WO2018006633A1 - 光源及相关投影系统 - Google Patents

光源及相关投影系统 Download PDF

Info

Publication number
WO2018006633A1
WO2018006633A1 PCT/CN2017/081431 CN2017081431W WO2018006633A1 WO 2018006633 A1 WO2018006633 A1 WO 2018006633A1 CN 2017081431 W CN2017081431 W CN 2017081431W WO 2018006633 A1 WO2018006633 A1 WO 2018006633A1
Authority
WO
WIPO (PCT)
Prior art keywords
light
light source
homogenizing
reflective layer
color
Prior art date
Application number
PCT/CN2017/081431
Other languages
English (en)
French (fr)
Inventor
米麟
郭祖强
李屹
Original Assignee
深圳市光峰光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市光峰光电技术有限公司 filed Critical 深圳市光峰光电技术有限公司
Publication of WO2018006633A1 publication Critical patent/WO2018006633A1/zh

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B21/00Projectors or projection-type viewers; Accessories therefor
    • G03B21/14Details
    • G03B21/20Lamp housings

Definitions

  • FIG. 1 is a schematic view of a light source of a first embodiment of the present invention.
  • FIG. 4 is a schematic structural view of a sub-light source.
  • Fig. 8 is a schematic view of a light source according to a fourth embodiment of the present invention.
  • Projection system 100 Primary illumination source 110, 210, 310, 410 Wavelength conversion device 120, 220, 320, 420 Red segmentation area 122 Blue segmentation area 124 Green segmentation area 126 Homogenizer 140, 240, 340 Uniform rod 141, 241, 341 First light stick 441 Second light stick 443 Reflective layer 142, 242, 250, 342 Scattering layer 143, 243, 343 Specular reflection layer 145, 245, 345 Glowing surface 147, 247, 347, 447 Glossy surface 148, 248, 348, 448 Auxiliary illumination source 160, 260, 360, 460 Sub-light source 161, 261, 361, 461 chip 163 Reflective substrate 165 Exit surface 167 lens 170, 270, 370, 470 hole 257 Dichroic film 350 First segment 451 First reflective layer 445 Second segment 453 Second reflective layer 446 Light modulation device 50 Control device 60 Image parsing unit 61 control unit 63
  • FIG. 2 is a schematic diagram of the planar structure of the wavelength conversion device 120 .
  • the wavelength conversion device 120 is a color wheel.
  • the wavelength conversion device 120 is substantially disk-shaped and includes at least two segmented regions (e.g., 122, 124, 126) disposed along its circumferential direction of motion for respectively emitting light of the at least two colors. It can be understood that the size of the at least two segment regions (such as 122, 124, 126) can be set to be the same or different according to actual needs.
  • the number of segmentation regions (122, 124, 126) is three, and the wavelength conversion device 120 includes a red segmentation region 122, a blue segmentation region 124, and a green segmentation region 126, which are respectively used for receiving the primary transmission.
  • the light of the light source 110 emits red light, blue light, and green light.
  • the wavelength conversion device 120 continuously rotates with the center of its circumference as an axis, so that the red segmented region 122, the blue segmented region 124, and the green segmented region 126 sequentially receive the light emitted by the autonomous light source 110, and Red, blue and green light are emitted in sequence.
  • the primary illumination source 110 is an ultraviolet laser source
  • the blue segmented region 124 carries a blue wavelength conversion material
  • the blue wavelength conversion material is a blue phosphor
  • a plurality of segmented regions (such as 122, 124, and 126) of the wavelength conversion device 120 may also be provided with a filter material layer, and the main illumination source 110 emits white light, through which the plurality of segments are After the segment regions (e.g., 122, 124, and 126) are filtered, the wavelength conversion device 120 emits the light of the at least two colors at different times.
  • the wavelength conversion material of the red segmented region 122 of the wavelength conversion device 120 is a red filter material layer
  • the wavelength conversion material of the blue segment region 124 of the wavelength conversion device 120 is a blue filter material layer
  • the green segmentation Region 126 is provided with a layer of green light filtering material.
  • the wavelength conversion device 120 continuously rotates with the center of its circumference as an axis, so that the red segmentation region 122, the blue segmentation region 124, and the green segmentation region 126 sequentially receive the autonomous illumination source 110.
  • the light is emitted, and red, blue and green light are emitted in sequence.
  • the wavelength conversion device 120 in this embodiment is a transmissive color wheel. It can be understood that the wavelength conversion device 120 can also be a reflective color wheel, that is, the light incident surface of the color wheel and the light exit surface are the same. For the side, reference may be made to any reflective color wheel patent application before the filing date of this application.
  • the light homogenizing device 140 is configured to homogenize the light emitted by the wavelength conversion device 120.
  • the light homogenizing device 140 includes a light homogenizing rod 141 and a reflective layer 142.
  • the reflective layer 142 includes a stacked scattering layer 143 and a specular reflective layer 145 overlying the scattering layer 143.
  • the scattering layer 143 covers the outer sidewall of the homogenizing rod 141.
  • the specularly reflective layer 145 is disposed away from the homogenizing rod 141.
  • the homogenizing rod 141 is a solid integrator rod, and the scattering layer 143 and the specular reflection layer 145 are layered structures plated on the side walls of the homogenizing rod 141.
  • the auxiliary light source 160 is disposed inside the light homogenizing rod 141.
  • the auxiliary light source 160 is mounted on the side wall of the light homogenizing rod 141.
  • the auxiliary light source 160 illuminates the red light when the wavelength conversion device 120 emits red light, and is used to supplement the brightness of the red light.
  • the auxiliary light source 160 includes a plurality of sub-light sources 161 arranged in an array in the light rod 141.
  • the sub-light source 161 is an LED light source or a laser diode source.
  • the free-form surface can transmit red light incident at a small angle and reflect red light incident at a large angle, and reflect light of other colors, thereby reducing red light and returning to the portion absorbed by the chip 163, thereby improving the utilization efficiency of red light.
  • the first predetermined angle may be 25°
  • the second predetermined angle is 50°, but is not limited thereto, and may be adjusted as needed. Between these two angles, the first color ray is partially transmissive.
  • the sub-light source 161 of the auxiliary illumination source 160 may not be disposed on the inner sidewall of the homogenizing rod 141, and the sub-light source 161 of the auxiliary illumination source 160 may be disposed at other positions inside the homogenizing rod 141.
  • the sub-light source 161 can be disposed on the outer sidewall of the homogenizing rod 141, and the sub-light source 161 is disposed between the homogenizing rod 141 and the reflective layer 142 (for example, the sub-light source 161 is embedded in the outer sidewall of the homogenizing rod 141).
  • the reflective substrate 165 of the sub-light source 161 is connected to the scattering layer 143, and the exit surface 167 of the sub-light source 161 faces the homogenizing rod 141.
  • the auxiliary illumination source 160 is disposed between the homogenizing rod 141 and the reflective layer 142, and The light emitting surface (not shown) of the auxiliary light source 160 faces the light homogenizing rod 141.
  • the light source 10 of the present embodiment is applied to a projection system 100 .
  • the projection system 100 includes a light source 10 , a light modulation device 50 , and a control device 60 .
  • the light modulating device 50 is for image-modulating the light emitted from the light source 10.
  • the control device 60 includes an image analysis unit 61 and a control unit 63.
  • the image analysis unit 61 is configured to perform image analysis on the input image, and the control unit 63 is connected to the main illumination source 110, the wavelength conversion device 120, the auxiliary illumination source 160, and the light modulation device 50 for controlling the operation of each functional module.
  • the wavelength conversion device 120 rotates and the light modulation device 50 operates.
  • the control unit 63 controls the secondary illumination source 160 to illuminate to emit red light, and when the wavelength conversion device 120 emits other color light, the control unit 63 controls the secondary illumination source 160 to turn off.
  • the efficiency of using red light to excite red phosphors to produce red light is low, while the red phosphors have large heat generation and poor thermal stability, and cannot simply increase the blue light excitation power to improve the output efficiency of red light.
  • An additional design red light supplement source in the light path is necessary.
  • the light source 10 and the projection system 100 provided by the present invention because the auxiliary light source 160 is disposed inside the light homogenizing device 140, can emit light in the light homogenizing device 140, and the light emitted by the main light source to illuminate the wavelength converting device
  • the light emitted by the auxiliary light source is combined and homogenized in the same light homogenizing device, which avoids the light distribution matching problem in other forms of combined light to some extent, simplifies the optical path and reduces the spatial structure of the light source.
  • the auxiliary light source 160 is not limited to emit red light, and the auxiliary light source 160 can emit a plurality of colors of the sub-light source 161.
  • the auxiliary light source 160 can emit light of a plurality of colors, and the light emitted by the wavelength conversion device 120 is not limited to Red, blue, and green light, when a certain color needs to be supplemented, the auxiliary light source 160 emits light of a corresponding color; the wavelength conversion device 120 emits light of a corresponding color in different time periods, and the auxiliary light source 160 emits light at the wavelength conversion device 120. It corresponds to the light of the corresponding color.
  • the brightness of the auxiliary light source 160 can be controlled by controlling the current flowing through the auxiliary light source 160 and the amount of light emitted by the sub light source 161.
  • the number of sub-light sources 161 of the auxiliary illumination source 160 can also be one.
  • a second embodiment of the present invention provides a light source 20 including a main illumination source 210 , a wavelength conversion device 220 , and a homogenization device 240 .
  • the main light source 210 is configured to emit light;
  • the wavelength conversion device 220 is configured to receive the light emitted by the main light source and emit light of at least two colors, wherein the light of the at least two colors includes the first color light and the first Two color light rays; a light homogenizing device 240 for illuminating the light emitted from the wavelength conversion device 220.
  • the auxiliary light source 260 is disposed inside the light homogenizing device 240, and the auxiliary light source 260 is configured to emit the first color light.
  • the primary illumination source 210 is an excitation light source for emitting excitation light, such as blue excitation light
  • the primary illumination source 210 can be a blue laser light source (such as a blue laser or a blue laser diode).
  • the main illumination source 210 may also be a light source of other colors, and is not limited to the blue light source.
  • the main illumination source 10 may be an ultraviolet laser source (such as an ultraviolet laser or an ultraviolet laser diode). Thereby ultraviolet excitation light is emitted.
  • the primary illumination source 210 is preferably a semiconductor laser source for providing high intensity excitation light.
  • the wavelength conversion device 220 is provided with at least two segmentation regions for respectively emitting light of the at least two colors. It can be understood that the size of the at least two segment regions can be set to be the same or different according to actual needs. In this embodiment, the number of segmentation areas is three, and the wavelength conversion device 220 includes a red segmentation region, a blue segmentation region, and a green segmentation region, respectively for receiving the light of the primary illumination source 210 and emitting red light and blue light. And green light.
  • the light homogenizing device 240 is configured to homogenize the light emitted from the wavelength conversion device 220.
  • the light homogenizing device 240 includes a light homogenizing rod 241 and a reflective layer 242.
  • the reflective layer 242 includes a scattering layer 243 disposed in a stacked manner and a specular reflection layer 245 overlying the scattering layer 243.
  • the scattering layer 243 covers the outer sidewalls of the homogenizing rod 241.
  • the specularly reflective layer 245 is remote from the homogenizing rod 241.
  • the homogenizing rod 241 is a solid integrator rod, and the scattering layer 243 and the specular reflection layer 245 are layered structures plated on the side walls of the homogenizing rod 241.
  • One side of the light homogenizing device 240 that receives the light from the wavelength conversion device 220 is the light incident surface 247, and the side of the light homogenizing device 240 that emits light is the light exit surface 248.
  • the light-incident surface 247 is disposed opposite to the light-emitting surface 248.
  • the light homogenizing device 240 further includes a reflective layer 250 disposed on the light incident surface 247.
  • the reflective layer 250 includes a scattering layer (not labeled) and a specular reflective layer (not labeled), wherein the scattering layer is adjacent to the light. Face 247 is set.
  • a hole 257 is defined in the reflective layer 250 for allowing light from the wavelength conversion device 220 to pass through the aperture 257 into the homogenizing rod 241. Due to the reflective layer 250 on the light-incident surface 247 on the light-homogenizing device 240, light entering the light-shading rod 241 can be effectively prevented from leaking light from the light-incident surface 247, thereby reducing light loss. It can be understood that the reflective layer 250 can omit the scattering layer 251.
  • the auxiliary light source 260 is disposed inside the light homogenizing rod 241.
  • the auxiliary light source 260 is mounted on the side wall of the light homogenizing rod 241.
  • the auxiliary light source 260 illuminates the red light when the wavelength conversion device 220 emits red light, and is used to supplement the brightness of the red light.
  • the auxiliary light source 260 includes a plurality of sub-light sources 261 arranged in an array in the light rod 241.
  • the sub-light source 261 is a light emitting diode source or a laser source.
  • the sub-light source 261 can be disposed on the outer sidewall of the homogenizing rod 241, and the sub-light source 261 is disposed between the homogenizing rod 241 and the reflective layer 242 (for example, the sub-light source 261 is embedded in the outer sidewall of the homogenizing rod 241). And the light-emitting surface of the sub-light source 261 faces the light-diffusing rod 241.
  • the auxiliary light-emitting source 260 is disposed between the light-shading rod 241 and the reflective layer 242, and the light-emitting surface of the auxiliary light-emitting source 260 (not shown) faces The light stick 241.
  • the reflective layer 242 includes a scattering layer 243 and a specular reflection layer 245 disposed in a stacked manner.
  • the auxiliary illumination source 260 is disposed between the outer sidewall of the homogenizing rod 241 and the scattering layer 243.
  • the specular reflection layer 245 is covered.
  • the scattering layer 243 is away from the surface of the light homogenizing rod 241; or the reflective layer 242 is a scattering reflection single layer.
  • the light source 20 further includes a lens 270 disposed between the wavelength conversion device 220 and the light incident surface 247 of the light homogenizing device 240, and the lens 270 is located on the optical path of the light emitted by the wavelength conversion device 220.
  • a third embodiment of the present invention provides a light source 30 including a main illumination source 310 , a wavelength conversion device 320 , and a light homogenization device 340 .
  • the main light source 310 is configured to emit light;
  • the wavelength conversion device 320 is configured to receive the light emitted by the main light source and emit light of at least two colors, wherein the light of the at least two colors includes the first color light and the first Two color light rays; a light homogenizing device 340 for illuminating the light emitted from the wavelength conversion device 320.
  • the auxiliary illumination source 360 is disposed inside the light homogenizing device 340, and the auxiliary illumination source 360 is configured to emit the first color light.
  • the primary illumination source 310 is an excitation source for emitting excitation light, such as blue excitation light
  • the primary illumination source 310 can be a blue laser source (such as a blue laser or a blue laser diode).
  • the main illumination source 310 may also be a light source of other colors, and is not limited to the blue light source.
  • the main illumination source 310 may be an ultraviolet laser source (such as an ultraviolet laser or an ultraviolet laser diode). Thereby ultraviolet excitation light is emitted.
  • the primary illumination source 310 is preferably a semiconductor laser source for providing high intensity excitation light.
  • the wavelength conversion device 320 is provided with at least two segmentation regions for respectively emitting light of the at least two colors. It can be understood that the size of the at least two segment regions can be set to be the same or different according to actual needs. In this embodiment, the number of the segmentation areas is three, and the wavelength conversion device 320 includes a red segmentation region, a blue segmentation region, and a green segmentation region, respectively for receiving the light of the primary illumination source 310 and emitting red light and blue light. And green light.
  • the light homogenizing device 340 is configured to homogenize the light emitted from the wavelength conversion device 320.
  • the light homogenizing device 340 includes a light homogenizing rod 341 and a reflective layer 342.
  • the reflective layer 342 includes a stacked scattering layer 343 and a specular reflective layer 345 overlying the scattering layer 343.
  • the scattering layer 343 covers the outer sidewall of the homogenizing rod 341.
  • the specularly reflective layer 345 is remote from the homogenizing rod 341.
  • the homogenizing rod 341 is a solid integrator rod
  • the scattering layer 343 and the specular reflection layer 345 are layered structures plated on the side walls of the homogenizing rod 341.
  • One side of the light homogenizing device 340 that receives the light from the wavelength conversion device 320 is the light incident surface 347, and one side of the light emitted from the light homogenizing device 340 is the light output surface 348.
  • the light-incident surface 347 is disposed opposite to the light-emitting surface 348.
  • the homogenizing rod 341 is a solid integrator rod, and the scattering layer 343 and the specular reflection layer 345 are layered structures plated on the side walls of the homogenizing rod 341.
  • One side of the light homogenizing device 340 that receives the light from the wavelength conversion device 320 is the light incident surface 347, and one side of the light emitted from the light homogenizing device 340 is the light output surface 248.
  • the light-incident surface 347 is disposed opposite to the light-emitting surface 348. It can be understood that the light homogenizing rod 341 can also be a hollow integrator rod.
  • the auxiliary light source 360 is disposed inside the light rod 341.
  • the auxiliary light source 360 is mounted on the side wall of the light rod 341.
  • the auxiliary light source 360 illuminates the red light when the wavelength conversion device 320 emits red light, and is used to supplement the brightness of the red light.
  • the auxiliary light source 360 includes a plurality of sub-light sources 361 arranged in an array in the light rod 341.
  • the sub-light source 361 is a light emitting diode or a laser.
  • the sub-light source 361 can be disposed on the outer sidewall of the homogenizing rod 341, and the sub-light source 361 is disposed between the homogenizing rod 341 and the reflective layer 342 (for example, the sub-light source 361 is embedded in the outer sidewall of the homogenizing rod 341). And the light emitting surface of the sub-light source 361 faces the homogenizing rod 141.
  • the auxiliary light source 360 is disposed between the homogenizing rod 341 and the reflective layer 342, and the emitting surface of the auxiliary illumination source 360 (not shown) faces The light stick 341.
  • the reflective layer 342 includes a scattering layer 143 and a specular reflection layer 345 disposed in a stacked manner.
  • the auxiliary illumination source 360 is disposed between the outer sidewall of the light homogenizing rod 341 and the scattering layer 343, and the specular reflection layer 345 is covered.
  • the scattering layer 343 is away from the surface of the light homogenizing rod 341; or the reflective layer 342 is a scattering reflection single layer.
  • the light source 30 further includes a lens 370 disposed between the wavelength conversion device 320 and the light incident surface 347 of the light homogenizing device 340, and the lens 370 is located on the optical path of the light emitted by the wavelength conversion device 320.
  • the light homogenizing device 340 further includes a dichroic color patch 350 covering the light incident surface 347.
  • the red light wavelength region emitted from the wavelength conversion device 320 is the first wavelength region
  • the red light wavelength region emitted from the auxiliary light source 360 is the second wavelength region.
  • the red light phosphor of the wavelength conversion device 320 is generated.
  • the peak wavelength of red light is ⁇ 600 nm, that is, the first wavelength region is less than 600 nm (orange light), and the red light peak wavelength of the auxiliary light source 360 is >620 nm.
  • the dichroic film 350 can effectively prevent the red light emitted from the auxiliary light source 360. Light is emitted from one side of the light incident surface 347.
  • the dichroic color plate 350 on the light incident surface 347 on the light homogenizing device 340 Due to the dichroic color plate 350 on the light incident surface 347 on the light homogenizing device 340, light entering the light homogenizing rod 341 can be effectively prevented from leaking light from the light incident surface 347, and the optical loss can be reduced. Moreover, the red light of the orange light has a relatively high luminous efficiency, which effectively increases the brightness of the red light.
  • a fourth embodiment of the present invention provides a light source 40 , which includes a main illumination source 410 , a wavelength conversion device 420 , and a light homogenizing device (not labeled).
  • a main light source 410 for emitting light
  • a wavelength conversion device 420 configured to receive the light emitted by the primary light source and emit light of at least two colors, the light of the at least two colors including the first color light and the first Two color light rays
  • a light homogenizing device for illuminating the light emitted from the wavelength conversion device 420.
  • the auxiliary illumination source 460 is disposed inside the light homogenizing device, and the auxiliary illumination source 460 is configured to emit the first color light.
  • the primary illumination source 410 is an excitation source for emitting excitation light, such as blue excitation light
  • the primary illumination source 410 can be a blue laser source (such as a blue laser or a blue laser diode).
  • the main illumination source 410 may also be a light source of other colors, and is not limited to the blue light source.
  • the main illumination source 410 may be an ultraviolet laser source (such as an ultraviolet laser or an ultraviolet laser diode). Thereby ultraviolet excitation light is emitted.
  • the primary illumination source 410 is preferably a semiconductor laser source for providing high intensity excitation light.
  • the wavelength conversion device 420 is provided with at least two segmentation regions for respectively emitting light of the at least two colors. It can be understood that the size of the at least two segment regions can be set to be the same or different according to actual needs. In this embodiment, the number of segmentation regions is three, and the wavelength conversion device 420 includes a red segmentation region, a blue segmentation region, and a green segmentation region, respectively for receiving the light of the primary illumination source 410 and emitting red light and blue light. And green light.
  • the light homogenizing means is used to homogenize the light emitted from the wavelength conversion device 420.
  • the light homogenizing device includes a first segment 451 and a second segment 453 which are connected to each other.
  • the first segment 451 includes a first light homogenizing rod 441 and a first reflective layer 445, and the first reflective layer 445 covers the first An outer sidewall of the uniform light rod 441, the first reflective layer 445 is a diffuse reflective layer, and the second segment 453 includes a second uniform light rod 443 and a second reflective layer 446, the second reflective layer 446 is covered On the outer sidewall of the second light homogenizing rod 443, the second reflective layer 446 is a specular reflective layer.
  • the first homogenizing rod 441 and the second homogenizing rod 443 are solid integrator rods. It can be understood that the integrator rods of the first homogenizing rod 441 and the second homogenizing rod 443 may be integrally formed or may be connected after separation. .
  • the first light homogenizing rod 441 is disposed adjacent to the wavelength conversion device 420.
  • the light incident surface 447 One side of the light homogenizing device that receives the light from the wavelength conversion device 420 is the light incident surface 447, and the light emitting surface of the light homogenizing device is the light exit surface 448.
  • the light-incident surface 447 is disposed opposite to the light-emitting surface 448.
  • the first light concentrating bar 441 and the second reflective layer 446 are tapered rods, and the light incident surface (partial light incident surface 447) of the first light absorbing rod 441 has an area larger than the light emitting surface area thereof.
  • the first light concentrating rod 441 is a tapered rod, and the light incident surface area of the first light absorbing rod 441 is larger than the light absorbing surface area of the first light absorbing rod 441, and the light incident surface area of the second light absorbing rod 443 is It is larger than the area of the light-emitting surface (partial light-emitting surface 448) of the second light-diffusing rod 443, and the light-incident surface of the second light-dancing rod 443 is disposed adjacent to the light-emitting surface of the first light-dancing rod 441.
  • the auxiliary light source 460 is disposed between the first light concentrating bar 441 and the first reflective layer 445 (for example, the auxiliary light source 460 is embedded in the outer sidewall of the first light absorbing rod 441), and the second segment The auxiliary light source 460 is not provided at 453.
  • the auxiliary light source 460 is mounted on the sidewall of the first light homogenizing rod 441.
  • the auxiliary light source 460 illuminates the red light when the wavelength conversion device 320 emits red light, and is used to supplement the brightness of the red light.
  • the auxiliary light source 460 includes a plurality of sub-light sources 461 arranged in an array in the first light homogenizing rod 441.
  • the sub-light source 461 is an LED source or a laser source.
  • the auxiliary illumination source 460 includes at least one laser source.
  • the light emitted by the laser source is Gaussian, and the light emitted by the laser source is diffusely reflected by the first reflective layer 445 in the first segment 451 of the light homogenizing device to form a Lambertian distribution and enter the second Light from segment 453 is reflected from second light reflecting layer 446 and exits from light exit surface 448.
  • the first reflective layer 445 of the light homogenizing device is a diffuse reflection layer, the characteristics of the light emitted by the laser can be improved, and the uniformity of the light can be effectively improved; and the second reflective layer 446 is a specular reflection layer, and the second reflective layer 446 can be disposed. Reduce excessive diffuse reflections and reduce heat generation and light loss.
  • the sub-light source 461 can be disposed on the outer sidewall of the first homogenizing rod 441, and the sub-light source 461 is disposed between the first homogenizing rod 441 and the first reflective layer 445, and the light emitting surface of the sub-light source 461 faces the first a uniform light rod 441, in other words, the auxiliary light source 460 is disposed between the first light rod 441 and the first reflective layer 445, and the light emitting surface of the auxiliary light source 460 (not labeled) faces the first light rod 441.
  • the light source 40 further includes a lens 470 disposed between the wavelength conversion device 420 and the light incident surface 447 of the light homogenizing device, and the lens 470 is located on the optical path of the light emitted by the wavelength conversion device 420.
  • an image formed by the light emitted from the primary illumination source 410 on the wavelength conversion device 420 via the lens 470 is located in the second segment 453.
  • This design allows the spot to pass directly through the first segment 451 to the second segment 453, which can prevent light emitted by the wavelength conversion device 420 from being reflected and/or scattered within the first segment 451 to cause excessive light loss. Since the light emitted by the wavelength conversion device 420 is a Lambertian-distributed light, the scattering does not change the light distribution, but the optical spread of the light is increased, which is disadvantageous for subsequent light utilization.
  • the light emitted by the auxiliary illumination source 460 is Gaussian-distributed light (when the auxiliary illumination source 460 is a laser diode source), and the scattering through the first segment 451 can become similar to the light distribution of the light emitted by the wavelength conversion device 420. Both of them are homogenized in the second segment, which can effectively reduce the light loss.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Non-Portable Lighting Devices Or Systems Thereof (AREA)
  • Projection Apparatus (AREA)

Abstract

一种光源(10)及投影系统(100),包括主发光源(110、210、310、410)、波长转换装置(120、220、320、420)及匀光装置(140、240、340)。波长转换装置(120、220、320、420),用于接收主发光源(110、210、310、410)出射的光线并在不同的时段分别出射至少两种颜色的光线,至少包括第一颜色光线及第二颜色光线。匀光装置(140、240、340)用于将波长转换装置(120、220、320、420)出射的光线进行匀光,匀光装置(140、240、340)内部设有辅发光源(160、260、360、460),辅发光源(160、260、360、460)出射第一颜色光线。

Description

光源及相关投影系统 技术领域
本实用新型涉及投影显示技术领域,特别涉及一种光源及相关投影系统。
背景技术
目前,投影装置广泛应用于电影播放、会议以及宣传等各种应用场合。投影装置内的光源输出红绿蓝三基色的单色光,光调制装置对红绿蓝三基色进行调制,产生各基色光的单色图像,再通过分光滤光片或其他合光装置将各单色图像合成为一幅彩色图像,并成像于屏幕上。
技术问题
然而,出于某些原因,如人眼对某种颜色的敏感度较低,或是光源中产生某种颜色光的发光效率低,造成显示的图像中所述颜色亮度较低。
技术解决方案
有鉴于此,有必要提供一种避免上述问题的光源及投影系统。
一种光源,其包括:主发光源;波长转换装置,用于接收所述主发光源出射的光线并在不同的时段分别出射至少两种颜色的光线,所述至少两种颜色的光线包括第一颜色光线及第二颜色光线;匀光装置,用于将所述波长转换装置出射的光线进行匀光,所述匀光装置内部设有辅发光源,所述辅发光源用于出射所述第一颜色光线。
作为一种优选方案,所述波长转换装置出射第一颜色光线时,所述辅发光源出射第一颜色光线,以补充所述第一颜色光线。
作为一种优选方案,所述波长转换装置出射的第一颜色光线的波长区域为第一波长区域,所述辅发光源出射的第一颜色光线的波长区域为第二波长区域;所述匀光装置包括进光面,所述进光面上覆盖有二向色片;所述二向色片用以透射所述第一波长区域的第一颜色光线并反射所述第二波长区域的第一颜色光线。
作为一种优选方案,所述匀光装置包括匀光棒及覆盖于所述匀光棒的外侧壁的反射层;所述辅发光源内嵌于所述匀光棒的外侧壁,且所述辅发光源的发光面朝向所述匀光棒;
所述反射层为层叠设置的散射层和镜面反射层的复合层,所述镜面反射层设置于所述散射层远离所述匀光棒的表面;或者所述反射层为一个漫反射单层。
作为一种优选方案,所述匀光装置分为连接设置的第一分段及第二分段,所述第一分段邻近所述波长转换装置设置;所述第一分段包括第一匀光棒及第一反射层,所述第一反射层覆盖于所述第一匀光棒的外侧壁,所述第一反射层为漫反射层;所述第二分段包括第二匀光棒及第二反射层,所述第二反射层覆盖于所述第二匀光棒的外侧壁,所述第二反射层为镜面反射层;所述辅发光源设置于所述第一匀光棒与所述第一反射层之间,且所述第二分段不设置辅发光源。
作为一种优选方案,所述第一匀光棒为锥形棒,且所述第一匀光棒的进光面面积大于所述第一匀光棒出光面面积。
作为一种优选方案,所述光源还包括透镜,所述透镜设置于所述波长转换装置与所述匀光装置之间,所述主发光源出射的光线在所述波长转换装置上形成的光斑经所述透镜成的像位于所述第二分段内。
作为一种优选方案,所述匀光装置的进光面上设置有带孔的反射层。
作为一种优选方案,所述辅发光源包括一个或多个子光源,所述子光源为发光二极管光源或激光二极管光源。
作为一种优选方案,所述子光源包括反射基底、设置于所述反射基底上的芯片及与所述反射基底相接的出射面,所述反射基底与所述出射面形成封闭的腔体,所述反射基底与所述匀光装置连接,所述出射面朝向所述匀光装置的内部。
作为一种优选方案,所述出射面为自由曲面,所述芯片发出的光线垂直于所述出射面。
作为一种优选方案,所述出射面透射小于第一预定角入射的第一颜色光线且反射大于第二预定角入射的第一颜色光线,其中第一预定角小于第二预定角;所述出射面反射所述第二颜色光线。
作为一种优选方案,所述第一颜色光线为红光。
本实用新型还提供了一种投影系统,其包括如上所述的光源,所述投影系统还包括光调制装置及控制装置,所述光调制装置用于对从所述光源出射的光进行图像调制,所述控制装置用于控制所述主发光源、所述波长转换装置、所述辅发光源及所述光调制装置。
有益效果
相对于现有技术,本实用新型提供的光源及投影系统,将辅发光源设置于匀光装置的内部,其能够在匀光装置内出射光线,将主发光源照射波长转换装置而发出的光与辅发光源发出的光在同一个匀光装置中进行合光与匀光,在一定程度上避免了其他形式合光中的光分布匹配问题,简化了光路及并精简了光源的空间结构。
附图说明
图1是本实用新型第一实施方式的光源的示意图。
图2是波长转换装置的平面结构示意图。
图3是主发光源经由波长转换装置射出的各种颜色光的发光时序图。
图4是子光源的结构示意图。
图5是投影系统的示意图。
图6是本实用新型第二实施方式的光源的示意图。
图7是本实用新型第三实施方式的光源的示意图。
图8是本实用新型第四实施方式的光源的示意图。
主要元件符号说明
投影系统 100
主发光源 110 、 210 、 310 、 410
波长转换装置 120 、 220 、 320 、 420
红色分段区域 122
蓝色分段区域 124
绿色分段区域 126
匀光装置 140 、 240 、 340
匀光棒 141 、 241 、 341
第一匀光棒 441
第二匀光棒 443
反射层 142 、 242 、 250 、 342
散射层 143 、 243 、 343
镜面反射层 145 、 245 、 345
进光面 147 、 247 、 347 、 447
出光面 148 、 248 、 348 、 448
辅发光源 160 、 260 、 360 、 460
子光源 161 、 261 、 361 、 461
芯片 163
反射基底 165
出射面 167
透镜 170 、 270 、 370 、 470
257
二向色片 350
第一分段 451
第一反射层 445
第二分段 453
第二反射层 446
光调制装置 50
控制装置 60
图像解析单元 61
控制单元 63
如下具体实施方式将结合上述附图进一步说明本实用新型。
本发明的最佳实施方式
下面将结合本实用新型实施例中的附图,对本实用新型实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本实用新型一部分实施例,而不是全部的实施例。基于本实用新型中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本实用新型保护的范围。在不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
需要说明的是,在本实用新型中,当一个组件被认为是与另一个组件“相连”时,它可以是与另一个组件直接相连,也可以是通过居中组件与另一个组件间接相连。
除非另有定义,本文所使用的所有的技术和科学术语与属于本实用新型的技术领域的技术人员通常理解的含义相同。本文中在本实用新型的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本实用新型。
第一实施方式
请参阅图1所示,本实用新型第一实施方式提供一种光源10,其包括主发光源110、波长转换装置120、匀光装置140及辅发光源160。主发光源110,用于出射光线;波长转换装置120,用于接收所述主发光源110出射的光线并在不同时段分别出射至少两种颜色的光线,所述至少两种颜色的光线包括第一颜色光线及第二颜色光线;匀光装置140,用于将波长转换装置120出射的光线进行匀光。辅发光源160设置于匀光装置140的内部,辅发光源160用于出射所述第一颜色光线。
主发光源110为激发光源,用于发出激发光,如蓝色激发光,主发光源110可以为蓝色激光光源(如蓝色激光器或蓝色激光二极管)。在一种变更实施方式中,主发光源110也可以是其他颜色的光源,并不以蓝色光源为限,如主发光源110可以是紫外激光光源(如紫外激光器或紫外光激光二极管),从而发出紫外激发光。进一步地,主发光源110优选为半导体激光光源,用以提供高亮度的激发光。
请参阅图2所示,为波长转换装置120的平面结构示意图。本实施方式中,波长转换装置120为色轮。波长转换装置120大致呈圆盘状,其包括沿其圆周运动方向设置的至少两个分段区域(如122、124、126),用于分别射出该至少两种颜色的光。可以理解,该至少两个分段区域(如122、124、126)的大小可以依据实际需要设定为相同或不同。本实施方式中,分段区域(122、124、126)的数量为三,波长转换装置120包括红色分段区域122、蓝色分段区域124及绿色分段区域126,分别用于接收主发光源110的光并射出红光、蓝光及绿光。
本实施方式中,波长转换装置120为透射式波长转换装置,即主发光源110的光从波长转换装置120的一侧入射,并从波长转换装置120的另一侧射出至少两种颜色的光。优选地,波长转换装置120上的至少一分段区域(如122、124、126)承载波长转换材料,所述波长转换材料为荧光粉,主发光源110发出的光照射在波长转换装置120上的波长转换材料从而进行波长转换以产生其他颜色的光,从而波长转换装置120射出至少两种颜色的光。
具体地,在一种实施例中,主发光源110为蓝光光源,波长转换装置120的红色分段区域122设有红光波长转换材料(如红色荧光粉),蓝色分段区域124为透射区域,绿色分段区域设置有绿光波长转换层(如绿色荧光粉)。请参阅图3,是本实用新型的光源10工作时的发光时序图。具体地,图3是主发光源110经由波长转换装置120射出的各种颜色光的发光时序图。光源10工作时,波长转换装置120以其圆周的中心为轴不断旋转,使得红色分段区域122、蓝色分段区域124及绿色分段区域126依序接收自主发光源110射出的光,并依序出射红、蓝、绿光。可以理解,当所述主发光源110为紫外激光光源时,蓝色分段区域124承载蓝光波长转换材料,所述蓝光波长转换材料为蓝色荧光粉,当所述主发光源110的光照射在蓝色分段区域124时,蓝色荧光粉受到激发射出蓝光。
可以理解,在另一种实施例中,波长转换装置120的多个分段区域(如122、124与126)上也可以设置滤光材料层,主发光源110发出白光,经由该多个分段区域(如122、124与126)滤光后,波长转换装置120在不同时段分别射出该至少两种颜色的光。具体地,波长转换装置120的红色分段区域122的波长转换材料为红色滤光材料层,波长转换装置120的蓝色分段区域124的波长转换材料为蓝色滤光材料层,绿色分段区域126设置有绿光滤光材料层。与上述类似地,光源10工作时,波长转换装置120以其圆周的中心为轴不断旋转,使得红色分段区域122、蓝色分段区域124及绿色分段区域126依序接收自主发光源110射出的光,并依序出射红、蓝、绿光。
本实施例中的波长转换装置120为透射式的色轮,可以理解的是,波长转换装置120也可以为反射式的色轮,即色轮的光入射面与光出射面为色轮的同侧,可以参照本司在本申请的申请日之前的任意反射式色轮专利申请。
可以理解,在另一种实施例中,波长转换装置120可以为线性运动的带状结构,其中各色分段沿线性运动方向依次排布,其能够依序发出至少两种颜色的光。在另一种实施例中,波长转换装置120也可以为周期性转动的筒状/桶状结构,其中各色分段沿筒状/桶状的侧面圆周方向依次排布,其能够依序发出至少两种颜色的光。
请再次参阅图1所示,匀光装置140用于对波长转换装置120出射的光线进行匀光。匀光装置140包括匀光棒141及反射层142。反射层142包括层叠设置的散射层143及覆盖于散射层143上的镜面反射层145,散射层143覆盖于匀光棒141上的外侧壁。镜面反射层145远离匀光棒141设置。本实施方式中,匀光棒141为实心积分棒,散射层143及镜面反射层145为镀设在匀光棒141侧壁上的层状结构。匀光装置140接收来自波长转换装置120的光的一面为进光面147,匀光装置140出射光的一面为出光面148。本实施方式中,进光面147与出光面148相对设置。
可以理解,镜面反射层145与散射层143也可以替换为一个漫反射单层。反射层142的作用在于将辅发光源160发出的光进行散射匀光并反射往出光面。
辅发光源160设置于匀光棒141的内部,本实施方式中,辅发光源160装设于匀光棒141的侧壁上。辅发光源160在波长转换装置120出射红光时点亮出射红光,用于补充红光的亮度。辅发光源160包括多个子光源161,多个子光源161呈阵列排列于匀光棒141。子光源161为发光二极管光源或激光二极管光源。
请参阅图4所示,子光源161包括芯片163、反射基底165及出射面167。芯片163设置于反射基底165上,反射基底165与匀光棒141的侧壁连接,出射面167与反射基底165相接,反射基底165与出射面167形成封闭的腔体168。子光源161出射的光能够经出射面167出射至匀光棒141的内部,最后经多次反射、散射,与波长转换装置120出射的红光通过匀光装置140的匀光从出光面148出射。
本实施方式中,所述出射面167为自由曲面,所述自由曲面具有与芯片163的发光面的光线出射角度相配合的特性,使得芯片163发出的光线都大致垂直于自由曲面。自由曲面的出射面透射小于第一预定角入射的第一颜色光线且反射大于第二预定角入射的第一颜色光线,其中第一预定角小于第二预定角,且出射面反射第二颜色光线。例如,自由曲面可以透射小角度入射的红光而反射大角度入射的红光,以及反射其它颜色的光,从而可以减少红光又返回到芯片163而被吸收的部分,提高红光的利用效率。在本实施例中,可以取第一预定角为25°,第二预定角为50°,但不限于此,可以根据需要进行调整。在这两个角度之间,第一颜色光线部分透射部分反射。
可以理解,辅发光源160的子光源161可以不设置于匀光棒141的内侧壁上,辅发光源160的子光源161可以设置于匀光棒141的内部其他位置。
可以理解,子光源161可以设置于匀光棒141的外侧壁上,将子光源161设置于匀光棒141与反射层142之间(例如将子光源161内嵌于匀光棒141的外侧壁),子光源161的反射基底165与散射层143连接,子光源161的出射面167朝向匀光棒141,换句话说,辅发光源160设置于匀光棒141与反射层142之间,且辅发光源160的发光面(图未标)朝向匀光棒141。
反射层142为层叠设置的散射层143和镜面反射层145的复合层,所述辅发光源160设置于所述匀光棒141的外侧壁及所述散射层143之间,所述镜面反射层145覆盖设置于所述散射层143远离所述匀光棒141的表面;或者所述反射层142为一个漫反射单层。
进一步地,光源10还包括透镜170,透镜170设置于波长转换装置120与匀光装置140的进光面147之间,透镜170位于波长转换装置120出射光线的光路上。
请参阅图5,本实施方式的光源10应用于投影系统100,投影系统100包括光源10、光调制装置50及控制装置60。光调制装置50用于对光源10出射的光线进行图像调制。控制装置60包括图像解析单元61及控制单元63。图像解析单元61用以对输入图像进行图像解析,控制单元63与主发光源110、波长转换装置120、辅发光源160及光调制装置50连接,用于控制各功能模组的运作。当主发光源110点亮时,波长转换装置120转动,光调制装置50工作。波长转换装置120发出红光时,控制单元63控制辅发光源160点亮发出红光,在波长转换装置120发出其它颜色光时,控制单元63控制辅发光源160关闭。在现技术发展阶段,利用蓝光激发红色荧光粉产生红光的效率较低,而红色荧光粉发热量大、热稳定性差,不能简单的通过提高蓝光激发功率来提高红光的输出效率,因此在光路中额外的设计红光补充光源非常必要。
本实用新型提供的光源10及投影系统100,由于辅发光源160设置于匀光装置140的内部,其能够在匀光装置140内出射光线,将主发光源照射波长转换装置而发出的光与辅发光源发出的光在同一个匀光装置中进行合光与匀光,在一定程度上避免了其他形式合光中的光分布匹配问题,简化了光路及并精简了光源的空间结构。
可以理解,辅发光源160不限定发出红光,辅发光源160具能发出多种颜色的子光源161,辅发光源160能够出射多种颜色的光线,波长转换装置120出射的光线不限定为红、蓝、绿光,在需补充某一颜色时,辅发光源160发出相应颜色的光线;波长转换装置120在不同时段内出射相应颜色的光线,辅发光源160在波长转换装置120出射光线时对应出射相应颜色的光线。
可以理解,辅发光源160的亮度能够通过控制流经辅发光源160的电流以及子光源161的发光数量进行控制。
可以理解,辅发光源160的子光源161的数量也可以为一个。
第二实施方式
请参阅图6所示,本实用新型第二实施方式提供一种光源20,其包括主发光源210、波长转换装置220及匀光装置240。主发光源210,用于出射光线;波长转换装置220,用于接收所述主发光源出射的光线并出射至少两种颜色的光线,所述至少两种颜色的光线包括第一颜色光线及第二颜色光线;匀光装置240,用于将波长转换装置220出射的光线进行匀光。辅发光源260设置于匀光装置240的内部,辅发光源260用于出射所述第一颜色光线。
主发光源210为激发光源,用于发出激发光,如蓝色激发光,主发光源210可以为蓝色激光光源(如蓝色激光器或蓝色激光二极管)。在一种变更实施方式中,主发光源210也可以是其他颜色的光源,并不以蓝色光源为限,如主发光源10可以是紫外激光光源(如紫外激光器或紫外光激光二极管),从而发出紫外激发光。进一步地,主发光源210优选为半导体激光光源,用以提供高亮度的激发光。
波长转换装置220设置至少两个分段区域,用于分别射出该至少两种颜色的光。可以理解,该至少两个分段区域的大小可以依据实际需要设定为相同或不同。本实施方式中,分段区域的数量为三,波长转换装置220包括红色分段区域、蓝色分段区域及绿色分段区域,分别用于接收主发光源210的光并射出红光、蓝光及绿光。
匀光装置240用于对来自波长转换装置220出射的光线进行匀光。匀光装置240包括匀光棒241及反射层242。反射层242包括层叠设置的散射层243及覆盖于散射层243上的镜面反射层245,散射层243覆盖于匀光棒241上的外侧壁。镜面反射层245远离匀光棒241。本实施方式中,匀光棒241为实心积分棒,散射层243及镜面反射层245为镀设在匀光棒241侧壁上的层状结构。匀光装置240接收来自波长转换装置220的光的一面为进光面247,匀光装置240出射光的一面为出光面248。本实施方式中,进光面247与出光面248相对设置。
进一步地,匀光装置240还包括设置于进光面247上的反射层250,反射层250包括散射层(图未标)及镜面反射层(图未标),其中所述散射层邻近进光面247设置。反射层250上开设有孔257,用以使来自波长转换装置220的光通过孔257进入匀光棒241。由于匀光装置240上的进光面247上的反射层250,能够有效阻止进入匀光棒241的光从进光面247漏光,进而减少光损耗。可以理解,所述反射层250能够省略散射层251。
辅发光源260设置于匀光棒241的内部,本实施方式中,辅发光源260装设于匀光棒241的侧壁上。辅发光源260在波长转换装置220出射红光时点亮出射红光,用于补充红光的亮度。辅发光源260包括多个子光源261,多个子光源呈阵列排列于匀光棒241。子光源261为发光二极管光源或激光器光源。
可以理解,子光源261可以设置于匀光棒241的外侧壁上,将子光源261设置于匀光棒241与反射层242之间(例如将子光源261内嵌于匀光棒241的外侧壁),且子光源261的发光面朝向匀光棒241,换句话说,辅发光源260设置于匀光棒241与反射层242之间,且辅发光源260的发光面(图未标)朝向匀光棒241。
反射层242包括层叠设置的散射层243和镜面反射层245,所述辅发光源260设置于所述匀光棒241的外侧壁及所述散射层243之间,所述镜面反射层245覆盖设置于所述散射层243远离所述匀光棒241的表面;或者所述反射层242为一个散射反射单层。
进一步地,光源20还包括透镜270,透镜270设置于波长转换装置220与匀光装置240的进光面247之间,透镜270位于波长转换装置220出射光线的光路上。
第三实施方式
请参阅图7所示,本实用新型第三实施方式提供一种光源30,其包括主发光源310、波长转换装置320及匀光装置340。主发光源310,用于出射光线;波长转换装置320,用于接收所述主发光源出射的光线并出射至少两种颜色的光线,所述至少两种颜色的光线包括第一颜色光线及第二颜色光线;匀光装置340,用于将波长转换装置320出射的光线进行匀光。辅发光源360设置于匀光装置340的内部,辅发光源360用于出射所述第一颜色光线。
主发光源310为激发光源,用于发出激发光,如蓝色激发光,主发光源310可以为蓝色激光光源(如蓝色激光器或蓝色激光二极管)。在一种变更实施方式中,主发光源310也可以是其他颜色的光源,并不以蓝色光源为限,如主发光源310可以是紫外激光光源(如紫外激光器或紫外光激光二极管),从而发出紫外激发光。进一步地,主发光源310优选为半导体激光光源,用以提供高亮度的激发光。
波长转换装置320设置至少两个分段区域,用于分别射出该至少两种颜色的光。可以理解,该至少两个分段区域的大小可以依据实际需要设定为相同或不同。本实施方式中,分段区域的数量为三,波长转换装置320包括红色分段区域、蓝色分段区域及绿色分段区域,分别用于接收主发光源310的光并射出红光、蓝光及绿光。
匀光装置340用于对来自波长转换装置320出射的光线进行匀光。匀光装置340包括匀光棒341及反射层342。反射层342包括层叠设置的散射层343及覆盖于散射层343上的镜面反射层345,散射层343覆盖于匀光棒341上的外侧壁。镜面反射层345远离匀光棒341。本实施方式中,匀光棒341为实心积分棒,散射层343及镜面反射层345为镀设在匀光棒341侧壁上的层状结构。匀光装置340接收来自波长转换装置320的光的一面为进光面347,匀光装置340出射光的一面为出光面348。本实施方式中,进光面347与出光面348相对设置。
本实施方式中,匀光棒341为实心积分棒,散射层343及镜面反射层345为镀设在所述匀光棒341侧壁上的层状结构。匀光装置340接收来自波长转换装置320的光的一面为进光面347,匀光装置340出射光的一面为出光面248。本实施方式中,进光面347与出光面348相对设置。可以理解,所述匀光棒341也可以为空心积分棒。
辅发光源360设置于匀光棒341的内部,本实施方式中,辅发光源360装设于匀光棒341的侧壁上。辅发光源360在波长转换装置320出射红光时点亮出射红光,用于补充红光的亮度。辅发光源360包括多个子光源361,多个子光源呈阵列排列于匀光棒341。子光源361为发光二极管或激光器。
可以理解,子光源361可以设置于匀光棒341的外侧壁上,将子光源361设置于匀光棒341与反射层342之间(例如将子光源361内嵌于匀光棒341的外侧壁),且子光源361的发光面朝向匀光棒141,换句话说,辅发光源360设置于匀光棒341与反射层342之间,且辅发光源360的发光面(图未标)朝向匀光棒341。
反射层342包括层叠设置的散射层143和镜面反射层345,所述辅发光源360设置于所述匀光棒341的外侧壁及所述散射层343之间,所述镜面反射层345覆盖设置于所述散射层343远离所述匀光棒341的表面;或者所述反射层342为一个散射反射单层。
进一步地,光源30还包括透镜370,透镜370设置于波长转换装置320与匀光装置340的进光面347之间,透镜370位于波长转换装置320出射光线的光路上。
进一步地,匀光装置340还包括覆盖于进光面347上的二向色片350。设波长转换装置320出射的红光波长区域为第一波长区域,设辅发光源360出射的红光波长区域为第二波长区域,本实施方式中,波长转换装置320的红光荧光粉产生的红光的峰值波长<600nm,即第一波长区域小于600nm(偏橙色光),辅发光源360出射的红光峰值波长>620nm,二向色片350能够有效阻止辅发光源360出射的红光从进光面347的一侧出光。由于匀光装置340上的进光面347上的二向色片350,能够有效阻止进入匀光棒341的光从进光面347漏光,减少光损耗。而且偏橙色光的红光的发光效率相对较高,有效的提高了红光的亮度。
第四实施方式
请参阅图8所示,本实用新型第四实施方式提供一种光源40,其包括主发光源410、波长转换装置420及匀光装置(图未标)。主发光源410,用于出射光线;波长转换装置420,用于接收所述主发光源出射的光线并出射至少两种颜色的光线,所述至少两种颜色的光线包括第一颜色光线及第二颜色光线;匀光装置,用于将波长转换装置420出射的光线进行匀光。辅发光源460设置于匀光装置的内部,辅发光源460用于出射所述第一颜色光线。
主发光源410为激发光源,用于发出激发光,如蓝色激发光,主发光源410可以为蓝色激光光源(如蓝色激光器或蓝色激光二极管)。在一种变更实施方式中,主发光源410也可以是其他颜色的光源,并不以蓝色光源为限,如主发光源410可以是紫外激光光源(如紫外激光器或紫外光激光二极管),从而发出紫外激发光。进一步地,主发光源410优选为半导体激光光源,用以提供高亮度的激发光。
波长转换装置420设置至少两个分段区域,用于分别射出该至少两种颜色的光。可以理解,该至少两个分段区域的大小可以依据实际需要设定为相同或不同。本实施方式中,分段区域的数量为三,波长转换装置420包括红色分段区域、蓝色分段区域及绿色分段区域,分别用于接收主发光源410的光并射出红光、蓝光及绿光。
匀光装置用于对来自波长转换装置420出射的光线进行匀光。匀光装置包括连接设置的第一分段451及第二分段453,第一分段451包括第一匀光棒441及第一反射层445,所述第一反射层445覆盖于所述第一匀光棒441的外侧壁,所述第一反射层445为漫反射层,所述第二分段453包括第二匀光棒443及第二反射层446,所述第二反射层446覆盖于所述第二匀光棒443的外侧壁,所述第二反射层446为镜面反射层。
第一匀光棒441与第二匀光棒443为实心积分棒,可以理解,第一匀光棒441与第二匀光棒443的积分棒可以是一体成型的,也可以是分离后连接的。第一匀光棒441邻近波长转换装置420设置。
匀光装置接收来自波长转换装置420的光的一面为进光面447,匀光装置出射光的一面为出光面448。本实施方式中,进光面447与出光面448相对设置。
可以理解,所述第一匀光棒441及所述第二反射层446为锥形棒,且第一匀光棒441的进光面(部分进光面447)面积大于其出光面面积,所述第一匀光棒441为锥形棒,且所述第一匀光棒441的进光面面积大于第一匀光棒441出光面面积,所述第二匀光棒443的进光面面积大于第二匀光棒443出光面(部分出光面448)面积,所述第二匀光棒443的进光面邻近第一匀光棒441的出光面设置。
辅发光源460设置于所述第一匀光棒441与所述第一反射层445之间(例如将辅发光源460内嵌于第一匀光棒441的外侧壁),且第二分段453不设置辅发光源460。本实施方式中,辅发光源460装设于第一匀光棒441的侧壁上。辅发光源460在波长转换装置320出射红光时点亮出射红光,用于补充红光的亮度。辅发光源460包括多个子光源461,多个子光源呈阵列排列于第一匀光棒441。子光源461为发光二极管光源或激光器光源。辅发光源460至少包括一激光器光源。所述激光器光源发出的光呈高斯分布,所述激光器光源发出的光先经匀光装置的第一分段451内的第一反射层445漫反射进行匀光后呈朗伯分布,进入第二分段453的光经第二反射层446反射从出光面448出射。
由于匀光装置的第一反射层445为漫反射层,能够改善激光器发出的光的特性,有效改善光的均匀度;而第二反射层446为镜面反射层,第二反射层446的设置能够减少过多的漫反射而减少热量产生和光损耗。
可以理解,子光源461可以设置于第一匀光棒441的外侧壁上,将子光源461设置于第一匀光棒441与第一反射层445之间,且子光源461的发光面朝向第一匀光棒441,换句话说,辅发光源460设置于第一匀光棒441与第一反射层445之间,且辅发光源460的发光面(图未标)朝向第一匀光棒441。
进一步地,光源40还包括透镜470,透镜470设置于波长转换装置420与匀光装置的进光面447之间,透镜470位于波长转换装置420出射光线的光路上。
进一步地,主发光源410出射的光线在波长转换装置420上形成的光斑经透镜470成的像位于所述第二分段453。该设计使得光斑不经过第一分段451直接到达第二分段453,可以避免波长转换装置420发出的光在第一分段451内部被反射和/或散射而造成过多的光损失。由于波长转换装置420发出的光为朗伯分布的光,散射不会改变该光分布,反而会导致该光的光学扩展量变大,对后续光利用不利。而辅发光源460发出的光为高斯分布的光(当辅发光源460为激光二极管光源时),其经过第一分段451的散射能够变得与波长转换装置420发出的光的光分布相似,两者在第二分段匀光,可以有效的减少光损失。
可以理解的是,本领域技术人员还可在本实用新型精神内做其它变化等用在本实用新型的设计,只要其不偏离本实用新型的技术效果均可。这些依据本实用新型精神所做的变化,都应包含在本实用新型所要求保护的范围之内。

Claims (14)

1. 一种光源,其包括:
主发光源;
波长转换装置,用于接收所述主发光源出射的光线并在不同的时段分别出射至少两种颜色的光线,所述至少两种颜色的光线包括第一颜色光线及第二颜色光线;
匀光装置,用于将所述波长转换装置出射的光线进行匀光,其特征在于:所述匀光装置内部设有辅发光源,所述辅发光源用于出射所述第一颜色光线。
2. 如权利要求1所述的光源,其特征在于:所述波长转换装置出射第一颜色光线时,所述辅发光源出射第一颜色光线,以补充所述第一颜色光线。
3. 如权利要求1所述的光源,其特征在于:所述波长转换装置出射的第一颜色光线的波长区域为第一波长区域,所述辅发光源出射的第一颜色光线的波长区域为第二波长区域;所述匀光装置包括进光面,所述进光面上覆盖有二向色片;所述二向色片用以透射所述第一波长区域的第一颜色光线并反射所述第二波长区域的第一颜色光线。
4. 如权利要求1至3中任一项所述的光源,其特征在于:所述匀光装置包括匀光棒及覆盖于所述匀光棒的外侧壁的反射层;
所述辅发光源内嵌于所述匀光棒的外侧壁,且所述辅发光源的发光面朝向所述匀光棒;
所述反射层为层叠设置的散射层和镜面反射层的复合层,所述镜面反射层设置于所述散射层远离所述匀光棒的表面;或者所述反射层为一个漫反射单层。
5. 如权利要求1至3中任一项所述的光源,其特征在于:所述匀光装置分为连接设置的第一分段及第二分段,所述第一分段邻近所述波长转换装置设置;
所述第一分段包括第一匀光棒及第一反射层,所述第一反射层覆盖于所述第一匀光棒的外侧壁,所述第一反射层为漫反射层;
所述第二分段包括第二匀光棒及第二反射层,所述第二反射层覆盖于所述第二匀光棒的外侧壁,所述第二反射层为镜面反射层;
所述辅发光源设置于所述第一匀光棒与所述第一反射层之间,且所述第二分段不设置辅发光源。
6. 如权利要求5所述的光源,其特征在于:所述第一匀光棒为锥形棒,且所述第一匀光棒的进光面面积大于所述第一匀光棒的出光面面积。
7. 如权利要求5所述的光源,其特征在于:所述光源还包括透镜,所述透镜设置于所述波长转换装置与所述匀光装置之间,所述主发光源出射的光线在所述波长转换装置上形成的光斑经所述透镜成的像位于所述第二分段内。
8. 如权利要求1所述的光源,其特征在于:所述匀光装置的进光面上设置有带孔的反射层。
9. 如权利要求1至3中任一项所述的光源,其特征在于:所述辅发光源包括一个或多个子光源,所述子光源为发光二极管光源或激光二极管光源。
10. 如权利要求9所述的光源,其特征在于:所述子光源包括反射基底、设置于所述反射基底上的芯片及与所述反射基底相接的出射面,所述反射基底与所述出射面形成封闭的腔体,所述反射基底与所述匀光装置连接,所述出射面朝向所述匀光装置的内部。
11.如权利要求10所述的光源,其特征在于:所述出射面为自由曲面,所述芯片发出的光线垂直于所述出射面。
12.如权利要求10所述的光源,其特征在于:所述出射面透射小于第一预定角入射的第一颜色光线且反射大于第二预定角入射的第一颜色光线,其中第一预定角小于第二预定角;
所述出射面反射所述第二颜色光线。
13. 如权利要求1至3中任意一项所述的光源,其特征在于:所述第一颜色光线为红光。
14. 一种投影系统,其包括如权利要求1至13任意一项所述的光源,所述投影系统还包括光调制装置及控制装置,所述光调制装置用于对从所述光源出射的光进行图像调制,所述控制装置用于控制所述主发光源、所述波长转换装置、所述辅发光源及所述光调制装置。
PCT/CN2017/081431 2016-07-04 2017-04-21 光源及相关投影系统 WO2018006633A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201620690698.9 2016-07-04
CN201620690698.9U CN205920315U (zh) 2016-07-04 2016-07-04 光源及相关投影系统

Publications (1)

Publication Number Publication Date
WO2018006633A1 true WO2018006633A1 (zh) 2018-01-11

Family

ID=57875058

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/081431 WO2018006633A1 (zh) 2016-07-04 2017-04-21 光源及相关投影系统

Country Status (2)

Country Link
CN (1) CN205920315U (zh)
WO (1) WO2018006633A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN205920315U (zh) * 2016-07-04 2017-02-01 深圳市绎立锐光科技开发有限公司 光源及相关投影系统
CN110989273A (zh) * 2019-11-29 2020-04-10 河南中光学集团有限公司 一种消除投影仪杂散光的方法
CN113024253B (zh) * 2019-12-09 2023-09-12 上海航空电器有限公司 用于激光照明的高显色性包边复合结构波长转换陶瓷及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1608228A (zh) * 2001-10-15 2005-04-20 因佛卡斯公司 具有改善的彩色平衡的图像投影系统
US20060001843A1 (en) * 2004-07-02 2006-01-05 Engle T S Projection apparatus with light source to output light into an integrating tunnel through a first and a second medium
CN101373317A (zh) * 2007-08-20 2009-02-25 中强光电股份有限公司 投影装置及其照明系统
CN101937166A (zh) * 2009-06-30 2011-01-05 卡西欧计算机株式会社 光源中使用了激光的光源装置以及投影仪
CN105556202A (zh) * 2013-09-10 2016-05-04 飞利浦照明控股有限公司 发光设备
CN205920315U (zh) * 2016-07-04 2017-02-01 深圳市绎立锐光科技开发有限公司 光源及相关投影系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1608228A (zh) * 2001-10-15 2005-04-20 因佛卡斯公司 具有改善的彩色平衡的图像投影系统
US20060001843A1 (en) * 2004-07-02 2006-01-05 Engle T S Projection apparatus with light source to output light into an integrating tunnel through a first and a second medium
CN101373317A (zh) * 2007-08-20 2009-02-25 中强光电股份有限公司 投影装置及其照明系统
CN101937166A (zh) * 2009-06-30 2011-01-05 卡西欧计算机株式会社 光源中使用了激光的光源装置以及投影仪
CN105556202A (zh) * 2013-09-10 2016-05-04 飞利浦照明控股有限公司 发光设备
CN205920315U (zh) * 2016-07-04 2017-02-01 深圳市绎立锐光科技开发有限公司 光源及相关投影系统

Also Published As

Publication number Publication date
CN205920315U (zh) 2017-02-01

Similar Documents

Publication Publication Date Title
WO2017121233A1 (zh) 一种波长转换装置、光源系统以及投影装置
US7220005B2 (en) Projection type video display apparatus
WO2018107634A1 (zh) 光源系统及投影装置
WO2015149700A1 (zh) 一种光源系统及投影系统
WO2014117704A2 (zh) 一种led光源系统和led照明装置
WO2018028240A1 (zh) 光源系统及投影设备
US11163226B2 (en) Light source system and projection display apparatus
WO2018028277A1 (zh) 光源装置及投影系统
WO2018076716A1 (zh) 光源系统及显示设备
WO2018006633A1 (zh) 光源及相关投影系统
WO2018023999A1 (zh) 一种光源装置以及投影设备
WO2011124140A1 (zh) 混光灯具
US20050213345A1 (en) Light source device for illumination
WO2017181958A1 (zh) 一种照明装置及车辆用前照灯装置
WO2017101773A1 (zh) 一种光源系统及照明系统
US11340445B2 (en) Phosphor wheel device
WO2018233187A1 (zh) 背光模组及显示装置
WO2018113226A1 (zh) 一种投影显示系统
WO2018137313A1 (zh) 一种光源装置
US7270457B2 (en) Light source device and projector using the same
US20190253676A1 (en) Illumination system and projection apparatus
WO2016070705A1 (zh) 一种投影仪及其光源系统
WO2014183583A1 (zh) 一种发光装置及舞台灯系统
WO2017114303A1 (zh) 色轮模组、光源模组和投影系统
WO2017118300A1 (zh) 一种光源装置及照明装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17823446

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17823446

Country of ref document: EP

Kind code of ref document: A1