WO2020177445A1 - 一种多色led照明系统 - Google Patents

一种多色led照明系统 Download PDF

Info

Publication number
WO2020177445A1
WO2020177445A1 PCT/CN2019/125973 CN2019125973W WO2020177445A1 WO 2020177445 A1 WO2020177445 A1 WO 2020177445A1 CN 2019125973 W CN2019125973 W CN 2019125973W WO 2020177445 A1 WO2020177445 A1 WO 2020177445A1
Authority
WO
WIPO (PCT)
Prior art keywords
led
light
color
lighting system
group
Prior art date
Application number
PCT/CN2019/125973
Other languages
English (en)
French (fr)
Inventor
陈国平
Original Assignee
广州光联电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 广州光联电子科技有限公司 filed Critical 广州光联电子科技有限公司
Publication of WO2020177445A1 publication Critical patent/WO2020177445A1/zh

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V19/00Fastening of light sources or lamp holders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V29/00Protecting lighting devices from thermal damage; Cooling or heating arrangements specially adapted for lighting devices or systems
    • F21V29/50Cooling arrangements
    • F21V29/502Cooling arrangements characterised by the adaptation for cooling of specific components
    • F21V29/503Cooling arrangements characterised by the adaptation for cooling of specific components of light sources
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F21LIGHTING
    • F21VFUNCTIONAL FEATURES OR DETAILS OF LIGHTING DEVICES OR SYSTEMS THEREOF; STRUCTURAL COMBINATIONS OF LIGHTING DEVICES WITH OTHER ARTICLES, NOT OTHERWISE PROVIDED FOR
    • F21V5/00Refractors for light sources
    • F21V5/04Refractors for light sources of lens shape

Definitions

  • the utility model relates to the field of stage lights, and more specifically, to a multi-color LED lighting system.
  • Spotlights are currently a kind of stage lights, mainly used in professional places such as photography, studios, TV stations, etc.
  • the current types of spotlights on the market mainly include single white LED high-resolution spotlights and multi-color LED mixed-color spotlights.
  • the multi-color LED spotlight is generally packaged in a COB integrated packaging method or an array packaging method.
  • the optical imaging effect is generated during the movement of the lens in the optical path. Since the imaged is a multi-color light source, images of various colors appear when the light is emitted.
  • the COB integrated packaging method is mainly composed of the multi-color LED chip 1, the light-receiving lens 2, and the threaded mirror 6 in turn.
  • ZOOM means zoom.
  • the white light mixed by the multi-color LED light source 1 will converge the arrangement area of the multi-color LED chip 1 to the wall when the spotlight is zooming, resulting in uneven light mixing on the wall.
  • the spotlight emits light at a small angle, because the focal point 0 of the threaded mirror 6 remains unchanged, the focal point 0 of the threaded mirror 6 is close to the surface of the COB light source (that is, the multi-color LED chip 1).
  • FIG. 1 shows the RGB color light
  • Figure 6 move the light source module composed of the multi-color LED chip 1 and the light-receiving lens 2, close to the threaded mirror 6, and the spotlight is at a large angle
  • the focal point 0 of the threaded mirror 6 remains unchanged, the focal point 0 of the threaded mirror 6 is far away from the surface of the COB light source (that is, the multi-color LED chip 1), and the mixed white light is projected. Therefore, in the COB integrated packaging method, the closer the focus 0 of the threaded mirror 6 is to the surface of the COB light source, the more uneven the light spot on the wall is mixed.
  • the packaging method of the array package is mainly composed of a multi-color LED collimation system 1, a homogenizing module 2, a light collecting lens 3 and a threaded mirror 6.
  • the multi-color LED collimation system 1 includes Several LED chips and collimating lenses are arranged in an array, and each LED chip corresponds to the collimating lens one to one.
  • Figure 9 shows a schematic diagram of the arrangement of the LED chip array. Since the LED chips of the array package need to be collimated by the collimating system first, and then homogenized and collected by the homogenizing module 2 and the light receiving lens 3, the light source of the array package will be after the light receiving lens, and The light source focal point 4 is formed before the threaded mirror 6, and then projected out through the threaded mirror 6.
  • the focus 0 of the threaded mirror 6 in the array package remains unchanged, and the multi-color LED collimating system 1 is far away from the threaded mirror 6, and the light spot projected on the wall is small, and it is the mixed white light color;
  • Figure 4 As shown, the focus 0 of the threaded mirror 6 of the array package remains unchanged, and the multi-color LED collimation system 1 is close to the threaded mirror 6, and the light spot projected on the wall is large, but it is the light of the color corresponding to each LED chip. 8 is the light of RGB color, that is, uneven light mixing occurs. Therefore, the multi-color LED light source of the array type package will also appear uneven light mixing on the wall as the angle of the light spot is enlarged.
  • the utility model aims to overcome at least one of the above-mentioned defects of the prior art, and provides a multi-color LED lighting system that can effectively improve the uniformity of multi-color LED light mixing, and is used to solve the problem of uneven mixing of multi-color LED spotlights. At the same time, it can be compatible with more medium-color mixed light sources, effectively ensuring the luminous flux output by the light source.
  • the technical scheme adopted by the utility model is a multi-color LED lighting system, including several groups of LED units, each group of LED units is composed of several LED chips, and each group of LED units includes at least 3 LEDs with different luminous colors
  • the multi-color LED lighting system also includes a collimating module, a light homogenizing system, a condensing lens and a threaded mirror, and the multi-color LED lighting system further includes a collimating module, a light homogenizing system, a condensing lens and a threaded mirror, and the collimating module It includes several collimating lens units, each collimating lens unit corresponds to each group of LED units one-to-one, and each beam of light emitted by the LED chip of each group of LED units is collimated and collected by the collimating lens unit where it is located It becomes a mixed light beam, each group of LED units corresponds to a mixed light beam, and each mixed light beam passes through the homogenization system, the condenser lens and the threaded mirror in turn
  • the multi-color LED lighting system provided by the utility model first combines the multi-color LED chips to form several groups of independent LED units.
  • Each group of LED units corresponds to a collimating lens unit.
  • the collimating lens unit By adding the light output direction of each group of LED units Set the collimating lens unit to complete the light mixing in advance to mix white light, that is, the multi-color LED chip will perform the mixing white balance processing when passing through the collimating lens unit, and then converge into a mixed light beam, which makes the lens imaging.
  • the image is a uniformly mixed image.
  • Several groups of LED units form a number of mixed light beams that have been subjected to mixing white balance processing.
  • the main purpose is to improve the uniformity of the spot mixing
  • the light-emitting effect of uniform light spot brightness distribution, and the previously performed light mixing white balance processing is mainly to improve the uniform effect of light color, so the utility model can effectively solve the problem of uneven light mixing of large and small angles.
  • each LED chip is collimated with the collimating lens unit one by one, because the multi-color chip is in the mixed light and the wavelength is different, especially the red light and the blue light, converge to GOBO
  • the size of the light spot is different.
  • the LED emits light from a Lambertian and emits light at a large angle, and the chips are densely arranged, a part of the mixed light will be formed after passing through the lens.
  • GOBO is an aperture or light through hole.
  • the screw lens needs to be moved back and forth to adjust the focus.
  • the angle of light from the upper wall gradually changes from small to large or from large to small.
  • the mixed light beam passes through the homogenization system for secondary homogenization, and then converges on the GOBO through the condenser lens.
  • the imaging focus of the threaded mirror is on the GOBO, which can effectively solve the small angle The problem of uneven light.
  • the threaded mirror When the light exit angle is the largest, the threaded mirror is close to the LED unit, and the focus of the threaded mirror will appear inside the light source. Since the mixed light beam has been internally mixed with white balance when exiting through the threaded mirror, it can effectively solve the problem. The phenomenon of uneven angle mixing.
  • each group of LED units is provided with at least two white light LED chips mainly to increase the luminous flux.
  • White light has a higher contribution to luminous flux. And in the process of use, most of the white light (3200K-8000K color temperature) will be turned on directly. In this case, the white light contributes a lot. When other colors are used, there will be power reduction to debug and achieve white balance.
  • the high thermal conductivity ceramic substrate corresponds to each group of LED units one-to-one, and the LED chips of each group of LED units are sequentially packaged on the upper surface of the high thermal conductivity ceramic substrate on which it is located.
  • the upper and lower surfaces of the high thermal conductivity ceramic substrate are respectively provided with metal circuit layers, and the metal circuit layers on the upper and lower surfaces are conductively connected through vias; each LED chip of the LED unit is provided with a gold Wire, the positive and negative poles of the LED chip are connected to the metal circuit layer on the upper surface through gold wires, and then conductively connected to the metal circuit layer on the lower surface for energization.
  • the metal circuit layer is provided with a bonding pad for mounting multi-color LED chips.
  • the color of the bonding pad corresponds to the light-emitting color of the LED chip, which is beneficial for rapid production Distinguish the arrangement of LED chips of different colors.
  • the metal circuits corresponding to the LED chips of different light-emitting colors of the LED unit are different, and the LED chips of different light-emitting colors are independently controlled through different metal circuits.
  • the LED chips of different light-emitting colors are independently controlled through different metal circuits, and the LED chips of the desired color can be controlled to emit light.
  • the LED chips of each group of LED units are evenly arranged along the circumferential direction of the center of the LED unit, and the white LED chips are an even number and are arranged symmetrically on both sides of the center of the LED unit.
  • the arrangement of white light LED chips is symmetrical, and when outputting white balance, the higher the white light output, the better the adjustment of the final mixed white balance, and the higher the brightness of the final white light output from the light source.
  • the number of LED chips of each group of LED units is a multiple of 4, and the LED chips of each group of LED units are arranged symmetrically with the central axis of the LED unit as an axis, and are divided into 4 light-emitting areas with the same area.
  • the symmetrical arrangement of the LED units can make the mixed light beam composed of LED chips emit light more uniformly.
  • each light-emitting area is provided with a white LED chip, and four white LED chips are arranged in a square array in the center of the LED unit.
  • the white LED chip composed of 4 light-emitting areas can make the luminous flux of the LED unit larger.
  • each light-emitting area is provided with at least three LED chips with different light-emitting colors, and there is at least one LED chip with different light-emitting colors between adjacent light-emitting areas.
  • each light-emitting area is provided with three LED chips with different light-emitting colors, and at least one LED chip between adjacent light-emitting areas has a different light-emitting color.
  • each group of LED units includes 12 LED chips, and the 12 LED chips contain at least 7 different colors.
  • it also includes a field lens arranged between the condenser lens and the threaded lens, and the focus position of the threaded lens is changed through the field lens.
  • the setting of the field lens is mainly to change the focal length of the screw lamp to prevent the LED image from appearing when the screw lamp is imaging. Changing the focus position of the threaded lens through the field lens further ensures the uneven light mixing phenomenon of the spotlight in the multi-color LED light source.
  • the multi-color LED lighting system provided by the utility model collimates and homogenizes the light emitted by the multiple LED chips by arranging multiple LED chips in each group of LED units, so that the light inside the light source is evenly mixed, and then passes through the uniform
  • the optical system further homogenizes the mixed light, which not only solves the problem of uneven light mixing at small angles, but also solves the problem of uneven light mixing at large angles.
  • Figure 1 is a light-emitting effect diagram of the utility model when the light spot angle becomes smaller.
  • Figure 2 is a diagram of the light output effect of the utility model when the angle of the light spot becomes larger.
  • Fig. 3 is a schematic diagram of the structure of the LED unit and the collimating lens unit after being combined.
  • FIG. 4 is a schematic diagram of the structure of the LED chip package arrangement of the LED unit.
  • FIG. 5 is a light output effect diagram of the prior art COB integrated packaging method when the light spot angle becomes smaller.
  • Fig. 6 is a diagram showing the light output effect of the prior art COB integrated packaging method when the light spot angle becomes larger.
  • FIG. 7 is a light-emitting effect diagram of the prior art array packaging method when the light spot angle becomes smaller.
  • FIG. 8 is a light-emitting effect diagram of the prior art array packaging method when the light spot angle increases.
  • FIG. 9 is a schematic diagram of the arrangement of LED chips in a prior art array packaging method.
  • a multi-color LED lighting system includes several groups of LED units 11, each group of LED units 11 is composed of 12 LED chips 111; also includes a collimating mold set in the direction of light emission Group 12, homogenization system 2, condenser lens 3 and threaded mirror 6.
  • the collimating module 12 includes a number of collimating lens units 102, each collimating lens unit 102 corresponds to the LED unit 11 one by one, and each group Each beam of light emitted by the LED chip 111 of the LED unit 11 is collimated and converged into a mixed light beam by the collimating lens unit 102 where it is located.
  • Each group of LED units 11 corresponds to a mixed light beam, and each mixed light beam The light beam passes through the homogenizing system 2, the condenser lens 3 and the threaded mirror 6 in turn to emit light.
  • FIGS. 1 and 2 it also includes a field lens 5 arranged between the condenser lens 3 and the threaded lens 6, and the focus position of the threaded lens 6 is changed by the field lens 5.
  • the entire light source module moves with the threaded mirror 6, when the angle of light from the upper wall is the smallest, the light source module composed of the LED unit 11 and the collimator lens unit 102 is mixed first.
  • the emitted white light will pass through the homogenization system 2, and then perform a secondary homogenization, and finally converge on the GOBO through the condensing lens 3.
  • the imaging focus of the threaded mirror 6 is on the GOBO, which can effectively solve the small-angle light color This phenomenon is not uniform.
  • each group of LED units 11 is composed of 12 LED chips 111, and each group of LED units 11 includes 7 LED chips 111 with different light-emitting colors.
  • each group of LED units 11 includes 7 LED chips 111 with different light-emitting colors.
  • the 12 LED chips 111 Including 4 white LED chips 111.
  • the LED chips 111 of each group of LED units 11 are arranged symmetrically with the central axis of the LED unit 11 as an axis, and are divided into four light-emitting areas with the same area.
  • Each light-emitting area is provided with 3 LED chips with different light-emitting colors, and at least one LED chip between adjacent light-emitting areas has a different light-emitting color.
  • Each light-emitting area is provided with a white LED chip, and the white LED chips are respectively arranged around the center of the LED unit.
  • the LED chips 111 of the two light-emitting areas that are diagonally symmetrical about the LED unit 11 emit the same color.
  • the 12 LED chips in each group of LED units there are 4 white LED chips, 2 red LED chips, 2 green LED chips, 2 amber LED chips, and 2 cyan LED chips.
  • the red light LED chip is respectively arranged in the light-emitting area of the upper left corner and the lower right corner of the LED unit 11
  • the blue light LED chip is respectively arranged in the light-emitting area of the upper right corner and the lower left corner of the LED unit 11, and the upper left and lower right corners of the light-emitting area
  • a green LED chip is arranged on the outer side of the white light LED chip
  • a cyan LED chip is arranged on the outer side of the white light LED chip in the light-emitting area at the upper right corner and the lower left corner.
  • the high thermal conductivity ceramic substrate 10 corresponds to each group of LED units 11 one-to-one, and the LED chips 111 of each group of LED units 11 are sequentially packaged on the high thermal conductivity ceramic substrate. 10Upper surface.
  • the upper and lower surfaces of the high thermal conductivity ceramic substrate 10 are respectively provided with metal circuit layers 101, and the metal circuit layers 101 on the upper and lower surfaces are conductively connected through via holes; each LED chip 111 of the LED unit 11 is provided with a corresponding A gold wire, the positive and negative electrodes of the LED chip 111 are connected to the metal circuit layer 101 on the upper surface through the gold wire, and then conductively connected to the metal circuit layer 101 on the lower surface for energization.
  • the LED chips 111 of different light-emitting colors of the LED unit 11 correspond to different metal circuits, and the LED chips 111 of different light-emitting colors are independently controlled by different metal circuits, so that the LED chips of different light-emitting colors can be controlled to emit light.
  • the working principle of this embodiment is: as shown in FIG. 3, the multi-color LED lighting system provided by this embodiment first combines multi-color LED chips 111 to form several groups of independent LED units 11.
  • the arrangement of the combined LED chips 111 is as shown in FIG. 4, and such arrangement can effectively improve the luminous flux and color uniformity output by the LED chips 111.
  • Each group of LED units 11 corresponds to a collimating lens unit 12.
  • the light mixing is completed in advance to produce white light, that is, the multi-color LED chip is passing the collimation
  • the lens unit is subjected to mixed light white balance processing, and then converged into a mixed light beam, so that the image formed by the lens during imaging is a uniformly mixed image.
  • Several groups of LED units 11 form several mixed light beams that have undergone mixing white balance processing.
  • the condenser lens 3 When several mixed light beams pass through the homogenization system 2, the condenser lens 3 is converged and the threaded mirror 6 is used for imaging, it is mainly to improve The light-emitting effect of uniform light spot mixing and uniform light-spot brightness distribution, and the previous light mixing white balance processing is mainly to improve the uniform effect of light color, thus effectively solving the problem of uneven light mixing of large and small angles.
  • the threaded mirror 6 is far away from the LED unit 11, and the projected light beam is a uniformly mixed light beam. It solves the problem that the smaller the light spot angle of the multi-color LED light source in the COB integrated package, the more uneven the light spot mixing on the wall.
  • the threaded mirror 6 when the light output angle of the multi-color LED light source is maximum, the threaded mirror 6 is close to the LED unit 11, and the focal point 0 of the threaded mirror 6 is in front of the LED unit. At this time, the projected light beam is also a uniformly mixed light beam. It solves the problem of magnification of the light spot angle of the multi-color LED light source in the array type package and uneven light mixing on the wall.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Led Device Packages (AREA)

Abstract

一种多色LED照明系统,包括若干组LED单元(11),每一组LED单元(11)由若干颗LED芯片(111)组成,且每一组LED单元(11)至少包括3种发光颜色不同的LED芯片(111),且其中至少包括2颗白光LED芯片(111);多色LED照明系统还包括准直模组(12)、匀光系统(2)、聚光透镜(3)和螺纹镜(6),准直模组(12)包括若干准直透镜单元(102),每一准直透镜单元(102)与每一组LED单元(11)一一对应,每一组LED单元(11)的LED芯片(111)所发出的每一束光,经过其所在的准直透镜单元(102)准直汇聚成为一束混光光束,每一组LED单元(11)对应一束混光光束,每束混光光束依次通过匀光系统(2)、聚光透镜(3)和螺纹镜(6)出光。能有效提高多色LED聚光灯混光均匀性,同时可以兼容更多种颜色的混光光源,有效保证光源输出的光通量。

Description

一种多色LED照明系统 技术领域
本实用新型涉及舞台灯领域,更具体地,涉及一种多色LED照明系统。
背景技术
聚光灯是目前舞台灯的一种,主要应用于摄影、演播室、电视台等专业场所,目前市场上的聚光灯类型主要包括单白光LED高显聚光灯和多色LED混色聚光灯。
随着舞台灯的推广使用,多色LED混色聚光灯的使用越来越多,市场上对多色LED混色聚光灯的需求越来越高,需求的颜色越来越多,色域需求也越来越广。
现有技术的多色LED混色聚光灯中,一般都是采用COB集成封装方式或阵列式封装方式对多色LED聚光灯进行封装。但现有技术的多色LED光源在应用时,光路中透镜移动过程中会产生光学成像作用,由于被成像的是多色光源,导致出光时出现各种颜色的像。
如图5所示,COB集成封装方式主要是由多色LED芯片1、收光透镜2和螺纹镜6这几个部件依次组合而成,在聚光灯变焦时,需要前后移动螺纹镜6来进行变焦,ZOOM表示变焦。但多色LED光源1混出的白光会因聚光灯在变焦时,把多色LED芯片1封装的排布区域汇聚到墙上,导致上墙光斑混光不均匀。如图5所示,当聚光灯在小角度发光时,因螺纹镜6的焦点0不变,螺纹镜6的焦点0靠近COB光源(也即多色LED芯片1 )的表面,投射出的每颗LED芯片所对应的颜色的光,图1为RGB颜色的光;如图6所示,移动多色LED芯片1和收光透镜2所组成的光源模组,靠近螺纹镜6,聚光灯在大角度发光,因螺纹镜6的焦点0不变,螺纹镜6的焦点0远离COB光源(也即多色LED芯片1)的表面,投射出混合后的白光。因此,COB集成封装方式中,螺纹镜6的焦点0离COB光源的表面越近,上墙光斑混光就越不均匀。
如图7所示,阵列式封装的封装方式主要由多色LED准直系统1、匀光模组2、收光透镜3和螺纹镜6这几个部件组成,多色LED准直系统1包括阵列排布的若干LED芯片和准直透镜,每一LED芯片与准直透镜一一对应。如图9所示为LED芯片阵列排布示意图。由于阵列式封装的LED芯片需要先经过准直系统准直,以及再经过匀光模组2和收光透镜3匀光和聚光,因此,阵列式封装的光源会在收光透镜之后,且在螺纹镜6之前形成光源聚焦点4,再通过螺纹镜6投射出去。如图3所示,阵列式封装的螺纹镜6的焦点0不变,多色LED准直系统1远离螺纹镜6,投影到墙上的光斑小,且为混合后的白光颜色;如图4所示,阵列式封装的螺纹镜6的焦点0不变,多色LED准直系统1靠近螺纹镜6,投影在墙上的光斑大,但为每颗LED芯片所对应的颜色的光,图8为RGB颜色的光,即产生了混光不均匀的现象。因此,阵列式封装的多色LED光源也会随着光斑角度的放大,出现上墙光斑混光不均匀的现象。
随着舞台灯的推广使用,目前市场对聚光灯的颜色、色域、光通量以及上墙颜色均匀性的要求也越来越高,因此目前的多色LED混色聚光灯的混光不均匀问题急需改进。
技术问题
本实用新型旨在克服上述现有技术的至少一种缺陷,提供一种能有效提高多色LED混光均匀度的多色LED照明系统,用于解决多色LED聚光灯混光不均匀的问题,同时可以兼容更多中颜色的混光光源,有效保证光源输出的光通量。
技术解决方案
本实用新型采取的技术方案是,一种多色LED照明系统,包括若干组LED单元,每一组LED单元由若干颗LED芯片组成,且每一组LED单元至少包括3种发光颜色不同的LED芯片,且其中至少包括2颗白光LED芯片;所述多色LED照明系统还包括依次设在出光方向上的准直模组、匀光系统、聚光透镜和螺纹镜,所述准直模组包括若干准直透镜单元,每一准直透镜单元与每一组LED单元一一对应,每一组LED单元的LED芯片所发出的每一束光,经过其所在的准直透镜单元准直汇聚成为一束混光光束,每一组LED单元对应一束混光光束,每束混光光束依次通过匀光系统、聚光透镜和螺纹镜出光。
本实用新型提供的多色LED照明系统,先将多色LED芯片进行组合,形成若干组独立的LED单元,每组LED单元对应一个准直透镜单元,通过在每组LED单元的出光方向上加设准直透镜单元,提前完成混光,混出白光,即多色LED芯片在通过准直透镜单元时进行混光白平衡处理,进而汇聚成为一束混光光束,使得透镜成像时所成的像为混合均匀的像。若干组LED单元组成若干束已进行混光白平衡处理的混光光束,若干束混光光束在通过匀光系统匀光、聚光透镜聚交以及螺纹镜成像时,主要是提高光斑混合均匀、光斑亮度分布均匀的出光效果,而在先进行的混光白平衡处理主要是提高出光颜色的均匀效果,因此本实用新型能有效解决大小角度的混光不均匀问题。
而现有的矩阵式封装方式,每一颗LED芯片与准直透镜单元一一对应准直,因多色芯片在混光中,波长不同的情况下,尤其是红光与蓝光,汇聚到GOBO上的光斑大小不同。不同的波长通过透镜后,会存在有色差。这样会导致光源内部的光线为多色光线,而并不是均匀的光线。
本实用新型中,因为LED为朗伯发光,成大角度发光,芯片密集排布,在通过透镜后,就会形成一部分的混光。
GOBO为光圈或光通孔,本实用新型在应用过程中,需要通过前后移动螺纹镜进行调焦,上墙出光的角度随着螺纹镜的移动,逐渐由小变大或由大变小。当上墙出光的角度最小时,混光光束经过匀光系统,进行二次匀光,再通过聚光透镜汇聚到GOBO上,此时螺纹镜的成像焦点是位于GOBO上,可以有效解决小角度出光不均匀的问题。
在出光角度最大时,螺纹镜靠近LED单元,螺纹镜的焦点会呈现在光源的内部,由于混光光束在经过螺纹镜出射时已经在内部进行了混光白平衡处理,因此,可以有效解决大角度混光不均匀的现象。
本实用新型中,每组LED单元设置至少2颗白光LED芯片主要为了提升光通量。白光在光通量的贡献较高。而且在使用过程中,大部分会直接打开白光(3200K-8000K色温),在这种情况下,白光贡献很大,使用其他颜色,会存在降功率来调试,达到白平衡。
进一步地,还包括高导热陶瓷基板,所述高导热陶瓷基板与每组LED单元一一对应,每组LED单元的LED芯片依次封装于其所在的高导热陶瓷基板上表面。
进一步地,所述高导热陶瓷基板的上下表面分别设置有金属线路层,且上下表面的金属线路层通过导通孔导通连接;所述LED单元的每一颗LED芯片均对应设有一根金线,LED芯片的正负极通过金线与上表面的金属线路层连接,进而与下表面的金属线路层导通连接,进行通电。
本实用新型中,金属线路层上设有用于安装多色LED芯片的焊盘,为了便于安装和辨认对应LED芯片的种类,焊盘的颜色与LED芯片的发光颜色对应,有利于生产制作中快速区分不同颜色的LED芯片的排布。
进一步地,所述LED单元的不同发光颜色的LED芯片所对应的金属线路不同,不同发光颜色的LED芯片通过不同的金属线路进行独立控制。
不同发光颜色的LED芯片通过不同的金属线路进行独立控制,进而可以控制所需颜色的LED芯片发光。
进一步地,每一组LED单元的LED芯片沿LED单元中心的周向均匀布置,所述白光LED芯片为偶数颗,且呈对称布置于LED单元中心的两侧。
白光LED芯片的排布对称,而且在输出白平衡时,白光输出越高,对最终混合出的白平衡调试越佳,同时对光源最终输出的白光亮度越高。
进一步地,每一组LED单元的LED芯片颗数为4的倍数,每一组LED单元的LED芯片以LED单元的中心轴为轴线对称设置,分为4个面积相同的发光区域。
LED单元对称设置,能使LED芯片组成的混合光束发光更均匀。
进一步地,每个发光区域均设有一颗白光LED芯片,四颗白光LED芯片组成正方形阵列布置于LED单元中心。
4个发光区域组成的白光LED芯片能使LED单元的光通量更大。
进一步地,每个发光区域均设有至少3种发光颜色不同的LED芯片,相邻发光区域之间至少有一种发光颜色不同的LED芯片。
进一步地,每个发光区域均设有3颗发光颜色不同的LED芯片,相邻发光区域之间至少有一颗LED芯片的发光颜色不同。
进一步地,每一组LED单元包括12颗LED芯片,12颗LED芯片中至少包含了7种不同的颜色。
进一步地,还包括设置在聚光透镜与螺纹镜之间的场镜,通过场镜改变螺纹镜的焦点位置。
场镜的设置主要是改变螺纹灯的焦距,防止螺纹灯成像时,把LED的像呈现出来。通过场镜改变螺纹镜的焦点位置,进一步保证了聚光灯在多色LED光源中出现的混光不均匀现象。
有益效果
与现有技术相比,本实用新型的有益效果为:
本实用新型提供的多色LED照明系统,通过在每组LED单元中设置多颗LED芯片,对多颗LED芯片发出的光进行准直和匀化,使光源内部的光线混合均匀,再通过匀光系统对混合光线进一步匀化,既解决了小角度混光不均匀的问题,也解决了大角度混光不均匀的问题。
附图说明
图1为本实用新型的光斑角度变小时的出光效果图。
图2为本实用新型的光斑角度变大时的出光效果图。
图3为LED单元与准直透镜单元组合后的结构示意图。
图4为LED单元的LED芯片封装排布的结构示意图。
图5为现有技术的COB集成封装方式在光斑角度变小时的出光效果图。
图6为现有技术的COB集成封装方式在光斑角度变大时的出光效果图。
图7为现有技术的阵列式封装方式在光斑角度变小时的出光效果图。
图8为现有技术的阵列式封装方式在光斑角度变大时的出光效果图。
图9为现有技术的阵列式封装方式的LED芯片排布示意图。
本发明的实施方式
本实用新型附图仅用于示例性说明,不能理解为对本实用新型的限制。为了更好说明以下实施例,附图某些部件会有省略、放大或缩小,并不代表实际产品的尺寸;对于本领域技术人员来说,附图中某些公知结构及其说明可能省略是可以理解的。
实施例 1
如图1和图2所示,一种多色LED照明系统,包括若干组LED单元11,每一组LED单元11由12颗LED芯片111组成;还包括依次设在出光方向上的准直模组12、匀光系统2、聚光透镜3和螺纹镜6,所述准直模组12包括若干准直透镜单元102,每一准直透镜单元102与LED单元11一一对应,每一组LED单元11的LED芯片111所发出的每一束光,经过其所在的准直透镜单元102准直汇聚成为一束混光光束,每组LED单元11对应一束混光光束,每束混光光束依次通过匀光系统2、聚光透镜3和螺纹镜6出光。
如图1和图2所示,还包括设置在聚光透镜3与螺纹镜6之间的场镜5,通过场镜5改变螺纹镜6的焦点位置。
在应用过程中,整个光源模组在随着螺纹镜6移动的过程中,上墙出光角度最小时,在LED单元11和准直透镜单元102组成的光源模组内部先进行一次混光,混出的白光会经过匀光系统2后,再进行二次匀光,最后在通过汇聚透镜3汇聚到GOBO 上,此时螺纹镜6的成像焦点是位于GOBO上,可以有效的解决小角度出光颜色不均匀这一现象。
如图1、图3和图4所示,每一组LED单元11由12颗LED芯片111组成,且每一组LED单元11包括7种发光颜色不同的LED芯片111,12颗LED芯片111中包括4颗白光LED芯片111。
如图4所示,其中,每一组LED单元11的LED芯片111以LED单元11的中心轴为轴线对称设置,分为4个面积相同的发光区域。每个发光区域均设有3颗发光颜色不同的LED芯片,相邻发光区域之间至少有一颗LED芯片的发光颜色不同。每个发光区域均设有一颗白光LED芯片,且白光LED芯片分别环绕设置于LED单元的中心。
如图4所示,其中,以LED单元11对角线对称的两个发光区域的LED芯片111发光颜色相同。每一组LED单元的12颗LED芯片中,包括4颗白光LED芯片、2颗红光LED芯片、2颗绿光LED芯片、2颗琥珀光LED芯片和2颗青光LED芯片。
其中,红光LED芯片分别设在LED单元11的左上角和右下角的发光区域,青光LED芯片分别设在LED单元11的右上角和左下角的发光区域,左上角和右下角发光区域的白光LED芯片外侧各设有一颗绿光LED芯片,右上角和左下角发光区域的白光LED芯片外侧各设有一颗青光LED芯片。
如图4所示,还包括高导热陶瓷基板10,所述高导热陶瓷基板10与每组LED单元11一一对应,每组LED单元11的LED芯片111依次封装于其所在的高导热陶瓷基板10上表面。所述高导热陶瓷基板10的上下表面分别设置有金属线路层101,且上下表面的金属线路层101通过导通孔导通连接;所述LED单元11的每一颗LED芯片111均对应设有一根金线,LED芯片111的正负极通过金线与上表面的金属线路层101连接,进而与下表面的金属线路层101导通连接,进行通电。所述LED单元11的不同发光颜色的LED芯片111所对应的金属线路不同,不同发光颜色的LED芯片111通过不同的金属线路进行独立控制,进而可以控制不同发光颜色的LED芯片发光。
本实施例的工作原理是:如图3所示,本实施例提供的多色LED照明系统,先将多色LED芯片111进行组合,形成若干组独立的LED单元11。其中,组合后的LED芯片111排布如图4所示,这样的排布能有效提高LED芯片111输出的光通量以及颜色均匀性。
每组LED单元11对应一个准直透镜单元12,通过在每组LED单元11的出光方向上加设准直透镜单元12,提前完成混光,混出白光,即多色LED芯片在通过准直透镜单元时进行混光白平衡处理,进而汇聚成为一束混光光束,使得透镜成像时所成的像为混合均匀的像。若干组LED单元11组成若干束已进行混光白平衡处理的混光光束,若干束混光光束在通过匀光系统2匀光、聚光透镜3聚交以及螺纹镜6成像时,主要是提高光斑混合均匀、光斑亮度分布均匀的出光效果,而在先进行的混光白平衡处理主要是提高出光颜色的均匀效果,因此有效解决大小角度的混光不均匀问题。
如图1所示,当多色LED光源的出光角度最小时,螺纹镜6远离LED单元11,投射出的光束的混光均匀的光束。解决了COB集成封装的多色LED光源光斑角度越小,上墙光斑混光越不均匀的问题。
如图2所示,当多色LED光源的出光角度最大时,螺纹镜6靠近LED单元11,螺纹镜6的焦点0在LED单元之前,此时投射出的光束同样为混合均匀的光束。解决了阵列式封装的多色LED光源光斑角度放大,上墙光斑混光不均匀的问题。
显然,本实用新型的上述实施例仅仅是为清楚地说明本实用新型技术方案所作的举例,而并非是对本实用新型的具体实施方式的限定。凡在本实用新型权利要求书的精神和原则之内所作的任何修改、等同替换和改进等,均应包含在本实用新型权利要求的保护范围之内。

Claims (10)

  1. 一种多色LED照明系统,其特征在于,包括若干组LED单元,每一组LED单元由若干颗LED芯片组成,且每一组LED单元至少包括3种发光颜色不同的LED芯片,且其中至少包括2颗白光LED芯片;所述多色LED照明系统还包括依次设在出光方向上的准直模组、匀光系统、聚光透镜和螺纹镜,所述准直模组包括若干准直透镜单元,每一准直透镜单元与每一组LED单元一一对应,每一组LED单元的LED芯片所发出的每一束光,经过其所在的准直透镜单元准直汇聚成为一束混光光束,每一组LED单元对应一束混光光束,每束混光光束依次通过匀光系统、聚光透镜和螺纹镜出光。
  2. 根据权利要求1所述的一种多色LED照明系统,其特征在于,还包括高导热陶瓷基板,所述高导热陶瓷基板与每组LED单元一一对应,每组LED单元的LED芯片依次封装于其所在的高导热陶瓷基板上表面。
  3. 根据权利要求2所述的一种多色LED照明系统,其特征在于,所述高导热陶瓷基板的上下表面分别设置有金属线路层,且上下表面的金属线路层通过导通孔导通连接;所述LED单元的每一颗LED芯片均对应设有一根金线,LED芯片的正负极通过金线与上表面的金属线路层连接,进而与下表面的金属线路层导通连接,进行通电。
  4. 根据权利要求3所述的一种多色LED照明系统,其特征在于,所述LED单元的不同发光颜色的LED芯片所对应的金属线路不同,不同发光颜色的LED芯片通过不同的金属线路进行独立控制。
  5. 根据权利要求1所述的一种多色LED照明系统,其特征在于,每一组LED单元的LED芯片沿LED单元中心的周向均匀布置,所述白光LED芯片为偶数颗,且呈对称布置于LED单元中心的两侧。
  6. 根据权利要求5所述的一种多色LED照明系统,其特征在于,每一组LED单元的LED芯片颗数为4的倍数,每一组LED单元的LED芯片以LED单元的中心轴为轴线对称设置,分为4个面积相同的发光区域。
  7. 根据权利要求5所述的一种多色LED照明系统,其特征在于,每个发光区域均设有一颗白光LED芯片,四颗白光LED芯片组成正方形阵列布置于LED单元中心。
  8. 根据权利要求5所述的一种多色LED照明系统,其特征在于,每个发光区域均设有至少3种发光颜色不同的LED芯片,相邻发光区域之间至少有一种发光颜色不同的LED芯片。
  9. 根据权利要求1所述的一种多色LED照明系统,其特征在于,每一组LED单元包括12颗LED芯片,12颗LED芯片中至少包含了7种不同的颜色。
  10. 根据权利要求1所述的一种多色LED照明系统,其特征在于,还包括设置在聚光透镜与螺纹镜之间的场镜,通过场镜改变螺纹镜的焦点位置。
PCT/CN2019/125973 2019-03-06 2019-12-17 一种多色led照明系统 WO2020177445A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201920282353.3 2019-03-06
CN201920282353.3U CN209341161U (zh) 2019-03-06 2019-03-06 一种多色led照明系统

Publications (1)

Publication Number Publication Date
WO2020177445A1 true WO2020177445A1 (zh) 2020-09-10

Family

ID=67762741

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/125973 WO2020177445A1 (zh) 2019-03-06 2019-12-17 一种多色led照明系统

Country Status (2)

Country Link
CN (1) CN209341161U (zh)
WO (1) WO2020177445A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN209341161U (zh) * 2019-03-06 2019-09-03 广州光联电子科技有限公司 一种多色led照明系统
CN110645545A (zh) * 2019-09-12 2020-01-03 广州市哈雅光电设备有限公司 一种led柔光混合光学系统
CN115342322A (zh) * 2021-05-14 2022-11-15 广州光联电子科技有限公司 一种光源模式可调的光源系统
CN114375082B (zh) * 2022-03-21 2022-06-21 广州光联电子科技有限公司 一种led光源调光方法和调光系统

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090154153A1 (en) * 2007-12-12 2009-06-18 Genius Electronic Optical Co., Ltd. Led projector lamp
CN203202671U (zh) * 2012-12-19 2013-09-18 深圳市光峰光电技术有限公司 一种发光装置及灯具
CN203258423U (zh) * 2013-04-11 2013-10-30 深圳市绎立锐光科技开发有限公司 Led单元模组、发光装置以及光源系统
CN103968268A (zh) * 2013-01-31 2014-08-06 深圳市光峰光电技术有限公司 一种led光源系统和led照明装置
CN104049444A (zh) * 2013-03-17 2014-09-17 深圳市绎立锐光科技开发有限公司 发光装置及相关投影系统
CN209341161U (zh) * 2019-03-06 2019-09-03 广州光联电子科技有限公司 一种多色led照明系统

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090154153A1 (en) * 2007-12-12 2009-06-18 Genius Electronic Optical Co., Ltd. Led projector lamp
CN203202671U (zh) * 2012-12-19 2013-09-18 深圳市光峰光电技术有限公司 一种发光装置及灯具
CN103968268A (zh) * 2013-01-31 2014-08-06 深圳市光峰光电技术有限公司 一种led光源系统和led照明装置
CN104049444A (zh) * 2013-03-17 2014-09-17 深圳市绎立锐光科技开发有限公司 发光装置及相关投影系统
CN203258423U (zh) * 2013-04-11 2013-10-30 深圳市绎立锐光科技开发有限公司 Led单元模组、发光装置以及光源系统
CN209341161U (zh) * 2019-03-06 2019-09-03 广州光联电子科技有限公司 一种多色led照明系统

Also Published As

Publication number Publication date
CN209341161U (zh) 2019-09-03

Similar Documents

Publication Publication Date Title
WO2020177445A1 (zh) 一种多色led照明系统
US9970628B2 (en) LED unit module, light-emitting device, and light source system
JP4399663B2 (ja) Led照明装置
WO2014117704A2 (zh) 一种led光源系统和led照明装置
US20120313980A1 (en) Cooling Module For Multiple Light Source Projecting Device
WO2011124140A1 (zh) 混光灯具
US20120217519A1 (en) Method and structure for encapsulating solid-state light emitting chip and light sources using the encapsulation structure
US11767964B2 (en) Homogenization of an LED array
CN101907230B (zh) 舞台灯光照明系统及led阵列
JP2012119476A (ja) Ledデバイスおよびそれを備えた光学ユニット
JP7068686B2 (ja) 調色led照明装置
WO2014183583A1 (zh) 一种发光装置及舞台灯系统
CN218974749U (zh) 一种摄影灯
CN102033401A (zh) 基于红绿蓝三基色led光源的投影成像方法及系统
CN107454718B (zh) 一种具有修正色温功能的led灯光源及光学系统
TWM275418U (en) Lens with light uniformization
CN212339003U (zh) 一种led照明系统
JP2005165126A (ja) 投影機の光学系構造及びその光学系構造を備えた投影機
CN211574873U (zh) 一种多色光源混光系统
CN217689745U (zh) 光源装置和投影仪
WO2018006656A1 (zh) 一种光源系统及舞台灯
US20150124226A1 (en) Projection system
CN212273906U (zh) 一种多颜色的led阵列及照明系统
CN219872096U (zh) 光源模组、光学投影系统以及投影设备
CN218851014U (zh) 一种用于交通信号灯的三原色混色装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19917606

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19917606

Country of ref document: EP

Kind code of ref document: A1