sub-wavelength converting device.
  • On the correspondingly arranged area on 107 an output light of high color purity is obtained.
  • the output light obtained by the second sub-wavelength converting means 107 is further incident on the light homogenizing means 109 for the light homogenizing process.
  • the first sub-wavelength conversion device 106 and the second sub-wavelength conversion device The 107 is relatively fixed and synchronously driven by the same driving device, and simultaneously synchronizes the respective regions of the two sub-wavelength conversion devices by using the guiding elements, and has the advantages of simple structure, easy implementation, and high synchronization. Furthermore, the elements of the guiding element remain stationary relative to the excitation light source, avoiding the first sub-wavelength conversion device The 106 and second sub-wavelength converting means 107 are rotated, so that their optical stability is higher.
  • the red light quantum dot material segment may adopt a 0° yellow pass+red light quantum dot material structure, wherein the yellow light converted by the first sub-wavelength conversion device passes through the 0° yellowpass.
  • the red light quantum dot material emits red light, and the yellow light and the red light reflected at the interface of the red light quantum dot material continue to be reflected back at the 0° yellowpass interface, thereby improving the utilization rate of yellow light and increasing the light output efficiency of red light.
  • 0°greenpass+yellow quantum dot material can be used in the yellow light quantum dot material segment, 0°bluepass+green light quantum dot material in the green light quantum dot material segment, and 0°bluepass+scattering in the light transmission region of the second subwavelength conversion device. Silicone powder tablets. With such a structure, it is possible to apply the quantum dot material to a high-power blue light source while taking into consideration high color purity and high light efficiency.
  • dichroic mirror 102 and mirror 104 may be replaced by other forms of planar reflecting means, while lens 103 and 105 can be replaced by other forms of optical devices.
  • lens 105 may be a solid or hollow tapered light guiding rod, a lens or lens group, a hollow or solid composite concentrator or a curved mirror, and various forms of concentrating means.
  • the first sub-wavelength conversion device The wavelength conversion region on 106 may be any combination of one or both of a first wavelength conversion region having a yellow phosphor, a second wavelength conversion region having a green phosphor, and one or two of the reflection regions. Alternatively, those skilled in the art can set wavelength conversion regions of other colors and a desired number of reflective regions as needed.
  • the second sub-wavelength conversion device The area setting on the 107 is correspondingly configured according to the wavelength of the laser light generated by each area on the first sub-wavelength conversion device 106, which is not limited by the present invention.
  • FIG. 3 is a schematic structural view of a second embodiment of the light source system of the present invention.
  • the light source system 200 of the present embodiment is similar to FIG. 1 and The light source system 100 shown in FIG. 2 differs in that the first sub-wavelength conversion device 206 is in the excitation light source.
  • the wavelength of the excitation light generated by 201 is converted into a laser light to transmit the laser light, and the reflection area is replaced with a light transmission area.
  • the received laser light or excitation light transmitted through the first sub-wavelength converting device 206 passes through the lenses 203 and 205 and the mirror
  • the guiding elements composed of 202 and 204 are guided to the respective regions corresponding to the second sub-wavelength converting device 207, and are incident on the light homogenizing device 209 after being applied to the respective regions.
  • the first sub-wavelength conversion device 206 may further be provided with only one light transmission region, and the light transmission region is periodically disposed on the excitation light source.
  • 201 generates a propagation path of the excitation light and transmits the excitation light.
  • the excitation light transmitted through the light transmitting region passes through the lenses 203 and 205 and the mirror 202 and
  • the guiding element composed of 204 is guided along the same optical path as the laser to the second sub-wavelength conversion device
  • the light-transmitting region on the 207 is transmitted; and the second sub-wavelength conversion device is no longer provided with a region having a yellow light quantum dot, and the output light obtained by the wavelength conversion device is an output light containing only three primary colors of red, green, and blue. sequence.
  • FIG. 5 is a schematic structural view of a third embodiment of the light source system of the present invention.
  • the light source system 300 of the embodiment is shown in FIG. 1 and
  • the light source system 100 shown in Fig. 2 differs in that the excitation light generated by the excitation light source 301 of the present embodiment is condensed by the fly-eye lenses 303 and 304 and the focus lens 305, and then passed through a reflection device.
  • the light entrance of 302 is incident on wavelength conversion device 306.
  • the laser or excitation light reflected by the first sub-wavelength conversion device 306 passes through a semi-ellipsoidal or hemispherical reflective device with a light reflecting surface facing inward 302 is reflected to the second sub-wavelength conversion device 307.
  • the laser light that has been applied by the second sub-wavelength converting means 307 is further incident on the tapered light guiding rod 309.
  • the reflecting device 302 is semi-ellipsoidal, the reflecting device 302 is capable of reflecting laser or excitation light from near one focus of the reflecting device 302 to near another focus of the reflecting device 302.
  • Reflector When the 302 is hemispherical, two symmetric points symmetric about the center of the sphere are disposed at a position adjacent to the center of the sphere, and the reflecting device 302 can also roughly reflect the laser or excitation light of one of the symmetrical points to another symmetry point.
  • the reflecting device 302 may not be provided with an entrance port, and at this time, the light source 301 and the reflecting device are excited. 302 are respectively disposed on both sides of the first sub-wavelength conversion device 306. The excitation light generated by the excitation light source 301 can be irradiated to the first sub-wavelength conversion device 306 to further transmit the laser light to the reflection device. 302.
  • the excitation light generated by the laser light source 301 is in the first sub-wavelength conversion device.
  • the spot generated on 306 and the spot generated by the laser or excitation light on the second sub-wavelength converting means 307 are opposite to the center of the ring structure of the first sub-wavelength converting means 306 and the second sub-wavelength converting means 307.
  • the 0 degree setting therefore, the respective regions correspondingly disposed on the first sub-wavelength converting device 306 and the second sub-wavelength converting device 307 are also required with respect to the first sub-wavelength converting device 306 and the second sub-wavelength converting device.
  • the center of the ring structure of 307 is set at 0 degrees.
  • the excitation light can be adjusted in the first sub-wavelength conversion device by a suitable optical mechanism.
  • the spot generated on 306 is opposite to the spot generated by the laser on the second sub-wavelength converting means 307 with respect to the first sub-wavelength converting means 306 and the second sub-wavelength converting means.
  • the center of the annular structure of 307 is disposed at an arbitrary angle, thereby causing respective regions on the first sub-wavelength converting device 306 and the second sub-wavelength converting device 307 to be disposed relative to the first sub-wavelength converting device.
  • the center of the annular structure of the 306 and the second sub-wavelength converting means 307 is disposed at an arbitrary angle.
  • FIG. 6 is a schematic structural view of a fourth embodiment of the light source system of the present invention.
  • Light source system 400 and figure of this embodiment The light source system 300 shown in Fig. 5 differs in that the first sub-wavelength converting means 406 and the second sub-wavelength converting means 407 are coaxially fixed by the holder 408 and are axially spaced apart.
  • First sub-wavelength conversion device A tapered light guiding rod 409 is disposed between the 406 and the second sub-wavelength converting means 407.
  • the excitation light source 401 generates excitation light from the fly-eye lenses 403 and 404 and the focus lens.
  • the 405 is condensed and incident on the first sub-wavelength converting device 406 via the light entrance of the reflecting device 402.
  • the laser or excitation light reflected by the first sub-wavelength conversion device 406 is incident on the reflection device 402 and reflect.
  • the laser or excitation light reflected by the reflecting means 402 first enters the light guiding rod 409, and the light guiding rod 409 collects the laser light and the excitation light to reduce the divergence angle of the laser light and the excitation light.
  • Light guide The 409 light-guided laser or excitation light is incident on the second sub-wavelength conversion device 407 such that the laser or excitation light is in the second sub-wavelength conversion device.
  • the angle of incidence on 407 is small, which improves conversion efficiency.
  • the light guiding rod 409 can also be replaced by other optical devices capable of achieving the above functions.
  • the first sub-wavelength conversion device 406 If it is a transmissive type, the reflecting means 402 can be omitted, and the laser or excitation light is transmitted directly to the light guiding rod 409 via the first sub-wavelength converting means 406.
  • FIG. 7 is a schematic structural view of a fifth embodiment of the light source system of the present invention.
  • the light source system 500 of the present embodiment is similar to FIG. 1 and The light source system 100 shown in Fig. 2 differs in that the first sub-wavelength conversion device 506 of the present embodiment has a cylindrical structure, and the wavelength conversion region and the reflection region are disposed on the outer side wall of the cylindrical structure.
  • Second sub-wavelength conversion device of this embodiment 507 is a ring structure and is coaxially fixed to the cylindrical structure.
  • the first sub-wavelength converting device 506 and the second sub-wavelength converting device 507 are further coaxially fixed to the rotating shaft of the driving device 508, and are driven at the driving device The drive of 508 rotates coaxially and synchronously.
  • the excitation light generated by the excitation light source 501 passes through the dichroic mirror.
  • the 502 is transmitted and concentrated by the lens 503 and incident on the outer sidewall of the first sub-wavelength converting device 506.
  • First sub-wavelength conversion device The wavelength conversion region on the outer sidewall of the 506 converts the excitation light into a laser beam and reflects the laser beam; the reflection region reflects the excitation light.
  • the laser or excitation light reflected by the first sub-wavelength conversion device 506 passes through the lens 503 and
  • the guiding elements composed of 504 and dichroic mirror 502 are guided and incident on the second sub-wavelength converting means 507.
  • the peak width modification area and the light transmission area on the second sub-wavelength conversion device 507 are disposed in the first sub-wavelength conversion device
  • the outer side of the cylindrical structure of 506 can further receive laser or excitation light and increase the color purity after being subjected to laser or excitation light.
  • the output light sequence obtained by the second sub-wavelength conversion device 507 is further incident on the light-diffusing device 509 for homogenizing treatment.
  • the first sub-wavelength converting device 506 can also transmit the received laser light onto the second sub-wavelength converting device 507.
  • FIG. 9 is a schematic structural view of a sixth embodiment of the light source system of the present invention
  • FIG. 9 is a diagram A front view of the wavelength conversion device in the light source system shown in FIG.
  • the light source system 600 of the present embodiment is different from the light source system 200 shown in FIGS. 3 and 4 in that the first sub-wavelength conversion device of the present embodiment
  • the 606 and the second sub-wavelength converting means 607 are two strip-shaped structures connected end to end, and the respective areas are arranged side by side on the two strip-shaped structures.
  • the first sub-wavelength conversion device 606 further includes a first wavelength conversion region having a yellow phosphor arranged side by side and sequentially from top to bottom, a first reflection region, a second wavelength conversion region having a green phosphor, and a second reflection region
  • the second sub-wavelength conversion Device 607 includes a first peak width modification region having red light quantum dots arranged side by side and arranged from top to bottom, a second peak width modification region having green light quantum dots, a third peak width modification region having yellow light quantum dots, and a transparent region.
  • Light zone a first wavelength conversion region having a yellow phosphor arranged side by side and sequentially from top to bottom
  • a first reflection region a second wavelength conversion region having a green phosphor
  • the second sub-wavelength conversion Device 607 includes a first peak width modification region having red light quantum dots arranged side by side and arranged from top to bottom, a second peak width modification region having green light quantum dots, a third peak width modification region having yellow light quantum dots, and a transparent region.
  • first sub-wavelength conversion device 606 and the second sub-wavelength conversion device 607 performs a reciprocating linear translation with a suitable drive (eg, a linear motor) to cause the first sub-wavelength conversion device
  • a suitable drive eg, a linear motor
  • the first wavelength conversion region, the first reflection region, the second wavelength conversion region, and the second reflection region on the 606 are periodically disposed on the excitation light source
  • the 601 generated blue light excites the propagation path of the light.
  • each of the wavelength conversion regions converts the blue excitation light incident thereon into a laser of a corresponding color and reflects, and the first reflection region and the second reflection region reflect the blue excitation light incident thereon.
  • the reflected laser light or excitation light of 606 is guided by the guiding elements composed of the lenses 603 and 605, the dichroic mirror 602 and the mirror 604, and then incident on the second sub-wavelength conversion device.
  • the corresponding area on the 607 is emitted after being applied to each of the peak width modification area and the light transmission area, and is incident on the homogenizing device 609 to perform the uniform light processing.
  • the first sub-wavelength conversion device 606 and the second sub-wavelength conversion device of this embodiment The structure of 607 can also be applied to other embodiments described above, and details are not described herein again.
  • the present invention further provides a wavelength conversion device formed by a first sub-wavelength conversion device and a second sub-wavelength conversion device in the above-described light source system, and a projection device using the above-described light source system.
  • the wavelength conversion device and the light source system of the present invention convert the quantum dot material with a slightly shorter wavelength to convert the fluorescence into a slightly longer wavelength, thereby greatly reducing the heat generated by the quantum dot material directly excited by the blue light, and the conversion efficiency.
  • the quantum dot material has a narrow half-peak width and a high color purity, and has the advantages of high light efficiency and high color purity.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Projection Apparatus (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

一种波长转换装置、具有激发光光源(101、201、301、401、501、601)和波长转换装置的光源系统(100、200、300、400、500、600)以及具有光源系统(100、200、300、400、500、600)的投影装置。波长转换装置包括具有荧光粉材料的第一子波长转换装置(106、206、306、406、506、606)、具有量子点材料的第二子波长转换装置(107、207、307、407、507、607)和驱动装置(108、508)。波长转换装置利用波长稍短的荧光激发量子点材料转换成波长稍长的荧光,减少量子点材料直接被激发而产生的热量,具有高光效和高色纯度。

Description

一种波长转换装置、光源系统以及投影装置 技术领域
本实用新型涉及光学技术领域,特别是涉及一种波长转换装置、光源系统以及投影装置。
背景技术
随着显示技术的发展,人们对于显示画质的要求越来越高,光源的颜色色域越大,显示画面可显示的颜色越多,越接近物体自然的颜色。目前的投影光源,经常采用荧光色轮来提供彩色光序列。其中,将荧光色轮的不同色段轮流且周期性设置于激发光的传播路径上,进而利用激发光来激发荧光色轮的不同色段上的荧光材料,以产生不用颜色的荧光。
技术问题
然而,由于荧光材料所产生的光谱范围较宽,使得部分荧光的色纯度不足,进而导致光源的色域不够大。在这种情况下,一般需要通过滤光片来对荧光进行过滤,以提高荧光的色纯度,这样光效损失很大。
因此,需要提供一种波长转换装置、光源系统以及投影装置,兼顾高光效的同时,提高色纯度。
技术解决方案
本实用新型主要解决的技术问题是提供一种波长转换装置、光源系统以及投影装置,可以在兼顾高光效的同时,提高色纯度。
为解决上述技术问题,本实用新型采用的一个技术方案是:提供一种波长转换装置,包括:第一子波长转换装置,所述第一子波长转换装置上至少包括设置有荧光粉材料的第一波长转换区;第二子波长转换装置,所述第二子波长转换装置上至少包括与所述第一波长转换区相对应设置的具有量子点材料的第一峰宽修饰区;所述荧光粉材料发光的峰值波长小于所述量子点材料发光的峰值波长;驱动装置,所述第一子波长转换装置与所述第二子波长转换装置相对固定,所述驱动装置驱动所述第一子波长转换装置与所述第二子波长转换装置同步周期性运动。
优选地,所述第一子波长转换装置包括设置有黄色荧光粉材料的第一波长转换区、设置有反射粒子的第一反射区、设置有反射粒子的第二反射区;所述第二子波长转换装置包括与所述第一波长转换区、第一反射区及第二反射区相对应设置的具有红光量子点材料的第一峰宽修饰区、具有绿光量子点材料的第二峰宽修饰区、透光区。
优选地,所述第一子波长转换装置包括设置有黄色荧光粉材料的第一波长转换区、第一透光区、第二透光区;所述第二子波长转换装置包括与所述第一波长转换区、第一透光区及第二透光区相对应设置的具有红光量子点材料的第一峰宽修饰区、具有绿光量子点材料的第二峰宽修饰区、透光区。
进一步地,所述第一子波长转换装置还包括设置有绿色荧光粉材料的第二波长转换区;所述第二子波长转换装置还包括设置有黄光量子点材料的第三峰宽修饰区,所述第二波长转换区与所述第三峰宽修饰区相对应设置。
优选地,所述黄色荧光粉材料是YAG:Ce3+,M2SiO4:Eu2+(M=Ca,Sr,Ba)荧光粉中的至少一种;所述绿色荧光粉材料是LuAG:Ce3+,β-Sialon:Eu2+,M2SiO4:Eu2+(M=Ca,Sr,Ba)荧光粉中的至少一种;所述反射粒子为TiO2,Al2O3中的至少一种;所述量子点材料为含Cd类量子点CdSe/ZnS、CdSe/CdZnS中的一种,或者为无Cd类量子点 CuInS2/ZnS。 通过选择不同粒径的量子点可以得到所需要的红光、黄光和绿光。
所述波长转换区和反射区可以采用硅胶荧光粉膜片、发光玻璃或者发光陶瓷;所述峰宽修饰区可以采用硅胶与量子点混合热固化形成。
优选地,所述第一透光区、第二透光区以及第二子波长转换装置中的透光区均具有扩散光的作用,可以采用散射硅胶粉片。
所述散射硅胶粉片是将白色漫反射粒子和硅胶混合均匀后固化形成。
优选地,所述第一峰宽修饰区的量子点材料表面设置有第一滤光膜,所述第一滤光膜允许小于预定角度的第一波长转换区的出射光透射,大于预定角度的第一波长转换区的出射光反射,并反射与第一波长转换区出射光波长不同的其他色光。
优选地,所述第二子波长转换装置上的红光量子点材料、绿光量子点材料、黄光量子点材料以及透光区的表面分别设置有第一滤光膜、第二滤光膜、第三滤光膜、第四滤光膜;
所述第一滤光膜(后面简称“0°yellowpass”)允许小于预定角度的黄光透射,大于预定角度的黄光反射,并反射其他色光;
所述第二滤光膜(后面简称“0°bluepass”)和所述第四滤光膜(后面简称“0°bluepass”)允许小于预定角度的蓝光透射,大于预定角度的蓝光反射,并反射其他色光;
所述第三滤光膜(后面简称“0°greenpass”)允许小于预定角度的绿光透射,大于预定角度的绿光反射,并反射其他色光。
其中,以第一滤光膜为例,说明使用上述滤光膜的好处。经过第一子波长转换装置转换的黄光透过第一滤光膜再激发红光量子点材料发射红光,其中未被利用的黄光在红光量子点材料界面反射回到第一滤光膜,大角度的黄光被第一滤光膜再次反射回红光量子点材料界面激发量子点发射红光,以提高黄光利用率;另一方面,一部分红光未透射出射,而是被红光量子点材料界面反射到第一滤光膜,该部分红光经第一滤光膜反射后从第二子波长转换装置透射出射,从而增加了红光的出光效率。其他的滤光膜也具有与第一滤光膜类似的作用,从而提高波长转换装置中各色光的出光效率。
优选地,所述第一子波长转换装置与所述第二子波长转换装置为同轴固定的两个环状结构。
进一步地,所述驱动装置为具有一转动轴的转动装置,所述两个环状结构同轴固定于所述转动轴上。
优选地,所述第一子波长转换装置中的各个区域与其所对应设置的所述第二子波长转换装置中的各个区域相对所述两个环状结构的中心呈0度或180 度设置。
优选地,所述第一子波长转换装置为一筒状结构,所述第二子波长转换装置为一环状结构,并与所述筒状结构同轴固定;所述第一子波长转换装置的各个区域设置于所述筒状结构的外侧壁,所述第二子波长转换装置的各个区域设置于所述环状结构上,且位于所述筒状结构的外侧。
优选地,所述第一子波长转换装置与所述第二子波长转换装置为首尾相接的两个带状结构,所述第一子波长转换装置的各个区域和第二子波长转换装置的各个区域并排设置于所述两个带状结构上。
为解决上述问题,本实用新型采用的一个技术方案是:提供一种光源系统,包括:激发光光源,用于产生一激发光;如上所述的波长转换装置;所述波长转换装置在驱动装置驱动下,使所述第一子波长转换装置与所述第二子波长转换装置同步周期性运动,并且所述第一子波长转换装置设置于所述激发光的传播路径上,进而将所述激发光转换为交替产生的第一输出光所形成的第一输出光序列;引导元件,位于所述第一输出光的传播路径上,用于将第一输出光引导入射于所述第二子波长转换装置,使所述第二子波长转换装置产生第二输出光;所述第一子波长转换装置与所述第二子波长转换装置的同步周期性运动过程中,所述光源系统周期性输出由第二输出光所形成的第二输出光序列;任意时刻,所述第一输出光的波长都小于所述第二输出光的波长。
优选地,所述第一子波长转换装置与所述第二子波长转换装置为同轴固定的两个环状结构。
进一步地,所述驱动装置为具有一转动轴的转动装置,所述两个环状结构同轴固定于所述转动轴上。
优选地,所述第一子波长转换装置中的各个区域与其所对应设置的所述第二子波长转换装置中的各个区域相对所述两个环状结构的中心呈特定角度设置,所述引导元件设置成使得所述激发光在所述第一子波长转换装置上形成的光斑与所述第一输出光在所述第二子波长转换装置上形成的光斑相对所述两个环状结构的中心也呈所述特定角度设置。
优选地,所述特定角度为0度或180度。
优选地,所述引导元件包括至少一反射装置,所述反射装置对所述第一输出光序列进行反射,以改变所述第一输出光序列的传播方向,所述反射装置为平面反射装置或者为呈半椭球状或呈半球状且光反射面朝内的反射装置。
进一步地,所述平面反射装置包括二向色镜或反射镜。
进一步地,所述呈半椭球状或呈半球状且光反射面朝内的反射装置上设置有入光口,所述激发光经所述入光口入射到所述波长转换装置。
优选地,所述第一子波长转换装置为一筒状结构,所述第二子波长转换装置为一环状结构,并与所述筒状结构同轴固定;所述第一子波长转换装置的各个区域设置于所述筒状结构的外侧壁,所述第二子波长转换装置的各个区域设置于所述环状结构上,且位于所述筒状结构的外侧。
优选地,所述第一子波长转换装置与所述第二子波长转换装置为首尾相接的两个带状结构,所述第一子波长转换装置的各个区域和第二子波长转换装置的各个区域并排设置于所述两个带状结构上。
优选地,所述激发光光源产生蓝光。
更优选地,所述激发光光源为蓝色激光器、蓝色激光二极管或蓝色激光二极管阵列。
为解决上述问题,本实用新型采用的一个技术方案是:提供一种包括上述光源系统的投影装置。
有益效果
本实用新型提供的波长转换装置、光源系统以及投影装置较现有技术具有以下有益效果:
1、该波长转换装置中荧光粉材料和量子点材料协同作用,利用荧光粉材料吸收蓝光转换成较长波长荧光,再经过量子点材料转换成更长波长荧光;其中荧光粉层吸收大部分蓝光,由于荧光粉热稳定性一般较高,能够承受较高光功率密度的辐照,而量子点层只吸收比其发射波长稍短的荧光,而且激发量子点层的光斑直径较激发荧光粉层光斑稍大,所以该波长转换装置的结构可以大大减少热效应。
2、量子点材料能够吸收绝大部分荧光层发出的荧光,转化效率高;而且量子点材料的发射峰很窄,可以代替修饰片使用,在保证高光效的基础上,提高色纯度。
3、量子点材料的余辉时间一般在几个纳秒,而目前荧光粉的余辉时间在几十至几百个纳秒,量子点材料相比于荧光粉更不容易出现发光饱和,因而能够实现高亮度的荧光发射。
附图说明
图1 是本实用新型光源系统的第一实施例的结构示意图;
图2 是图1 所示的光源系统中的波长转换装置的主视图;
图3 是本实用新型光源系统的第二实施例的结构示意图;
图4 是图3 所示的光源系统中的波长转换装置的主视图;
图5 是本实用新型光源系统的第三实施例的结构示意图;
图6 是本实用新型光源系统的第四实施例的结构示意图;
图7 是本实用新型光源系统的第五实施例的结构示意图;
图8 是本实用新型光源系统的第六实施例的结构示意图;
图9 是图8所示的光源系统中的波长转换装置的主视图。
本发明的最佳实施方式
请参见图 1和图 2,图 1是本实用新型光源系统的第一实施例的结构示意图,图 2是图 1所示的光源系统中的波长转换装置的主视图。如图 1所示,本实施例的光源系统 100主要包括激发光光源 101、二向色镜(dichroic mirror)102和反射镜 104、透镜 103和 105、波长转换装置以及匀光装置109;其中波长转换装置包括第一子波长转换装置 106、第二子波长转换装置 107及驱动装置 108。
激发光光源 101用于产生一激发光。在本实施例中,激发光光源 101为一蓝色激光器或者蓝色发光二极管,以产生蓝光激发光。
如图 2所示,第一子波长转换装置 106为一环状结构,至少包括第一波长转换区。在本实施例中,第一子波长转换装置 106包括绕其环状结构的周向分段设置的具有黄色荧光粉的第一波长转换区、具有反射粒子的第一反射区、具有绿色荧光粉的第二波长转换区以及具有反射粒子的第二反射区。上述荧光粉材料能够将入射到其上的蓝色激发光波长转换成相应颜色的受激光。具体来说,黄色荧光粉将入射到其上的蓝色激发光转换成黄色受激光,绿色荧光粉将入射到其上的蓝色激发光转换成绿色受激光。在本实施例中,在上述波长转换材料下方进一步设置反射衬底,进而反射上述波长转换材料所转换的受激光,使得受激光从上述波长转换区的出射方向与激发光相对上述波长转换区的入射方向相反;同时,第一子波长转换装置还包括设置有反射粒子的第一反射区和第二反射区,蓝色激发光从上述第一反射区和第二反射区的出射方向与激发光相对上述反射区的入射方向相反。
其中,上述黄色荧光粉是YAG:Ce3+,M2SiO4:Eu2+(M=Ca,Sr,Ba)荧光粉中的至少一种;上述绿色荧光粉是LuAG:Ce3+,β-Sialon:Eu2+,M2SiO4:Eu2+(M=Ca,Sr,Ba)荧光粉中的至少一种;上述反射粒子为TiO2,Al2O3中的至少一种;上述波长转换区和反射区可以采用硅胶荧光粉膜片、发光玻璃或者发光陶瓷。
如图 2所示,第二子波长转换装置 107为一环状结构,其与第一子波长转换装置 106同轴固定,且具体设置于第一子波长转换装置 106的环外侧。在其他实施例中,第二子波长转换装置 107也可以设置于第一子波长转换装置 106的环内侧。第二子波长转换装置 107至少包括第一峰宽修饰区。在本实施例中,第二子波长转换装置 107包括绕其环状结构的周向分段设置的具有红光量子点的第一峰宽修饰区、具有绿光量子点的第二峰宽修饰区、具有黄光量子点的第三峰宽修饰区以及透光区。上述各个区域与第一子波长转换装置 106上的各颜色的波长转换区对应设置。在本实施例中,第一子波长转换装置106上的各个区域与第二子波长转换装置 107对应设置的各个区域相对环状结构的中心成 180度设置,具体的,第一波长转换区域与第一峰宽修饰区、第一反射区与第二峰宽修饰区、第二波长转换区域与第三峰宽修饰区、第二反射区与透光区相对环状结构的中心成180度设置。本实用新型中关于各个区域的设置方式以此类推。
其中,上述量子点材料可以选自含Cd类量子点CdSe/ZnS、CdSe/CdZnS中的一种,或者选自无Cd类量子点 CuInS2/ZnS。 通过选择不同粒径的量子点可以得到所需要的红光、黄光和绿光。所述峰宽修饰区可以采用硅胶与量子点材料混合热固化形成。所述透光区均具有扩散光的作用,可以采用散射硅胶粉片。本实用新型中的所有透光区都优选具有光扩散的作用。
所述散射硅胶粉片是将白色漫反射粒子和硅胶混合均匀后固化形成。所述白色漫反射粒子用于对入射光进行散射,一般为盐类或者氧化物类粉末,例如硫酸钡粉末、氧化铝粉末、氧化钛粉末、氧化锆粉末等。
上述峰宽修饰区采用而量子点材料,是因为量子点的发光半峰宽约为20~30nm,色纯度较高;相较于荧光粉,虽然荧光粉的稳定性很高,但是荧光粉的半峰宽很高,氮化物红色荧光粉的半峰宽大约是80~90nm。所以使用量子点材料可以提高色纯度,但是量子点的热稳定性相对较低,阻碍了其在高功率密度光源上的应用,本实施例的光源系统利用荧光粉材料吸收蓝光转换成较长波长荧光,再经过量子点材料转换成更长波长荧光,其中,量子点层只吸收比其发射波长稍短的荧光,能量密度较低,而且激发量子点层的光斑直径较激发荧光粉层光斑稍大,且外环直径较大也相应增加了散热面积,所以这种应用方式可以大大减少热效应,提高色纯度。
当然,第一子波长转换装置106上的各个区域与第二子波长转换装置 107对应设置的各个区域也可以相对环状结构的中心成其他角度设置。
如图 1所示,驱动装置 108为具有一转动轴 1081的转动装置,例如转动马达。第一子波长转换装置 106与第二子波长转换装置 107同轴固定于转动轴 1081上,并在转动轴 1081的驱动下同步转动。
在图 1所示的光源系统 100的工作过程中,激发光光源 101所产生的蓝色激发光经二向色镜 102透射,经透镜 103进行聚光后入射到第一子波长转换装置 106上,并在第一子波长转换装置 106上形成如图 2所示的光斑 101A。第一子波长转换装置 106和第二子波长转换装置 107在驱动装置 108的驱动下同步转动,进而使得第一子波长转换装置 106上的各个区域与第二子波长转换装置 107上的各个区域同步转动。在第一子波长转换装置 106和第二子波长转换装置 107的转动过程中,第一子波长转换装置 106上的各个波长转换区及反射区依次且周期性设置于激发光光源 101所产生的蓝色激发光的传播路径上,使得蓝色激发光在各波长转换区的作用下依次转换成不同颜色的受激光。不同颜色的受激光进一步被上述各波长转换区反射,蓝色激发光被各个反射区反射,并经透镜 103和 105以及二向色镜 102和反射镜 104所组成的引导元件导引后入射到第二子波长转换装置 107,形成如图 2所示的光斑 101B。
在引导元件中,透镜 103和 105分别用于对受激光和反射的蓝色激发光进行收集和聚光,以减小受激光的发散角。二向色镜 102和反射镜 104则用于反射受激光,以改变受激光和经反射区反射的蓝色激发光的传播方向。在本实施例中,二向色镜 102和反射镜 104相互呈90度设置,且相对受激光的入射方向呈 45度设置。在本实施例中,在二向色镜 102和反射镜 104的反射作用下,受激光的传播方向被平移预定距离且反转 180度,且光斑 101A与光斑 101B相对第一子波长转换装置 106和第二子波长转换装置 107的环状结构的中心呈 180度设置。
此时,由于第一子波长转换装置 106与第二子波长转换装置 107相对固定,并且第一子波长转换装置 106与第二子波长转换装置 107上对应设置的各个区域同样相对第一子波长转换装置 106与第二子波长转换装置 107的环状结构的中心呈 180度设置且同步转动,因此可以确保由第一子波长转换装置 106的各个区域作用的出射光经二向色镜 102和反射镜 104作用后入射到第二子波长转换装置 107上相应设置的区域上,进而得到高色纯度的输出光。经第二子波长转换装置 107作用得到的输出光进一步入射到匀光装置 109,以进行匀光处理。
在本实施例的光源系统100中,第一子波长转换装置 106和第二子波长转换装置 107相对固定并由同一驱动装置同步驱动,同时利用引导元件将两个子波长转换装置中对应设置的各个区域进行同步,具有结构简单、易于实现以及同步性高等优点。此外,引导元件的各元件相对激发光光源保持静止,避免了随第一子波长转换装置 106和第二子波长转换装置 107转动,因此其光学稳定性更高。
在本实施例中,为了减少红光量子点材料界面的反射,红光量子点材料段可以采用0°yellowpass+红光量子点材料结构,其中经过第一子波长转换装置转换的黄光透过0°yellowpass再激发红光量子点材料发射红光,在红光量子点材料界面反射的黄光和红光在0°yellowpass界面继续反射回去,提高黄光利用率,增加红光出光效率。同样,在黄光量子点材料段可以使用0°greenpass+黄光量子点材料,绿光量子点材料段使用0°bluepass+绿光量子点材料,而第二子波长转换装置的透光区则直接使用0°bluepass+散射硅胶粉片。通过这样的结构,可以实现将量子点材料应用于大功率蓝光光源上,并同时兼顾高色纯度和高光效。
在本实施例中,二向色镜 102和反射镜 104可以由其他形式的平面反射装置代替,而透镜 103和 105则可以由其他形式的光学装置所代替。例如,透镜 105可以是实心或者空心的锥形导光棒、透镜或者透镜组、空心或者实心的复合型聚光器或者曲面反射镜等各种形式的聚光装置。
此外,在本实施例中,第一子波长转换装置 106上的波长转换区可以是具有黄色荧光粉的第一波长转换区、具有绿色荧光粉的第二波长转换区中的一个或两个的任意组合,反射区可以设置一个或者两个。或者,本领域技术人员可以根据需要设置其他颜色的波长转换区以及所需数量的反射区。此时,第二子波长转换装置 107上的区域设置则根据第一子波长转换装置106上的各个区域所产生的受激光的波长进行相应配置,本实用新型对此并不作限制。
请参见图 3,图 3是本实用新型光源系统的第二实施例的结构示意图。本实施例的光源系统 200与图 1和图 2所示的光源系统100不同之处在于,第一子波长转换装置 206在将激发光光源 201产生的激发光波长转换成受激光后透射该受激光,反射区替换为透光区。经第一子波长转换装置 206透射的受激光或激发光经透镜 203和 205以及反射镜 202以及 204所组成的引导元件导引后入射到第二子波长转换装置 207相对应的各个区域,并经各个区域作用后入射到匀光装置 209。
此外,在第一子波长转换装置 206还可以只设置一个透光区,该透光区周期性设置于激发光光源 201产生的激发光的传播路径上,并透射该激发光。经该透光区透射的激发光经透镜 203和 205以及反射镜 202以及 204所组成的引导元件沿着与受激光相同的光路导引到第二子波长转换装置 207上的透光区,进行透射;而第二子波长转换装置中不再设置具有黄光量子点的区域,通过该波长转换装置得到的输出光是只含有红、绿、蓝三基色的输出光序列。
请参见图 5,图 5是本实用新型光源系统的第三实施例的结构示意图。本实施例的光源系统 300与图 1和图 2所示的光源系统 100不同之处在于,本实施例的激发光光源 301产生的激发光由复眼透镜 303和 304以及聚焦透镜 305进行聚光后经反射装置 302的入光口入射到波长转换装置 306。经第一子波长转换装置 306反射的受激光或激发光经呈半椭球状或者呈半球状且光反射面朝内的反射装置 302反射到第二子波长转换装置 307。经第二子波长转换装置 307作用的受激光进一步入射到锥形导光棒 309。其中,当反射装置 302呈半椭球状时,反射装置 302能够将来自反射装置 302的一个焦点附近的受激光或激发光反射到反射装置 302的另一个焦点附近。当反射装置 302呈半球状时,在临近球心的位置设置关于该球心对称的两对称点,反射装置 302大致也可以把其中一对称点的受激光或激发光反射到另一对称点。此外,在其他实施例中,反射装置 302可以不设置入光口,此时激发光光源 301与反射装置 302分别设置于第一子波长转换装置 306的两侧。激发光光源 301产生的激发光可照射到第一子波长转换装置 306后所产生的受激光进一步透射到反射装置 302上。
值得注意的是,在反射装置 302的反射作用下,激光光光源 301所产生的激发光在第一子波长转换装置 306上产生的光斑与受激光或激发光在第二子波长转换装置 307上产生的光斑相对于第一子波长转换装置 306和第二子波长转换装置 307的环状结构的中心呈 0度设置,因此在第一子波长转换装置 306和第二子波长转换装置 307上相对应设置的各个区域也需要相对于第一子波长转换装置 306和第二子波长转换装置 307的环状结构的中心呈 0度设置。
当然,在其他实施例中,通过适当的光学机构,可以调整激发光在第一子波长转换装置 306上产生的光斑与受激光在第二子波长转换装置 307上产生的光斑相对第一子波长转换装置 306和第二子波长转换装置 307的环状结构的中心呈任意角度设置,因此使得第一子波长转换装置 306和第二子波长转换装置 307上的相对应设置的各个区域相对于第一子波长转换装置 306和第二子波长转换装置 307的环状结构的中心呈任意角度设置。
请参见图 6,图 6是本实用新型光源系统的第四实施例的结构示意图。本实施例的光源系统 400与图 5所示的光源系统 300不同之处在于,第一子波长转换装置 406与第二子波长转换装置 407由支架 408同轴固定,且沿轴向间隔设置。在第一子波长转换装置 406与第二子波长转换装置 407之间设置一锥形导光棒 409。激发光光源 401产生的激发光由复眼透镜 403和 404以及聚焦透镜 405进行聚光后经反射装置 402的入光口入射到第一子波长转换装置 406。经第一子波长转换装置 406反射的受激光或激发光入射到反射装置 402并进行反射。经反射装置 402反射的受激光或激发光首先进入导光棒 409,导光棒 409对受激光及激发光进行收集,以减小受激光及激发光的发散角。经导光棒 409导光后的受激光或激发光入射到第二子波长转换装置 407上,使得受激光或激发光在第二子波长转换装置 407上的入射角度较小,提高了转换效率。在本实施例中,导光棒 409也可以由其他能够实现上述功能的光学装置代替。此外,在本实施例中,第一子波长转换装置 406如果是透射型,反射装置 402可以省略,此时受激光或激发光直接经第一子波长转换装置 406透射到导光棒 409。
请参见图 7,图 7是本实用新型光源系统的第五实施例的结构示意图。本实施例的光源系统 500与图 1和图 2所示的光源系统100不同之处在于,本实施例的第一子波长转换装置 506呈筒状结构,波长转换区和反射区设置于该筒状结构的外侧壁上。本实施例的第二子波长转换装置 507为环状结构且与该筒状结构同轴固定。第一子波长转换装置 506和第二子波长转换装置 507进一步同轴固定于驱动装置 508的转动轴上,并在驱动装置 508的驱动下同轴且同步转动。
在本实施例的光源系统 500的工作过程中,激发光光源 501所产生的激发光经二向色镜 502透射,并经透镜 503进行聚光后入射到第一子波长转换装置 506的外侧壁上。第一子波长转换装置 506的外侧壁上的波长转换区将激发光转换成受激光,并反射该受激光;反射区反射激发光。经第一子波长转换装置 506反射的受激光或激发光经透镜 503和 504以及二向色镜 502所组成的引导元件导引后入射到第二子波长转换装置 507。第二子波长转换装置 507上的峰宽修饰区和透光区设置于第一子波长转换装置 506的筒状结构的外侧,进而可以接收到受激光或激发光并对受激光或激发光作用后提高色纯度。经第二子波长转换装置 507作用后得到的输出光序列进一步入射到匀光装置 509,以进行匀光处理。在其他实施例中,第一子波长转换装置 506也可以将受激光透射到第二子波长转换装置 507上。
请参见图 8和图 9,图 9是本实用新型光源系统的第六实施例的结构示意图,图 9是图 8所示的光源系统中的波长转换装置的主视图。本实施例的光源系统 600与图 3和图 4所示的光源系统 200不同之处在于,本实施例的第一子波长转换装置 606和第二子波长转换装置 607为首尾相连的两个带状结构,各个区域并排设置于该两个带状结构上。在本实施例中,第一子波长转换装置 606进一步包括并排且从上到下依序设置的具有黄色荧光粉的第一波长转换区、第一反射区、具有绿色荧光粉的第二波长转换区以及第二反射区,第二子波长转换装置 607则包括并排且从上到下依序设置的具有红光量子点的第一峰宽修饰区、具有绿光量子点的第二峰宽修饰区、具有黄光量子点的第三峰宽修饰区以及透光区。
在第一子波长转换装置 606和第二子波长转换装置 607在适当的驱动装置(例如,线形马达)的驱动下进行往复的线性平移,以使得第一子波长转换装置 606上的第一波长转换区、第一反射区、第二波长转换区以及第二反射区周期性设置于激发光光源 601所产生的蓝光激发光的传播路径上。其中,各波长转换区将入射到其上的蓝光激发光转换成对应颜色的受激光并进行反射,而第一反射区和第二反射区则反射入射到其上的蓝光激发光。经第一子波长转换装置 606反射后的受激光或激发光经透镜 603和 605、二向色镜 602以及反射镜 604所组成的引导元件导引后入射到第二子波长转换装置 607上的相应区域,经各峰宽修饰区和透光区作用后出射,并共同入射到匀光装置 609,以进行匀光处理。本实施例的第一子波长转换装置 606和第二子波长转换装置 607的结构同样可以应用于上文描述的其他实施例中,在此不再赘述。
本实用新型进一步提供一种由上述光源系统中的第一子波长转换装置和第二子波长转换装置形成的波长转换装置以及使用上述光源系统的投影装置。
综上所述,本实用新型的波长转换装置及光源系统使用波长稍短的荧光激发量子点材料转换成波长稍长的荧光,从而大大减少量子点材料直接被蓝光激发而产生的热量,转换效率高;同时量子点材料发光半峰宽窄,色纯度较高,兼具高光效和高色纯度的优点。
以上所述仅为本实用新型的实施例,并非因此限制本实用新型的专利范围,凡是利用本实用新型说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本实用新型的专利保护范围内。

Claims (14)

1. 一种波长转换装置,其特征在于,包括:
第一子波长转换装置,所述第一子波长转换装置上至少包括设置有荧光粉材料的第一波长转换区;
第二子波长转换装置,所述第二子波长转换装置上至少包括与所述第一波长转换区相对应设置的具有量子点材料的第一峰宽修饰区;
所述荧光粉材料发光的峰值波长小于所述量子点材料发光的峰值波长;
驱动装置,所述第一子波长转换装置与所述第二子波长转换装置相对固定,所述驱动装置驱动所述第一子波长转换装置与所述第二子波长转换装置同步周期性运动。
2. 根据权利要求1所述的波长转换装置,其特征在于,所述第一子波长转换装置包括设置有黄色荧光粉材料的第一波长转换区、设置有反射粒子的第一反射区、设置有反射粒子的第二反射区;所述第二子波长转换装置包括与所述第一波长转换区、第一反射区及第二反射区相对应设置的具有红光量子点材料的第一峰宽修饰区、具有绿光量子点材料的第二峰宽修饰区、透光区。
3. 根据权利要求1所述的波长转换装置,其特征在于,所述第一子波长转换装置包括设置有黄色荧光粉材料的第一波长转换区、第一透光区、第二透光区;所述第二子波长转换装置包括与所述第一波长转换区、第一透光区及第二透光区相对应设置的具有红光量子点材料的第一峰宽修饰区、具有绿光量子点材料的第二峰宽修饰区、透光区。
4. 根据权利要求2或3所述的波长转换装置,其特征在于,所述第一子波长转换装置还包括设置有绿色荧光粉材料的第二波长转换区;所述第二子波长转换装置进一步包括设置有黄光量子点材料的第三峰宽修饰区,所述第二波长转换区与所述第三峰宽修饰区相对应设置。
5.根据权利要求1所述的波长转换装置,其特征在于,所述第一峰宽修饰区的量子点材料表面设置有第一滤光膜,所述第一滤光膜允许小于预定角度的第一波长转换区的出射光透射,大于预定角度的第一波长转换区的出射光反射,并反射与第一波长转换区出射光波长不同的其他色光。
6. 根据权利要求4所述的波长转换装置,其特征在于,所述第二子波长转换装置上的红光量子点材料、绿光量子点材料、黄光量子点材料以及透光区的表面分别设置有第一滤光膜、第二滤光膜、第三滤光膜、第四滤光膜;
所述第一滤光膜允许小于预定角度的黄光透射,大于预定角度的黄光反射,并反射其他色光;
所述第二滤光膜和所述第四滤光膜允许小于预定角度的蓝光透射,大于预定角度的蓝光反射,并反射其他色光;
所述第三滤光膜允许小于预定角度的绿光透射,大于预定角度的绿光反射,并反射其他色光。
7. 根据权利要求1至6任一项所述的波长转换装置,其特征在于,所述第一子波长转换装置与所述第二子波长转换装置为同轴固定的两个环状结构。
8. 根据权利要求7所述的波长转换装置,其特征在于,所述第一子波长转换装置中的各个区域与其所对应设置的所述第二子波长转换装置中的各个区域相对所述两个环状结构的中心呈0度或180 度设置。
9. 一种光源系统,其特征在于, 所述光源系统包括:
激发光光源,用于产生一激发光;
权利要求1-6中任一项所述的波长转换装置;
所述波长转换装置在驱动装置驱动下,使所述第一子波长转换装置与所述第二子波长转换装置同步周期性运动,并且所述第一子波长转换装置设置于所述激发光的传播路径上,进而将所述激发光转换为交替产生的第一输出光所形成的第一输出光序列;
引导元件,位于所述第一输出光的传播路径上,用于将第一输出光引导入射于所述第二子波长转换装置,使所述第二子波长转换装置产生第二输出光;
所述第一子波长转换装置与所述第二子波长转换装置的同步周期性运动过程中,所述光源系统周期性输出由第二输出光所形成的第二输出光序列;
任意时刻,所述第一输出光的波长都小于所述第二输出光的波长。
10. 根据权利要求9所述的光源系统,其特征在于,所述第一子波长转换装置与所述第二子波长转换装置为同轴固定的两个环状结构。
11. 根据权利要求10所述的光源系统,其特征在于,所述第一子波长转换装置中的各个区域与其所对应设置的所述第二子波长转换装置中的各个区域相对所述两个环状结构的中心呈特定角度设置,所述引导元件设置成使得所述激发光在所述第一子波长转换装置上形成的光斑与所述第一输出光在所述第二子波长转换装置上形成的光斑相对所述两个环状结构的中心也呈所述特定角度设置;所述特定角度为0度或180度。
12. 根据权利要求9-11中任一项所述的光源系统,其特征在于,所述引导元件包括至少一反射装置,所述反射装置对所述第一输出光序列进行反射,以改变所述第一输出光序列的传播方向,所述反射装置为平面反射装置或者为呈半椭球状或呈半球状且光反射面朝内的反射装置。
13. 根据权利要求9所述的光源系统,其特征在于,所述激发光光源产生蓝光。
14. 一种投影装置,其特征在于,所述投影装置包括权利要求9-13任意一项所述的光源系统。
PCT/CN2016/111704 2016-01-14 2016-12-23 一种波长转换装置、光源系统以及投影装置 WO2017121233A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201620034758.1 2016-01-14
CN201620034758.1U CN205539893U (zh) 2016-01-14 2016-01-14 一种波长转换装置、光源系统以及投影装置

Publications (1)

Publication Number Publication Date
WO2017121233A1 true WO2017121233A1 (zh) 2017-07-20

Family

ID=56763850

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/111704 WO2017121233A1 (zh) 2016-01-14 2016-12-23 一种波长转换装置、光源系统以及投影装置

Country Status (2)

Country Link
CN (1) CN205539893U (zh)
WO (1) WO2017121233A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3848754A4 (en) * 2018-09-03 2021-11-10 Appotronics Corporation Limited LIGHT SOURCE DEVICE AND DISPLAY DEVICE
CN114441487A (zh) * 2020-11-04 2022-05-06 致茂电子(苏州)有限公司 荧光检测系统

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205539893U (zh) * 2016-01-14 2016-08-31 深圳市光峰光电技术有限公司 一种波长转换装置、光源系统以及投影装置
CN106444248B (zh) 2016-09-13 2019-10-22 合肥鑫晟光电科技有限公司 一种荧光轮、投影光源、投影仪及其控制方法
CN106353959B (zh) 2016-11-24 2018-04-24 广景视睿科技(深圳)有限公司 一种色轮及其激光光源系统
CN106371278B (zh) * 2016-11-28 2018-02-09 广景视睿科技(深圳)有限公司 双向激发色轮及其光源系统
CN108610023B (zh) 2016-12-09 2021-07-23 深圳光峰科技股份有限公司 陶瓷复合材料的制备方法、陶瓷复合材料及波长转换器
CN206594438U (zh) * 2017-02-13 2017-10-27 深圳市光峰光电技术有限公司 色轮装置、光源系统及投影设备
CN108803213B (zh) * 2017-04-27 2021-03-19 中强光电股份有限公司 波长转换滤光模块以及照明系统
CN108931878B (zh) * 2017-05-26 2021-07-23 深圳光峰科技股份有限公司 光源系统及显示设备
CN108931880B (zh) * 2017-05-26 2023-03-14 深圳光峰科技股份有限公司 光源系统及显示设备
CN109131051A (zh) * 2017-06-17 2019-01-04 深圳市绎立锐光科技开发有限公司 车辆安全控制系统及方法
US11269245B2 (en) * 2017-08-17 2022-03-08 Sony Corporation Light source unit and projection display including a phosphor wheel
CN109708026B (zh) * 2017-10-25 2021-12-31 苏州星烁纳米科技有限公司 一种照明灯具
CN109991803B (zh) * 2018-01-03 2022-02-22 深圳光峰科技股份有限公司 色轮组件、光源装置及投影系统
CN109991801B (zh) * 2018-01-03 2022-08-05 深圳光峰科技股份有限公司 色轮组件、光源装置及投影系统
CN110119058A (zh) * 2018-02-07 2019-08-13 深圳光峰科技股份有限公司 波长转换装置
CN110618575A (zh) * 2018-06-20 2019-12-27 中强光电股份有限公司 照明系统与投影装置
CN110737162B (zh) * 2018-07-18 2021-09-28 深圳光峰科技股份有限公司 显示设备及投影系统
CN110887022A (zh) * 2018-09-10 2020-03-17 深圳光峰科技股份有限公司 波长转换装置及光源系统
CN111208698B (zh) * 2018-11-22 2020-11-10 无锡视美乐激光显示科技有限公司 一种波长转换装置及光源系统
CN109375463A (zh) * 2018-11-30 2019-02-22 四川长虹电器股份有限公司 一种荧光轮装置、光源装置及投影机
CN111381425B (zh) * 2018-12-29 2022-04-15 深圳光峰科技股份有限公司 光源系统及投影装置
CN111624839A (zh) * 2019-02-28 2020-09-04 青岛海信激光显示股份有限公司 一种激光投影电视及其激光投影光源
CN111830770B (zh) * 2019-04-15 2023-02-03 深圳光峰科技股份有限公司 波长转换装置、光源系统与显示设备
CN111856858B (zh) * 2019-04-24 2023-05-05 深圳光峰科技股份有限公司 一种光源系统及投影系统
CN110716380B (zh) 2019-11-25 2021-05-18 成都极米科技股份有限公司 一种光源系统及投影机
CN114624947A (zh) * 2022-01-27 2022-06-14 无锡视美乐激光显示科技有限公司 一种波长转换装置、光源装置及投影系统

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102645825A (zh) * 2011-11-03 2012-08-22 深圳市光峰光电技术有限公司 一种投影装置、光源系统以及色轮组件
CN103048861A (zh) * 2011-10-13 2013-04-17 宏碁股份有限公司 可提高发光效率的图像产生装置
CN103064237A (zh) * 2011-10-21 2013-04-24 宏碁股份有限公司 可提高发光效率的图像产生装置
CN203178658U (zh) * 2013-03-22 2013-09-04 深圳市绎立锐光科技开发有限公司 波长转换装置及相关发光装置
CN104267569A (zh) * 2014-09-22 2015-01-07 苏州佳世达光电有限公司 投影装置
US20150316839A1 (en) * 2012-11-29 2015-11-05 Lg Electronics Inc. Light source unit, and image projection device including same
CN105045025A (zh) * 2015-09-02 2015-11-11 纳晶科技股份有限公司 投影光源设备及具有其的投影装置、控制光斑运动的方法
CN105042517A (zh) * 2012-02-20 2015-11-11 深圳市光峰光电技术有限公司 波长转换装置和发光装置
CN205539893U (zh) * 2016-01-14 2016-08-31 深圳市光峰光电技术有限公司 一种波长转换装置、光源系统以及投影装置

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103048861A (zh) * 2011-10-13 2013-04-17 宏碁股份有限公司 可提高发光效率的图像产生装置
CN103064237A (zh) * 2011-10-21 2013-04-24 宏碁股份有限公司 可提高发光效率的图像产生装置
CN102645825A (zh) * 2011-11-03 2012-08-22 深圳市光峰光电技术有限公司 一种投影装置、光源系统以及色轮组件
CN105042517A (zh) * 2012-02-20 2015-11-11 深圳市光峰光电技术有限公司 波长转换装置和发光装置
US20150316839A1 (en) * 2012-11-29 2015-11-05 Lg Electronics Inc. Light source unit, and image projection device including same
CN203178658U (zh) * 2013-03-22 2013-09-04 深圳市绎立锐光科技开发有限公司 波长转换装置及相关发光装置
CN104267569A (zh) * 2014-09-22 2015-01-07 苏州佳世达光电有限公司 投影装置
CN105045025A (zh) * 2015-09-02 2015-11-11 纳晶科技股份有限公司 投影光源设备及具有其的投影装置、控制光斑运动的方法
CN205539893U (zh) * 2016-01-14 2016-08-31 深圳市光峰光电技术有限公司 一种波长转换装置、光源系统以及投影装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3848754A4 (en) * 2018-09-03 2021-11-10 Appotronics Corporation Limited LIGHT SOURCE DEVICE AND DISPLAY DEVICE
US11378876B2 (en) 2018-09-03 2022-07-05 Appotronics Corporation Limited Light source device and display apparatus
CN114441487A (zh) * 2020-11-04 2022-05-06 致茂电子(苏州)有限公司 荧光检测系统
CN114441487B (zh) * 2020-11-04 2023-11-03 致茂电子(苏州)有限公司 荧光检测系统

Also Published As

Publication number Publication date
CN205539893U (zh) 2016-08-31

Similar Documents

Publication Publication Date Title
WO2017121233A1 (zh) 一种波长转换装置、光源系统以及投影装置
JP6406679B2 (ja) 投影システムおよびその発光デバイス
WO2018028240A1 (zh) 光源系统及投影设备
WO2014135040A1 (zh) 发光装置及相关投影系统
CN205992115U (zh) 光源系统及投影设备
WO2016197888A1 (zh) 投影系统、光源系统以及光源组件
WO2015149700A1 (zh) 一种光源系统及投影系统
WO2016192623A1 (zh) 波长转换装置、光源系统和投影系统
WO2018107634A1 (zh) 光源系统及投影装置
WO2019000674A1 (zh) 波长转换装置及光源系统
KR20120113115A (ko) 광원 장치 및 그 제조 방법
WO2011011979A1 (zh) 舞台灯光照明系统及其提供高亮度白光的方法
WO2018214333A1 (zh) 波长转换装置与光源系统
WO2018028277A1 (zh) 光源装置及投影系统
WO2017101773A1 (zh) 一种光源系统及照明系统
WO2013071742A1 (zh) 发光装置及投影系统
TW202008065A (zh) 波長轉換模組、波長轉換模組的形成方法以及投影裝置
WO2018137313A1 (zh) 一种光源装置
WO2018023999A1 (zh) 一种光源装置以及投影设备
WO2016070705A1 (zh) 一种投影仪及其光源系统
WO2018010487A1 (zh) 光源及投影仪
EP3599762A1 (en) Light source device and projector
WO2017114303A1 (zh) 色轮模组、光源模组和投影系统
TW201935085A (zh) 照明系統與投影裝置
WO2017118300A1 (zh) 一种光源装置及照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16884785

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 16884785

Country of ref document: EP

Kind code of ref document: A1