WO2018023999A1 - 一种光源装置以及投影设备 - Google Patents

一种光源装置以及投影设备 Download PDF

Info

Publication number
WO2018023999A1
WO2018023999A1 PCT/CN2017/081479 CN2017081479W WO2018023999A1 WO 2018023999 A1 WO2018023999 A1 WO 2018023999A1 CN 2017081479 W CN2017081479 W CN 2017081479W WO 2018023999 A1 WO2018023999 A1 WO 2018023999A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
light beam
source module
combining device
Prior art date
Application number
PCT/CN2017/081479
Other languages
English (en)
French (fr)
Inventor
胡飞
侯海雄
李屹
Original Assignee
深圳市光峰光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市光峰光电技术有限公司 filed Critical 深圳市光峰光电技术有限公司
Priority to US16/321,753 priority Critical patent/US10989998B2/en
Priority to EP17836183.8A priority patent/EP3495884A4/en
Publication of WO2018023999A1 publication Critical patent/WO2018023999A1/zh
Priority to US17/210,353 priority patent/US11604401B2/en

Links

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0927Systems for changing the beam intensity distribution, e.g. Gaussian to top-hat
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/09Beam shaping, e.g. changing the cross-sectional area, not otherwise provided for
    • G02B27/0938Using specific optical elements
    • G02B27/095Refractive optical elements
    • G02B27/0955Lenses
    • G02B27/0961Lens arrays
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2013Plural light sources
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2006Lamp housings characterised by the light source
    • G03B21/2033LED or laser light sources
    • G03B21/204LED or laser light sources using secondary light emission, e.g. luminescence or fluorescence
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/208Homogenising, shaping of the illumination light
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings
    • G03B21/2066Reflectors in illumination beam
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B33/00Colour photography, other than mere exposure or projection of a colour film
    • G03B33/08Sequential recording or projection

Definitions

  • the present invention relates to the field of light source technologies, and in particular, to a light source device and a projection device.
  • the laser As a light source with high brightness, good monochromaticity and good directivity, laser has been widely used in projection devices in recent years.
  • the monochromatic high-intensity illumination source plays an important role in the quality of the displayed image, and the performance of the projection device is greatly improved. Therefore, the laser has become one of the main light sources of the projection device.
  • the light field of the laser generally does not have a uniformly distributed light intensity over the entire cross section, such as a Gaussian distribution of the laser, the light field distribution of the laser in the illumination region is not uniform. For laser projection devices where illumination uniformity is critical, the unevenness of the light intensity distribution will directly affect the performance of the system.
  • the existing laser light source adopts the form of extended amount of light splitting.
  • the laser first passes through the homogenizing square rod and then passes through the relay system to image the end surface of the square rod onto the fluorescent wheel. Therefore, the spot incident on the fluorescent wheel is relatively uniform, and the optical power density is low.
  • the area is large when passing through the area splitting diaphragm. Compared with other light, the light with the same or similar wavelength as the incident light has more loss, and the angular distribution is not uniform, which has a great influence on the light uniformity of the system.
  • the present invention provides a light source device, including:
  • a first light source module a lens group, a first light homogenizing member, a first light combining device, and a wavelength conversion device;
  • the first light source module is configured to emit a first light beam having a first wavelength
  • the lens group and the first light homogenizing member are located on a transmission path of the first light beam, the lens group is configured to converge the first light beam, and the first light homogenizing member is used for a homogenization a first light beam, the second light beam formed by the homogenization is incident on the first light combining device, and the first light combining device is located at a focus position of the lens group;
  • the wavelength conversion device is located on a transmission path of the third light beam emitted from the first light combining device for exciting to generate a laser beam having a second wavelength.
  • the first light homogenizing component is a microlens array composed of a plurality of lenses, and the first light beam is incident by an optical entrance of the microlens array, and is emitted by the light exit of the microlens array to The first light combining device.
  • the lens group is a first concentrating mirror, and the first light combining device is located at a focus position of the first concentrating mirror;
  • the lens group is a combination of a plurality of lenses, the first light combining device being located at a focus position of the lens closest to the first light combining device on the beam transmitting path.
  • the first light source module is a first laser array
  • the aspect ratio of the first laser array is the same as the length to width ratio of the micro mirror array of the spatial light modulator.
  • the method further includes: a compression lens group for compressing the spot of the first light beam before the first light-sharing component on the light beam transmission path.
  • the compression lens group comprises one or more of a compression positive lens or a compression negative lens.
  • it also includes:
  • a second light source module configured to emit a fourth light beam having a third wavelength
  • a second light combining device on the optical paths of the first light beam and the fourth light beam for transmitting or reflecting the first light beam and correspondingly reflecting or transmitting the fourth light beam.
  • the first light source module is a blue laser array
  • the second light source module is a red laser array
  • the first light combining device aligns the first light beam and the fourth light beam by the first light homogenizing component The light beam after the light is combined.
  • the first light combining device is a dichroic mirror for splitting the second light beam, and the first split light is transmitted or reflected to the wavelength conversion device.
  • it also includes:
  • a diffusing plate corresponding to the first splitting of the first light combining means, the second splitting light being reflected or transmitted to the scattering plate.
  • it also includes:
  • a third light source module a second light homogenizing component and a third light combining device
  • the third light source module is configured to emit a fifth light beam having a fourth wavelength
  • the second light homogenizing member is located on the transmission path of the fifth light beam to homogenize the fifth light beam, and the sixth light beam formed after the homogenization is incident on the third light beam together with the second light beam After the light combining device, it is incident on the first light combining device.
  • the first light source module is a red laser array
  • the third light source module is a blue laser array
  • the second light homogenizing component is a uniform light square rod
  • the first light combining device has a middle portion The blue light is incident on the scattering plate, and the remaining portion of the blue light and the red light are incident on the wavelength conversion device.
  • the present invention also provides a projection apparatus comprising any of the above-described light source devices.
  • the light beam emitted from the first light source module is concentrated and homogenized by the lens group and the first light homogenizing member, and the light beam formed by the homogenization is incident on the first
  • the first light combining device is located at a focus position of the lens group, and images the surface distribution of the first light source module onto the wavelength conversion device, and reduces the area of the region required for the first light combining device to expand the light splitting. Improve the uniformity and efficiency of the system.
  • FIG. 1 is a schematic structural diagram of a light source device according to Embodiment 1 of the present invention.
  • FIG. 2 is a schematic view showing the shape of a spot on a wavelength conversion device of a light source device according to Embodiment 1 of the present invention
  • FIG. 3 is a schematic view showing the shape of a spot of each laser chip on the first spectroscopic device in the present invention
  • FIG. 4 is a schematic structural view of a second embodiment of a light source device according to the present invention.
  • FIG. 5 is a schematic structural view of a third embodiment of a light source device according to the present invention.
  • FIG. 6 is a schematic structural view of a fourth embodiment of a light source device according to the present invention.
  • Embodiment 7 is a schematic structural view of Embodiment 5 of a light source device according to the present invention.
  • Embodiment 6 of a light source device is a schematic structural view of Embodiment 6 of a light source device according to the present invention.
  • FIG. 9 is a schematic structural diagram of Embodiment 7 of a light source device according to the present invention.
  • FIG. 10 is a schematic structural view of Embodiment 8 of a light source device according to the present invention.
  • FIG. 1 is a schematic structural diagram of a light source device according to Embodiment 1 of the present invention.
  • the light source device of the present invention comprises:
  • the first light source module 1 is configured to emit a first light beam having a first wavelength
  • the lens group 2 and the first light homogenizing member 3 are located on a transmission path of the first light beam, the lens group 2 is for focusing the first light beam, and the first light homogenizing member 3 is used for homogenizing the first light beam and is formed by homogenization.
  • the second light beam is incident on the first light combining device 4, and the first light combining device 4 is located at a focus position of the lens group 2;
  • the wavelength conversion device 5 is located on the transmission path of the third light beam emitted from the first light combining device 4, and is used to stimulate the laser light having the second wavelength.
  • the light beam emitted from the first light source module is concentrated and homogenized by the lens group and the first light homogenizing member, and the light beam formed by the homogenization is incident on the first light combining device.
  • the light combining device is located at a focus position of the lens group, and images the surface distribution of the first light source module onto the wavelength conversion device, thereby reducing the area of the area required for the first light combining device to split the light, thereby improving the uniformity of the system. And efficiency.
  • the first light source module 1 may be a solid state light source LED or a laser.
  • the first laser array may be specifically used, and the aspect ratio of the first laser array is the same as the length and width ratio of the micromirror array of the spatial light modulator. With such an arrangement, efficiency can be improved, the amount of optical spread can be matched, and processing such as uniform light and light shaping of the subsequent optical path can be facilitated.
  • the lens group 2 may be a first concentrating mirror.
  • the first light combining device 4 is located at a focus position of the condensing mirror.
  • the lens group 2 is a combination of a plurality of lenses
  • the first light combining means 4 is located at a focus position of the lens closest to the first light combining means on the light beam transmitting path.
  • the first light homogenizing member 3 is for homogenizing the first light beam such that the light intensity portion of the first light beam is uniform, thereby improving the quality of the displayed image, thereby changing the performance of the projection device.
  • the first light-sharing component 3 may be specifically a microlens array composed of a plurality of lenses, the first light beam being incident on the light entrance of the microlens array, and being emitted from the light exit of the microlens array to the first joint Optical device.
  • the first light-shaping member may also be a fly-eye lens pair. Other components capable of achieving uniform light are not limited to these two types.
  • the microlens array may be an array of a plurality of identical lenses, or an array of a plurality of different lenses.
  • the array of the plurality of lenses may be in a rectangular arrangement, a hexagonal arrangement or a triangular arrangement, which does not affect the implementation of the present invention.
  • each lens divides the first light beam into sub-beams of the same size, and the plurality of sub-beams pass through the concentrating action of the first light combining device, at the first combined light
  • a uniform light field is superimposed on the focal plane of the device to achieve uniformization of the first light beam, that is, the uniform light principle of the array of the plurality of lenses is to divide the first light beam into a plurality of sub-beams of the same size, and then make the sub-beams
  • the mutual accumulation is achieved by mutual accumulation.
  • the uniformity of the light field distribution depends on the number of divided sub-beams or the number of lenses, and the number of sub-beams depends on the number of lenses.
  • the first light-sharing part contains 3
  • the first beam is split into 3 lenses
  • the sub-beams therefore, the more the number of lenses, the more sub-beams the first beam is split into, and the more uniform the optical path distribution of the resulting beam.
  • the number of lenses included in the first light-sharing component is determined by the designer according to the actual situation, and not as many as possible.
  • the first light beam passes through the array of the plurality of lenses, it is not necessary to undergo multiple reflections, so that a high energy utilization rate can be obtained.
  • the plurality of lenses can be made by plating an anti-reflection film and selecting a material having a small absorption coefficient at a working wavelength (the first wavelength in this embodiment) to further improve energy utilization, but not limited thereto.
  • the thickness of the plurality of lens arrays is less than the length of the integrator rod, which is advantageous in reducing the axial dimension of the device.
  • the first light combining device 4 may be specifically a dichroic mirror.
  • the dichroic mirror is coated in the middle region to transmit a blue light beam, and reflects other color lights other than the blue light, for example, specifically, a reflected yellow light beam.
  • the yellow beam is combined with the unexcited blue laser to white light, and the remaining areas are all reflected by the incident beam.
  • the wavelength conversion device 5 may specifically include a fluorescence collecting lens and a fluorescent wheel.
  • the fluorescent wheel can be divided into a light-transmitting region and a conversion region; when the incident light beam is incident on the light-transmitting region, the light-transmitting region penetrates the light-transmitting region, so that the incident light beam is incident on the first conversion region, first The conversion region emits an outgoing beam having a second wavelength.
  • the first conversion region is coated with a phosphor, and the incident light beam is incident on the phosphor, and the first conversion region generates an outgoing beam of the second wavelength.
  • the wavelength of the light beam emitted by the first conversion region is also different depending on the applied phosphor.
  • the first conversion region is coated with a red phosphor
  • the red phosphor is excited to generate red light
  • the wavelength of the red light is greater than the wavelength of the blue light.
  • the first conversion region is coated with a yellow phosphor
  • the first light source module 1 When the emitted blue light beam is incident on the first conversion region, the yellow phosphor is excited to generate yellow light.
  • the wavelength conversion device is a rotatable fluorescent wheel.
  • the above-mentioned wavelength conversion device 5 can also be designed to be totally reflective, that is, incident on the wavelength conversion device 5 .
  • the light beams are all used to excite the phosphor on the wavelength conversion device 5 to generate a new light beam without penetrating the wavelength conversion device 5, depending on the actual situation.
  • the aspect ratio of the laser array is matched with the ratio of the micromirror array of the spatial light modulator, and then directly focused through the lens group, and the first light combining device is placed at the focus of the condensing mirror, and the focused laser is focused.
  • the fluorescence collection system After passing through the fluorescence collection system, a uniformly distributed spot is formed on the fluorescent wheel, and the spot is rectangular in shape, and the aspect ratio thereof is consistent with the aspect ratio of the SLM.
  • FIG. 2 is a schematic view showing the shape of a spot generated on a fluorescent wheel after using a microlens array
  • FIG. 3 is a schematic view showing the shape of a spot generated by each laser chip on the first spectroscopic device in the present invention.
  • the spot of the first light source module and/or the second light source module of any one of embodiments 2 to 7 on the first light combining device or the third light combining device has a shape similar to that shown in FIG.
  • the present application can reduce the spot shape of each laser chip on the dichroic mirror.
  • the shape of the coating corresponding to the function of the laser (for example, yellow light) reflected by the transmission excitation light (for example, blue light and/or red light) disposed on the dichroic mirror is also reduced, thereby reducing the unexcited excitation light.
  • the specific shape of the spot of the first light source module on the first light combining device may depend on the shape of the laser light source chip.
  • the rectangle is reduced to approximately a linear shape, so that the entire device reduces the loss of unexcited excitation light and/or light of the same or similar wavelength as the excitation light, thereby improving the uniformity of the system.
  • a first light homogenizing member is added between the lens group and the first light homogenizing device, and the spot is divided to uniformize the spot on the fluorescent wheel, thereby improving the excitation efficiency of the fluorescent wheel.
  • the light source module provided by the present invention may further include:
  • the compression lens group 6 is located before the first light homogenizing member 3 on the beam transmission path for compressing the spot of the first light beam.
  • the compression lens group includes one or more of a compression positive lens or a compression negative lens.
  • FIG. 4 is a schematic structural view of a second embodiment of a light source device according to the present invention
  • FIG. 5 is a schematic structural view of a third embodiment of the light source device provided by the present invention.
  • the compression lens group 6 is added in the present embodiment, and can be applied to a laser array having a large aperture. Since the diameter of the first collecting lens is large, the focal length becomes long, and the area of the area also becomes large. Therefore, it is necessary to compress the spot of the laser by using the compression lens group 6, thereby reducing the size of the area.
  • the compression lens group in the second embodiment is a compression positive lens 61
  • the compression lens group in the third embodiment uses a compression negative lens 62, which can reduce the volume of the system.
  • the second concentrating mirror 63 may be further included in the second embodiment and the third embodiment, and constitutes a compression lens group together with the compression positive lens 61 or the compression negative lens 62.
  • the light source device provided by the present invention may further include a second light source module 7 and a second light combining device 8 on the basis of any of the above embodiments.
  • the second light source module 7 is configured to emit a fourth light beam having a third wavelength
  • the second light combining device 8 is located on the optical paths of the first light beam and the fourth light beam for transmitting or reflecting the first light beam and correspondingly reflecting or transmitting the fourth light beam.
  • the first light source module 1 may be a blue laser array
  • the second light source module 6 may be a red laser array.
  • the first light combining device 4 is configured to align the first light beam and the fourth light beam through the first light homogenizing component 3 The beam of light is combined.
  • the first light combining device is a dichroic mirror for splitting the second light beam, and the first split light is transmitted or reflected to the wavelength conversion device.
  • the first light combining device is specifically a regional film, which is in the form of a light beam that transmits red light and blue light in the middle region, and reflects the green light beam, and the remaining incident light beams are all reflected.
  • the spectral splitting performance of the region diaphragm in Fig. 7 is changed from the transmission of incident light to the reflection, that is, the beam of red light and blue light reflected in the middle region, the light beam transmitting green light, and the other incident light beams are all transmitted.
  • the embodiment can further improve the efficiency and reliability of the system.
  • the shape of the spot formed on the first light combining device 4 by at least one of the first light source module 1 or/and the second light source module 7 is adapted to the shape of the light emitting part.
  • the blue and red lasers are simultaneously incident on the wavelength conversion device through the first light homogenizing member (light combining) only when the blue light excites the red fluorescent region. In other cases, the blue light is incident on the wavelength conversion device alone (that is, there is no light combination at this time).
  • the sixth embodiment of the light source device provided by the present invention is as shown in FIG. 8.
  • the scattering plate 9 is added in the embodiment, and the first splitting light of the first light combining device 4 is incident on the subsequent wavelength.
  • the switching device 5, and the second splitting light is reflected or transmitted to the diffusing plate 9.
  • the first light source module 1 is a blue laser array
  • the second light source module 7 is a red laser array
  • the incident blue portion is divided into two parts by the first light combining device 4, and most of the light is reflected to the fluorescent wheel to The phosphor is excited and a small portion of the light is transmitted to the diffusing plate 9.
  • This embodiment can reduce the heat generated on the fluorescent wheel and improve the efficiency of the fluorescent wheel.
  • the seventh embodiment of the light source device provided by the present invention is as shown in FIG.
  • the device may further comprise:
  • the third light source module 10 is configured to emit a fifth light beam having a fourth wavelength
  • the second light homogenizing member 11 is located on the transmission path of the fifth light beam to homogenize the fifth light beam, and the sixth light beam formed by the homogenization is incident on the third light combining device 12 together with the second light beam, and is incident. To the first light combining device 4.
  • the first light source module 1 may be specifically a red laser array
  • the third light source module 10 may be specifically a blue laser array
  • the second light homogenizing component 11 is a uniform light square rod
  • the first light combining device 4 inputs the blue light of the middle portion. On the scattering plate, the remaining portions of blue light and red light are incident on the wavelength conversion device 5.
  • the blue laser part is uniformly lighted by a square rod, and the homogenized light is imaged onto the fluorescent wheel through the relay system, and the red light part is homogenized through the lens group and the first light homogenizing part.
  • the spot after the blue laser passes through the relay system is a large-caliber spot in which the blue light in the middle portion is incident on the diffusing plate 9, and the remaining portions of the blue light and the red light are incident on the fluorescent wheel.
  • the size of the central region can be determined by the proportion of the red light portion and the blue light to be distributed, the principle being to maximize the efficiency of the red light.
  • the solution solves the problem that the power density of the blue light incident on the diaphragm is too high, and prevents the regional diaphragm from being burned, so that the reliability of the system is ensured.
  • the first light source module 1 and/or the third light source module may be used in combination with the reflective element to change the optical axis of the light beam emitted by the first light source module 1, thereby facilitating the arrangement of the overall structure of the light source device to make it more compact.
  • the red laser array emits a first light beam, passes through the lens group, is incident on the reflective element, and its optical axis is rotated by 90 degrees and then incident on the first light-removing member 3.
  • the function of the reflective element is to change the direction of the optical path to make the structure compact, but it is not necessary to use it. In practice, the designer can also decide whether to use it according to the layout and space of the actual light source device.
  • the wavelength conversion device includes a fluorescence collecting lens and a fluorescent wheel.
  • the fluorescent wheel of the wavelength conversion device in each of the above embodiments uses a reflective fluorescent wheel, and the light source device of the embodiment and the light source device of the above embodiments. The most important difference is that the fluorescent wheel adopts a transmissive fluorescent wheel.
  • the first light beam with the first wavelength emitted by the first light source module 1 ′ passes through the lens group. 2', the first light-sharing member 3', and the first light-combining device 4' are incident on the wavelength conversion device 5'.
  • the first light-homogenizing member 3' is provided with a plating film corresponding to the first light beam incident region.
  • the coating has been described in detail above and will not be described here. Therefore, when the first beam is excited by the fluorescence on the transmissive fluorescent wheel, most of the laser light (shown as L2 in FIG. 10) is transmitted through the transmissive type. The fluorescent wheel is emitted. Since the laser is a Lambertian distribution, it is difficult to avoid. A small part of the laser (as indicated by L1 in Fig. 10) will be directed to the first light combining device 4', and a small portion of the Excited The emitted excitation light (as indicated by L1 in FIG.
  • the first light combining device 4' may also be subjected to scattering, reflection or other forms of fluorescent wheel action to the first light combining device 4'. Therefore, since the first light is combined in this embodiment, The area of the area required for the device 4' spread amount splitting is minimized, so that when the wavelength of the laser light incident on a small portion of the first light combining means 4' is the same as or close to the first wavelength, the above-mentioned The loss caused by the excitation light of the fluorescent wheel and/or the small portion of the laser light transmitted through the coating of the first light combining device 4' is greatly reduced, and in addition, the removal of the first light combining device 4' of the present embodiment
  • the region other than the plating film can further guide the unexcited excitation light to the above-described transmissive fluorescent wheel to further excite the phosphor as the wavelength converting material, and therefore, the excitation efficiency of the excitation light is also improved.
  • the present invention provides a projection apparatus comprising any of the above-described light source devices.
  • the light source device can have the structure and function in the above embodiments.
  • the projection system can use various projection technologies, such as liquid crystal display (LCD, Liquid) Crystal Display) projection technology, DLP (Digital Light Processor) projection technology.
  • LCD liquid crystal display
  • DLP Digital Light Processor

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Multimedia (AREA)
  • Projection Apparatus (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)

Abstract

一种光源装置及投影设备,包括:第一光源模块(1,1')、透镜组(2,2')、第一匀光部件(3,3')、第一合光装置(4,4')以及波长转换装置(5);第一光源模块(1,1')用于出射具有第一波长的第一光束;透镜组(2,2')以及第一匀光部件(3,3')位于第一光束的传递路径上,透镜组(2,2')用于对第一光束进行会聚,第一匀光部件(3,3')用于匀化第一光束,经匀化后形成的第二光束入射至第一合光装置(4,4'),第一合光装置(4,4')位于透镜组(2,2')的焦点位置处;波长转换装置(5)位于经第一合光装置(4,4')出射后的第三光束的传递路径上,用于受激产生具有第二波长的受激光。从而,缩小了第一合光装置(4,4')扩展量分光所需的区域的面积,提高了系统的均匀性以及效率。

Description

一种光源装置以及投影设备 技术领域
本发明涉及光源技术领域,特别是涉及一种光源装置以及投影设备。
背景技术
激光作为一种亮度高、单色性好、方向性好的光源,近些年在投影装置中得到了广泛的应用。单色高亮度的照明光源对显示图像的质量起着重要的作用,对投影装置的性能有极大的提高,因此,激光已经成为投影装置的主要光源之一。但是,由于激光的光场在整个截面上通常不具有均匀分布的光强,比如激光的高斯分布,使得激光在照明区域内光场分布不均匀。对于照明均匀性要求很高的激光投影装置,光强分布的不均匀性将直接影响到系统的性能。
技术问题
目前,现有激光光源采用扩展量分光的形式。激光先经过匀光方棒的匀光后经过中继系统将方棒的端面成像到荧光轮上,因此入射到荧光轮的光斑较为均匀,光功率密度较低。但是,经过区域分光膜片时面积较大。相对于其他光来说,与入射光波长相同或相近的光损失较多,并且其角度分布不均匀,对系统的光均匀性有较大的影响。
因此,如何进一步提升光源的效率以及均匀性是本领域亟待解决的技术问题。
技术解决方案
本发明的目的是提供一种光源装置以及投影设备,目的在于提升光源的效率以及均匀性,以提高显示图像的质量。
为解决上述技术问题,本发明提供一种光源装置,包括:
第一光源模块、透镜组、第一匀光部件、第一合光装置以及波长转换装置;
所述第一光源模块用于出射具有第一波长的第一光束;
所述透镜组以及所述第一匀光部件位于所述第一光束的传递路径上,所述透镜组用于对所述第一光束进行会聚,所述第一匀光部件用于匀化所述第一光束,经匀化后形成的第二光束入射至所述第一合光装置,所述第一合光装置位于所述透镜组的焦点位置处;
所述波长转换装置位于经所述第一合光装置出射后的第三光束的传递路径上,用于受激产生具有第二波长的受激光。
可选地,所述第一匀光部件为多个透镜组成的微透镜阵列,所述第一光束由所述微透镜阵列的入光口入射,并由所述微透镜阵列的出光口出射至所述第一合光装置。
可选地,所述透镜组为第一聚光镜,所述第一合光装置位于所述第一聚光镜的焦点位置处;
或者所述透镜组为多个透镜的组合,所述第一合光装置位于光束传递路径上最接近所述第一合光装置的透镜的焦点位置处。
可选地,所述第一光源模块为第一激光阵列,所述第一激光阵列的长宽比例与空间光调制器的微镜阵列的长宽比例相同。
可选地,还包括:压缩透镜组,位于光束传递路径上所述第一匀光部件之前,用于对所述第一光束的光斑进行压缩。
可选地,所述压缩透镜组包括压缩正透镜或压缩负透镜中的一种或多种。
可选地,还包括:
第二光源模块,用于出射具有第三波长的第四光束;
以及第二合光装置,位于所述第一光束以及所述第四光束的光路上,用于透射或反射所述第一光束及相应反射或透射所述第四光束。
可选地,
所述第一光源模块为蓝激光阵列,所述第二光源模块为红激光阵列,所述第一合光装置对所述第一光束以及所述第四光束经所述第一匀光部件匀光后的光束进行合光。
可选地,所述第一合光装置为二向色镜,用于对所述第二光束进行分光,第一分光透射或反射至所述波长转换装置。
可选地,还包括:
散射板,与所述第一合光装置的第一分光相对应,第二分光反射或透射至所述散射板。
可选地,还包括:
第三光源模块,第二匀光部件以及第三合光装置;
所述第三光源模块用于出射具有第四波长的第五光束;
所述第二匀光部件位于所述第五光束的传递路径上,以匀化所述第五光束,将匀化后形成的第六光束与所述第二光束一并入射至所述第三合光装置后,入射至所述第一合光装置。
可选地,所述第一光源模块为红激光阵列,所述第三光源模块为蓝激光阵列,所述第二匀光部件为匀光方棒,所述第一合光装置将中间部分的蓝光入射至散射板上,其余部分的蓝光和红光入射到所述波长转换装置。
有益效果
本发明还提供了一种投影设备,包括上述任一种光源装置。
本发明所提供的光源装置以及具有光源装置的投影设备,通过透镜组以及第一匀光部件,对第一光源模块出射的光束进行会聚以及匀化,经匀化后的形成的光束入射至第一合光装置上,第一合光装置位于透镜组的焦点位置处,将第一光源模块的面分布成像到波长转换装置上,缩小了第一合光装置扩展量分光所需的区域的面积,提高了系统的均匀性以及效率。
附图说明
为了更清楚的说明本发明实施例或现有技术的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单的介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明实施例一所提供的光源装置的结构示意图;
图2为本发明实施例一所提供的光源装置的波长转换装置上的光斑的形状示意图;
图3为本发明中各激光芯片在第一分光装置上的光斑的形状示意图;
图4为本发明所提供的光源装置的实施例二的结构示意图;
图5为本发明所提供的光源装置的实施例三的结构示意图;
图6为本发明所提供的光源装置的实施例四的结构示意图;
图7为本发明所提供的光源装置的实施例五的结构示意图;
图8为本发明所提供的光源装置的实施例六的结构示意图;
图9为本发明所提供的光源装置的实施例七的结构示意图;
图10为本发明所提供的光源装置的实施例八的结构示意图。
本发明的最佳实施方式
为了使本技术领域的人员更好地理解本发明方案,下面结合附图和具体实施方式对本发明作进一步的详细说明。显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
参照图1所示,为本发明实施例一所提供的光源装置的结构示意图。参见图1所示,本发明光源装置包括:
第一光源模块1、透镜组2、第一匀光部件3、第一合光装置4以及波长转换装置5。
其中,第一光源模块1用于出射具有第一波长的第一光束;
透镜组2以及第一匀光部件3位于第一光束的传递路径上,透镜组2用于对第一光束进行会聚,第一匀光部件3用于匀化第一光束,经匀化后形成的第二光束入射至第一合光装置4,第一合光装置4位于透镜组2的焦点位置处;
波长转换装置5位于经第一合光装置4出射后的第三光束的传递路径上,用于受激产生具有第二波长的受激光。
本发明所提供的光源装置,通过透镜组以及第一匀光部件,对第一光源模块出射的光束进行会聚以及匀化,经匀化后的形成的光束入射至第一合光装置上,第一合光装置位于透镜组的焦点位置处,将第一光源模块的面分布成像到波长转换装置上,缩小了第一合光装置扩展量分光所需的区域的面积,提高了系统的均匀性以及效率。
第一光源模块1可以为固态光源LED或者激光。本实施例中,可具体采用第一激光阵列,第一激光阵列的长宽比例与空间光调制器的微镜阵列的长宽比例相同。通过这样的设置,能够提高效率,使得光学扩展量匹配,方便后续光路的匀光、光整形等处理。
透镜组2可以为第一聚光镜。当透镜组为单个透镜时,如图1所示,第一合光装置4位于该聚光镜的焦点位置处。此外,当透镜组2为多个透镜的组合时,第一合光装置4位于光束传递路径上最接近第一合光装置的透镜的焦点位置处。
第一匀光部件3用于匀化第一光束,使得第一光束的光强部分均匀,从而提高显示图像的质量,进而改变投影装置的性能。第一匀光部件3可以具体为多个透镜组成的微透镜阵列,第一光束由所述微透镜阵列的入光口入射,并由所述微透镜阵列的出光口出射至所述第一合光装置。此外,第一匀光部件还可以为复眼透镜对。其他能够实现匀光的元件均可,并不限于这两种。
本实施例中,微透镜阵列可以为多个相同的透镜组成的阵列,也可以为多个不同的透镜组成的阵列。多个透镜的阵列可以采用矩形排列、六角形排列或者三角形排列的方法,这均不影响本发明的实现。
当第一光束入射至微透镜阵列的多个透镜时,每个透镜将第一光束分割为尺寸相同的子光束,多个子光束再经过第一合光装置的聚光作用,在第一合光装置的焦面上叠加形成均匀光场,从而实现对第一光束的匀光,即多个透镜的阵列的匀光原理是将第一光束分割成若干个尺寸相同的子光束,再使子光束相互累加实现匀光,因此,光场分布的均匀程度取决于分割成的子光束的个数或者透镜的个数,而子光束的个数又取决于透镜的个数。例如,当第一匀光部件包含3 个透镜时,第一光束被分割成3 个子光束,因此,透镜个数越多,第一光束被分割成的子光束也越多,得到的光束的光程分布越均匀。当然第一匀光部件包含的透镜个数具有由设计人员根据实际情况而定,并非越多越好。并且,由于第一光束通过多个透镜的阵列时,无需经过多次反射,因此可获得较高的能量利用率。较佳的,多个透镜可以通过镀增透膜并选用在工作波长(本实施例中为第一波长)吸收系数较小的材料制成,以进一步提高能量利用率,但不以此为限。此外,多个透镜阵列的厚度小于积分棒的长度,有利于减小装置的轴向尺寸。
第一合光装置4可以具体为二向色镜。在第一光源模块1为蓝激光阵列的情况下,该二向色镜的镀膜形式为中间区域透射蓝色光束,反射除蓝色光以外的其他颜色光,例如,具体可以为反射黄色光束,该黄色光束与未激发的蓝色激光合为白光,其余区域对入射光束全部反射。
波长转换装置5可以具体包括:荧光收集透镜以及荧光轮。其中,荧光轮可以分为透光区域以及转换区域;因波长转换装置的旋转,使得入射光束入射到透光区域时,穿透透光区域,使得入射光束入射到第一转换区域时,第一转换区域发射出具有第二波长的出射光束。较佳的,第一转换区域涂覆有荧光粉,因入射光束入射到荧光粉上,第一转换区域产生第二波长的出射光束。且因涂覆的荧光粉的不同,第一转换区域发出的光束的波长也不同。例如,若第一转换区域涂覆有红光荧光粉,因蓝光的频率较红光高,因而当第一光源模块1 发出的蓝色光束入射至第一转换区域时,激发红光荧光粉而产生红光,红光的波长大于蓝光的波长。若第一转换区域涂覆有黄光荧光粉,则当第一光源模块l 发出的蓝色光束入射至第一转换区域时,激发黄光荧光粉而产生黄光。于实际应用中,波长转换装置为可旋转的荧光轮。此外,需要说明的是,为了减少光损,上述波长转换装置5亦可以设计成全反射型,即入射至波长转换装置5 的光束全部用于激发波长转换装置5上的荧光粉以产生新的光束,而不会穿透波长转换装置5 ,具体由设计人员根据实际情况而定。
本实施例将激光阵列的长宽比例与空间光调制器的微镜阵列的比例设为一致,然后直接经过透镜组进行聚焦,将第一合光装置置于聚光镜的焦点处,聚焦后的激光再经过荧光收集系统后会在荧光轮上形成均匀分布的光斑,该光斑的形状为矩形,其长宽比例与SLM的长宽比例相一致。
图2为采用微透镜阵列后在荧光轮上生成的光斑形状示意图;图3为本发明中各激光芯片在第一分光装置上生成的光斑的形状示意图。实施例二至七中任一实施例的第一光源模块和/或第二光源模块在第一合光装置或第三合光装置上的光斑具有类似于图3所示的形状。
通过图3可以发现,本申请能够使得各激光芯片在二向色镜上的光斑形状缩小。。这样,对应于二向色镜上所设置的具有透射激发光(例如蓝光或/和红光)反射受激光(例如黄光)功能的镀膜形状也相应缩小,由此可以减少未激发的激发光经过荧光轮反射而经过该镀膜所造成的损失。
第一光源模块在第一合光装置上光斑具体形状可根据激光发光源芯片的形状而定。如当发光源为激光阵列时,由矩形缩小为近似一条线形,这样使得整个装置减少了未激发激发光和/或与激发光波长相同或相近的光的损失,提高了系统的均匀性。具体地,发光源在二向色镜上的成像形状满足下式:f1×s1=f2×s2,其中,f1准直透镜焦距,s1为激发光芯片(无论单个还是阵列中的每个),面积f2为最接近二向色镜的会聚透镜的焦距,s2为二向色镜上的光斑面积。
此外,本实施例在透镜组以及第一匀光装置之间加入第一匀光部件,对光斑进行分割,使其在荧光轮上的光斑得到均匀化,提高了荧光轮的激发效率。
在上述实施例的基础上,本发明所提供的光源模块还可以进一步包括:
压缩透镜组6,位于光束传递路径上第一匀光部件3之前,用于对第一光束的光斑进行压缩。
具体地,压缩透镜组包括压缩正透镜或压缩负透镜中的一种或多种。
如图4本发明所提供的光源装置的实施例二的结构示意图以及图5本发明所提供的光源装置的实施例三的结构示意图所示。与上述实施例相比,本实施例中增加了压缩透镜组6,可应用于大孔径的激光阵列中。由于第一聚光透镜的口径较大,因此焦距会变长,导致区域的面积也会变大。所以需要采用压缩透镜组6将激光的光斑进行压缩,从而缩小区域的大小。实施例二中的压缩透镜组为压缩正透镜61,而实施例三中的压缩透镜组采用压缩负透镜62,可以减小系统的体积。实施例二以及实施例三中还可以包括第二聚光镜63,与压缩正透镜61或压缩负透镜62共同构成压缩透镜组。
在上述任一实施例的基础上,本发明所提供的光源装置还可以进一步包括第二光源模块7以及第二合光装置8。
其中,第二光源模块7用于出射具有第三波长的第四光束;
第二合光装置8位于第一光束以及第四光束的光路上,用于透射或反射第一光束及相应反射或透射第四光束。
本实施例中第一光源模块1可以为蓝激光阵列,第二光源模块6可以为红激光阵列,第一合光装置4对第一光束以及第四光束经第一匀光部件3匀光后的光束进行合光。
第一合光装置为二向色镜,用于对所述第二光束进行分光,第一分光透射或反射至所述波长转换装置。
请参照图6本发明所提供的光源装置的实施例四以及图7本发明所提供的光源装置的实施例五所示。如图6所示,第一光源模块1出射的光束与第二光源模块7出射的光束,经第二合光装置8合光后,经第一匀光部件3进行匀光,匀化后形成的光束入射至第一合光装置4,经第一合光装置4合光后,透射光束进入至荧光轮。本实施例中,第一合光装置具体为区域膜片,其镀膜形式为中间区域透射红光以及蓝光的光束,反射绿光的光束,其余部分入射光束则全部反射。
而图7中的区域膜片的分光性能则由入射光的透射改为反射,即中间区域反射红光、蓝光的光束,透射绿光的光束,其余部分入射光束则全部透射。与实施例四相比,本实施例可以进一步提升系统的效率以及可靠性。
本实施例中,第一光源模块1或/和第二光源模块7中的至少一个发光部件在第一合光装置4上形成的光斑的形状与发光部件的形状相适配。
需要指出的是,各包括红激光阵列的实施例中,优选的是,只有在蓝光激发红荧光区时,蓝、红激光才是同时经第一匀光部件(合光)入射至波长转换装置的,其他情况下,蓝光都是单独入射至波长转换装置(也就是此时并不存在合光)。
本发明所提供的光源装置的实施例六如图8所示,与上一实施例相比,本实施例中增加了散射板9,第一合光装置4的第一分光入射至后续的波长转换装置5,,而第二分光通过反射或透射至该散射板9。本实施例中,第一光源模块1为蓝激光阵列,第二光源模块7为红激光阵列,入射的蓝光部分由第一合光装置4分为两个部分,大部分反射到荧光轮,以激发荧光粉,小部分光透射到散射板9。本实施例可降低荧光轮上产生的热量,提升荧光轮的效率。
此外,本发明所提供的光源装置的实施例七如图9所示。该装置还可以进一步包括:
第三光源模块10,第二匀光部件11以及第三合光装置12。
第三光源模块10用于出射具有第四波长的第五光束;
第二匀光部件11位于第五光束的传递路径上,以匀化第五光束,将匀化后形成的第六光束与第二光束一并入射至所述第三合光装置12后,入射至第一合光装置4。
其中,第一光源模块1可以具体为红激光阵列,第三光源模块10可以具体为蓝激光阵列,第二匀光部件11为匀光方棒,第一合光装置4将中间部分的蓝光入射至散射板上,其余部分的蓝光和红光入射到波长转换装置5。
蓝激光部分采用方棒匀光,匀化后的光经过中继系统成像到荧光轮上,红光部分经透镜组、第一匀光部件匀光。蓝激光经过中继系统后的光斑为大口径光斑,其中中间部分的蓝光入射到散射板9上,其余部分的蓝光和红光入射到荧光轮上。中心区域的大小可由红光部分以及需分配的蓝光的比例来确定,原则是使得红光的效率最大化。另外,该方案解决了入射到区域膜片上蓝光功率密度过高的问题,防止区域膜片烧毁,使得系统的可靠性得到保证。
第一光源模块1和/或第三光源模块可以与反射元件配合使用,以使第一光源模块1发射的光束的光轴发生变化,从而利于光源装置的整体结构的排布,以使其更加紧凑。如图9所示,红激光阵列发射第一光束,经透镜组后,入射至反射元件,其光轴被旋转90度后入射至第一匀光部件3。需要说明的是,反射元件的作用在于改变光路的方向,使结构紧凑,但并非是必要使用的。在实际中,设计人员亦可根据实际光源装置的布局和空间情况,决定是否需要使用。
另外,本发明所提供的光源装置的实施例八如图10所示。以波长转换装置为包括荧光收集透镜和荧光轮为例来说,上述各实施例中的波长转换装置的荧光轮采用反射式荧光轮,而本实施例的光源装置与以上各实施例的光源装置的最主要区别即在于荧光轮采用透射式荧光轮,具体来说,可参照图2和上述实施例一的相关描述,第一光源模块1’发出的具有第一波长的第一光束经过透镜组2’、第一匀光部件3’、第一合光装置4’入射至波长转换装置5’,可知的是,第一匀光部件3’对应于第一光束入射区域设有镀膜,关于该镀膜,上文已有详细描述,在此不再赘述,因此,第一光束对透射式荧光轮上的荧光进行激发时,大部分的受激光(如图10中L2所示意)透射出透射式荧光轮而出射,由于受激光是朗伯分布,因此,难以避免的,小部分的受激光(如图10中L1所示意)将会射向第一合光装置4’,并且少部分的未激发的激发光(如图10中L1所示意)也可能会受散射、反射或其他方式的荧光轮作用也射向第一合光装置4’,因此,由于本实施例中,第一合光装置4’扩展量分光所需的区域的面积被最大程度地缩小,从而,当上述射向第一合光装置4’的小部分的受激光的波长与第一波长相同或相近时,上述受荧光轮作用的激发光和/或小部分的受激光经第一合光装置4’的镀膜而透射所造成的损失被极大地减少,另外,本实施例的第一合光装置4’的除镀膜以外的区域还可以将未激发的激发光进一步引导至上述透射式荧光轮以进一步激发作为波长转换材料的荧光粉,因此,也提高了激发光的激发效率。
此外,本发明还提供了一种投影设备,包括上述任一种光源装置。该光源装置可以具有上述各实施例中的结构与功能。该投影系统可以采用各种投影技术,例如液晶显示器(LCD,Liquid Crystal Display)投影技术、数码光路处理器(DLP,Digital Light Processor)投影技术。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其它实施例的不同之处,各个实施例之间相同或相似部分互相参见即可。对于实施例公开的装置而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
以上对本发明所提供的光源装置以及投影设备进行了详细介绍。本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想。应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明原理的前提下,还可以对本发明进行若干改进和修饰,这些改进和修饰也落入本发明权利要求的保护范围内。

Claims (13)

1、一种光源装置,其特征在于,包括:
第一光源模块、透镜组、第一匀光部件、第一合光装置以及波长转换装置;
所述第一光源模块用于出射具有第一波长的第一光束;
所述透镜组以及所述第一匀光部件位于所述第一光束的传递路径上,所述透镜组用于对所述第一光束进行会聚,所述第一匀光部件用于匀化所述第一光束,经匀化后形成的第二光束入射至所述第一合光装置,所述第一合光装置位于所述透镜组的焦点位置处;
所述波长转换装置位于经所述第一合光装置出射后的第三光束的传递路径上,用于受激产生具有第二波长的受激光。
2、如权利要求1所述的光源装置,其特征在于,所述第一匀光部件为多个透镜组成的微透镜阵列,所述第一光束由所述微透镜阵列的入光口入射,并由所述微透镜阵列的出光口出射至所述第一合光装置。
3、如权利要求2所述的光源装置,其特征在于,所述透镜组为第一聚光镜,所述第一合光装置位于所述第一聚光镜的焦点位置处;
或者所述透镜组为多个透镜的组合,所述第一合光装置位于光束传递路径上最接近所述第一合光装置的透镜的焦点位置处。
4、如权利要求3所述的光源装置,其特征在于,所述第一光源模块为第一激光阵列,所述第一激光阵列的长宽比例与空间光调制器的微镜阵列的长宽比例相同。
5、如权利要求3所述的光源装置,其特征在于,还包括:压缩透镜组,位于光束传递路径上所述第一匀光部件之前,用于对所述第一光束的光斑进行压缩。
6、如权利要求5所述的光源装置,其特征在于,所述压缩透镜组包括压缩正透镜或压缩负透镜中的一种或多种。
7、如权利要求1至6任一项所述的光源装置,其特征在于,还包括:
第二光源模块,用于出射具有第三波长的第四光束;
以及第二合光装置,位于所述第一光束以及所述第四光束的光路上,用于透射或反射所述第一光束及相应反射或透射所述第四光束。
8、如权利要求7所述的光源装置,其特征在于,
所述第一光源模块为蓝激光阵列,所述第二光源模块为红激光阵列,所述第一合光装置对所述第一光束以及所述第四光束经所述第一匀光部件匀光后的光束进行合光。
9、如权利要求8所述的光源装置,其特征在于,所述第一合光装置为二向色镜,用于对所述第二光束进行分光,第一分光透射或反射至所述波长转换装置。
10、如权利要求9所述的光源装置,其特征在于,还包括:
散射板,与所述第一合光装置的第一分光相对应,第二分光反射或透射至所述散射板。
11、如权利要求1至3任一项所述的光源装置,其特征在于,还包括:
第三光源模块,第二匀光部件以及第三合光装置;
所述第三光源模块用于出射具有第四波长的第五光束;
所述第二匀光部件位于所述第五光束的传递路径上,以匀化所述第五光束,将匀化后形成的第六光束与所述第二光束一并入射至所述第三合光装置后,入射至所述第一合光装置。
12、如权利要求11所述的光源装置,其特征在于,所述第一光源模块为红激光阵列,所述第三光源模块为蓝激光阵列,所述第二匀光部件为匀光方棒,所述第一合光装置将中间部分的蓝光入射至散射板上,其余部分的蓝光和红光入射到所述波长转换装置。
13、一种投影设备,其特征在于,包括如权利要求1至12任一项所述的光源装置。
PCT/CN2017/081479 2016-08-05 2017-04-21 一种光源装置以及投影设备 WO2018023999A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/321,753 US10989998B2 (en) 2016-08-05 2017-04-21 Light source device and projection apparatus having light-combination device located at focus position of lenses
EP17836183.8A EP3495884A4 (en) 2016-08-05 2017-04-21 LIGHT SOURCE DEVICE AND PROJECTION DEVICE
US17/210,353 US11604401B2 (en) 2016-08-05 2021-03-23 Light source device and projection apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610638639.1 2016-08-05
CN201610638639.1A CN107688274A (zh) 2016-08-05 2016-08-05 一种光源装置以及投影设备

Related Child Applications (2)

Application Number Title Priority Date Filing Date
US16/321,753 A-371-Of-International US10989998B2 (en) 2016-08-05 2017-04-21 Light source device and projection apparatus having light-combination device located at focus position of lenses
US17/210,353 Continuation US11604401B2 (en) 2016-08-05 2021-03-23 Light source device and projection apparatus

Publications (1)

Publication Number Publication Date
WO2018023999A1 true WO2018023999A1 (zh) 2018-02-08

Family

ID=61072613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/081479 WO2018023999A1 (zh) 2016-08-05 2017-04-21 一种光源装置以及投影设备

Country Status (4)

Country Link
US (2) US10989998B2 (zh)
EP (1) EP3495884A4 (zh)
CN (1) CN107688274A (zh)
WO (1) WO2018023999A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12018102B2 (en) 2018-06-14 2024-06-25 Borealis Ag Process for polymerizing olefin in a gas phase reactor with improved thermal homogeneity

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107688274A (zh) * 2016-08-05 2018-02-13 深圳市光峰光电技术有限公司 一种光源装置以及投影设备
CN110376833B (zh) * 2018-04-12 2022-03-25 深圳光峰科技股份有限公司 光源系统和投影系统
CN110955104B (zh) * 2018-09-26 2023-03-24 深圳光峰科技股份有限公司 光源系统及投影系统
CN112147836B (zh) * 2019-06-28 2023-08-04 深圳光峰科技股份有限公司 一种光源系统及显示设备
JP7428070B2 (ja) * 2020-05-19 2024-02-06 株式会社リコー 光源光学系、光源装置及び画像投射装置
JP7484448B2 (ja) 2020-06-04 2024-05-16 セイコーエプソン株式会社 照明装置およびプロジェクター
CN213457631U (zh) * 2020-11-30 2021-06-15 中强光电股份有限公司 照明系统及投影装置

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102753113A (zh) * 2010-02-15 2012-10-24 欧司朗股份有限公司 光源单元和具有这类光源单元的投影仪
CN103913937A (zh) * 2013-01-01 2014-07-09 深圳市光峰光电技术有限公司 发光装置及其相关投影系统
CN104765238A (zh) * 2014-01-03 2015-07-08 深圳市亿思达科技集团有限公司 一种双激光光源系统
CN105319819A (zh) * 2014-07-28 2016-02-10 深圳市绎立锐光科技开发有限公司 发光装置及投影系统
JP2016090850A (ja) * 2014-11-06 2016-05-23 株式会社リコー 光源装置及び投射表示装置
CN205353549U (zh) * 2016-01-07 2016-06-29 深圳市绎立锐光科技开发有限公司 一种光源装置及照明装置
CN205992114U (zh) * 2016-08-05 2017-03-01 深圳市绎立锐光科技开发有限公司 一种光源装置以及投影设备

Family Cites Families (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2650593B1 (en) 2010-12-08 2018-11-28 Appotronics Corporation Limited Light source
JP5842162B2 (ja) * 2011-03-23 2016-01-13 パナソニックIpマネジメント株式会社 光源装置及びそれを用いた画像表示装置
JP5979365B2 (ja) * 2011-10-06 2016-08-24 パナソニックIpマネジメント株式会社 光源装置及び画像表示装置
CN107632487B (zh) * 2013-04-20 2020-03-24 深圳光峰科技股份有限公司 发光装置及相关光源系统
CN203745788U (zh) * 2014-01-03 2014-07-30 深圳市亿思达显示科技有限公司 一种双激光光源系统
TWI503578B (zh) 2014-06-13 2015-10-11 Coretronic Corp 光源模組與投影裝置
JP6665532B2 (ja) * 2016-01-06 2020-03-13 セイコーエプソン株式会社 光源装置、照明装置及びプロジェクター
JP6701751B2 (ja) * 2016-01-20 2020-05-27 セイコーエプソン株式会社 光源装置及びプロジェクター
CN107561836B (zh) * 2016-07-01 2019-10-25 深圳光峰科技股份有限公司 一种光源和投影系统
GB201612341D0 (en) * 2016-07-15 2016-08-31 Barco N V And Barco Fredrikstad As Projection System and Method For Improved Color Performance
CN107688274A (zh) * 2016-08-05 2018-02-13 深圳市光峰光电技术有限公司 一种光源装置以及投影设备
JP6848471B2 (ja) * 2017-01-23 2021-03-24 セイコーエプソン株式会社 照明装置およびプロジェクター
CN108572497B (zh) * 2017-03-14 2019-12-17 深圳光峰科技股份有限公司 光源装置及投影系统
CN109557753B (zh) * 2017-09-26 2021-03-02 深圳光峰科技股份有限公司 光源系统及投影装置
CN109634036B (zh) * 2017-10-09 2022-02-18 中强光电股份有限公司 投影装置及其照明系统
CN110888291B (zh) * 2018-09-07 2021-05-11 深圳光峰科技股份有限公司 光源系统及投影装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102753113A (zh) * 2010-02-15 2012-10-24 欧司朗股份有限公司 光源单元和具有这类光源单元的投影仪
CN103913937A (zh) * 2013-01-01 2014-07-09 深圳市光峰光电技术有限公司 发光装置及其相关投影系统
CN104765238A (zh) * 2014-01-03 2015-07-08 深圳市亿思达科技集团有限公司 一种双激光光源系统
CN105319819A (zh) * 2014-07-28 2016-02-10 深圳市绎立锐光科技开发有限公司 发光装置及投影系统
JP2016090850A (ja) * 2014-11-06 2016-05-23 株式会社リコー 光源装置及び投射表示装置
CN205353549U (zh) * 2016-01-07 2016-06-29 深圳市绎立锐光科技开发有限公司 一种光源装置及照明装置
CN205992114U (zh) * 2016-08-05 2017-03-01 深圳市绎立锐光科技开发有限公司 一种光源装置以及投影设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3495884A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US12018102B2 (en) 2018-06-14 2024-06-25 Borealis Ag Process for polymerizing olefin in a gas phase reactor with improved thermal homogeneity

Also Published As

Publication number Publication date
US10989998B2 (en) 2021-04-27
EP3495884A1 (en) 2019-06-12
US20210208492A1 (en) 2021-07-08
CN107688274A (zh) 2018-02-13
EP3495884A4 (en) 2020-04-22
US20190179221A1 (en) 2019-06-13
US11604401B2 (en) 2023-03-14

Similar Documents

Publication Publication Date Title
WO2018023999A1 (zh) 一种光源装置以及投影设备
US9188709B2 (en) Optical multiplexing apparatus and projector
WO2018028240A1 (zh) 光源系统及投影设备
CN105190432B (zh) 光源装置和投影型影像显示装置
CN107632487B (zh) 发光装置及相关光源系统
US7325957B2 (en) Polarized light emitting diode (LED) color illumination system and method for providing same
JP4935089B2 (ja) 投射型映像表示装置
JP2013092752A (ja) 光源装置及び画像表示装置
CA2705863A1 (en) Light source device and projection display device for projection system
JP2000214532A (ja) 照明装置およびそれを含む映像投影装置
WO2005067306A1 (en) Combined light source for projection display
WO2019071951A1 (zh) 复眼透镜组及投影装置
JP2003015220A (ja) プロジェクタ装置
JP2012128297A (ja) 光源装置
WO2020057299A1 (zh) 光源系统及投影设备
JP2017015993A (ja) 光源装置及びこれを用いた照明装置、投射型表示装置
EP3435153B1 (en) Light source device, illumination device, and projector
JP2000321529A (ja) プロジェクタ装置
TW201935085A (zh) 照明系統與投影裝置
JP2015108758A (ja) 照明装置、投射型映像表示装置、照明方法、および投射型映像表示方法
WO2018095019A1 (zh) 光源系统、投影系统及照明装置
WO2022037196A1 (zh) 一种三色光源设备和投影显示设备
WO2018201627A1 (zh) 激发光源系统及投影设备
JP7131580B2 (ja) 光源装置、照明装置およびプロジェクター
WO2018006633A1 (zh) 光源及相关投影系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17836183

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017836183

Country of ref document: EP

Effective date: 20190305