WO2019069378A1 - 培養情報処理装置 - Google Patents

培養情報処理装置 Download PDF

Info

Publication number
WO2019069378A1
WO2019069378A1 PCT/JP2017/036018 JP2017036018W WO2019069378A1 WO 2019069378 A1 WO2019069378 A1 WO 2019069378A1 JP 2017036018 W JP2017036018 W JP 2017036018W WO 2019069378 A1 WO2019069378 A1 WO 2019069378A1
Authority
WO
WIPO (PCT)
Prior art keywords
culture
passage
growth
characteristic
subculture
Prior art date
Application number
PCT/JP2017/036018
Other languages
English (en)
French (fr)
Inventor
峯 泰治
靖展 伊賀
喜信 赤堀
浩次 酒井
徳田 一成
Original Assignee
オリンパス株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オリンパス株式会社 filed Critical オリンパス株式会社
Priority to PCT/JP2017/036018 priority Critical patent/WO2019069378A1/ja
Priority to JP2019546447A priority patent/JP7018955B2/ja
Publication of WO2019069378A1 publication Critical patent/WO2019069378A1/ja
Priority to US16/835,704 priority patent/US11256898B2/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/30Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration
    • C12M41/36Means for regulation, monitoring, measurement or control, e.g. flow regulation of concentration of biomass, e.g. colony counters or by turbidity measurements
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M1/00Apparatus for enzymology or microbiology
    • C12M1/34Measuring or testing with condition measuring or sensing means, e.g. colony counters
    • C12M1/3446Photometry, spectroscopy, laser technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/46Means for regulation, monitoring, measurement or control, e.g. flow regulation of cellular or enzymatic activity or functionality, e.g. cell viability
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12MAPPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
    • C12M41/00Means for regulation, monitoring, measurement or control, e.g. flow regulation
    • C12M41/48Automatic or computerized control
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T7/00Image analysis
    • G06T7/0002Inspection of images, e.g. flaw detection
    • G06T7/0012Biomedical image inspection
    • G06T7/0014Biomedical image inspection using an image reference approach
    • G06T7/0016Biomedical image inspection using an image reference approach involving temporal comparison
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V20/00Scenes; Scene-specific elements
    • G06V20/60Type of objects
    • G06V20/69Microscopic objects, e.g. biological cells or cellular parts
    • G06V20/695Preprocessing, e.g. image segmentation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/10Image acquisition modality
    • G06T2207/10056Microscopic image
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06TIMAGE DATA PROCESSING OR GENERATION, IN GENERAL
    • G06T2207/00Indexing scheme for image analysis or image enhancement
    • G06T2207/30Subject of image; Context of image processing
    • G06T2207/30004Biomedical image processing
    • G06T2207/30024Cell structures in vitro; Tissue sections in vitro
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06VIMAGE OR VIDEO RECOGNITION OR UNDERSTANDING
    • G06V2201/00Indexing scheme relating to image or video recognition or understanding
    • G06V2201/03Recognition of patterns in medical or anatomical images

Definitions

  • the present invention relates to a culture information processing apparatus.
  • a method is known in which cells such as iPS cells are cultured while being passaged and culture characteristics are monitored (see, for example, Patent Document 1). It is also known to digitize the features of data as parameters of a model equation by fitting the model equation to the acquired data (see, for example, Patent Document 2).
  • the growth characteristics of cells can be quantified as parameters of a model expression from data obtained in individual passaging processes.
  • the growth characteristics are greatly different from one passage to another, even if the growth characteristics of the cells in the passage are quantified using data obtained in any passage, it is possible that the passage will be performed in the future. It was difficult to schedule for obtaining a final yield of cells, as it differs from the growth characteristics of cells in
  • the present invention has been made in view of the above-mentioned circumstances, and the data obtained in any of the subculturing processes are used to accurately estimate the growth characteristics of the cells in the subsequent subculturing process.
  • One aspect of the present invention is to calculate a growth characteristic value that characterizes the growth characteristics of the cells from data obtained in any first passage culture process among the culture periods of cells including a plurality of passage culture processes.
  • the growth feature amount representing the characteristics of the growth characteristics of the cells is calculated by the feature amount calculation unit, and one following the first passage culture process
  • the culture conditions of the second passage culture process are set in the condition setting unit.
  • the condition setting unit sets the culture condition of the first passage culture process, and excludes the culture period of the second passage culture process from the culture condition of the first passage culture process. It may be set equal to the culture conditions. By doing this, it is possible to set the cells under the same culture conditions in the second subculturing process only by setting the culture conditions of the first subculture process by the condition setting unit before performing the first subculture process. It can be cultured.
  • the feature amount calculation unit fits a preset growth curve to the data acquired in the first passage culture process, and outputs the obtained coefficient as the proliferation feature amount. You may In this way, based on the coefficient obtained by fitting the growth curve to the data obtained in the first passaging process and the correlation of the growth characteristics in the two passaging processes, The growth characteristics of the two-passaging process can be estimated.
  • the culture period may include three or more subculture steps, and the first subculture step may be a second or subsequent subculture step from the start of the culture period.
  • the first subculture process after the start of the culture period is less likely to be correlated with the growth curve in the next subculture process due to the instability of the cell state. By doing this, it is possible to accurately estimate the growth characteristics of the second passage culture process after one using the growth characteristics of the second and subsequent first passage culture processes that have a stronger correlation. it can.
  • a freezing period may be included between the first and second subculturing steps to freeze the cells.
  • the information calculation unit may calculate a growth characteristic of the cell in the second passage culture process, or a growth feature representing a feature of the growth characteristic. By doing this, it is possible to estimate the start time or the end time of the second passage culture process based on the growth characteristic or the growth characteristic value calculated by the information calculation unit.
  • condition setting unit sets the culture condition including the end time of the second passage culture process
  • information calculation unit sets the culture condition set by the condition setting unit. Based on the start time of the second passage culture process for ending the second passage culture process at the end time may be calculated as the characteristic related information.
  • the start time of the second passage culture process is calculated by the information calculation unit.
  • the second passage culture process can be ended at the desired end time. That is, the second passage culture process can be started so that the end of the predetermined culture period can be ended.
  • condition setting unit sets the start time and the end time of the second passage culture process as the culture condition
  • information calculation unit sets the start set by the condition setting unit.
  • Another culture condition of the second passage culture process for ending the second passage culture process at the end time may be calculated as the characteristic related information based on the time and the end time.
  • the target yield cells are started at the set end time starting from the set start time. Since other culture conditions for obtaining are calculated, it is possible to obtain a target yield of cells at the end time by setting the calculated culture conditions and performing the second passage culture process.
  • another aspect of the present invention is the data obtained in the first passaging step of the passaging of cells comprising a plurality of passaging steps and the second following one of the first passaging steps
  • An input device for inputting culture conditions in a subculture process a storage for storing the data and culture conditions input by the input device, the data stored in the storage and the culture conditions based on the culture conditions
  • a processor for calculating property-related information related to the growth property of the second passaging process wherein the processor is characterized by the growth property of the cell in the first passaging process from the data stored in the storage
  • Culture information processing for calculating the characteristic-related information based on the calculated growth characteristic and the culture condition stored in the storage. It is a device.
  • another aspect of the present invention is the data obtained in the first passaging step of the passaging of cells comprising a plurality of passaging steps and the second following one of the first passaging steps
  • a storage for storing culture conditions of a passage culture process, and a processor for calculating characteristic related information related to the growth characteristic of the second passage culture process based on the data stored in the storage and the culture conditions;
  • the processor calculates a growth characteristic amount representing the characteristic of the growth characteristic of the cell in the first passage culture process from the data stored in the storage, and calculates the growth characteristic amount calculated and the storage It is a culture
  • another aspect of the present invention is the cell in the first passage culture process calculated based on the data acquired in the first passage culture process of the passage culture of cells including a plurality of passage culture processes. And the culture conditions of the second passage culture process following one of the first passage culture process are input, and the inputted growth characteristics and the culture conditions And a culture information processing apparatus for calculating characteristic related information related to the growth characteristic of the second subculture process.
  • the data obtained at any passage is used to accurately estimate the growth characteristics of the cells at subsequent passages, and to establish a schedule for obtaining a final yield of cells.
  • the culture information processing apparatus 1 is a computer connected to a cell measuring apparatus (input device) 2 that measures cell information such as the number of cells or cell density of cells in culture.
  • An input device (condition setting unit) 3 for inputting culture conditions such as a mouse or a keyboard, and a storage 4 for storing cell information measured by the cell measuring device 2 and culture conditions input from the input device 3 ,
  • a processor 5 for calculating growth characteristics based on cell information stored in the storage 4 and culture conditions, and a display 6.
  • the cell measuring device 2 is a device that mounts a culture vessel containing a culture medium in which cells are seeded, and temporally acquires an image of cells that adhere to the bottom surface of the culture vessel and grow.
  • Cell culture involves multiple passaging steps separated by multiple passaging as shown in FIG. That is, when the culture is started and the cells proliferate and become confluent, a passage work is performed in which the culture vessel is once detached and distributed to a plurality of culture vessels. Therefore, as shown in FIG. 2, the number of cells gradually increases from the initial value in each passage culture process, and is repeatedly reset to the initial value by being inoculated to a new culture vessel by passage. .
  • culture conditions such as the type and concentration of the culture medium are input.
  • the required number of cells (the required number of cells) be cultured by the required shipping time (shipping date: the end date of the nth passaging process). Is also input from the input device 3.
  • the storage 4 is an arbitrary storage device such as a memory device or a hard disk device, and is configured to sequentially store the image sent from the cell measuring device 2 in association with the acquired time.
  • the culture conditions input from the input device 3 are also stored in the storage 4.
  • information such as the shipping time and the required number of cells is also input from the input device 3 as part of culture conditions and stored in the storage 4.
  • the processor 5 processes the image stored in the storage 4 to calculate the number of cells, generates data arranged in time series, and fits the formula of the proliferation curve to the data to characterize the proliferation characteristic.
  • a feature amount calculation unit 7 that calculates a feature amount representing As a growth curve, for example, a logistic curve represented by the following formula can be mentioned, and as a feature quantity representing a feature of the growth characteristic, the following coefficients N 0 , K, r representing a logistic curve can be mentioned.
  • N K / (1+ (K / N 0 -1) e -rt )
  • N is the number of cells
  • N 0 is the initial value of the number of cells
  • K is the environmental capacity
  • r is the growth rate
  • t is time.
  • the calculated feature amount is stored in the storage 4 in association with the passaging process number.
  • the processor 5 calculates the feature quantity in one passage culture process (first passage culture process) calculated by the feature quantity calculation unit 7 and stored in the storage 4 and the passage culture process after one (the first passage culture process)
  • the information calculation unit 8 calculates characteristic related information related to the growth characteristic in the second passage culture process based on the culture conditions input from the input device 3 as the culture condition of the second passage culture process).
  • the characteristic related information finally output from the information calculation unit 8 can include a feature amount representing the characteristic of the proliferation characteristic, in addition to the graph itself representing the proliferation characteristic.
  • the culture information processing apparatus 1 According to the culture information processing apparatus 1 according to the present embodiment, the feature amount representing the feature of the growth characteristic acquired in any of the first passage culture processes among the passage culture processes performed repeatedly, and 1 Based on the culture conditions in the subsequent second passage culture process, the graph itself representing the growth characteristic in the second passage culture process, or the feature value thereof is output as the characteristic related information. Therefore, if the characteristic related information is acquired, when the start date of the second passage culture process is set as the date of shipment as input as a part of culture conditions, the required number of cells also input is obtained. You can decide if you can do it.
  • the n-1th passage first passage
  • the final n-th passage the second passage.
  • a freezing period for freezing the cells is arranged between the subculturing process). In this way, by adjusting the length of the freezing period, it is possible to easily set the start time of the nth passaging process to obtain the input number of required cells at the input shipping time as well. can do.
  • the (n ⁇ 1) th passage culture process (the first The culture condition of PN-1 is input from the input device 3 (step S1), and the culture of the cells by the n-1th passage culture process PN-1 is started (step S2).
  • the cell measuring device 2 acquires an image of the cell with time (Step S3), and the cell information is input to the culture information processing device 1 and stored in the storage 4 (Step S4).
  • the end time of the subculture process PN-1 is determined depending on whether or not the cells inside the culture vessel have reached confluence (step S5), and if not completed, the process from step S3 is repeated. When finished, the cells are detached from the culture vessel and frozen (Step S6).
  • each image acquired from the start to the end of the passage culture process PN-1 is processed by the feature quantity calculation unit 7 of the processor 5, thereby arranging the number of cells extracted from each image in time series.
  • Data indicating growth characteristics are generated, and the growth characteristics are quantified by fitting the growth curve (step S7) and stored in the storage 4.
  • the culture conditions of the nth passage culture process PN are input from the input device 3 (step S8), the input culture conditions are stored in the storage 4.
  • the growth in the passage culture process PN Characteristic related information related to the characteristic is calculated by the information calculation unit 8 (step S9) and displayed on the display 6 (step S10).
  • the output method is performed by displaying on the display 6 a graph representing the growth characteristic of the passage culture process PN to be performed from now on or a feature value representing the growth characteristic.
  • the passaging process PN can determine when to start the passaging process PN in order to obtain the required number of cells by the shipping time, and the length of the freezing period is adjusted to obtain The cells are thawed at the start time and the subculture process PN is started (step S12). By this, it is possible to obtain the required number of cells by the shipping time.
  • step S8 new culture conditions are input so as to shorten the time required for obtaining the required number of cells from the start of the passage culture process PN. The process is repeated (step S11).
  • FIG. 4 shows a graph showing growth characteristics. It can be seen that, by changing the culture conditions A, B and C, it is possible to change the number of days required to obtain the required number of cells.
  • the inventors have found that the growth characteristics in the nth passage culture process PN are the n-1th passage. It was found to have a relatively strong correlation with the growth characteristics in the subculture process PN-1.
  • For specific correlation between two adjacent subculture steps PN-1 and PN for example, two adjacent subcultures obtained in the first to n-1th subculture steps of the culture period are performed. It can be estimated from the correlation of the growth characteristics of the primary culture process. In addition, it may be estimated from the correlation between the growth characteristics of two adjacent subculture steps in culture performed under the same cell condition or culture condition at a time different from the culture period.
  • culture conditions in the second subculture process PN may be applied. .
  • the graph representing the proliferation characteristic itself or the feature quantity representing the characteristic of the proliferation characteristic is displayed as the characteristic related information.
  • the recommended culture start date which is the start time of the n-th subculture process PN to obtain the required number of cells on the scheduled shipping date.
  • the nth subculture is performed by inputting culture conditions including a planned shipping date in each subculture.
  • the recommended culture start date to start the process PN and the timing chart are displayed.
  • other culture conditions may be estimated and displayed by inputting the planned shipping date and the start time of the nth passage culture process PN as the culture conditions.
  • the start of various nth passage culture processes PN when the culture conditions are changed variously The time may be displayed.
  • various culture conditions may be displayed when the start time of the nth passage culture process PN is variously changed.
  • the computer directly connected to the cell measuring device 2 was illustrated as the culture
  • FIG. 6 culture information processing provided with a transmitting / receiving unit 12 that receives images and culture conditions from the cell measuring device 2 and the input device 3 connected via the network 11 via the network 11.
  • the apparatus 10 may be employed.
  • the image is received from the cell measurement device 2 and the feature amount calculation unit 7 calculates the number of cells by image processing, the number of cells is calculated by processing the image in the cell measurement device 2
  • the culture information processing device 1 may receive the number of cells from the cell measurement device 2.
  • the image etc. is received from the cell measuring device 2 and the growth characteristics in the n-1th passage culture process PN-1 are quantified, and the characteristics of the nth passage culture process PN Terminal 13 for displaying related information, and growth characteristics and culture conditions in the n-1st passage culture process PN-1 quantified are input to calculate characteristic related information of the nth passage culture process PN
  • You may comprise the system 20 with which the cloud server (culture information processing apparatus) 14 to connect is connected via the internet 15.
  • the terminal device 13 and the cloud server 14 include the transmission / reception unit 16 that transmits / receives the proliferation characteristic, the culture condition, the characteristic related information, and the like via the Internet 15.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Organic Chemistry (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biomedical Technology (AREA)
  • Biotechnology (AREA)
  • Analytical Chemistry (AREA)
  • Genetics & Genomics (AREA)
  • General Engineering & Computer Science (AREA)
  • Microbiology (AREA)
  • Sustainable Development (AREA)
  • Physics & Mathematics (AREA)
  • Biochemistry (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Multimedia (AREA)
  • Molecular Biology (AREA)
  • Quality & Reliability (AREA)
  • Medical Informatics (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Radiology & Medical Imaging (AREA)
  • Computer Vision & Pattern Recognition (AREA)
  • Optics & Photonics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Medicinal Chemistry (AREA)
  • Computer Hardware Design (AREA)
  • Cell Biology (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)

Abstract

将来の継代培養過程における細胞の増殖特性を精度よく推定し、最終的な収量の細胞を得るためのスケジュールを立てることを目的として、本発明に係る培養情報処理装置(1)は、複数の継代培養過程を含む細胞の培養期間の内、任意の第1継代培養過程において取得されたデータから細胞の増殖特性の特徴を表す増殖特徴量を算出する特徴量算出部(7)と、第1継代培養過程の1つ後に続く第2継代培養過程の培養条件を設定する条件設定部(3)と、特徴量算出部(7)により算出された増殖特徴量と、条件設定部(3)により設定された培養条件とに基づいて、第2継代培養過程における増殖特性に関連する特性関連情報を算出する情報算出部(8)とを備える。

Description

培養情報処理装置
 本発明は、培養情報処理装置に関するものである。
 iPS細胞などの細胞を継代しながら培養し、培養特性をモニタリングする方法が知られている(例えば、特許文献1参照。)。
 また、取得されたデータにモデル式をフィッティングすることにより、データの特徴をモデル式のパラメータとして数値化することも知られている(例えば、特許文献2参照。)。
特開2015-171344 特表2016-534714
 特許文献1および特許文献2の方法によれば、個々の継代培養過程において取得されたデータから細胞の増殖特性をモデル式のパラメータとして数値化することができる。
 しかしながら、増殖特性は継代毎に大きく異なるため、いずれかの継代培養過程において取得されたデータを用いて当該継代培養過程における細胞の増殖特性を数値化しても、将来の継代培養過程における細胞の増殖特性とは異なるため、最終的な収量の細胞を得るためのスケジュールを立てることが困難であった。
 本発明は、上述した事情に鑑みてなされたものであって、いずれかの継代培養過程において取得されたデータを用いて、その後に行われる継代培養過程における細胞の増殖特性を精度よく推定し、最終的な収量の細胞を得るためのスケジュールを立てることができる培養情報処理装置を提供することを目的としている。
 本発明の一態様は、複数の継代培養過程を含む細胞の培養期間の内、任意の第1継代培養過程において取得されたデータから前記細胞の増殖特性の特徴を表す増殖特徴量を算出する特徴量算出部と、前記第1継代培養過程の1つ後に続く第2継代培養過程の培養条件を設定する条件設定部と、前記特徴量算出部により算出された増殖特徴量と、前記条件設定部により設定された培養条件とに基づいて、前記第2継代培養過程における増殖特性に関連する特性関連情報を算出する情報算出部とを備える培養情報処理装置である。
 本態様によれば、第1継代培養過程において取得されたデータから細胞の増殖特性の特徴を表す増殖特徴量が特徴量算出部により算出され、第1継代培養過程の1つ後に続く第2継代培養過程の培養条件が条件設定部において設定される。
 発明者らは、隣接する2つの継代培養過程における細胞の増殖特性に比較的強い相関があることを発見した。そして、細胞の増殖特性は、培地の種類や濃度等により変化することが知られている。
 そこで、1つ前の第1継代培養過程において取得されたデータから特徴量算出部により算出された増殖特徴量と、条件設定部において設定された第2継代培養過程における培養条件とに基づくことにより、第2継代培養過程の実施前に、第2継代培養過程における細胞の増殖特性に関連する特性関連情報を精度よく算出することができる。これにより、継代培養により目標収量の細胞を得るための終了時期、第2継代培養過程の開始時期およびその他の培養条件等を推定して、培養のスケジュールを立てることができる。
 上記態様においては、前記条件設定部が、前記第1継代培養過程の培養条件を設定し、前記第2継代培養過程の培養の時期を除く培養条件を、前記第1継代培養過程の培養条件と等しく設定してもよい。
 このようにすることで、第1継代培養過程の実施前に第1継代培養過程の培養条件を条件設定部により設定するだけで、第2継代培養過程も同一の培養条件で細胞を培養することができる。
 また、上記態様においては、前記特徴量算出部が、前記第1継代培養過程において取得された前記データに、予め設定された増殖曲線をフィッティングし、得られた係数を前記増殖特徴量として出力してもよい。
 このようにすることで、第1継代培養過程において得られたデータに増殖曲線をフィッティングすることにより得られた係数と、2つの継代培養過程における増殖特性の相関とに基づいて容易に第2継代培養過程の増殖特性を推定することができる。
 また、上記態様においては、前記培養期間内に3以上の継代培養過程を含み、前記第1継代培養過程は前記培養期間の開始から2番目以降の継代培養過程であってもよい。
 培養期間の開始後の最初の継代培養過程は、細胞の状態が不安定であるために次の継代培養過程における増殖曲線との相関が得られにくい。このようにすることで、より強い相関を有する2番目以降の第1継代培養過程における増殖特性を用いて、その1つ後の第2継代培養過程の増殖特性を精度よく推定することができる。
 また、上記態様においては、前記第1継代培養過程と前記第2継代培養過程との間に、前記細胞を凍結させる凍結期間を含んでいてもよい。
 このようにすることで、凍結期間において細胞の増殖は停止するので、第2継代培養過程の開始時期を凍結期間の長さによって変化させ、最終的な収量の細胞を得るためのスケジュールを調整することができる。
 また、上記態様においては、前記情報算出部が、前記第2継代培養過程における前記細胞の増殖特性、または、該増殖特性の特徴を表す増殖特徴量を算出してもよい。
 このようにすることで、情報算出部により算出された増殖特性または増殖特徴量に基づいて、第2継代培養過程の開始時期あるいは終了時期を推定することができる。
 また、上記態様においては、前記条件設定部が、前記第2継代培養過程の終了時期を含む前記培養条件を設定し、前記情報算出部が、前記条件設定部により設定された前記培養条件に基づいて、前記第2継代培養過程を前記終了時期に終了させるための前記第2継代培養過程の開始時期を前記特性関連情報として算出してもよい。
 このようにすることで、条件設定部において第2継代培養過程の終了時期を含む培養条件を設定すると、情報算出部により第2継代培養過程の開始時期が算出されるので、算出された開始時期に第2継代培養過程を開始することにより、第2継代培養過程を目的の終了時期に終了させることができる。すなわち、予め決まっている培養期間の終了時期に終わらせることができるように第2継代培養過程を開始させることができる。
 また、上記態様においては、前記条件設定部が、前記第2継代培養過程の開始時期および終了時期を前記培養条件として設定し、前記情報算出部が、前記条件設定部により設定された前記開始時期および終了時期に基づいて、前記第2継代培養過程を前記終了時期に終了させるための前記第2継代培養過程の他の前記培養条件を前記特性関連情報として算出してもよい。
 このようにすることで、条件設定部において第2継代培養過程の開始時期および終了時期が設定されると、設定された開始時期に開始して、設定された終了時期に目標収量の細胞を得るためのその他の培養条件が算出されるので、算出された培養条件に設定して第2継代培養過程を実施することにより、終了時期に目標収量の細胞を得ることができる。
 また、本発明の他の態様は、複数の継代培養過程を含む細胞の継代培養の第1継代培養過程において取得されたデータおよび前記第1継代培養過程の1つ後に続く第2継代培養過程の培養条件を入力する入力装置と、該入力装置により入力された前記データおよび前記培養条件を記憶するストレージと、該ストレージに記憶された前記データおよび前記培養条件に基づいて前記第2継代培養過程の増殖特性に関連する特性関連情報を算出するプロセッサとを備え、該プロセッサが、前記ストレージに記憶された前記データから前記第1継代培養過程における前記細胞の増殖特性の特徴を表す増殖特徴量を算出し、算出された前記増殖特徴量と前記ストレージに記憶された前記培養条件とに基づいて、前記特性関連情報を算出する培養情報処理装置である。
 また、本発明の他の態様は、複数の継代培養過程を含む細胞の継代培養の第1継代培養過程において取得されたデータおよび前記第1継代培養過程の1つ後に続く第2継代培養過程の培養条件を記憶するストレージと、該ストレージに記憶された前記データおよび前記培養条件に基づいて前記第2継代培養過程の増殖特性に関連する特性関連情報を算出するプロセッサとを備え、該プロセッサが、前記ストレージに記憶された前記データから前記第1継代培養過程における前記細胞の増殖特性の特徴を表す増殖特徴量を算出し、算出された前記増殖特徴量と前記ストレージに記憶された前記培養条件とに基づいて、前記特性関連情報を算出する培養情報処理装置である。
 また、本発明の他の態様は、複数の継代培養過程を含む細胞の継代培養の第1継代培養過程において取得されたデータに基づいて算出された前記第1継代培養過程における細胞の増殖特性の特徴を表す増殖特徴量と、前記第1継代培養過程の1つ後に続く第2継代培養過程の培養条件とが入力され、入力された前記増殖特徴量と前記培養条件とに基づいて、前記第2継代培養過程の増殖特性に関連する特性関連情報を算出する培養情報処理装置である。
 本発明によれば、いずれかの継代において取得されたデータを用いて、その後に行われる継代における細胞の増殖特性を精度よく推定し、最終的な収量の細胞を得るためのスケジュールを立てることができるという効果を奏する。
本発明の一実施形態に係る培養情報処理装置を示す全体構成図である。 図1の培養情報処理装置が適用される継代培養における1の培養容器内の細胞数の時間変化の一例を示す図である。 図1の培養情報処理装置による培養の手順を説明するフローチャートである。 各継代培養過程における細胞の増殖特性の培養条件による変化の一例を示す図である。 図1の培養情報処理装置の変形例による培養関連情報の出力例を示す図である。 図1の培養情報処理装置の変形例を示す全体構成図である。 図1の培養情報処理装置の他の変形例を示す全体構成図である。
 本発明の一実施形態に係る培養情報処理装置1について、図面を参照して以下に説明する。
 本実施形態に係る培養情報処理装置1は、図1に示されるように、培養中の細胞の細胞数あるいは細胞密度等の細胞情報を測定する細胞計測装置(入力装置)2に接続されたコンピュータであって、マウスあるいはキーボード等の培養条件を入力する入力装置(条件設定部)3と、細胞計測装置2により測定された細胞情報および入力装置3から入力された培養条件を記憶するストレージ4と、ストレージ4に記憶された細胞情報および培養条件に基づいて増殖特性を算出するプロセッサ5と、ディスプレイ6とを備えている。
 細胞計測装置2は、細胞を播種した培地を収容する培養容器を搭載し、培養容器の底面に接着して成長する細胞の画像を経時的に取得する装置である。
 細胞の培養は、図2に示されるように複数回の継代によって区切られた複数の継代培養過程を含んでいる。すなわち、培養を開始し、細胞が増殖し、コンフルエントになると、培養容器から一旦剥離して複数の培養容器に分配し直す継代作業が行われる。したがって、図2に示されるように、細胞数は、各継代培養過程において初期値から徐々に増え、継代によって新たな培養容器に播種されることにより初期値にリセットされることが繰り返される。
 入力装置3からは培地の種類や濃度等の培養条件が入力されるようになっている。また、細胞の培養においては、必要な出荷時期(出荷日:n番目の継代培養過程の終了日)までに必要な量の細胞(必要細胞数)が培養されることが求められるので、これらの情報も入力装置3から入力されるようになっている。
 ストレージ4は、メモリ装置、ハードディスク装置等の任意の記憶装置であり、細胞計測装置2から送られてきた画像を取得された時刻と対応づけて逐次記憶するようになっている。また、入力装置3から入力された培養条件もストレージ4に記憶されるようになっている。また、出荷時期および必要細胞数等の情報も培養条件の一部として入力装置3から入力されストレージ4に記憶されるようになっている。
 プロセッサ5は、ストレージ4に記憶されている画像を処理して細胞数を算出し、時系列に並べたデータを生成するとともに、該データに増殖曲線の式をフィッティングすることにより、増殖特性の特徴を表す特徴量を算出する特徴量算出部7を備えている。増殖曲線としては、例えば、下式に示されるロジスティック曲線を挙げることができ、増殖特性の特徴を表す特徴量としては、ロジスティック曲線を表す以下の係数N,K,rを挙げることができる。
 N=K/(1+(K/N―1)eーrt
 ここで、Nは細胞数、Nは細胞数の初期値、Kは環境収容力、rは増殖速度、tは時間である。
 算出された特徴量は、継代培養過程の番号に対応づけてストレージ4に記憶されるようになっている。
 また、プロセッサ5は、特徴量算出部7により算出されストレージ4に記憶された1つの継代培養過程(第1継代培養過程)における特徴量と、その1つ後の継代培養過程(第2継代培養過程)の培養条件として入力装置3から入力された培養条件とに基づいて、第2継代培養過程における増殖特性に関連する特性関連情報を算出する情報算出部8を備えている。
 最終的に情報算出部8から出力される特性関連情報としては、増殖特性を表すグラフそのものの他、増殖特性の特徴を表す特徴量を挙げることができる。
 すなわち、本実施形態に係る培養情報処理装置1によれば、繰り返し行われる継代培養過程の内、いずれかの第1継代培養過程において取得された増殖特性の特徴を表す特徴量と、1つ後の第2継代培養過程における培養条件とに基づいて、第2継代培養過程における増殖特性を表すグラフそのもの、またはその特徴量が特性関連情報として出力される。したがって、その特性関連情報が取得されれば、第2継代培養過程の開始日をいつに設定すれば、培養条件の一部として入力された出荷日に、同じく入力された必要細胞数を得ることができるのかを判断することができる。
 この場合において、n回の継代培養過程を含む全培養期間の内、n-1番目の継代培養過程(第1継代培養過程)と最終のn番目の継代培養過程(第2継代培養過程)との間には、細胞を凍結する凍結期間が配置されていることが好ましい。
 このようにすることで、凍結期間の長さを調節することにより、入力された出荷時期に、同じく入力された必要細胞数を得るためのn番目の継代培養過程の開始時期を容易に設定することができる。
 このように構成された本実施形態に係る培養情報処理装置1の作用について、以下に説明する。
 本実施形態に係る培養情報処理装置1を用いてn番目の継代培養過程PNの増殖特性を予測するには、図3に示されるように、n-1番目の継代培養過程(第1継代培養過程)PN-1の培養条件を入力装置3から入力し(ステップS1)、n-1番目の継代培養過程PN-1による細胞の培養を開始する(ステップS2)。この継代培養過程PN-1において、細胞計測装置2により、経時的に細胞の画像が取得され(ステップS3)、培養情報処理装置1に入力されてストレージ4に記憶される(ステップS4)。
 培養容器内部の細胞がコンフルエントに達したか否かによって継代培養過程PN-1の終了時期が判定され(ステップS5)、終了していない場合にはステップS3からの工程が繰り返される。終了した場合には、細胞が培養容器から剥離されて凍結される(ステップS6)。
 そして、継代培養過程PN-1の開始から終了までにおいて取得された各画像がプロセッサ5の特徴量算出部7において処理されることにより、各画像から抽出された細胞数を時系列に並べた増殖特性を示すデータが生成され、増殖曲線をフィッティングすることにより、増殖特性が数値化され(ステップS7)、ストレージ4に記憶される。
 次いで、n番目の継代培養過程PNの培養条件を入力装置3から入力すると(ステップS8)、入力された培養条件がストレージ4に記憶される。
 ストレージ4に記憶されたn-1番目の継代培養過程PN-1の増殖特性を表す特徴量と、n番目の継代培養過程PNの培養条件とに基づいて、継代培養過程PNにおける増殖特性に関連する特性関連情報が情報算出部8により算出され(ステップS9)、ディスプレイ6に表示される(ステップS10)。出力方法は、これから行われる継代培養過程PNの増殖特性を表すグラフそのものあるいは増殖特性を表す特徴量をディスプレイ6に表示することにより行われる。
 継代培養過程PNの増殖特性に関連する特性関連情報が表示されることにより、ユーザは継代培養過程PNの開始から必要細胞数が得られるまでに要する時間を推定することができる。したがって、継代培養過程PNにより、出荷時期までに必要細胞数を得るために、継代培養過程PNをいつ開始すればよいかを求めることができ、凍結期間の長さを調整して、求められた開始時期に細胞を解凍し継代培養過程PNを開始する(ステップS12)。これにより、出荷時期までに必要細胞数の細胞を得ることができる。
 継代培養過程PNの有効な開始時期が得られない場合、例えば、表示された特性関連情報によって推定される、継代培養過程PNの開始から必要細胞数が得られるまでに要する時間が長いために、凍結期間が確保できないような場合には、継代培養過程PNの開始から必要細胞数が得られるまでに要する時間を短くするような新たな培養条件を入力するように、ステップS8からの工程が繰り返される(ステップS11)。
 図4に、増殖特性を表すグラフを示す。培養条件A,B,Cを変化させることにより、必要細胞数を得るために要する日数を変化させることができることがわかる。
 ここで、各継代培養過程PN-1,PNにおいて細胞の増殖特性は継代毎に大きく異なるが、発明者らはn番目の継代培養過程PNにおける増殖特性は、n-1番目の継代培養過程PN-1における増殖特性と比較的強い相関関係を有することを見いだした。隣接する2つの継代培養過程PN-1,PNの具体的な相関関係については、例えば、当該培養期間の1番目からn-1番目までの継代培養過程において得られた隣接する2つの継代培養過程の増殖特性の相関関係から推定することができる。また、当該培養期間とは異なる時期に、同等の細胞や培養条件下で行われた培養における隣接する2つの継代培養過程の増殖特性の相関関係から推定することにしてもよい。
 また、第2継代培養過程PNにおける培養条件としては、ステップS1において入力装置3から入力された第1継代培養過程PN-1の培養条件と等しい培養条件が適用されるようにしてもよい。これにより、継代培養過程PN-1,PN毎に培養条件を設定するステップS8の手間を省くことができる。
 なお、本実施形態に係る培養情報処理装置1においては、特性関連情報として、増殖特性を表すグラフそのものまたは、増殖特性の特徴を表す特徴量を表示することとしたが、これに代えて、図5に示されるように、出荷予定日に必要細胞数を得るための、n番目の継代培養過程PNの開始時期である推奨培養開始日を表示することにしてもよい。図5に示す例では、複数種の細胞の継代培養を同時並行で実施している場合に、各継代培養において出荷予定日を含む培養条件を入力することにより、n番目の継代培養過程PNを開始する推奨培養開始日およびタイミングチャートが表示される。
 また、培養条件として、出荷予定日とn番目の継代培養過程PNの開始時期とを入力することにより、その他の培養条件を推定して表示することにしてもよい。
 また、所定の培養条件下において推定されるn番目の継代培養過程PNの開始時期を表示することに代えて、培養条件を種々変更した場合の種々のn番目の継代培養過程PNの開始時期を表示することにしてもよい。あるいは、n番目の継代培養過程PNの開始時期を種々変更した場合の種々の培養条件を表示することにしてもよい。
 また、本実施形態においては、培養情報処理装置1として細胞計測装置2に直接接続されたコンピュータを例示したが、これに代えて、細胞計測装置2内に全て収納されていてもよい。
 また、図6に示されるように、ネットワーク11を介して接続された細胞計測装置2および入力装置3からの画像および培養条件を、ネットワーク11を経由して受信する送受信部12を備える培養情報処理装置10を採用してもよい。
 また、細胞計測装置2から画像を受信して、特徴量算出部7が画像処理により細胞数を算出することとしたが、細胞計測装置2内において画像が処理されることにより細胞数が算出され、培養情報処理装置1が、細胞計測装置2から細胞数を受信することにしてもよい。
 さらに、図7に示されるように、細胞計測装置2から画像等を受信してn-1番目の継代培養過程PN-1における増殖特性を数値化し、n番目の継代培養過程PNの特性関連情報を表示する端末装置13と、数値化されたn-1番目の継代培養過程PN-1における増殖特性および培養条件が入力されてn番目の継代培養過程PNの特性関連情報を算出するクラウドサーバ(培養情報処理装置)14とがインターネット15を介して接続されているシステム20を構成してもよい。この場合、端末装置13およびクラウドサーバ14は、インターネット15を経由して、増殖特性、培養条件および特性関連情報等を送受信する送受信部16を備えている。
 1 培養情報処理装置
 2 細胞計測装置(入力装置)
 3 入力装置(条件設定部)
 4 ストレージ
 5 プロセッサ
 7 特徴量算出部
 8 情報算出部
 14 クラウドサーバ(培養情報処理装置)
 A,B,C 培養条件

Claims (11)

  1.  複数の継代培養過程を含む細胞の培養期間の内、任意の第1継代培養過程において取得されたデータから前記細胞の増殖特性の特徴を表す増殖特徴量を算出する特徴量算出部と、
     前記第1継代培養過程の1つ後に続く第2継代培養過程の培養条件を設定する条件設定部と、
     前記特徴量算出部により算出された増殖特徴量と、前記条件設定部により設定された培養条件とに基づいて、前記第2継代培養過程における増殖特性に関連する特性関連情報を算出する情報算出部とを備える培養情報処理装置。
  2.  前記条件設定部が、前記第1継代培養過程の培養条件を設定し、前記第2継代培養過程の培養の時期を除く培養条件を、前記第1継代培養過程の培養条件と等しく設定する請求項1に記載の培養情報処理装置。
  3.  前記特徴量算出部が、前記第1継代培養過程において取得された前記データに、予め設定された増殖曲線をフィッティングし、得られた係数を前記増殖特徴量として出力する請求項1または請求項2に記載の培養情報処理装置。
  4.  前記培養期間内に3以上の継代培養過程を含み、
     前記第1継代培養過程は前記培養期間の開始から2番目以降の継代培養過程である請求項1から請求項3のいずれかに記載の培養情報処理装置。
  5.  前記第1継代培養過程と前記第2継代培養過程との間に、前記細胞を凍結させる凍結期間を含む請求項1から請求項4のいずれかに記載の培養情報処理装置。
  6.  前記情報算出部が、前記第2継代培養過程における前記細胞の増殖特性、または該増殖特性の特徴を表す増殖特徴量を算出する請求項1から請求項5のいずれかに記載の培養情報処理装置。
  7.  前記条件設定部が、前記第2継代培養過程の終了時期を含む前記培養条件を設定し、
     前記情報算出部が、前記条件設定部により設定された前記培養条件に基づいて、前記第2継代培養過程を前記終了時期に終了させるための前記第2継代培養過程の開始時期を前記特性関連情報として算出する請求項1から請求項5のいずれかに記載の培養情報処理装置。
  8.  前記条件設定部が、前記第2継代培養過程の開始時期および終了時期を前記培養条件として設定し、
     前記情報算出部が、前記条件設定部により設定された前記開始時期および終了時期に基づいて、前記第2継代培養過程を前記終了時期に終了させるための前記第2継代培養過程の他の前記培養条件を前記特性関連情報として算出する請求項1から請求項5のいずれかに記載の培養情報処理装置。
  9.  複数の継代培養過程を含む細胞の継代培養の第1継代培養過程において取得されたデータおよび前記第1継代培養過程の1つ後に続く第2継代培養過程の培養条件を入力する入力装置と、
     該入力装置により入力された前記データおよび前記培養条件を記憶するストレージと、
     該ストレージに記憶された前記データおよび前記培養条件に基づいて前記第2継代培養過程の増殖特性に関連する特性関連情報を算出するプロセッサとを備え、
     該プロセッサが、前記ストレージに記憶された前記データから前記第1継代培養過程における前記細胞の増殖特性の特徴を表す増殖特徴量を算出し、算出された前記増殖特徴量と前記ストレージに記憶された前記培養条件とに基づいて、前記特性関連情報を算出する培養情報処理装置。
  10.  複数の継代培養過程を含む細胞の継代培養の第1継代培養過程において取得されたデータおよび前記第1継代培養過程の1つ後に続く第2継代培養過程の培養条件を記憶するストレージと、
     該ストレージに記憶された前記データおよび前記培養条件に基づいて前記第2継代培養過程の増殖特性に関連する特性関連情報を算出するプロセッサとを備え、
     該プロセッサが、前記ストレージに記憶された前記データから前記第1継代培養過程における前記細胞の増殖特性の特徴を表す増殖特徴量を算出し、算出された前記増殖特徴量と前記ストレージに記憶された前記培養条件とに基づいて、前記特性関連情報を算出する培養情報処理装置。
  11.  複数の継代培養過程を含む細胞の継代培養の第1継代培養過程において取得されたデータに基づいて算出された前記第1継代培養過程における細胞の増殖特性の特徴を表す増殖特徴量と、前記第1継代培養過程の1つ後に続く第2継代培養過程の培養条件とが入力され、
     入力された前記増殖特徴量と前記培養条件とに基づいて、前記第2継代培養過程の増殖特性に関連する特性関連情報を算出する培養情報処理装置。
     
PCT/JP2017/036018 2017-10-03 2017-10-03 培養情報処理装置 WO2019069378A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/JP2017/036018 WO2019069378A1 (ja) 2017-10-03 2017-10-03 培養情報処理装置
JP2019546447A JP7018955B2 (ja) 2017-10-03 2017-10-03 培養情報処理装置
US16/835,704 US11256898B2 (en) 2017-10-03 2020-03-31 Culture information processing device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/036018 WO2019069378A1 (ja) 2017-10-03 2017-10-03 培養情報処理装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/835,704 Continuation US11256898B2 (en) 2017-10-03 2020-03-31 Culture information processing device

Publications (1)

Publication Number Publication Date
WO2019069378A1 true WO2019069378A1 (ja) 2019-04-11

Family

ID=65994230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/036018 WO2019069378A1 (ja) 2017-10-03 2017-10-03 培養情報処理装置

Country Status (3)

Country Link
US (1) US11256898B2 (ja)
JP (1) JP7018955B2 (ja)
WO (1) WO2019069378A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022264640A1 (ja) * 2021-06-18 2022-12-22 エピストラ株式会社 状態推定システム及び状態推定方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022070494A1 (ja) * 2020-09-30 2022-04-07 株式会社島津製作所 データ処理システム、データ処理方法、及び情報処理装置を用いてデータ処理方法を実行するためのコンピュータプログラム

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001224366A (ja) * 2000-02-16 2001-08-21 Masahito Taya 培養細胞評価方法、培養細胞増殖予測方法及び培養細胞増殖制御方法
JP2007124914A (ja) * 2005-11-01 2007-05-24 Olympus Corp 培養細胞の継代判断方法
JP2010152829A (ja) * 2008-12-26 2010-07-08 Nikon Corp 細胞培養管理システム
JP2016023942A (ja) * 2014-07-16 2016-02-08 オリンパス株式会社 細胞観察情報処理システム、細胞観察情報処理方法、細胞観察情報処理プログラム
WO2016098271A1 (ja) * 2014-12-19 2016-06-23 パナソニック株式会社 細胞培養装置
JP2017506892A (ja) * 2014-02-19 2017-03-16 メルツ ファルマ ゲーエムベーハー ウント コンパニー カーゲーアーアー in vitro試験系におけるボツリヌス神経毒に対する細胞の感度を標準化し且つ増加させるためのガングリオシド

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4415343B2 (ja) 2004-02-10 2010-02-17 株式会社カネカ 細胞培養装置
WO2014115799A1 (ja) 2013-01-23 2014-07-31 東京エレクトロン株式会社 多能性幹細胞の継代培養方法
WO2015102726A2 (en) 2013-10-16 2015-07-09 President And Fellows Of Harvard College A microfluidic device for real-time clinical monitoring and quantitative assessment of whole blood coagulation
JP2015171344A (ja) 2014-03-12 2015-10-01 オリンパス株式会社 細胞培養容器、細胞培養装置および細胞培養方法
US20190078047A1 (en) * 2014-12-19 2019-03-14 Panasonic Corporation Cell culture apparatus
CN114723741A (zh) * 2015-04-23 2022-07-08 Bd科斯特公司 用于自动计数微生物菌落的方法和系统
KR20170099737A (ko) * 2016-02-23 2017-09-01 노을 주식회사 접촉식 염색 패치 및 이를 이용하는 염색 방법

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001224366A (ja) * 2000-02-16 2001-08-21 Masahito Taya 培養細胞評価方法、培養細胞増殖予測方法及び培養細胞増殖制御方法
JP2007124914A (ja) * 2005-11-01 2007-05-24 Olympus Corp 培養細胞の継代判断方法
JP2010152829A (ja) * 2008-12-26 2010-07-08 Nikon Corp 細胞培養管理システム
JP2017506892A (ja) * 2014-02-19 2017-03-16 メルツ ファルマ ゲーエムベーハー ウント コンパニー カーゲーアーアー in vitro試験系におけるボツリヌス神経毒に対する細胞の感度を標準化し且つ増加させるためのガングリオシド
JP2016023942A (ja) * 2014-07-16 2016-02-08 オリンパス株式会社 細胞観察情報処理システム、細胞観察情報処理方法、細胞観察情報処理プログラム
WO2016098271A1 (ja) * 2014-12-19 2016-06-23 パナソニック株式会社 細胞培養装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022264640A1 (ja) * 2021-06-18 2022-12-22 エピストラ株式会社 状態推定システム及び状態推定方法

Also Published As

Publication number Publication date
JPWO2019069378A1 (ja) 2020-11-05
JP7018955B2 (ja) 2022-02-14
US11256898B2 (en) 2022-02-22
US20200234032A1 (en) 2020-07-23

Similar Documents

Publication Publication Date Title
WO2019069378A1 (ja) 培養情報処理装置
JP6741031B2 (ja) 細胞検査装置、細胞検査方法、プログラム、および記録媒体
US20150235239A1 (en) Predicting demand of a newly introduced short lifecycle product within an assortment
CN101359040A (zh) 用于优化成像参数的方法
JP2018533936A5 (ja)
KR20210127735A (ko) 배터리 잔존 가치 결정 시스템
US11625635B2 (en) Computer-readable storage medium storing control program, control method, and control device
JP2013097723A (ja) テキスト要約装置、方法及びプログラム
JP2008021020A (ja) 販売計画作成支援システム
Spratt et al. Characterizing viscoelastic materials via ensemble-based data assimilation of bubble collapse observations
JP2009245043A (ja) ライン生産管理支援方法および装置
RU2010150746A (ru) Ультразвуковое моделирование
JP2018038322A (ja) 栽培支援装置、栽培システム、及びプログラム
US11320811B2 (en) Plant operating condition setting support system, learning device, and operating condition setting support device
JP6290029B2 (ja) 生産制御支援装置、生産制御支援方法およびプログラム
AU2012250284B2 (en) Information processing system and method, and program
JP2009294977A5 (ja)
JP2019168800A (ja) 工程改善支援システムおよび工程改善支援方法
KR101386038B1 (ko) 소프트웨어 개조 견적 방법 및 소프트웨어 개조 견적 시스템
JP2015200550A (ja) 収穫判断装置及び植物生育システム
JP6931418B2 (ja) 画像処理方法、画像処理装置、ユーザインタフェース装置、画像処理システム、サーバ、および画像処理プログラム
JP2022093884A (ja) 生育状態予測方法及び生育状態予測プログラム
JP2017203931A (ja) 音響特性測定装置及び音響特性測定方法
CN110766308A (zh) 一种基于集合同化策略的区域农作物估产方法
JP6597890B2 (ja) 在庫量算出装置、在庫量算出方法、及びプログラム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17927872

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019546447

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17927872

Country of ref document: EP

Kind code of ref document: A1