WO2019069859A1 - 希土類元素骨格置換ゼオライト及びその製造方法、並びにこれらを用いたNOx吸着材、選択的還元触媒及び自動車排ガス触媒 - Google Patents

希土類元素骨格置換ゼオライト及びその製造方法、並びにこれらを用いたNOx吸着材、選択的還元触媒及び自動車排ガス触媒 Download PDF

Info

Publication number
WO2019069859A1
WO2019069859A1 PCT/JP2018/036711 JP2018036711W WO2019069859A1 WO 2019069859 A1 WO2019069859 A1 WO 2019069859A1 JP 2018036711 W JP2018036711 W JP 2018036711W WO 2019069859 A1 WO2019069859 A1 WO 2019069859A1
Authority
WO
WIPO (PCT)
Prior art keywords
zeolite
rare earth
earth element
substituted
type
Prior art date
Application number
PCT/JP2018/036711
Other languages
English (en)
French (fr)
Inventor
靖幸 伴野
Original Assignee
エヌ・イーケムキャット株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=65994867&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2019069859(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by エヌ・イーケムキャット株式会社 filed Critical エヌ・イーケムキャット株式会社
Priority to US16/651,099 priority Critical patent/US11351524B2/en
Priority to DE112018005223.0T priority patent/DE112018005223T5/de
Priority to CN201880061448.0A priority patent/CN111108067A/zh
Publication of WO2019069859A1 publication Critical patent/WO2019069859A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7049Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/7065CHA-type, e.g. Chabazite, LZ-218
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • B01D53/9413Processes characterised by a specific catalyst
    • B01D53/9418Processes characterised by a specific catalyst for removing nitrogen oxides by selective catalytic reduction [SCR] using a reducing agent in a lean exhaust gas
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/34Chemical or biological purification of waste gases
    • B01D53/92Chemical or biological purification of waste gases of engine exhaust gases
    • B01D53/94Chemical or biological purification of waste gases of engine exhaust gases by catalytic processes
    • B01D53/9404Removing only nitrogen compounds
    • B01D53/9409Nitrogen oxides
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/02Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material
    • B01J20/10Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof comprising inorganic material comprising silica or silicate
    • B01J20/16Alumino-silicates
    • B01J20/18Synthetic zeolitic molecular sieves
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J20/00Solid sorbent compositions or filter aid compositions; Sorbents for chromatography; Processes for preparing, regenerating or reactivating thereof
    • B01J20/30Processes for preparing, regenerating, or reactivating
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/061Crystalline aluminosilicate zeolites; Isomorphous compounds thereof containing metallic elements added to the zeolite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/085Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/087X-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/08Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y
    • B01J29/085Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the faujasite type, e.g. type X or Y containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/088Y-type faujasite
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/18Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type
    • B01J29/185Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the mordenite type containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/40Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively
    • B01J29/405Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the pentasil type, e.g. types ZSM-5, ZSM-8 or ZSM-11, as exemplified by patent documents US3702886, GB1334243 and US3709979, respectively containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/50Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the erionite or offretite type, e.g. zeolite T, as exemplified by patent document US2950952
    • B01J29/505Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the erionite or offretite type, e.g. zeolite T, as exemplified by patent document US2950952 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/60Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L, as exemplified by patent document US3216789
    • B01J29/605Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the type L, as exemplified by patent document US3216789 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/65Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively
    • B01J29/655Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of the ferrierite type, e.g. types ZSM-21, ZSM-35 or ZSM-38, as exemplified by patent documents US4046859, US4016245 and US4046859, respectively containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7049Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7049Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/7053A-type
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7049Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/7057Zeolite Beta
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7049Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/7084MTW-type, e.g. ZSM-12, NU-13, TPZ-12 or Theta-3
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J29/00Catalysts comprising molecular sieves
    • B01J29/04Catalysts comprising molecular sieves having base-exchange properties, e.g. crystalline zeolites
    • B01J29/06Crystalline aluminosilicate zeolites; Isomorphous compounds thereof
    • B01J29/70Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65
    • B01J29/7049Crystalline aluminosilicate zeolites; Isomorphous compounds thereof of types characterised by their specific structure not provided for in groups B01J29/08 - B01J29/65 containing rare earth elements, titanium, zirconium, hafnium, zinc, cadmium, mercury, gallium, indium, thallium, tin or lead
    • B01J29/7088MWW-type, e.g. MCM-22, ERB-1, ITQ-1, PSH-3 or SSZ-25
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J35/00Catalysts, in general, characterised by their form or physical properties
    • B01J35/50Catalysts, in general, characterised by their form or physical properties characterised by their shape or configuration
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/0009Use of binding agents; Moulding; Pressing; Powdering; Granulating; Addition of materials ameliorating the mechanical properties of the product catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/02Impregnation, coating or precipitation
    • B01J37/0201Impregnation
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J37/00Processes, in general, for preparing catalysts; Processes, in general, for activation of catalysts
    • B01J37/08Heat treatment
    • B01J37/082Decomposition and pyrolysis
    • B01J37/088Decomposition of a metal salt
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B39/00Compounds having molecular sieve and base-exchange properties, e.g. crystalline zeolites; Their preparation; After-treatment, e.g. ion-exchange or dealumination
    • C01B39/02Crystalline aluminosilicate zeolites; Isomorphous compounds thereof; Direct preparation thereof; Preparation thereof starting from a reaction mixture containing a crystalline zeolite of another type, or from preformed reactants; After-treatment thereof
    • C01B39/06Preparation of isomorphous zeolites characterised by measures to replace the aluminium or silicon atoms in the lattice framework by atoms of other elements, i.e. by direct or secondary synthesis
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/0807Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents
    • F01N3/0828Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by using absorbents or adsorbents characterised by the absorbed or adsorbed substances
    • F01N3/0842Nitrogen oxides
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N3/00Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust
    • F01N3/08Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous
    • F01N3/10Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust
    • F01N3/18Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control
    • F01N3/20Exhaust or silencing apparatus having means for purifying, rendering innocuous, or otherwise treating exhaust for rendering innocuous by thermal or catalytic conversion of noxious components of exhaust characterised by methods of operation; Control specially adapted for catalytic conversion ; Methods of operation or control of catalytic converters
    • F01N3/2066Selective catalytic reduction [SCR]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2063Lanthanum
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2065Cerium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2066Praseodymium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/20Metals or compounds thereof
    • B01D2255/206Rare earth metals
    • B01D2255/2068Neodymium
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/50Zeolites
    • B01D2255/502Beta zeolites
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2255/00Catalysts
    • B01D2255/90Physical characteristics of catalysts
    • B01D2255/91NOx-storage component incorporated in the catalyst
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/10After treatment, characterised by the effect to be obtained
    • B01J2229/18After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself
    • B01J2229/183After treatment, characterised by the effect to be obtained to introduce other elements into or onto the molecular sieve itself in framework positions
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01JCHEMICAL OR PHYSICAL PROCESSES, e.g. CATALYSIS OR COLLOID CHEMISTRY; THEIR RELEVANT APPARATUS
    • B01J2229/00Aspects of molecular sieve catalysts not covered by B01J29/00
    • B01J2229/30After treatment, characterised by the means used
    • B01J2229/42Addition of matrix or binder particles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01NGAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR MACHINES OR ENGINES IN GENERAL; GAS-FLOW SILENCERS OR EXHAUST APPARATUS FOR INTERNAL COMBUSTION ENGINES
    • F01N2370/00Selection of materials for exhaust purification
    • F01N2370/02Selection of materials for exhaust purification used in catalytic reactors
    • F01N2370/04Zeolitic material

Definitions

  • the present invention relates to a novel rare earth element framework-substituted zeolite, a process for producing the same, an NOx adsorbent using the same, a selective reduction catalyst, an automobile exhaust gas catalyst, and the like.
  • NOx in the atmosphere causes air pollution such as photochemical smog and acid rain. Therefore, conventionally, NOx emitted from a source such as an automobile equipped with an internal combustion engine such as a gasoline engine or a diesel engine, which is one of NOx sources, has become a social problem. Under such circumstances, higher performance of the NOx purification system is attracting attention.
  • a selective catalytic reduction (SCR; Selective Catalytic Reduction) catalyst using nitrogen-based compounds such as ammonia or urea is used in a wide range of fields.
  • SCR selective catalytic reduction
  • urea SCR Selective Catalytic Reduction
  • urea water is injected into the exhaust channel to hydrolyze urea under high temperature to generate ammonia (NH 3 ) gas, and this ammonia is adsorbed on the SCR catalyst, and NOx is adsorbed on the SCR catalyst.
  • NH 3 ammonia
  • NOx storage reduction type catalysts and lean NOx catalysts are used.
  • NOx storage material NOx trap material
  • NOx in exhaust gas is temporarily used as NOx storage material.
  • the NOx is stored in a stoichiometry state or rich state thereafter, and NOx is desorbed for reduction purification.
  • Zeolite which is a kind of hydrous aluminosilicate, has a crystal structure with regularly and regularly sized pores, and adsorbs or separates various inorganic or organic molecules using differences in polarity and molecular diameter. It is widely used industrially in various applications such as desiccants, dehydrating agents, ion exchangers, petroleum refining catalysts, petrochemical catalysts, solid acid catalysts, etc., as well as agents. Zeolite is also widely used as a catalyst carrier, an SCR catalyst, and as a NOx storage material for adsorbing nitrogen oxides (NOx) such as NO and NO 2 .
  • NOx nitrogen oxides
  • Patent Documents 1 to 6 propose the use of a zeolite having a specific structure, a transition metal-supporting zeolite such as Cu-supporting zeolite or Fe-supporting zeolite as a NOx storage material or a catalyst for SCR.
  • the present invention has been made in view of the above problems, and the object thereof is a novel rare earth element framework-substituted zeolite having a higher NOx adsorption amount, a method for producing the same, an NOx adsorption member using the same, and an automobile It is to provide an exhaust gas catalyst and the like.
  • the present invention is not limited to the purpose mentioned here, and is an operation and effect derived from each configuration shown in the embodiments for carrying out the invention described later, and it is also possible to exhibit the operation and effect that can not be obtained by the prior art. It can be positioned for other purposes.
  • ⁇ 1> Zeolite and at least one or more rare earth elements selected from the group consisting of Ce, La, Nd and Pr are contained at least, and the content of the rare earth elements is 1 to 15 mass in total with respect to the total amount %, And a part of Al atoms and / or Si atoms forming the framework of the zeolite is replaced by the rare earth element.
  • the rare earth element frame substituted zeolite as described in ⁇ 1> which has a crystal structure of an aluminosilicate in ⁇ 2> powder X-ray-diffraction method.
  • ⁇ 3> The rare earth element framework-substituted zeolite according to ⁇ 1> or ⁇ 2>, which is at least one selected from the group consisting of NH 4 -type zeolite and H + -type zeolite.
  • ⁇ 4> The rare earth element framework-substituted zeolite according to any one of ⁇ 1> to ⁇ 4>, having an average particle diameter D 50 of 1 ⁇ m to 500 ⁇ m.
  • the content of the rare earth element is 1 to 15% by mass in total with respect to the total amount
  • part of Al atoms and / or Si atoms forming the skeleton of the zeolite is the rare earth element
  • ⁇ 6> The method for producing a rare earth element framework-substituted zeolite according to ⁇ 6>, wherein the rare earth element framework-substituted zeolite has a crystal structure of an aluminosilicate in a powder X-ray diffraction method.
  • ⁇ 7> The method for producing a rare earth element framework-substituted zeolite according to ⁇ 5> or ⁇ 6>, which is at least one selected from the group consisting of NH 4 -type zeolite and H + -type zeolite.
  • ⁇ 8> The method for producing a rare earth element framework-substituted zeolite according to any one of ⁇ 5> to ⁇ 7>, wherein the rare earth element framework-substituted zeolite has an average particle diameter D 50 of 1 ⁇ m to 500 ⁇ m.
  • a selective reduction catalyst containing at least the rare earth element framework-substituted zeolite according to any one of ⁇ 1> to ⁇ 4> A selective reduction catalyst shaped body obtained by forming the composition containing the rare earth element skeleton-substituted zeolite according to any one of ⁇ 1> to ⁇ 4> into a predetermined shape.
  • a ⁇ 13> support and at least a NOx adsorption layer provided on at least one surface of the support, wherein the NOx adsorption layer is the rare earth according to any one of ⁇ 1> to ⁇ 4>.
  • a laminated NOx adsorbing member comprising at least an elemental framework-substituted zeolite.
  • a ⁇ 14> support and a catalyst layer provided on at least one surface of the support at least, wherein the catalyst layer has a rare earth element skeleton according to any one of ⁇ 1> to ⁇ 4>.
  • An exhaust gas catalyst comprising at least a substituted zeolite.
  • the present invention it is possible to provide a novel rare earth element framework-substituted zeolite and a method for producing the same, and a NOx adsorbing member, a catalyst for automobile exhaust gas, etc. using these, which further enhance the NOx adsorption amount.
  • this NOx adsorbing material has a large NOx adsorption amount, it is a substitute or a combined product of transition metal-loaded zeolite such as Cu-loaded zeolite or Fe-loaded zeolite, for example, NOx storage material, SCR catalyst, urea SCR catalyst, It can be preferably used in a NOx storage reduction type catalyst, a lean NOx catalyst, etc., whereby the performance of a NOx purification system equipped with these can be enhanced.
  • transition metal-loaded zeolite such as Cu-loaded zeolite or Fe-loaded zeolite
  • 5 is a graph showing the amount of adsorption of NOx gas in Examples 1 to 4 and Comparative Example 1; 5 is a graph showing the amount of adsorbed NOx gas of Examples 5 to 8 and Comparative Example 2; 5 is a graph showing the amount of adsorbed NOx gas of Examples 4 and 9 and Comparative Example 1; 5 is a graph showing the NOx gas adsorption amount of Examples 1, 10 to 12 and Comparative Example 1; 6 is a graph showing the amount of adsorbed NOx gas of Examples 5, 13 to 15, and Comparative Example 2.
  • 5 is a graph showing the amount of adsorbed NOx gas of Examples 1 and 5 and Comparative Examples 3 to 6 and Reference Example 1;
  • the rare earth element framework-substituted zeolite of the present embodiment contains at least zeolite and at least one or more rare earth elements selected from the group consisting of Ce, La, Nd and Pr, and the content of rare earth elements relative to the total amount It is characterized in that it is 1 to 15% by mass and a part of Al atoms and / or Si atoms forming the framework of the zeolite is substituted by the rare earth element.
  • zeolites In the rare earth element framework-substituted zeolite of this embodiment, various known zeolites can be used as the framework-substituted zeolite, and the type thereof is not particularly limited.
  • the framework structure of various zeolites is database-ized in the International Zeolite Association (hereinafter sometimes abbreviated as “IZA” in the following), and its IUPAC structure code (hereinafter simply referred to as “structure code”). What has a structure prescribed
  • these structures are powder X-ray diffraction (hereinafter referred to as “XRD”) patterns described in “Collection of simulated XRD powder patterns for zeolites, Fifth revised edition (2007)”, or the homepage of the structural committee of IZA. http: // www. iza-struture. It can be identified by comparison with any of the XRD patterns described in Zeolite Framework Types in org / databases /.
  • XRD powder X-ray diffraction
  • zeolite examples include SSF type zeolite, MFI type zeolite, MEL type zeolite, MWW type zeolite, * BEA type zeolite, BEC type zeolite, BIK type zeolite, BOF type zeolite, BOG type zeolite, BRE type zeolite, BRE type zeolite, BRE type zeolite, CAS type Zeolite, CDO type zeolite, CFI type zeolite, -CHI type zeolite, CON type zeolite, CSV type zeolite, DAC type zeolite, DDR type zeolite, DOH type zeolite, DON type zeolite, EEI type zeolite, EON type zeolite, EPI type zeolite , ESV-type zeolite, EUO-type zeolite, * -EWT-type zeolite, FER-type zeolite, GON-type
  • LTA A type
  • FER ferrierite
  • MCM-22 MWW
  • ZSM-12 MOR
  • LTL L type
  • FAU Y type, X type
  • Selected from the group consisting of DDR * BEA (beta type), AEI, AFX, LEV, KFI, MFI (ZSM-5, silicalite), MEL (ZSM-11), and CHA (chabazite, SSZ-13)
  • At least one or more zeolites are preferred, and * at least one or more zeolites selected from the group consisting of * BEA, AEI, AFX, LEV, KFI, MFI, MEL, and CHA are more preferred.
  • zeolite of Y type, beta type, mordenite type, ZSM-5 type, CHA type, ferrierite type or SAPO type is preferable, more preferably Y type, beta type, mordenite type And ZSM-5 type, CHA type and ferrierite type, more preferably Y type, ZSM-5 type, CHA type and beta type, particularly preferably Y type, CHA type and beta type.
  • various zeolites can be used, such as a Bronsted acid type having a protic hydrogen atom, and a Lewis acid type having a metal cation (aluminium, titanium, iron, cerium, gallium, etc.).
  • a proton type having a protic hydrogen atom for example, H-Y type, H-SDUSY type, H-SUSY type, H-beta type, H-mordenite type, H-ZSM-5 type, H-ferrierite type, etc. There is no particular limitation to these.
  • NH 4 -Y type, NH 4 -VUSY type, NH 4 - beta, NH 4 - mordenite, NH 4 -ZSM-5 type, NH 4 - While ferrierite type, and the like there is no particular limitation on these.
  • the above-mentioned zeolites of proton type and ammonium type which are represented by H-SDUSY type, H-SUSY type and NH 4 -VUSY type, all have Y-type basic skeleton.
  • the silica-alumina ratio of the zeolite (SiO 2 / Al 2 O 3 molar ratio, hereinafter sometimes referred to as “SAR”) can be appropriately set according to the type of zeolite used and the required performance, etc. Although not limited, in general, 2 or more and 1000 or less are preferable, more preferably 3 or more and 800 or less, further preferably 4 or more and 600 or less, and further preferably 5 or more and 200 or less. In the present specification, the silica-alumina ratio means a value determined from fluorescent X-ray analysis.
  • the silica-alumina ratio of the zeolite is preferably 4 or more and 600 or less, more preferably 5 or more and 200 or less, and still more preferably 10 or more and 100 or less from the viewpoint of hydrothermal resistance. It is. Furthermore, for example, in the case of using CHA type zeolite, the silica-alumina ratio of the zeolite is preferably 4 or more and 600 or less, more preferably 5 or more and 200 or less, and still more preferably 10 or more and 100 or less from the viewpoint of hydrothermal resistance. is there.
  • the zeolite used here may contain alkali metals (M), such as Na and Ca.
  • the alkali metal may be present in the form of an oxide or complex oxide or in the form of ions at the zeolite adsorption site.
  • the content of the alkali metal in the zeolite is not particularly limited, but the molar ratio of the alkali metal (M) in terms of oxide, that is, the alkali metal oxide / silica ratio (M 2 O / SiO 2 molar ratio) is 0. 01 or more and 0.50 or less are preferable, More preferably, they are 0.05 or more and 0.30 or less.
  • the average particle diameter D 50 of the zeolite powder can be appropriately set according to the type of the zeolite used and the required performance, etc., and is not particularly limited. From the viewpoint, 1 ⁇ m to 500 ⁇ m is preferable, 2 ⁇ m to 350 ⁇ m is more preferable, and 2 ⁇ m to 100 ⁇ m is more preferable.
  • powdery refers to powder (powder containing primary particles and / or aggregates (secondary particles) in which primary particles are aggregated), and granules obtained by granulating primary particles to secondary particles. It is an included concept.
  • the average particle diameter D 50 means a median diameter measured by a laser diffraction particle size distribution measuring apparatus (for example, a laser diffraction particle size distribution measuring apparatus SALD-7100 manufactured by Shimadzu Corporation).
  • a laser diffraction particle size distribution measuring apparatus SALD-7100 manufactured by Shimadzu Corporation for example, a laser diffraction particle size distribution measuring apparatus SALD-7100 manufactured by Shimadzu Corporation.
  • the particle shape of the zeolite is not particularly limited, and may be, for example, spherical, ellipsoidal, crushed, flat, irregular or the like.
  • the BET specific surface area of the zeolite can be appropriately set according to the type of the zeolite to be used, the required performance and the like, and is not particularly limited, but 100 m 2 / g or more and 1000 m 2 / g or less is preferable, and 300 m 2 / g or more and 1000 m 2 / g or less is more preferable, and 500 m 2 / g or more and 900 m 2 / g or less is more preferable.
  • zeolite either a natural zeolite or a synthetic zeolite can be used.
  • Synthetic zeolites can be synthesized by methods known in the art. As a typical synthesis method, there may be mentioned, for example, a method of hydrothermally synthesizing from a mixture (raw material composition) containing a silica source, an alumina source, an alkali metal source, an organic structure directing agent as needed, and water and the like. . After synthesis, solid-liquid separation treatment, water washing treatment, for example, drying treatment to remove water at a temperature of about 50 to 150 ° C. in the atmosphere according to a conventional method, if necessary, to obtain the desired zeolite Can.
  • Sources of silica include precipitated silica, colloidal silica, fumed silica, silica gel, sodium silicate (sodium metasilicate, sodium orthosilicate, sodium silicate No. 1, 2 and 3, 4 etc.), tetraethoxysilane (TEOS) And alkoxysilanes such as trimethylethoxysilane (TMEOS) and the like, but not limited thereto.
  • TEOS tetraethoxysilane
  • TMEOS trimethylethoxysilane
  • alumina source although aluminum chloride, aluminum nitrate, aluminum sulfate, sodium aluminate etc. are mentioned, it is not specifically limited to these.
  • Examples of the silica source and the alumina source include sodium silicate No. 1, No. 2, No. 3 and No.
  • alkali metal silicate such as sodium metasilicate and sodium orthosilicate
  • alkali metal silicates such as potassium silicate. It is not particularly limited to these.
  • alkali metal source alkali metal hydroxides such as LiOH, NaOH, KOH, CsOH, RbOH, etc., aluminates of these alkali metals, alkali components contained in the above-mentioned Si-Al element source and Si element source, etc. Although it mentions, it is not especially limited to these.
  • the organic structure directing agent at least one selected from the group consisting of primary amines, secondary amines, tertiary amines, and quaternary ammonium salts is used.
  • N, N, N-trimethyladamantane ammonium hydroxide (hereinafter sometimes abbreviated as “TMadaOH”), N, N, N-trimethyladamantane ammonium halide, N, N , N-trimethyladamantane ammonium carbonate, N, N, N-trimethyladamantane ammonium methyl carbonate, N, N, N-trimethyladamantane ammonium hydrochloride, and N, N, N-trimethyladamantane ammonium sulfate At least one selected is preferred. These cations may be accompanied by halogen ions such as Cl ⁇ , Br ⁇ , I ⁇ , etc., and anions such as hydroxide ion, acetate, sulfate, carboxylate and the like.
  • TMadaOH N, N, N-trimethyladamantane ammonium hydroxide
  • Water used in hydrothermal synthesis may be tap water, RO water (reverse osmosis membrane treated water), deionized water, distilled water, industrial water, pure water, ultrapure water, etc. according to the desired performance. Just do it.
  • the method of mixing water with the mixture may be separately from each of the components described above, or it may be mixed in advance with each component and mixed as an aqueous solution or dispersion of each component.
  • the mixture described above may further contain seed crystals (seed crystals) of a desired zeolite from the viewpoint of promoting crystallization and the like.
  • seed crystals seed crystals
  • the seed crystal used herein is not particularly limited as long as it is a desired zeolite crystal.
  • the hydrothermal synthesis of the above mentioned mixture is usually carried out in a reaction vessel.
  • a reaction container used for the hydrothermal synthesis any known pressure-resistant container that can be used for the hydrothermal synthesis can be appropriately used, and the type thereof is not particularly limited.
  • a closed heat-resistant pressure-resistant container such as an agitator provided with a stirrer, a heat source, a pressure gauge, and a safety valve is preferably used.
  • the crystallization of the zeolite may be performed in a state in which the above-described mixture is allowed to stand, but from the viewpoint of enhancing the uniformity of the obtained zeolite, it is preferable to perform the above-described mixture in a stirred and mixed state.
  • the treatment temperature (reaction temperature) of the hydrothermal synthesis is not particularly limited, but from the viewpoint of crystallinity and economy of the obtained zeolite, usually 100 ° C. or more and 200 ° C. or less, preferably 120 ° C. or more and 190 ° C. or less, more preferably Is 150 ° C. or more and 180 ° C. or less.
  • the treatment time (reaction time) of the hydrothermal synthesis is not particularly limited as long as it is crystallized over a sufficient time, but it is usually 1 hour or more from the viewpoint of the crystallinity, economy and the like of the obtained zeolite It is 20 days or less, preferably 4 hours or more and 10 days or less, more preferably 12 hours or more and 8 days or less.
  • the processing pressure of hydrothermal synthesis is not specifically limited,
  • the spontaneous pressure which arises when the mixture thrown into the reaction container is heated to the said temperature range is enough.
  • an inert gas such as nitrogen or argon may be introduced into the container.
  • zeolites of various grades are commercially available, and appropriate grades can be used from these commercial products.
  • examples of the Y-type zeolite include CBV760, CBV780, CBV720, CBV712 and CBV600, which are commercially available from Zeorist, and HSZ-360HOA and HSZ-320HOA which are commercially available from Tosoh Corporation.
  • beta-type zeolite CP811C, CP814N, CP7119, CP814E, CP7105, CP814C, CP811T, CP814T, CP814Q, CP811Q, CP811E-75, CP811E and CP811C-300, etc., which are commercially available from Zeolist, from Tosoh Corporation Commercially available HSZ-980HOA, HSZ-940HOA and HSZ-930HOA, and UOP-Beta marketed by UOP.
  • mordenite type zeolites CBV 21A and CBV 90A, which are commercially available from Zeorist, etc.
  • HSZ-660HOA, HSZ-620HOA and HSZ-690HOA which are commercially available from Tosoh Corporation
  • ZSM-5 type zeolite examples include CBV28014, CBV8014, CBV5524G and CBV8020 commercially available from Zeolyst, HSZ-870 NHA commercially available from Tosoh, HSZ-870 NHA, HSZ-860 HOA and HSZ-850 HOA etc.
  • examples of the ferrierite type zeolite include CP914 and CP914C commercially available from Zeolist.
  • the above-mentioned zeolite may contain a structure directing agent, an alkali metal and the like in the pores and the like. Therefore, if necessary, liquid phase treatment using an acidic aqueous solution, liquid phase treatment using an aqueous solution containing ammonium ions, liquid phase treatment using a chemical solution containing decomposition components of an organic structure directing agent, resin, etc. It is also possible to carry out the exchange treatment used, for example, the baking treatment at 400 ° C. or more and 650 ° C. or less, and remove these.
  • said zeolite may have metal ions, such as an alkali metal ion, on the ion exchange site.
  • an ion exchange step can be carried out to carry out ion exchange.
  • ion exchange can be performed according to a conventional method to a nonmetallic cation such as ammonium ion (NH 4 + ) or proton (H + ).
  • ion exchange to an ammonium type can be performed by performing a liquid phase process using an aqueous solution containing ammonium ions such as an aqueous solution of ammonium nitrate or an aqueous solution of ammonium chloride to a CHA type aluminosilicate.
  • ion exchange to a proton type can be performed by performing ion exchange of CHA type aluminosilicate with ammonia followed by calcination treatment.
  • the reduction process of the amount of acids can also be performed as needed.
  • the treatment for reducing the amount of acid can be performed, for example, by silylation, steam treatment, dicarboxylic acid treatment and the like.
  • the rare earth element introduced into the zeolite skeleton (framework substitution) in the rare earth element skeleton-substituted zeolite of the present embodiment is at least one selected from the group consisting of Ce, La, Nd and Pr.
  • the NOx adsorption amount is increased.
  • the existence state of the above-mentioned rare earth element in the rare earth element framework-substituted zeolite is powder X-ray diffraction (XRD: X-ray Diffraction), nuclear magnetic resonance spectroscopy (NMR: Nuclear Magnetic Resonance spectroscopy), X-ray photoelectric spectroscopy (XPS) It can grasp
  • rare earth element framework-substituted zeolite of this embodiment as long as the above-described rare earth element is introduced into at least a part of Si atoms and / or Al atoms in the zeolite framework (framework substitution), for example, Excess rare earth elements may be present in the ion state, and some of the rare earth elements may be introduced in the ion state by being ion-exchanged with the cation species in the zeolite.
  • the above-mentioned rare earth elements may be present in the form of oxides or complex oxides, but from the viewpoint of increasing the NOx adsorption amount, the above-mentioned rare earth elements in the rare earth element framework-substituted zeolite may be a framework constituent species or ions It is preferred to exist as a seed.
  • the above-mentioned rare earth element is preferably present in the non-oxide and / or non-complex oxide state, and the peak of the oxide and / or complex oxide of the rare earth element in the XRD measurement and XPS measurement More preferably not observed.
  • the content ratio of the rare earth element in the rare earth element framework-substituted zeolite is not particularly limited, but is preferably 1% by mass to 15% by mass in total with respect to the total amount, from the viewpoint of NOx adsorption amount and cost. More preferably, it is 1.5 to 14 mass%, further preferably, 3 to 13.5 mass%, and particularly preferably 4 to 13 mass%.
  • the external shape of the rare earth element framework-substituted zeolite of the present embodiment is not particularly limited, but is preferably in powder form.
  • the particle shape of the rare earth element framework-substituted zeolite is not particularly limited. It may be any of a shape, a flat shape, an irregular shape, and the like.
  • the average particle diameter D 50 of the rare earth element framework-substituted zeolite can be appropriately set according to the required performance and the like, and is not particularly limited, but from the viewpoint of the NOx adsorption amount, the BET specific surface area, the handleability etc. 1 micrometer or more and 500 micrometers or less are preferable, 3 micrometers or more and 350 micrometers or less are more preferable, and 5 micrometers or more and 250 micrometers or less are more preferable.
  • the rare earth element frame substituted zeolite of this embodiment has a crystal structure of an aluminosilicate in a powder X-ray diffraction method.
  • having the crystal structure of the aluminosilicate means that there is a clear peak indicating a specific surface index of the aluminosilicate in an X-ray diffraction diagram by powder X-ray diffraction method.
  • the crystalline aluminosilicate has a framework structure in which the main framework metal atoms are composed of aluminum (Al) and silicon (Si), and which is composed of a network of these and oxygen (O). It is characterized by an X-ray diffraction pattern.
  • the rare earth element skeleton-substituted zeolite of the present embodiment may contain a rare earth element other than Ce, La, Nd, and Pr described above (hereinafter, may be referred to as “other rare earth element”).
  • Other rare earth elements include scandium, yttrium, promethium, samarium, europium, gadolinium, terbium, dysprosium, holmium, erbium, thulium, ytterbium and lutetium.
  • the content of the other rare earth element in the rare earth element framework-substituted zeolite is not particularly limited, but from the viewpoint of increasing the content ratio of Ce, La, Nd and Pr described above, 0.001 mass% or more to 1 mass based on the total % Or less is preferable, More preferably, it is 0.005 to 0.5 mass%, More preferably, it is 0.01 to 0.1 mass%.
  • the rare earth element framework-substituted zeolite may contain a transition metal.
  • transition elements include chromium, cobalt, iron, nickel, titanium, manganese, tungsten and copper, but are not particularly limited thereto.
  • the content of transition metal in the rare earth element framework-substituted zeolite is not particularly limited, but is preferably 0.1% by mass or more and less than 10% by mass, more preferably 0.5% by mass or more and less than 8% by mass is there.
  • the method for producing the rare earth element framework-substituted zeolite of the present embodiment is not particularly limited as long as the rare earth element framework-substituted zeolite having the above-described configuration can be obtained.
  • a zeolite in which a rare earth element is framework-substituted by contacting the above-described zeolite with at least one or more rare earth elements selected from the group consisting of Ce, La, Nd and Pr, ie, a rare earth element A framework substituted zeolite can be obtained.
  • rare earth elements can be supplied as inorganic acid salts of rare earth elements, such as sulfates, nitrates, acetates, chlorides, oxides, complex oxides, and complex salts of rare earth elements.
  • Specific methods include, but are not limited to, ion exchange method, evaporation to dryness method, precipitation method, physical mixing method, skeletal replacement method, impregnation method and the like.
  • the ion exchange method, the framework substitution method, the impregnation method and the like are preferable.
  • washing with water for example, drying to remove water at a temperature of about 50 ° C. to 150 ° C. in the atmosphere according to the conventional method, if necessary. Can.
  • the drying process may be natural drying, or a dryer such as a drum dryer, a vacuum dryer, or a spray dryer may be used. Further, the atmosphere for the drying treatment may be in the air, in vacuum, or in an inert gas atmosphere such as nitrogen gas. In addition, before and / or after drying, pulverization treatment, classification treatment and the like may be performed as necessary.
  • a rare earth element framework-substituted zeolite having a total content of the rare earth element of 1 to 15% by mass with respect to the total amount.
  • the heat treatment of the impregnated zeolite is preferably performed in a temperature range of 400 ° C. or more and 650 ° C. or less, more preferably 450 ° C. or more and 600 ° C. or less from the viewpoint of maintaining the crystal structure of the aluminosilicate. Temperature range.
  • the atmosphere during the heat treatment may be in the air, in vacuum, or in an inert gas atmosphere such as nitrogen gas.
  • the treatment time can be appropriately set according to the raw materials used and the treatment temperature and the like, and is not particularly limited, but usually 0.2 hours or more and 48 hours or less is preferable, and more preferably 0.5 hours or more and 8 hours or less.
  • the heat treatment can be performed by a known heating means such as an electric furnace or a gas furnace.
  • transition metals and other rare earth elements that may be contained as optional components in the rare earth element framework-substituted zeolite, at least one or more rare earth elements selected from the group consisting of Ce, La, Nd and Pr described above
  • these inorganic acid salts can be supplied as, for example, sulfates, nitrates, acetates, chlorides, oxides, complex oxides, and complex salts.
  • Specific methods include, but are not limited to, ion exchange method, evaporation to dryness method, precipitation method, physical mixing method, skeletal replacement method, impregnation method and the like. Among these, the ion exchange method, the framework substitution method, the impregnation method and the like are preferable.
  • washing with water for example, drying to remove water at a temperature of about 50 ° C. to 150 ° C. in the atmosphere according to the conventional method, if necessary. Can.
  • the rare earth metal composite oxide described above; zirconia doped with a rare earth element and / or transition element or ceria element skeleton-substituted zeolite can be used as a powder, and a catalyst or cocatalyst known in the art or It can be used in admixture with a catalyst support, additives known in the art.
  • metal oxides such as silica, alumina, ceria, zirconia, ceria-zirconia, lanthanum oxide, neodymium oxide, praseodymium oxide or complex oxides such as metal complex-zirconia; Type oxides; composite oxides containing alumina such as silica-alumina, silica-alumina-zirconia, silica-alumina-boria, etc .; barium compounds etc., but not limited thereto.
  • additives known in the art include various binders, dispersion stabilizers such as nonionic surfactants and anionic surfactants, pH adjusters, viscosity adjusters, etc., but are not particularly limited thereto. .
  • the use ratio of the above-mentioned additive is not particularly limited, but it is preferably 0.01 to 20% by mass in total, more preferably 0.05 to 10% by mass in total, and 0.1 in total. -8% by mass is more preferable.
  • the rare earth element framework-substituted zeolite of the present embodiment can be used as a molded body by preparing a composition containing it and molding it into any predetermined shape. At this time, it is preferable to blend a known binder in the art with the composition containing the rare earth element framework-substituted zeolite from the viewpoint of enhancing the formability and the binding property.
  • the binder includes, but is not particularly limited to, various sols such as alumina sol, titania sol, silica sol, and zirconia sol.
  • soluble salts such as aluminum nitrate, aluminum acetate, titanium nitrate, titanium acetate, zirconium nitrate and zirconium acetate can also be used as the binder.
  • acids such as acetic acid, nitric acid, hydrochloric acid and sulfuric acid can also be used as the binder.
  • the usage-amount of a binder is not specifically limited, What is necessary is just the quantity of the extent required for maintenance of a molded object.
  • various known dispersing devices, kneading devices, and molding devices can be used.
  • the content of the rare earth element skeleton-substituted zeolite in the molded object is not particularly limited, but 80% by mass or more and 99.99% by mass or less is preferable, and 90% by mass or more 99.5 mass% or less is more preferable, and 92 mass% or more and 99.9 mass% or less is more preferable.
  • the rare earth element framework-substituted zeolite of the embodiment includes gold (Au), silver (Ag), platinum (Pt), palladium (Pd), rhodium (Rh), iridium (Ir), ruthenium (Ru), osmium (Os) And the like, and the noble metal-supported rare earth element framework-substituted zeolite or the platinum group-supported NO rare earth element framework-substituted zeolite can also be used.
  • a known method can be applied to the method of supporting the noble metal element and the platinum group element, and is not particularly limited. For example, it can carry out similarly to the supply method of the rare earth element mentioned above.
  • a noble metal or a platinum group can be supported by preparing a solution of a salt containing a noble metal element or a platinum group element, impregnating the above-described composite particles 31 with the salt-containing solution, and baking it thereafter.
  • the salt-containing solution is not particularly limited, but is preferably a nitrate aqueous solution, a dinitrodiammine nitrate solution, a chloride aqueous solution and the like.
  • the rare earth element framework-substituted zeolite of this embodiment is used as a NOx adsorbing material or NOx occlusion material for adsorbing or occluding NOx contained in exhaust gas from diesel engines, gasoline engines, jet engines, boilers, gas turbines, etc. Can.
  • the rare earth element framework-substituted zeolite of the present embodiment may be installed in a gas flow, or may be used as a wall material of a flow path through which the gas flow passes.
  • the rare earth element framework-substituted zeolite of the present embodiment can also be used as a catalyst or a catalyst carrier.
  • a catalyst and catalyst support application for example, exhaust gas purification catalyst, selective reduction catalyst such as NOx, catalyst for lower olefin production from alcohol or ketone, cracking catalyst, dewaxing catalyst, isomerization catalyst, catalyst support in these catalysts Etc.
  • the above-mentioned transition metals such as iron, copper and tungsten, and the above-mentioned multiple precious metals and platinum groups can be carried as needed, for example, used as automobile exhaust gas or ethanol conversion catalyst be able to.
  • the rare earth element framework-substituted zeolite of the present embodiment can be applied to a NOx adsorbing member (layered NOx adsorbing member) of a laminated structure including at least a support and an NOx adsorbing layer provided on at least one surface of the support. It is.
  • the rare earth element framework-substituted zeolite of the present embodiment functions as a NOx adsorbent blended in the NOx adsorption layer. Adoption of such a configuration increases the applicability to various applications, such as facilitating incorporation into a device.
  • the NOx adsorption layer may function as a catalyst layer by blending various catalyst materials in the NOx adsorption layer.
  • “provided on at least one side of the support” means any other layer (eg, primer layer, adhesion) between one side of the support and the NOx adsorption layer. Is meant to include embodiments in which a layer or the like is interposed. That is, in the present specification, "provided on one side” means an embodiment in which the support and the NOx adsorption layer are directly placed, and the support and the NOx adsorption layer are separated via any other layer. It is used in the meaning including both of the aspect arrange
  • the type of support used herein is not particularly limited as long as it can support the NOx adsorption layer.
  • examples thereof include, but are not limited to, metals, alloys, plastics, ceramics, paper, synthetic papers, nonwoven fabrics, laminates combining these, and the like.
  • the shape, planar shape, thickness and the like of the support may be appropriately set according to the application and required performance and the like.
  • a support member such as a honeycomb structure carrier as a support
  • application to a NOx adsorption application installed in a gas flow becomes easy.
  • a support those known in the art can be appropriately selected.
  • ceramic monolith carriers such as cordierite, silicon carbide and silicon nitride
  • metal honeycomb carriers such as stainless steel
  • wire mesh carriers such as stainless steel
  • knitted wire carriers such as steel wool.
  • the shape is also not particularly limited, and any shape such as prismatic, cylindrical, spherical, honeycomb and sheet can be selected. These can be used singly or in appropriate combination of two or more.
  • the size of the support such as the honeycomb structure support can be appropriately set depending on the application and the required performance, and is not particularly limited. For example, those having a diameter (length) of several millimeters to several centimeters can be used.
  • a support such as a honeycomb structure carrier an appropriate number of holes may be set in consideration of the type of exhaust gas to be treated, the gas flow rate, the pressure loss, the removal efficiency, and the like for the number of holes in the opening.
  • the cell density is not particularly limited, but generally 100 to 900 cells / inch 2 (15.5 to 139.5 cells / cm 2) from the viewpoint of maintaining a high surface area against gas flow and suppressing an increase in pressure loss, etc.
  • the cell density means the number of cells per unit area in the cross section when the support such as the honeycomb structure carrier is cut at right angles to the gas flow channel.
  • a flow-through type structure in which a gas flow channel is in communication, and a partial end face of the gas flow channel are plugged and gas can flow through the wall surface of the gas flow channel Wall-flow type structures are widely known.
  • a flow-through type structure having less air resistance and less pressure loss of exhaust gas is preferably used.
  • the NOx adsorption layer is a layer containing at least the rare earth element framework-substituted zeolite described above.
  • the NOx adsorption layer may contain other components as long as it contains the rare earth element framework-substituted zeolite described above.
  • Other components include metal oxides such as zirconia; composite oxides such as zirconia doped with rare earth elements and / or transition elements; perovskite type oxides; zeolites; silica-alumina, silica-alumina-zirconia, silica- Alumina-Boria and other complex oxides containing alumina; various binders, dispersion stabilizers such as nonionic surfactants and anionic surfactants, pH adjusters, viscosity adjusters, etc. It is not limited.
  • the rare earth element framework-substituted zeolite of the present embodiment is applicable to a catalyst member (laminated catalyst member) having a laminated structure including at least the above-described support and a catalyst layer provided on at least one surface side of the support. is there.
  • the rare earth element framework-substituted zeolite of the present embodiment functions as a catalyst, a cocatalyst and / or a NOx adsorbent blended in the catalyst layer. Adoption of such a configuration increases the applicability to various applications, such as facilitating incorporation into a device.
  • an exhaust gas catalyst of a laminated structure that is, an integral structure type catalyst comprising at least the above-described support and a catalyst layer provided on at least one surface side of the support.
  • a support such as a honeycomb structure carrier
  • the integrated structural catalyst is disposed in the flow path through which the gas flow passes, and the gas flow is allowed to pass through the cells of the honeycomb structure carrier, thereby achieving high efficiency.
  • Exhaust gas purification can be performed.
  • NOx storage reduction catalysts for example, NOx storage reduction catalysts, lean NOx catalysts, SCR catalysts and the like are known, and the kind of catalyst used in these, the kind of promoter and the mixing ratio of each component
  • the catalyst laminated structure and the like can be applied to the above-described integrated structural catalyst.
  • zeolite and zeolite-like compounds crystalline metal aluminophosphates
  • transition metal oxides such as vanadium oxide, titania, zirconia, tungsten oxide, ceria, lanthanum, praseodymium, samarium, gadolinium
  • inorganic materials such as rare earth oxides such as neodymium, base oxides such as copper oxide, iron oxide, gallium oxide and tin oxide, or composite oxides thereof can be mentioned.
  • alumina, silica, alumina modified with rare earth, alkali metal, alkaline earth or the like, a mixture or composite of silica and the above oxide, etc. may also be mentioned.
  • Other examples include inorganic materials in which a base metal such as copper or iron is ion-exchanged to zeolite or a compound similar to zeolite.
  • the laminated NOx adsorbing member and exhaust gas catalyst having the above-described layer configuration can be manufactured according to a conventional method.
  • a layered NOx adsorbing member and a catalyst for exhaust gas can be obtained by coating (carrying) the above-described rare earth element framework-substituted zeolite on the surface of a support.
  • the above-described rare earth element framework-substituted zeolite is used as an aqueous medium, and, if necessary, a binder, other catalyst, cocatalyst particles, OSC material, base material particles, additives, etc. known in the art.
  • the slurry mixture is prepared by mixing in the above, and the obtained slurry mixture is applied to the surface of a support such as a honeycomb structure carrier, dried and fired.
  • a support such as a honeycomb structure carrier
  • the aqueous medium used at the time of preparation of the slurry-like mixture may be used in such an amount that the rare earth element framework-substituted zeolite can be uniformly dispersed in the slurry.
  • known grinding methods or mixing methods such as grinding and mixing with a ball mill etc. can be applied.
  • various known coating methods, wash coat methods and zone coat methods can be applied according to a conventional method.
  • the layered NOx adsorbing member of the present embodiment and the catalyst for exhaust gas can be obtained by drying and baking according to a conventional method.
  • the drying temperature is, for example, preferably 70 to 200 ° C., and more preferably 80 to 150 ° C.
  • the firing temperature is, for example, preferably 300 to 650 ° C., and more preferably 400 to 600 ° C.
  • a heating means it can carry out by well-known heating means, such as an electric furnace and a gas furnace, for example.
  • the layer construction of the NOx adsorption layer and the catalyst layer may be either single layer or multiple layers, but in the case of automobile exhaust gas application, the exhaust gas regulation is strengthened.
  • the NOx adsorption layer or the catalyst layer be a laminated structure of two or more layers to enhance the NOx adsorption performance or the catalyst performance.
  • the total coating amount of the rare earth element framework-substituted zeolite described above is not particularly limited, but is preferably 20 to 300 g / L, and preferably 100 to 300 g / L from the viewpoints of NOx adsorption performance or catalyst performance, and pressure loss balance. Is more preferred.
  • these laminated NOx adsorption members and exhaust gas catalysts can be disposed in the exhaust system of various engines.
  • the installation number and installation location can be suitably designed according to exhaust gas regulation.
  • the installation location may be two or more, and the installation location may be located at a position under the floor just behind the catalyst just below the exhaust system.
  • Example 1 0.77 parts by mass of praseodymium nitrate (III, IV) hexahydrate (manufactured by Wako Pure Chemical Industries, purity 99.9%, containing 5.98% by mass converted to Pr 6 O 11 ), water 1.63 parts The solution was dissolved in an aqueous solution to prepare a Pr-containing aqueous solution. Next, 5 parts by mass of NH 4 type beta-type zeolite powder (average particle diameter D 50 : 0.4 ⁇ m, silica-alumina ratio: 26, BET specific surface area: 667 m 2 / g, white powder) is impregnated with the above Pr containing aqueous solution And heat-treated at 550 ° C. for 60 minutes, the Pr-substituted zeolite powder of Example 1 (content ratio in terms of Pr: 5% by mass, average particle diameter D 50 : 24.4 ⁇ m, some pale yellowish greenish white) Powder) was obtained.
  • NH 4 type beta-type zeolite powder average particle
  • Example 2 In place of a Pr-containing aqueous solution, 0.77 parts by mass of cerium (III) nitrate hexahydrate (manufactured by Wako Pure Chemical Industries, special grade reagent, containing 6.07% by mass in terms of CeO 2 ), 1.63 parts by weight of water
  • the Ce-skeleton-substituted zeolite powder of Example 2 is prepared in the same manner as in Example 1 except that a Ce-containing aqueous solution prepared by dissolving in part is used. (Ce content ratio: 5% by mass, average particle size D 50 : 17) .1 ⁇ m, white powder) was obtained.
  • Example 3 Lanthanum (III) hexahydrate (manufactured by Wako Pure Chemical Industries, special grade reagent, purity 99.9%, containing 5.81% by mass in terms of La 2 O 3 ) 0.78 mass instead of the Pr containing aqueous solution
  • the reaction is carried out in the same manner as in Example 1, except that the La-containing aqueous solution prepared by dissolving the part in 1.62 parts by mass of water is used.
  • Average particle diameter D 50 18.1 ⁇ m, white powder).
  • Example 4 In place of the Pr-containing aqueous solution, 0.76 parts by mass of neodymium nitrate (III) hexahydrate (manufactured by Wako Pure Chemical Industries, Ltd., purity 99.9%, containing 5.78 mass% in terms of Nd 2 O 3 content), The same procedure as in Example 1 was repeated except that an Nd-containing aqueous solution prepared by dissolving in 1.64 parts by mass of water was used, and the Nd skeleton-substituted zeolite powder of Example 4 (Nd conversion content ratio: 5% by mass, average particles A diameter D 50 of 21.8 ⁇ m, a slightly pale purple white powder was obtained.
  • Nd conversion content ratio 5% by mass, average particles A diameter D 50 of 21.8 ⁇ m
  • Example 1 5 parts by mass of NH 4 type beta-type zeolite powder (average particle diameter D 50 : 0.4 ⁇ m, silica-alumina ratio: 26, BET specific surface area: 667 m 2 / g, white powder) used in Example 1 Used as a zeolite powder of 1.
  • NOx gas desorption amount The amount of NOx gas desorbed of the rare earth element skeleton-substituted zeolite powders of Examples 1 to 4 and the zeolite powder of Comparative Example 1 was determined by temperature-programmed desorption (TPD) based on Temperature-programmed desorption (TPD). It carried out using a test apparatus.
  • model gas (Gas-1) flow shown in Table 1, at 30 ° C. /
  • the temperature was raised to 500 ° C. at the temperature rising rate for a minute, held for 10 minutes as it was, and then cooled to 50 ° C. at the temperature falling rate of ⁇ 30 ° C./min.
  • the atmosphere was changed to a model gas (Gas-2) flow atmosphere shown in Table 2 and held at 50 ° C. for 10 minutes.
  • model gas (Gas-1) flow shown in Table 1 and held at 50 ° C.
  • the desorbed NOx gas (NO gas and NO 2 gas) is detected by a gas analyzer, the integrated amount of NOx gas is calculated from the profile, and the value is calculated as the NOx gas desorption amount (NOx gas adsorption amount) I considered it and evaluated it.
  • Measuring device Temperature programmed desorption test device (trade name: BELCAT-A-SC, Rigaku Corporation)
  • Gas Analyzer FT-IR Gas Analyzer (trade name: FAST-1200, Iwata Electric Industry Co., Ltd.)
  • Evaluation sample Powder sample amount: 50 mg
  • Evaluation temperature 50 to 500 ° C
  • Heating rate 30 ° C./min
  • Model gas described in Tables 1 and 2 Processing temperature: described in FIG. 1
  • FIG. 2 shows the NOx gas desorption amount (adsorption amount) of the rare earth element skeleton-substituted zeolite powders of Examples 1 to 4 and the zeolite powder of Comparative Example 1. From the results, it is understood that the rare earth element framework-substituted zeolite powders of Examples 1 to 4 have the NO x gas adsorption amount increased by 2 to 4 times as compared with the other cases (Comparative Example 1). Further, in the case of the beta-type zeolite, it can be seen that the adsorption amount of NOx, Pr, La and Nd is particularly increased.
  • Example 5 Instead of the NH 4 form of beta zeolite powder, NH 4 form CHA-type zeolite powder (average particle diameter D 50: 1.3 .mu.m, silica-alumina ratio: 27.9, BET specific surface area: 810m 2 / g) using The same procedure as in Example 1 was carried out except that the Pr-framework-substituted zeolite powder of Example 5 (Pr-converted content ratio: 5% by mass, average particle diameter D 50 : 5.2 ⁇ m, slightly pale yellowish greenish white) Powder) was obtained.
  • Pr-framework-substituted zeolite powder of Example 5 Pr-converted content ratio: 5% by mass, average particle diameter D 50 : 5.2 ⁇ m, slightly pale yellowish greenish white) Powder
  • Example 6 Instead of the NH 4 form of beta zeolite powder, NH 4 form CHA-type zeolite powder (average particle diameter D 50: 1.3 .mu.m, silica-alumina ratio: 27.9, BET specific surface area: 810m 2 / g) using The procedure was carried out in the same manner as in Example 2 except for using the Ce-skeleton-substituted zeolite powder (Ce content ratio: 5% by mass, average particle diameter D 50 : 3.3 ⁇ m, white powder) of Example 6.
  • Ce-skeleton-substituted zeolite powder Ce content ratio: 5% by mass, average particle diameter D 50 : 3.3 ⁇ m, white powder
  • Example 7 Instead of the NH 4 form of beta zeolite powder, NH 4 form CHA-type zeolite powder (average particle diameter D 50: 1.3 .mu.m, silica-alumina ratio: 27.9, BET specific surface area: 810m 2 / g) using The procedure was carried out in the same manner as in Example 3 except for using the La-skeleton-substituted zeolite powder of Example 7 (content ratio in terms of La: 5% by mass, average particle diameter D 50 : 4.0 ⁇ m, white powder).
  • Example 8 Instead of the NH 4 form of beta zeolite powder, NH 4 form CHA-type zeolite powder (average particle diameter D 50: 1.3 .mu.m, silica-alumina ratio: 27.9, BET specific surface area: 810m 2 / g) using The same procedure as in Example 4 was carried out except that the Nd-skeleton-substituted zeolite powder of Example 8 (content ratio in terms of Nd: 5% by mass, average particle diameter D 50 : 3.3 ⁇ m, white powder slightly tinted purple) Got).
  • Comparative example 2 5 parts by mass of NH 4 type CHA type zeolite powder (average particle diameter D 50 : 1.3 ⁇ m, silica-alumina ratio: 27.9, BET specific surface area: 810 m 2 / g, white powder) used in Example 2 It was used as the zeolite powder of Comparative Example 2.
  • FIG. 3 shows the NOx gas desorption amount (adsorption amount) of the rare earth element skeleton-substituted zeolite powders of Examples 5 to 8 and the zeolite powder of Comparative Example 2. From the results, it is found that the rare earth element framework-substituted zeolite powders of Examples 5 to 8 have the NO.sub.2 gas adsorption amount increased by 1.2 to 3 times as compared with the other cases (Comparative Example 2). Recognize. In addition, in the case of CHA type zeolite, it is understood that the amount of NOx gas desorption of Pr is particularly large.
  • Example 9 The same procedure as in Example 4 is carried out except that the Nd equivalent content is changed to 7% by mass, and the Nd skeleton-substituted zeolite powder of Example 9 (Nd equivalent content: 7% by mass, average particle diameter D 50 : 20. An 8 ⁇ m, slightly pale purple white powder was obtained.
  • Example 10 The Pr skeleton substituted zeolite powder of Example 10 (Pr-converted content ratio: 1.8 mass%, average particle diameter D) in the same manner as in Example 1 except that the Pr-converted content ratio is changed to 1.8 mass%. 50 : 14.0 ⁇ m, and it obtained a slightly pale yellowish white powder).
  • Example 11 The same procedure as in Example 1 is carried out except that the content in terms of Pr is changed to 6.5% by mass, and the Pr skeleton substituted zeolite powder of Example 11 (the content in terms of Pr: 6.5% by mass, average particle diameter D). 50 : 20.3 ⁇ m, a slight pale yellowish white powder was obtained.
  • Example 12 The same procedure as in Example 1 is carried out except that the content in terms of Pr is changed to 12% by mass, and the Pr-skeleton-substituted zeolite powder of Example 12 (the content in terms of Pr: 12% by mass, average particle diameter D 50 : 16. 6 .mu.m, a slight pale yellowish white powder was obtained.
  • the NOx gas desorption amounts of the obtained Nd-skeleton-substituted zeolite powders of Example 1 and 10 to 12 and the zeolite powder of Comparative Example 1 are similarly raised based on Temperature programmed desorption (TPD). It carried out using a thermal desorption test device. The measurement results are shown in FIG.
  • TPD Temperature programmed desorption
  • Example 13 The same procedure as in Example 5 is carried out except that the content in terms of Pr is changed to 1.8% by mass, and the Pr skeleton substituted zeolite powder of Example 13 (the content in terms of Pr: 1.8% by mass, average particle diameter D) 50 : 4.1 .mu.m, to obtain some pale yellowish white powder).
  • Example 14 The same procedure as in Example 5 is carried out except that the content in terms of Pr is changed to 6.5% by mass, and the Pr skeleton substituted zeolite powder of Example 14 (the content in terms of Pr: 6.5% by mass, average particle diameter D) 50 : 4.5 .mu.m, to obtain some pale yellowish white powder).
  • Example 15 The same procedure as in Example 5 is carried out except that the content in terms of Pr is changed to 12% by mass, and the Pr-skeleton-substituted zeolite powder of Example 15 (the content in terms of Pr: 12% by mass, average particle diameter D 50 of 4. 5 .mu.m, a slight pale yellowish white powder was obtained.
  • the NOx gas desorption amounts of the obtained Nd-skeleton-substituted zeolite powders of Example 5 and 13 to 15 and the zeolite powder of Comparative Example 2 are similarly raised based on Temperature programmed desorption (TPD). It carried out using a thermal desorption test device. The measurement results are shown in FIG.
  • TPD Temperature programmed desorption
  • Ascend 400 (made by Bruker) Measurement method: Dipolar Decoupling method (DD / MAS) Measured nuclide: 29 Si (Si-NMR), 27 Al (Al-NMR) Probe: 4 mm (Si-NMR), 2.5 mm (Al-NMR) Rotation speed: 10 KHz (Si-NMR), 20 KHz (Al-NMR) Number of integrations: 128 (Si-NMR), 2048 (Al-NMR)
  • the rare earth element Pr is present in a state of being substituted by the Si atom and / or the Al atom in the zeolite skeleton, and a part of Pr is in the ion state at the zeolite adsorption site. It is suggested that it exists.
  • Comparative example 3 Praseodymium oxide powder (manufactured by Wako Pure Chemical Industries, purity 99.9%, black powder) and beta type zeolite powder of NH 4 type (average particle size D 50 : 0.4 ⁇ m, silica-alumina ratio: 26, BET specific surface area:
  • the mixed powder (praseodymium oxide-zeolite mixed powder, content ratio in terms of Pr: 5% by mass, black powder) of Comparative Example 3 was obtained by mixing 667 m 2 / g and white powder).
  • Comparative example 4 The same procedure as in Comparative Example 3 is carried out except that the mixing ratio of the praseodymium oxide powder to the beta-type zeolite powder is changed, and the mixed powder of Comparative Example 4 (Praseodymium oxide-zeolite mixed powder, Pr conversion content ratio: 10% by mass) Black powder was obtained.
  • Comparative example 5 Praseodymium oxide powder (Wako Pure Chemical Industries, Ltd., purity 99.9%, black powder) and CHA type zeolite powder of NH 4 type (average particle size D 50 : 1.3 ⁇ m, silica-alumina ratio: 27.9, BET ratio Surface area: 810 m 2 / g) was mixed to obtain a mixed powder of Comparative Example 5 (prase powder of praseodymium oxide-zeolite, content ratio in terms of Pr: 5% by mass, black powder).
  • Comparative example 6 The same procedure as in Comparative Example 5 is carried out except that the mixing ratio with the praseodymium oxide powder CHA type zeolite powder is changed, and the mixed powder of the comparative example 6 (prase oxide mixed with praseodymium oxide, Pr content ratio: 10% by mass, black) Powder) was obtained.
  • the amount of NOx gas desorption of the Pr framework substituted zeolite powders of Examples 1 and 5 and the mixed powders of Comparative Examples 3 to 6 and the praseodymium oxide powder of Reference Example 1 were measured by temperature-programmed desorption method (TPD: Temperature It carried out similarly using temperature rising desorption test equipment based on programmed desorption. The measurement results are shown in FIG.
  • the rare earth element framework-substituted zeolite of the present invention is excellent in NOx adsorption performance, it is wide and effective in applications such as NOx storage materials, SCR catalysts, urea SCR catalysts, NOx storage reduction catalysts, lean NOx catalysts, etc. It can be used to Further, the NOx adsorbing material of the present invention and the NOx adsorbing member using the same are NOx storage reduction catalysts for purifying exhaust gases from diesel engines, gasoline engines, jet engines, boilers, gas turbines, etc., lean NOx catalysts, SCR In the catalyst for motor vehicle exhaust gas, such as a catalyst, it can use effectively especially.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Analytical Chemistry (AREA)
  • Combustion & Propulsion (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Biomedical Technology (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Inorganic Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Toxicology (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Treating Waste Gases (AREA)
  • Solid-Sorbent Or Filter-Aiding Compositions (AREA)
  • Silicates, Zeolites, And Molecular Sieves (AREA)

Abstract

NOx吸着量がより高められた、新規な希土類元素骨格置換ゼオライト及びその製造方法、並びにこれらを用いたNOx吸着部材及び自動車排ガス用触媒等を提供する。ゼオライトと、Ce、La、Nd及びPrよりなる群から選択される少なくとも1種以上の希土類元素とを少なくとも含有し、且つ、前記希土類元素の含有割合が総量に対して合計で1~15質量%であり且つ前記ゼオライトの骨格を形成するAl原子及び/又はSi原子の一部が前記希土類元素に置換されていることを特徴とする、希土類元素骨格置換ゼオライト。

Description

希土類元素骨格置換ゼオライト及びその製造方法、並びにこれらを用いたNOx吸着材、選択的還元触媒及び自動車排ガス触媒
 本発明は、新規な希土類元素骨格置換ゼオライト及びその製造方法、並びに、これらを用いたNOx吸着材、選択的還元触媒及び自動車排ガス触媒等に関する。
 大気中のNOxは、光化学スモッグや酸性雨等の大気汚染の原因となる。そのため従来から、NOx発生源の一つであるガソリンエンジンやディーゼルエンジン等の内燃機関を備える自動車等の発生源から排出されるNOxが社会的な問題となっている。かかる状況の下、NOx浄化システムのより一層の高性能化が注目されている。
 NOx浄化システムとしては、例えばアンモニアまたは尿素等の窒素系化合物によるNOxの選択的還元触媒(SCR;Selective Catalytic Reduction)が、幅広い分野で用いられている。また、SCR用途としては、火力発電所、ガスタービン、石炭燃焼発電所、石炭燃焼コジェネレーションプラント、製油所加熱器、化学処理工業、炉、コークス炉、都市廃棄物処理設備、焼却装置のボイラー等が知られている。
 また最近では、例えばディーゼルエンジン車におけるNOxの浄化方法として、尿素SCR(Selective Catalytic Reduction)システムが普及している。この尿素SCRシステムでは、尿素水を排気路中に噴射し、高温下で尿素を加水分解させてアンモニア(NH)ガスを生成させ、このアンモニアをSCR触媒に吸着させ、SCR触媒上でNOxをアンモニアと化学反応させることにより、窒素及び水に浄化している。
 さらに、排ガス経路が酸素過剰のリッチ状態となるディーゼルエンジン、成層燃焼時のガソリン直噴エンジン、リーンバーンエンジン等においては、三元触媒を用いた還元処理を行うことができないため、これらのエンジンでNOxを還元処理するために、NOx吸蔵還元型触媒やリーンNOx触媒が用いられている。これらの触媒では、白金(Pt),ロジウム(Rh),パラジウム(Pd)等の貴金属に加えて、NOx吸蔵材(NOxトラップ材)が用いられており、排ガス中のNOxをNOx吸蔵材に一時的に吸蔵しておき、その後にストイキ状態或いはリッチ状態にしてNOxを脱離させて還元浄化させている。
 含水アルミノケイ酸塩の一種であるゼオライトは、規則的で且つ一定の大きさの細孔を有する結晶構造を有し、極性や分子径の差異を利用した各種の無機或いは有機分子の吸着剤又は分離剤の他、乾燥剤、脱水剤、イオン交換体、石油精製触媒、石油化学触媒、固体酸触媒等の種々の用途において工業的に広く用いられている。また、ゼオライトは、触媒担体やSCR触媒の他、NOやNO等の窒素酸化物(NOx)を吸着するためのNOx吸蔵材等としても広く用いられている。
 例えば特許文献1~6には、NOx吸蔵材やSCR用触媒として、特定構造のゼオライト、Cu担持ゼオライトやFe担持ゼオライト等の遷移金属担持ゼオライト等の使用が提案されている。
WO2013/069713A1 特開2015-027673号公報 特開2015-151887号公報 特開2015-196115号公報 特開2016-195992号公報 特開2015-188858号公報
 近年、各国において排ガス規制のより一層の強化が議論されている。そのため、NOx浄化システムのさらなる高性能化が注目されており、SCR用触媒、触媒担体、NOx吸蔵材等において用いられる金属担持ゼオライトのさらなる性能向上が求められている。しかしながら、現在のところCu担持ゼオライトやFe担持ゼオライト等の遷移金属担持ゼオライトに代わる、新たな素材について積極的な報告は見当たらない。
 本発明は、上記課題に鑑みてなされたものであり、その目的は、NOx吸着量がより高められた、新規な希土類元素骨格置換ゼオライト及びその製造方法、並びにこれらを用いたNOx吸着部材及び自動車排ガス用触媒等を提供することにある。
 なお、ここでいう目的に限らず、後述する発明を実施するための形態に示す各構成により導かれる作用効果であって、従来の技術によっては得られない作用効果を奏することも、本発明の他の目的として位置づけることができる。
 本発明者らは、上記課題を解決するために鋭意検討を重ねた結果、所定の希土類元素がゼオライト骨格中に導入された希土類元素骨格置換ゼオライトが、NOxの吸着性能に優れることを見出し、本発明を完成するに至った。すなわち、本発明は、以下に示す種々の具体的態様を提供する。
<1>ゼオライトと、Ce、La、Nd及びPrよりなる群から選択される少なくとも1種以上の希土類元素とを少なくとも含有し、前記希土類元素の含有割合が総量に対して合計で1~15質量%であり且つ前記ゼオライトの骨格を形成するAl原子及び/又はSi原子の一部が前記希土類元素に置換されていることを特徴とする、希土類元素骨格置換ゼオライト。
<2>粉末X線回折法においてアルミノケイ酸塩の結晶構造を有する<1>に記載の希土類元素骨格置換ゼオライト。
<3>前記ゼオライトが、NH型ゼオライト、及びH型ゼオライトよりなる群から選択される少なくとも1種である<1>又は<2>に記載の希土類元素骨格置換ゼオライト。
<4>1μm以上500μm以下の平均粒子径D50を有する<1>~<4>のいずれか一項に記載の希土類元素骨格置換ゼオライト。
<5>ゼオライトに、Ce、La、Nd及びPrよりなる群から選択される少なくとも1種以上の希土類元素の可溶性塩の水溶液を含浸する工程と、含浸後のゼオライトを400℃以上650℃以下の温度範囲で熱処理して、前記希土類元素の含有割合が総量に対して合計で1~15質量%であり且つ前記ゼオライトの骨格を形成するAl原子及び/又はSi原子の一部が前記希土類元素に置換されている希土類元素骨格置換ゼオライトを得る工程と、を少なくとも有することを特徴とする、希土類元素骨格置換ゼオライトの製造方法。
<6>前記希土類元素骨格置換ゼオライトは、粉末X線回折法においてアルミノケイ酸塩の結晶構造を有する<6>に記載の希土類元素骨格置換ゼオライトの製造方法。
<7>前記ゼオライトが、NH型ゼオライト、及びH型ゼオライトよりなる群から選択される少なくとも1種である<5>又は<6>に記載の希土類元素骨格置換ゼオライトの製造方法。
<8>前記希土類元素骨格置換ゼオライトは、1μm以上500μm以下の平均粒子径D50を有する<5>~<7>のいずれか一項に記載の希土類元素骨格置換ゼオライトの製造方法。
<9><1>~<4>のいずれか一項に記載の希土類元素骨格置換ゼオライトを少なくとも含有する、選択的還元触媒。
<10><1>~<4>のいずれか一項に記載の希土類元素骨格置換ゼオライトを含む組成物を所定形状に成形してなる選択的還元触媒成形体。
<11><1>~<4>のいずれか一項に記載の希土類元素骨格置換ゼオライトを少なくとも含有する、NOx吸着材。
<12><1>~<4>のいずれか一項に記載の希土類元素骨格置換ゼオライトを含む組成物を所定形状に成形してなるNOx吸着部材。
<13>支持体と、前記支持体の少なくとも一方の面側に設けられたNOx吸着層とを少なくとも備え、前記NOx吸着層が、<1>~<4>のいずれか一項に記載の希土類元素骨格置換ゼオライトを少なくとも含有することを特徴とする、積層NOx吸着部材。
<14>支持体と、前記支持体の少なくとも一方の面側に設けられた触媒層とを少なくとも備え、前記触媒層が、<1>~<4>のいずれか一項に記載の希土類元素骨格置換ゼオライトを少なくとも含有することを特徴とする、排ガス用触媒。
 本発明によれば、NOx吸着量がより高められた、新規な希土類元素骨格置換ゼオライト及びその製造方法、並びにこれらを用いたNOx吸着部材及び自動車排ガス用触媒等を提供することができる。そして、このNOx吸着材料等は、NOx吸着量が大きいため、Cu担持ゼオライトやFe担持ゼオライト等の遷移金属担持ゼオライトの代替品乃至は併用品として、例えばNOx吸蔵材、SCR触媒、尿素SCR触媒、NOx吸蔵還元型触媒、リーンNOx触媒等において好ましく用いることができ、これにより、これらを搭載したNOx浄化システムの高性能化が図られる。
実施例におけるNOxガス脱離量測定の際の処理条件を示すグラフである。 実施例1~4、及び比較例1のNOxガス吸着量を示すグラフである。 実施例5~8、及び比較例2のNOxガス吸着量を示すグラフである。 実施例4及び9、並びに比較例1のNOxガス吸着量を示すグラフである。 実施例1、10~12、及び比較例1のNOxガス吸着量を示すグラフである。 実施例5、13~15、及び比較例2のNOxガス吸着量を示すグラフである。 実施例1及び5、比較例3~6、及び参考例1のNOxガス吸着量を示すグラフである。
 以下、本発明の実施の形態について詳細に説明する。以下の実施の形態は、本発明の実施態様の一例(代表例)であり、本発明はこれらに限定されるものではない。また、本発明は、その要旨を逸脱しない範囲内で任意に変更して実施することができる。なお、本明細書において、上下左右等の位置関係は、特に断らない限り、図面に示す位置関係に基づくものとする。また、図面の寸法比率は、図示の比率に限定されるものではない。また、本明細書において、「~」を用いてその前後に数値又は物性値を挟んで表現する場合、その前後の値を含むものとして用いる。例えば「1~100」との数値範囲の表記は、その上限値「100」及び下限値「1」の双方を包含するものとする。また、他の数値範囲の表記も同様である。
[希土類元素骨格置換ゼオライト及びその製造方法]
 本実施形態の希土類元素骨格置換ゼオライトは、ゼオライトと、Ce、La、Nd及びPrよりなる群から選択される少なくとも1種以上の希土類元素とを少なくとも含有し、希土類元素の含有割合が総量に対して1~15質量%であり且つ前記ゼオライトの骨格を形成するAl原子及び/又はSi原子の一部が前記希土類元素に置換されていることを特徴とする。
(ゼオライト)
 本実施形態の希土類元素骨格置換ゼオライトにおいて、骨格置換されるゼオライトとしては、各種公知のものを用いることができ、その種類は特に限定されない。各種ゼオライトの骨格構造は、国際ゼオライト学会(International Zeolite Association,以降では「IZA」と略称することがある。)においてデータベース化されており、そのIUPAC構造コード(以下、単に「構造コード」ともいう。)に規定されている構造を有するものを、特に制限なく用いることができる。なお、これらの構造は、Collection of simulated XRD powder patterns for zeolites, Fifth revised edition (2007) に記載の粉末X線回折(以下、「XRD」とする。)パターン、又は、IZAの構造委員会のホームページhttp://www.iza-struture.org/databases/のZeolite Framework Typesに記載のXRDパターンのいずれかと比較することで、同定することができる。
 ゼオライトの具体例としては、SSF型ゼオライト、MFI型ゼオライト、MEL型ゼオライト、MWW型ゼオライト、*BEA型ゼオライト、BEC型ゼオライト、BIK型ゼオライト、BOF型ゼオライト、BOG型ゼオライト、BRE型ゼオライト、CAS型ゼオライト、CDO型ゼオライト、CFI型ゼオライト、-CHI型ゼオライト、CON型ゼオライト、CSV型ゼオライト、DAC型ゼオライト、DDR型ゼオライト、DOH型ゼオライト、DON型ゼオライト、EEI型ゼオライト、EON型ゼオライト、EPI型ゼオライト、ESV型ゼオライト、EUO型ゼオライト、*-EWT型ゼオライト、FER型ゼオライト、GON型ゼオライト、HEU型ゼオライト、IFR型ゼオライト、-IFU型ゼオライト、IFW型ゼオライト、IHW型ゼオライト、IMF型ゼオライト、IRN型ゼオライト、IRR型ゼオライト、-IRY型ゼオライト、ISV型ゼオライト、ITE型ゼオライト、ITG型ゼオライト、ITH型ゼオライト、*-ITN型ゼオライト、ITR型ゼオライト、ITT型ゼオライト、ITW型ゼオライト、IWR型ゼオライト、IWS型ゼオライト、IWV型ゼオライト、IWW型ゼオライト、LTF型ゼオライト、MAZ型ゼオライト、MEI型ゼオライト、MEP型ゼオライト、MFS型ゼオライト、MON型ゼオライト、MOR型ゼオライト、*MRE型ゼオライト、MSE型ゼオライト、MTF型ゼオライト、MTN型ゼオライト、MTT型ゼオライト、MTW型ゼオライト、NES型ゼオライト、NON型ゼオライト、NSI型ゼオライト、OKO型ゼオライト、-PAR型ゼオライト、PCR型ゼオライト、POS型ゼオライト、RRO型ゼオライト、RSN型ゼオライト、RTE型ゼオライト、RTH型ゼオライト、RUT型ゼオライト、RWR型ゼオライト、SEW型ゼオライト、SFE型ゼオライト、SFF型ゼオライト、SFG型ゼオライト、SFH型ゼオライト、SFN型ゼオライト、SFS型ゼオライト、*SFV型ゼオライト、SGT型ゼオライト、SOF型ゼオライト、SSF型ゼオライト、*-SSO型ゼオライト、SSY型ゼオライト、STF型ゼオライト、STI型ゼオライト、*STO型ゼオライト、STT型ゼオライト、STW型ゼオライト、-SVR型ゼオライト、SVV型ゼオライト、SZR型ゼオライト、TER型ゼオライト、TON型ゼオライト、TUN型ゼオライト、UOS型ゼオライト、UOV型ゼオライト、UTL型ゼオライト、UWY型ゼオライト、VET型ゼオライト、VNI型ゼオライト、VSV型ゼオライト、YUG型ゼオライト等が挙げられるが、これらに特に限定されない。なお、ゼオライトは、それぞれ1種を単独で、又は2種以上の任意の組み合わせ及び割合で用いることができる。
 これらの中でも、LTA(A型)、FER(フェリエライト)、MWW(MCM-22)、MTW(ZSM-12)、MOR(モルデナイト)、LTL(L型)、FAU(Y型、X型)、DDR、*BEA(ベータ型)、AEI、AFX、LEV、KFI、MFI(ZSM-5,シリカライト)、MEL(ZSM-11)、及びCHA(チャバザイト、SSZ-13)よりなる群から選択される少なくとも1以上のゼオライトが好ましく、*BEA、AEI、AFX、LEV、KFI、MFI、MEL、及びCHAよりなる群から選択される少なくとも1以上のゼオライトがより好ましい。
 工業的な入手容易性の観点からは、Y型、ベータ型、モルデナイト型、ZSM-5型、CHA型、フェリエライト型又はSAPO型のゼオライトが好ましく、より好ましくはY型、ベータ型、モルデナイト型、ZSM-5型、CHA型、フェリエライト型、さらに好ましくはY型、ZSM-5型、CHA型、ベータ型、特に好ましくはY型、CHA型、ベータ型である。
 これらゼオライトにおいては、プロトン性水素原子を有するブレンステッド酸型のもの、金属カチオン(アルミニウム、チタン、鉄、セリウム、ガリウム等)を有するルイス酸型のもの等、各種のゼオライトを使用できる。プロトン性水素原子を有するプロトン型としては、例えばH-Y型、H-SDUSY型、H-SUSY型、H-ベータ型、H-モルデナイト型、H-ZSM-5型、H-フェリエライト型等が挙げられるが、これらに特に限定されない。また、アンモニウム型としては、NH-Y型、NH-VUSY型、NH-ベータ型、NH-モルデナイト型、NH-ZSM-5型、NH-フェリエライト型等が挙げられるが、これらに特に限定されない。ここで、アンモニウム型のゼオライトを焼成して、プロトン型に変換したものも使用することもできる。なお、上記プロトン型及びアンモニウム型のゼオライトで、H-SDUSY型、H-SUSY型、NH-VUSY型で表したものは、いずれもY型の基本骨格を有するものである。
 ゼオライトのシリカアルミナ比(SiO/Alモル比、以降において「SAR」と称することがある。)は、使用するゼオライトの種類や要求性能等に応じて適宜設定することができ、特に限定されないが、一般的には2以上1000以下が好ましく、より好ましくは3以上800以下、さらに好ましくは4以上600以下、さらに好ましくは5以上200以下である。なお、本明細書において、シリカアルミナ比は、蛍光X線分析から求められる値を意味する。具体的には、Axios(スペクトリシス社)を用いて、試料約5gを20tで加圧成型したサンプルを測定に供し、得られたAl及びSiOの質量%の結果からSARを算出した。
 また、例えばベータ型ゼオライトを用いる場合には、耐水熱性等の観点から、ゼオライトのシリカアルミナ比は、4以上600以下が好ましく、より好ましくは5以上200以下であり、さらに好ましくは10以上100以下である。さらに、例えばCHA型ゼオライトを用いる場合には耐水熱性等の観点から、ゼオライトのシリカアルミナ比は、4以上600以下が好ましく、より好ましくは5以上200以下であり、さらに好ましくは10以上100以下である。
 なお、ここで用いるゼオライトは、NaやCa等のアルカリ金属(M)を含んでいてもよい。アルカリ金属は、酸化物又は複合酸化物の形態、又はゼオライト吸着サイトにおいてイオンの形態で存在し得る。ゼオライト中のアルカリ金属の含有量は、特に限定されないが、アルカリ金属(M)の酸化物換算のモル比、すなわちアルカリ金属酸化物/シリカ比(MO/SiOモル比)が、0.01以上0.50以下が好ましく、より好ましくは0.05以上0.30以下である。
 粉末状のゼオライトを用いる場合、ゼオライト粉末の平均粒子径D50は、使用するゼオライトの種類や要求性能等に応じて適宜設定することができ、特に限定されないが、BET比表面積や取扱性等の観点から、1μm以上500μm以下が好ましく、2μm以上350μm以下がより好ましく、2μm以上100μm以下がさらに好ましい。ここで、本明細書において、粉末状とは、粉末(一次粒子、及び/又は一次粒子が凝集した凝集体(二次粒子)を含む粉)、一次粒子乃至二次粒子を造粒した顆粒を含む概念である。なお、本明細書において、平均粒子径D50は、レーザ回折式粒度分布測定装置(例えば、島津製作所社製、レーザ回折式粒度分布測定装置SALD-7100等)で測定されるメディアン径を意味する。また、ゼオライトの粒子形状は、特に限定されず、例えば球状、楕円体状、破砕状、扁平形状、不定形状等いずれであっても構わない。
 ゼオライトのBET比表面積は、使用するゼオライトの種類や要求性能等に応じて適宜設定することができ、特に限定されないが、100m/g以上1000m/g以下が好ましく、300m/g以上1000m/g以下がより好ましく、500m/g以上900m/g以下がさらに好ましい。
 上記のゼオライトとしては、天然ゼオライト、合成ゼオライトのいずれも使用可能である。合成ゼオライトは、当業界で公知の方法により合成することができる。代表的な合成方法としては、例えば、シリカ源、アルミナ源、アルカリ金属源、必要に応じて有機構造指向剤、及び水等を含有する混合物(原料組成物)から水熱合成する方法が挙げられる。合成後には、必要に応じて固液分離処理、水洗処理、例えば大気中50~150℃程度の温度で水分を除去する乾燥処理等を常法にしたがって行うことで、目的とするゼオライトを得ることができる。
 シリカ源としては、沈降シリカ、コロイダルシリカ、ヒュームドシリカ、シリカゲル、ケイ酸ナトリウム(メタケイ酸ナトリウム、オルソ珪酸ナトリウム、珪酸ソーダ1号、2号、3号、4号等)、テトラエトキシシラン(TEOS)やトリメチルエトキシシラン(TMEOS)等のアルコキシシラン等が挙げられるが、これらに特に限定されない。アルミナ源としては、塩化アルミニウム、硝酸アルミニウム、硫酸アルミニウム、アルミン酸ナトリウム等が挙げられるが、これらに特に限定されない。また、シリカ源及びアルミナ源としては、珪酸ソーダ1号、2号、3号、4号又はメタ珪酸ソーダやオルソ珪酸ソーダ等の珪酸ナトリウム、珪酸カリウム等の珪酸アルカリ金属塩等が挙げられるが、これらに特に限定されない。アルカリ金属源としては、LiOH、NaOH、KOH、CsOH、RbOH等のアルカリ金属水酸化物、これらアルカリ金属のアルミン酸塩、上述したSi-Al元素源及びSi元素源中に含まれるアルカリ成分等が挙げられるが、これらに特に限定されない。
 有機構造指向剤としては、1級アミン、2級アミン、3級アミン、及び4級アンモニウム塩よりなる群から選択される少なくとも1種が用いられる。具体的には、N,N,N-トリアルキルアダマンタアンモニウム等のアダマンタンアミン誘導体をカチオンとする、水酸化物塩、ハロゲン化物、炭酸塩、硫酸塩、メチルカーボネート塩及び硫酸塩;N,N,N-トリアルキルベンジルアンモニウムイオン等のベンジルアミン誘導体、N,N,N-トリアルキルシクロヘキシルアンモニウムイオンやN,N,N-メチルジエチルシクロヘキシルアンモニウムイオン等のシクロヘキシルアミン誘導体、N-アルキル-3-キヌクリジノールイオン等のキヌクリジノール誘導体、又はN,N,N-トリアルキルエキソアミノノルボルナン等のアミノノルボルナン誘導体、テトラメチルアンモニウムイオン、エチルトリメチルアンモニウムイオン、ジエチルジメチルアンモニウムイオン、トリエチルメチルアンモニウムイオン、テトラエチルアンモニウムイオン等の炭素数1~2のアルキルアミン誘導体をカチオンとする、水酸化物塩、ハロゲン化物、炭酸塩、メチルカーボネート塩及び硫酸塩;等が挙げられるが、これらに特に限定されない。有機構造指向剤としては、N,N,N-トリメチルアダマンタンアンモニウム水酸化物(以降において、「TMAdaOH」と略記する場合がある。)、N,N,N-トリメチルアダマンタンアンモニウムハロゲン化物、N,N,N-トリメチルアダマンタンアンモニウム炭酸塩、N,N,N-トリメチルアダマンタンアンモニウムメチルカーボネート塩、N,N,N-トリメチルアダマンタンアンモニウム塩酸塩、及びN,N,N-トリメチルアダマンタンアンモニウム硫酸塩からなる群から選ばれる少なくとも一種が好ましい。なお、これらのカチオンは、Cl、Br、I等のハロゲンイオン、水酸化物イオン、酢酸塩、硫酸塩、カルボン酸塩等のアニオンを伴っていてもよい。
 水熱合成時に使用する水は、水道水、RO水(逆浸透膜処理水)、脱イオン水、蒸留水、工業用水、純水、超純水等からを所望性能に応じたものを使用すればよい。また、混合物に対する水の配合方法は、上述した各成分とは別に配合してもよく、或いは、各成分と予め混合しておき、各成分の水溶液或いは分散液として配合してもよい。
 上述した混合物は、結晶化の促進等の観点から、所望のゼオライトのシード結晶(種晶)をさらに含有していてもよい。シード結晶を配合することにより、結晶化が促進され、高品質なゼオライトが得られ易い傾向にある。ここで用いるシード結晶としては、所望のゼオライトの結晶である限り、特に限定されない。
 上述した混合物の水熱合成は、通常、反応容器中で行う。この水熱合成で用いる反応容器は、水熱合成に用い得る密閉式の耐圧容器であれば公知のものを適宜用いることができ、その種類は特に限定されない。例えば、攪拌装置、熱源、圧力計、及び安全弁を備えるオートクレーブ等の密閉式の耐熱耐圧容器が好ましく用いられる。なお、ゼオライトの結晶化は、上述した混合物を静置した状態で行ってもよいが、得られるゼオライトの均一性を高める観点から、上述した混合物を攪拌混合した状態で行うことが好ましい。
 水熱合成の処理温度(反応温度)は、特に限定されないが、得られるゼオライトの結晶性や経済性等の観点から、通常100℃以上200℃以下、好ましくは120℃以上190℃以下、より好ましくは150℃以上180℃以下である。また、水熱合成の処理時間(反応時間)は、十分な時間をかけて結晶化させればよく、特に限定されないが、得られるゼオライトの結晶性や経済性等の観点から、通常1時間以上20日間以下、好ましくは4時間以上10日以下、より好ましくは12時間以上8日以下である。なお、水熱合成の処理圧力は、特に限定されず、反応容器内に投入した混合物を上記温度範囲に加熱したときに生じる自生圧力で十分である。このとき、必要に応じて、窒素やアルゴン等の不活性ガスを容器内に導入してもよい。
 なお、上述したゼオライトは、各種グレードのものが数多く市販されており、これら市販品から該当グレードを用いることができる。市販品としては、Y型ゼオライトとしては、ゼオリスト社より市販されている、CBV760、CBV780、CBV720、CBV712及びCBV600等、東ソー社より市販されている、HSZ-360HOA及びHSZ-320HOA等が挙げられる。また、ベータ型ゼオライトとしては、ゼオリスト社より市販されている、CP811C、CP814N、CP7119、CP814E、CP7105、CP814C、CP811TL、CP814T、CP814Q、CP811Q、CP811E-75、CP811E及びCP811C-300等、東ソー社より市販されている、HSZ-980HOA、HSZ-940HOA及びHSZ-930HOA等、UOP社より市販されているUOP-Beta等が挙げられる。さらに、モルデナイト型ゼオライトとしては、ゼオリスト社より市販されている、CBV21A及びCBV90A等、東ソー社より市販されている、HSZ-660HOA、HSZ-620HOA及びHSZ-690HOA等が挙げられる。さらに、ZSM-5型ゼオライトとしては、ゼオリスト社より市販されている、CBV28014、CBV8014、CBV5524G及びCBV8020等、東ソー社より市販されている、HSZ-870NHA、HSZ-860HOA及びHSZ-850HOA等が挙げられる。また、フェリエライト型ゼオライトとしては、ゼオリスト社より市販されているCP914及びCP914C等が挙げられる。
 また、上記のゼオライトは、細孔内等に構造指向剤やアルカリ金属等を含んでいる場合がある。そのため、必要に応じて、酸性水溶液を用いた液相処理、アンモニウムイオンを含有する水溶液を用いた液相処理、有機構造指向剤の分解成分を含んだ薬液を用いた液相処理、レジン等を用いた交換処理、例えば400℃以上650℃以下の焼成処理等を行い、これらを除去することもできる。
 なお、上記のゼオライトは、そのイオン交換サイト上にアルカリ金属イオン等の金属イオンを有する場合がある。ここで所望する性能に応じて、イオン交換を行うイオン交換工程を行うことができる。このイオン交換工程では、常法にしたがってアンモニウムイオン(NH )やプロトン(H)等の非金属カチオンにイオン交換することができる。例えば、CHA型アルミノ珪酸塩に対して硝酸アンモニウム水溶液や塩化アンモニウム水溶液等のアンモニウムイオンを含有する水溶液を用いた液相処理を行うことでアンモニウム型にイオン交換することができる。また、CHA型アルミノ珪酸塩をアンモニアでイオン交換した後に焼成処理を行うことで、プロトン型にイオン交換することができる。また、必要に応じて、さらに酸量の低下処理を行うこともできる。酸量の低下処理は、例えばシリル化、水蒸気処理、ジカルボン酸処理等により行うことができる。
(希土類元素)
 本実施形態の希土類元素骨格置換ゼオライトにおいてゼオライト骨格中に導入(骨格置換)される希土類元素としては、Ce、La、Nd及びPrよりなる群から選択される少なくとも1種以上である。ゼオライト骨格中のSi原子及び/或いはAl原子の少なくとも一部が、これらの希土類元素に置換されることで、NOx吸着量が高められる。
 希土類元素骨格置換ゼオライト中における上記の希土類元素の存在状態は、粉末X線回折(XRD:X-ray Diffraction)、核磁気共鳴分光法(NMR:Nuclear Magnetic Resonance spectroscopy)、X線光電分光法(XPS:X-ray Photoelectron Spectroscopy、又はESCA:Electron Spectroscopy for Chemical Analysis)等の各種測定方法により把握することができる。ここで、本実施形態の希土類元素骨格置換ゼオライトは、上述した希土類元素がゼオライト骨格中のSi原子及び/或いはAl原子の少なくとも一部に導入(骨格置換)されている限り、例えばゼオライト吸着サイトに余剰の希土類元素がイオン状態で存在していてもよく、また、ゼオライト中のカチオン種とイオン交換されることによって一部の希土類元素がイオン状態で導入されていても構わない。また、上述した希土類元素は、酸化物又は複合酸化物の形態でも存在し得るが、NOx吸着量を高める観点からは、希土類元素骨格置換ゼオライト中で、上述した希土類元素は、骨格構成種或いはイオン種として存在することが好ましい。換言すれば、上述した希土類元素は、非酸化物及び/又は非複合酸化物の状態で存在することが好ましく、XRD測定及びXPS測定において当該希土類元素の酸化物及び/又は複合酸化物のピークが観察されないことがより好ましい。
 希土類元素骨格置換ゼオライト中における前記希土類元素の含有割合は、特に限定されないが、NOx吸着量やコスト等の観点から、総量に対して合計で1質量%以上15質量%以下であることが好ましく、より好ましくは1.5質量%以上14質量%以下、さらに好ましくは3質量%以上13.5質量%以下、特に好ましくは4質量%以上13質量%以下である。
(希土類元素骨格置換ゼオライト)
 本実施形態の希土類元素骨格置換ゼオライトの外形形状は、特に限定されないが、粉末状が好ましい、このとき、希土類元素骨格置換ゼオライトの粒子形状は、特に限定されず、例えば球状、楕円体状、破砕状、扁平形状、不定形状等いずれであっても構わない。ここで、希土類元素骨格置換ゼオライトの平均粒子径D50は、要求性能等に応じて適宜設定することができ、特に限定されないが、NOx吸着量、さらにはBET比表面積や取扱性等の観点から、1μm以上500μm以下が好ましく、3μm以上350μm以下がより好ましく、5μm以上250μm以下がさらに好ましい。
 また、本実施形態の希土類元素骨格置換ゼオライトは、粉末X線回折法においてアルミノ珪酸塩の結晶構造を有することが好ましい。ここで、アルミノ珪酸塩の結晶構造を有するとは、粉末X線回折法によるX線回折図において、アルミノ珪酸塩の特定の面指数を示す明瞭なピークが存在することを意味する。結晶性のアルミノ珪酸塩は、主な骨格金属原子がアルミニウム(Al)及びケイ素(Si)からなり、これらと酸素(O)のネットワークからなる繰返しからなる骨格構造を有するため、その結晶構造は、X線回折図により特徴付けられる。
 なお、本実施形態の希土類元素骨格置換ゼオライトは、上述したCe、La、Nd及びPr以外の希土類元素(以降において、「他の希土類元素」と称する場合がある。)を含んでいてもよい。他の希土類元素としては、スカンジウム、イットリウム、プロメチウム、サマリウム、ユウロビウム、ガドリニウム、テルビウム、ジスプロシウム、ホルミウム、エルビウム、ツリウム、イッテルビウム、及びルテチウムが挙げられる。希土類元素骨格置換ゼオライト中の他の希土類元素の含有量は、特に限定されないが、上述したCe、La、Nd及びPrの含有割合を高める観点から、総量に対して0.001質量%以上1質量%以下が好ましく、より好ましくは0.005質量%以上0.5質量%以下、さらに好ましくは0.01質量%以上0.1質量%以下である。
 また、希土類元素骨格置換ゼオライトは、遷移金属を含んでいてもよい。遷移元素としては、クロム、コバルト、鉄、ニッケル、チタン、マンガン、タングステン及び銅等が挙げられるが、これらに特に限定されない。例えば、銅や鉄を担持させることにより、希土類元素骨格置換ゼオライトの触媒性能が高められる傾向にある。希土類元素骨格置換ゼオライト中の遷移金属の含有量は、特に限定されないが、総量に対して0.1質量%以上10質量%未満が好ましく、より好ましくは0.5質量%以上8質量%未満である。
(希土類元素骨格置換ゼオライトの製造方法)
 本実施形態の希土類元素骨格置換ゼオライトの製造方法は、上述した構成の希土類元素骨格置換ゼオライトが得られる限り、特に限定されない。例えば、上述したゼオライトとCe、La、Nd及びPrよりなる群から選択される少なくとも1種以上の希土類元素とを接触させた後に熱処理することで、希土類元素が骨格置換されたゼオライト、すなわち希土類元素骨格置換ゼオライトを得ることができる。これらの希土類元素は、希土類元素の無機酸塩、例えば希土類元素の硫酸塩、硝酸塩、酢酸塩、塩化物、酸化物、複合酸化物、及び錯塩等として供給することができる。具体的な方法としては、イオン交換法、蒸発乾固法、沈殿担持法、物理混合法、骨格置換法及び含浸法等が挙げられるが、これらに特に限定されない。これらの中でも、イオン交換法、骨格置換法及び含浸法等が好ましい。なお、遷移金属の担持処理の後、必要に応じて、固液分離処理、水洗処理、例えば大気中50℃以上150℃以下程度の温度で水分を除去する乾燥処理等を常法にしたがって行うことができる。乾燥処理は、自然乾燥でもよいし、ドラム式乾燥機、減圧乾燥機、スプレードライ等の乾燥装置を使用してもよい。また、乾燥処理の際の雰囲気は、大気中、真空中、窒素ガス等の不活性ガス雰囲気中のいずれでもよい。なお、乾燥の前後に、さらに必要に応じて粉砕処理や分級処理等を行ってもよい。
 好ましい製造方法の1つとしては、ゼオライトに、Ce、La、Nd及びPrよりなる群から選択される少なくとも1種以上の希土類元素の可溶性塩の水溶液を含浸する工程と、含浸後のゼオライトを熱処理して希土類元素骨格置換ゼオライトを得る工程と、を少なくとも有するものが挙げられる。この方法では、可溶性塩の水溶液中の希土類元素の含有量を調整することにより、希土類元素の含有割合が総量に対して合計で1~15質量%の希土類元素骨格置換有ゼオライトを容易に得ることができる。ここで、含浸後のゼオライトを熱処理においては、アルミノケイ酸塩の結晶構造を維持する等の観点から、400℃以上650℃以下の温度範囲で行うことが好ましく、より好ましくは450℃以上600℃以下の温度範囲である。熱処理の際の雰囲気は、大気中、真空中、窒素ガス等の不活性ガス雰囲気中のいずれでもよい。また、処理時間は、使用原料や処理温度等に応じて適宜設定でき、特に限定されないが、通常0.2時間以上48時間以下が好ましく、より好ましくは0.5時間以上8時間以下である。なお、熱処理は、電気炉やガス炉等の公知の加熱手段によって行うことができる。
 また、希土類元素骨格置換ゼオライトに任意成分として含まれていてもよい遷移金属や他の希土類元素についても、上述したCe、La、Nd及びPrよりなる群から選択される少なくとも1種以上の希土類元素と同様に、これらの無機酸塩、例えば硫酸塩、硝酸塩、酢酸塩、塩化物、酸化物、複合酸化物、及び錯塩等として供給することができる。具体的な方法としては、イオン交換法、蒸発乾固法、沈殿担持法、物理混合法、骨格置換法及び含浸法等が挙げられるが、これらに特に限定されない。これらの中でも、イオン交換法、骨格置換法及び含浸法等が好ましい。なお、遷移金属の担持処理の後、必要に応じて、固液分離処理、水洗処理、例えば大気中50℃以上150℃以下程度の温度で水分を除去する乾燥処理等を常法にしたがって行うことができる。
(使用態様)
 上述した希土類元合酸化物;希土類元素及び/又は遷移元素がドープされたジルコニアやセリア素骨格置換ゼオライトは、粉体のまま使用することができ、また、当業界で公知の触媒や助触媒や触媒担体、当業界で公知の添加剤と混合して使用することができる。例えば、触媒や助触媒や触媒担体としては、シリカ、アルミナ、セリア、ジルコニア、セリア-ジルコニア、酸化ランタン、酸化ネオジム、酸化プラセオジム等の金属酸化物乃至は金属複-ジルコニア等の複合酸化物;ペロブスカイト型酸化物;シリカ-アルミナ、シリカ-アルミナ-ジルコニア、シリカ-アルミナ-ボリア等のアルミナを含む複合酸化物;バリウム化合物等が挙げられるが、これらに特に限定されない。当業界で公知の添加剤としては、各種バインダー、非イオン系界面活性剤やアニオン系界面活性剤等の分散安定化剤、pH調整剤、粘度調整剤等が挙げられるが、これらに特に限定されない。なお、上述した添加剤の使用割合は、特に限定されないが、総量に対して合計で0.01~20質量%が好ましく、合計で0.05~10質量%がより好ましく、合計で0.1~8質量%がさらに好ましい。
 さらに、本実施形態の希土類元素骨格置換ゼオライトは、これを含む組成物を調製し、これを任意の所定形状に成形して、成形体として使用することもできる。このとき、成形性や結着性を高める等の観点から、希土類元素骨格置換ゼオライトを含む組成物に当業界で公知のバインダーを配合することが好ましい。バインダーとしては、アルミナゾル、チタニアゾル、シリカゾル、ジルコニアゾル等の種々のゾルが挙げられるが、これらに特に限定されない。また、硝酸アルミニウム、酢酸アルミニウム、硝酸チタン、酢酸チタン、硝酸ジルコニウム、酢酸ジルコニウム等の可溶性の塩もバインダーとして使用することができる。その他、酢酸、硝酸、塩酸、硫酸等の酸も、バインダーとして使用することができる。なお、バインダーの使用量は、特に限定されず、成形体の維持に必要な程度の量であれば構わない。また、成形体の作製時には、各種公知の分散装置、混練装置、成形装置を用いることができる。なお、成形体として用いる場合、かかる成形体中の希土類元素骨格置換ゼオライトの含有量は、特に限定されないが、総量に対して80質量%以上99.99質量%以下%が好ましく、90質量%以上99.5質量%以下より好ましく、92質量%以上99.9質量%以下がさらに好ましい。
 また、実施形態の希土類元素骨格置換ゼオライトは、金(Au)、銀(Ag)、プラチナ(Pt)、パラジウム(Pd)、ロジウム(Rh)、イリジウム(Ir)、ルテニウム(Ru)、オスミウム(Os)等の貴金属や白金族を担持させて、貴金属担持希土類元素骨格置換ゼオライト或いは白金族担持NO希土類元素骨格置換ゼオライトとして使用することもできる。貴金属元素や白金族元素の担持方法は、公知の手法を適用でき、特に限定されない。例えば、上述した希土類元素の供給方法と同様に行うことができる。例えば、貴金属元素や白金族元素を含む塩の溶液を調製し、上述した複合粒子31にこの含塩溶液を含浸させ、その後に焼成することにより、貴金属や白金族の担持を行うことができる。含塩溶液としては、特に限定されないが、硝酸塩水溶液、ジニトロジアンミン硝酸塩溶液、塩化物水溶液等が好ましい。
[用途]
 本実施形態の希土類元素骨格置換ゼオライトは、ディーゼルエンジン、ガソリンエンジン、ジェットエンジン、ボイラー、ガスタービン等の排ガス中に含まれるNOxを吸着乃至吸蔵させるためのNOx吸着材料乃至はNOx吸蔵材として用いることができる。このとき、ガス流中に本実施形態の希土類元素骨格置換ゼオライトを設置してもよいし、ガス流が通過する流路の壁材として用いてもよい。
 また、本実施形態の希土類元素骨格置換ゼオライトは、触媒や触媒担体として用いることもできる。触媒や触媒担体用途としては、例えば、排ガス浄化触媒、NOx等の選択的還元触媒、アルコールやケトンからの低級オレフィン製造用触媒、クラッキング触媒、脱ろう触媒、異性化触媒、これらの触媒における触媒担体等が挙げられる。触媒や触媒担体用途で用いる場合、必要に応じて、上述した鉄や銅やタングステン等の遷移金属、上述した多貴金属や白金族を担持させることができ、例えば自動車排ガスやエタノール転換触媒等として用いることができる。
[積層NOx吸着部材、排ガス用触媒]
 さらに、本実施形態の希土類元素骨格置換ゼオライトは、支持体及びこの支持体の少なくとも一方の面側に設けられたNOx吸着層を少なくとも備える積層構造のNOx吸着部材(積層NOx吸着部材)に適用可能である。この場合、本実施形態の希土類元素骨格置換ゼオライトは、NOx吸着層に配合されるNOx吸着材として機能する。このような構成を採用することで、装置への組み込みが容易となる等、種々の用途への適用可能性が増大する。なお、NOx吸着層に各種の触媒材料を配合することで、NOx吸着層を触媒層として機能させてもよい。
 ここで、本明細書において、「支持体の少なくとも一方の面側に設けられた」とは、支持体の一方の面とNOx吸着層との間に任意の他の層(例えばプライマー層、接着層等)が介在した態様を包含する意味である。すなわち、本明細書において、「一方の面側に設ける」とは、支持体とNOx吸着層とが直接載置された態様、支持体とNOx吸着層とが任意の他の層を介して離間して配置された態様の双方を含む意味で用いている。また、NOx吸着層は、支持体の一面のみに設けられていても、複数の面(例えば、一方の主面及び他方の主面等)に設けられていてもよいことを意味する。
 ここで用いる支持体としては、NOx吸着層を支持可能なものである限り、その種類は特に限定されない。例えば、金属、合金、プラスチック、セラミックス、紙、合成紙、不織布、これらを組み合わせた積層体等が挙げられるが、これらに特に限定されない。また、支持体の形状、平面形状、厚さ等も、用途や要求性能等に応じて適宜設定すればよい。
 また、支持体として、ハニカム構造担体等の支持部材を用いることで、ガス流中に設置するNOx吸着用途への適用が容易となる。このような支持体としては、当業界で公知のものを適宜選択することができる。例えば自動車排ガス用途における支持体としては、コージェライト、シリコンカーバイド、窒化珪素等のセラミックモノリス担体、ステンレス製等のメタルハニカム担体、ステンレス製等のワイヤメッシュ担体、スチールウール状のニットワイヤ担体等が挙げられる。また、その形状も、特に限定されず、例えば角柱状、円筒状、球状、ハニカム状、シート状等の任意の形状のものが選択可能である。これらは、1種を単独で、又は2種以上を適宜組み合わせて用いることができる。
 ハニカム構造担体等の支持体のサイズは、用途や要求性能に応じて適宜設定でき、特に限定されないが、例えば数ミリから数センチの直径(長さ)のものが使用できる。ハニカム構造担体等の支持体としては、さらに開口部の孔数について、処理すべき排気ガスの種類、ガス流量、圧力損失或いは除去効率等を考慮して適当な孔数を設定すればよい。そのセル密度は、特に限定されないが、ガス流に対する表面積を高く維持し圧力損失の増大を抑制する等の観点から、通常100~900セル/inch(15.5~139.5セル/cm)が好ましく、200~600セル/inch(31~93セル/cm)がより好ましい。なお、セル密度とは、ハニカム構造担体等の支持体を気体流路に対して直角に切断した際の断面における単位面積あたりのセル数のことを意味する。
 また、自動車排ガス用途のハニカム構造担体としては、気体流路が連通しているフロースルー型構造体と、気体流路の一部端面が目封じされ且つ気体流路の壁面を通して気体が流通可能になっているウォールフロー型構造体とが広く知られている。本実施形態の希土類元素骨格置換ゼオライトは、いずれも適用可能であるが、空気抵抗が少なく且つ排気ガスの圧力損失が少ないフロースルー型構造体が好ましく用いられる。
 NOx吸着層は、上述した希土類元素骨格置換ゼオライトを少なくとも含有する層である。NOx吸着層は、上述した希土類元素骨格置換ゼオライトを含むものである限り、他の成分を含んでいてもよい。他の成分としては、ジルコニア等の金属酸化物;希土類元素及び/又は遷移元素がドープされたジルコニア等の複合酸化物;ペロブスカイト型酸化物;ゼオライト;シリカ-アルミナ、シリカ-アルミナ-ジルコニア、シリカ-アルミナ-ボリア等のアルミナを含む複合酸化物;各種バインダー、非イオン系界面活性剤やアニオン系界面活性剤等の分散安定化剤、pH調整剤、粘度調整剤等が挙げられるが、これらに特に限定されない。
 また、本実施形態の希土類元素骨格置換ゼオライトは、上述した支持体及びこの支持体の少なくとも一方の面側に設けられた触媒層を少なくとも備える積層構造の触媒部材(積層触媒部材)に適用可能である。この場合、本実施形態の希土類元素骨格置換ゼオライトは、触媒層に配合される触媒、助触媒及び/又はNOx吸着材として機能する。このような構成を採用することで、装置への組み込みが容易となる等、種々の用途への適用可能性が増大する。
 例えば排ガス浄化用途においては、上述した支持体及びこの支持体の少なくとも一方の面側に設けられた触媒層を少なくとも備える積層構造の排ガス用触媒、すなわち一体型構造型触媒として用いることができる。このとき、ハニカム構造担体等の支持体を用い、ガス流が通過する流路内にこの一体型構造型触媒を設置し、ハニカム構造担体のセル内にガス流を通過させることで、高効率に排ガス浄化を行うことができる。
 NOx吸着性能が求められる排ガス用触媒としては、例えばNOx吸蔵還元型触媒、リーンNOx触媒、SCR触媒等が知られており、これらで用いられている触媒種、助触媒種、各成分の配合割合、触媒積層構造等を、上述した一体型構造型触媒に適用することができる。選択還元触媒材料としては、ゼオライトやゼオライト類似の化合物(結晶金属アルミノリン酸塩)の他、バナジウム酸化物、チタニア、ジルコニア、酸化タングステン等の遷移金属酸化物、セリア、ランタン、プラセオジム、サマリウム、ガドリニウム、ネオジム等の希土類酸化物、酸化銅、酸化鉄、酸化ガリウム、酸化スズ等の卑金属酸化物、またはこれらの複合酸化物等の各種無機材料が挙げられる。また、アルミナやシリカ、及び希土類、アルカリ金属、アルカリ土類等で修飾されたアルミナやシリカと上記酸化物との混合物や複合化物等も挙げられる。また、銅や鉄等の卑金属をゼオライトやゼオライト類似の化合物等にイオン交換した無機材料等も挙げられる。
 上述した層構成を有する積層NOx吸着部材や排ガス用触媒は、常法にしたがい製造することができる。例えば、上述した希土類元素骨格置換ゼオライトを支持体の表面に被覆(担持)させることで積層NOx吸着部材や排ガス用触媒を得ることができる。具体的には、上述した希土類元素骨格置換ゼオライトを水系媒体及び必要に応じて当業界で公知のバインダー、他の触媒、助触媒粒子、OSC材、母材粒子、添加剤等を所望の配合割合で混合してスラリー状混合物を調製し、得られたスラリー状混合物をハニカム構造担体等の支持体の表面に付与し、乾燥、焼成する方法が好ましく用いられる。このとき、上述した希土類元素骨格置換ゼオライトを強固に支持体に付着させ或いは結合させるために、上述したバインダー等を用いることが好ましい。
 スラリー状混合物の調製時に用いる水系媒体は、スラリー中で希土類元素骨格置換ゼオライトが均一に分散できる量を用いればよい。このとき、必要に応じてpH調整のための酸や塩基を配合したり、粘性の調整やスラリー分散性向上のための界面活性剤や分散用樹脂等を配合したりすることができる。スラリーの混合方法としては、ボールミル等による粉砕混合等、公知の粉砕方法又は混合方法を適用することができる。支持体上にスラリー状混合物を付与する際には、常法にしたがって、各種公知のコーティング法、ウォッシュコート法、ゾーンコート法を適用することができる。
 支持体上にスラリー状混合物を付与した後においては、常法にしたがい乾燥や焼成を行うことにより、本実施形態の積層NOx吸着部材や排ガス用触媒を得ることができる。なお、乾燥温度は、例えば70~200℃が好ましく、80~150℃がより好ましい。また、焼成温度は、例えば300~650℃が好ましく、400~600℃が好ましい。加熱手段については、例えば電気炉やガス炉等の公知の加熱手段によって行うことができる。
 なお、上述した積層NOx吸着部材や排ガス用触媒において、NOx吸着層や触媒層の層構成は、単層、複層のいずれでもよいが、自動車排ガス用途の場合には、排気ガス規制の強化の趨勢等を考慮すると、NOx吸着層や触媒層は二層以上の積層構造としてNOx吸着性能又は触媒性能を高めることが好ましい。このとき、上述した希土類元素骨格置換ゼオライトの総被覆量は、特に限定されないが、NOx吸着性能又は触媒性能、及び圧損のバランス等の観点から、20~300g/Lが好ましく、100~300g/Lがより好ましい。
 自動車排ガス用途において、これらの積層NOx吸着部材や排ガス用触媒は、各種エンジンの排気系に配置することができる。その設置個数及び設置箇所は、排ガス規制に応じて適宜設計できる。例えば、排ガスの規制が厳しい場合には、設置箇所を2以上とし、設置箇所は排気系の直下触媒の後方の床下位置に配置することができる。
 以下に試験例、実施例と比較例を挙げて本発明の特徴をさらに具体的に説明するが、本発明は、これらによりなんら限定されるものではない。すなわち、以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜変更することができる。また、以下の実施例における各種の製造条件や評価結果の値は、本発明の実施態様における好ましい上限値又は好ましい下限値としての意味をもつものであり、好ましい範囲は前記した上限又は下限の値と、下記実施例の値又は実施例同士の値との組み合わせで規定される範囲であってもよい。
(実施例1)
 硝酸プラセオジム(III、IV)六水和物(和光純薬工業社製、純度99.9%、Pr11換算で5.98質量%含有)0.77質量部を、水1.63質量部に溶解して、Pr含有水溶液を調製した。
 次に、NH型のベータ型ゼオライト粉末(平均粒子径D50:0.4μm、シリカアルミナ比:26、BET比表面積:667m/g、白色粉末)5質量部に上記Pr含有水溶液を含浸させ、550℃で60分熱処理することにより、実施例1のPr骨格置換ゼオライト粉末(Pr換算含有割合:5質量%、平均粒子径D50:24.4μm、若干の淡黄緑色を帯びた白色粉末)を得た。
(実施例2)
 Pr含有水溶液に代えて、硝酸セリウム(III)六水和物(和光純薬工業社製、特級試薬、CeO換算で6.07質量%含有)0.77質量部を、水1.63質量部に溶解して調製したCe含有水溶液を用いる以外は、実施例1と同様に行って、実施例2のCe骨格置換ゼオライト粉末(Ce換算含有割合:5質量%、平均粒子径D50:17.1μm、白色粉末)を得た。
(実施例3)
 Pr含有水溶液に代えて、硝酸ランタン(III)六水和物(和光純薬工業社製、特級試薬、純度99.9%、La換算で5.81質量%含有)0.78質量部を、水1.62質量部に溶解して調製したLa含有水溶液を用いる以外は、実施例1と同様に行って、実施例3のLa骨格置換ゼオライト粉末(La換算含有割合:5質量%、平均粒子径D50:18.1μm、白色粉末)を得た。
(実施例4)
 Pr含有水溶液に代えて、硝酸ネオジム(III)六水和物(和光純薬工業社製、純度99.9%、Nd換算で5.78質量%含有)0.76質量部を、水1.64質量部に溶解して調製したNd含有水溶液を用いる以外は、実施例1と同様に行って、実施例4のNd骨格置換ゼオライト粉末(Nd換算含有割合:5質量%、平均粒子径D50:21.8μm、若干の淡紫色を帯びた白色粉末)を得た。
(比較例1)
 実施例1で用いたNH型のベータ型ゼオライト粉末(平均粒子径D50:0.4μm、シリカアルミナ比:26、BET比表面積:667m/g、白色粉末)5質量部を、比較例1のゼオライト粉末として用いた。
[NOxガス脱離量]
 得られた実施例1~4の希土類元素骨格置換ゼオライト粉末及び比較例1のゼオライト粉末のNOxガス脱離量を、昇温脱離法(TPD:Temperature programmed Desorption)に基づいて、昇温脱離試験装置を用いて行った。
 ここではまず、秤量したサンプル粉末をサンプル管の中にセットした後、吸着種(水やガス等)を除去するため、表1に示すモデルガス(Gas-1)流の雰囲気下、30℃/分の昇温速度で500℃まで昇温し、そのまま10分間保持した後、-30℃/分の降温速度で50℃まで冷却した。
 次に、表2に示すモデルガス(Gas-2)流の雰囲気に切り替え、50℃で10分間保持した。
 その後、表1に示すモデルガス(Gas-1)流の雰囲気に切り替え、50℃で5分間保持した後、30℃/分の昇温速度で500℃まで昇温し、そのまま5分間保持した。このとき脱離したNOxガス(NOガス及びNOガス)をガス分析装置で検出し、そのプロファイルからNOxガスの積算量を計算し、その値をNOxガス脱離量(NOxガス吸着量)とみなして評価した。
<測定条件>
 測定装置  :昇温脱離試験装置(商品名:BELCAT-A-SC、
        Rigaku社製)
 ガス分析装置:FT-IRガス分析装置(商品名:FAST-1200、
        岩田電業社製)
 評価サンプル:粉末
 サンプル量 :50mg
 評価温度  :50~500℃
 昇温速度  :30℃/分
 モデルガス :表1及び表2に記載
 処理温度  :図1に記載
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
 図2に、実施例1~4の希土類元素骨格置換ゼオライト粉末及び比較例1のゼオライト粉末のNOxガス脱離量(吸着量)を示す。この結果から、実施例1~4の希土類元素骨格置換ゼオライト粉末は、そうでないもの(比較例1)に比して、NOxガス吸着量が2~4倍にも増大していることがわかる。また、ベータ型ゼオライトの場合には、Pr、La、NdのNOxガス吸着量が特に増大していることがわかる。
(実施例5)
 NH型のベータ型ゼオライト粉末に代えて、NH型のCHA型ゼオライト粉末(平均粒子径D50:1.3μm、シリカアルミナ比:27.9、BET比表面積:810m/g)を用いる以外は、実施例1と同様に行って、実施例5のPr骨格置換ゼオライト粉末(Pr換算含有割合:5質量%、平均粒子径D50:5.2μm、若干の淡黄緑色を帯びた白色粉末)を得た。
(実施例6)
 NH型のベータ型ゼオライト粉末に代えて、NH型のCHA型ゼオライト粉末(平均粒子径D50:1.3μm、シリカアルミナ比:27.9、BET比表面積:810m/g)を用いる以外は、実施例2と同様に行って、実施例6のCe骨格置換ゼオライト粉末(Ce換算含有割合:5質量%、平均粒子径D50:3.3μm、白色粉末)を得た。
(実施例7)
 NH型のベータ型ゼオライト粉末に代えて、NH型のCHA型ゼオライト粉末(平均粒子径D50:1.3μm、シリカアルミナ比:27.9、BET比表面積:810m/g)を用いる以外は、実施例3と同様に行って、実施例7のLa骨格置換ゼオライト粉末(La換算含有割合:5質量%、平均粒子径D50:4.0μm、白色粉末)を得た。
(実施例8)
 NH型のベータ型ゼオライト粉末に代えて、NH型のCHA型ゼオライト粉末(平均粒子径D50:1.3μm、シリカアルミナ比:27.9、BET比表面積:810m/g)を用いる以外は、実施例4と同様に行って、実施例8のNd骨格置換ゼオライト粉末(Nd換算含有割合:5質量%、平均粒子径D50:3.3μm、若干の淡紫色を帯びた白色粉末)を得た。
(比較例2)
 実施例2で用いたNH型のCHA型ゼオライト粉末(平均粒子径D50:1.3μm、シリカアルミナ比:27.9、BET比表面積:810m/g、白色粉末)5質量部を、比較例2のゼオライト粉末として用いた。
 得られた実施例5~8の希土類元素骨格置換ゼオライト粉末及び比較例2のゼオライト粉末のNOxガス脱離量を、昇温脱離法(TPD:Temperature programmed Desorption)に基づいて、同様に昇温脱離試験装置を用いて行った。図3に、実施例5~8の希土類元素骨格置換ゼオライト粉末及び比較例2のゼオライト粉末のNOxガス脱離量(吸着量)を示す。この結果から、実施例5~8の希土類元素骨格置換ゼオライト粉末は、そうでないもの(比較例2)に比して、NOxガス吸着量が1.2~3倍にも増大していることがわかる。また、CHA型ゼオライトの場合には、PrのNOxガス脱離量が特に大きいことがわかる。
(実施例9)
 Nd換算含有割合を7質量%に変更する以外は、実施例4と同様に行って、実施例9のNd骨格置換ゼオライト粉末(Nd換算含有割合:7質量%、平均粒子径D50:20.8μm、若干の淡紫色を帯びた白色粉末)を得た。
 得られた実施例4及び9のNd骨格置換ゼオライト粉末及び比較例1のゼオライト粉末のNOxガス脱離量を、昇温脱離法(TPD:Temperature programmed Desorption)に基づいて、同様に昇温脱離試験装置を用いて行った。図4に、NOxガス吸着量の結果を示す。
(実施例10)
 Pr換算含有割合を1.8質量%に変更する以外は、実施例1と同様に行って、実施例10のPr骨格置換ゼオライト粉末(Pr換算含有割合:1.8質量%、平均粒子径D50:14.0μm、若干の淡黄緑色を帯びた白色粉末)を得た。
(実施例11)
 Pr換算含有割合を6.5質量%に変更する以外は、実施例1と同様に行って、実施例11のPr骨格置換ゼオライト粉末(Pr換算含有割合:6.5質量%、平均粒子径D50:20.3μm、若干の淡黄緑色を帯びた白色粉末)を得た。
(実施例12)
 Pr換算含有割合を12質量%に変更する以外は、実施例1と同様に行って、実施例12のPr骨格置換ゼオライト粉末(Pr換算含有割合:12質量%、平均粒子径D50:16.6μm、若干の淡黄緑色を帯びた白色粉末)を得た。
 得られた実施例1、10~12のNd骨格置換ゼオライト粉末及び比較例1のゼオライト粉末のNOxガス脱離量を、昇温脱離法(TPD:Temperature programmed Desorption)に基づいて、同様に昇温脱離試験装置を用いて行った。図5に、測定結果を示す。
(実施例13)
 Pr換算含有割合を1.8質量%に変更する以外は、実施例5と同様に行って、実施例13のPr骨格置換ゼオライト粉末(Pr換算含有割合:1.8質量%、平均粒子径D50:4.1μm、若干の淡黄緑色を帯びた白色粉末)を得た。
(実施例14)
 Pr換算含有割合を6.5質量%に変更する以外は、実施例5と同様に行って、実施例14のPr骨格置換ゼオライト粉末(Pr換算含有割合:6.5質量%、平均粒子径D50:4.5μm、若干の淡黄緑色を帯びた白色粉末)を得た。
(実施例15)
 Pr換算含有割合を12質量%に変更する以外は、実施例5と同様に行って、実施例15のPr骨格置換ゼオライト粉末(Pr換算含有割合:12質量%、平均粒子径D50:4.5μm、若干の淡黄緑色を帯びた白色粉末)を得た。
 得られた実施例5、13~15のNd骨格置換ゼオライト粉末及び比較例2のゼオライト粉末のNOxガス脱離量を、昇温脱離法(TPD:Temperature programmed Desorption)に基づいて、同様に昇温脱離試験装置を用いて行った。図6に、測定結果を示す。
(粉末X線回折測定)
 実施例1、5、10~15のPr骨格置換ゼオライト粉末について、粉末X線回折測定(XRD)を行ったところ、Pr酸化物(PrO、Pr、Pr10、Pr11)のピークは検出されなかった。また、Pr酸化物(Pr11粉末)は黒色であるのに対して、実施例1、5、10~15は、いずれも若干の淡黄緑色を帯びた白色粉末であった。なお、XRDの測定条件は、以下のとおりである。
 使用装置  :X'Pert PRO MPD(スペクトリス株式会社製)
 X線源   :Cu Kα
 管電圧   :45kV
 管電流   :40mA
 光学系   :集中法
(XPS測定)
 次に、XPS測定を行ったところ、標品Pr10のピークは932eVであるのに対して、実施例1、5、10~15は、いずれも高エネルギー側の935eVにピークが観察された。なお、XPSの測定条件は、以下のとおりである。
 装置名   :PHI Quantera SXM(アルバック-ファイ社製)
 分析領域  :200μm(X線径)
 光電子取出角:75°
 帯電補正    :C1s=284.8eV
 試料前処理  :なし
 スパッタ    :なし
27Al-NMR測定、及び29Si-NMR測定)
 さらに、27Al-NMR測定を行ったところ、Pr含有量の増加にともない、4配位のAlのピークが小さくなり、骨格外のアモルファスAlと考えられるピークが現れた。また、29Si-NMR測定を行ったところ、Pr含有量の増加にともない、Siピークが減少し、ピークがブロードとなった。なお、27Al-NMR及び29Si-NMRの測定条件は、以下のとおりである。
 使用装置  :Ascend 400(Bruker社製)
 測定方法  :Dipolar Decoupling法(DD/MAS)
 測定核種  :29Si  (Si-NMR)、27Al  (Al-NMR)
 プローブ  : 4 mm (Si-NMR)、2.5 mm(Al-NMR)
 回転速度  :10 KHz(Si-NMR)、20 KHz(Al-NMR)
 積算回数  : 128 (Si-NMR)、2048 (Al-NMR)
 これらのことから、希土類元素であるPrは、ゼオライト骨格中のSi原子及び/又はAl原子に置換した状態で存在することが裏付けられ、また、Prの一部はゼオライト吸着サイトにおいてイオンの状態で存在することが示唆された。
(比較例3)
 酸化プラセオジム粉末(和光純薬工業社製、純度99.9%、黒色粉末)とNH型のベータ型ゼオライト粉末(平均粒子径D50:0.4μm、シリカアルミナ比:26、BET比表面積:667m/g、白色粉末)とを混合して、比較例3の混合粉末(酸化プラセオジム-ゼオライト混合粉末、Pr換算含有割合:5質量%、黒色粉末)を得た。
(比較例4)
 酸化プラセオジム粉末とベータ型ゼオライト粉末との混合比を変更する以外は、比較例3と同様に行って、比較例4の混合粉末(酸化プラセオジム-ゼオライト混合粉末、Pr換算含有割合:10質量%、黒色粉末)を得た。
(比較例5)
 酸化プラセオジム粉末(和光純薬工業社製、純度99.9%、黒色粉末)とNH型のCHA型ゼオライト粉末(平均粒子径D50:1.3μm、シリカアルミナ比:27.9、BET比表面積:810m/g)とを混合して、比較例5の混合粉末(酸化プラセオジム-ゼオライト混合粉末、Pr換算含有割合:5質量%、黒色粉末)を得た。
(比較例6)
 酸化プラセオジム粉末CHA型ゼオライト粉末との混合比を変更する以外は、比較例5と同様に行って、比較例6の混合粉末(酸化プラセオジム-ゼオライト混合粉末、Pr換算含有割合:10質量%、黒色粉末)を得た。
(参考例1)
 参照のため、酸化プラセオジム粉末(和光純薬工業社製、純度99.9%、黒色粉末)をそのまま用いた。
 得られた実施例1及び5のPr骨格置換ゼオライト粉末、比較例3~6の混合粉末、及び、参考例1の酸化プラセオジム粉末のNOxガス脱離量を、昇温脱離法(TPD:Temperature programmed Desorption)に基づいて、同様に昇温脱離試験装置を用いて行った。図7に、測定結果を示す。
 本発明の希土類元素骨格置換ゼオライトは、NOxの吸着性能に優れるものであるため、例えばNOx吸蔵材、SCR触媒、尿素SCR触媒、NOx吸蔵還元型触媒、リーンNOx触媒等の用途において、広く且つ有効に利用することができる。また、本発明のNOx吸着材料及びこれを用いたNOx吸着部材は、ディーゼルエンジン、ガソリンエンジン、ジェットエンジン、ボイラー、ガスタービン等の排ガスを浄化するためのNOx吸蔵還元型触媒、リーンNOx触媒、SCR触媒等の自動車排ガス用触媒等において、殊に有効に利用可能である。

Claims (14)

  1.  ゼオライトと、希土類元素Ce、La、Nd及びPrよりなる群から選択される少なくとも1種以上の希土類元素とを少なくとも含有し、
     前記希土類元素の含有割合が総量に対して合計で1~15質量%であり且つ前記ゼオライトの骨格を形成するAl原子及び/又はSi原子の一部が前記希土類元素に置換されていることを特徴とする、
    希土類元素骨格置換ゼオライト。
  2.  粉末X線回折法においてアルミノケイ酸塩の結晶構造を有する
    請求項1に記載の希土類元素骨格置換ゼオライト。
  3.  前記ゼオライトが、NH型ゼオライト、及びH型ゼオライトよりなる群から選択される少なくとも1種である
    請求項1又は2に記載の希土類元素骨格置換ゼオライト。
  4.  1μm以上500μm以下の平均粒子径D50を有する
    請求項1~3のいずれか一項に記載の希土類元素骨格置換ゼオライト。
  5.  ゼオライトに、Ce、La、Nd及びPrよりなる群から選択される少なくとも1種以上の希土類元素の可溶性塩の水溶液を含浸する工程と、
     含浸後のゼオライトを400℃以上650℃以下の温度範囲で熱処理して、前記希土類元素の含有割合が総量に対して合計で1~15質量%であり且つ前記ゼオライトの骨格を形成するAl原子及び/又はSi原子の一部が前記希土類元素に置換されている希土類元素骨格置換ゼオライトを得る工程と、
    を少なくとも有することを特徴とする、
    希土類元素骨格置換ゼオライトの製造方法。
  6.  前記希土類元素骨格置換ゼオライトは、粉末X線回折法においてアルミノケイ酸塩の結晶構造を有する
    請求項5に記載の希土類元素骨格置換ゼオライトの製造方法。
  7.  前記ゼオライトが、NH型ゼオライト、及びH型ゼオライトよりなる群から選択される少なくとも1種である
    請求項5又は6に記載の希土類元素骨格置換ゼオライトの製造方法。
  8.  前記希土類元素骨格置換ゼオライトは、1μm以上500μm以下の平均粒子径D50を有する
    請求項5~7のいずれか一項に記載の希土類元素骨格置換ゼオライトの製造方法。
  9.  請求項1~4のいずれか一項に記載の希土類元素骨格置換ゼオライトを少なくとも含有する、
    選択的還元触媒。
  10.  請求項1~4のいずれか一項に記載の希土類元素骨格置換ゼオライトを含む組成物を所定形状に成形してなる
    選択的還元触媒成形体。
  11.  請求項1~4のいずれか一項に記載の希土類元素骨格置換ゼオライトを少なくとも含有する、
    NOx吸着材。
  12.  請求項1~4のいずれか一項に記載の希土類元素骨格置換ゼオライトを含む組成物を所定形状に成形してなる
    NOx吸着部材。
  13.  支持体と、前記支持体の少なくとも一方の面側に設けられたNOx吸着層とを少なくとも備え、
     前記NOx吸着層が、請求項1~4のいずれか一項に記載の希土類元素骨格置換ゼオライトを少なくとも含有することを特徴とする、
    積層NOx吸着部材。
  14.  支持体と、前記支持体の少なくとも一方の面側に設けられた触媒層とを少なくとも備え、
     前記触媒層が、請求項1~4のいずれか一項に記載の希土類元素骨格置換ゼオライトを少なくとも含有することを特徴とする、
    排ガス用触媒。
PCT/JP2018/036711 2017-10-03 2018-10-01 希土類元素骨格置換ゼオライト及びその製造方法、並びにこれらを用いたNOx吸着材、選択的還元触媒及び自動車排ガス触媒 WO2019069859A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US16/651,099 US11351524B2 (en) 2017-10-03 2018-10-01 Zeolite with rare earth element-substituted framework and method for producing same, and NOx adsorber, selective catalytic reduction catalyst and automobile exhaust gas catalyst comprising same
DE112018005223.0T DE112018005223T5 (de) 2017-10-03 2018-10-01 Zeolith mit seltenerd-substituiertem gerüst und verfahren zu dessen herstellung, und nox absorber, selektiver katalytischer reduktionskatalysator und automobiler abgaskatalysator damit
CN201880061448.0A CN111108067A (zh) 2017-10-03 2018-10-01 稀土元素骨架置换沸石及其制造方法、以及使用了它们的NOx吸附材料、选择性还原催化剂以及汽车废气催化剂

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017193621A JP6964479B2 (ja) 2017-10-03 2017-10-03 希土類元素骨格置換ゼオライト及びその製造方法、並びにこれらを用いたNOx吸着材、選択的還元触媒及び自動車排ガス触媒
JP2017-193621 2017-10-03

Publications (1)

Publication Number Publication Date
WO2019069859A1 true WO2019069859A1 (ja) 2019-04-11

Family

ID=65994867

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/036711 WO2019069859A1 (ja) 2017-10-03 2018-10-01 希土類元素骨格置換ゼオライト及びその製造方法、並びにこれらを用いたNOx吸着材、選択的還元触媒及び自動車排ガス触媒

Country Status (5)

Country Link
US (1) US11351524B2 (ja)
JP (1) JP6964479B2 (ja)
CN (1) CN111108067A (ja)
DE (1) DE112018005223T5 (ja)
WO (1) WO2019069859A1 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6334203B2 (ja) 2014-02-28 2018-05-30 ソニー株式会社 固体撮像装置、および電子機器
CN111762794B (zh) * 2020-07-13 2022-08-05 包头稀土研究院 分子筛及其制备方法
JP2022042140A (ja) 2020-09-02 2022-03-14 株式会社キャタラー 排ガス浄化触媒装置
KR20220060316A (ko) * 2020-11-04 2022-05-11 현대자동차주식회사 NOx 저장용 촉매 및 이의 제조 방법

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06320006A (ja) * 1993-05-10 1994-11-22 Sekiyu Sangyo Kasseika Center 窒素酸化物接触還元用触媒
JP2012213753A (ja) * 2011-03-29 2012-11-08 Ibiden Co Ltd ハニカム構造体およびハニカム構造体の製造方法
JP2014018752A (ja) * 2012-07-19 2014-02-03 Zeolite Artificial Corp ゼオライト金属塩複合体及びその製造方法
JP2017101609A (ja) * 2015-12-02 2017-06-08 本田技研工業株式会社 内燃機関の排気浄化装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4678765A (en) * 1984-10-03 1987-07-07 Union Carbide Corporation Catalytic cracking catalysts for high octane gasoline products
EP0624393B1 (en) * 1993-05-10 2001-08-16 Sakai Chemical Industry Co., Ltd., Catalyst for catalytic reduction of nitrogen oxides
US5888921A (en) * 1995-10-25 1999-03-30 Abb Lummus Global Inc. Binary molecular sieves having a core and shell of different structures and compositions
CN1230496C (zh) * 2002-10-28 2005-12-07 中国石油化工股份有限公司 一种含稀土y型沸石的石油烃裂化催化剂及其制备方法
US20070112189A1 (en) * 2003-11-17 2007-05-17 Takuji Ikeda High silica cds-1 zeolite
CN100357399C (zh) * 2005-03-31 2007-12-26 中国石油化工股份有限公司 一种裂化催化剂的制备方法
WO2007066346A2 (en) * 2005-12-09 2007-06-14 Council Of Scientific And Industrial Research Insecticidal agent comprising molecular sieve and adhesive
US20100290963A1 (en) 2007-04-26 2010-11-18 Johnson Matthey Public Limited Company Transition metal / zeolite scr catalysts
JP5122196B2 (ja) * 2007-07-17 2013-01-16 本田技研工業株式会社 NOx浄化触媒
WO2009021727A1 (en) * 2007-08-13 2009-02-19 Saudi Basic Industries Corporation Catalyst composition and process for converting aliphatic oxygenates to aromatics
GB2475740B (en) * 2009-11-30 2017-06-07 Johnson Matthey Plc Catalysts for treating transient NOx emissions
US8470726B2 (en) * 2009-12-16 2013-06-25 Uop Llc Alkylation catalysts with low olefin skeletal isomerization activity
KR101147669B1 (ko) * 2010-07-05 2012-05-21 한국과학기술원 규칙적 또는 불규칙적으로 배열된 메조기공을 포함하는 제올라이트 또는 유사 제올라이트 물질 및 그의 제조 방법
JP2013099715A (ja) 2011-11-08 2013-05-23 Hitachi Zosen Corp 燃焼排ガス中の窒素酸化物の除去触媒および同触媒を用いる窒素酸化物の除去方法
JP2015151887A (ja) 2014-02-12 2015-08-24 いすゞ自動車株式会社 Scrシステム
JP6345964B2 (ja) 2014-03-28 2018-06-20 株式会社ダイセル NOx吸着剤及びその製造方法
JP6294126B2 (ja) 2014-03-31 2018-03-14 株式会社キャタラー Scr用触媒及び排ガス浄化触媒システム

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06320006A (ja) * 1993-05-10 1994-11-22 Sekiyu Sangyo Kasseika Center 窒素酸化物接触還元用触媒
JP2012213753A (ja) * 2011-03-29 2012-11-08 Ibiden Co Ltd ハニカム構造体およびハニカム構造体の製造方法
JP2014018752A (ja) * 2012-07-19 2014-02-03 Zeolite Artificial Corp ゼオライト金属塩複合体及びその製造方法
JP2017101609A (ja) * 2015-12-02 2017-06-08 本田技研工業株式会社 内燃機関の排気浄化装置

Also Published As

Publication number Publication date
DE112018005223T5 (de) 2020-06-18
US11351524B2 (en) 2022-06-07
CN111108067A (zh) 2020-05-05
US20200230583A1 (en) 2020-07-23
JP6964479B2 (ja) 2021-11-10
JP2019064879A (ja) 2019-04-25

Similar Documents

Publication Publication Date Title
JP6328593B2 (ja) Cha構造を有するゼオライトの製造方法
JP6664961B2 (ja) 高温scr触媒としての8員環小孔分子ふるい
WO2019069859A1 (ja) 希土類元素骨格置換ゼオライト及びその製造方法、並びにこれらを用いたNOx吸着材、選択的還元触媒及び自動車排ガス触媒
JP5879339B2 (ja) Lev型構造ゼオライト系材料の製造用の有機テンプレート不使用合成方法
CN102803143A (zh) 生产沸石材料的无有机模板合成方法
US10875777B2 (en) Process for the preparation of a zeolitic material having a FAU-type framework structure and use thereof in the selective catalytic reduction of NOx
US11766668B2 (en) Molecular sieve intergrowths of cha and aft having an “sfw-GME tail,” methods of preparation and use
CN111960433A (zh) 用含双环状基团季铵鎓模板剂合成的cha型分子筛及催化剂制备与应用
JP2019522606A (ja) Sta−19、モレキュラーシーブゼオタイプのgmeファミリーの新規のメンバー、その調製方法及び使用
JP2019521936A (ja) Sta−18、モレキュラーシーブゼオタイプのsfwファミリーの新規のメンバー、その調製方法及び使用
US10882033B2 (en) Slurry composition for catalyst and method for producing same, method for producing catalyst using this slurry composition for catalyst, and method for producing Cu-containing zeolite
JP7556787B2 (ja) Cu-P共担持ゼオライトの製造方法、これに用いることが可能な触媒前駆体組成物及び処理液、並びに積層触媒の製造方法
JP6769107B2 (ja) Aei型ゼオライトの製造方法
JP7113821B2 (ja) Cha型アルミノ珪酸塩の製造方法
JP7555819B2 (ja) Cu-P共担持ゼオライト、並びに、これを用いた選択的還元触媒及び排ガス用触媒
WO2000024507A1 (fr) Agent adsorbant pour hydrocarbure et catalyseur pour la purification de gaz d'echappement
KR20230066353A (ko) Afx 골격 구조를 갖는 제올라이트의 제조 방법 및 제조된 제올라이트 물질
JP2022135379A (ja) 排ガス用炭化水素吸着材、及びその製造方法、並びに、排ガス浄化用hcトラップ

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18864296

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 18864296

Country of ref document: EP

Kind code of ref document: A1