WO2014183583A1 - 一种发光装置及舞台灯系统 - Google Patents

一种发光装置及舞台灯系统 Download PDF

Info

Publication number
WO2014183583A1
WO2014183583A1 PCT/CN2014/076955 CN2014076955W WO2014183583A1 WO 2014183583 A1 WO2014183583 A1 WO 2014183583A1 CN 2014076955 W CN2014076955 W CN 2014076955W WO 2014183583 A1 WO2014183583 A1 WO 2014183583A1
Authority
WO
WIPO (PCT)
Prior art keywords
led
light
array
wavelength
filter
Prior art date
Application number
PCT/CN2014/076955
Other languages
English (en)
French (fr)
Inventor
张权
胡飞
Original Assignee
深圳市绎立锐光科技开发有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN2013202744854U external-priority patent/CN203258507U/zh
Application filed by 深圳市绎立锐光科技开发有限公司 filed Critical 深圳市绎立锐光科技开发有限公司
Priority to EP14797412.5A priority Critical patent/EP2998641B1/en
Priority to US14/891,661 priority patent/US10125927B2/en
Publication of WO2014183583A1 publication Critical patent/WO2014183583A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21KNON-ELECTRIC LIGHT SOURCES USING LUMINESCENCE; LIGHT SOURCES USING ELECTROCHEMILUMINESCENCE; LIGHT SOURCES USING CHARGES OF COMBUSTIBLE MATERIAL; LIGHT SOURCES USING SEMICONDUCTOR DEVICES AS LIGHT-GENERATING ELEMENTS; LIGHT SOURCES NOT OTHERWISE PROVIDED FOR
    • F21K9/00Light sources using semiconductor devices as light-generating elements, e.g. using light-emitting diodes [LED] or lasers
    • F21K9/60Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction
    • F21K9/65Optical arrangements integrated in the light source, e.g. for improving the colour rendering index or the light extraction specially adapted for changing the characteristics or the distribution of the light, e.g. by adjustment of parts
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21SNON-PORTABLE LIGHTING DEVICES; SYSTEMS THEREOF; VEHICLE LIGHTING DEVICES SPECIALLY ADAPTED FOR VEHICLE EXTERIORS
    • F21S8/00Lighting devices intended for fixed installation
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V9/00Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters
    • F21V9/08Elements for modifying spectral properties, polarisation or intensity of the light emitted, e.g. filters for producing coloured light, e.g. monochromatic; for reducing intensity of light
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/1006Beam splitting or combining systems for splitting or combining different wavelengths
    • G02B27/102Beam splitting or combining systems for splitting or combining different wavelengths for generating a colour image from monochromatic image signal sources
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/12Beam splitting or combining systems operating by refraction only
    • G02B27/126The splitting element being a prism or prismatic array, including systems based on total internal reflection
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/145Beam splitting or combining systems operating by reflection only having sequential partially reflecting surfaces
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B27/00Optical systems or apparatus not provided for by any of the groups G02B1/00 - G02B26/00, G02B30/00
    • G02B27/10Beam splitting or combining systems
    • G02B27/14Beam splitting or combining systems operating by reflection only
    • G02B27/149Beam splitting or combining systems operating by reflection only using crossed beamsplitting surfaces, e.g. cross-dichroic cubes or X-cubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21WINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO USES OR APPLICATIONS OF LIGHTING DEVICES OR SYSTEMS
    • F21W2131/00Use or application of lighting devices or systems not provided for in codes F21W2102/00-F21W2121/00
    • F21W2131/40Lighting for industrial, commercial, recreational or military use
    • F21W2131/406Lighting for industrial, commercial, recreational or military use for theatres, stages or film studios
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2113/00Combination of light sources
    • F21Y2113/10Combination of light sources of different colours
    • F21Y2113/13Combination of light sources of different colours comprising an assembly of point-like light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21YINDEXING SCHEME ASSOCIATED WITH SUBCLASSES F21K, F21L, F21S and F21V, RELATING TO THE FORM OR THE KIND OF THE LIGHT SOURCES OR OF THE COLOUR OF THE LIGHT EMITTED
    • F21Y2115/00Light-generating elements of semiconductor light sources
    • F21Y2115/10Light-emitting diodes [LED]

Definitions

  • the utility model relates to the technical field of illumination and display, in particular to a light-emitting device and a stage lamp system.
  • semiconductor LED The light source has been widely used in various industries due to its advantages of energy saving, environmental protection, brightness and color temperature control, and has the advantage of replacing the traditional light source. I believe that in the near future, as the cost of LEDs decreases and the efficiency of light increases, semiconductors LED light sources will completely replace traditional light sources.
  • the lighting device includes a red LED array 110. a green LED array 120 and a blue LED array 130, the three LED arrays passing through the first collimating lens array 140 and the second collimating lens array 150, respectively.
  • the third collimating lens array 160 is collimated and incident on the cross-type filter 170, and is combined with the cross-type filter 170 to form a beam of light.
  • Compound eye lens pair 180 pairs of cross filter 170 The emitted light is homogenized, and the homogenized light is projected through the lens 190 to the target area.
  • the illuminating device is composed of red, green and blue LED arrays, and all synthetic colors are controlled by respectively controlling the primary colors of red, green and blue.
  • the LED's drive current is used to achieve a color ratio. Because of the use of three primary color LEDs Direct illumination, so the color saturation of monochromatic light is very high, can be used as a light source for stage lights, and can meet the requirements of bright colors for stage performances. However, since the primary color light is too small and the synthesized white light spectrum is discontinuous, the color rendering index of the light-emitting device is low, especially for the requirement of white light color rendering index. In studios above 85 or in environments where imaging is required, existing lighting devices are difficult to meet their color rendering index requirements.
  • the technical problem mainly solved by the utility model is to provide a light-emitting device and a stage light system capable of emitting high color rendering index white light.
  • the embodiment of the present invention provides a light emitting device, which includes:
  • a first LED array comprising a blue LED for emitting a first light
  • Second LED array including green LED, yellow fluorescent LED or including green LED and green fluorescent LED
  • Second LED array For emitting a second light, the second light being at least partially incident on the wavelength combining device
  • a third LED array comprising at least one of a red LED and a red fluorescent LED and an amber LED And at least one of amber fluorescent LEDs for emitting a third light;
  • a wavelength combining device comprising a first filter and a second filter, the first filter having an optical property of reflecting light having a wavelength of less than or equal to ⁇ 1 and transmitting light having a wavelength greater than ⁇ 1
  • the second filter has an optical property of transmitting light having a wavelength of less than or equal to ⁇ 2 and reflecting light having a wavelength greater than ⁇ 2 , wherein 470 nm ⁇ ⁇ 1 ⁇ 500 nm, 560 nm ⁇ ⁇ 2 ⁇ 590 nm;
  • the first filter is configured to receive the first light and the second light incident from different sides, and the reflective portion of the first light and the transmitted portion of the second light are emitted in the first direction;
  • the second filter is for receiving a second light and a third light incident from different sides, and causing the transmitting portion of the second light and the reflecting portion of the third light to exit in the first direction, the first direction being the second The optical axis direction of the LED array.
  • the second light is all incident on the wavelength combining device.
  • the second LED array comprises a first array unit and a second array unit, and the LEDs of the second array unit Distributed on the periphery of the first array unit, all of the outgoing light of the first array unit is incident on the wavelength combining device, and the outgoing light of the second array unit passes through the periphery of the wavelength combining device and exits in the same direction as the outgoing light of the wavelength combining device. .
  • the second array unit comprises a yellow fluorescent LED.
  • the first LED array further comprises a deep blue LED; and/or the second LED array further comprises a cyan LED And / or cyan fluorescent LEDs; and / or, the third LED array also includes orange LEDs and / or orange fluorescent LEDs.
  • the wavelength combining device is a cross type filter
  • the light emitting device further comprises a first reflecting plate and a second reflecting plate relatively distributed on both sides of the wavelength combining device, the first reflecting plate and the second reflecting plate being parallel to First LED array, second The plane formed by the optical axes of the LED array and the third LED array is for reflecting light incident on the first reflector and the second reflector.
  • the at least one LED array comprises LEDs of two or more colors, one color LED of the same LED array The number cannot be greater than 3 times the number of LEDs in another color.
  • the LED array comprises LEDs of two or more colors, and the needs of different color LEDs in the same array are Evenly arranged in the LED array.
  • the cutoff wavelength ⁇ 1 of the first filter is 490 nm
  • the cutoff wavelength ⁇ 2 of the second filter is 580 nm.
  • the first LED array is composed of a deep blue LED and a blue LED
  • the second LED array is composed of a cyan LED , green LED, yellow fluorescent LED or composed of cyan LED, green LED, green fluorescent LED
  • the third LED array consists of orange LED, red LED , amber LED composition.
  • the lumen ratio of the blue LED and the deep blue LED in the first LED array is 1: 1;
  • the lumen ratio of yellow fluorescent LED, green LED, and cyan LED in the LED array or green fluorescent LED, green LED, and cyan LED is 2 : 1 : 1
  • the red LED, orange LED, and amber LED in the third LED array have a lumen ratio of 1: 1 : 2 .
  • the present invention also provides a stage light system, characterized in that it comprises the above-mentioned light-emitting device.
  • the embodiment of the present invention has the following beneficial effects:
  • the light emitting device includes a first LED array, a second LED array, and a third LED Array
  • the first LED array includes a blue LED
  • the second LED array includes a yellow fluorescent LED or a green fluorescent LED
  • the third LED array includes a red LED and a red fluorescent At least one of the LEDs, at least one of an amber LED and an amber fluorescent LED, thus three LEDs
  • the spectrum of the synthesized light of the array can cover a wider spectral range.
  • the presence of a wavelength combining device makes three LEDs Most of the outgoing light of the array will be synthesized by the same beam, and when the first filter and the second filter have wavelength cutoff points of 470 nm to 500 nm and 560 nm to 590 nm, respectively.
  • the combined light of the wavelength combining device does not cause a large loss of the mixed light, and the color rendering index of the white light synthesized by the light emitting device can be as high as 85 or more.
  • Figure 2 shows the black body radiation curve of an incandescent lamp with a color temperature of 3200K
  • Figure 3 is a front elevational view showing the structure of an embodiment of the light-emitting device of the present invention.
  • Figure 4 is a schematic diagram of the spectrum of all LEDs emitted by the illumination device shown in Figure 3;
  • Figure 5 is a schematic view showing the spectrum of the outgoing light of the wavelength combining device of the light-emitting device shown in Figure 3;
  • Figure 6 is a plan view showing the structure of the light-emitting device shown in Figure 3;
  • Figure 7 is a schematic structural view of still another embodiment of the light-emitting device of the present invention.
  • Figure 8 is a front view showing the structure of still another embodiment of the light-emitting device of the present invention.
  • Figure 9 is a side view showing the structure of the second LED array shown in Figure 8.
  • the color rendering index of the mixed white light is low, generally 50 the following.
  • the color rendering index is an ideal reference source for incandescent lamps and defines the color rendering index of incandescent lamps to be 100.
  • the spectrum of the incandescent lamp is continuously distributed in the visible light range, and the closer the spectrum of the light emitted from the light-emitting device is to the spectrum of the incandescent lamp, the higher the color rendering index. Therefore, to improve the color rendering index, it is necessary to improve Figure 1.
  • the spectral range of the emitted light of the illustrated illuminating device is closer to the black body radiation curve of the incandescent lamp.
  • FIG. 2 is a black body radiation curve of an incandescent lamp with a color temperature of 3200 K, and the color rendering index of the incandescent lamp can be approximated as 100.
  • LED array is provided with LEDs of various colors, which makes the area of the LED array large, and in applications such as stage lighting systems, the subsequent pattern disk is also large, resulting in an overall enlargement of the light-emitting device.
  • FIG. 3 is a front view showing the structure of an embodiment of the light-emitting device of the present invention, as shown in Figure 3
  • the illuminating device comprises a blue LED 311, a deep blue LED 312, and a yellow fluorescent LED. 321 , green LED 322 , cyan LED 323 , red LED 331 , amber LED 332 , orange LED 333 .
  • the dominant wavelength of the red LED is Between 720nm and 770nm, the amber LED has a dominant wavelength between 580nm and 600nm, and the orange LED has a dominant wavelength between 710nm and 720nm. Between 520nm and 550nm, the dominant wavelength of the green LED is between 490nm and 520nm, and the dominant wavelength of the blue LED is between Between 460nm and 490nm, the deep blue LED has a dominant wavelength between 440nm and 460nm.
  • the yellow fluorescent LED is a yellow phosphor coated LED with a dominant wavelength. Between 540nm and 570nm, and the spectrum is wider than the spectrum of the yellow LED.
  • the LEDs with similar colors are set in the same LED.
  • Array and because there are fewer blue light components in white light, the number of blue LEDs and dark blue LEDs required is small, and it is easy to think of colors that are closer to cyan LEDs, blue LEDs, and dark blues.
  • the LEDs are placed in the same LED array to fill the area of the LED board.
  • the light loss is relatively large, which is due to the cyan LED.
  • the peaks of the spectrum and the green LED spectrum are too close, and a significant proportion of the light is filtered out by the filter.
  • the first LED array 310 includes a blue LED 311 and a deep blue LED 312 For emitting the first light;
  • the second LED array 320 includes a yellow fluorescent LED 321 , a green LED 322 , and a cyan LED 323 for emitting the second light;
  • the third LED The array 330 includes a red LED 331, an amber LED 332, and an orange LED 333 for emitting a third light. And experimentally verified, in this embodiment, three LED arrays LED distribution minimizes light loss.
  • the LED's outgoing light is the Lambertian distribution.
  • the LED The cross-sectional area of the beam of the outgoing light becomes relatively large due to diffusion, which causes loss of light when incident on subsequent optical components. Therefore, the light emitting device is further provided with a first collimating lens array 350 and a second collimating lens array 360. , a third collimating lens array 370 .
  • the first collimating lens array 350, the second collimating lens array 360, and the third collimating lens array 370 are respectively associated with the first LED array 310 and the second LED array 320, third LED array 330 corresponding to and LED
  • the exit light of the array is collimated.
  • the light-emitting device may not be provided with the first collimating lens array 350 and the second collimating lens array 360. , a third collimating lens array 370 .
  • the wavelength combining device 340 is a cross-shaped filter including a first filter 341 and a second filter 342 .
  • the first LED array 310, the second LED array 320, and the third LED array 330 surround the wavelength combining device 340.
  • the first LED array 310 and the third LED array 330 are oppositely distributed on both sides of the wavelength combining device 340, and the second LED array is distributed in the first LED array and the second
  • the LED array is on a vertical plane, and the first light emitted by the first LED array 310, the second light emitted by the second LED array 320, and the third LED array 330 All of the emitted third rays are incident on the wavelength combining device 340.
  • the first filter 341 and the second filter 342 It is a high-pass filter or a low-pass filter that is easier to design than a bandpass filter and also reduces light loss.
  • Fig. 4 is a schematic view showing the spectrum of all the LEDs emitted from the illuminating device shown in Fig. 3. As shown in Fig. 4, the adjacent spectra overlap.
  • the first filter may be a high-pass filter.
  • the light reflects the optical properties of light having a wavelength greater than ⁇ 2 , and its light transmittance curve is curve B.
  • the cutoff wavelengths of the first filter 341 and the second filter 342 are set at any position to split the spectrum of the outgoing light of the LED of at least one color into two parts, the wavelength combining device. 340 is inevitably lost during the merging of the outgoing light from the three LED arrays. Therefore, the selection of different cutoff wavelengths ⁇ 1 , ⁇ 2 changes the spectrum of the mixed light emitted by the wavelength combining device 340.
  • the cutoff wavelength ⁇ 1 should be located near the intersection of the blue LED spectral curve and the cyan LED spectral curve, and the cutoff wavelength ⁇ 2 should be located near the intersection of the yellow fluorescent LED spectral curve and the amber LED spectral curve. The farther the cutoff wavelength deviates from the above intersection, the more light is lost.
  • the range of the cutoff wavelengths ⁇ 1 and ⁇ 2 is set to 470 nm ⁇ ⁇ 1 ⁇ 500 nm, 560 nm ⁇ ⁇ 2 ⁇ 590 nm;
  • the loss of the outgoing light after 340 is small, and the mixed light emitted by the wavelength combining device 340 is also easily adjusted to a white light having a higher display index.
  • the cutoff wavelength ⁇ 1 is 490 nm and the cutoff wavelength ⁇ 2 is 580 nm. In this case, FIG.
  • FIG. 5 is a schematic diagram of the emitted light spectrum of the wavelength illuminating device of the illuminating device shown in FIG. 3, and the wavelength illuminating device 340 is out.
  • the illuminating spectrum is shown in FIG. 5.
  • the curve a is the spectrum of the first LED array 310, the second LED array 320, and the third LED array 330 that are directly mixed without the wavelength combining device 340, and the curve b is the wavelength combination.
  • the first light light having a wavelength of ⁇ 1 or less is reflected by the first filter 341, light having a wavelength greater than ⁇ 1 is transmitted by the first filter 341, and all of the light is transmitted by the second filter. 342 transmission; the second light is all transmitted by the first filter 341 and the second filter 342; in the third light, the light having a wavelength greater than or equal to ⁇ 2 is reflected by the second filter 342, and the wavelength is less than ⁇ 2 Light is transmitted by the second filter 342, and all of the light is transmitted by the first filter 341.
  • the first filter 341 receives the first light and the second light incident from different sides, and causes the reflected portion of the first light and the transmitted portion of the second light to exit in the first direction, and is incident on the first filter.
  • the third light of 341 is transmitted without changing the direction of propagation;
  • the second filter 342 receives the second light and the third light incident from different sides, and causes the transmitted portion of the second light to be the same as the reflected portion of the third light Exiting in the first direction, the first light incident on the second filter 342 is transmitted without changing the direction of propagation.
  • the first direction here is the optical axis direction of the second LED array.
  • the wavelength combining device 340 combines most of the first light, the second light, and the third light to emit light in the same direction.
  • the light-emitting device When the light-emitting device is applied to a stage lamp or the like, it is often necessary to project both monochromatic light and projected light such as white light. In order to ensure the brightness of the projected monochromatic light, it is necessary to ensure the LED of various color lights in the LED array. Not too little. Therefore, preferably, when the LED array comprises more than two color LEDs, the different color LEDs in the LED array maintain a certain ratio: one color in the same LED array The lumens of the LEDs cannot be greater than three times the lumens of the other color LEDs.
  • the ratio of the blue LED 311 to the deep blue LED 312 in the first LED array 310 is 1/3 to 3
  • the ratio of yellow fluorescent LED 321 to green LED 322 in the second LED array is 1/3 to 3
  • green LED 322 and cyan LED The ratio of 323 is 1/3 to 3
  • the ratio of yellow fluorescent LED 321 to cyan LED 323 is also 1/3 to 3.
  • the above ratio can be approximated by the number of LEDs.
  • the total number of LED arrays may not be just enough to meet the above ratios, such as blue LEDs and deep blue LEDs.
  • the ratio of the number is 1: 1.2, which can be approximated by a rounding of 1: 1 and meets the above requirements.
  • the same LED may not be used. LED lumens of different colors in the array are required.
  • the optical properties of the first filter 341 and the second filter 342, the LEDs in each array are determined After the type and quantity, white light that emits different color temperatures can be realized by adjusting the current of the LED. For including 8 color LEDs
  • the illuminating device has a lot of schemes for mixing white light having a certain color temperature, and a suitable scheme can be selected by comprehensively considering the color rendering index and brightness.
  • the second filter 342 has a cutoff wavelength set at 580 mm, and the blue LED (indicated by B) and the deep blue LED (in Db) in the first LED array 310
  • the ratio of the number of representations is 1 : 1; the yellow fluorescent LED (indicated by Y) in the second LED array 320, the green LED (indicated by G), and the cyan LED (in C)
  • the ratio of the number of representations is 2 : 1 : 1 ; the red LED (indicated by R), the orange LED (indicated by O), the amber LED in the third LED array 330
  • the ratio of the number of A is 1 : 1 : 2 .
  • the quantitative ratio here can be approximated as the ratio of lumens.
  • the relative values of the drive currents for the various color LEDs in Table 1 are a multiple of their rated current. From Table 1 It can be seen that by setting the current of the LEDs of different colors and then adjusting the current ratio of each LED array, the light emitted by the illuminating device can be 3200K or 5600K, and different colors. There are multiple sets of current parameters of the LED, and some of the current parameter sets can make the display index of the light emitted by the illuminating device up to 90. the above. The color rendering index and the lumen number of the light emitted by the light-emitting device driven by different current parameters are different. In practical applications, the current parameter group can be selected according to needs.
  • the prior art considers the increased LED
  • the spectrum type the higher the color rendering index that the overall light emitted by the illuminating device can achieve.
  • the more LEDs in the same array the more complicated the LED array light source is, and the need to target different colors.
  • LED control current current control is more cumbersome.
  • the inventors of the present invention found that some color LEDs have little effect on the color rendering index when certain color LEDs are from LEDs. After the array is removed, the color rendering index of the white light emitted by the light-emitting device after current adjustment is still high.
  • the LED types and ratios in the respective LED arrays are kept the same as those in Table 2, for the third LED array 330.
  • the LED current parameters of different colors are adjusted, and the color rendering index and brightness of the light emitted by the illuminating device are shown in Table 2.
  • the third LED array 330 of the illumination device may only include red LEDs And amber LEDs, it has been found that when the LED types in the first LED array and the second LED array remain unchanged, the color rendering index of the illuminating device can still reach 90 under the appropriate current drive. the above.
  • the LED types and ratios in the individual LED arrays are still maintained, for the second LED array 320.
  • the LED current parameters of different colors are adjusted, and the color rendering index and brightness of the light emitted by the illuminating device are shown in Table 3.
  • Table 3 when the first LED array 310 and the third LED are maintained The drive current parameters of array 330 are unchanged, with a yellow fluorescent LED (Y) in the case of 3200K white light.
  • Y yellow fluorescent LED
  • the driving current is reduced, the color rendering index and brightness of the light emitted by the illuminating device are significantly reduced, and with the cyan LED (C
  • the driving current is reduced, and the color rendering index of the light emitted from the illuminating device fluctuates within a small range and remains substantially unchanged.
  • the yellow fluorescent LED has a greater influence on the color rendering index of the light-emitting device, and cyan LEDs have little effect on the color rendering index. Therefore, in practice, the second LED of the illuminating device may only include yellow fluorescent LEDs and green LEDs, other LEDs The array remains unchanged. It has been found experimentally that when the LED types in the first LED array and the third LED array remain unchanged, the color rendering index of the illuminating device can still reach 90 under appropriate current driving. the above.
  • the color rendering index of the light emitted by the illuminating device can reach 85 In the above, the requirements of the light-emitting device for a high color rendering index can still be satisfied.
  • the color rendering index of the light emitted by the current-adjusted illuminator can reach 91. .
  • the color rendering index of white light emitted by the illuminating device can still be maintained above 85.
  • the illuminating device can also increase the dark blue LED and / Or cyan LED and / or orange LED.
  • the green fluorescent LED is an LED coated with a green phosphor with a dominant wavelength of 515 nm. Between 530 nm and a wide spectrum. During the above experiment using green fluorescent LEDs, it was found that the green fluorescent LED can replace the yellow fluorescent LED in the second LED array. It can meet the requirements of the illuminating device. Therefore, in the illuminating device, the green fluorescent LED can partially replace or completely replace the yellow fluorescent LED.
  • amber fluorescent LED is an LED coated with an amber phosphor, and the dominant wavelength of the emitted light is 580 nm. 600nm, and the spectrum is much wider than the amber LED spectrum, which helps to improve the color rendering index of the light emitted by the wavelength combining device, so the amber fluorescent LED can be used to replace the amber LED.
  • the red fluorescent LED is an LED coated with a red phosphor, and the dominant wavelength of the emitted light is 620 nm. At 640 nm, and the spectrum is much wider than the spectrum of the red LED, it can be used to partially replace or completely replace the red LED.
  • Cyan fluorescent LED is an LED coated with cyan phosphor The dominant wavelength of the emitted light is 490 nm to 520 nm, and its spectrum is much wider than the spectrum of the cyan LED, which can be used to partially replace or completely replace the cyan LED.
  • Orange fluorescent LED It is an LED coated with an orange phosphor. The dominant wavelength of the emitted light is 610nm to 620nm, and the spectrum is wider than the spectrum of the orange LED. It can be used to partially replace or completely replace the orange. LED .
  • the need for LEDs of different colors in the same array is evenly arranged in the LED array to attenuate LEDs containing different colors
  • the coloring phenomenon occurs when the emitted light of the LED array is projected; at this time, the color image is dispersed to different areas with respect to the case where the LED of the same color is concentrated, so that the color image is not easily noticeable.
  • the light-emitting device may also be provided with a first reflecting plate and a second reflecting plate.
  • Figure 6 is Figure 3 The top view of the structure of the illuminating device is shown. The first reflecting plate and the second reflecting plate are not shown in FIG. 3. As can be seen from FIG. 3 and FIG. 6, the first reflecting plate 380 and the second reflecting plate 390 are parallel to the first LED. a plane formed by the optical axes of the array 310, the second LED array 320, and the third LED array 330 for reflecting incident on the first reflector 380 and the second reflector 390 The light is reduced to cause light to exit from the plane in which the first reflecting plate 380 and the second reflecting plate 390 are located.
  • the wavelength combining device may be a parallel filter, in addition to a cross filter.
  • Figure 7 A schematic structural view of still another embodiment of the light-emitting device of the present invention, as shown in FIG. 7, the light-emitting device includes a first LED array 710, a second LED array 720, and a third LED array. 730, a wavelength combining device 740, a first collimating lens array 750, a second collimating lens array 760, and a third collimating lens array 770.
  • the wavelength combining device 740 includes a first filter 741 and second filter 742.
  • the difference from the light-emitting device of the embodiment shown in FIG. 3 is that in the present embodiment, the first filter 741 and the second filter 742 are disposed in parallel.
  • the first LED array 710 and the second LED array 720 are respectively located on opposite sides of the first filter 741.
  • the first light emitted by the first LED array 710 is less than or equal to The light of the cutoff wavelength ⁇ 1 is reflected and the rest is transmitted; of the second light rays emitted by the second LED array 720, the light of less than or equal to the wavelength ⁇ 1 is transmitted and the rest is reflected, so the reflected light of the first light and the second The transmitted light of the light is merged into the same light beam, and the mixed light is the first combined light.
  • the third light emitted from the third LED array 730 and the first combined light are incident from the both sides to the second filter 742, respectively.
  • the surface of the first filter 742 among the third light rays emitted by the third LED array 730, light having a cutoff wavelength ⁇ 2 or more is reflected and the rest is transmitted; in the first combined light, less than or equal to the cutoff wavelength ⁇ The light of 2 is transmitted and the rest is reflected, so that the reflected light of the third light and the transmitted light of the first combined light are mixed into the same light beam, and finally the first LED array 710, the second LED array 720, and the third LED are realized.
  • the combined light of most of the outgoing light in array 730 are realized.
  • the yellow LED fluorescent LED in the second LED array 320 A large portion of the emitted light is filtered by the wavelength combining device 340, causing a decrease in brightness.
  • the present invention proposes a new structure to reduce the loss of light emitted by the yellow fluorescent LED.
  • Figure 8 A front view of a structure of still another embodiment of the light-emitting device of the present invention. As shown in FIG. 8, the light-emitting device includes a first LED array 810, a second LED array 820, and a third LED array. 830, a wavelength combining device 840, a first collimating lens array 850, a second collimating lens array 860, and a third collimating lens array 870.
  • the second LED array 820 in this embodiment includes the first array unit.
  • the 821 and the second array unit 822 have the structure shown in FIG. 9 is a side view showing the structure of the second LED array 820 shown in FIG. 8, as shown in FIG. 9, the second array unit 822.
  • the LED surrounds the periphery of the first array unit 821.
  • the first array unit 821 includes a cyan LED and a green LED
  • the second array unit 822 includes a yellow fluorescent LED .
  • the outgoing light of the first array unit 821 is incident on the wavelength combining device 840, and the outgoing light of the second array unit 822 passes through the wavelength combining device 840.
  • the periphery of the light exits in the same direction as the outgoing light of the wavelength combining device 840.
  • the second light emitted by the second LED array 820 is only partially incident on the wavelength combining device 840.
  • the second array unit The yellow light emitted by 822 will not be lost.
  • the yellow fluorescent LED in the second LED array It can still be replaced by other LEDs, such as cyan LED, green LED, green fluorescent LED, etc.
  • the LEDs in the second array unit 822 shown in FIG. 9 surround the periphery of the first array unit 821 and make the second The LEDs of the LED array 820 are approximately octagonal, such that the second LED array 820 The cross section of the outgoing beam is closer to the round surface, which is beneficial to the lens to collect light.
  • the LEDs of the second array unit 822 There may be other arrangements as long as they are distributed around the periphery of the first array unit 821, and the outgoing light of the second array unit 822 may pass through the periphery of the wavelength combining device 840, such as the second array unit.
  • the LEDs may be relatively distributed on both sides of the first array unit 821.
  • the embodiment of the present invention further provides a stage light system, including a light-emitting device, which can have the structure and function in the above embodiments.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Led Device Packages (AREA)

Abstract

一种发光装置及舞台灯系统,包括第一LED阵列(310、710、810)、第二LED阵列(320、720、820)、第三LED阵列(330、730、830)以及波长合光装置(340、740、840)。第一LED阵列(310、710、810)包括蓝色LED(311),用于出射第一光线。第二LED阵列(320、720、820)包括黄色荧光LED(321)或者绿色荧光LED、绿色LED(322),用于出射第二光线。第三LED阵列(330、730、830)包括红色LED(331)、琥珀色LED(332),用于出射第三光线。第二光线至少部分入射至波长合光装置(340、740、840)。波长合光装置(340、740、840)包括第一滤光片(341、741)和第二滤光片(342、742)。第一滤光片(341、741)反射波长小于等于λ1的光而透射波长大于λ1的光。第二滤光片(342、742)透射波长小于等于λ2的光而反射波长大于λ2的光。470nm≤λ1≤500nm,560nm≤λ2≤590nm。第一滤光片(341、741)使得第一光线的反射部分和第二光线的透射部分沿第一方向出射。第二滤光片(342、742)使得第二光线的透射部分和第三光线的反射部分沿第一方向出射。该发光装置及舞台灯系统可以出射高显色指数白光。

Description

一种发光装置及舞台灯系统 技术领域
本实用新型涉及照明及显示技术领域,特别是涉及一种发光装置及舞台灯系统。
背景技术
随着近几年半导体固体光源的飞速发展以及困扰全球的能源紧张,全球气候变暖等问题,半导体 LED 光源以其节能,环保,亮度及色温可控等优点,已在各行各业上已广泛应用,大有取代传统光源的优势。相信在不久的将来,随着 LED 的成本的降低及光效率的提高,半导体 LED 光源会全面的取代传统光源。
图 1 是现有技术中一种基于 LED 的发光装置,如图 1 所示,发光装置包括红色 LED 阵列 110 、绿色 LED 阵列 120 以及蓝色 LED 阵列 130 ,这三个 LED 阵列分别经过第一准直透镜阵列 140 、第二准直透镜阵列 150 以及第三准直透镜阵列 160 的准直后入射至十字型滤光片 170 ,并经十字型滤光片 170 后合成一束光出射。复眼透镜对 180 对十字型滤光片 170 的出射光进行匀光,匀光后的光经透镜 190 投射至目标区域。
在此发光装置中,发光装置由红、绿、蓝三色 LED 阵列组成,所有合成颜色都是通过分别控制红、绿、蓝三基色 LED 的驱动电流来实现颜色的配比。因为采用三基色 LED 直接发光,因而单色光的颜色饱和度非常高,可以用作舞台灯的光源,能够满足舞台演出对颜色鲜艳的要求。但是,由于基色光太少,合成的白光光谱不连续,该发光装置的显色指数较低,特别是针对要求白光显色指数在 85 以上的演播室或要求摄像的环境,现有发光装置难以满足其对显色指数的要求。
技术问题
本实用新型主要解决的技术问题是提供一种可以出射高显色指数白光的发光装置及舞台灯系统。
本实用新型实施例提供了一种 发光装置,其特征在于,包括:
第一 LED 阵列,包括蓝色 LED ,用于出射第一光线;
第二 LED 阵列,包括绿色 LED 、黄色荧光 LED 或者包括绿色 LED 和绿色荧光 LED ,用于出射第二光线,该第二光线至少部分入射至波长合光装置;
第三 LED 阵列,包括红色 LED 与红色荧光 LED 中的至少一种以及琥珀色 LED 与琥珀色荧光 LED 中的至少一种,用于出射第三光线;
波长合光装置,该波长合光装置包括第一滤光片和第二滤光片,该第一滤光片具有反射波长小于等于 λ1 的光而透射波长大于 λ1 的光的光学性质,第二滤光片具有透射波长小于等于 λ2 的光而反射波长大于 λ2 的光的光学性质,其中 470nm ≤ λ1 ≤ 500nm, 560nm ≤ λ2≤ 590nm ;
第一滤光片用于接收从不同侧面入射的第一光线与第二光线,并使得第一光线的反射部分和第二光线的透射部分沿第一方向出射;第二滤光片用于接收从不同侧面入射的第二光线与第三光线,并使得第二光线的透射部分和第三光线的反射部分沿第一方向出射,第一方向为第二 LED 阵列的光轴方向。
优选地,第二光线全部入射至波长合光装置。
优选地,第二 LED 阵列包括第一阵列单元和第二阵列单元,且第二阵列单元的 LED 分布在第一阵列单元的外围,第一阵列单元的出射光全部入射至波长合光装置,第二阵列单元的出射光经过波长合光装置的外围并与波长合光装置的出射光同方向出射。
优选地,第二阵列单元包括黄色荧光 LED 。
优选地,第一 LED 阵列还包括深蓝色 LED ;和 / 或,第二 LED 阵列还包括青色 LED 和 / 或青色荧光 LED ;和 / 或,第三 LED 阵列还包括橙色 LED 和 / 或橙色荧光 LED 。
优选地,波长合光装置为十字型滤光片,发光装置还包括相对分布在波长合光装置两侧的第一反射板和第二反射板,该第一反射板和第二反射板平行于第一 LED 阵列、第二 LED 阵列、第三 LED 阵列的光轴所构成的平面,用于反射入射至该第一反射板和第二反射板的光。
优选地,至少一个 LED 阵列包括两种以上颜色的 LED ,同一 LED 阵列中一种颜色的 LED 的数量不能大于另一种颜色 LED 数量的 3 倍。
优选地, LED 阵列包括两种以上颜色的 LED , 同一阵列中的不同颜色的 LED 的需要在 LED 阵列中均匀排布 。
优选地,第一滤波片的截止波长 λ1 为 490 nm ,第二滤波片的截止波长 λ2 为 580 nm 。
优选地,第一 LED 阵列由深蓝色 LED 和蓝色 LED 组成;第二 LED 阵列由青色 LED 、绿色 LED 、黄色荧光 LED 组成或者由青色 LED 、绿色 LED 、绿色荧光 LED 组成;第三 LED 阵列由橙色 LED 、红色 LED 、琥珀色 LED 组成。
优选地,第一 LED 阵列中蓝色 LED 和深蓝色 LED 的流明比例为 1 : 1 ;第二 LED 阵列中的黄色荧光 LED 、绿色 LED 、青色 LED 的流明比例或者绿色荧光 LED 、绿色 LED 、青色 LED 为 2 : 1 : 1 ;第三 LED 阵列中的红色 LED 、橙色 LED 、琥珀色 LED 的流明比例为 1 : 1 : 2 。
本实用新型还提供了一种舞台灯系统,其特征在于,包括上述发光装置。
与现有技术相比,本实用新型实施例具有如下有益效果:
本实用新型实施例中,发光装置包括了 第一 LED 阵列、第二 LED 阵列、第三 LED 阵列,第一 LED 阵列包括蓝色 LED ,第二 LED 阵列包括黄色荧光 LED 或者绿色荧光 LED ,第三 LED 阵列包括红色 LED 与红色荧光 LED 中的至少一种、琥珀色 LED 与琥珀色荧光 LED 中的至少一种,因此三个 LED 阵列的合成光的光谱可以覆盖更宽的光谱范围。波长合光装置的存在使得三个 LED 阵列的大部分出射光会合成同一光束出射,且当第一滤光片和第二滤光片的波长截止点分别为 470nm 至 500nm 和 560nm 至 590nm ,波长合光装置的合光不会使得混合光有较大损失,发光装置合成的白光的显色指数可以高达 85 以上。
附图说明
图 1 是现有技术中一种基于 LED 的发光装置;
图 2 为色温 3200K 的白炽灯的黑体辐射曲线;
图 3 为本实用新型发光装置的一个实施例的结构主视图;
图 4 为图 3 所示的发光装置的所有 LED 出射光的光谱示意图;
图 5 为图 3 所示是发光装置的波长合光装置的出射光光谱示意图;
图 6 为图 3 所示发光装置的结构俯视图;
图 7 为本实用新型发光装置的又一个实施例的结构示意图;
图 8 为本实用新型发光装置的又一个实施例的结构主视图;
图 9 为图 8 所示第二 LED 阵列的结构侧视图。
本发明的实施方式
下面结合附图及实施方式来对本实用新型的实施例进行详细分析。
在图 1 所示的现有技术方案中,由于发光装置只有红、蓝、绿三基色,其混合光的光谱覆盖范围较小,因此混合后的白光的显色指数较低,一般在 50 以下。显色指数是以白炽灯为理想基准光源,并定义白炽灯的显色指数为 100 ,白炽灯的光谱在可见光范围内连续分布,当发光装置的出射光的光谱越接近白炽灯的光谱,其显色指数越高。因此,要提高显色指数就要提高图 1 所示发光装置的出射光的光谱范围,使之更接近白炽灯的黑体辐射曲线,例如,图 2 为色温 3200K 的白炽灯的黑体辐射曲线,可以近似认为该白炽灯的显色指数为 100 。
一个比较容易想到的方案就是在 LED 阵列中设置多种颜色的 LED 以扩宽混合光的光谱。但是一个 LED 阵列设置多种颜色的 LED 会使得 LED 阵列的面积很大,并且在舞台灯系统等应用中,后续的图案盘也要很大,导致发光装置的整体变大。
实施例一
为了减小体积,本实用新型设置了三个 LED 阵列并设置了波长合光装置对 LED 阵列的出射光进行合光。图 3 为本实用新型发光装置的一个实施例的结构主视图,如图 3 所示,为了使得发光装置出射光的光谱覆盖的波长范围更接近白炽灯的光谱波长范围,发光装置包括蓝色 LED 311 、深蓝色 LED 312 、黄色荧光 LED 321 、绿色 LED 322 、青色 LED 323 、红色 LED 331 、琥珀色 LED 332 、橙色 LED 333 。红色 LED 的主波长在 720nm 至 770nm 之间,琥珀色 LED 的主波长在 580nm 至 600nm 之间,橙色 LED 的主波长在 710nm 至 720nm 之间,绿色 LED 的主波长在 520nm 至 550nm 之间,青色 LED 的主波长在 490nm 至 520 nm 之间,蓝色 LED 的主波长在 460nm 至 490nm 之间,深蓝色 LED 的主波长在 440nm 至 460nm 之间,黄色荧光 LED 为表面涂覆黄色荧光粉的 LED ,其主波长在 540nm 至 570nm 之间,且光谱要宽于黄色 LED 的光谱。
为了便于合光,颜色相接近的 LED 被设置在同一个 LED 阵列,而由于在白光中的蓝光成分较少,因此所需蓝光 LED 、深蓝色 LED 的数量较少,很容易想到的是将颜色也比较接近的青色 LED 、蓝色 LED 、深蓝色 LED 设置在同一个 LED 阵列中以充满 LED 电路板的面积。但是,经实验发现,在后续对三个 LED 阵列合光的过程中,光损失比较大,这是由于青色 LED 光谱和绿色 LED 光谱的波峰距离太近,会相当大比例的光被滤光片过滤掉。因此第一 LED 阵列 310 包括蓝色 LED 311 和深蓝色 LED 312 ,用于出射第一光线;第二 LED 阵列 320 包括黄色荧光 LED 321 、绿色 LED 322 、青色 LED 323 ,用于出射第二光线;第三 LED 阵列 330 包括红色 LED 331 、琥珀色 LED 332 、橙色 LED 333 ,用于出射第三光线。而经实验验证,本实施例中三个 LED 阵列中 LED 分布方式可以最大限度的降低光的损失。
LED 的出射光为朗伯分布,在传播的过程中, LED 的出射光的光束截面积会因扩散而变得比较大,在入射到后续光学元件上时会造成光的损失。因此,发光装置还设置了第一准直透镜阵列 350 、第二准直透镜阵列 360 、第三准直透镜阵列 370 。第一准直透镜阵列 350 、第二准直透镜阵列 360 、第三准直透镜阵列 370 分别与第一 LED 阵列 310 、第二 LED 阵列 320 、第三 LED 阵列 330 对应并对 LED 阵列的出射光进行准直。当然,在对光利用效率要求不高或者其它特殊要求的场合,发光装置也可以不设置第一准直透镜阵列 350 、第二准直透镜阵列 360 、第三准直透镜阵列 370 。
波长合光装置 340 为十字形滤光片,包括第一滤光片 341 和第二滤光片 342 。为了便于设计滤光片,如图 3 所示,第一 LED 阵列 310 、第二 LED 阵列 320 、第三 LED 阵列 330 环绕在波长合光装置 340 的周围,且第一 LED 阵列 310 和第三 LED 阵列 330 相对分布在波长合光装置 340 的两侧,第二 LED 阵列分布在第一 LED 阵列、第二 LED 阵列均垂直的面上,并且第一 LED 阵列 310 出射的第一光线,第二 LED 阵列 320 出射的第二光线,第三 LED 阵列 330 出射的第三光线全部入射至波长合光装置 340 。此时,第一滤光片 341 和第二滤光片 342 为高通滤光片或者低通滤光片,相对于带通滤光片比较容易设计,也会减少光的损失。
图 4 为图 3 所示的发光装置的所有 LED 出射光的光谱示意图,如图 4 所示,相邻的光谱之间都有交叠。根据 LED 阵列中各色 LED 的排布,为了能够将大部分的第一光线、第二光线、第三光线合并成同一光路,如图 4 所示,第一滤光片可以为高通滤光片,具有反射波长小于等于 λ1 的光而透射波长大于 λ1 的光的光学性质,其光透过率曲线为曲线 A ,第二滤光片为低通滤光片,具有透射波长小于等于 λ2 的光而反射波长大于 λ2 的光的光学性质,其光透过率曲线为曲线 B 。
从图 4 可以看出,第一滤光片 341 和第二滤光片 342 的截止波长设在任何位置都要将至少一种颜色的 LED 的出射光的光谱分割成两部分,波长合光装置 340 在对三个 LED 阵列的出射光的合光过程中必然会损失。因此,不同的截止波长 λ1 、 λ2 的选择会改变波长合光装置 340 出射的混合光的光谱。
为了减少光损失,经实验发现,截止波长 λ1 应该位于蓝色 LED 光谱曲线和青色 LED 光谱曲线交点的附近,截止波长 λ2 应该位于黄色荧光 LED 光谱曲线和琥珀色 LED 光谱曲线交点的附近,当截止波长偏离上述交点越远,损失的光就越多。为了使得截止波长 λ1 、 λ2 位于两个光谱曲线的交点附近,截止波长 λ1 、 λ2 的范围设置为 470nm ≤ λ1 ≤ 500nm, 560nm ≤ λ2≤ 590nm ; 此时经波长合光装置 340 后的出射光的损失较少,波长合光装置 340 出射的混合光也容易调整成较高显示指数的白光。优选地,截止波长 λ1 为 490 nm ,截止波长 λ2 为 580 nm ,此时,图 5 为图 3 所示是发光装置的波长合光装置的出射光光谱示意图,波长合光装置 340 的出射光光谱如图 5 所示,曲线 a 为第一 LED 阵列 310 、第二 LED 阵列 320 、第三 LED 阵列 330 的出射光未经波长合光装置 340 直接混合后的光谱,曲线 b 为经过波长合光装置 340 后的出射光光谱。通过比较可以看出,相对于曲线 a ,曲线 b 在波长 λ1 = 490 nm 、波长 λ2 = 580 nm 附近,光谱强度会有损失,但损失较小。
此时,第一光线中,波长小于等于 λ1 的光被第一滤光片 341 反射,波长大于 λ1 的光被第一滤光片 341 透射,而全部的光会被第二滤光片 342 透射;第二光线全部会被第一滤光片 341 、第二滤光片 342 透射;第三光线中,波长大于等于 λ2 的光被第二滤光片 342 反射,波长小于 λ2 的光被第二滤光片 342 透射,而全部的光会被第一滤光片 341 透射。这样,第一滤光片 341 接收从不同侧面入射的第一光线与第二光线,并使得第一光线的反射部分和第二光线的透射部分沿第一方向出射,入射到第一滤光片 341 的第三光线会被透射而不改变传播方向;第二滤光片 342 接收从不同侧面入射的第二光线与第三光线,并使得第二光线的透射部分和第三光线的反射部分同样沿第一方向出射,入射到第二滤光片 342 的第一光线会被透射而不改变传播方向。这里的第一方向是第二 LED 阵列的光轴方向,这样,波长合光装置 340 将第一光线、第二光线、第三光线的大部分光合光后沿同一方向出射。
在发光装置应用于舞台灯等场合的时候,往往既需要投射单色光又需要投射白光等混合光。为了保证投射出的单色光的亮度,需要保证 LED 阵列中的各种颜色光的 LED 的不能过少。因此,优选地,当 LED 阵列包括两种以上颜色 LED , LED 阵列中的不同颜色 LED 保持一定的比例:同一 LED 阵列中一种颜色的 LED 的流明数不能大于另一种颜色 LED 流明数的 3 倍。例如,第一 LED 阵列 310 中蓝色 LED 311 与深蓝色 LED 312 的比例为 1/3 至 3 ,第二 LED 阵列中黄色荧光 LED 321 与绿色 LED 322 的比例为 1/3 至 3 ,绿色 LED 322 与青色 LED 323 的比例为 1/3 至 3 ,黄色荧光 LED 321 与青色 LED 323 的比例也为 1/3 至 3 。当不同颜色的 LED 的尺寸相同,可以认为上述比例近似可以用 LED 的数量比例表示。当然, LED 阵列中的总数量可能不能刚好满足上述比例,例如蓝色 LED 和深蓝色 LED 的数量比例为 1 : 1.2 ,通过四舍五入可以近似的认为是 1 : 1 而符合上述要求。当然,当对单色光投影没有要求的时候,可以不对同一 LED 阵列中的不同颜色的 LED 流明比例进行要求。
在确定了第一滤光片 341 和第二滤光片 342 的光学性质、各个阵列中的 LED 种类及其数量以后,可以通过调节 LED 的电流来实现出射不同的色温的白光。对于包括 8 种颜色 LED 的发光装置,混合成有某一色温的白光的方案有很多,可以通过综合考虑显色指数与亮度来选择合适的方案。
下面以获得 3200K 和 5600K 的白光为例。将第一滤光片 341 截止波长设置在 490mm ,第二滤光片 342 截止波长设置在 580mm ,并且第一 LED 阵列 310 中蓝色 LED (以 B 表示)和深蓝色 LED (以 Db 表示)的数量比例为 1 : 1 ;第二 LED 阵列 320 中的黄色荧光 LED (以 Y 表示)、绿色 LED (以 G 表示)、青色 LED (以 C 表示)的数量比例为 2 : 1 : 1 ;第三 LED 阵列 330 中的红色 LED (以 R 表示)、橙色 LED (以 O 表示)、琥珀色 LED (以 A 表示)的数量比例为 1 : 1 : 2 。这里的数量比例可以近似看作流明的比例。
通过设定不同颜色 LED 的电流,再调节各个 LED 阵列的整体电流比例,获得 3200K 和 5600K 显色指数,其模拟结果如表 1 所示:
B Db G C Y R O A 显色指数 流明
3200K 驱动电流的相对值 1 1 0.3 0.3 1 0.7 0.7 1 90.7 5353
1 1 0.28 0.28 1 0.7 0.7 1 91.0 5371
1 1 0.28 0.28 1 0.6 0.8 1 90.8 5379
1 1 0.33 0.25 1 0.6 0.8 1 90.9 5413
1 1 1 1 1 1 1 1 73.8 6176
5600K 驱动电流的相对值 1 1 0.75 0.75 1 0.53 0.53 1 90.5 6161
1 1 0.7 0.79 1 0.53 0.53 1 90.4 6147
1 1 0.78 0.7 1 0.53 0.53 1 90.6 6178
1 1 0.78 0.7 1 0.47 0.58 1 90.7 6183
1 1 1 1 1 1 1 1 79.4 6885
表 1 中各种颜色 LED 的驱动电流的相对值为其额定电流的倍数。从表 1 中可以看出,通过设定不同颜色 LED 的电流,再调节各个 LED 阵列的电流比例,可以使得发光装置出射光为 3200K 或者 5600K 的白光,并且不同颜色 LED 的电流参数有多组,其中部分电流参数组可以使得发光装置出射光的显示指数高达 90 以上。而不同电流参数驱动的发光装置出射光的显色指数和流明数不同,在实际应用中,电流参数组可以根据需要选择。
对于显色指数的提高方式,现有技术认为增加的 LED 光谱种类越多,发光装置的整体出射光所能达到的显色指数越高。但是,同一阵列中的 LED 种类越多, LED 阵列光源的制作工艺更加复杂,并需要针对不同颜色 LED 控制电流,电流控制更加繁琐。但是,本实用新型的发明人发现,一些颜色的 LED 对显色指数的影响并不大,当某些颜色 LED 从 LED 阵列中去除以后,经电流调整以后发光装置出射的白光的显色指数依然很高。
具体地,保持各个 LED 阵列中的 LED 种类与比例与表 2 中的相同,对第三 LED 阵列 330 中不同颜色的 LED 电流参数进行调整,发光装置的出射光的显色指数和亮度如表 2 所示,从表 2 中可以看出,当保持第一 LED 阵列 310 、第二 LED 阵列 320 的电流参数不变,在出射 3200K 白光情况下,随着琥珀色 LED ( A )的驱动电流的降低,发光装置出射光的显色指数和亮度(即流明)都降低,而随着橙色 LED ( O )的驱动电流的降低,发光装置出射光的显色指数反而上升,但是变化幅度相对于电流变化幅度来说较小。可以看出,第三 LED 阵列 330 中,琥珀色 LED 对发光装置的显色指数影响比较大,而橙色 LED ( O )对显色指数的影响不大。因此,实际上,发光装置的第三 LED 阵列 330 可以只包括红色 LED 和琥珀色 LED ,经实验发现,当第一 LED 阵列和第二 LED 阵列中的 LED 种类保持不变时,发光装置在适当的电流驱动下,其显色指数依然可以达到 90 以上。
B Db G C Y R O A 显色指数 流明
3200K 驱动电流的相对值 1 1 1 1 1 1 0.5 1 77.5 5080
1 1 1 1 1 1 0.2 1 80.5 5080
1 1 1 1 1 1 1 1 73.8 6176
1 1 1 1 1 1 1 0.5 62.3 5092
1 1 1 1 1 1 1 0.2 53.3 4441
类似地,仍然保持各个 LED 阵列中的 LED 种类与比例不变,对第二 LED 阵列 320 中不同颜色的 LED 电流参数进行调整,发光装置的出射光的显色指数和亮度如表 3 所示,从表 3 中可以看出,当保持第一 LED 阵列 310 、第三 LED 阵列 330 的驱动电流参数不变,在出射 3200K 白光的情况下,随着黄色荧光 LED ( Y )的驱动电流的降低,发光装置出射光的显色指数和亮度都有明显地降低,而随着青色 LED ( C )的驱动电流的降低,发光装置出射光的显色指数在小范围内波动,基本保持不变。因此,第三 LED 阵列中,黄色荧光 LED 对发光装置的显色指数影响比较大,而青色 LED 对显色指数的影响不大。因此,实际上,发光装置的第二 LED 可以只包括黄色荧光 LED 和绿色 LED ,其它 LED 阵列保持不变,经实验发现,在第一 LED 阵列、第三 LED 阵列中的 LED 种类保持不变时,发光装置在适当的电流驱动下,其显色指数依然可以达到 90 以上。
B Db G C Y R O A 显色指数 流明
3200K 驱动电流的相对值 1 1 1 1 1 1 1 1 73.8 6176
1 1 1 1 0.5 1 1 1 63.8 5904
1 1 1 1 0.2 1 1 1 53.2 4775
1 1 1 0.5 1 1 1 1 79.2 6362
1 1 1 0.2 1 1 1 1 76.5 6280
对于第一 LED 阵列,同样地,经实验发现,当第一 LED 阵列中只包括蓝色 LED 时,显色指数并没有太大改变。
而当第一 LED 阵列 310 只包括蓝色 LED ,第二 LED 阵列 320 只包括绿色 LED 、黄色荧光 LED ,第三 LED 阵列 330 只包括红色 LED 、琥珀色 LED 时,经实验验证,发光装置的出射光的显色指数可以达到 85 以上,依然可以满足发光装置对于高显色指数的要求。例如,当第一 LED 阵列中包括蓝色 LED ;第二 LED 阵列中的黄色荧光 LED 、绿色 LED 的数量比例为 2 : 1 ;第三 LED 阵列中的红色 LED 、琥珀色 LED 数量比例为 1 : 2 ,且蓝色 LED 、绿色 LED 、黄色荧光 LED 、红色 LED 、琥珀色 LED 的电流的相对值分别为 1 、 1 、 1 、 0.5 、 1 时,经电流调整后的发光装置出射光的显色指数可以达到 91 。考虑到同种颜色的不同 LED 的光谱之间差异,发光装置出射的白光的显色指数依然能保持在 85 以上。
当然,为了实现出射某种特定的单色光或者显色指数达到更高的要求,发光装置也可以增加深蓝色 LED 和 / 或青色 LED 和 / 或橙色 LED 。
值得说明的是,绿色荧光 LED 是表面涂覆有绿色荧光粉的 LED ,其主波长为 515 nm 至 530 nm 之间且具有较宽的光谱。在利用绿色荧光 LED 重复上述实验过程中发现,绿光荧光 LED 可以替代第二 LED 阵列中的黄色荧光 LED 使用,完全可以满足发光装置的要求。因此,发光装置中,绿色荧光 LED 可以部分替代或者全部替代黄色荧光 LED 。
另外,琥珀色荧光 LED 是表面涂覆有琥珀色荧光粉的 LED ,其出射光的主波长是 580nm 至 600nm ,并且光谱远宽于琥珀色 LED 的光谱,有利于提高波长合光装置出射光的显色指数,因此琥珀色荧光 LED 可以用来替代琥珀色 LED 。
同理,红色荧光 LED 是表面涂覆有红色荧光粉的 LED ,其出射光的主波长为 620nm 至 640nm ,并且光谱远宽于红色 LED 的光谱,可以用来部分替代或者全部替代红色 LED 。青色荧光 LED 是表面涂覆有青色荧光粉的 LED ,其出射光的主波长为 490 nm 至 520 nm ,并且其光谱远宽于青色 LED 的光谱,可以用来部分替代或者全部替代青色 LED 。橙色荧光 LED 是表面涂覆有橙色荧光粉的 LED ,其出射光的主波长为 610nm 至 620nm ,并且光谱宽于橙色 LED 的光谱,可以用来部分替代或者全部替代橙色 LED 。
优选地,同一阵列中的不同颜色的 LED 的需要在 LED 阵列中均匀排布,以减弱包含不同颜色 LED 的 LED 阵列的出射光在投影时出现的彩影现象;此时,相对于同一颜色的 LED 较为集中的情况,彩影被分散到了不同的区域,从而使得彩影不易察觉。
为了减少光的损失,发光装置还可以设置第一反射板和第二反射板。图 6 为图 3 所示发光装置的结构俯视图,图 3 中第一反射板和第二反射板未画出,结合图 3 与图 6 可知, 第一反射板 380 和第二反射板 390 平行于第一 LED 阵列 310 、第二 LED 阵列 320 、第三 LED 阵列 330 的光轴所构成的平面,用于反射入射至该第一反射板 380 和第二反射板 390 的光,以减少光从第一反射板 380 和第二反射板 390 所在的平面出射而造成损失。
实施例二
波长合光装置除了可以是十字型滤光片外,还可以是平行设置的滤光片。图 7 为本实用新型发光装置的又一个实施例的结构示意图,如图 7 所示,发光装置包括第一 LED 阵列 710 、第二 LED 阵列 720 、第三 LED 阵列 730 、波长合光装置 740 、第一准直透镜阵列 750 、第二准直透镜阵列 760 、第三准直透镜阵列 770 。其中波长合光装置 740 包括第一滤光片 741 和第二滤光片 742 。
与图 3 所示实施例的发光装置的不同之处在于,本实施例中,第一滤光片 741 和第二滤光片 742 为平行设置。第一 LED 阵列 710 和第二 LED 阵列 720 分别位于第一滤光片 741 的两侧,此时在第一滤光片 741 的表面上,第一 LED 阵列 710 出射的第一光线中,小于等于截止波长 λ1 的光被反射而其余被透射;第二 LED 阵列 720 出射的第二光线中,小于等于截至波长 λ1 的光被透射而其余被反射,因此第一光线的反射光和第二光线的透射光合并成同一光束出射,该混合光为第一合光。
类似地,第三 LED 阵列 730 出射的第三光线和第一合光分别从两侧入射到第二滤光片 742 。此时在第一滤光片 742 的表面上,第三 LED 阵列 730 出射的第三光线中,大于等于截止波长 λ2 的光被反射而其余透射;第一合光中,小于等于截至波长 λ2 的光被透射而其余被反射,因此第三光线的反射光和第一合光的透射光混合成同一光束出射,最终实现了对第一 LED 阵列 710 、第二 LED 阵列 720 、第三 LED 阵列 730 中大部分出射光的合光。
实施例三
对于图 3 所示的发光装置,第二 LED 阵列 320 中,黄光荧光 LED 的出射光有较大一部分会被波长合光装置 340 过滤掉,而造成亮度下降。为此,本实用新型提出了一种新的结构,以减少黄色荧光 LED 出射光的损失。图 8 为本实用新型发光装置的又一个实施例的结构主视图,如图 8 所示,发光装置包括第一 LED 阵列 810 、第二 LED 阵列 820 、第三 LED 阵列 830 、波长合光装置 840 、第一准直透镜阵列 850 、第二准直透镜阵列 860 、第三准直透镜阵列 870 。
与图 3 所示实施例中的发光装置不同的是,本实施例中第二 LED 阵列 820 包括第一阵列单元 821 和第二阵列单元 822 ,其结构如图 9 所示。图 9 为图 8 所示第二 LED 阵列 820 的结构侧视图,如图 9 所示,第二阵列单元 822 的 LED 环绕在第一阵列单元 821 的外围。具体地,这里第一阵列单元 821 包括青色 LED 和绿色 LED ,第二阵列单元 822 包括黄色荧光 LED 。其中,第一阵列单元 821 的出射光会入射至波长合光装置 840 ,而第二阵列单元 822 的出射光会经过波长合光装置 840 的外围并与波长合光装置 840 的出射光同方向出射。这样,第二 LED 阵列 820 出射的第二光线只有部分入射到波长合光装置 840 。此时,第二阵列单元 822 出射的黄光不会有损失。
当然,容易理解的是,在本实用新型实施例的其它实施方式中,第二 LED 阵列中的黄色荧光 LED 还是可以用其它的 LED 代替,例如青色 LED 、绿色 LED 、绿色荧光 LED 等。
另外,图 9 所示的第二阵列单元 822 中的 LED 环绕第一阵列单元 821 外围,并使得第二 LED 阵列 820 的 LED 近似成八边形排布,这样第二 LED 阵列 820 的出射光束的截面更接近于圆面,有利于镜头对光的收集。在本实用新型实施例的其它实施方式中,第二阵列单元 822 的 LED 还可以有其它排布方式,只要其分布在第一阵列单元 821 的外围,并且第二阵列单元 822 的出射光经过波长合光装置 840 的外围即可,例如第二阵列单元的 LED 可以相对分布在第一阵列单元 821 的两侧。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。
本实用新型实施例还提供一种舞台灯系统,包括发光装置,该发光装置可以具有上述各实施例中的结构与功能。
以上所述仅为本实用新型的实施方式,并非因此限制本实用新型的专利范围,凡是利用本实用新型说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本实用新型的专利保护范围内。

Claims (12)

  1. 一种发光装置,其特征在于,包括:
    第一 LED 阵列,包括蓝色 LED ,用于出射第一光线;
    第二 LED 阵列,包括绿色 LED 、黄色荧光 LED 或者包括绿色 LED 和绿色荧光 LED ,用于出射第二光线,该第二光线至少部分入射至波长合光装置;
    第三 LED 阵列,包括红色 LED 与红色荧光 LED 中的至少一种以及琥珀色 LED 与琥珀色荧光 LED 中的至少一种,用于出射第三光线;
    波长合光装置,该波长合光装置包括第一滤光片和第二滤光片,
    该第一滤光片具有反射波长小于等于 λ1 的光而透射波长大于 λ1 的光的光学性质,所述第二滤光片具有透射波长小于等于 λ2 的光而反射波长大于 λ2 的光的光学性质,其中 470nm ≤ λ1 ≤ 500nm, 560nm ≤ λ2≤ 590nm ;
    所述第一滤光片用于接收从不同侧面入射的所述第一光线与第二光线,并使得第一光线的反射部分和第二光线的透射部分沿第一方向出射;所述第二滤光片用于接收从不同侧面入射的所述第三光线与第二光线,并使得所述第二光线的透射部分和第三光线的反射部分沿所述第一方向出射,所述第一方向为所述第二 LED 阵列的光轴方向。
  2. 根据权利要求 1 所述的发光装置,其特征在于:所述第二光线全部入射至所述波长合光装置。
  3. 根据权利要求 1 所述的发光装置,其特征在于:所述第二 LED 阵列包括第一阵列单元和第二阵列单元,且所述第二阵列单元的 LED 分布在所述第一阵列单元的外围,所述第一阵列单元的出射光全部入射至所述波长合光装置,所述第二阵列单元的出射光经过所述波长合光装置的外围且与所述波长合光装置的出射光同方向出射。
  4. 根据权利要求 3 所述的发光装置,其特征在于,所述第二阵列单元包括黄色荧光 LED 。
  5. 根据权利要求 1 至 4 中任一项所述的发光装置,其特征在于:
    所述第一 LED 阵列还包括深蓝色 LED ;和 / 或,
    所述第二 LED 阵列还包括青色 LED 和 / 或青色荧光 LED ;和 / 或,
    所述第三 LED 阵列还包括橙色 LED 和 / 或橙色荧光 LED 。
  6. 根据权利要求 1 至 4 任一项所述的发光装置,其特征在于:所述波长合光装置为十字型滤光片,所述发光装置还包括相对分布在所述波长合光装置两侧的第一反射板和第二反射板,该第一反射板和第二反射板平行于所述第一 LED 阵列、第二 LED 阵列、第三 LED 阵列的光轴所构成的平面,用于反射入射至该第一反射板和第二反射板的光。
  7. 根据权利要求 5 所述的发光装置,其特征在于:至少一个 LED 阵列包括两种以上颜色的 LED ,同一 LED 阵列中一种颜色的 LED 的流明数不能大于另一种颜色 LED 流明数的 3 倍。
  8. 根据权利要求 5 所述的发光装置,其特征在于: LED 阵列包括两种以上颜色的 LED , 同一阵列中的不同颜色的 LED 的需要在 LED 阵列中均匀排布 。
  9. 根据权利要求 5 所述的发光装置,其特征在于:所述第一滤波片的截止波长 λ1 为 490 nm ,所述第二滤波片的截止波长 λ2 为 580 nm 。
  10. 根据权利要求 5 所述的发光装置,其特征在于:
    所述第一 LED 阵列由深蓝色 LED 和蓝色 LED 组成;
    所述第二 LED 阵列由青色 LED 、绿色 LED 、黄色荧光 LED 组成或者由青色 LED 、绿色 LED 、绿色荧光 LED 组成;
    所述第三 LED 阵列由橙色 LED 、红色 LED 、琥珀色 LED 组成。
  11. 根据权利要求 10 所述的发光装置,其特征在于:所述第一 LED 阵列中蓝色 LED 和深蓝色 LED 的流明比例为 1 : 1 ;所述第二 LED 阵列中的黄色荧光 LED 、绿色 LED 、青色 LED 的流明比例或者绿色荧光 LED 、绿色 LED 、青色 LED 的流明比例为 2 : 1 : 1 ;所述第三 LED 阵列中的红色 LED 、橙色 LED 、琥珀色 LED 的流明比例为 1 : 1 : 2 。
  12. 一种舞台灯系统,其特征在于,包括如权利要求 1 至 11 任一项所述的发光装置。
PCT/CN2014/076955 2013-05-17 2014-05-07 一种发光装置及舞台灯系统 WO2014183583A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP14797412.5A EP2998641B1 (en) 2013-05-17 2014-05-07 Light-emitting device and stage lamp system
US14/891,661 US10125927B2 (en) 2013-05-17 2014-05-07 Light-emitting device and stage lamp system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201320274485.4 2013-05-17
CN2013202744854U CN203258507U (zh) 2013-03-18 2013-05-17 一种发光装置及舞台灯系统

Publications (1)

Publication Number Publication Date
WO2014183583A1 true WO2014183583A1 (zh) 2014-11-20

Family

ID=51900037

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2014/076955 WO2014183583A1 (zh) 2013-05-17 2014-05-07 一种发光装置及舞台灯系统

Country Status (3)

Country Link
US (1) US10125927B2 (zh)
EP (1) EP2998641B1 (zh)
WO (1) WO2014183583A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3660387A4 (en) * 2017-07-25 2021-04-07 YLX Incorporated LIGHT SOURCE DEVICE AND STAGE LAMP LIGHTING SYSTEM WITH USE THEREOF

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109681790A (zh) * 2017-10-18 2019-04-26 深圳市绎立锐光科技开发有限公司 光源系统及照明设备
EP3715704B1 (en) * 2019-03-29 2021-11-10 ROBE lighting s.r.o. Homogenization system for an led luminaire
CN115576166A (zh) 2020-03-12 2023-01-06 中强光电股份有限公司 照明系统及投影装置
CN113391507B (zh) * 2020-03-13 2022-07-19 中强光电股份有限公司 光源模块与投影装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101392891A (zh) * 2007-09-18 2009-03-25 华兴电子工业股份有限公司 具有高演色性的数组式发光装置
CN101968170A (zh) * 2010-08-09 2011-02-09 上海光隧光电科技有限公司 采用led补色光的led照明光源装置
WO2012026718A2 (ko) * 2010-08-23 2012-03-01 국민대학교 산학협력단 멀티칩 백색 led 소자
CN202710914U (zh) * 2012-08-05 2013-01-30 深圳市绎立锐光科技开发有限公司 光源系统及投影系统
CN203258507U (zh) * 2013-03-18 2013-10-30 深圳市绎立锐光科技开发有限公司 一种发光装置及舞台灯系统

Family Cites Families (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ATE344936T1 (de) * 1998-06-05 2006-11-15 Seiko Epson Corp Lichtquelle und anzeigevorrichtung
KR100440959B1 (ko) * 2001-11-08 2004-07-21 삼성전자주식회사 조명계 및 이를 채용한 프로젝션 시스템
JP3991764B2 (ja) * 2002-05-10 2007-10-17 セイコーエプソン株式会社 照明装置および投射型表示装置
US6769772B2 (en) * 2002-10-11 2004-08-03 Eastman Kodak Company Six color display apparatus having increased color gamut
JP2004184777A (ja) * 2002-12-04 2004-07-02 Nec Viewtechnology Ltd 光源装置及び投写型表示装置
KR20070062611A (ko) * 2002-12-26 2007-06-15 산요덴키가부시키가이샤 조명 장치
KR100816971B1 (ko) * 2002-12-26 2008-03-26 산요덴키가부시키가이샤 투사형 영상 표시 장치
US20040218387A1 (en) * 2003-03-18 2004-11-04 Robert Gerlach LED lighting arrays, fixtures and systems and method for determining human color perception
JP2004335992A (ja) * 2003-04-18 2004-11-25 Victor Co Of Japan Ltd 光源装置及びこの光源装置を適用した投射型表示装置
JP3858850B2 (ja) * 2003-05-06 2006-12-20 セイコーエプソン株式会社 表示装置、及び表示方法、並びにプロジェクタ
US7360900B2 (en) * 2004-03-10 2008-04-22 Seiko Epson Corporation Illuminating apparatus, image display apparatus, and projector
JP2005284051A (ja) * 2004-03-30 2005-10-13 Hitachi Ltd 半導体発光素子、それを用いた光源ユニット、光学ユニット及び映像表示装置
JP4121477B2 (ja) * 2004-03-31 2008-07-23 三洋電機株式会社 照明装置及び投写型映像表示装置
JP4616577B2 (ja) * 2004-04-22 2011-01-19 株式会社日立製作所 映像表示装置
US7434945B2 (en) * 2004-11-10 2008-10-14 Sanyo Electric Co., Ltd. Illuminating device and projection type video display apparatus
US7325956B2 (en) * 2005-01-25 2008-02-05 Jabil Circuit, Inc. Light-emitting diode (LED) illumination system for a digital micro-mirror device (DMD) and method of providing same
TW200743223A (en) * 2006-05-01 2007-11-16 Coretronic Corp Light-emitting diode light source system
JP4239107B2 (ja) * 2006-08-25 2009-03-18 カシオ計算機株式会社 光源装置及びプロジェクタ
US7766490B2 (en) 2006-12-13 2010-08-03 Philips Lumileds Lighting Company, Llc Multi-color primary light generation in a projection system using LEDs
JP5493483B2 (ja) * 2008-07-24 2014-05-14 セイコーエプソン株式会社 プロジェクター
WO2011006501A1 (en) * 2009-07-13 2011-01-20 Martin Professional A/S Color-combining illumination device
CN101988630B (zh) * 2009-07-31 2013-01-09 深圳市光峰光电技术有限公司 舞台灯光照明系统及其提供高亮度白光的方法
DE102011004047B4 (de) * 2011-02-14 2013-04-11 Glp German Light Products Gmbh Leuchte mit einem optischen Element mit zwei Zuständen und Verfahren zum Betreiben der Leuchte
US10585293B2 (en) 2011-10-17 2020-03-10 Appotronics Corporation Limited Light source and display system
CN102520571B (zh) * 2011-11-04 2014-08-06 深圳市光峰光电技术有限公司 发光装置及投影系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101392891A (zh) * 2007-09-18 2009-03-25 华兴电子工业股份有限公司 具有高演色性的数组式发光装置
CN101968170A (zh) * 2010-08-09 2011-02-09 上海光隧光电科技有限公司 采用led补色光的led照明光源装置
WO2012026718A2 (ko) * 2010-08-23 2012-03-01 국민대학교 산학협력단 멀티칩 백색 led 소자
CN202710914U (zh) * 2012-08-05 2013-01-30 深圳市绎立锐光科技开发有限公司 光源系统及投影系统
CN203258507U (zh) * 2013-03-18 2013-10-30 深圳市绎立锐光科技开发有限公司 一种发光装置及舞台灯系统

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP2998641A4 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3660387A4 (en) * 2017-07-25 2021-04-07 YLX Incorporated LIGHT SOURCE DEVICE AND STAGE LAMP LIGHTING SYSTEM WITH USE THEREOF

Also Published As

Publication number Publication date
EP2998641B1 (en) 2023-07-05
EP2998641A4 (en) 2016-07-13
EP2998641A1 (en) 2016-03-23
US10125927B2 (en) 2018-11-13
US20160131315A1 (en) 2016-05-12

Similar Documents

Publication Publication Date Title
TWI416217B (zh) 具有多組光源的照明系統
CN203258423U (zh) Led单元模组、发光装置以及光源系统
WO2014117704A2 (zh) 一种led光源系统和led照明装置
JP5350251B2 (ja) 発光クラスタを有する光源
JP4590647B2 (ja) 光源装置およびプロジェクタ装置
WO2014183583A1 (zh) 一种发光装置及舞台灯系统
WO2018107634A1 (zh) 光源系统及投影装置
WO2011124140A1 (zh) 混光灯具
WO2017092668A1 (zh) 一种照明系统
WO2020177445A1 (zh) 一种多色led照明系统
TWI610457B (zh) 白光光源裝置
WO2020151630A1 (zh) 发光装置及舞台灯系统
CN103175011B (zh) 面积等分对称式可调光led集成光源
WO2024001015A1 (zh) 一种照明装置
CN100514176C (zh) 照明装置及运用此照明装置的投影系统
CN112255863B (zh) 一种激光影视摄影照明灯具光路结构
US11344192B2 (en) Lighting device and endoscope having the same
WO2016036054A1 (ko) 혼합광 생성장치
WO2018006656A1 (zh) 一种光源系统及舞台灯
US20080259460A1 (en) Light-pipe integrator with mask for uniform irradiance
US11536438B2 (en) Lighting apparatus having an optic with a centered light source and an off-center light source
CN203055906U (zh) 一种高色纯度led
CN117008404A (zh) 一种投影系统
TW202024521A (zh) 雷射照明裝置
WO2018192131A1 (zh) 一种舞台灯照明装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 14891661

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

WWE Wipo information: entry into national phase

Ref document number: 2014797412

Country of ref document: EP

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14797412

Country of ref document: EP

Kind code of ref document: A1