WO2019069560A1 - スチールコード、タイヤ - Google Patents

スチールコード、タイヤ Download PDF

Info

Publication number
WO2019069560A1
WO2019069560A1 PCT/JP2018/030114 JP2018030114W WO2019069560A1 WO 2019069560 A1 WO2019069560 A1 WO 2019069560A1 JP 2018030114 W JP2018030114 W JP 2018030114W WO 2019069560 A1 WO2019069560 A1 WO 2019069560A1
Authority
WO
WIPO (PCT)
Prior art keywords
filament
filaments
outer sheath
core
steel cord
Prior art date
Application number
PCT/JP2018/030114
Other languages
English (en)
French (fr)
Inventor
松岡 映史
義明 岡林
和彦 齊藤
Original Assignee
栃木住友電工株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 栃木住友電工株式会社 filed Critical 栃木住友電工株式会社
Priority to US16/650,571 priority Critical patent/US20200231005A1/en
Priority to DE112018004432.7T priority patent/DE112018004432T5/de
Priority to JP2019546555A priority patent/JP7036449B2/ja
Priority to CN201880064523.9A priority patent/CN111164259B/zh
Publication of WO2019069560A1 publication Critical patent/WO2019069560A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C9/2003Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel characterised by the materials of the belt cords
    • B60C9/2006Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel characterised by the materials of the belt cords consisting of steel cord plies only
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/0007Reinforcements made of metallic elements, e.g. cords, yarns, filaments or fibres made from metal
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/0057Reinforcements comprising preshaped elements, e.g. undulated or zig-zag filaments
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/02Carcasses
    • B60C9/023Carcasses built up from narrow strips, individual cords or filaments, e.g. using filament winding
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/0646Reinforcing cords for rubber or plastic articles comprising longitudinally preformed wires
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C2009/2074Physical properties or dimension of the belt cord
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C2009/2074Physical properties or dimension of the belt cord
    • B60C2009/2077Diameters of the cords; Linear density thereof
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/18Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers
    • B60C9/20Structure or arrangement of belts or breakers, crown-reinforcing or cushioning layers built-up from rubberised plies each having all cords arranged substantially parallel
    • B60C2009/2074Physical properties or dimension of the belt cord
    • B60C2009/2096Twist structures
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B1/00Constructional features of ropes or cables
    • D07B1/06Ropes or cables built-up from metal wires, e.g. of section wires around a hemp core
    • D07B1/0606Reinforcing cords for rubber or plastic articles
    • D07B1/062Reinforcing cords for rubber or plastic articles the reinforcing cords being characterised by the strand configuration
    • D07B1/0626Reinforcing cords for rubber or plastic articles the reinforcing cords being characterised by the strand configuration the reinforcing cords consisting of three core wires or filaments and at least one layer of outer wires or filaments, i.e. a 3+N configuration
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2023Strands with core
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2201/00Ropes or cables
    • D07B2201/20Rope or cable components
    • D07B2201/2015Strands
    • D07B2201/2024Strands twisted
    • D07B2201/2025Strands twisted characterised by a value or range of the pitch parameter given
    • DTEXTILES; PAPER
    • D07ROPES; CABLES OTHER THAN ELECTRIC
    • D07BROPES OR CABLES IN GENERAL
    • D07B2501/00Application field
    • D07B2501/20Application field related to ropes or cables
    • D07B2501/2046Tire cords

Definitions

  • the present invention relates to a steel cord and a tire.
  • Patent Document 1 discloses a steel cord embedded in a rubber molded product to reinforce the rubber molded product, comprising two core wires and a diameter larger than the diameter of the core wire, A steel comprising a core wire and five side wires twisted together at one end, wherein a cross section of the strand consisting of the five side wires and the two core wires is flat. A code has been proposed.
  • a core in which two or three core filaments are twisted and one layer in which an outer sheath filament is helically twisted around the core along the longitudinal direction of the core Has a two-layer twist structure with an outer sheath,
  • the core filament and the outer sheath filament have the same filament diameter
  • the core and the outer sheath have the same twist pitch
  • the ratio of the twist pitch to the filament diameter, that is, the twist pitch / filament diameter is 50 or more and 75 or less
  • the steel cord is a corrugated filament in which two or more filaments selected from the core filament and the outer sheath filament repeatedly have a bent portion and a non-bent portion along the longitudinal direction.
  • FIG. 1 is an explanatory view of a steel cord of a 2 + 7 structure according to an aspect of the present disclosure.
  • FIG. 2 is a cross-sectional view of the steel cord of FIG. 1 in a plane perpendicular to the longitudinal direction.
  • FIG. 3 is a cross-sectional view in a plane perpendicular to the longitudinal direction of a 3 + 8 steel cord according to an aspect of the present disclosure.
  • FIG. 4 is an explanatory view of a corrugated filament in which a bending portion and a non-bending portion are repeatedly formed.
  • FIG. 5 is an explanatory view of a manufacturing method of a corrugated filament in which a bending portion and a non-bending portion are repeatedly formed.
  • FIG. 6 is a cross-sectional view of a tire according to an aspect of the present disclosure.
  • FIG. 7 is a view schematically showing the belt layer.
  • the rubber permeability may decrease when the steel cord is disposed in the tire.
  • an object of the present disclosure is to provide a steel cord having a two-layer twist structure in which the core and the outer sheath have the same twist pitch, in which the filament diameter of the core filament and that of the outer sheath filament are the same and excellent in rubber permeability. It is to provide a steel cord.
  • the filament diameter of the core filament and the outer sheath filament is the same, and the steel cord is excellent in rubber permeability. Can be provided.
  • a steel cord includes a core in which two or three core filaments are twisted together, and an outer sheath filament helically wound around the core along the longitudinal direction of the core. Having a two-layer twist structure with a combined one-layer outer sheath, The core filament and the outer sheath filament have the same filament diameter, The core and the outer sheath have the same twist pitch, The ratio of the twist pitch to the filament diameter, that is, the twist pitch / filament diameter is 50 or more and 75 or less, Two or more filaments selected from the core filament and the outer sheath filament are a corrugated filament having a bending portion and a non-bending portion repeatedly along the longitudinal direction.
  • the twist pitch / filament diameter is within a predetermined range, and two or more filaments selected from the core filament and the outer sheath filament are subjected to a corrugated filament, It is believed that sufficient clearance can be formed between the outer sheath filaments.
  • the filament diameter of the core filament and the outer sheath filament is the same. And, it becomes possible to make a steel cord excellent in rubber permeability.
  • the same unit as the twist pitch and the filament diameter can be used.
  • mm can be used.
  • the bending height of the corrugated filament may be 260% or more and 280% or less of the diameter of the corrugated filament.
  • the outer sheath filament may include the corrugated filament.
  • the ratio of the number of the corrugated filaments among the outer sheath filaments may be 25% or more and 100% or less.
  • the number of core filaments may be two.
  • the number of the core filaments may be two, and the number of the outer sheath filaments may be six or more and eight or less.
  • the number of core filaments may be three, and the number of outer sheath filaments may be seven or more and nine or less.
  • the filament diameter of the core filament and the outer sheath filament may be 0.30 mm or more and 0.42 mm or less.
  • a tire may also be provided that includes the steel cord according to any one of (1) to (8).
  • the steel cord according to the present embodiment is a two-layer comprising a core in which core filaments are twisted together and a single-layer outer sheath in which outer sheath filaments are helically twisted around the core along the longitudinal direction of the core. It has a twist structure.
  • the core filament and the outer sheath filament may be simply referred to as a filament when they are collectively referred to without distinction.
  • FIG. 1 one structural example of the steel cord 10 of this embodiment is shown in FIG.
  • two core filaments 11 are twisted to form a core 111.
  • seven outer sheath filaments 12 are helically twisted around the core 111 along the longitudinal direction of the core 111 to form an outer sheath 121 of one layer.
  • one layer means a structure in which the filaments are arranged in a single layer (one layer) along the circumferential direction of one circle.
  • a steel cord of a two-layer twisted structure having such a core and an outer sheath is described as an n + m structure with the number n of core filaments and the number m of outer sheath filaments.
  • the steel cord shown in FIG. 1 it has a 2 + 7 structure.
  • FIG. 1 A cross-sectional view in a plane perpendicular to the longitudinal direction of the steel cord 10 shown in FIG. 1 is shown in FIG.
  • the longitudinal direction of the steel cord 10 is the Y-axis direction in FIG.
  • the plane perpendicular to the longitudinal direction is a plane parallel to the XZ plane in FIG.
  • two core filaments 11 are twisted to form a core 111.
  • seven outer sheath filaments 12 are twisted together so as to surround the core 111 to form a single-layer outer sheath 121.
  • a gap 13 can be formed between the outer sheath filaments 12, and by adjusting the width of the gap 13, rubber means the ease of penetration of the rubber into the steel cord when the rubber is vulcanized. Permeability can be increased.
  • the core filament of the steel cord of the present embodiment can be two or three.
  • a core 211 is formed by twisting three core filaments 21. Further, eight outer sheath filaments 22 are twisted together so as to surround the core 211 to form an outer sheath 221.
  • the outer sheath filament 22 is helically twisted along the longitudinal direction of the core 211 to form an outer sheath 221. Further, a gap 23 can be formed between the outer sheath filaments 22.
  • outer sheath filaments 12 and 22 are not limited to the above-mentioned form.
  • the number of outer sheath filaments be six or more and eight or less. This is because the gap between the outer sheath filaments can be prevented from becoming excessively large by setting the number of outer sheath filaments to 6 or more when the number of core filaments is two, and the occurrence of flare can be suppressed. is there.
  • flare refers to a phenomenon in which the filament is untwisted and spreads when the steel cord is cut.
  • the gap between the outer sheath filaments can be sufficiently secured, and the rubber filling property can be particularly enhanced.
  • the number of outer sheath filaments is more preferably seven.
  • the number of outer sheath filaments is preferably seven or more and nine or less. This is because by setting the number of outer sheath filaments to 7 or more when the number of core filaments is three, it is possible to prevent the gap between the outer sheath filaments from becoming excessively large and to suppress the occurrence of flare. is there. In addition, when the number of core filaments is three, by setting the number of outer sheath filaments to 9 or less, the gap between the outer sheath filaments can be sufficiently secured, and the rubber filling property can be particularly enhanced.
  • the number of outer sheath filaments is more preferably eight.
  • the number of core filaments can be two or three, and in particular, the number of core filaments is preferably two. This is because the number of core filaments is two, and as shown in FIG. 2, the steel cord can have a flat shape in a cross section perpendicular to its longitudinal direction. Therefore, the cross-sectional area of the steel cord can be reduced, and when the steel cord is used for a tire, the tire can be made compact, the amount of rubber used can be suppressed, and weight reduction can be achieved. It is from.
  • the filament diameter (wire diameter) of the core filament and the filament diameter (wire diameter) of the outer sheath filament are the same. That is, the diameter D 11 is a filament diameter of core filament 11 in the example shown in FIG. 2, the same as the diameter D 12 is a filament diameter of the outer sheath filament 12. Further, in the example shown in FIG. 3, the diameter D 21 which is the filament diameter of the core filament 21 and the diameter D 22 which is the filament diameter of the outer sheath filament 22 are the same.
  • the core filament and the outer sheath filament have the same filament diameter, it is possible to use the same filament as the core filament and the outer sheath filament. For this reason, when manufacturing a steel cord, the kind of filament to prepare can be suppressed, cost can be reduced and productivity can be improved.
  • the filament diameter of the core filament and the filament diameter of the outer sheath filament each have a certain tolerance in terms of manufacture. For this reason, when it exists in the range of a tolerance, it can be set as the same diameter.
  • a filament diameter d c of the core filament, and filament diameter d s of the outer sheath filament if the relationship of 0.92 ⁇ d c / d s ⁇ 1.08 is set to a range between the tolerance it can. Therefore, in this case, the filament diameter d c of the core filament and the filament diameter d s of the outer sheath filament can be the same diameter.
  • the core and the outer sheath can have the same twist pitch.
  • the core and the outer sheath have the same twist pitch, for example, the core filament and the outer sheath filament can be collectively twisted and manufactured. For this reason, productivity can be improved and it is preferable.
  • the obtained steel cord with a two-layer twist structure has low rubber permeability. It was believed to be
  • the twist pitch / filament diameter which is a ratio of the twist pitch (mm) of the core and the outer sheath to the filament diameter (mm) of the core filament and the outer sheath filament is 50 or more. It is preferable to set it as 75 or less. According to the study of the inventors of the present invention, by setting the twist pitch / filament diameter to 75 or less, a sufficient gap can be formed between the outer sheath filaments, and the rubber permeability is sufficiently enhanced. Because it is thought that
  • the rubber permeability means as described above, the easiness of the rubber to penetrate into the steel cord when the rubber is vulcanized into the steel cord. Since a steel cord is usually used as a reinforcing material for a tire and disposed in the rubber of the tire, the higher the rubber permeability, the higher the adhesion with the tire and the tire durability can be enhanced.
  • the twist pitch / filament diameter is 75 or less, since the twist pitch can be sufficiently reduced, the outer sheath filament is easily wound. Therefore, when the steel cord is cut, it is possible to suppress the occurrence of flare which is a phenomenon in which the filament is untwisted and spreads.
  • the twist pitch / filament diameter is more preferably 65 or more and 74 or less, and still more preferably 70 or more and 74 or less, in order to enhance the productivity.
  • the steel cord of the present embodiment is a corrugated filament in which two or more filaments selected from the core filament and the outer sheath filament repeatedly have a bending portion and a non-bending portion along the longitudinal direction. Is preferred.
  • the corrugated filament As described above, by using two or more filaments selected from the core filament and the outer sheath filament as the corrugated filament, it works synergistically with the above-mentioned twist pitch / filament diameter being in the predetermined range. It is believed that the rubber permeability can be increased.
  • the structural example of the corrugated filament 40 is shown in FIG.
  • the corrugated filament 40 alternately has bending portions 41 and non-bending portions 42 along the longitudinal direction.
  • the gap between the outer sheath filaments It can be enlarged. For this reason, since rubber permeability can be raised, it is preferable.
  • the example bent in the angle near 90 degree is shown in FIG. 4, it is not limited to the form which concerns, for example, it bends at an angle less than 90 degrees or more than 90 degrees Also good.
  • the corrugated filament can be formed, for example, by arranging a plurality of gears 51 and passing the filament 52 between the plurality of gears 51 as shown in FIG. 5. By changing the arrangement, size, and the like of the gear 51, the shape of the bent portion, the length of the non-bent portion, and the like can be selected.
  • the outer sheath filament preferably includes a corrugated filament from the viewpoint of particularly enhancing rubber permeability.
  • an outer sheath filament can also be set as the structure containing a corrugated filament.
  • the rubber permeability of the steel cord can be enhanced by forming a sufficient gap between the outer sheath filaments. And, by including the corrugated filament, the outer sheath filament can particularly expand the gap between the outer sheath filaments, and the rubber permeability of the steel cord can be enhanced, which is preferable.
  • the proportion of the number of corrugated filaments in the outer sheath filament is preferably 25% or more and 100% or less, and more preferably 50% or more and 90% or less.
  • the number of outer sheath filaments is seven is demonstrated to an example, it is preferable that two or more and seven or less filaments with a wave, for example are four or more and six or less among seven outer sheath filaments. Means that it is more preferable.
  • the number of corrugated filaments among the outer sheath filaments can be 25% or more, the gap between the outer sheath filaments can be particularly expanded and the rubber permeability can be enhanced. And since all outer sheath filaments can be made into a corrugated filament, the number of corrugated filaments among the outer sheath filaments can be 100% or less.
  • the specific corrugated shape of the corrugated filament is not particularly limited.
  • the bending height h of the corrugated filament is preferably 260% or more and 280% or less of the diameter of the corrugated filament.
  • the height from the plane S to the bending portion 41B on the side far from the plane S is defined as a bending height h.
  • the corrugated filament has a sufficient bending height with respect to the filament diameter. That is, a sufficient gap can be formed between the corrugated filament and the other filaments. For this reason, rubber
  • the bending height h is set to 280% or less with respect to the filament diameter, the occurrence of flare can be more reliably prevented, which is preferable.
  • the bending height h of the corrugated filament is more preferably 265% or more and 280% or less with respect to the filament diameter.
  • the repetition pitch between the bent portion and the non-bent portion is not particularly limited, but is preferably 5.0 mm or more and 30.0 mm or less, for example, 5.0 mm or more and 20.0 mm or less Is more preferred.
  • the repetition pitch between a bend and a non-bend means the distance between the bends of the same shape, and the longitudinal length of the steel cord from the reference bend to the next two bends means.
  • the repetition pitch P between the bending portion and the non-bending portion means, for example, the distance from the bending portion 41A to the bending portion 41C next to that.
  • the repetition pitch between the bent portion and the non-bent portion By setting the repetition pitch between the bent portion and the non-bent portion to 5.0 mm or more, it is easy to form the bent portion and the non-bent portion in the filament, which is preferable because it is easy to accurately control.
  • the repetition pitch between the bending portion and the non-bending portion to 30.0 mm or less, the bending portion and the non-bending portion can be manufactured with a relatively simple device, and the manufacturing cost can be suppressed. preferable.
  • 0.30 mm or more and 0.42 mm or less are preferable, and, as for the filament diameter of the core filament contained in the steel cord of this embodiment, and an outer sheath filament, ie, a filament diameter, 0.35 mm or more and 0.41 mm or less are more preferable.
  • the durability to impact can be sufficiently enhanced, which is preferable.
  • the filament diameter 0.42 mm or less, when a steel cord containing the filament is used for a tire, it is preferable because the impact can be sufficiently absorbed and the ride comfort at the time of traveling can be enhanced.
  • the core filament and the outer sheath filament can have the same filament diameter.
  • the tire of the present embodiment can include the steel cord described above.
  • FIG. 6 shows a cross-sectional view in a plane perpendicular to the circumferential direction of the tire 61 according to the present embodiment. Although only the left side portion is shown in FIG. 6 with respect to the CL (center line), the CL has a similar structure continuously to the right side of the CL with the CL as an axis of symmetry.
  • the tire 61 includes a tread portion 62, sidewall portions 63, and bead portions 64.
  • the tread portion 62 is a portion in contact with the road surface.
  • the bead portion 64 is provided on the inner diameter side of the tire 61 with respect to the tread portion 62.
  • the bead portion 64 is a portion in contact with the rim of the wheel of the vehicle.
  • the sidewall portion 63 connects the tread portion 62 and the bead portion 64. When the tread portion 62 receives an impact from the road surface, the sidewall portion 63 is elastically deformed to absorb the impact.
  • the tire 61 includes an inner liner 65, a carcass 66, a belt layer 67, and a bead wire -68.
  • the inner liner 65 is made of rubber and seals the space between the tire 61 and the wheel.
  • the carcass 66 forms a skeleton of the tire 61.
  • the carcass 66 is made of organic fibers such as polyester, nylon and rayon, and rubber.
  • the bead wire 68 is provided to the bead portion 64.
  • the bead wire 68 receives the pulling force acting on the carcass.
  • the belt layer 67 tightens the carcass 66 to increase the rigidity of the tread portion 62.
  • the tire 61 has two belt layers 67.
  • FIG. 7 is a view schematically showing a two-layered belt layer 67. As shown in FIG. FIG. 7 shows a cross-sectional view of the belt layer 67 in the longitudinal direction, that is, a plane perpendicular to the circumferential direction of the tire 61.
  • each belt layer 67 has a plurality of steel cords 71 and a rubber 72.
  • the plurality of steel cords 71 are arranged in parallel.
  • the rubber 72 covers the steel cord 71, and the entire circumference of each steel cord is covered with the rubber 72, respectively.
  • the steel cord 71 is embedded in the rubber 72.
  • the steel cord 71 includes the steel cord excellent in rubber permeability as described above. For this reason, in the tire of the present embodiment, the adhesion between the steel cord and the rubber is high, and a tire excellent in durability can be obtained.
  • Twisted pitch Measurement was performed according to the tracing method of JIS G 3510 (1992). Specifically, first, thin traceable paper is placed on the outer peripheral surface of the manufactured steel cord, and a pencil is rubbed on the paper to copy traces of twist of the outer sheath filament. And from the trace of the twist of the obtained outer sheath filament, the length for 5 pitches was measured with a ruler, and the value divided by 5 was made into the twist pitch.
  • Flare Evaluation was performed based on JIS G 3510 (1992).
  • a part of the manufactured steel cord is fixed, and a part at a distance of 50 mm or more from the fixed part is cut by applying a cutter perpendicular to the central axis of the steel cord, and the length of the separated end
  • A was 10 mm or less, it was evaluated as A as flare did not occur.
  • B when the loosening length of the cut
  • the manufactured steel cords are arranged at equal intervals, specifically, on the rubber sheet for a tire so that the distance between the steel cords is twice as long as the diameter of the steel cords. A rubber sheet was placed over it.
  • the steel cord was taken out of the obtained steel cord / rubber composite with a cutter knife.
  • the rubber penetration degree means that the larger the value is, the better the rubber penetration is, and when the rubber penetration degree is 60% or more, it means having practically sufficient performance.
  • the steel cords of the following experimental examples were produced, and the above-mentioned evaluation was performed.
  • Example 1-1 to Experimental Example 1-9 As Experimental Example 1-1 to Experimental Example 1-9, the twist pitch is changed for each experimental example, and the value of the twist pitch / filament diameter, which is the ratio of the twist pitch to the filament diameter, is as shown in Table 1 Steel cords were made and evaluated.
  • Experimental Examples 1-2 to 1-7 are Examples, and Experimental Examples 1-1, 1-8, and 1-9 are Comparative Examples.
  • Experimental Example 1-1 In Experimental Example 1-1, a steel cord having the 2 + 7 structure shown in FIGS. 1 and 2 was produced. Therefore, the number of core filaments is two, and the number of outer sheath filaments is seven.
  • the ratio of the bending height to the filament diameter is 270%, and the repeating pitch between the bending portion and the non-bending portion is 6.3 mm.
  • the corrugated filaments were arranged at every other along the outer circumference of the steel cord. For this reason, in the cross section of the steel cord 10 shown in FIG. 2, the outer sheath filaments 12A, 12C, 12E and 12G of the outer sheath filament 12 are made to be corrugated filaments. Moreover, about the core filament 11 and outer sheath filament 12B, 12D, 12F, the filament which has not provided the bending part was used.
  • Example 1-2 to Experimental Example 1-9 A steel cord was produced in the same manner as in Experimental Example 1-1 except that the number of revolutions of the twisting wire machine was adjusted so that the twist pitch / filament diameter was as shown in Table 1, and the steel cord was produced.
  • Example 2-1 to Experimental Example 2-7 steel cords were manufactured using waved filaments having different ratios of bending height to filament diameter for each of the experimental examples and evaluated.
  • Experimental Examples 2-1 to 2-7 are all examples.
  • (Experimental example 2-1) A steel cord was produced in the same manner as in Experimental Example 1-2 except that a corrugated filament in which the ratio of the bending height to the filament diameter was 255% was used as the corrugated filament.
  • a steel cord having the 2 + 7 structure shown in FIGS. 1 and 2 was produced. Then, in the cross section of the steel cord 10 shown in FIG. 2, among the outer sheath filaments 12, four of the outer sheath filaments 12A, 12C, 12E and 12G are used as the corrugated filaments. Moreover, about the core filament 11 and outer sheath filament 12B, 12D, 12F, the filament which has not provided the bending part was used. In each of the four corrugated filaments, the ratio of the bending height to the filament diameter is the same value, and the repetition pitch between the bending portion and the non-bending portion is 6.3 mm.
  • Example 2-2 to Experimental Example 2-7 A steel cord was produced in the same manner as in Experimental Example 2-1 except that a corrugated filament having a ratio of the bending height to the filament diameter shown in Table 2 was used.
  • the outer sheath filaments 12A, 12C, 12E and 12G are used as the corrugated filaments in the cross section of the steel cord 10 shown in FIG.
  • all of the four corrugated filaments have the same ratio of the bending height to the filament diameter, and the repeating pitch between the bending portion and the non-bending portion is 6.3 mm.
  • Experimental Examples 3-1 to 3-5 are all Examples.
  • Example 3-1 A steel cord is used in the same manner as in Experimental Example 1-2 except that a corrugated filament in which the ratio of the bending height to the filament diameter is 255% is used as the corrugated filament and the number of the corrugated filaments is six. Was produced.
  • a steel cord having the 2 + 7 structure shown in FIGS. 1 and 2 was produced. Then, in the cross section of the steel cord 10 shown in FIG. 2, among the outer sheath filaments 12, six of the outer sheath filaments 12A to 12F are used as the corrugated filaments. Moreover, about the core filament 11 and the outer sheath filament 12G, the filament in which the bending part was not provided was used. In each of the six corrugated filaments, the ratio of the bending height to the filament diameter is the same value, and the repetitive pitch between the bending portion and the non-bending portion is 6.3 mm.
  • the outer sheath filaments 12A to 12F are used as the corrugated filaments in the cross section of the steel cord 10 shown in FIG.
  • all of the six corrugated filaments have the same ratio of the bending height to the filament diameter, and the repetition pitch between the bending portion and the non-bending portion is 6.3 mm.
  • Experimental Examples 4-1 to 4-5 are all examples.
  • Experimental Example 4-1 A steel cord is used in the same manner as in Experimental Example 1-2 except that a corrugated filament in which the ratio of the bending height to the filament diameter is 255% is used as the corrugated filament and the number of the corrugated filaments is two. Was produced.
  • a steel cord having the 2 + 7 structure shown in FIGS. 1 and 2 was produced. Then, in the cross section of the steel cord 10 shown in FIG. 2, of the outer sheath filament 12, two of the outer sheath filaments 12A and 12E are used as the corrugated filaments. In addition, as the core filament 11 and the outer sheath filaments 12B to 12D, 12F, and 12G, filaments having no bent portion were used. The ratio of the bending height to the diameter of each of the two corrugated filaments is the same value, and the repetitive pitch between the bending portion and the non-bending portion is 6.3 mm.
  • Example 4-2 to Experimental Example 4-5 A steel cord was produced in the same manner as in Experimental Example 4-1 except that a corrugated filament having a ratio of the bending height to the filament diameter shown in Table 4 was used.
  • the outer sheath filaments 12A and 12E are used as the corrugated filaments in the cross section of the steel cord 10 shown in FIG. Further, in the same steel cord, the ratio of the bending height to the filament diameter of the two corrugated filaments is the same value, and the repetition pitch between the bending portion and the non-bending portion is 6.3 mm. There is.
  • Experimental Examples 5-1 to 5-3 are all examples.
  • Experimental Example 5-1 A steel cord is used in the same manner as in Experimental Example 1-2 except that a corrugated filament having a ratio of bending height to the filament diameter of 270% is used as the corrugated filament and the number of the corrugated filaments is two. Was produced.
  • a steel cord having the 2 + 7 structure shown in FIGS. 1 and 2 was produced. Then, in the cross section of the steel cord 10 shown in FIG. 2, of the outer sheath filament 12, two of the outer sheath filaments 12A and 12E are used as the corrugated filaments. Further, as the core filament 11 and the outer sheath filaments 12B to 12D and 12F to 12G, filaments having no bent portion were used. The ratio of the bending height to the diameter of each of the two corrugated filaments is the same value, and the repetitive pitch between the bending portion and the non-bending portion is 6.3 mm.
  • the steel cord has the same configuration as that of Experimental Example 4-3.
  • (Experimental example 5-2) A steel cord was produced in the same manner as in Experimental Example 1-2, using a corrugated filament in which the ratio of the bending height to the filament diameter was 270% as the corrugated filament, and the number of the corrugated filaments was four.
  • a steel cord having the 2 + 7 structure shown in FIGS. 1 and 2 was produced. Then, in the cross section of the steel cord 10 shown in FIG. 2, among the outer sheath filaments 12, four of the outer sheath filaments 12A, 12C, 12E and 12G are used as the corrugated filaments. Moreover, about the core filament 11 and outer sheath filament 12B, 12D, 12F, the filament which has not provided the bending part was used. In each of the four corrugated filaments, the ratio of the bending height to the filament diameter is the same value, and the repetition pitch between the bending portion and the non-bending portion is 6.3 mm.
  • the steel cord has the same configuration as that of Experimental Example 2-4.
  • Experimental Example 5-3 A steel cord is used in the same manner as in Experimental Example 1-2 except that a corrugated filament in which the ratio of the bending height to the diameter of the filament is 270% is used as the corrugated filament and the number of the corrugated filaments is six. Was produced.
  • a steel cord having the 2 + 7 structure shown in FIGS. 1 and 2 was produced. Then, in the cross section of the steel cord 10 shown in FIG. 2, among the outer sheath filaments 12, six of the outer sheath filaments 12A to 12F are used as the corrugated filaments. Moreover, about the core filament 11 and the outer sheath filament 12G, the filament in which the bending part was not provided was used. In each of the six corrugated filaments, the ratio of the bending height to the filament diameter is the same value, and the repetition pitch between the bending portion and the non-bending portion is 6.3 mm.
  • the number of corrugated filaments among the outer sheath filaments is preferably 25% or more, more preferably 50% or more, from the viewpoint of particularly enhancing the rubber permeability.
  • Experimental Example 6-1 to Experimental Example 6-3 steel cords different in the number of corrugated filaments used were prepared and evaluated for each of the experimental examples.
  • Experimental Examples 6-1 to 6-3 are all examples.
  • Experimental Example 6-1 A steel cord is used in the same manner as in Experimental Example 1-2 except that a corrugated filament in which the ratio of the bending height to the filament diameter is 280% is used as the corrugated filament and the number of the corrugated filaments is two. Was produced.
  • a steel cord having the 2 + 7 structure shown in FIGS. 1 and 2 was produced. Then, in the cross section of the steel cord 10 shown in FIG. 2, of the outer sheath filament 12, two of the outer sheath filaments 12A and 12E are used as the corrugated filaments. Further, as the core filament 11 and the outer sheath filaments 12B to 12D and 12F to 12G, filaments having no bent portion were used. The ratio of the bending height to the diameter of each of the two corrugated filaments is the same value, and the repetitive pitch between the bending portion and the non-bending portion is 6.3 mm.
  • the steel cord has the same configuration as that of Experimental Example 4-4.
  • (Experimental example 6-2) A steel cord was produced in the same manner as in Experimental Example 1-2 except that a corrugated filament in which the ratio of the bending height to the diameter of the filament was 280% was used as the corrugated filament.
  • a steel cord having the 2 + 7 structure shown in FIGS. 1 and 2 was produced. Then, in the cross section of the steel cord 10 shown in FIG. 2, among the outer sheath filaments 12, four of the outer sheath filaments 12A, 12C, 12E and 12G are used as the corrugated filaments. Moreover, about the core filament 11 and outer sheath filament 12B, 12D, 12F, the filament which has not provided the bending part was used. In each of the four corrugated filaments, the ratio of the bending height to the filament diameter is the same value, and the repetition pitch between the bending portion and the non-bending portion is 6.3 mm.
  • the steel cord has the same configuration as in Experimental Example 2-6.
  • Experimental Example 6-3 A steel cord is used in the same manner as in Experimental Example 1-2 except that a corrugated filament in which the ratio of the bending height to the diameter of the filament is 280% is used as the corrugated filament and the number of the corrugated filaments is six. Was produced.
  • a steel cord having the 2 + 7 structure shown in FIGS. 1 and 2 was produced. Then, in the cross section of the steel cord 10 shown in FIG. 2, among the outer sheath filaments 12, six of the outer sheath filaments 12A to 12F are used as the corrugated filaments. Moreover, about the core filament 11 and the outer sheath filament 12G, the filament in which the bending part was not provided was used. In each of the six corrugated filaments, the ratio of the bending height to the filament diameter is the same value, and the repetition pitch between the bending portion and the non-bending portion is 6.3 mm.
  • the number of corrugated filaments among the outer sheath filaments is preferably 25% or more, more preferably 50% or more, from the viewpoint of particularly enhancing the rubber permeability.
  • Reference Signs List 10 20, 71 steel cord 11, 21 core filament 111, 211 core 12, 12A to 12G, 22 outer sheath filament 121, 221 outer sheath 13, 23 gap 40 corrugated filament 41, 41A, 41B, 41C bent portion 42 not Inflection P Repeated pitch between inflection and inflection h Inflection height S Flat 51 Gear 52 Filament 61 Tire 62 Tread 63 Sidewall 64 Bead 65 Inner liner 66 Carcass 67 Belt layer 68 Bead wire- 72 rubber

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Ropes Or Cables (AREA)
  • Tires In General (AREA)

Abstract

2本または3本のコアフィラメントが撚り合わされたコアと、前記コアの周りに前記コアの長手方向に沿ってアウターシースフィラメントを螺旋状に撚り合わせた1層のアウターシースとを備えた2層撚り構造を有し、 前記コアフィラメントと、前記アウターシースフィラメントとはフィラメント径が同じであり、 前記コアと、前記アウターシースとは撚りピッチが同じであり、 前記撚りピッチと前記フィラメント径との比である、撚りピッチ/フィラメント径が50以上75以下であり、 前記コアフィラメントと、前記アウターシースフィラメントとの中から選択された2本以上のフィラメントが、長手方向に沿って屈曲部と、非屈曲部とを繰り返し有する波付きフィラメントであるスチールコード。

Description

スチールコード、タイヤ
 本発明は、スチールコード、タイヤに関するものである。
 本出願は、2017年10月6日出願の日本出願第2017-196349号に基く優先権を主張し、前記日本出願に記載された全ての記載内容を援用するものである。
 特許文献1には、ゴム成形体のなかに埋め込まれてゴム成形体を補強するスチールコードであって、2本の心ワイヤと、この心ワイヤの径よりもその径が大きく、前記心ワイヤのまわりに心ワイヤと一括に撚り合わせられた5本の側ワイヤと、を備え、これら5本の側ワイヤ及び2本の心ワイヤからなるストランドの横断面が偏平状であることを特徴とするスチールコードが提案されている。
特開平9-31876号公報
 本開示の一観点によれば、2本または3本のコアフィラメントが撚り合わされたコアと、前記コアの周りに前記コアの長手方向に沿ってアウターシースフィラメントを螺旋状に撚り合わせた1層のアウターシースとを備えた2層撚り構造を有し、
 前記コアフィラメントと、前記アウターシースフィラメントとはフィラメント径が同じであり、
 前記コアと、前記アウターシースとは撚りピッチが同じであり、
 前記撚りピッチと前記フィラメント径との比である、撚りピッチ/フィラメント径が50以上75以下であり、
 前記コアフィラメントと、前記アウターシースフィラメントとの中から選択された2本以上のフィラメントが、長手方向に沿って屈曲部と、非屈曲部とを繰り返し有する波付きフィラメントであるスチールコードを提供する。
図1は、本開示の一態様に係る2+7構造のスチールコードの説明図である。 図2は、図1のスチールコードの長手方向と垂直な面での断面図である。 図3は、本開示の一態様に係る3+8構造のスチールコードの長手方向と垂直な面での断面図である。 図4は、屈曲部と非屈曲部とが繰り返し形成されている波付けフィラメントの説明図である。 図5は、屈曲部と非屈曲部とが繰り返し形成されている波付きフィラメントの製造方法の説明図である。 図6は、本開示の一態様に係るタイヤの断面図である。 図7は、ベルト層を模式的に示した図である。
[本開示が解決しようとする課題]
 しかしながら、特許文献1に開示されたスチールコードでは、心ワイヤと、側ワイヤとで径が異なるため、異なる種類のフィラメントを用意する必要があり、コストの増加や、生産性の低下等の問題があった。
 一方、同じフィラメント径のコアフィラメントと、アウターシースフィラメントとを用いると、スチールコードをタイヤ内に配置した場合のゴム浸透性が低下する場合があった。
 このため、本開示の目的は、コアとアウターシースとの撚りピッチが同じ2層撚り構造のスチールコードにおいて、コアフィラメントとアウターシースフィラメントとのフィラメント径が同じであり、かつゴム浸透性に優れたスチールコードを提供することである。
[本開示の効果]
 本開示によれば、コアとアウターシースとの撚りピッチが同じ2層撚り構造のスチールコードにおいて、コアフィラメントとアウターシースフィラメントとのフィラメント径が同じであり、かつゴム浸透性に優れたスチールコードを提供できる。
 [本開示の実施形態の説明]
 最初に本開示の実施態様を列記して説明する。以下の説明では、同一または対応する要素には同一の符号を付し、それらについて同じ説明は繰り返さない。
 (1)本開示の一態様に係るスチールコードは、2本または3本のコアフィラメントが撚り合わされたコアと、前記コアの周りに前記コアの長手方向に沿ってアウターシースフィラメントを螺旋状に撚り合わせた1層のアウターシースとを備えた2層撚り構造を有し、
 前記コアフィラメントと、前記アウターシースフィラメントとはフィラメント径が同じであり、
 前記コアと、前記アウターシースとは撚りピッチが同じであり、
 前記撚りピッチと前記フィラメント径との比である、撚りピッチ/フィラメント径が50以上75以下であり、
 前記コアフィラメントと、前記アウターシースフィラメントとの中から選択された2本以上のフィラメントが、長手方向に沿って屈曲部と、非屈曲部とを繰り返し有する波付きフィラメントである。
 従来は、コアとアウターシースとの撚りピッチが同じであり、かつコアフィラメントと、アウターシースフィラメントとのフィラメント径が同じ場合、得られる2層撚り構造のスチールコードは、ゴム浸透性が低くなると考えられていた。
 これは、アウターシースフィラメント間に十分な隙間が形成できず、ゴムが内部まで浸透することが困難になる場合があったからである。
 本発明の発明者らの検討によると、撚りピッチ/フィラメント径を所定の範囲とし、コアフィラメントと、アウターシースフィラメントとの中から選択された2本以上のフィラメントを、波付きフィラメントすることで、アウターシースフィラメント間に十分な隙間を形成できると考えられる。
 このため、本開示の一態様に係るスチールコードによれば、コアとアウターシースとの撚りピッチが同じ2層撚り構造のスチールコードにおいて、コアフィラメントとアウターシースフィラメントとのフィラメント径が同じであり、かつゴム浸透性に優れたスチールコードとすることが可能になる。
 なお、撚りピッチ/フィラメント径を算出する際には、撚りピッチと、フィラメント径とは同じ単位を用いることができ、例えばmmを用いることができる。
 (2) 前記波付きフィラメントを平面に置いた時の、前記平面から、前記平面から遠い側の前記屈曲部までの高さを屈曲高さと定義した場合に、
 前記波付きフィラメントの屈曲高さが、前記波付きフィラメントのフィラメント径の260%以上280%以下であってもよい。
 (3) 前記アウターシースフィラメントが、前記波付きフィラメントを含んでいてもよい。
 (4) 前記アウターシースフィラメントのうち、前記波付きフィラメントの本数の割合が25%以上100%以下であってもよい。
 (5) 前記コアフィラメントが2本であってもよい。
 (6) 前記コアフィラメントが2本であり、前記アウターシースフィラメントが6本以上8本以下であってもよい。
 (7) 前記コアフィラメントが3本であり、前記アウターシースフィラメントが7本以上9本以下であってもよい。
 (8) 前記コアフィラメント、及び前記アウターシースフィラメントのフィラメント径が0.30mm以上0.42mm以下であってもよい。
 (9)(1)~(8)のいずれかに記載のスチールコードを含むタイヤとすることもできる。
 [本開示の実施形態の詳細]
 本開示の一実施形態(以下「本実施形態」と記す)に係るスチールコード、タイヤの具体例を、以下に図面を参照しつつ説明する。なお、本発明はこれらの例示に限定されるものではなく、請求の範囲によって示され、請求の範囲と均等の意味および範囲内での全ての変更が含まれることが意図される。
 〔スチールコード〕
 以下、本実施形態に係るスチールコードについて図1~図5に基づき説明する。
 本実施形態に係るスチールコードは、コアフィラメントが撚り合わされたコアと、コアの周りにコアの長手方向に沿ってアウターシースフィラメントを螺旋状に撚り合わせた1層のアウターシースとを備えた2層撚り構造となっている。
 なお、以下、コアフィラメント、及びアウターシースフィラメントを区別なくまとめて呼ぶ場合には単にフィラメントと記載する場合もある。
 ここで、図1に本実施形態のスチールコード10の一構成例を示す。図1に示したスチールコード10は、2本のコアフィラメント11が撚り合わされてコア111を形成している。また、コア111の周りに、コア111の長手方向に沿って、7本のアウターシースフィラメント12が螺旋状に撚り合わされ、1層のアウターシース121が形成されている。なお、ここで1層とは、フィラメントが1つの円の円周方向に沿って単層(1層)となるように配列されている構造を意味する。
 このようなコアとアウターシースとを有する2層撚り構造のスチールコードは、コアフィラメントの本数nと、アウターシースフィラメントの本数mとで、n+m構造のように表記される。図1に示したスチールコードの場合、2+7構造となる。
 図1に示したスチールコード10の長手方向と垂直な面での断面図を図2に示す。なお、スチールコード10の長手方向は図1中のY軸方向となる。また、長手方向と垂直な面は、図1中のXZ平面と平行な面になる。
 図2に示すように、スチールコード10では、2本のコアフィラメント11が撚り合わされ、コア111が形成されている。また、コア111を囲むように、7本のアウターシースフィラメント12が撚り合わされ、1層のアウターシース121が形成されている。なお、アウターシースフィラメント12間には隙間13を形成することができ、隙間13の幅を調整することで、ゴムを加硫した際のスチールコード内へのゴムの浸透しやすさを意味するゴム浸透性を高めることができる。
 本実施形態のスチールコードのコアフィラメントは、2本または3本とすることができる。
 図3にコアフィラメントが3本である、3+8構造のスチールコード20の長手方向と垂直な面での断面図の構成例を示す。
 図3に示した3+8構造のスチールコード20は、3本のコアフィラメント21が撚り合わされてコア211が形成されている。また、コア211を囲むように、8本のアウターシースフィラメント22が撚り合わされてアウターシース221が形成されている。
 なお、アウターシースフィラメント22は、コア211の長手方向に沿って、螺旋状に撚り合わされ、アウターシース221を形成している。また、アウターシースフィラメント22間には隙間23を形成することができる。
 ここでは、2つの構造例を示したが、アウターシースフィラメント12、22の本数は上述の形態に限定されものではない。
 例えば、コアフィラメントが2本の場合、アウターシースフィラメントは6本以上8本以下とすることが好ましい。これは、コアフィラメントの本数が2本の場合の、アウターシースフィラメントの本数を6本以上とすることでアウターシースフィラメント間の隙間が過度に大きくなることを防ぎ、フレアの発生を抑制できるからである。なお、フレアとはスチールコードを切断した場合にフィラメントの撚りが解けて拡がった状態になる現象をいう。
 また、コアフィラメントが2本の場合、アウターシースフィラメントの本数を8本以下とすることで、アウターシースフィラメント間の隙間を十分に確保し、ゴム充填性を特に高めることができるからである。
 コアフィラメントが2本の場合、アウターシースフィラメントの本数は7本であることがより好ましい。
 また、コアフィラメントが3本の場合、アウターシースフィラメントは7本以上9本以下とすることが好ましい。これは、コアフィラメントの本数が3本の場合の、アウターシースフィラメントの本数を7本以上とすることでアウターシースフィラメント間の隙間が過度に大きくなることを防ぎ、フレアの発生を抑制できるからである。また、コアフィラメントが3本の場合、アウターシースフィラメントの本数を9本以下とすることで、アウターシースフィラメント間の隙間を十分に確保し、ゴム充填性を特に高めることができるからである。
 コアフィラメントが3本の場合、アウターシースフィラメントの本数は8本であることがより好ましい。
 上述のように、本実施形態のスチールコードにおいては、コアフィラメントの本数は2本または3本とすることができるが、特にコアフィラメントは2本であることが好ましい。これは、コアフィラメントを2本とすることで、図2に示したようにスチールコードは、その長手方向と垂直な断面において、偏平な形状を有することができる。このため、スチールコードの断面積を小さくすることができ、該スチールコードをタイヤに用いた場合に、タイヤをコンパクトにすることができ、ゴムの使用量を抑制し、軽量化を図ることができるからである。
 そして、本実施形態のスチールコードでは、コアフィラメントのフィラメント径(素線径)と、アウターシースフィラメントのフィラメント径(素線径)とは同じとなっている。すなわち、図2に示した例ではコアフィラメント11のフィラメント径である直径D11と、アウターシースフィラメント12のフィラメント径である直径D12とは同じとなる。また、図3に示した例では、コアフィラメント21のフィラメント径である直径D21と、アウターシースフィラメント22のフィラメント径である直径D22とは同じとなる。
 このように、コアフィラメントと、アウターシースフィラメントとを同じフィラメント径とすることで、コアフィラメントと、アウターシースフィラメントとして同じフィラメントを用いることができる。このため、スチールコードを製造する際に、用意するフィラメントの種類を抑制でき、コストを低減し、生産性を高めることができる。
 なお、コアフィラメントのフィラメント径と、アウターシースフィラメントのフィラメント径とは、それぞれ製造上、一定の公差を有している。このため、公差の範囲内にある場合には、同一径とすることができる。
 例えばコアフィラメントのフィラメント径dと、アウターシースフィラメントのフィラメント径dとが、0.92≦d/d≦1.08の関係にある場合には、公差の範囲内とすることができる。このため、この場合、コアフィラメントのフィラメント径dと、アウターシースフィラメントのフィラメント径dとは同一径とすることができる。
 さらに、本実施形態のスチールコードは、コアと、アウターシースとが同じ撚りピッチとすることができる。
 コアと、アウターシースとの撚りピッチが同じ場合、例えば、コアフィラメントと、アウターシースフィラメントとを一括して撚って製造することができる。このため、生産性を高めることができ好ましい。
 ただし、従来は、コアとアウターシースとの撚りピッチが同じであり、かつコアフィラメントと、アウターシースフィラメントとのフィラメント径が同じ場合、得られる2層撚り構造のスチールコードは、ゴム浸透性が低くなると考えられていた。
 これは、アウターシースフィラメント間に十分な隙間が形成できず、ゴムが内部まで浸透することが困難になる場合があったからである。
 そこで、本発明の発明者らが検討したところ、コア及びアウターシースの撚りピッチ(mm)と、コアフィラメント及びアウターシースフィラメントのフィラメント径(mm)との比である撚りピッチ/フィラメント径を50以上75以下とすることが好ましい。これは、本発明の発明者らの検討によると、撚りピッチ/フィラメント径を75以下とすることで、アウターシースフィラメント間に十分な隙間を形成することができ、ゴム浸透性を十分に高めることができると考えられるからである。
 ゴム浸透性は、既述の様に、スチールコードにゴムを加硫した際の、スチールコード内へのゴムの浸透しやすさを意味している。スチールコードは通常、タイヤの補強材として用いられ、タイヤのゴム内に配置されるため、ゴム浸透性が高い程、タイヤとの密着性が高まり、タイヤの耐久性を高めることができる。
 また、撚りピッチ/フィラメント径を75以下とすることで、撚りピッチを十分に小さくすることができるためアウターシースフィラメントが巻き付き易くなる。このため、スチールコードを切断した場合に、フィラメントの撚りが解けて拡がった状態になる現象であるフレアの発生を抑制できる。
 例えば同じフィラメント径のスチールコードを製造する場合、撚りピッチが大きいほど撚線機の回転数を上げることができ、製造速度を高めることができる。このため、撚りピッチ/フィラメント径を50以上とすることで、生産性を高めることができ、好ましい。
 撚りピッチ/フィラメント径は、生産性を高めるため、65以上74以下であることがより好ましく、70以上74以下であることがさらに好ましい。
 また、本実施形態のスチールコードは、コアフィラメントと、アウターシースフィラメントとの中から選択された2本以上のフィラメントが、長手方向に沿って屈曲部と、非屈曲部とを繰り返し有する波付きフィラメントであることが好ましい。
 このように、コアフィラメントと、アウターシースフィラメントとから選択された2本以上のフィラメントを波付きフィラメントとすることで、既述の撚りピッチ/フィラメント径を所定の範囲としたことと相乗的に働き、ゴム浸透性を高めることができると考えられる。
 ここで、波付きフィラメントについて説明する。
 図4に波付きフィラメント40の構成例を示す。波付きフィラメント40は、長手方向に沿って屈曲部41と、非屈曲部42とを交互に繰り返し有している。
 コアフィラメントとアウターシースフィラメントとから選択された2本以上のフィラメントを、屈曲部41と、非屈曲部42とを交互に繰り返し有する波付きフィラメント40とすることで、例えばアウターシースフィラメント間の隙間を大きくすることができる。このため、ゴム浸透性を高めることができるため、好ましい。
 なお、図4では屈曲部41において、90度に近い角度で屈曲した例を示しているが、係る形態に限定されるものではなく、例えば90度未満もしくは90度より大きい角度で屈曲していても良い。
 波付きフィラメントは、例えば図5に示すように、歯車51を複数個配置しておき、フィラメント52を複数の歯車51間に通すことで形成することができる。歯車51の配置や、大きさ等を変更することで、屈曲部の形状や、非屈曲部の長さ等を選択することができる。
 本実施形態のスチールコードでは、ゴム浸透性を特に高める観点から、アウターシースフィラメントが、波付きフィラメントを含むことが好ましい。なお、アウターシースフィラメントのみが波付きフィラメントを含む構成とすることもできる。
 アウターシースフィラメント間に十分な隙間を形成することでスチールコードのゴム浸透性を高めることができる。そして、アウターシースフィラメントが波付きフィラメントを含むことで、アウターシースフィラメント間の隙間を特に拡げることができ、スチールコードのゴム浸透性を高めることができ、好ましいからである。
 特に、アウターシースフィラメントのうち、波付きフィラメントの本数の割合が25%以上100%以下であることが好ましく、50%以上90%以下であることがより好ましい。なお、アウターシースフィラメントの本数が7本の場合を例に説明すると、7本のアウターシースフィラメントのうち、例えば波付きフィラメントが2本以上7本以下であることが好ましく、4本以上6本以下であることがより好ましいことを意味する。
 これは、アウターシースフィラメントのうち、波付きフィラメントの本数をその25%以上とすることで、特にアウターシースフィラメント間の隙間を拡げ、ゴム浸透性を高めることができるからである。そして、アウターシースフィラメントは全て波付きフィラメントとすることもできるため、アウターシースフィラメントのうち、波付きフィラメントの本数を100%以下とすることができる。
 波付きフィラメントについて、その具体的な波型形状は特に限定されるものではない。ただし、波付きフィラメントの屈曲高さhが、波付きフィラメントのフィラメント径の260%以上280%以下であることが好ましい。
 ここで、図4に示す様に、波付きフィラメント40を平面Sに置いた時の、平面Sから、平面Sから遠い側の屈曲部41Bまでの高さを屈曲高さhと定義する。
 そして、係る屈曲高さhを、フィラメント径に対して260%以上とすることで、波付きフィラメントはフィラメント径に対して十分な屈曲高さを有していることになる。すなわち、波付きフィラメントと、その他のフィラメントとの間に十分な隙間を形成することができる。このため、ゴム浸透性を高めることができ好ましい。
 また、屈曲高さhを、フィラメント径に対して280%以下とすることで、フレアの発生をより確実に防ぐことができるため好ましい。
 波付きフィラメントの屈曲高さhは、フィラメント径に対して、265%以上280%以下であることがより好ましい。
 波付きフィラメントにおいて、屈曲部と、非屈曲部との間の繰り返しピッチは、特に限定されないが、例えば5.0mm以上30.0mm以下とすることが好ましく、5.0mm以上20.0mm以下とすることがより好ましい。
 屈曲部と非屈曲部との間の繰り返しピッチとは、同じ形状の屈曲部間の距離を意味し、基準となる屈曲部から2つ隣の屈曲部までのスチールコードの長手方向の長さを意味する。このため、図4に示した例では、屈曲部と非屈曲部との間の繰り返しピッチPとは例えば屈曲部41Aから、その2つ隣の屈曲部41Cまでの距離を意味する。
 屈曲部と非屈曲部との間の繰り返しピッチを5.0mm以上とすることでフィラメントに屈曲部と、非屈曲部とを形成し易く、正確に制御し易いため好ましい。また、屈曲部と非屈曲部との間の繰り返しピッチを30.0mm以下とすることで、屈曲部と非屈曲部とを比較的簡易な装置で製造することができ、製造コストを抑制できるため好ましい。
 本実施形態のスチールコードに含まれるコアフィラメント、およびアウターシースフィラメントのフィラメント径、すなわちフィラメントの直径は、0.30mm以上0.42mm以下が好ましく、0.35mm以上0.41mm以下がより好ましい。
 フィラメント径を0.30mm以上とすることで該フィラメントを含むスチールコードをタイヤに用いた場合に、衝撃に対する耐久性を十分に高めることができ好ましい。
 また、フィラメント径を0.42mm以下とすることで、該フィラメントを含むスチールコードをタイヤに用いた場合に、衝撃を十分に吸収し、走行時の乗り心地を高めることができるため好ましい。
 なお、既述のようにコアフィラメントと、アウターシースフィラメントとは、同じフィラメント径とすることができる。
 〔タイヤ〕
 次に、本実施形態におけるタイヤについて図6、図7に基き説明する。
 本実施形態のタイヤは、既述のスチールコードを含むことができる。
 図6は、本実施形態に係るタイヤ61の周方向と垂直な面での断面図を示している。図6ではCL(センターライン)よりも左側部分のみを示しているが、CLを対称軸として、CLの右側にも連続して同様の構造を有している。
 図6に示すように、タイヤ61は、トレッド部62と、サイドウォール部63と、ビード部64とを備えている。
 トレッド部62は、路面と接する部位である。ビード部64は、トレッド部62よりタイヤ61の内径側に設けられている。ビード部64は、車両のホイールのリムに接する部位である。サイドウォール部63は、トレッド部62とビード部64とを接続している。トレッド部62が路面から衝撃を受けると、サイドウォール部63が弾性変形し、衝撃を吸収する。
 タイヤ61は、インナーライナー65と、カーカス66と、ベルト層67と、ビードワイヤ-68とを備えている。
 インナーライナー65は、ゴムで構成されており、タイヤ61とホイールとの間の空間を密閉する。
 カーカス66は、タイヤ61の骨格を形成している。カーカス66はポリエステル、ナイロン、レーヨンなどの有機繊維とゴムとにより構成されている。
 ビードワイヤ-68は、ビード部64に設けられている。ビードワイヤ-68は、カーカスに作用する引っ張り力を受け止める。
 ベルト層67は、カーカス66を締め付けて、トレッド部62の剛性を高めている。図6に示した例では、タイヤ61は2層のベルト層67を有している。
 図7は、2層のベルト層67を模式的に示した図である。図7は、ベルト層67の長手方向、すなわちタイヤ61の周方向と垂直な面での断面図を示している。
 図7に示したように、2層のベルト層67は、タイヤ61の径方向に重ねあわされている。各ベルト層67は、複数本のスチールコード71と、ゴム72とを有している。複数本のスチールコード71は、一列に並列されている。また、ゴム72は、スチールコード71を被覆しており、個々のスチールコードの全周はそれぞれゴム72で覆われている。スチールコード71はゴム72の中に埋め込まれている。
 本実施形態のタイヤによれば、スチールコード71として既述のゴム浸透性に優れたスチールコードを含んでいる。このため、本実施形態のタイヤにおいてはスチールコードとゴムとの密着性が高く耐久性に優れたタイヤとすることができる。
 以上、実施形態について詳述したが、特定の実施形態に限定されるものではなく、請求の範囲に記載された範囲内において、種々の変形及び変更が可能である。
 以下に具体的な実施例を挙げて説明するが、本発明はこれらの実施例に限定されるものではない。
(評価方法)
 まず、以下の実験例において作製したスチールコードの評価方法について説明する。
(1)撚りピッチ
 JIS G 3510(1992)のトレース法により測定を行った。具体的には、まず製造したスチールコードの外周面にトレース可能な薄い紙を載せ、該紙の上から鉛筆でこすってアウターシースフィラメントの撚りの跡を複写する。そして、得られたアウターシースフィラメントの撚りの跡から、5ピッチ分の長さを定規により測定し、5で割った値を撚りピッチとした。
(2)フレア
 JIS G 3510(1992)に基づいて評価を行った。具体的には、製造したスチールコードの一部を固定し、固定箇所から50mm以上離れた箇所を、スチールコードの中心軸と垂直にカッターを当てて切断し、切断した端部のばらけ長さが10mm以下の場合にはフレアが発生していないとしてAと評価した。また、切断した端部のばらけ長さが10mmを超えた場合には、フレアが発生したとしてBと評価した。
(3)ゴム浸透度
 まず、製造したスチールコードを等間隔、具体的にはスチールコード間の距離がスチールコードの直径の2倍の長さとなるように、タイヤ用ゴムシートの上に並べ、さらにその上からゴムシートを被せた。これにより、トータル厚さがスチールコードの径の5倍である、直方体形状を有するゴムシートと、スチールコードとの積層物を用意した。そして、係るゴムシートと、スチールコードとの積層物について160℃、18分の条件で加硫した。
 自然放冷後、得られたスチールコード/ゴム複合体からカッターナイフでスチールコードを取出した。
 そして、取出したスチールコードについて、隣接する2本のアウターシースフィラメントを除去した。隣接する2本のアウターシースフィラメントを除去することで露出した領域の幅方向の中央線に沿って100mmの観察長さのうち、ゴムで被覆されている部分の長さの割合を百分率で算出し、ゴム浸透度とした。
 ゴム浸透度は数値が大きいほどゴム浸透性に優れていることを意味し、ゴム浸透度が60%以上の場合、実用上十分な性能を有することを意味する。
(実験例)
 以下の各実験例のスチールコードを作製し、上述の評価を行った。
 なお、以下の実験例では、スチールコードはいずれもバンチャー撚線機を用いて、フィラメント径が共に0.37mmであるコアフィラメントと、アウターシースフィラメントとを所定の位置に配置し、一括して撚って作製した。このため、コアフィラメントを撚り合せたコアと、該コアの周りに、コアの長手方向に沿ってアウターシースフィラメントを螺旋状に撚り合わせた1層のアウターシースとは同じ撚りピッチとなっている。
 なお、上記フィラメント径はマイクロメーターを用いて測定した。
[実験例1-1~実験例1-9]
 実験例1-1~実験例1-9として、実験例ごとに撚りピッチを変え、撚りピッチと、フィラメント径との比である、撚りピッチ/フィラメント径が表1に示した値となるようにスチールコードを作製し、評価を行った。
 実験例1-2~実験例1-7が実施例、実験例1-1、実験例1-8、実験例1-9が比較例になる。
(実験例1-1)
 実験例1-1では、図1、図2に示した2+7構造を有するスチールコードを作製した。このため、コアフィラメントの本数は2本であり、アウターシースフィラメントの本数は7本とした。
 また、アウターシースフィラメントのうち4本を波付きフィラメントとした。
 波付きフィラメントは、4本ともフィラメント径に対する屈曲高さの割合を270%とし、屈曲部と、非屈曲部との間の繰り返しピッチを6.3mmとしている。
 波付きフィラメントは、スチールコードの外周に沿って、1本おきに配置した。このため、図2に示したスチールコード10の断面において、アウターシースフィラメント12のうち、アウターシースフィラメント12A、12C、12E、12Gを波付きフィラメントとした。また、コアフィラメント11、及びアウターシースフィラメント12B、12D、12Fについては、屈曲部を設けていないフィラメントを用いた。
 そして、撚りピッチ/フィラメント径が49となるようにコアフィラメント、及びアウターシースフィラメントを撚り合せて、スチールコードを製造した。評価結果を表1に示す。
(実験例1-2~実験例1-9)
 撚りピッチ/フィラメント径が表1に示す値となるように撚線機の回転数を調整し、スチールコードを作製した点以外は実験例1-1と同様にしてスチールコードを作製した。
 評価結果を表1に示す。
Figure JPOXMLDOC01-appb-T000001
 表1の結果から、コアとアウターシースの撚りピッチが同じ2層撚り構造であり、コアフィラメントとアウターシースフィラメントのフィラメント径が同じスチールコードにおいて、撚りピッチ/フィラメント径を変化させることでゴム浸透度が変化することを確認できた。
 そして、係るスチールコードにおいて、撚りピッチ/フィラメント径を75以下とすることで、ゴム浸透度を60%以上と十分に高められることを確認できた。
 このように、従来は十分なゴム浸透度とすることはできないと考えられていたコアとアウターシースとの撚りピッチが同じであり、構成するフィラメントのフィラメント径が同じスチールコードにおいて、従来検討されていなかった撚りピッチ/フィラメント径を選択することで、実用上十分なゴム浸透度を得られることが確認できた。
 ただし、撚りピッチを小さくしすぎると、生産性が低下する恐れがあることから、生産性を十分に高めるため、撚りピッチ/フィラメント径は50以上とすることが好ましい。
[実験例2-1~実験例2-7]
 実験例2-1~実験例2-7として、実験例ごとに、フィラメント径に対する屈曲高さの割合が異なる波付きフィラメントを用いてスチールコードを作製し、評価を行った。
 実験例2-1~実験例2-7はいずれも実施例になる。
(実験例2-1)
 波付きフィラメントとして、フィラメント径に対する屈曲高さの割合を255%とした波付きフィラメントを用いた点以外は、実験例1-2と同様にしてスチールコードを作製した。
 すなわち、図1、図2に示した2+7構造を有するスチールコードを作製した。そして、図2に示したスチールコード10の断面において、アウターシースフィラメント12のうち、アウターシースフィラメント12A、12C、12E、12Gの4本を波付きフィラメントとした。また、コアフィラメント11、及びアウターシースフィラメント12B、12D、12Fについては、屈曲部を設けていないフィラメントを用いた。なお、4本の波付きフィラメントはいずれもフィラメント径に対する屈曲高さの割合が同じ値となっており、屈曲部と、非屈曲部との間の繰り返しピッチは6.3mmとしている。
 そして、撚りピッチ/フィラメント径が50となるようにコアフィラメント、及びアウターシースフィラメントを撚り合せて、スチールコードを製造した。評価結果を表2に示す。
(実験例2-2~実験例2-7)
 フィラメント径に対する屈曲高さの割合が表2に示す値の波付きフィラメントを用いた点以外は、実験例2-1と同様にしてスチールコードを作製した。
 なお、いずれの実験例でも、図2に示したスチールコード10の断面において、アウターシースフィラメント12A、12C、12E、12Gを波付きフィラメントとした。同じスチールコードでは、4本の波付きフィラメントはいずれもフィラメント径に対する屈曲高さの割合が同じ値となっており、屈曲部と、非屈曲部との間の繰り返しピッチは6.3mmとしている。
 評価結果を表2に示す。
Figure JPOXMLDOC01-appb-T000002
 表2の結果から、コアとアウターシースの撚りピッチが同じ2層撚り構造であり、用いたフィラメントのフィラメント径が同じスチールコードにおいて、一部のフィラメントに用いた波付きフィラメントのフィラメント径に対する屈曲高さの割合を変化させることで、ゴム浸透度が変化することを確認できた。
 これは、フィラメント径に対する屈曲高さの割合を変化させることで、アウターシースフィラメント間の隙間の間隔が変化し、ゴム浸透度を変化させているためだと考えられる。
 実験例2-1~実験例2-7はいずれも、実用上十分なゴム浸透度を示すことが確認できた。中でも、フィラメント径に対する屈曲高さの割合が260%以上280%以下の波付きフィラメントを用いた実験例2-2~実験例2-6ではゴム浸透度が60%を超え、フレアの発生も確実に抑制できていることを確認できた。このため、用いる波付きフィラメントについて、フィラメント径に対する屈曲高さの割合は260%以上280%以下がより好ましいことを確認できた。
[実験例3-1~実験例3-5]
 実験例3-1~実験例3-5として、実験例ごとに、フィラメント径に対する屈曲高さの割合が異なる波付きフィラメントを用いてスチールコードを作製し、評価を行った。
 実験例3-1~実験例3-5はいずれも実施例になる。
(実験例3-1)
 波付きフィラメントとして、フィラメント径に対する屈曲高さの割合を255%とした波付きフィラメントを用い、該波付きフィラメントの本数を6本とした点以外は、実験例1-2と同様にしてスチールコードを作製した。
 すなわち、図1、図2に示した2+7構造を有するスチールコードを作製した。そして、図2に示したスチールコード10の断面において、アウターシースフィラメント12のうち、アウターシースフィラメント12A~12Fの6本を波付きフィラメントとした。また、コアフィラメント11、及びアウターシースフィラメント12Gについては、屈曲部を設けていないフィラメントを用いた。なお、6本の波付きフィラメントはいずれもフィラメント径に対する屈曲高さの割合が同じ値となっており、屈曲部と、非屈曲部との間の繰り返しピッチは6.3mmとしている。
 そして、撚りピッチ/フィラメント径が50となるようにコアフィラメント、及びアウターシースフィラメントを撚り合せて、スチールコードを製造した。評価結果を表3に示す。
(実験例3-2~実験例3-5)
 フィラメント径に対する屈曲高さの割合が表3に示す値の波付きフィラメントを用いた点以外は、実験例3-1と同様にしてスチールコードを作製した。
 なお、いずれの実験例でも、図2に示したスチールコード10の断面において、アウターシースフィラメント12A~12Fを波付きフィラメントとした。同じスチールコードでは、6本の波付きフィラメントはいずれもフィラメント径に対する屈曲高さの割合が同じ値となっており、屈曲部と、非屈曲部との間の繰り返しピッチを6.3mmとしている。
 評価結果を表3に示す。
Figure JPOXMLDOC01-appb-T000003
 表3の結果からも、コアとアウターシースの撚りピッチが同じ2層撚り構造であり、用いたフィラメントのフィラメント径が同じスチールコードにおいて、一部のフィラメントに用いた波付きフィラメントのフィラメント径に対する屈曲高さの割合を変化させることで、ゴム浸透度が変化することを確認できた。
 実験例3-1~実験例3-5はいずれも、実用上十分なゴム浸透度を示すことが確認できた。中でも、フィラメント径に対する屈曲高さの割合が260%以上280%以下の波付きフィラメントを用いた実験例3-2~実験例3-4ではゴム浸透度が60%を超え、特に高くなっており、フレアの発生も確実に抑制できていることを確認できた。このため、フィラメント径に対する屈曲高さの割合は260%以上280%以下であることがより好ましいことを確認できた。
[実験例4-1~実験例4-5]
 実験例4-1~実験例4-5として、実験例ごとに、フィラメント径に対する屈曲高さの割合が異なる波付きフィラメントを用いてスチールコードを作製し、評価を行った。
 実験例4-1~実験例4-5はいずれも実施例になる。
(実験例4-1)
 波付きフィラメントとして、フィラメント径に対する屈曲高さの割合を255%とした波付きフィラメントを用い、該波付きフィラメントの本数を2本とした点以外は、実験例1-2と同様にしてスチールコードを作製した。
 すなわち、図1、図2に示した2+7構造を有するスチールコードを作製した。そして、図2に示したスチールコード10の断面において、アウターシースフィラメント12のうち、アウターシースフィラメント12A、12Eの2本を波付きフィラメントとした。また、コアフィラメント11、及びアウターシースフィラメント12B~12D、12F、12Gについては、屈曲部を設けていないフィラメントを用いた。なお、2本の波付きフィラメントはいずれもフィラメント径に対する屈曲高さの割合が同じ値となっており、屈曲部と、非屈曲部との間の繰り返しピッチを6.3mmとしている。
 そして、撚りピッチ/フィラメント径が50となるようにコアフィラメント、及びアウターシースフィラメントを撚り合せて、スチールコードを製造した。評価結果を表4に示す。
(実験例4-2~実験例4-5)
 フィラメント径に対する屈曲高さの割合が表4に示す値の波付きフィラメントを用いた点以外は、実験例4-1と同様にしてスチールコードを作製した。
 なお、いずれの実験例でも、図2に示したスチールコード10の断面において、アウターシースフィラメント12A、12Eを波付きフィラメントとした。また、同じスチールコードでは、2本の波付きフィラメントはいずれもフィラメント径に対する屈曲高さの割合が同じ値となっており、屈曲部と、非屈曲部との間の繰り返しピッチを6.3mmとしている。
 評価結果を表4に示す。
Figure JPOXMLDOC01-appb-T000004
 表4の結果からも、コアとアウターシースの撚りピッチが同じ2層撚り構造であり、用いたフィラメントのフィラメント径が同じスチールコードにおいて、一部のフィラメントに用いた波付きフィラメントのフィラメント径に対する屈曲高さの割合を変化させることで、ゴム浸透度が変化することを確認できた。ただし、実験例2-1~実験例2-7の場合と比較すると、フィラメント径に対する屈曲高さの割合を変化させたことによるゴム浸透度の変化は小さくなった。これは、波付きフィラメントの本数が2本と少なかったため、フィラメント径に対する屈曲高さの割合の変化がゴム浸透度の変化に与える影響が小さかったためと考えられる。
 実験例4-1~実験例4-5はいずれも、実用上十分なゴム浸透度を示すことが確認できた。ただし、フィラメント径に対する屈曲高さの割合が260%以上280%以下の波付きフィラメントを用いた実験例4-2~実験例4-4ではゴム浸透度が60%を超えて、特に高くなっており、フレアの発生も確実に抑制できていることを確認できた。このため、フィラメント径に対する屈曲高さの割合は260%以上280%以下がより好ましいことを確認できた。
[実験例5-1~実験例5-3]
 実験例5-1~実験例5-3として、実験例ごとに、用いた波付きフィラメントの本数が異なるスチールコードを作製し、評価を行った。
 実験例5-1~実験例5-3はいずれも実施例になる。
(実験例5-1)
 波付きフィラメントとして、フィラメント径に対する屈曲高さの割合を270%とした波付きフィラメントを用い、該波付きフィラメントの本数を2本とした点以外は、実験例1-2と同様にしてスチールコードを作製した。
 すなわち、図1、図2に示した2+7構造を有するスチールコードを作製した。そして、図2に示したスチールコード10の断面において、アウターシースフィラメント12のうち、アウターシースフィラメント12A、12Eの2本を波付きフィラメントとした。また、コアフィラメント11、及びアウターシースフィラメント12B~12D、12F~12Gについては、屈曲部を設けていないフィラメントを用いた。なお、2本の波付きフィラメントはいずれもフィラメント径に対する屈曲高さの割合が同じ値となっており、屈曲部と、非屈曲部との間の繰り返しピッチを6.3mmとしている。
 そして、撚りピッチ/フィラメント径が50となるようにコアフィラメント、及びアウターシースフィラメントを撚り合せて、スチールコードを製造した。評価結果を表5に示す。
 なお、実験例4-3と同じ構成のスチールコードとなる。
(実験例5-2)
 波付きフィラメントとして、フィラメント径に対する屈曲高さの割合を270%とした波付きフィラメントを用い、該波付きフィラメントの本数を4本とし、実験例1-2と同様にしてスチールコードを作製した。
 すなわち、図1、図2に示した2+7構造を有するスチールコードを作製した。そして、図2に示したスチールコード10の断面において、アウターシースフィラメント12のうち、アウターシースフィラメント12A、12C、12E、12Gの4本を波付きフィラメントとした。また、コアフィラメント11、及びアウターシースフィラメント12B、12D、12Fについては、屈曲部を設けていないフィラメントを用いた。なお、4本の波付きフィラメントはいずれもフィラメント径に対する屈曲高さの割合が同じ値となっており、屈曲部と、非屈曲部との間の繰り返しピッチを6.3mmとしている。
 そして、撚りピッチ/フィラメント径が50となるようにコアフィラメント、及びアウターシースフィラメントを撚り合せて、スチールコードを製造した。評価結果を表5に示す。
 なお、実験例2-4と同じ構成のスチールコードとなる。
(実験例5-3)
 波付きフィラメントとして、フィラメント径に対する屈曲高さの割合を270%とした波付きフィラメントを用い、該波付きフィラメントの本数を6本とした点以外は、実験例1-2と同様にしてスチールコードを作製した。
 すなわち、図1、図2に示した2+7構造を有するスチールコードを作製した。そして、図2に示したスチールコード10の断面において、アウターシースフィラメント12のうち、アウターシースフィラメント12A~12Fの6本を波付きフィラメントとした。また、コアフィラメント11、及びアウターシースフィラメント12Gについては、屈曲部を設けていないフィラメントを用いた。なお、6本の波付きフィラメントはいずれもフィラメント径に対する屈曲高さの割合が同じ値となっており、屈曲部と、非屈曲部との間の繰り返しピッチを6.3mmとしている。
 そして、撚りピッチ/フィラメント径が50となるようにコアフィラメント、及びアウターシースフィラメントを撚り合せて、スチールコードを製造した。評価結果を表5に示す。
Figure JPOXMLDOC01-appb-T000005
 表5の結果から、用いる波付きフィラメントの本数を変化させることで、ゴム浸透度を変化させることができることを確認できた。これは波付きフィラメントの本数を多くすることで、フィラメント間の隙間が大きくなりゴムが浸透し易くなるためと考えられる。
 実験例5-1~実験例5-3のいずれにおいてもゴム浸透度は実用上十分な高さとなっているが、波付きフィラメントの本数が4本以上の実験例5-2、実験例5-3ではゴム浸透度が特に高くなっており、フレアの発生も確実に抑制できていることを確認できた。
 本実験例の結果からは、ゴム浸透度を特に高める観点から、アウターシースフィラメントのうち、波付きフィラメントの本数が25%以上であることが好ましく、50%以上がより好ましいことを確認できた。
[実験例6-1~実験例6-3]
 実験例6-1~実験例6-3として、実験例ごとに、用いた波付きフィラメントの本数が異なるスチールコードを作製し、評価を行った。
 実験例6-1~実験例6-3はいずれも実施例になる。
(実験例6-1)
 波付きフィラメントとして、フィラメント径に対する屈曲高さの割合を280%とした波付きフィラメントを用い、該波付きフィラメントの本数を2本とした点以外は、実験例1-2と同様にしてスチールコードを作製した。
 すなわち、図1、図2に示した2+7構造を有するスチールコードを作製した。そして、図2に示したスチールコード10の断面において、アウターシースフィラメント12のうち、アウターシースフィラメント12A、12Eの2本を波付きフィラメントとした。また、コアフィラメント11、及びアウターシースフィラメント12B~12D、12F~12Gについては、屈曲部を設けていないフィラメントを用いた。なお、2本の波付きフィラメントはいずれもフィラメント径に対する屈曲高さの割合が同じ値となっており、屈曲部と、非屈曲部との間の繰り返しピッチを6.3mmとしている。
 そして、撚りピッチ/フィラメント径が50となるようにコアフィラメント、及びアウターシースフィラメントを撚り合せて、スチールコードを製造した。評価結果を表6に示す。
 なお、実験例4-4と同じ構成のスチールコードとなる。
(実験例6-2)
 波付きフィラメントとして、フィラメント径に対する屈曲高さの割合を280%とした波付きフィラメントを用いた点以外は、実験例1-2と同様にしてスチールコードを作製した。
 すなわち、図1、図2に示した2+7構造を有するスチールコードを作製した。そして、図2に示したスチールコード10の断面において、アウターシースフィラメント12のうち、アウターシースフィラメント12A、12C、12E、12Gの4本を波付きフィラメントとした。また、コアフィラメント11、及びアウターシースフィラメント12B、12D、12Fについては、屈曲部を設けていないフィラメントを用いた。なお、4本の波付きフィラメントはいずれもフィラメント径に対する屈曲高さの割合が同じ値となっており、屈曲部と、非屈曲部との間の繰り返しピッチを6.3mmとしている。
 そして、撚りピッチ/フィラメント径が50となるようにコアフィラメント、及びアウターシースフィラメントを撚り合せて、スチールコードを製造した。評価結果を表6に示す。
 なお、実験例2-6と同じ構成のスチールコードとなる。
(実験例6-3)
 波付きフィラメントとして、フィラメント径に対する屈曲高さの割合を280%とした波付きフィラメントを用い、該波付きフィラメントの本数を6本とした点以外は、実験例1-2と同様にしてスチールコードを作製した。
 すなわち、図1、図2に示した2+7構造を有するスチールコードを作製した。そして、図2に示したスチールコード10の断面において、アウターシースフィラメント12のうち、アウターシースフィラメント12A~12Fの6本を波付きフィラメントとした。また、コアフィラメント11、及びアウターシースフィラメント12Gについては、屈曲部を設けていないフィラメントを用いた。なお、6本の波付きフィラメントはいずれもフィラメント径に対する屈曲高さの割合が同じ値となっており、屈曲部と、非屈曲部との間の繰り返しピッチを6.3mmとしている。
 そして、撚りピッチ/フィラメント径が50となるようにコアフィラメント、及びアウターシースフィラメントを撚り合せて、スチールコードを製造した。評価結果を表6に示す。
Figure JPOXMLDOC01-appb-T000006
 表6の結果から、用いる波付きフィラメントの本数を変化させることで、ゴム浸透度を変化させることができることを確認できた。これは波付きフィラメントの本数を多くすることで、フィラメント間の隙間が大きくなりゴムが浸透し易くなるためと考えられる。
 実験例6-1~実験例6-3のいずれにおいてもゴム浸透度は実用上十分な高さとなっているが、波付きフィラメントの本数が4本以上の実験例6-2、実験例6-3ではゴム浸透度が特に高くなっており、フレアの発生も確実に抑制できていることを確認できた。
 本実験例の結果からは、ゴム浸透度を特に高める観点から、アウターシースフィラメントのうち、波付きフィラメントの本数が25%以上であることが好ましく、50%以上がより好ましいことを確認できた。
10、20、71       スチールコード
11、21          コアフィラメント
111、211        コア
12、12A~12G、22  アウターシースフィラメント
121、221        アウターシース
13、23          隙間
40             波付きフィラメント
41、41A、41B、41C 屈曲部
42             非屈曲部
P              屈曲部と非屈曲部との間の繰り返しピッチ
h              屈曲部高さ
S              平面
51             歯車
52             フィラメント
61             タイヤ
62             トレッド部
63             サイドウォール部
64             ビード部
65             インナーライナー
66             カーカス
67             ベルト層
68             ビードワイヤ-
72             ゴム

Claims (9)

  1.  2本または3本のコアフィラメントが撚り合わされたコアと、前記コアの周りに前記コアの長手方向に沿ってアウターシースフィラメントを螺旋状に撚り合わせた1層のアウターシースとを備えた2層撚り構造を有し、
     前記コアフィラメントと、前記アウターシースフィラメントとはフィラメント径が同じであり、
     前記コアと、前記アウターシースとは撚りピッチが同じであり、
     前記撚りピッチと前記フィラメント径との比である、撚りピッチ/フィラメント径が50以上75以下であり、
     前記コアフィラメントと、前記アウターシースフィラメントとの中から選択された2本以上のフィラメントが、長手方向に沿って屈曲部と、非屈曲部とを繰り返し有する波付きフィラメントであるスチールコード。
  2.  前記波付きフィラメントを平面に置いた時の、前記平面から、前記平面から遠い側の前記屈曲部までの高さを屈曲高さと定義した場合に、
     前記波付きフィラメントの屈曲高さが、前記波付きフィラメントのフィラメント径の260%以上280%以下である請求項1に記載のスチールコード。
  3.  前記アウターシースフィラメントが、前記波付きフィラメントを含む請求項1または請求項2に記載のスチールコード。
  4.  前記アウターシースフィラメントのうち、前記波付きフィラメントの本数の割合が25%以上100%以下である請求項1~請求項3のいずれか1項に記載のスチールコード。
  5.  前記コアフィラメントが2本である請求項1~請求項4のいずれか1項に記載のスチールコード。
  6.  前記コアフィラメントが2本であり、前記アウターシースフィラメントが6本以上8本以下である請求項1~請求項5のいずれか1項に記載のスチールコード。
  7.  前記コアフィラメントが3本であり、前記アウターシースフィラメントが7本以上9本以下である請求項1~請求項4のいずれか1項に記載のスチールコード。
  8.  前記コアフィラメント、及び前記アウターシースフィラメントのフィラメント径が0.30mm以上0.42mm以下である請求項1~請求項7のいずれか1項に記載のスチールコード。
  9.  請求項1~請求項8のいずれか1項に記載のスチールコードを含むタイヤ。
PCT/JP2018/030114 2017-10-06 2018-08-10 スチールコード、タイヤ WO2019069560A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/650,571 US20200231005A1 (en) 2017-10-06 2018-08-10 Steel cord and tire
DE112018004432.7T DE112018004432T5 (de) 2017-10-06 2018-08-10 Stahlseil und reifen
JP2019546555A JP7036449B2 (ja) 2017-10-06 2018-08-10 スチールコード、タイヤ
CN201880064523.9A CN111164259B (zh) 2017-10-06 2018-08-10 钢帘线和轮胎

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-196349 2017-10-06
JP2017196349 2017-10-06

Publications (1)

Publication Number Publication Date
WO2019069560A1 true WO2019069560A1 (ja) 2019-04-11

Family

ID=65995121

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030114 WO2019069560A1 (ja) 2017-10-06 2018-08-10 スチールコード、タイヤ

Country Status (5)

Country Link
US (1) US20200231005A1 (ja)
JP (1) JP7036449B2 (ja)
CN (1) CN111164259B (ja)
DE (1) DE112018004432T5 (ja)
WO (1) WO2019069560A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220307197A1 (en) * 2020-08-26 2022-09-29 Sumitomo Electric Tochigi Co., Ltd. Steel cord and tire
WO2022222301A1 (zh) * 2021-04-22 2022-10-27 江苏兴达钢帘线股份有限公司 一种具有渗胶结构的钢帘线及其制备方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN116648361A (zh) * 2020-12-29 2023-08-25 普利司通美国轮胎运营有限责任公司 带有具有非圆形横截面的长丝的轮胎带

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07109686A (ja) * 1993-10-14 1995-04-25 Bridgestone Corp スチールコードおよび空気入りラジアルタイヤ
JPH09256283A (ja) * 1996-01-16 1997-09-30 Bridgestone Corp ゴム物品補強用スチールコードおよび空気入りタイヤ
JPH09256285A (ja) * 1996-03-26 1997-09-30 Sumitomo Electric Ind Ltd 金属コード、その製造法及び装置、同コードを用いたゴム複合物
JPH1136182A (ja) * 1997-07-15 1999-02-09 Tokyo Seiko Co Ltd スチールコード及びスチールラジアルタイヤ
JPH11172586A (ja) * 1997-09-08 1999-06-29 Kanai Hiroaki ゴム製品補強用スチールコード
JPH11200263A (ja) * 1998-01-19 1999-07-27 Kanai Hiroaki タイヤ補強用スチールコード
JP2012218569A (ja) * 2011-04-08 2012-11-12 Sumitomo Rubber Ind Ltd 空気入りタイヤ、及びその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2920110B2 (ja) 1995-05-18 1999-07-19 東京製綱株式会社 スチールコード及びスチールラジアルタイヤ
JP3807768B2 (ja) * 1996-02-16 2006-08-09 株式会社ブリヂストン ゴム物品補強用スチールコードおよびこれを使用した空気入りラジアルタイヤ
ES2262487T3 (es) * 1999-06-23 2006-12-01 Bridgestone Corporation Hilos de acero para refuerzo de articulos de caucho, en particular cubisptas neumaticas.
KR100550287B1 (ko) * 2003-12-23 2006-02-08 홍덕스틸코드주식회사 타이어 카카스 보강용 초극세선 스틸 코드 및 이를 적용한승용차용 래디얼 타이어
JP6753690B2 (ja) 2016-04-28 2020-09-09 株式会社三共 遊技機

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07109686A (ja) * 1993-10-14 1995-04-25 Bridgestone Corp スチールコードおよび空気入りラジアルタイヤ
JPH09256283A (ja) * 1996-01-16 1997-09-30 Bridgestone Corp ゴム物品補強用スチールコードおよび空気入りタイヤ
JPH09256285A (ja) * 1996-03-26 1997-09-30 Sumitomo Electric Ind Ltd 金属コード、その製造法及び装置、同コードを用いたゴム複合物
JPH1136182A (ja) * 1997-07-15 1999-02-09 Tokyo Seiko Co Ltd スチールコード及びスチールラジアルタイヤ
JPH11172586A (ja) * 1997-09-08 1999-06-29 Kanai Hiroaki ゴム製品補強用スチールコード
JPH11200263A (ja) * 1998-01-19 1999-07-27 Kanai Hiroaki タイヤ補強用スチールコード
JP2012218569A (ja) * 2011-04-08 2012-11-12 Sumitomo Rubber Ind Ltd 空気入りタイヤ、及びその製造方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20220307197A1 (en) * 2020-08-26 2022-09-29 Sumitomo Electric Tochigi Co., Ltd. Steel cord and tire
WO2022222301A1 (zh) * 2021-04-22 2022-10-27 江苏兴达钢帘线股份有限公司 一种具有渗胶结构的钢帘线及其制备方法

Also Published As

Publication number Publication date
JP7036449B2 (ja) 2022-03-15
CN111164259A (zh) 2020-05-15
JPWO2019069560A1 (ja) 2020-11-05
DE112018004432T5 (de) 2020-05-28
US20200231005A1 (en) 2020-07-23
CN111164259B (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
JP6560677B2 (ja) ゴム物品補強用スチールコード
WO2019069560A1 (ja) スチールコード、タイヤ
JP5587739B2 (ja) 空気入りタイヤ
JP6400972B2 (ja) ゴム物品補強用スチールコード
JP2008006969A (ja) 重荷重用空気入りラジアルタイヤ
JP5623425B2 (ja) タイヤ補強用鋼コード
US10173470B2 (en) Steel cord for reinforcing rubber article
JPWO2013176082A1 (ja) 乗用車用空気入りラジアルタイヤ
JP2009029310A (ja) 空気入りラジアルタイヤおよびその製造方法
JP6109558B2 (ja) 空気入りラジアルタイヤ
JP6980965B2 (ja) スチールコード、タイヤ
JP2010163727A (ja) ゴム物品補強用スチールコードおよび空気入りタイヤ
JP6849703B2 (ja) タイヤ
JP2004323981A (ja) ゴム物品補強用スチールコードおよびタイヤ
JP2006328557A (ja) ゴム物品補強用スチールコードおよび空気入りタイヤ
JP2006328558A (ja) ゴム物品補強用スチールコードおよび空気入りタイヤ
JP2009023508A (ja) タイヤおよびその製造方法
WO2022044176A1 (ja) スチールコード、タイヤ
JP5678558B2 (ja) 空気入りタイヤ
JP2008138311A (ja) ゴム補強用スチールコード及びそれを用いた空気入りラジアルタイヤ
JP2007063725A (ja) ゴム物品補強用スチールコードおよび空気入りタイヤ
JP2010115981A (ja) 空気入りラジアルタイヤ
JP6801976B2 (ja) タイヤ
JP2010126859A (ja) スチールコードおよびそれを用いた空気入りラジアルタイヤ
JP4986813B2 (ja) スチールコードの製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18864995

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019546555

Country of ref document: JP

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18864995

Country of ref document: EP

Kind code of ref document: A1