WO2019066570A1 - 지속형 단쇄 인슐린 아날로그 및 이의 결합체 - Google Patents

지속형 단쇄 인슐린 아날로그 및 이의 결합체 Download PDF

Info

Publication number
WO2019066570A1
WO2019066570A1 PCT/KR2018/011557 KR2018011557W WO2019066570A1 WO 2019066570 A1 WO2019066570 A1 WO 2019066570A1 KR 2018011557 W KR2018011557 W KR 2018011557W WO 2019066570 A1 WO2019066570 A1 WO 2019066570A1
Authority
WO
WIPO (PCT)
Prior art keywords
chain
insulin analogue
insulin
short chain
chain insulin
Prior art date
Application number
PCT/KR2018/011557
Other languages
English (en)
French (fr)
Inventor
허용호
오의림
Original Assignee
한미약품 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한미약품 주식회사 filed Critical 한미약품 주식회사
Priority to US16/651,765 priority Critical patent/US20200254108A1/en
Priority to CN201880076224.7A priority patent/CN111386130A/zh
Priority to EP18862746.7A priority patent/EP3689382A4/en
Priority to JP2020518504A priority patent/JP2020534855A/ja
Publication of WO2019066570A1 publication Critical patent/WO2019066570A1/ko

Links

Images

Classifications

    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • A61K47/6801Drug-antibody or immunoglobulin conjugates defined by the pharmacologically or therapeutically active agent
    • A61K47/6803Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates
    • A61K47/6811Drugs conjugated to an antibody or immunoglobulin, e.g. cisplatin-antibody conjugates the drug being a protein or peptide, e.g. transferrin or bleomycin
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides
    • A61K38/16Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • A61K38/17Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • A61K38/22Hormones
    • A61K38/28Insulins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/54Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic compound
    • A61K47/542Carboxylic acids, e.g. a fatty acid or an amino acid
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/56Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule
    • A61K47/59Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes
    • A61K47/60Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an organic macromolecular compound, e.g. an oligomeric, polymeric or dendrimeric molecule obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polyureas or polyurethanes the organic macromolecular compound being a polyoxyalkylene oligomer, polymer or dendrimer, e.g. PEG, PPG, PEO or polyglycerol
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/62Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being a protein, peptide or polyamino acid
    • A61K47/64Drug-peptide, drug-protein or drug-polyamino acid conjugates, i.e. the modifying agent being a peptide, protein or polyamino acid which is covalently bonded or complexed to a therapeutically active agent
    • A61K47/643Albumins, e.g. HSA, BSA, ovalbumin or a Keyhole Limpet Hemocyanin [KHL]
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K47/00Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient
    • A61K47/50Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates
    • A61K47/51Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent
    • A61K47/68Medicinal preparations characterised by the non-active ingredients used, e.g. carriers or inert additives; Targeting or modifying agents chemically bound to the active ingredient the non-active ingredient being chemically bound to the active ingredient, e.g. polymer-drug conjugates the non-active ingredient being a modifying agent the modifying agent being an antibody, an immunoglobulin or a fragment thereof, e.g. an Fc-fragment
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/435Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from animals; from humans
    • C07K14/575Hormones
    • C07K14/62Insulins
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61KPREPARATIONS FOR MEDICAL, DENTAL OR TOILETRY PURPOSES
    • A61K38/00Medicinal preparations containing peptides

Definitions

  • the present invention relates to sustained single chain insulin analogues, their conjugates and their use.
  • the present invention also relates to a sustained single-chain insulin analogue and a method for producing the conjugate thereof.
  • Insulin is a polypeptide hormone composed of 51 amino acids secreted by the beta cells of the pancreas and is involved in the regulation of blood sugar in animals. Insulin is composed of chains A and B linked by disulfide bonds. In vivo, C-peptide is removed (hydrolyzed) by proteases in proinsulin, and insulin is produced from proinsulin.
  • Insulin preparations are diabetic (Type I) diabetic patients who are inherently insulin-producing insulin; (Type II) diabetes whose blood glucose level rises secondarily due to insulin resistance or deficiency of insulin secretion; patients whose diabetes mellitus is poorly controlled by an oral diabetic drug or whose oral diabetic drug is contraindicated; Or gestational diabetes.
  • protein and peptide drugs are often administered to patients in the form of injections, which are frequently injected to maintain blood levels of physiologically active peptides, which causes great pain to the patient. Therefore, several protein formulation studies and chemical modifications have been studied to increase therapeutic efficacy and quality of life for patients by reducing the number of administrations by increasing the half-life of the protein in vivo.
  • Short-chain insulin analogs can be used as a method to address persistent and hypoglycemic problems of insulin preparations.
  • Short-chain insulin can be controlled by preparing a short chain instead of a conventional A-chain and B-chain connected to a di-sulfide bond.
  • the short chain insulin analogue may be connected in the order of the B chain and the A chain, or in the order of the A chain and the B chain, and the peptide may be inserted into the linker when the chains are connected.
  • proinsulin a precursor to insulin.
  • Proinsulin itself is a weak insulin agonist with a lower activity than insulin but a longer half-life compared to insulin.
  • Proinsulin unlike insulin, is bound by the C-peptide, which plays an important role in the maintenance of insulin stability, so the half-life of blood is longer than that of insulin.
  • proinsulin is bound by the C-peptide, which plays an important role in the maintenance of insulin stability, so the half-life of blood is longer than that of insulin.
  • proinsulin there have been many attempts by many researchers to develop proinsulin as a persistent insulin.
  • the amino terminal glycine residue of the A chain which plays an important role in the activity, is occluded by the C peptide and is less active than insulin (William F et al., The Journal of Biological Chemistry, 1992, 267: 419-425 ), It has not been developed as a drug yet.
  • One object of the present invention is to provide a short chain insulin analog.
  • Still another object of the present invention is to provide a method for producing a short-chain insulin analogue conjugate comprising the step of connecting the short-chain insulin analogue and a substance capable of increasing its in vivo half-life.
  • Still another object of the present invention is to provide a pharmaceutical composition for preventing or treating diabetes comprising the short chain insulin analogue and / or short chain insulin analogue conjugate.
  • One aspect of the invention provides a short chain insulin analogue conjugate having the formula:
  • X is a natural type insulin A chain, B chain or analog thereof
  • Y is a C-peptide or analog thereof
  • Z is a natural type insulin B chain, A chain or analog thereof
  • L is a linker
  • a is 0 or a natural number, and when a is 2 or more, each L is independent of each other,
  • F is a substance that can increase the in vivo half-life of an insulin analogue
  • X, Y and Z are each a B chain, C-peptide and A chain of natural insulin, or A chain, C-peptide and B chain of native insulin,
  • X-Y-Z forms a short chain insulin analog.
  • the single-chain insulin analogue comprises at least one amino acid substitution, addition, deletion, modification and arrangement sequence (insulin B Chain, C-peptide and sequence of A chain, etc.), which are mutated analogues, variants, or fragments thereof.
  • the short chain insulin analog provides a short chain insulin analogue bond in which X, Y and Z are each linked to a linker.
  • the analogue of the C-peptide includes at least one amino acid selected from the group consisting of amino acid 1, amino acid 2, amino acid 34 and amino acid 35 of the natural insulin C-peptide Wherein the insulin analogue is substituted or deleted with an amino acid.
  • substances capable of increasing the in vivo half-life of the insulin analogue include polyethylene glycol, fatty acid, cholesterol, albumin and its fragment, albumin binding substance, polymer of repeating units of a specific amino acid sequence, wherein the antibody is selected from the group consisting of an antibody fragment, an FcRn binding material, an in vivo connective tissue, a nucleotide, fibronectin, transferrin, saccharide, and a polymeric polymer.
  • L is selected from the group consisting of peptides, polyethylene glycols, fatty acids, saccharides, polymeric polymers, low molecular weight compounds, nucleotides and combinations thereof .
  • X-Y-Z and F are linked to each other by L by a covalent chemical bond, a non-covalent chemical bond or a combination thereof.
  • the polymer is selected from the group consisting of polypropylene glycol, ethylene glycol-propylene glycol copolymer, polyoxyethylated polyol, polyvinyl alcohol, polysaccharide, dextran, polyvinyl ethyl ether, biodegradable
  • the polymer is selected from the group consisting of polymers, lipid polymers, chitin, hyaluronic acid, oligonucleotides, and combinations thereof.
  • the FcRn binding substance is an immunoglobulin Fc region, which provides a short chain insulin analogue conjugate.
  • a short chain insulin analogue conjugate characterized in that the immunoglobulin Fc region is unglycosylated.
  • a short-chain insulin analogue conjugate wherein the immunoglobulin Fc region consists of a domain selected from 1 to 4 from the group consisting of the CH1, CH2, CH3 and CH4 domains.
  • a short chain insulin analogue conjugate wherein the immunoglobulin Fc region is an Fc region derived from IgG, IgA, IgD, IgE or IgM.
  • the domain of each of the immunoglobulin Fc regions is a hybrid of a domain having different origins derived from an immunoglobulin selected from the group consisting of IgG, IgA, IgD, IgE and IgM. Insulin analogue conjugate.
  • a dimer or multimer chain, short chain insulin analogue conjugate wherein the immunoglobulin Fc region is composed of a single chain immunoglobulin having domains of the same origin.
  • a short-chain insulin analogue conjugate wherein the immunoglobulin Fc region is an IgG4 Fc region.
  • a short chain insulin analogue conjugate wherein the immunoglobulin Fc region is a human unchromosomal IgG4 Fc region.
  • X is a natural type insulin A chain, B chain or analog thereof
  • Y is a C-peptide or analog thereof
  • Z is a natural type insulin B chain, A chain or analog thereof
  • X, Y and Z are each the B chain, C-peptide and A chain of natural insulin, or the A chain, C-peptide and B chain of natural insulin.
  • Another aspect of the present invention provides a method for producing said short chain insulin analogue conjugate comprising the step of linking said short chain insulin analogue and a substance capable of increasing its in vivo half life.
  • a method for producing the short chain insulin analogue wherein the short chain insulin analogue and a substance capable of increasing its in vivo half-life are linked through a linker.
  • the linker is a non-peptide linker having a reactor selected from the group consisting of an aldehyde group, a propionaldehyde group, a butylaldehyde group, a maleimide group and a succinimide derivative, Insulin analogue conjugates.
  • the succinimide derivative is selected from the group consisting of succinimidyl propionate, methyl propionate, succinimidyl butanoate, succinimidyl methyl butanoate, succinimidyl valerate, Wherein said short chain insulin analogue conjugate is nimidyl carboxymethyl, N-hydroxysuccinimidyl or succinimidyl carbonate.
  • the short chain insulin analogue is obtained by a method comprising the following (a) and (b):
  • Another aspect of the present invention relates to the aforementioned short chain insulin analogue conjugate; And / or the single chain insulin analogs, wherein the short-chain insulin analogs have increased persistence and stability in vivo.
  • Another aspect of the present invention relates to the aforementioned short chain insulin analogue conjugate; And / or a pharmaceutical composition for the prophylaxis or treatment of diabetes, which comprises the single chain insulin analogue.
  • Another aspect of the present invention provides a method of preventing or treating diabetes comprising administering the pharmaceutical composition to a subject in need thereof.
  • Another aspect of the invention provides the use of said short chain insulin analogue conjugate or said short chain insulin analogue for the manufacture of a medicament for the prevention or treatment of diabetes.
  • Another aspect of the invention provides the use of said short chain insulin analogue conjugates or said short chain insulin analogues for the prevention or treatment of diabetes.
  • Another aspect of the present invention provides an isolated nucleic acid encoding the short chain insulin analogue, a recombinant expression vector comprising the nucleic acid, and a transformant comprising the recombinant expression vector.
  • Another aspect of the present invention provides a method for producing a short-chain insulin analogue using the transformant.
  • the short-chain insulin analogue and its conjugate according to the present invention maintains a stable blood glucose lowering effect in vivo and remarkably increases the half-life of blood, thereby improving convenience and ease of administration of insulin, and simplifying the manufacturing process.
  • FIG. 1 is a schematic diagram of a short-chain insulin analog gene amplification.
  • FIG. 2 shows the result of the purity analysis after the short chain insulin analog purification (C18, C4: RP-HPLC; SEC: SE-HPLC).
  • Fig. 4 shows the glucose uptake ability of the short chain insulin analogue conjugate.
  • One aspect of the present invention provides a short chain insulin analogue with reduced insulin receptor binding ability compared to native type insulin.
  • short chain insulin analogue refers to an insulin analog having in vivo blood glucose lowering characteristics, wherein the A chain and the B chain of insulin are linked by a single chain.
  • the short-chain insulin analogue is a substance having decreased insulin receptor binding ability and in vitro activity as compared with native type insulin.
  • the A chain, B chain and C-peptide of native proinsulin may include, but are not limited to, the amino acid sequences shown in SEQ ID NOS: 1 to 3, respectively.
  • the short chain insulin analogue of the present invention may be a proinsulin analogue, but is not limited thereto.
  • the proinsulin analog means a peptide having one or more of the wild-type or natural-type proinsulin and the A-chain, B-chain, and C-peptide sequences arranged in the order of B chain, C-peptide and A chain.
  • proinsulin analogs may have an array of A chains, C-peptides, and B chains, but are not limited thereto.
  • the short chain insulin analogue can be mixed with the proinsulin analogue.
  • amino acid sequence of each of the A-chain, B-chain and C-peptide of the proinsulin analogues of the present invention may be any of wild-type or wild-type sequences in which one or more amino acids of natural type or non-native type are added, substituted or deleted, It is not limited.
  • the proinsulin analog of the present invention is at least 80%, specifically 90% or more, more specifically 91%, 92%, 93%, 94%, 95%, 95% or more of the A, B, (Eg, alpha-methylation, alpha-hydroxylation), removal (eg, deamination), or partial removal of one amino acid residue (E.g., N-methylation), and include peptides having a function of regulating blood glucose in the body, but are not limited thereto.
  • homology is intended to indicate the similarity with the amino acid sequence of the wild type protein or the nucleotide sequence encoding the amino acid sequence, and it is preferable that the amino acid sequence or the nucleotide sequence of the present invention is the same Sequences having sequences are also included in the present invention. This homology can be determined by comparing the two sequences visually, but can be determined using a bioinformatic algorithm that aligns the sequences to be compared and analyzes the degree of homology. The homology between the two amino acid sequences can be expressed as a percentage. Useful automated algorithms are available in the GAP, BESTFIT, FASTA and TFASTA computer software modules of the Wisconsin Genetics Software Package (Genetics Computer Group, Madison, Wis. USA).
  • the automated array algorithms in this module include Needleman & Wunsch, Pearson & Lipman, and Smith & Waterman sequence alignment algorithms. Algorithm and homology determination for other useful arrays is automated in software including FASTP, BLAST, BLAST2, PSIBLAST and CLUSTAL W.
  • the short chain insulin analogue of the present invention is a peptide having a blood glucose controlling function in vivo.
  • a peptide includes, but is not limited to, a proinsulin agonist, derivatives, fragments, variants and the like Do not.
  • the proinsulin agonist of the present invention refers to a substance that binds to a receptor of a human in vivo, irrespective of the structure of proinsulin, and exhibits the same biological activity as insulin.
  • the proinsulin fragment of the present invention means a form in which one or more amino acids are added to or deleted from proinsulin, and the added amino acid can be an amino acid that does not exist in nature (e.g., D-type amino acid) It has blood glucose control function in the body.
  • the added amino acid can be an amino acid that does not exist in nature (e.g., D-type amino acid) It has blood glucose control function in the body.
  • the proinsulin mutant of the present invention means a peptide having at least one amino acid sequence that is different from that of proinsulin and has a function of regulating blood glucose in the body.
  • the production methods used in the proinsulin agonists, derivatives, fragments and variants of the present invention, respectively, can be used independently or in combination.
  • the short-chain insulin analog can be produced by a recombinant method and can also be produced by a synthesis method through a solid phase synthesis method.
  • the short chain insulin analog of the present invention is a native insulin A chain or analog thereof; Native insulin C-peptide or analog thereof; And the B chain or analogue thereof can be connected in a variety of orders either directly or through a linker.
  • the single-chain insulin analogues of the present invention are characterized in that at least one or more amino acids are substituted, substituted, added, deleted, modified and sequenced (B chain, Sequence of C-peptide and A chain, and the like), mutants or fragments thereof.
  • the short chain insulin analog of the present invention is a native insulin A chain or analog thereof; Native insulin C-peptide or analog thereof; And the native type insulin B chain or analog thereof may be connected in this order, but are not limited thereto.
  • the short chain insulin analogues of the invention may comprise a C-peptide or analog thereof.
  • C-peptide connecting peptide
  • C-peptide is a peptide consisting of 35 amino acids which connects B and A chains in proinsulin. It is removed when insulin is biosynthesized.
  • the C-peptide included in the short chain insulin analog may be an analog in which the amino acid is deleted, substituted, and / or inserted in the native C-peptide.
  • the analog of the C-peptide is one wherein at least one amino acid selected from the group consisting of amino acids 1, 2, 34 and 35 of the native insulin C-peptide is substituted or deleted with another amino acid But is not limited thereto. More specifically, analogs of the C-peptide eliminate the first and second arginine, the lysine residue 34 and the arginine residue 35 of the natural insulin C-peptide, thereby increasing the production yield in the production of short chain insulin analogues But is not limited thereto.
  • the short chain insulin analog of the present invention is a native insulin A chain; An analog of the C-peptide; And the natural type insulin B chain may be connected in the above order, and specifically may have the amino acid sequence of SEQ ID NO: 19, but it is not limited thereto.
  • the short chain insulin analogues of the invention may be fused fused peptides at the amino terminus of a short chain insulin analogue.
  • the peptide fused to the short-chain insulin amino terminal contributes to an increase in expression yield of the short-chain insulin analogue and has a proteolytic enzyme (for example, trypsin) cleavage site, so that it is efficiently removed in the production of short chain insulin analogue.
  • the peptide added to the amino terminus of the short chain insulin analog contributes to an increase in the expression yield of the short chain insulin analogue and is not particularly limited as long as it has a protease cleavage site but may be composed of 5 to 20 amino acids , More specifically 7 to 18, or 9 to 16 amino acids, and even more specifically, the amino acid sequence of MATTSTATTR (SEQ ID NO: 20).
  • the short chain insulin analog to which the peptide is fused is a native insulin A chain; An analog of the C-peptide; And the natural type insulin B chain are connected in this order.
  • the amino acid sequence of SEQ ID NO: 19 is not limited thereto.
  • the short chain insulin analogues according to the present invention are useful for the substitution, addition, deletion or post-translational modification (for example, methylation, acylation, ubiquitination, Intramolecular covalent bond) is introduced to encompass any peptide having reduced insulin receptor binding ability relative to native type insulin.
  • substitution or addition of the amino acid at least 20 amino acids commonly found in human proteins as well as amorphous or non-naturally occurring amino acids can be used.
  • Commercial sources of amorphous amino acids may include Sigma-Aldrich, ChemPep, and Genzymepharmaceuticals.
  • Such amino acid-containing peptides and typical peptide sequences can be synthesized and purchased through commercialized peptide synthesis companies, for example, the American peptide company in the US, Bachem, or Anygen in Korea.
  • the short chain insulin analogues of the present invention may have the following formula (2).
  • X is a natural type insulin A chain, B chain or analog thereof
  • Y is a native type insulin C-peptide or analog thereof
  • Z is a natural type insulin B chain, A chain or analog thereof
  • X, Y and Z are each the B chain, C-peptide and A chain of natural insulin, or the A chain, C-peptide and B chain of natural insulin.
  • insulin A chain, B chain, C-peptide and analogues thereof are as described above.
  • the symbol " - " represents a combination of X, Y and Z, and represents a direct bond or linker of X, Y and Z.
  • the linker may be a peptide linker or a non-peptide linker.
  • the "-" may be any chemical bond such as non-covalent bond or covalent bond, and may be specifically covalent bond, but is not limited thereto.
  • Another aspect of the present invention provides a polynucleotide encoding said short chain insulin analogue, an expression vector comprising said polynucleotide, and a transformant comprising said expression vector.
  • the short-chain insulin analogue is as described above.
  • the polynucleotide is a deoxyribonucleotide (DNA) or a ribonucleotide (RNA) existing in a single-stranded or double-stranded form, and includes a genomic DNA, a cDNA and an RNA transcribed therefrom.
  • DNA deoxyribonucleotide
  • RNA ribonucleotide
  • Natural nucleotides as well as analogues in which sugar or base regions are modified Schotide Analogs, John Wiley, New York, 1980; Uhlman and Peyman, Chemical Reviews, 90: 543-584, 1990).
  • Polynucleotides of the invention can be isolated or prepared using standard molecular biology techniques.
  • amplification can be carried out by PCR (polymerase chain reaction) from a native proinsulin gene sequence (NM_000207.2, NCBI) using appropriate primer sequences, using standard synthetic techniques using automated DNA synthesizers Can be manufactured.
  • the polynucleotide may be used in combination with a nucleic acid in the present invention.
  • the polynucleotide encoding the short chain insulin analogue may comprise a polynucleotide encoding the amino acid sequence of the A chain, B chain and C-peptide described above.
  • the recombinant vector according to the present invention can typically be constructed as a vector for cloning or as a vector for expression and can be constructed as a vector for use as a prokaryotic or eukaryotic cell.
  • vector refers to a nucleic acid construct comprising a necessary regulatory element operably linked to the expression of a nucleic acid insert, as a recombinant vector capable of expressing a desired protein in a suitable host cell.
  • the present invention can produce a recombinant vector comprising a nucleic acid encoding an insulin analogue which can be obtained by transforming or transfecting the recombinant vector into a host cell to obtain a short chain insulin analogue of the present invention have.
  • a nucleic acid encoding a short chain insulin analogue is operably linked to a promoter.
  • operatively linked refers to a functional linkage between a nucleic acid expression control sequence (e.g., a promoter, a signal sequence, a ribosome binding site, a transcription termination sequence, , Whereby the regulatory sequence regulates transcription and / or translation of the different nucleic acid sequences.
  • promoter refers to a nucleic acid sequence which is upstream of the coding region and contains a binding site for the polymerase and which has a transcription initiation activity to the mRNA of the promoter sub-gene, To start transcription of the gene, and is located at the 5'-site of the mRNA transcription initiation site.
  • a strong promoter capable of promoting transcription such as a tac promoter, lac promoter, lacUV5 promoter, lpp promoter, pL ⁇ promoter, pR ⁇ promoter, rac5 promoter, amp promoter, recA promoter, SP6 promoter, trp promoter and T7 promoter
  • a ribosome binding site for initiation of detoxification such as a tac promoter, lac promoter, lacUV5 promoter, lpp promoter, pL ⁇ promoter, pR ⁇ promoter, rac5 promoter, amp promoter, recA promoter, SP6 promoter, trp promoter and T7 promoter
  • a ribosome binding site for initiation of detoxification such as a ribosome binding site for initiation of detoxification
  • a transcription / translation termination sequence such as a tac promoter, lac promoter, lacUV5 promoter, lpp promoter, pL ⁇ promoter, pR ⁇ promoter, rac5 promote
  • the vectors that can be used in the present invention include plasmids such as pSC101, pGV1106, pACYC177, ColE1, pKT230, pME290, pBR322, pUC8 / 9, pUC6, pBD9, pHC79, pIJ61, pLAFR1, , pGEX series, pET series, pPICZ alpha series, pUC19, etc.), phage (e.g., ⁇ gt4 ⁇ ⁇ B, ⁇ -Charon, ⁇ z1 and M13) or viruses (eg SV40 and the like).
  • plasmids such as pSC101, pGV1106, pACYC177, ColE1, pKT230, pME290, pBR322, pUC8 / 9, pUC6, pBD9, pHC79, pIJ61, pLAFR1, , pGEX series, pET series, pPICZ
  • a promoter derived from the genome of a mammalian cell such as a metallothionein promoter
  • a mammalian virus e.g., adenovirus Late promoter, vaccinia virus 7.5K promoter, SV40 promoter, cytomegalovirus promoter, and tk promoter of HSV
  • a polyadenylation sequence e.g., bovine growth hormone terminator and SV40 derived polyadenylation sequence
  • the recombinant vector of the present invention includes an antibiotic resistance gene commonly used in the art as a selection marker and includes, for example, ampicillin, gentamycin, carbenicillin, chloramphenicol, streptomycin, kanamycin, And resistance genes for tetracycline can be used.
  • the recombinant vector of the present invention may further comprise other sequences as needed to facilitate the purification of the target protein to be recovered, that is, the insulin analogue.
  • the further included sequences may be tag sequences for protein purification and include, for example, glutathione S-transferase (Pharmacia, USA), maltose binding protein (NEB, USA), FLAG (IBI, USA) and hexahistidine.
  • glutathione S-transferase Pharmacia, USA
  • NEB maltose binding protein
  • FLAG IBI, USA
  • hexahistidine hexahistidine
  • the fusion protein expressed by the recombinant vector containing the tag sequence as described above can be purified by affinity chromatography.
  • affinity chromatography For example, when glutathione-S-transferase is fused, glutathione, which is a substrate of the enzyme, can be used.
  • glutathione which is a substrate of the enzyme, can be used.
  • six histidine tags are used, a target protein can be easily recovered using a Ni-NTA column .
  • a transformant transformed with the vector can be constructed using a recombinant vector comprising a polynucleotide encoding the short chain insulin analogue.
  • Transformation used in the present invention means that DNA is introduced into a host cell and DNA can be replicated as a factor of chromosome or by integration of chromosome integration. It is possible to introduce foreign DNA into a cell, It means a phenomenon that causes change.
  • transfection methods include CaCl 2 Precipitation method, CaCl 2 Hanahan method, which is enhanced efficiency by using DMSO (dimethyl sulfoxide) as a precipitation method, electroporation, calcium phosphate precipitation method, protoplast fusion method, agitation method using silicon carbide fiber, Agrobacterium-mediated transformation method , Transformation with PEG, dextran sulfate, lipofectamine and dry / inhibition mediated transformation.
  • DMSO dimethyl sulfoxide
  • the method for transforming a recombinant vector comprising a nucleic acid encoding a short chain insulin analogue according to the present invention is not limited to the above examples, and the transformation or transfection methods commonly used in the art can be used without limitation.
  • the transformant of the present invention can be obtained by introducing into a host cell a recombinant vector containing a nucleic acid encoding a short chain insulin analogue, which is a target nucleic acid.
  • a host suitable for the present invention is not particularly limited as far as it is capable of expressing the nucleic acid of the present invention.
  • Specific examples of the host which can be used in the present invention include bacteria belonging to the genus Escherichia such as E. coli ; Bacteria of the genus Bacillus such as Bacillus subtilis ; Bacteria of the genus Pseudomonas such as Pseudomonas putida ; Pichia pastoris (Pichia pastoris), three Levy in Saccharomyces My process jiae (Saccharomyces S.
  • Escherichia coli is used as a host cell.
  • Another aspect for implementing the present invention provides a method for producing a short-chain insulin analog using the transformant.
  • short chain insulin analogue The above-mentioned short chain insulin analogue, nucleic acid, and transformant are as described above.
  • the medium used for culturing the transformant in the present invention should meet the requirements of host cell culture in an appropriate manner.
  • the carbon source that may be contained in the medium for the growth of host cells may be appropriately selected according to the judgment of a person skilled in the art depending on the type of the transformant prepared and suitable culture conditions may be adopted for controlling the culture time and amount .
  • Sugar sources that may be used include sugars and carbohydrates such as glucose, saccharose, lactose, fructose, maltose, starch, cellulose, oils and fats such as soybean oil, sunflower oil, castor oil, coconut oil, palmitic acid, Fatty acids such as linoleic acid, glycerol, alcohols such as ethanol, and organic acids such as acetic acid. These materials may be used individually or as a mixture.
  • nitrogen sources examples include peptone, yeast extract, gravy, malt extract, corn steep liquor, soybean wheat and urea or inorganic compounds such as ammonium sulfate, ammonium chloride, ammonium phosphate, ammonium carbonate and ammonium nitrate.
  • the nitrogen source may also be used individually or as a mixture.
  • Potassium which may be used include potassium dihydrogen phosphate or dipotassium hydrogen phosphate or the corresponding sodium-containing salts.
  • the culture medium may contain a metal salt such as magnesium sulfate or iron sulfate necessary for growth.
  • essential growth materials such as amino acids and vitamins can be used.
  • suitable precursors may be used in the culture medium.
  • the abovementioned raw materials can be added to the culture batches in a batch manner or in a continuous manner by an appropriate method during cultivation.
  • Basic compounds such as sodium hydroxide, potassium hydroxide, ammonia, or acid compounds such as phosphoric acid or sulfuric acid can be used in a suitable manner to adjust the pH of the culture.
  • bubble formation can be suppressed by using a defoaming agent such as a fatty acid polyglycol ester.
  • An oxygen or oxygen-containing gas (such as air) is injected into the culture to maintain aerobic conditions.
  • the cultivation of the transformant according to the present invention is usually carried out at a temperature of 20 ° C to 45 ° C, specifically 25 ° C to 40 ° C. Culturing also continues until the desired amount of the desired short chain insulin analog is obtained, for which culturing can usually last 10 to 160 hours.
  • the transformant according to the present invention when appropriate culture conditions are established according to the host cell, the transformant according to the present invention produces a short-chain insulin analogue.
  • Proteins expressed in or outside the host cell can be purified in a conventional manner.
  • purification methods include salting out (eg ammonium sulfate precipitation, sodium phosphate precipitation), solvent precipitation (eg, protein fraction precipitation using acetone, ethanol, etc.), dialysis, gel filtration, ion exchange, reverse phase column chromatography Chromatography and ultrafiltration can be applied alone or in combination.
  • the peptide fused to the short-chain insulin amino terminal contributes to an increase in expression yield of the short-chain insulin analogue and has a proteolytic enzyme (for example, trypsin) cleavage site, so that it is efficiently removed in the production of short chain insulin analogue.
  • the peptide added to the short-chain insulin amino terminal contributes to an increase in expression yield of the short-chain insulin analogue and is not limited as long as it has a protease cleavage site, but it may specifically be composed of 5 to 20 amino acids, , 7 to 18, or 9 to 16 amino acids, and more specifically, may comprise the amino acid sequence of MATTSTATTR (SEQ ID NO: 20).
  • the short chain insulin analog to which the peptide is fused may have the amino acid sequence of SEQ ID NO: 24, but is not limited thereto.
  • the short chain insulin analog to which the peptide is fused is a native insulin A chain; An analog of the C-peptide; And the natural type insulin B chain are connected in this order.
  • the amino acid sequence of SEQ ID NO: 19 is not limited thereto.
  • the following steps may be additionally included to isolate and purify short chain insulin analogs expressed in inclusion form from transformants:
  • b-4) treating the purified short chain insulin analog with a proteolytic enzyme (e.g. trypsin or carboxypeptidase B); And / or
  • a proteolytic enzyme e.g. trypsin or carboxypeptidase B
  • the step of separating and purifying may further include the step of removing the peptide fused to the short-chain insulin analogue when the short-chain insulin analog is expressed in a form in which the peptide containing the protease cleavage site is fused .
  • the preparation refers to a preparation containing a carrier which is covalently bonded directly to a short-chain insulin analogue, or a preparation containing a component capable of enhancing the maintenance of in vivo activity of a short-chain insulin analogue even if there is no direct covalent bond.
  • Still another embodiment of the present invention provides a short-chain insulin analogue, which combines a short-chain insulin analog and a substance capable of increasing its in vivo half-life, as a sustained insulin.
  • the short-chain insulin analogue of the present invention has a lower activity than that of natural insulin, thereby lowering the risk of hypoglycemia, which is the greatest problem of conventional natural insulin.
  • the sustained-release formulation thereof maintains low activity continuously, It is advantageous for blood glucose control over time.
  • the short chain insulin analogue conjugate of the present invention has the structure of the following formula (1).
  • X is a natural type insulin A chain, B chain or analog thereof
  • Y is a C-peptide or analog thereof
  • Z is a natural type insulin B chain, A chain or analog thereof
  • L is a linker
  • a is 0 or a natural number, and when a is 2 or more, each L is independent of each other,
  • F is a substance that can increase the in vivo half-life of an insulin analogue
  • X, Y and Z are each a B chain, C-peptide and A chain of natural insulin, or A chain, C-peptide and B chain of native insulin,
  • X-Y-Z forms a short chain insulin analog.
  • the symbol " - " means each bond and represents a direct bond or linker.
  • the linker may be a peptide linker or a non-peptide linker.
  • the "-" may be any chemical bond such as non-covalent bond or covalent bond, and may be specifically covalent bond, but is not limited thereto.
  • the L may be a peptide polymer or a non-peptide polymer.
  • L When L is a peptide polymer, it may include one or more amino acids, and may include, for example, 1 to 1000 amino acids, but is not particularly limited thereto.
  • various known peptide linkers may be used in the present invention for linking F and Z, including [GS] x linkers, [GGGS] x linkers, and [GGGGS] x linkers, And may be a natural number of 1 or more. However, it is not limited to the above example.
  • the non-peptide polymer is selected from the group consisting of polyethylene glycol, polypropylene glycol, ethylene Polyvinyl alcohol, polysaccharide, dextran, polyvinyl ethyl ether, biodegradable polymer, lipopolymer, chitin, hyaluronic acid, and combinations thereof.
  • the polyol component may be selected from the group consisting of polyoxyethylene glycol, polyoxyethylene polyol, glycol-propylene glycol copolymer, polyoxyethylated polyol, More specifically, it may be polyethylene glycol, but is not limited thereto.
  • X-Y-Z and F may be bonded to each other through a covalent chemical bond or a non-covalent chemical bond, and X-Y-Z and F may be bonded to each other through L through a covalent chemical bond, a non-covalent chemical bond or a combination thereof.
  • persistent insulin refers to a substance to which a biocompatible substance capable of extending half-life to a short-chain insulin analogue is bound.
  • the sustained insulin has an increased half-life as compared to the natural insulin.
  • the short-chain insulin analogue is as described above.
  • a " biocompatible substance or a substance capable of increasing the half-life in vivo” means a substance capable of being bound to a short-chain insulin analogue to prolong its half-life.
  • the " biocompatible material " or " material capable of increasing in vivo half-life " is used in combination with the " carrier "
  • the biocompatible substance or carrier includes any substance that can bind to a short-chain insulin analogue to prolong its half-life.
  • examples thereof include polyethylene glycol, fatty acid, cholesterol, albumin and its fragment, albumin binding substance, but are not limited to, polymers, antibodies, antibody fragments, FcRn binding materials, in vivo connective tissues or derivatives thereof, nucleotides, fibronectin, transferrin, saccharides and polymeric polymers Do not.
  • the biocompatible material or carrier may be conjugated to a short chain insulin analog in a covalent or noncovalent association.
  • the linkage between the short-chain insulin analog and the biocompatible substance or carrier includes a recombinant method and an in vitro binding using a polymer or a low molecular chemical, and is not limited to any binding method.
  • the Recode technology of Ambrx which can attach polyethylene glycol in a position-specific manner when polyethylene glycol is used as a carrier can be included, and the glycopegylation technique of Neose which can be specifically attached to the sugar chain site can be included have.
  • releasable PEG techniques in which polyethylene glycol is slowly removed in vivo may be included, but the present invention is not limited thereto, and techniques for increasing bioavailability using PEG may be included.
  • polymers such as polyethylene glycol, polypropylene glycol, ethylene glycol-propylene glycol copolymer, polyoxyethylated polyol, polyvinyl alcohol, polysaccharide, dextran, polyvinyl ethyl ether, biodegradable polymer, lipopolymer, chitin and hyaluronic acid Polymer polymers can also be coupled to insulin analogs by the techniques described above.
  • albumin when used as a carrier, it may include a technique of directly covalently bonding an albumin or an albumin fragment directly to an insulin analogue to increase stability in vivo. Even if albumin is not directly bound, a substance binding to albumin such as albumin A technique of binding specific binding antibodies or antibody fragments to albumin by binding to insulin analogues and a technique of binding specific albumin-binding specific peptides / proteins (albumin binding peptides produced using Affibody's albumod technology, for example) And may include techniques for binding a fatty acid having a binding ability to albumin, etc.
  • the present invention is not limited thereto, and any technique or combination method that can increase stability in vivo using albumin may be included in the present invention. have.
  • Techniques for binding an antibody or antibody fragment to an insulin analogue using the carrier as a carrier may be included in the present invention to increase the half-life in vivo.
  • An antibody fragment or an antibody fragment having the same FcRn binding site and may be any antibody fragment that does not include an FcRn binding site such as Fab.
  • the CovX-body technique of CovX using a catalytic antibody may be included therein, and a technique of increasing the half-life in vivo using the immunoglobulin Fc region may also be included in the present invention.
  • the FcRn binding material may be an immunoglobulin Fc region.
  • immunoglobulin Fc region means the remaining portion of the immunoglobulin except for the heavy chain and light chain variable region, heavy chain constant region 1 (CH1) and light chain constant region (CL) It may also include a hinge region in the constant region. Particularly a fragment comprising the entire immunoglobulin Fc region and a portion thereof, and in the present invention the immunoglobulin Fc region may be mixed with an immunoglobulin fragment or an immunoglobulin constant region.
  • the sugar chain is present at the Asn297 site in the heavy chain constant region 1, but the recombinant Fc derived from Escherichia coli is expressed in a form without sugar chains. Removal of the sugar chain in Fc lowers binding ability of Fc gamma receptors 1,2,3 and complement (c1q) binding to heavy chain constant region 1 and reduces or eliminates antibody-dependent or complement-dependent cytotoxicity.
  • an " immunoglobulin constant region" is defined as a heavy chain constant region 2 (CH2) and a heavy chain constant region 3 (CH2) except for the heavy and light chain variable regions of the immunoglobulin, heavy chain constant region 1 (CH1) and light chain constant region CH3) (or including the heavy chain constant region 4 (CH4)), and may also include a hinge portion in the heavy chain constant region.
  • the immunoglobulin constant region of the present invention may contain, as long as the immunoglobulin constant region has substantially equivalent or improved effect to the wild type, only a part or all of the heavy chain constant region 1 (CH1) and / or the light chain constant region And may be an extended immunoglobulin constant region comprising region CL.
  • the immunoglobulin constant region of the present invention includes (1) a CH1 domain, a CH2 domain, a CH3 domain and a CH4 domain, (2) a CH1 domain and a CH2 domain, (3) a CH1 domain and a CH3 domain, Domain, (5) a combination of one or more constant domain domains with immunoglobulin hinge regions (or portions of hinge regions), and (6) a heavy chain constant region angular domain and light chain constant region dimer.
  • Constant domains, including immunoglobulin Fc fragments are biodegradable polypeptides that are metabolized in vivo and are therefore safe for use as carriers for drugs.
  • the immunoglobulin Fc fragment has a relatively smaller molecular weight than that of the whole immunoglobulin molecule, it is advantageous in terms of preparation, purification and yield of the conjugate, and since the Fab region exhibiting high inhomogeneity due to the different amino acid sequence is removed, And the possibility of inducing blood antigenicity can be expected to be lowered.
  • the immunoglobulin constant region may be an animal origin such as human or bovine, goat, pig, mouse, rabbit, hamster, rat, guinea pig and the like, specifically human origin.
  • the immunoglobulin constant region may be selected from the group consisting of IgG, IgA, IgD, IgE, IgM, or a combination thereof, or a constant region by hybridization thereof. Specifically IgG derived from the most abundant IgG or IgM in human blood, and most specifically IgG derived from a known ligand binding protein.
  • the immunoglobulin Fc region may be a dimer or a multimer composed of a short chain immunoglobulin composed of domains of the same origin.
  • the term " combination" means that when a dimer or a multimer is formed, a polypeptide encoding the same-origin short-chain immunoglobulin constant region (specifically, the Fc region) binds to a short-chain polypeptide of a different origin . That is, it is possible to prepare a dimer or a multimer from two or more fragments selected from the group consisting of Fc fragments of IgG Fc, IgA Fc, IgM Fc, IgD Fc and IgE.
  • hybrid in the present invention means a sequence corresponding to immunoglobulin constant regions of two or more different origins in a short-chain immunoglobulin constant region (specifically, Fc region).
  • Fc region short-chain immunoglobulin constant region
  • various types of hybrids are possible. That is, hybrids of one to four domains selected from the group consisting of CH1, CH2, CH3 and CH4 of IgG Fc, IgM Fc, IgA Fc, IgE Fc and IgD Fc are possible, can do.
  • IgG can also be divided into subclasses of IgG1, IgG2, IgG3 and IgG4, and a combination thereof or a hybridized form thereof is also possible in the present invention. Specifically IgG2 and IgG4 subclasses, and more specifically, an Fc region of IgG4 with little effector function such as complement dependent cytotoxicity (CDC).
  • CDC complement dependent cytotoxicity
  • the immunoglobulin constant region may be a natural type sugar chain, an increased sugar chain as compared with the native type, and a reduced sugar chain or sugar chain as compared with the native type.
  • Conventional methods such as chemical methods, enzymatic methods, and genetic engineering methods using microorganisms can be used to increase or decrease the immunoglobulin constant region sugar chains.
  • the immunoglobulin constant region in which the sugar chain is removed in the immunoglobulin constant region significantly decreases the binding force of the complement (c1q) and reduces or eliminates the antibody-dependent cytotoxicity or complement-dependent cytotoxicity, Lt; / RTI >
  • forms that are more consistent with the original purpose of the drug as a carrier will be immunoglobulin constant regions with or without glycosylation.
  • non-glycosylated Fc regions derived from human IgG4, i.e., human unchallenged IgG4 Fc regions can be used.
  • the human-derived Fc region may be preferable to the non-human-derived Fc region which can act as an antigen in a human organism and cause an undesirable immune response such as the generation of new antibodies thereto.
  • the immunoglobulin constant region of the present invention includes a naturally occurring amino acid sequence as well as its sequence derivative (mutant).
  • An amino acid sequence derivative means that one or more amino acid residues in the native amino acid sequence have different sequences by deletion, insertion, non-conservative or conservative substitution, or a combination thereof.
  • amino acid residues 214 to 238, 297 to 299, 318 to 322 or 327 to 331, which are known to be important for binding, can be used as sites suitable for modification.
  • various kinds of derivatives are possible, such as a site capable of forming a disulfide bond is removed, some amino acid at the N-terminus is removed from the native Fc, or a methionine residue is added to the N-terminus of the native Fc.
  • the complement binding site for example the C1q binding site, may be removed and the ADCC site may be removed.
  • Amino acid exchanges in proteins and peptides that do not globally alter the activity of the molecule are known in the art (H. Neurath, R. L. Hill, The Proteins, Academic Press, New York, 1979).
  • the most commonly occurring exchanges involve amino acid residues Ala / Ser, Val / Ile, Asp / Glu, Thr / Ser, Ala / Gly, Ala / Thr, Ser / Asn, Ala / Val, Ser / Gly, Thr / Pro, Lys / Arg, Asp / Asn, Leu / Ile, Leu / Val, Ala / Glu and Asp / Gly.
  • the above-described immunoglobulin constant region derivative may have the same biological activity as the immunoglobulin constant region of the present invention, but may be a derivative having increased structural stability against heat, pH, etc. of the immunoglobulin constant region.
  • immunoglobulin constant regions may also be obtained from natural forms isolated in vivo in humans and animals such as cattle, goats, pigs, mice, rabbits, hamsters, rats, guinea pigs, etc., and may be obtained from transformed animal cells or microorganisms Or a derivative thereof.
  • the method of obtaining from the natural form can be obtained by separating the whole immunoglobulin from the living body of human or animal, and then treating the proteolytic enzyme.
  • it may be a recombinant immunoglobulin constant region obtained from a microorganism from a human-derived immunoglobulin constant region.
  • the conjugates of the invention may be linked via a linker to a substance capable of increasing the short-chain insulin analogue and its in vivo half-life.
  • the linker may be in the form of a short chain insulin analogue or a form coupled to N-terminal, C-terminal, lysine, histidine, or cysteine of each of the substances capable of increasing in vivo half-life.
  • the linker may be a peptide linker or a non-peptide linker.
  • the non-peptide linker that can be used in the present invention can be used without limitation as long as it has the above-mentioned role, that is, a non-peptide polymer resistant to in vivo protease.
  • non-peptide polymer in the present invention includes a biocompatible polymer having two or more repeating units bonded, and is mixed with a " non-peptide linker ".
  • the repeating units are linked to each other via any covalent bond rather than a peptide bond.
  • the non-peptide polymer may include a reactive group at the terminal thereof to form a conjugate through reaction with other constituent components constituting the conjugate.
  • non-peptide polymer linkage moiety in the present invention means a component in a complex formed by combining a non-peptide polymer having a reactive group at both ends with an immunoglobulin Fc region and a short chain insulin analogue through each reactor do.
  • the short chain insulin analogue conjugate is conjugated to an immunoglobulin Fc region and a short chain insulin analog via a non-peptide polymer comprising a reactor capable of binding an immunoglobulin Fc region and a short chain insulin analogue at both ends And may be coupled together.
  • the non-peptide polymer is selected from the group consisting of polyethylene glycol, polypropylene glycol, a copolymer of ethylene glycol and propylene glycol, a polyoxyethylated polyol, polyvinyl alcohol, polysaccharide, dextran, polyvinyl Biodegradable polymers such as ethyl ether, polylactic acid (PLA) and polylactic-glycolic acid (PLGA), lipopolymers, chitins, hyaluronic acid, oligonucleotides, and combinations thereof.
  • the non-peptide polymer may be, but is not limited to, polyethylene glycol.
  • the linkage by the linker may be any chemical bond such as a non-covalent chemical bond or a covalent chemical bond, and there is no limitation thereto.
  • a non-peptide polymer comprises a biocompatible polymer having two or more repeating units bonded, and the repeating units are connected to each other through any covalent bond, not a peptide bond.
  • Such non-peptide polymers may have both ends or three ends.
  • the non-peptide polymer which can be used in the present invention may be any polymer that is resistant to proteolytic enzymes in vivo, but specifically, the molecular weight of the non-peptide polymer is in the range of more than 0 to 200 kDa, specifically in the range of 1 to 100 kDa , More specifically in the range of 1 to 50 kDa, even more specifically in the range of 1 to 20 kDa, even more specifically in the range of 3.4 to 10 kDa, even more specifically about 3.4 kDa.
  • non-peptide polymers of the present invention that bind to the carrier may use not only one kind of polymer but also a combination of different kinds of polymers.
  • both ends of the non-peptide polymer may bind to an amino group, a thiol group, or a hydroxyl group of an immunoglobulin Fc region or a short chain insulin analogue, respectively.
  • the non-peptide polymer may be conjugated to an immunoglobulin Fc and a short chain insulin analogue at both ends, in particular a N-terminal of a short chain insulin analogue or immunoglobulin Fc region, lysine, and / or histidine A hydroxyl group at the C-terminus, and / or a thiol group of cysteine.
  • the reactor of the non-peptide polymer may be at least one selected from the group consisting of an aldehyde group, a propionaldehyde group, a butylaldehyde group, a maleimide group and a succinimide derivative, but is not limited thereto.
  • aldehyde group may be exemplified by propionaldehyde group or butylaldehyde group, but is not limited thereto.
  • succinimide derivatives examples include succinimide derivatives such as succinimidyl carboxymethyl, succinimidyl valerate, succinimidyl methyl butanoate, succinimidyl methyl propionate, succinimidyl butanoate, succinimidyl butanoate, N-hydroxysuccinimide, or succinimidyl carbonate may be used, but the present invention is not limited thereto.
  • the non-peptide polymer may be coupled to immunoglobulin Fc and a short chain insulin analogue through such a reactor to convert to a non-peptide polymeric linkage.
  • the final product formed by reductive alkylation with an aldehyde bond is much more stable than with an amide bond.
  • the aldehyde reactor reacts selectively at the N-terminus at low pH and can form a covalent bond with the lysine residue at high pH, e.g., pH 9.0.
  • the terminal reactors of the non-peptide polymers of the present invention may be the same or different from each other.
  • the non-peptide polymer may have an aldehyde group reactor at the end, and the non-peptide polymer may have an aldehyde group and a maleimide reactor at the ends, respectively, or may have an aldehyde group and a succinimide reactor at the ends, respectively But is not limited thereto.
  • it may have a maleimide group at one end and an aldehyde group, propionaldehyde group or butylaldehyde group at the other end.
  • a succinimidyl group may be present at one end and a propionaldehyde group or a butylaldehyde group at the other end.
  • the reactor of the non-peptide polymer may be connected to the cysteine residue of a short chain insulin analog, more specifically to the -SH group of cysteine, but is not limited thereto.
  • the maleimide group is linked to the -SH group of the short chain insulin analogue by a thioether bond, and the aldehyde group is linked to the -NH 2 group of the immunoglobulin Fc through a reductive alkylation reaction But is not limited thereto, which corresponds to one example.
  • the N-terminal amino group of the immunoglobulin Fc region is linked to the oxygen atom located at one end of the PEG through a linker functional group having a structure of -CH 2 CH 2 CH 2 - to form -PEG-O -CH 2 CH 2 CH 2 can be formed in a structure such as NH- immunoglobulin Fc, there is one end of the PEG via a thioether bond to form a structure attached to the sulfur atom of a cysteine in the single-chain insulin analog.
  • the thioether linkage As shown in FIG.
  • the present invention is not particularly limited to the above-mentioned example, which corresponds to one example.
  • the reactor of the non-peptide polymer may be linked to -NH 2 at the N-terminus of the immunoglobulin Fc region, but this corresponds to one example.
  • the short chain insulin analogues of the present invention can be linked via a C-terminal to a non-peptide polymer having a reactor.
  • &quot refers to the carboxy terminal of a peptide, and refers to a position capable of binding with a non-peptide polymer for the purpose of the present invention.
  • Examples include, but are not limited to, all the amino acid residues around the C-terminal as well as the terminal amino acid residue at the C-terminus, specifically including the first to twentieth amino acid residues from the most terminal .
  • the linkage of a substance capable of prolonging in vivo half-life with a short chain insulin analogue may be a genetic recombination method.
  • Another aspect of the present invention provides a method of preparing a short chain insulin analogue conjugate comprising the step of linking the short chain insulin analogue and a substance capable of increasing its in vivo half-life.
  • the short chain insulin analogue the substance capable of increasing the in vivo half-life thereof, and the short chain insulin analogue conjugate are as described above.
  • step (b) reacting the conjugate prepared in the step (a) with another one of the carrier or short chain insulin analog not attached to the conjugate to produce a conjugate wherein the short chain insulin analogue and the carrier are linked via the non-peptide polymer Step < / RTI >
  • the non-peptide polymer, the carrier, the short chain insulin analog and the connection structure thereof are all described above.
  • ligand refers to an intermediate in which only one of the non-peptide polymer and the short chain insulin analogue or carrier is linked by a covalent bond, wherein the terminal of the non-peptide polymer to which the short- A short chain insulin analogue or carrier not attached to the linkage may be combined.
  • the short-chain insulin analog can be obtained by a method for producing the short-chain insulin analogue as described above, and can be manufactured by commissioning.
  • Another embodiment of the present invention provides an in vivo persistence and stability enhanced short chain insulin persistence agent comprising the single chain insulin analog or single chain insulin analogue conjugate.
  • agents capable of increasing bioavailability or maintaining sustained activity include microparticles using PLGA, hyaluronic acid, chitosan, etc., sustained release formulations using nanoparticles, and the like.
  • agents for increasing bioavailability or maintaining sustained activity may be agents such as implants, inhalations, nasal preparations, patches, and the like.
  • Such a short-chain insulin analogue or short-chain insulin analogue conjugate of the present invention not only maintains the in vivo activity of existing insulin such as energy metabolism and glucose metabolism, but also has a blood half-life of insulin analogue and thus the sustained effect of the peptide in vivo , which is useful for the treatment of diabetes.
  • Another aspect of the present invention provides a pharmaceutical composition for the prevention or treatment of diabetes comprising the short chain insulin analogue or short chain insulin analogue conjugate.
  • the short chain insulin analogue and short chain insulin analogue conjugate are as described above.
  • prevention means any action that inhibits or delays the onset of a diabetes mellitus by administration of the pharmaceutical composition
  • treatment means that administration of the pharmaceutical composition improves the symptoms of diabetes mellitus It means all acts that are benefited.
  • administering means introducing a predetermined substance into a patient in any suitable manner, and the route of administration of the pharmaceutical composition is not particularly limited, but it is preferable that the composition is capable of reaching an in vivo target For example, intraperitoneal, intravenous, intramuscular, subcutaneous, intradermal, oral, topical, intranasal, intra-pulmonary, or rectal Administration, and the like.
  • the pharmaceutical composition of the present invention may further comprise a pharmaceutically acceptable carrier, excipient or diluent.
  • a pharmaceutically acceptable carrier excipient or diluent.
  • Such pharmaceutically acceptable carriers, excipients, or diluents may be those that have been non-naturally occurring.
  • the carrier may be a binder, a lubricant, a disintegrant, an excipient, a solubilizing agent, a dispersing agent, a stabilizer, a suspending agent, a coloring matter, a perfume or the like in the case of oral administration.
  • a preservative, an anhydrous agent, a solubilizing agent, an isotonic agent, a stabilizer and the like may be mixed.
  • a base, an excipient, a lubricant, a preservative and the like may be used.
  • the term " pharmaceutically acceptable” means that the compound does not cause a sufficient amount and adverse effect to exhibit a therapeutic effect, and is not limited to the kind of the disease, the age, body weight, health, sex, For example, the sensitivity of the compound to be administered, the route of administration, the method of administration, the frequency of administration, the duration of treatment, the compounding or concurrent use of drugs, and the like.
  • Formulations of the compositions of the present invention may be prepared in a variety of ways by mixing with a pharmaceutically acceptable carrier as described above.
  • oral administration may be in the form of tablets, troches, capsules, elixirs, suspensions, syrups, wafers, etc.
  • unit dosage ampoules or multiple dosage forms may be prepared.
  • suitable carriers, excipients and diluents for formulation include lactose, dextrose, sucrose, sorbitol, mannitol, xylitol, erythritol, maltitol, starch, acacia, alginate, gelatin, calcium phosphate, calcium silicate, cellulose, methylcellulose, Microcrystalline cellulose, polyvinylpyrrolidone, water, methylhydroxybenzoate, propylhydroxybenzoate, talc, magnesium stearate or mineral oil may be used. Further, it may further contain a filler, an anti-coagulant, a lubricant, a wetting agent, a fragrance, a preservative, and the like.
  • composition of the present invention may be in any form selected from the group consisting of tablets, pills, powders, granules, capsules, suspensions, solutions, emulsions, syrups, sterilized aqueous solutions, nonaqueous solutions, ≪ / RTI >
  • composition may be formulated into a unit dosage form suitable for intra-body administration of a patient according to a conventional method in the pharmaceutical field, specifically, a formulation useful for administration of a protein drug, Or intravenous, intramuscular, intraarterial, intramedullary, intrathecal, intraventricular, pulmonary, transdermal, subcutaneous, intraperitoneal, intratracheal, topical, sublingual, vaginal, or transdermal But are not limited to, the parenteral route of administration, including rectal routes.
  • the conjugate may be used in combination with various carriers permitted as pharmaceutical agents, such as physiological saline or an organic solvent, and may be mixed with carbohydrates such as glucose, sucrose or dextran, ascorbic acid acid, or glutathione, chelating agents, low molecular weight proteins or other stabilizers, and the like.
  • pharmaceutical agents such as physiological saline or an organic solvent
  • carbohydrates such as glucose, sucrose or dextran, ascorbic acid acid, or glutathione, chelating agents, low molecular weight proteins or other stabilizers, and the like.
  • the dosage and frequency of the pharmaceutical composition of the present invention will depend on the type of the active ingredient, together with various related factors such as the disease to be treated, the route of administration, the patient's age, sex, and weight and disease severity.
  • the total effective amount of the composition of the present invention may be administered to a patient in a single dose and may be administered by a fractionated treatment protocol administered over a prolonged period of time in multiple doses.
  • the content of the active ingredient may be varied depending on the degree of the disease.
  • the preferred total dose of the conjugate of the present invention may be about 0.0001 mg to 500 mg per kg body weight of the patient per day.
  • the dose of the conjugate is determined depending on various factors such as the patient's age, body weight, health condition, sex, severity of disease, diet and excretion rate as well as administration route and frequency of treatment of the pharmaceutical composition, It will be understood by those of ordinary skill in the art that appropriate effective dosages may be determined according to the particular use of the composition of the present invention.
  • the pharmaceutical composition according to the present invention is not particularly limited to its formulation, administration route and administration method as long as the effect of the present invention is exhibited.
  • Another aspect of the present invention provides a method for preventing or treating diabetes mellitus comprising administering to a subject in need thereof a pharmaceutical composition comprising the short chain insulin analogue or short chain insulin analogue conjugate.
  • the short chain insulin analogue, short chain insulin analogue conjugate, prevention and treatment are as described above.
  • the term "individual" means a subject suspected of having diabetes, and the subject suspected of having diabetes means a mammal including a rat, a domestic animal,
  • the single chain insulin analogs, short chain insulin analogue conjugates of the present invention or individuals treatable with the above composition containing the same are not limited.
  • the method of the present invention can administer the pharmaceutical composition in a pharmaceutically effective amount.
  • the appropriate total daily dose may be determined by the treatment within the scope of appropriate medical judgment, and may be administered once or several times.
  • the specific therapeutically effective amount for a particular patient will depend upon the nature and extent of the reaction to be achieved, the particular composition, including whether or not other agents are used, the age, weight, Sex and diet of the patient, the time of administration, the route of administration and the rate of administration of the composition, the duration of the treatment, the drugs used or concurrently used with the specific composition, and similar factors well known in the medical arts.
  • proinsulin analogue (A chain-C peptide-B chain)
  • the expression vector may be a proinsulin analogue (A chain-C peptide-B chain, SEQ ID NO: 4 and 5) and native proinsulin (B chain-C peptide- SEQ ID NOS: 6 and 7), and was prepared as follows.
  • PCR was carried out by amplifying the A chain, C peptide and B chain using proinsulin cDNA (Origene) as a template, respectively, by using the PCR method and then mixing the three PCR amplification products and the above primers together to obtain a proinsulin analog gene Were synthesized.
  • the forward primer (SEQ ID NO: 8) was synthesized to include the initiation ATG codon and the NdeI restriction enzyme site
  • the reverse primer (SEQ ID NO: 9) was synthesized at the 3'end of the A chain Site sequence and the 5 'site sequence of the C peptide.
  • (SEQ ID NO: 10) is the amino terminal sequence of the A chain and the C peptide sequence
  • the reverse primer (SEQ ID NO: 11) is the 3 'terminal sequence of the C peptide And the 5 'end sequence of the B chain.
  • the forward primer (SEQ ID NO: 12) has the 3 'terminal sequence and the B chain sequence of the C peptide and the reverse primer (SEQ ID NO: 13) Sequence and a restriction enzyme BamH I sequence.
  • the sequence of the primer is as follows.
  • Each of the genes was amplified using the above primers, and the respective PCR amplification products were mixed together with the oligonucleotide of SEQ ID NO: 8 and the primer of SEQ ID NO: 13 to obtain the final A-C-peptide-B chain Was synthesized (Fig. 1).
  • PCR was performed with annealing at 60 ° C for 20 seconds and extension at 68 ° C for 20 seconds.
  • the proinsulin analog fragment obtained above was cloned into pET22b vector (Novagen).
  • the pET22b vector was treated with restriction enzymes Nde I and BamH I to remove the signal sequence, and the proinsulin analog PCR product was treated with the same restriction enzymes Nde I and Bam H I
  • Each DNA was inserted into a pET22b cloning vector using T4 DNA ligase.
  • the resulting expression vector was named pET22b-InvPI.
  • nucleotide sequence of proinsulin analog (SEQ ID NO: 7) obtained above, the first and second amino acids arginine (No. 1 and No. 2 in SEQ ID NO: 3) and the last two amino acids of C peptide (SEQ ID NO: 34 in lysine, 35 in SEQ ID NO: 35) was removed using the primers of SEQ ID NOS: 14 to 17 below.
  • proinsulin analog obtained above was named pET22b-InvPI? RRKR and the short-chain insulin analogue was named InvPI? RRKR (SEQ ID NOs: 18 and 19).
  • Natural proinsulin sequence and short chain insulin analog sequence analog order SEQ ID NO: The short chain insulin analogue (InvPI? RRKR) DNA GGC ATT GTG GAA CAA TGC TGT ACC AGC ATC TGC TCC CTC TAC CAG CTG GAG AAC TAC TGC AAC GAG GCA GAG GAC CTG CAG GTG GGG CAG GTG GAG CTG GGC GGG GGC CCT GGT GCA GGC AGC CTG CAG CCC TTG GCC CTG GAG GGG TCC CTG CAG TTT GTG AAC CAC CAC CTG TGC GGC TCA CAC CTG GTG GAA GCT CTC TAC CTA GTG TGC GGG GAA CGA GGC TTC TTC TAC ACA CCC AAG ACC TAG 18 protein GIVEQCCTSICSLYQLENYCNEAEDLQVGQVELGGGPGAGSLQPLALEGSLQFVNQHLCGSHLVEALYLVCGERGFFYTPKT 19
  • a forward primer (SEQ ID NO: 21) was synthesized to include an initiation ATG codon and an NdeI restriction site and 10 amino acid sequences, and a reverse primer (SEQ ID NO: 22 ) was synthesized to contain the restriction enzyme BamH I sequence.
  • the sequence of the primer is as follows.
  • PCR was carried out by annealing at 60 ° C for 30 seconds and extension at 68 ° C for 30 seconds for the amplification of the short chain insulin analogue into which the binding protein was inserted using the above primers.
  • the short chain insulin analog fragment in which the binding protein obtained above was inserted was cloned into pET22b vector (Novagen).
  • the pET22b vector was treated with restriction enzymes Nde I and BamH I to remove the signal sequence, and the short chain insulin analog PCR product containing the binding protein was ligated with the same restriction enzymes Nde I and BamH I and each separated DNA was inserted into pET22b cloning vector using T4 DNA ligase.
  • the resulting expression vector was designated as pET22b-FInvPI? RRKR and the short chain insulin analogue into which the binding protein was inserted was named FInvPI? RRKR (Fusion-A-C-B RRKR; SEQ ID NOs: 23 and 24).
  • the short chain insulin analogue (FInvPI? RRKR) sequence inserted with the binding protein analog order SEQ ID NO: Binding Protein Short Chain Insulin Analog (Fusion-A-C-B DELTA RRKR) DNA ATG GCA ACA ACA TCA ACA GCA ACT ACG CGT GGC ATT GTG GAA CAA TGC TGT ACC AGC ATC TGC TCC CTC TAC CAG CTG GAG AAC TAC TGC AAC GAG GCA GAG GAC CTG CAG GTG GGG CAG GTG GAG CTG GGC GGG GGC CCT GGT GCA GGC AGC CTG CAG CCC TTG GCC CTG GAG GGG TCC CTG CAG TTT GTG AAC CAA CAC CTG TGC GGC TCA CAC CTG GTG GAA GCT CTC TAC CTA GTG TGC GGG GAA CGA GGC TTC TTC TAC ACA CCC AAG ACC TAG 23 protein MATTSTATTRGIVE
  • the pET22b-FInvPI [Delta] RRKR expression vector encodes the amino acid sequence of SEQ ID NO: 24 under the control of the T7 promoter and expresses the proinsulin analogue protein in the form of an inclusion body in the host cell.
  • E. coli BL21DE3 by each of the recombinant single-chain insulin analog expression vector; a (E. coli B F dcm ompT hsdS-(rB-mB-) gal ⁇ (DE3) Nova Xen) was transformed.
  • the transformation method was a method recommended by Novagen.
  • Each single colony transformed with each recombinant expression vector was taken and inoculated into 2X Luria Broth medium containing ampicillin (50 mu g / ml) and cultured at 37 DEG C for 15 hours.
  • the recombinant strain culture medium and 2X LB medium containing 30% glycerol were mixed at a ratio of 1: 1 (v / v), and each 1 ml was dispensed into cryo-tubes and stored at -140 ° C. This was used as a cell stock for the production of the recombinant fusion protein.
  • each cell stock 1 vial was dissolved and inoculated into 500 ml of 2X LB and incubated at 37 [deg.] C for 14-16 hours with shaking.
  • the culture was terminated and used as a seed culture solution.
  • a 5 L fermentor Bioflo-320, NBS, USA
  • the seed culture was inoculated into a 1.6 L fermentation medium and initial fermentation was initiated.
  • the culture conditions were maintained at a pH of 6.70 using a temperature of 37 ° C, an air volume of 2.0 L / min (1 vvm), a stirring speed of 650 rpm and 30% ammonia water.
  • the fermentation process was carried out by adding a feeding solution.
  • the growth of the strain was monitored by the OD value and IPTG at a final concentration of 500 ⁇ M was introduced at an OD value of 70 or higher.
  • the culture was continued for about 23 to 25 hours after the introduction of IPTG.
  • the recombinant strains were harvested using a centrifuge and stored at -80 ° C until use.
  • the cells were disrupted and refolded in order to convert the short-chain insulin analog into a soluble form from the short chain insulin analog-expressing E. coli obtained in the above example.
  • the cell pellet corresponding to 1 L of the culture was suspended in 1 L of a buffer solution (20 mM Tris-HCl pH 9.0, 1 mM EDTA pH 8.0, 0.2 M NaCl, 0.5% Triton X-100) Recombinant E. coli was disrupted at 15,000 psi using a microfludzer.
  • the supernatant was discarded by centrifugation at 12,000 g for 30 min and the pellet was discarded with 1 L of washing buffer (50 mM Tris-HCl pH 9.0, 1 mM EDTA pH 9.0, 0.2 M NaCl, 0.5% Triton X-100) And washed.
  • the supernatant was discarded by centrifugation under the same conditions as above, and the pellet was resuspended with distilled water and centrifuged under the same conditions to obtain washed E. coli inclusion body pellets.
  • the washed inclusion body pellet was resuspended in 1 L of solubilization buffer (6 M Urea, 15 mM Glycine pH 10.6) and stirred at room temperature for 3 hours.
  • L-cysteine-HCl For the reduction of the solubilized short chain insulin analogue, L-cysteine-HCl at a final concentration of 15 mM was introduced, followed by stirring at room temperature for 1.5 hours.
  • the reduced short chain insulin analogue was mixed with 3 L of 95 mM Glycine pH 10.5 solution at 4 ⁇ and refolded by stirring for 40 to 70 hours.
  • the supernatant was removed by centrifugation at 12,000 g for 30 minutes, and then the supernatant was removed by passing through a 0.45 ⁇ m filter.
  • the short chain insulin analog refolding solution obtained in Example 3 was applied to a cationic SP FF (GE healthcare) column and purified.
  • the column was equilibrated with binding buffer (20 mM Na-Citrate pH 3.0, 45% ethanol) before introduction of the refolding solution and elution buffer (20 mM Na-Citrate pH 3.0, 0.5 M KCl, 45%
  • the column was eluted with 4 column volumes with 0-100% gradient.
  • SP HP (GE healthcare) column was used for the purification of the short chain insulin analogue from which the binding protein was removed.
  • the column was equilibrated with binding buffer (20 mM Na-Citrate pH 3.0, 45% ethanol) and eluted buffer (20 mM Na-Citrate pH 3.0, 0.5 M KCl, 45% ethanol) The column was eluted with 8 column volumes.
  • Source 30 RPC (GE healthcare) was used to further purify the eluted protein from the cation column chromatography of Example 6 as a reversed phase column.
  • 0.05 M Na-phosphate, 0.1 M Na-percholate pH 2.3 was prepared and filtered with a 0.22 ⁇ m filter (Sartorious) to prepare buffer solution for purification.
  • the binding buffer solution was prepared by mixing 90% of the basic buffer solution and 10% of isopropyl alcohol (w / v), and the elution buffer solution was prepared by mixing 55% of the basic buffer solution and 45% of isopropyl alcohol.
  • the elution buffer solution was eluted by flowing a 12.5 column volume with a gradient of 0-100%.
  • the eluted samples were analyzed for purity by RP-HPLC (C18, C4) and SE-HPLC analysis. The purity measurement results are shown in Fig.
  • the short chain insulin analog purified at high purity was buffer exchanged with 100 mM potassium phosphate (pH 6.0), adjusted to a concentration of 5 mg / mL, and 3.4 kDa PropionylALD2 PEG was pegylated at the amino terminal of short chain insulin analog PEG was added to make a short chain insulin analogue and PEG molar ratio of 1:10, and then completely dissolved. Subsequently, sodium cyanoborohydride (NaCNBH3) was added to the reaction mixture to a concentration of 20 mM, followed by reaction at room temperature for 70 minutes.
  • NaCNBH3 sodium cyanoborohydride
  • the cells were then diluted 10-fold with 20 mM sodium citrate pH 2.0 buffer containing 30% ethanol and injected into a Source S column (15 mm / 15.5 cm, GE Healtcare).
  • the Source S column was equilibrated with 20 mM sodium citrate, pH 2.0 q buffer containing 30% ethanol and flow rate was 2.5 mL / min.
  • 10 column volumes of 20 mM sodium citrate, pH 2.0, 0.25 M KCl buffer containing 30% ethanol were flowed from 0 to 100% to obtain a single pegylated short chain insulin analog .
  • the pegylated short chain insulin analog obtained using the method of Example 8 was coupled with immunoglobulin Fc.
  • the short-chain insulin analogue and immunoglobulin Fc molar ratio was 1: 4, and the total protein concentration was 30 mg / mL and reacted at 4 ° C for 18 hours.
  • sodium cyanoborohydride (NaCNBH3) was added to 20 mM as a reducing agent.
  • the buffer was exchanged with a 20 mM Tris, pH 7.5 buffer using a Sephadex G25 column, and then injected onto a Source Q column (25 mm / 17.6 cm, GE Healthcare).
  • Source Q column was equilibrated with 20 mM Tris, pH 7.5 buffer and flow rate was 7 mL / min.
  • 20 mM Tris, pH 7.5, 0.5 M NaCl buffer was eluted by flowing 10 column volumes linearly from 0% to 30%.
  • the unreacted immunoglobulin Fc could be removed from the Source Q column.
  • 1.5M ammonium sulfate was added to the coupled protein solution eluted from the Source Q and injected into a Source iso column (25 mm / 12.3 cm, GE Healthcare).
  • Source iso column was equilibrated with 20 mM Tris-HCl, pH 7.5, 1.5 M ammonium sulfate buffer and flow rate was 7.5 mL / min.
  • 20 column volumes of 20 mM Tris-HCl, pH 7.5 were linearly flowed from 0% to 100% in a volume of 37 columns.
  • the final purified short-chain insulin analogue conjugate (short chain insulin analog-PEG-immunoglobulin Fc) in the Source iso column was analyzed by SE-HPLC and IE-HPLC and shown in FIG.
  • the Scintillation proximity assay (SPA) method was used.
  • the cell membrane of the CHO cell line expressing the insulin receptor and the PVT SPA bead were added to the 96-well pico-plate.
  • human insulin diluted to 10 or more concentrations, insulin analogue of each insulin, and insulin with radioisotope 125 iodine as a competitor were put together and then reacted at room temperature for 4 hours .
  • the binding capacity of insulin receptor was measured using a beta counter.
  • the binding force of each substance was calculated by IC50 using GraphPad Prism 6 software and quantified as the insulin receptor binding capacity of the short-chain insulin analogue relative to the insulin receptor binding capacity of native insulin.
  • the short chain insulin analogue of the present invention has reduced insulin receptor binding ability as compared with natural insulin.
  • a glucose uptake (or lipidation capacity) test using a mouse-derived 3T3-L1 cell line differentiated into adipocytes was performed.
  • 3T3-L1 cells were maintained in subculture 2-3 times a week using DMEM (Dulbecco's Modified Eagle's Medium, Gibco, Cat. No. 12430) medium containing 10% NBCS (newborn calf serum).
  • 3T3-L1 cells were suspended in a differentiation medium (DMEM containing 10% FBS) and inoculated on a 48-well plate at 5 x 104 cells per well and cultured for 48 hours.
  • DMEM Differentibenchymal serum
  • the cells were washed once with serum-free DMEM medium and then 250 ⁇ l each was added to induce serum depletion for 4 hours.
  • Human insulin was prepared from 10 ⁇ M to 0.001 nM and the short-chain insulin-immunoglobulin Fc conjugate was diluted 10-fold with serial serum-free DMEM medium from 20 ⁇ M to 0.002 nM.
  • 250 ⁇ l of each of the prepared samples was added to the cells, and the cells were cultured in a 5% CO2 incubator at 37 ° C for 24 hours.
  • 200 ⁇ l of the medium was diluted 5-fold with D-PBS to perform GOPOD (GOPOD Assay Kit, Megazyme, Cat. No. K-GLUC) analysis.
  • the residual glucose concentration of the medium was converted based on the absorbance of the glucose standard solution, and the EC50 for the glucose absorption capacity was calculated.
  • short-chain insulin analogue conjugate short chain insulin analog-PEG-immunoglobulin Fc
  • glucose was able to absorb glucose at 8.1% as compared with human insulin (Table 5, Fig. 4).
  • a blood level comparison test was performed over time in normal rats (SD rats, male, 6 weeks old). The blood samples were taken at 0, 1, 4, 8, 24, 48, 72, 96, 120, 144, 168, 192, and 216 hours after subcutaneous administration of 65.1 nmol / kg and 260.4 nmol / Respectively.
  • the residual concentration of the short chain insulin analogue conjugate at each time was measured using an enzyme linked immunosorbent assay (ELISA).
  • the kit used was Insulin ELISA (ALPCO, USA).
  • As a detection antibody a mouse anti-human IgG4 HRP conjugate (Alpha Diagnostic Intl, Inc, USA) was used.
  • the pharmacokinetics of the short-chain insulin analogue conjugate showed that the half-life of the short-chain insulin analogue conjugate was 31 to 32 hours, which is about half the life of the currently marketed insulin analog, insulin glargine, in the reported rat (4.3 hours) 7-fold increase (Fig. 5).
  • the short chain insulin analogue of the present invention modified to reduce the insulin receptor binding force forms a conjugate bound to the immunoglobulin Fc region, the blood half-life in the living body is drastically increased to provide a stable insulin preparation Suggesting that it can be effectively used as a therapeutic agent for diabetes.
  • the short chain insulin analogue according to the present invention may also exhibit the same effect even when it is combined with various carriers such as decreased binding capacity and titer of the insulin receptor.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Medicinal Chemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • Veterinary Medicine (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Epidemiology (AREA)
  • Animal Behavior & Ethology (AREA)
  • Public Health (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • Molecular Biology (AREA)
  • Immunology (AREA)
  • Organic Chemistry (AREA)
  • Diabetes (AREA)
  • Endocrinology (AREA)
  • Zoology (AREA)
  • Gastroenterology & Hepatology (AREA)
  • Biophysics (AREA)
  • Biochemistry (AREA)
  • Genetics & Genomics (AREA)
  • Toxicology (AREA)
  • Peptides Or Proteins (AREA)
  • Medicines That Contain Protein Lipid Enzymes And Other Medicines (AREA)
  • Preparation Of Compounds By Using Micro-Organisms (AREA)
  • Micro-Organisms Or Cultivation Processes Thereof (AREA)
  • Medicinal Preparation (AREA)

Abstract

본 발명은 지속형 단쇄 인슐린 아날로그, 이의 결합체 및 이들의 이용에 관한 것이다. 또한, 본 발명은 지속형 단쇄 인슐린 아날로그 및 이의 결합체의 제조방법에 관한 것이다.

Description

지속형 단쇄 인슐린 아날로그 및 이의 결합체
본 발명은 지속형 단쇄 인슐린 아날로그, 이의 결합체 및 이들의 이용에 관한 것이다. 또한, 본 발명은 지속형 단쇄 인슐린 아날로그 및 이의 결합체의 제조방법에 관한 것이다.
인슐린은 췌장의 베타세포에서 분비되는 51개의 아미노산으로 이루어진 폴리펩타이드 호르몬으로서, 동물에서 혈당의 조절에 관여한다. 인슐린은 다이설파이드 결합으로 연결이 되어 있는, A쇄와 B쇄로 구성되어 있는데, 생체 내에서는 프로인슐린에서 C-펩타이드가 단백질분해효소에 제거(가수분해)되어, 프로인슐린으로부터 인슐린이 생성된다.
인슐린제제는 선천적으로 인슐린 생성에 이상이 있는 일형(Type Ⅰ)당뇨 환자; 인슐린 내성, 인슐린 분비 부족 등에 의해 2차적으로 혈당치가 상승하는 이형(Type Ⅱ) 당뇨이면서, 경구용 당뇨약으로 조절이 잘 안되거나, 경구용 당뇨약이 금기인 환자; 또는 임신성 당뇨 환자에게 투여하는 혈당조절제이다.
초기에는 소나 돼지의 인슐린을 정제하여 쓰는 방법을 이용했지만, 유전공학 및 DNA 조작 기술의 발달로 세균, 효모 등을 이용하여 사람 인슐린의 대량 생산이 가능하게 되었고(유럽공개특허 EP 0055945), 사람 인슐린을 변형시켜 작용시간 등을 개선한 인슐린 아날로그 등을 생산할 수 있게 되었다.
그러나, 인슐린은 다른 단백질 및 펩타이드 호르몬과 마찬가지로 체내의 반감기가 극히 짧아 치료학적 효과를 지속적으로 나타내기 힘들며, 효과를 나타내기 위해서는 지속적으로 반복 투여해야 한다는 단점이 있다. 또한, 단백질 및 펩타이드 약물은 대부분 주사제 형태로 환자에게 투여되며, 생리활성 펩타이드의 혈중 농도를 유지하기 위하여 자주 주사하게 되는데, 이는 환자에게 엄청난 고통을 야기하게 된다. 따라서, 단백질의 생체 내 반감기를 증가시켜 투여 횟수를 줄임으로써, 치료학적 효과를 높이며 환자의 삶의 질을 높이기 위해 여러 단백질 제형화 연구와 화학변형이 연구되어 왔다.
인슐린 제제의 지속형 및 저혈당 문제를 해결하기 위한 방법으로 단쇄 인슐린 아날로그를 사용할 수 있다. 단쇄 인슐린은 기존의 A 쇄와 B 쇄가 이황화 결합(di-sulfide bond)으로 연결된 형태가 아니라, 단쇄로 제조하여 사용함으로써 반감기 및 효력을 조절할 수 있다. 단쇄 인슐린 아날로그는 B 쇄와 A 쇄 순으로 연결하거나 A 쇄와 B 쇄 순으로 연결할 수 있으며 각 쇄의 연결 시 펩타이드가 링커로 삽입될 수 있다.
지난 수십년간 많은 종류의 단쇄 인슐린(single-chain insulin) 유사체가 만들어졌다. 이들 유사체들은 B쇄의 C-말단과 A쇄의 N-말단을 다양한 길이의 펩타이드 또는 화합물로 구성된 링커(linker)로 연결시켰다. 그러나 B쇄의 C-말단 영역에 위치하는 LysB29와 A쇄의 N-말단의 GlyA1을 직접 연결시킨 단쇄 인슐린 유사체의 경우 생물학적으로 불활성을 나타내었다(Derewenda, U. et al, J. Mol. Biol., 1991, 220: 425-433).
인슐린 제제의 지속성을 향상시키기 위한 다른 방법은 인슐린의 전구물질인 프로인슐린의 이용이다. 프로인슐린 그 자체는 약한 인슐린 아고니스트로서 인슐린에 비하여 활성은 낮지만 인슐린 대비 더 긴 반감기를 가진다.
프로인슐린은 인슐린과 달리 B쇄와 A쇄가 인슐린의 안정성 유지에 중요한 역할을 하는 C 펩타이드에 의해 연결되어 있어, 혈중 반감기가 인슐린대비 더 길다. 따라서, 많은 연구자들에 의해 프로인슐린을 지속형 인슐린으로 개발하려는 여러 시도가 있었다. 그러나, 활성에 중요한 역할을 하는 A쇄의 아미노말단 글라이신 잔기가 C 펩타이드에 가려져 있어 인슐린에 비해 활성이 낮은 단점이 있어(William F et al., The Journal of biological chemistry, 1992, 267: 419-425), 아직 약물로 개발되지 못 하였다.
유전자 재조합 기술을 활용하여 생산되는 대부분의 단백질은 단백질의 아미노말단에 메치오닌이 결합되어 있는 형태로 생산된다. 필요하지 않은 아미노산인 메치오닌을 제거하기 위해 기존의 인슐린 제조 방식 중 하나로, 세린 단백질 분해 효소인 트립신을 사용하는 방식이 있으나(유럽공개특허 EP 1926749), 프로인슐린 내부에 트립신 인식서열이 존재하므로, 상기 방식은 단쇄 인슐린 아날로그 제조에는 적합하지 않다. 대체 방법으로서, 전통적으로 널리 사용되어 왔던 시아노겐 브로마이드(Cyanogen bromide, CNBr)를 사용하여, 단백질의 아미노말단 메치오닌을 제거하는 방법이 있으나, CNBr의 극심한 유독성과 제조 공정의 복잡도 증가, 낮은 생산 수율 등이 문제로 제기되어 왔다. 이에, 지속성 증가 및 활성이 유지되는 인슐린 제제의 필요성이 대두되고 있다.
본 발명의 하나의 목적은 단쇄 인슐린 아날로그를 제공하는 것이다.
본 발명의 다른 하나의 목적은 단쇄 인슐린 아날로그 및 이의 생체 내 반감기를 증가시킬 수 있는 물질이 연결된, 단쇄 인슐린 아날로그 결합체를 제공하는 것이다.
본 발명의 또 다른 하나의 목적은 상기 단쇄 인슐린 아날로그 및 이의 생체 내 반감기를 증가시킬 수 있는 물질을 연결하는 단계를 포함하는, 단쇄 인슐린 아날로그 결합체를 제조하는 방법을 제공하는 것이다.
본 발명의 또 다른 하나의 목적은 상기 단쇄 인슐린 아날로그 및/또는 단쇄 인슐린 아날로그 결합체를 포함하는, 생체 내 지속성 및 안정성이 증가된 단쇄 인슐린 지속성 제제를 제공하는 것이다.
본 발명의 또 다른 하나의 목적은 상기 단쇄 인슐린 아날로그 및/또는 단쇄 인슐린 아날로그 결합체를 포함하는, 당뇨병의 예방 또는 치료용 약학적 조성물을 제공하는 것이다.
본 발명의 또 하나의 목적은 상기 약학적 조성물을 이를 필요로 하는 개체에게 투여하는 단계를 포함하는, 당뇨병의 예방 또는 치료 방법을 제공하는 것이다.
본 발명의 또 다른 하나의 목적은 당뇨병의 예방 또는 치료용 약제의 제조를 위한 상기 단쇄 인슐린 아날로그 결합체 또는 상기 단쇄 인슐린 아날로그의 용도를 제공하는 것이다.
본 발명의 또 다른 하나의 목적은 당뇨병의 예방 또는 치료를 위한 상기 단쇄 인슐린 아날로그 결합체 또는 상기 단쇄 인슐린 아날로그의 용도를 제공하는 것이다.
본 발명의 또 다른 하나의 목적은 상기 단쇄 인슐린 아날로그를 코딩하는 분리된 핵산, 상기 핵산을 포함하는 재조합 발현 벡터 및 상기 재조합 발현 벡터를 포함하는 형질전환체를 제공하는 것이다.
본 발명의 또 다른 하나의 목적은 상기 형질전환체를 이용하여 단쇄 인슐린 아날로그를 제조하는 방법을 제공하는 것이다.
본 발명의 하나의 양태는 하기 화학식 1을 갖는 단쇄 인슐린 아날로그 결합체를 제공한다:
[화학식 1]
X-Y-Z-La-F
여기에서,
X는 천연형 인슐린 A쇄, B쇄 또는 이들의 아날로그이고,
Y는 C-펩타이드 또는 이의 아날로그이고,
Z는 천연형 인슐린 B쇄, A쇄 또는 이들의 아날로그이고,
L은 링커이고,
a는 0 또는 자연수이며, 단 a가 2 이상일 때 각각의 L은 서로 독립적이고,
F는 인슐린 아날로그의 생체 내 반감기를 증가시킬 수 있는 물질이고,
단, X, Y 및 Z가 각각 천연형 인슐린의 B쇄, C-펩타이드 및 A쇄이거나, 천연형 인슐린의 A쇄, C-펩타이드 및 B쇄인 경우는 제외되며,
X-Y-Z는 단쇄 인슐린 아날로그를 형성한다.
본 발명의 하나의 구체적인 양태로서, 상기 단쇄 인슐린 아날로그는 천연형 프로인슐린에 비하여 적어도 하나 이상의 아미노산이 치환(Substitution), 추가(Addition), 제거(Deletion), 수식(Modification) 및 배열 순서(인슐린 B쇄, C-펩타이드 및 A쇄의 순서 등)의 변환 중에서 선택되는 어느 하나 이상의 방법으로 변이된 아날로그, 변이체, 또는 이들의 단편인 단쇄 인슐린 아날로그 결합체를 제공한다.
본 발명의 또 다른 하나의 구체적인 양태로서, 상기 단쇄 인슐린 아날로그는 상기 X, Y 및 Z가 각각 링커로 연결된 단쇄 인슐린 아날로그 결합체를 제공한다.
본 발명의 또 다른 하나의 구체적인 양태로서, 상기 C-펩타이드의 아날로그는 천연형 인슐린 C-펩타이드의 1번 아미노산, 2번 아미노산, 34번 아미노산 및 35번 아미노산으로 이루어진 군에서 선택된 하나 이상의 아미노산이 다른 아미노산으로 치환 또는 결실된 것인, 단쇄 인슐린 아날로그 결합체를 제공한다.
본 발명의 또 다른 하나의 구체적인 양태로서, 인슐린 아날로그의 생체 내 반감기를 증가시킬 수 있는 물질은 폴리에틸렌 글리콜, 지방산, 콜레스테롤, 알부민 및 이의 단편, 알부민 결합물질, 특정 아미노산 서열의 반복단위의 중합체, 항체, 항체 단편, FcRn 결합물질, 생체 내 결합조직, 뉴클레오타이드, 파이브로넥틴, 트랜스페린(Transferrin), 사카라이드(saccharide) 및 고분자 중합체로 이루어진 군에서 선택된 것인, 단쇄 인슐린 아날로그 결합체를 제공한다.
본 발명의 또 다른 하나의 구체적인 양태로서, L은 펩타이드, 폴리에틸렌 글리콜, 지방산, 사카라이드, 고분자 중합체, 저분자 화합물, 뉴클레오타이드 및 이들의 조합으로 이루어진 군으로부터 선택되는 것인, 단쇄 인슐린 아날로그 결합체를 제공한다.
본 발명의 또 다른 하나의 구체적인 양태로서, X-Y-Z와 F는 공유 화학 결합, 비공유 화학 결합 또는 이들의 조합으로 L에 의해 서로 결합되는 것인, 단쇄 인슐린 아날로그 결합체를 제공한다.
본 발명의 또 다른 하나의 구체적인 양태로서, 고분자 중합체는 폴리프로필렌 글리콜, 에틸렌 글리콜-프로필렌 글리콜 공중합체, 폴리옥시에틸화폴리올, 폴리비닐알콜, 폴리사카라이드, 덱스트란, 폴리비닐에틸에테르, 생분해성 고분자, 지질 중합체, 키틴, 히아루론산, 올리고뉴클레오타이드 및 이들의 조합으로 이루어진 군으로부터 선택되는 것인, 단쇄 인슐린 아날로그 결합체를 제공한다.
본 발명의 또 다른 하나의 구체적인 양태로서, 상기 FcRn 결합물질은 면역글로불린 Fc 영역인 것인, 단쇄 인슐린 아날로그 결합체를 제공한다.
본 발명의 또 다른 하나의 구체적인 양태로서, 면역글로불린 Fc 영역이 비당쇄화됨을 특징으로 하는, 단쇄 인슐린 아날로그 결합체를 제공한다.
본 발명의 또 다른 하나의 구체적인 양태로서, 면역글로불린 Fc 영역이 CH1, CH2, CH3 및 CH4 도메인으로 이루어진 군으로부터 1개 내지 4개 선택되는 도메인으로 이루어진, 단쇄 인슐린 아날로그 결합체를 제공한다.
본 발명의 또 다른 하나의 구체적인 양태로서, 면역글로불린 Fc 영역이 IgG, IgA, IgD, IgE 또는 IgM에서 유래된 Fc 영역인, 단쇄 인슐린 아날로그 결합체를 제공한다.
본 발명의 또 다른 하나의 구체적인 양태로서, 면역글로불린 Fc 영역의 각각의 도메인이 IgG, IgA, IgD, IgE 및 IgM로 이루어진 군에서 선택되는 면역글로불린에서 유래된 상이한 기원을 가진 도메인의 하이브리드인, 단쇄 인슐린 아날로그 결합체를 제공한다.
본 발명의 또 다른 하나의 구체적인 양태로서, 면역글로불린 Fc 영역이 동일한 기원의 도메인으로 이루어진 단쇄 면역글로불린으로 구성된 이량체 또는 다량체인, 단쇄 인슐린 아날로그 결합체를 제공한다.
본 발명의 또 다른 하나의 구체적인 양태로서, 면역글로불린 Fc 영역이 IgG4 Fc 영역인, 단쇄 인슐린 아날로그 결합체를 제공한다.
본 발명의 또 다른 하나의 구체적인 양태로서, 면역글로불린 Fc 영역이 인간 비당쇄화 IgG4 Fc 영역인, 단쇄 인슐린 아날로그 결합체를 제공한다.
본 발명의 다른 하나의 양태는 하기 화학식 2를 갖는 단쇄 인슐린 아날로그를 제공한다:
[화학식 2]
X-Y-Z
여기에서,
X는 천연형 인슐린 A쇄, B쇄 또는 이들의 아날로그이고,
Y는 C-펩타이드 또는 이의 아날로그이고,
Z는 천연형 인슐린 B쇄, A쇄 또는 이들의 아날로그이고,
단, X, Y 및 Z가 각각 천연형 인슐린의 B쇄, C-펩타이드 및 A쇄이거나, 천연형 인슐린의 A쇄, C-펩타이드 및 B쇄인 경우는 제외된다.
본 발명의 또 다른 하나의 구체적인 양태로서, 상기 C-펩타이드의 아날로그는 천연형 인슐린 C-펩타이드의 1번 아미노산, 2번 아미노산, 34번 아미노산 및 35번 아미노산으로 이루어진 군에서 선택된 하나 이상의 아미노산이 다른 아미노산으로 치환 또는 결실된 것인, 단쇄 인슐린 아날로그를 제공한다.
본 발명의 또 다른 하나의 양태는 상기 단쇄 인슐린 아날로그 및 이의 생체 내 반감기를 증가시킬 수 있는 물질을 연결하는 단계를 포함하는, 상기 단쇄 인슐린 아날로그 결합체를 제조하는 방법을 제공한다.
본 발명의 또 다른 하나의 구체적인 양태로서, 상기 단쇄 인슐린 아날로그 및 이의 생체 내 반감기를 증가시킬 수 있는 물질을 링커를 통해 연결하는 것인, 상기 단쇄 인슐린 아날로그 결합체를 제조하는 방법을 제공한다.
본 발명의 또 다른 하나의 구체적인 양태로서, 상기 링커는 알데히드 그룹, 프로피온알데히드 그룹, 부틸 알데히드 그룹, 말레이미드 그룹 및 석시니미드 유도체로 이루어진 군으로부터 선택되는 반응기를 가진 비펩타이드성 링커인, 상기 단쇄 인슐린 아날로그 결합체를 제조하는 방법을 제공한다.
본 발명의 또 다른 하나의 구체적인 양태로서, 상기 석시니미드 유도체는 석시니미딜 프로피오네이트, 메틸프로피온에이트, 석시니미딜 부타노에이트, 석시니미딜 메틸부타노에이트, 석시니미딜 발레르에이트, 석시니미딜 카르복시메틸, N-하이드록시 석시니미딜 또는 석시니미딜 카보네이트인, 상기 단쇄 인슐린 아날로그 결합체를 제조하는 방법을 제공한다.
본 발명의 또 다른 하나의 구체적인 양태로서, 상기 단쇄 인슐린 아날로그는 하기 (a) 및 (b)를 포함하는 방법으로 수득하는 것인, 상기 단쇄 인슐린 아날로그 결합체를 제조하는 방법을 제공한다:
(a) 단백질 분해효소 절단 부위를 포함하는 5 내지 20개의 아미노산으로 구성된 펩타이드가 상기 단쇄 인슐린 아날로그의 아미노 말단에 융합된 형태로 단쇄 인슐린 아날로그를 발현하는 단계; 및
(b) 단쇄 인슐린 아날로그에 융합된 펩타이드를 제거하는 단계.
본 발명의 또 다른 하나의 양태는 상기 단쇄 인슐린 아날로그 결합체; 및/또는 상기 단쇄 인슐린 아날로그를 포함하는, 생체 내 지속성 및 안정성이 증가된 단쇄 인슐린 지속성 제제를 제공한다.
본 발명의 또 다른 하나의 양태는 상기 단쇄 인슐린 아날로그 결합체; 및/또는 상기 단쇄 인슐린 아날로그를 포함하는, 당뇨병의 예방 또는 치료용 약학적 조성물을 제공한다.
본 발명의 다른 하나의 양태는 상기 약학적 조성물을 이를 필요로 하는 개체에게 투여하는 단계를 포함하는, 당뇨병의 예방 또는 치료 방법을 제공한다.
본 발명의 다른 하나의 양태는 당뇨병의 예방 또는 치료용 약제의 제조를 위한 상기 단쇄 인슐린 아날로그 결합체 또는 상기 단쇄 인슐린 아날로그의 용도를 제공한다.
본 발명의 다른 하나의 양태는 당뇨병의 예방 또는 치료를 위한 상기 단쇄 인슐린 아날로그 결합체 또는 상기 단쇄 인슐린 아날로그의 용도를 제공한다.
본 발명의 다른 하나의 양태는 상기 단쇄 인슐린 아날로그를 코딩하는 분리된 핵산, 상기 핵산을 포함하는 재조합 발현 벡터 및 상기 재조합 발현 벡터를 포함하는 형질전환체를 제공한다.
본 발명의 다른 하나의 양태는 상기 형질전환체를 이용하여 단쇄 인슐린 아날로그를 제조하는 방법을 제공한다.
본 발명의 또 다른 하나의 구체적인 양태로서, 하기 단계를 포함하는 상기 단쇄 인슐린 아날로그를 제조하는 방법을 제공한다:
a) 상기 단쇄 인슐린 아날로그를 코딩하는 핵산을 포함하는 형질전환체를 배양하여 단쇄 인슐린 아날로그를 발현시키는 단계; 및
b) 발현된 단쇄 인슐린 아날로그를 분리 및 정제하는 단계.
본 발명에 따른 단쇄 인슐린 아날로그 및 이의 결합체는 생체 내에서 안정적인 혈당 강하 효과를 유지하고, 혈중 반감기가 현저히 증가하여 인슐린의 투여 편의성 및 부작용을 개선하고, 제조과정이 간소화되는 효과가 있다.
도 1은 단쇄 인슐린 아날로그 유전자 증폭 모식도이다.
도 2는 단쇄 인슐린 아날로그 정제 후 순도 분석 결과이다(C18, C4: RP-HPLC; SEC: SE-HPLC).
도 3은 단쇄 인슐린 아날로그 결합체 제조 후 순도 분석 결과이다(SEC: SE-HPLC; IEX: IE-HPLC).
도 4는 단쇄 인슐린 아날로그 결합체의 글루코스 흡수능을 확인한 결과이다.
도 5는 단쇄 인슐린 아날로그 결합체의 약동학을 확인한 결과이다.
본 발명을 실시하기 위한 구체적인 내용을 설명하면 다음과 같다. 한편, 본원에서 개시된 각각의 설명 및 실시형태는 각각의 다른 설명 및 실시 형태에도 적용될 수 있다. 즉, 본원에서 개시된 다양한 요소들의 모든 조합이 본 발명의 범주에 속한다. 또한, 하기 기술되는 구체적인 서술에 의하여 본 발명의 범주가 제한된다고 할 수 없다.
본 발명의 하나의 양태는 천연형 인슐린에 비해 인슐린 수용체 결합력이 감소된, 단쇄 인슐린 아날로그를 제공한다.
본 발명에서 사용된 용어 "단쇄 인슐린 아날로그"는 생체 내 혈당 강하 특성을 보유하며, 인슐린의 A쇄와 B쇄가 하나의 쇄로 연결된 인슐린 아날로그를 말한다. 본 발명의 목적상 상기 단쇄 인슐린 아날로그는 천연형 인슐린에 비해 인슐린 수용체 결합력 및 in vitro 활성이 감소된 물질인 것이 바람직하다.
천연형 인슐린은 췌장에서 분비되는 호르몬으로서, 일반적으로 세포 내 글루코스 흡수를 촉진하고, 지방의 분해를 억제하여, 체내의 혈당을 조절하는 역할을 한다. 인슐린은 혈당조절 기능이 없는 프로인슐린(proinsulin)의 형태에서 프로세싱을 거쳐, 혈당 조절 기능을 가지는 인슐린이 된다. 생체내 인슐린은 B쇄-C 펩타이드-A쇄의 프로인슐린 형태로 발현 후, 효소적 처리를 거쳐, 2개의 폴리펩티드 사슬, 즉 각각 21개 및 30개 아미노산 잔기를 포함하는 A쇄 및 B쇄가 2개의 이황화 다리로 연결된 인슐린 형태로 존재한다. 천연형 프로인슐린의 A쇄, B쇄 및 C-펩타이드는 각각 하기 서열번호 1 내지 3으로 표시되는 아미노산 서열을 포함할 수 있으나, 이에 제한되지 않는다.
A 쇄:
Gly-Ile-Val-Glu-Gln-Cys-Cys-Thr-Ser-Ile-Cys-Ser-Leu-Tyr-Gln-Leu-Glu-Asn-Tyr-Cys-Asn(서열번호 1)
B 쇄:
Phe-Val-Asn-Gln-His-Leu-Cys-Gly-Ser-His-Leu-Val-Glu-Ala-Leu-Tyr-Leu-Val-Cys-Gly-Glu-Arg-Gly-Phe-Phe-Tyr-Thr-Pro-Lys-Thr(서열번호 2)
C-펩타이드:
Arg-Arg-Glu-Ala-Glu-Asp-Leu-Gln-Val-Gly-Gln-Val-Glu-Leu-Gly-Gly-Gly-Pro-Gly-Ala-Gly-Ser-Leu-Gln-Pro-Leu-Ala-Leu-Glu-Gly-Ser-Leu-Gln-Lys-Arg(서열번호 3)
또한, 본 발명의 단쇄 인슐린 아날로그는 프로인슐린 아날로그일 수 있으나, 이에 제한되지 않는다. 상기 프로인슐린 아날로그는 B쇄, C-펩타이드, A쇄의 순서로 배열된, 야생형 또는 천연형 프로인슐린과 A쇄, B쇄, 및 C-펩타이드 배열이 하나 이상 다른 펩타이드를 의미한다. 구체적으로, 프로인슐린 아날로그는 A쇄, C-펩타이드 및 B쇄의 배열을 가질 수 있으나, 이에 제한되지 않는다.
본 발명에서 단쇄 인슐린 아날로그는 프로인슐린 아날로그와 혼용될 수 있다.
본 발명의 프로인슐린 아날로그의 A쇄, B쇄, C-펩타이드 각각의 아미노산 서열은 야생형 서열 또는 야생형 서열에 천연형이거나 비천연형인 하나 이상의 아미노산이 추가, 치환 또는 삭제된 서열이 모두 가능하나, 이에 제한되지 않는다.
본 발명의 프로인슐린 아날로그는 천연형 프로인슐린의 A쇄, B쇄, C-펩타이드와 각각 최소한 80% 이상, 구체적으로 90% 이상, 보다 구체적으로 91%, 92%, 93%, 94%, 95%, 96%, 97%, 98%, 또는 99% 이상의 상동성을 보이며, 아미노산 한 잔기의 일부 그룹이 화학적으로 치환(예; alpha-methylation, alpha-hydroxylation), 제거(예; deamination), 또는 수식(예; N-methylation)된 형태일 수 있고, 체내에서 혈당을 조절하는 기능을 보유한 펩타이드를 모두 포함하나, 이에 제한되지 않는다.
상기 "상동성(homology)"은, 야생형(wild type) 단백질의 아미노산 서열 또는 이를 코딩하는 염기 서열과의 유사한 정도를 나타내기 위한 것으로서, 본 발명의 아미노산 서열 또는 염기 서열과 상기와 같은 퍼센트 이상의 동일한 서열을 가지는 서열도 본 발명에 포함된다. 이러한 상동성은 두 서열을 육안으로 비교하여 결정할 수도 있으나, 비교대상이 되는 서열을 나란히 배열하여 상동성 정도를 분석해 주는 생물정보 알고리즘(bioinformatic algorithm)을 사용하여 결정할 수 있다. 상기 두 개의 아미노산 서열 사이의 상동성은 백분율로 표시할 수 있다. 유용한 자동화된 알고리즘은 Wisconsin Genetics Software Package(Genetics Computer Group, Madison, W, USA)의 GAP, BESTFIT, FASTA와 TFASTA 컴퓨터 소프트웨어 모듈에서 이용 가능하다. 상기 모듈에서 자동화된 배열 알고리즘은 Needleman & Wunsch와 Pearson & Lipman과 Smith & Waterman 서열 배열 알고리즘을 포함한다. 다른 유용한 배열에 대한 알고리즘과 상동성 결정은 FASTP, BLAST, BLAST2, PSIBLAST와 CLUSTAL W를 포함하는 소프트웨어에서 자동화되어 있다.
본 발명의 단쇄 인슐린 아날로그는 생체 내의 혈당 조절기능을 보유한 펩타이드로서, 이러한 펩타이드는 프로인슐린 아고니스트(agonist), 유도체(derivatives), 단편(fragments), 변이체(variants) 등을 포함하나, 이에 제한되지 않는다.
본 발명의 프로인슐린 아고니스트는 프로인슐린의 구조와 상관없이 인슐린의 생체 내 수용체에 결합하여 인슐린과 동일한 생물학적 활성을 나타내는 물질을 의미한다.
본 발명의 프로인슐린 단편은 프로인슐린에 하나 또는 그 이상 아미노산이 추가 또는 삭제된 형태를 의미하며 추가된 아미노산은 천연에 존재하지 않는 아미노산(예; D형 아미노산)도 가능하고, 이러한 프로인슐린 단편은 체내에서 혈당조절 기능을 보유한다.
본 발명의 프로인슐린 변이체는 프로인슐린과 아미노산 서열이 하나 이상 다른 펩타이드로서, 체내에서 혈당조절 기능을 보유한 펩타이드를 의미한다.
본 발명의 프로인슐린 아고니스트, 유도체, 단편 및 변이체에서 각각 사용된 제조방법은 독립적으로 사용될 수 있고, 조합도 가능하다. 예를 들어 아미노산 서열이 하나 이상 다르고 아미노 말단의 아미노산 잔기에 탈아미노화(deamination) 된 체내에서 혈당조절 기능을 보유한 펩타이드도 포함된다.
하나의 구체적인 실시 형태에서 단쇄 인슐린 아날로그는 재조합 방법을 통하여 생산될 수 있으며, Solid phase 합성법을 통하여 합성하는 방법으로도 생산 가능하다.
하나의 구체적인 실시 형태에서 본 발명의 단쇄 인슐린 아날로그는 천연형 인슐린 A쇄 또는 이의 아날로그; 천연형 인슐린 C-펩타이드 또는 이의 아날로그; 및 B쇄 또는 이의 아날로그가 다양한 순서로 직접적으로 또는 링커로 연결될 수 있다.
하나의 구체적인 실시 형태에서 본 발명의 단쇄 인슐린 아날로그는 천연형 프로인슐린에 비하여 적어도 하나 이상의 아미노산이 치환(Substitution), 추가(Addition), 제거(Deletion), 수식(Modification) 및 배열 순서(B쇄, C-펩타이드 및 A쇄의 순서 등)의 변환 중에서 선택되는 어느 하나 이상의 방법으로 변이된 아날로그, 변이체 또는 이들의 단편일 수 있다.
하나의 구체적인 실시 형태에서 본 발명의 단쇄 인슐린 아날로그는 천연형 인슐린 A쇄 또는 이의 아날로그; 천연형 인슐린 C-펩타이드 또는 이의 아날로그; 및 천연형 인슐린 B쇄 또는 이의 아날로그가 상기 순서대로 연결된 것일 수 있으나, 이에 제한되지 않는다.
하나의 구체적인 실시 형태에서 본 발명의 단쇄 인슐린 아날로그는 C-펩타이드 또는 이의 아날로그를 포함할 수 있다. C-펩타이드(connecting peptide)는 프로인슐린에서 B쇄와 A쇄를 연결하는, 35개의 아미노산으로 구성된 펩타이드이고, 인슐린의 생합성 시 제거되나, 제거되지 않고 인슐린에 존재 시 인슐린의 in vitro 활성을 천연형에 비해 낮춘다. 본 발명에서 단쇄 인슐린 아날로그에 포함된 C-펩타이드는 천연형 C-펩타이드에서 아미노산이 삭제, 치환, 및/또는 삽입된 아날로그일 수 있다.
하나의 구체적인 실시 형태에서 상기 C-펩타이드의 아날로그는 천연형 인슐린 C-펩타이드의 1번 아미노산, 2번 아미노산, 34번 아미노산 및 35번 아미노산으로 이루어진 군에서 선택된 하나 이상의 아미노산이 다른 아미노산으로 치환 또는 결실된 것일 수 있으나, 이에 제한되지 않는다. 보다 구체적으로, 상기 C-펩타이드의 아날로그는 천연형 인슐린 C-펩타이드의 1번, 2번 알지닌과 34번 라이신 잔기와 35번 아르기닌 잔기가 제거되어, 단쇄 인슐린 아날로그의 생산 시 생산 수율을 높일 수 있는 아날로그일 수 있으나, 이에 제한되지 않는다.
하나의 구체적인 실시 형태에서 본 발명의 단쇄 인슐린 아날로그는 천연형 인슐린 A쇄; 상기 C-펩타이드의 아날로그; 및 천연형 인슐린 B쇄가 상기 순서대로 연결된 것일 수 있으며, 구체적으로 서열번호 19의 아미노산 서열을 가질 수 있으나, 이에 제한되지 않는다.
하나의 구체적인 실시 형태에서 본 발명의 단쇄 인슐린 아날로그는 단쇄 인슐린 아날로그의 아미노 말단에 펩타이드가 융합된 융합체일 수 있다. 상기 단쇄 인슐린 아미노 말단에 융합된 펩타이드는 단쇄 인슐린 아날로그의 발현 수율의 증대에 기여하며, 단백질 분해효소(예들 들어, 트립신) 절단 부위를 가지고 있어, 단쇄 인슐린 아날로그 생산시 효율적으로 제거된다. 상기 단쇄 인슐린 아날로그의 아미노 말단에 추가되는 펩타이드는, 단쇄 인슐린 아날로그의 발현 수율의 증대에 기여하며, 단백질 분해효소 절단 부위를 가지고 있는 한 제한되지 않으나, 구체적으로 5 내지 20개의 아미노산으로 구성될 수 있으며, 더욱 구체적으로, 7 내지 18개, 또는 9 내지 16개의 아미노산으로 구성될 수 있으며, 더더욱 구체적으로, MATTSTATTR(서열번호 20)의 아미노산 서열을 포함할 수 있다.
하나의 구체적인 실시 형태에서 펩타이드가 융합된 단쇄 인슐린 아날로그는 천연형 인슐린 A쇄; 상기 C-펩타이드의 아날로그; 및 천연형 인슐린 B쇄가 상기 순서대로 연결된 단쇄 인슐린 아날로그의 아미노 말단에 펩타이드가 융합된 것일 수 있으며, 구체적으로 서열번호 19의 아미노산 서열을 가질 수 있으나, 이에 제한되지 않는다.
본 발명에 따른 단쇄 인슐린 아날로그는 천연형 프로인슐린의 A쇄, B쇄 및 C-펩타이드의 아미노산 서열에서 아미노산의 치환, 부가, 결실 또는 번역 후 변형(예를 들어, 메틸화, 아실화, 유비퀴틴화, 분자 내 공유결합)이 도입되어, 천연형 인슐린에 비해 감소된 인슐린 수용체 결합력을 가지는 임의의 펩티드를 포괄한다. 상기 아미노산의 치환 또는 부가 시에는 인간 단백질에서 통상적으로 관찰되는 20개의 아미노산뿐만 아니라 비정형 또는 비-자연적 발생 아미노산을 사용할 수 있다. 비정형 아미노산의 상업적 출처에는 Sigma-Aldrich, ChemPep 및 Genzymepharmaceuticals가 포함될 수 있다. 이러한 아미노산이 포함된 펩티드와 전형적인 펩티드 서열은 상업화된 펩티드 합성 회사, 예를 들어 미국의 American peptide company, Bachem이나 한국의 Anygen을 통해 합성 및 구매가능하다.
보다 구체적으로, 본 발명의 단쇄 인슐린 아날로그는 하기 화학식 2를 가질 수 있다.
[화학식 2]
X-Y-Z
여기에서,
X는 천연형 인슐린 A쇄, B쇄 또는 이들의 아날로그이고,
Y는 천연형 인슐린 C-펩타이드 또는 이의 아날로그이고,
Z는 천연형 인슐린 B쇄, A쇄 또는 이들의 아날로그이고,
단, X, Y 및 Z가 각각 천연형 인슐린의 B쇄, C-펩타이드 및 A쇄이거나, 천연형 인슐린의 A쇄, C-펩타이드 및 B쇄인 경우는 제외된다.
상기 인슐린 A쇄, B쇄, C-펩타이드, 이들의 아날로그는 전술한 바와 같다.
상기 “-“는 X, Y, Z 사이의 각각의 결합을 의미하는 것으로, X, Y, Z의 직접적인 결합 또는 링커를 나타낸다. 상기 링커는 펩타이드성 링커 또는 비펩타이드성 링커일 수 있다.
또한, 상기 “-“는 비공유 결합 혹은 공유결합 등 어떠한 화학적 결합일 수 있으며, 구체적으로 공유결합일 수 있으나, 이에 제한되지 않는다.
본 발명의 또 하나의 양태는 상기 단쇄 인슐린 아날로그를 코딩하는 폴리뉴클레오티드, 상기 폴리뉴클레오티드를 포함하는 발현 벡터 및 상기 발현 벡터를 포함하는 형질전환체를 제공한다.
상기 단쇄 인슐린 아날로그에 대해서는 앞서 설명한 바와 같다.
상기 폴리뉴클레오티드는, 단일가닥 또는 이중가닥 형태로 존재하는 디옥시리보뉴클레오티드(DNA) 또는 리보뉴클레오티드(RNA)로, 게놈 DNA, cDNA 및 이로부터 전사되는 RNA를 포함하는 의미를 가지며, 기본 구성단위인 뉴클레오티드는 자연의 뉴클레오티드뿐만 아니라, 당 또는 염기 부위가 변형된 유사체(analogue)도 포함한다(Scheit, Nucleotide Analogs, John Wiley, New York, 1980; Uhlman 및 Peyman, Chemical Reviews, 90: 543-584, 1990). 본 발명의 폴리뉴클레오티드는 표준 분자생물학 기술을 이용하여 분리 또는 제조할 수 있다. 예를 들어, 적절한 프라이머 서열을 이용하여 천연형 프로인슐린 유전자 서열(NM_000207.2, NCBI)로부터 PCR(중합효소 연쇄반응)을 통해 증폭할 수 있고, 자동화된 DNA 합성기를 이용하는 표준 합성기술을 이용하여 제조할 수 있다. 상기 폴리뉴클레오티드는 본 발명에서 핵산과 혼용되어 사용될 수 있다.
상기 단쇄 인슐린 아날로그를 코딩하는 폴리뉴클레오티드는 상기 기술한 A쇄, B쇄 및 C-펩타이드의 아미노산 서열을 코딩하는 폴리뉴클레오티드를 포함하는 할 수 있다,
본 발명에 따른 재조합 벡터는 전형적으로 클로닝을 위한 벡터 또는 발현을 위한 벡터로서 구축될 수 있고, 원핵세포 또는 진핵세포를 숙주세포로 사용하기 위한 벡터로서 구축될 수 있다.
본 발명에서 사용되는 "벡터"는 적당한 숙주세포에서 목적 단백질을 발현할 수 있는 재조합 벡터로서, 핵산 삽입물이 발현되도록 작동 가능하게 연결된 필수적인 조절요소를 포함하는 핵산 구조물(construct)을 의미한다. 본 발명은 인슐린 아날로그를 코딩하는 핵산을 포함하는 재조합 벡터를 제조할 수 있는데, 상기 재조합 벡터를 숙주세포에 형질전환(transformation) 또는 형질감염(transfection) 시킴으로써, 본 발명의 단쇄 인슐린 아날로그를 수득할 수 있다.
본 발명에서 단쇄 인슐린 아날로그를 코딩하는 핵산은 프로모터에 작동 가능하게 연결된다. 본 발명에서 용어, "작동 가능하게 연결된(operatively linked)"은 핵산 발현 조절서열(예: 프로모터, 시그널 서열, 라이보좀 결합부위, 전사 종결서열 등)과 다른 핵산 서열사이의 기능적인 결합을 의미하며, 이에 의해 상기 조절서열은 상기 다른 핵산 서열의 전사 및/또는 해독을 조절하게 된다.
본 발명에서 용어, "프로모터"는 폴리머라제에 대한 결합 부위를 포함하고 프로모터 하위 유전자의 mRNA로의 전사 개시 활성을 가지는, 코딩 영역의 상위(upstream)의 비해독된 핵산 서열, 즉, 폴리머라제가 결합하여 유전자의 전사를 개시하도록 하는 DNA 영역을 말하며, mRNA 전사 개시부위의 5'-부위에 위치한다.
예를 들어, 본 발명의 벡터가 재조합 벡터이고 원핵세포를 숙주로 하는 경우에, 전사를 진행시킬 수 있는 강력한 프로모터(예: tac 프로모터, lac 프로모터, lacUV5 프로모터, lpp 프로모터, pLλ 프로모터, pRλ 프로모터, rac5 프로모터, amp 프로모터, recA 프로모터, SP6 프로머터, trp 프로모터 및 T7 프로모터 등), 해독의 개시를 위한 라이보좀 결합부위 및 전사/해독 종결서열을 포함하는 것이 일반적이다.
또한, 본 발명에 이용될 수 있는 벡터는 당업계에서 종종 사용되는 플라스미드(예: pSC101, pGV1106, pACYC177, ColE1, pKT230, pME290, pBR322, pUC8/9, pUC6, pBD9, pHC79, pIJ61, pLAFR1, pHV14, pGEX 시리즈, pET 시리즈, pPICZα 시리즈, pUC19 등), 파지(예: λgt4·λB, λ-Charon, λΔz1 및 M13 등) 또는 바이러스(예: SV40 등)를 조작하여 제작될 수 있다.
한편, 본 발명의 벡터가 재조합 벡터이고 진핵세포를 숙주로 하는 경우에, 포유동물 세포의 게놈으로부터 유래된 프로모터(예: 메탈로티오닌 프로모터) 또는 포유동물 바이러스로부터 유래된 프로모터(예: 아데노바이러스 후기 프로모터, 우두바이러스 7.5K 프로모터, SV40 프로모터, 사이토메갈로바이러스 프로모터 및 HSV의 tk 프로모터)가 이용될 수 있으며, 전사 종결 서열로서 폴리아데닐화 서열(예: 소성장 호르몬 터미네이터 및 SV40 유래 폴리 아데닐화 서열)을 일반적으로 갖는다.
또한, 본 발명의 재조합 벡터는 선택 마커로서 당업계에서 통상적으로 이용되는 항생제 내성 유전자를 포함하며, 예를 들어 암피실린, 겐타마이신, 카베니실린, 클로람페니콜, 스트렙토마이신, 카나마이신, 게네티신, 네오마이신 및 테트라사이클린에 대한 내성 유전자가 사용될 수 있다.
본 발명의 재조합 벡터는 회수되는 목적 단백질, 즉 인슐린 아날로그의 정제를 용이하게 하기 위하여 필요에 따라 다른 서열을 추가로 포함할 수 있다. 상기 추가로 포함될 수 있는 서열은 단백질 정제용 태그 서열일 수 있으며, 예컨대, 글루타티온 S-트랜스퍼라제(Pharmacia, USA), 말토스 결합 단백질(NEB, USA), FLAG(IBI, USA) 및 6개 히스티딘(hexahistidine) 등이 있으나, 상기 예들에 의하여 목적 단백질의 정제를 위하여 필요한 서열의 종류가 제한되는 것은 아니다.
상기와 같은 태그 서열을 포함하는 재조합 벡터에 의해 발현된 융합 단백질은 친화성 크로마토그래피에 의해 정제될 수 있다. 예컨대, 글루타티온-S-트랜스퍼라제가 융합된 경우에는 이 효소의 기질인 글루타티온을 이용할 수 있고, 6개 히스티딘 태그가 이용된 경우에는 Ni-NTA 칼럼을 이용하여 원하는 목적 단백질을 용이하게 회수할 수 있다.
상기 단쇄 인슐린 아날로그를 코딩하는 폴리뉴클레오티드를 포함하는 재조합 벡터를 이용하여, 상기 벡터가 형질전환된 형질전환체가 구축될 수 있다.
본 발명에서 사용되는 "형질전환(transformation)"는 DNA를 숙주세포 내로 도입하여 DNA가 염색체의 인자로서 또는 염색체 통합 완성에 의해 복제 가능하게 되는 것으로, 외부의 DNA를 세포 내로 도입하여 인위적으로 유전적인 변화를 일으키는 현상을 의미한다.
본 발명의 형질전환 방법은 임의의 형질전환 방법이 사용될 수 있으며, 당업계의 통상적인 방법에 따라 용이하게 수행할 수 있다. 일반적으로 형질전환 방법에는 CaCl2 침전법, CaCl2 침전법에 DMSO(dimethyl sulfoxide)라는 환원물질을 사용함으로써 효율을 높인 Hanahan 방법, 전기천공법(electroporation), 인산칼슘 침전법, 원형질 융합법, 실리콘 카바이드 섬유를 이용한 교반법, 아그로박테리아 매개 형질전환법, PEG를 이용한 형질전환법, 덱스트란 설페이트, 리포펙타민 및 건조/억제 매개된 형질전환법 등이 있다.
본 발명에 따른 단쇄 인슐린 아날로그를 코딩하는 핵산을 포함하는 재조합 벡터를 형질전환시키기 위한 방법은 상기 예들에 국한되지 않으며, 당업계에서 통상적으로 사용되는 형질전환 또는 형질감염 방법이 제한 없이 사용될 수 있다.
목적 핵산인 단쇄 인슐린 아날로그를 코딩하는 핵산을 포함하는 재조합 벡터를 숙주세포 내로 도입함으로써, 본 발명의 형질전환체를 획득할 수 있다.
본 발명에 적합한 숙주는 본 발명의 핵산을 발현하도록 하는 한 특별히 제한되지 않는다. 본 발명에 사용될 수 있는 숙주의 특정한 예로는 대장균(E. coli)과 같은 에스케리키아(Escherichia) 속 세균; 바실러스 서브틸리스(Bacillus subtilis)와 같은 바실러스(Bacillus) 속 세균; 슈도모나스 푸티다(Pseudomonas putida)와 같은 슈도모나스(Pseudomonas) 속 세균; 피키아 파스토리스(Pichia pastoris), 사카로마이세스 세레비지애(Saccharomyces cerevisiae), 스키조사카로마이세스 폼베(Schizosaccharomyces pombe)와 같은 효모; 스포도프테라 프루기페르다(SF9)와 같은 곤충세포; 및 CHO, COS, BSC 등과 같은 동물세포가 있으나, 이에 제한되지 않는다. 구체적으로는, 숙주세포로 대장균을 사용한다.
본 발명을 구현하기 위한 다른 양태는 상기 형질전환체를 이용하여 단쇄 인슐린 아날로그를 제조하는 방법을 제공한다.
구체적으로, 하기 단계를 포함하는 상기 단쇄 인슐린 아날로그를 제조하는 방법을 제공한다:
a) 상기 단쇄 인슐린 아날로그를 코딩하는 핵산을 포함하는 형질전환체를 배양하여 단쇄 인슐린 아날로그를 발현시키는 단계; 및
b) 발현된 단쇄 인슐린 아날로그를 분리 및 정제하는 단계.
상기 단쇄 인슐린 아날로그, 핵산, 형질전환체는 앞서 설명한 바와 같다.
본 발명에서 형질전환체의 배양에 사용되는 배지는 적절한 방식으로 숙주세포 배양의 요건을 충족해야 한다. 숙주세포의 생장을 위하여 배지 중에 포함될 수 있는 탄소원은 제조된 형질전환체의 종류에 따라 당업자의 판단에 의해 적절하게 선택될 수 있고, 배양 시기 및 양을 조절하기 위해 적당한 배양 조건을 채택할 수 있다.
사용될 수 있는 당원으로는 글루코스, 사카로스, 락토스, 프룩토스, 말토스, 전분, 셀룰로스와 같은 당 및 탄수화물, 대두유, 해바라기유, 피마자유, 코코넛유 등과 같은 오일 및 지방, 팔미트산, 스테아린산, 리놀레산과 같은 지방산, 글리세롤, 에탄올과 같은 알코올, 아세트산과 같은 유기산이 포함된다. 이들 물질은 개별적으로 또는 혼합물로서 사용될 수 있다.
사용될 수 있는 질소원으로는 펩톤, 효모 추출물, 육즙, 맥아 추출물, 옥수수 침지액, 대두밀 및 요소 또는 무기 화합물, 예를 들면 황산암모늄, 염화암모늄, 인산암모늄, 탄산암모늄 및 질산암모늄이 포함된다. 질소원 또한 개별적으로 또는 혼합물로서 사용될 수 있다.
사용될 수 있는 인원으로는 인산이수소칼륨 또는 인산수소이칼륨 또는 상응하는 나트륨-함유 염이 포함된다. 또한, 배양 배지는 성장에 필요한 황산마그네슘 또는 황산철과 같은 금속염을 함유할 수 있다.
마지막으로, 상기 물질에 더하여 아미노산 및 비타민과 같은 필수 성장물질이 사용될 수 있다. 또한, 배양 배지에 적절한 전구체들이 사용될 수 있다. 상기된 원료들은 배양 도중에 배양물에 적절한 방식에 의해 회분식으로 또는 연속식으로 첨가될 수 있다. 수산화나트륨, 수산화칼륨, 암모니아와 같은 염기성 화합물 또는 인산 또는 황산과 같은 산 화합물을 적절한 방식으로 사용하여 배양물의 pH를 조절할 수 있다. 또한, 지방산 폴리글리콜 에스테르와 같은 소포제를 사용하여 기포 생성을 억제할 수 있다. 호기 상태를 유지하기 위해 배양물 내로 산소 또는 산소-함유 기체(예: 공기)를 주입한다.
본 발명에 따른 형질전환체의 배양은 보통 20℃ 내지 45℃, 구체적으로는 25℃ 내지 40℃의 온도에서 수행된다. 또한 배양은 원하는 단쇄 인슐린 아날로그의 생성량이 최대로 얻어질 때까지 지속되는데, 이러한 목적으로 배양은 보통 10 내지 160시간 동안 지속될 수 있다.
전술한 바와 같이 숙주세포에 따라 적절한 배양 조건을 조성해주면 본 발명에 따른 형질전환체는 단쇄 인슐린 아날로그를 생산하게 되며, 벡터의 구성 및 숙주세포의 특징에 따라 생산된 단쇄 인슐린 아날로그는 숙주세포의 세포질 내, 원형질막 공간(periplasmic space) 또는 세포 외로 분비될 수 있다.
숙주세포 내 또는 외에서 발현된 단백질은 통상의 방식으로 정제될 수 있다. 정제 방법의 예로는 염석(예: 황산암모늄 침전, 인산나트륨 침전 등), 용매 침전(예: 아세톤, 에탄올 등을 이용한 단백질 분획 침전 등), 투석, 겔 여과, 이온 교환, 역상 칼럼 크로마토그래피와 같은 크로마토그래피 및 한외여과 등의 기법을 단독 또는 조합하여 적용할 수 있다.
본 발명의 구체예로서, 단쇄 인슐린 아날로그를 제조하는 방법은
(a) 단백질 분해효소 절단 부위를 포함하는 5 내지 20개의 아미노산으로 구성된 펩타이드가 상기 단쇄 인슐린 아날로그의 아미노 말단에 융합된 형태로 단쇄 인슐린 아날로그를 발현시키는 단계; 및
(b) 발현된 단쇄 인슐린 아날로그에 융합된 펩타이드를 제거하는 단계를 포함할 수 있다.
상기 단쇄 인슐린 아미노 말단에 융합된 펩타이드는 단쇄 인슐린 아날로그의 발현 수율의 증대에 기여하며, 단백질 분해효소(예들 들어, 트립신) 절단 부위를 가지고 있어, 단쇄 인슐린 아날로그 생산시 효율적으로 제거된다. 상기 단쇄 인슐린 아미노 말단에 추가되는 펩타이드는 단쇄 인슐린 아날로그의 발현 수율의 증대에 기여하며, 단백질 분해효소 절단 부위를 가지고 있는한 제한되지 않으나, 구체적으로 5 내지 20개의 아미노산으로 구성될 수 있으며, 더욱 구체적으로, 7 내지 18개, 또는 9 내지 16개의 아미노산으로 구성될 수 있으며, 더더욱 구체적으로, MATTSTATTR(서열번호 20)의 아미노산 서열을 포함할 수 있다. 상기 펩타이드가 융합된 단쇄 인슐린 아날로그는 서열번호 24의 아미노산 서열을 가질 수 있으나, 이에 제한되지 않는다.
하나의 구체적인 실시 형태에서 펩타이드가 융합된 단쇄 인슐린 아날로그는 천연형 인슐린 A쇄; 상기 C-펩타이드의 아날로그; 및 천연형 인슐린 B쇄가 상기 순서대로 연결된 단쇄 인슐린 아날로그의 아미노 말단에 펩타이드가 융합된 것일 수 있으며, 구체적으로 서열번호 19의 아미노산 서열을 가질 수 있으나, 이에 제한되지 않는다.
본 발명의 구체예에서는, 형질전환체로부터 봉입체 형태로 발현된 단쇄 인슐린 아날로그를 분리 및 정제하기 위하여 하기 단계를 추가적으로 포함할 수 있다:
b-1) 상기 a) 단계의 배양액으로부터 형질전환체를 수확하여 파쇄하는 단계;
b-2) 파쇄된 세포 용해물로부터 발현된 단쇄 인슐린 아날로그를 회수하여 리폴딩하는 단계;
b-3) 리폴딩된 단쇄 인슐린 아날로그를 양이온 교환 크로마토그래피로 정제하는 단계;
b-4) 정제된 단쇄 인슐린 아날로그를 단백질 분해효소(예를 들어, 트립신 또는 카복시펩티다제 B)로 처리하는 단계; 및/또는
b-5) 처리된 단쇄 인슐린 아날로그를 양이온 교환 크로마토그래피, 음이온 교환 크로마토그래피, 역상 크로마토그래피 또는 이들의 조합으로 정제하는 단계.
또한, 상기 분리 및 정제하는 단계는, 단백질 분해효소 절단 부위를 포함하는 펩타이드가 융합된 형태로 단쇄 인슐린 아날로그를 발현시킨 경우, 단쇄 인슐린 아날로그에 융합된 펩타이드를 제거하는 단계를 추가로 포함할 수 있다.
본 발명의 또 다른 하나의 양태는 단쇄 인슐린 아날로그의 반감기 및 생체 이용율을 증가시키거나, 활성을 지속적으로 유지시키는 제제를 제공한다. 구체적으로, 상기 제제는 단쇄 인슐린 아날로그에 직접 공유결합하는 캐리어를 포함하는 제제나, 또는 직접적인 공유결합은 없더라도 단쇄 인슐린 아날로그의 생체 내 활성 유지를 높일 수 있는 성분을 포함하는 제제를 말한다.
또한, 본 발명의 또 하나의 다른 양태는 단쇄 인슐린 아날로그 및 이의 생체 내 반감기를 증가시킬 수 있는 물질을 결합시킨, 단쇄 인슐린 아날로그 결합체를 지속형 인슐린으로서 제공한다. 또한, 본 발명의 단쇄 인슐린 아날로그는 천연형 인슐린에 비해 낮은 활성을 가져 기존 천연형 인슐린의 가장 큰 문제점인 저혈당 위험을 낮출 수 있으며, 이의 지속형 제형은 낮은 활성을 지속적으로 유지하여 저혈당 위험 없이 긴 시간 동안 혈당 조절에 유리하다.
하나의 구체적인 실시 형태에서, 본 발명의 단쇄 인슐린 아날로그 결합체는 하기 화학식 1의 구조를 가진다.
[화학식 1]
X-Y-Z-La-F
여기에서,
X는 천연형 인슐린 A쇄, B쇄 또는 이들의 아날로그이고,
Y는 C-펩타이드 또는 이의 아날로그이고,
Z는 천연형 인슐린 B쇄, A쇄 또는 이들의 아날로그이고,
L은 링커이고,
a는 0 또는 자연수이며, 단 a가 2 이상일 때 각각의 L은 서로 독립적이고,
F는 인슐린 아날로그의 생체 내 반감기를 증가시킬 수 있는 물질이고,
단, X, Y 및 Z가 각각 천연형 인슐린의 B쇄, C-펩타이드 및 A쇄이거나, 천연형 인슐린의 A쇄, C-펩타이드 및 B쇄인 경우는 제외되며,
X-Y-Z는 단쇄 인슐린 아날로그를 형성한다.
상기 “-“는 각각의 결합을 의미하는 것으로, 직접적인 결합 또는 링커를 나타낸다. 상기 링커는 펩타이드성 링커 또는 비펩타이드성 링커일 수 있다.
또한, 상기 “-“는 비공유 결합 혹은 공유결합 등 어떠한 화학적 결합일 수 있으며, 구체적으로 공유결합일 수 있으나, 이에 제한되지 않는다.
상기 L은 펩타이드성 중합체 또는 비펩타이드성 중합체일 수 있다.
상기 L이 펩타이드성 중합체일 때, 1개 이상의 아미노산을 포함할 수 있으며, 예컨대 1개부터 1000개의 아미노산을 포함할 수 있으나, 특별히 이에 제한되는 것은 아니다. 본 발명에서 F와 Z를 연결하기 위하여 공지의 다양한 펩타이드 링커가 본 발명에 사용될 수 있으며, 그 예로 [GS]x 링커, [GGGS]x 링커 및 [GGGGS]x 링커 등을 포함하며, 여기서 x는 1 이상의 자연수일 수 있다. 그러나, 상기 예에 제한되는 것은 아니다.
상기 L이 비펩타이드성 중합체일 때, 상기 비펩타이드성 중합체는 폴리에틸렌글리콜, 폴리프로필렌 글리콜, 에틸렌 글리콜-프로필렌 글리콜 공중합체, 폴리옥시에틸화폴리올, 폴리비닐알콜, 폴리사카라이드, 덱스트란, 폴리비닐에틸에테르, 생분해성 고분자, 지질 중합체, 키틴, 히아루론산 및 이들의 조합으로 이루어진 군으로부터 선택될 수 있고, 보다 구체적으로, 폴리에틸렌글리콜일 수 있으나, 이에 제한되는 것은 아니다.
상기 X-Y-Z와 F는 공유 화학결합 또는 비공유 화학결합으로 서로 결합될 수 있으며, 공유 화학결합, 비공유 화학결합 또는 이들의 조합으로 L을 통하여 X-Y-Z와 F가 서로 결합될 수 있다.
본 발명에서 사용된 용어 "지속형 인슐린"은, 단쇄 인슐린 아날로그에 반감기를 연장시킬 수 있는 생체적합성 물질이 결합된 물질을 말한다. 상기 지속형 인슐린은 천연형 인슐린에 비하여 반감기가 증대된 효과를 지닌다.
상기 단쇄 인슐린 아날로그에 대해서는 앞서 설명한 바와 같다.
본 발명에서 "생체적합성 물질 또는 생체 내 반감기를 증가시킬 수 있는 물질"은 단쇄 인슐린 아날로그에 결합되어 이의 반감기를 연장시킬 수 있는 물질을 의미한다. 상기 "생체적합성 물질" 또는 "생체 내 반감기를 증가시킬 수 있는 물질"은 본 발명에서 "캐리어"와 혼용되어 사용된다.
상기 생체적합성 물질 또는 캐리어는 단쇄 인슐린 아날로그에 결합되어 이의 반감기를 연장시킬 수 있는 물질이라면 모두 포함하며, 그 예로 폴리에틸렌글리콜, 지방산, 콜레스테롤, 알부민 및 이의 단편, 알부민 결합물질, 특정 아미노산 서열의 반복단위의 중합체, 항체, 항체 단편, FcRn 결합물질, 생체 내 결합조직 혹은 그 유도체, 뉴클레오타이드, 파이브로넥틴, 트랜스페린(Transferrin), 당류(saccharide) 및 고분자 중합체로 이루어진 군에서 선택된 될 수 있으나, 이에 제한되지 않는다.
상기 생체적합성 물질 또는 캐리어는 공유 또는 비공유 결합으로 단쇄 인슐린 아날로그에 결합될 수 있다. 또한, 단쇄 인슐린 아날로그와 상기 생체적합성 물질 또는 캐리어와의 연결은 유전자 재조합 방법과 고분자 또는 저분자 화학물질을 이용한 in vitro 결합 등을 포함하며, 어느 결합방식에 한정되지 않는다.
본 발명에서 폴리에틸렌 글리콜을 캐리어로 사용시 위치특이적으로 폴리에틸렌글리콜을 부착할 수 있는 Ambrx사의 Recode기술이 포함될 수 있으며, 당쇄부위에 특이적으로 부착할 수 있는 Neose사의 당페길화(glycopegylation) 기술이 포함될 수 있다. 또한, 생체 내에서 폴리에틸렌글리콜이 천천히 제거되는 releasable PEG 기술이 이에 포함될 수 있으나, 이에 한정되지 않으며 PEG를 이용하여 생체 내 이용율을 높인 기술들이 포함될 수 있다.
또한, 폴리에틸렌글리콜, 폴리프로필렌 글리콜, 에틸렌글리콜-프로필렌글리콜 공중합체, 폴리옥시에틸화폴리올, 폴리비닐알콜, 다당류, 덱스트란, 폴리비닐에틸에테르, 생분해성 고분자, 지질 중합체, 키틴류, 히아루론산과 같은 고분자 중합체 역시 상기 기술에 의해 인슐린 아날로그에 결합될 수 있다.
본 발명에서 알부민을 캐리어로 사용할 경우 알부민 혹은 알부민 단편을 직접 인슐린 아날로그에 직접 공유결합하여 생체 내 안정성을 높일 수 있는 기술이 포함될 수 있으며 알부민을 직접 결합하지 않더라도 알부민에 결합하는 물질, 예를 들어 알부민 특이적 결합 항체 혹은 항체 단편을 인슐린 아날로그에 결합시켜 알부민에 결합하게 하는 기술 및 알부민에 결합력을 가진 특정 펩타이드/단백질(예를 들어 Affibody사의 albumod 기술을 이용하여 생산된 알부민 결합 펩타이드)을 인슐린 아날로그에 결합하는 기술이 포함될 수 있으며, 알부민에 결합력을 가진 지방산 등을 결합시키는 기술들이 이에 포함될 수 있으나, 이에 한정되지 않으며, 알부민을 이용한 생체내 안정성을 높일 수 있는 어떤 기술, 결합방식 등이 이에 포함될 수 있다.
생체 내 반감기를 증가시키기 위해 항체 혹은 항체 단편을 캐리어로 사용하여 인슐린 아날로그에 결합시키는 기술도 본 발명에 포함될 수 있다. FcRn 결합 부위를 같는 항체 혹은 항체 단편일 수 있으며, Fab등 FcRn 결합부위를 포함하지 않는 어떠한 항체 단편일 수 있다. Catalytic 항체를 이용하는 CovX사의 CovX-body 기술이 이에 포함될 수 있으며, 면역글로불린 Fc 영역을 이용하여 생체 내 반감기를 증가시키는 기술도 본 발명에 포함될 수 있다.
상기 FcRn 결합물질은 면역글로불린 Fc 영역일 수 있다.
본 발명에서 사용된 용어 "면역글로불린 Fc 영역"은 면역글로불린의 중쇄와 경쇄 가변영역, 중쇄 불변영역 1(CH1)과 경쇄 불변영역(CL)을 제외한 나머지 부분을 의미하며, 면역글로불린 Fc 영역은 중쇄 불변영역에 힌지(hinge) 영역을 추가로 포함하기도 한다. 특히 면역글로불린 Fc 영역 전체 및 이의 일부를 포함하는 단편일 수 있어, 본 발명에서는 면역글로불린 Fc 영역은 면역글로불린 단편 또는 면역글로불린 불변영역과 혼용될 수 있다.
천연형 Fc는 중쇄 불변영역 1에서 Asn297 부위에 당쇄가 존재하지만, 대장균 유래 재조합 Fc는 당쇄가 없는 형태로 발현된다. Fc에서 당쇄가 제거되면 중쇄 불변영역 1 에 결합하는 Fc 감마 수용체 1,2,3 과 보체(c1q)의 결합력이 저하되어 항체-의존성 세포독성 또는 보체-의존성 세포독성이 감소 또는 제거된다.
본 발명에서, "면역글로불린 불변영역"은 면역글로불린의 중쇄와 경쇄 가변영역, 중쇄 불변영역 1(CH1)과 경쇄 불변영역(CL)을 제외한, 중쇄 불변영역 2(CH2) 및 중쇄 불변영역 3(CH3)(또는 중쇄 불변영역 4(CH4) 포함)부분을 포함하는 Fc 단편을 의미할 수 있으며, 중쇄 불변영역에 힌지(hinge) 부분을 포함하기도 한다. 또한, 본 발명의 면역글로불린 불변영역은 천연형과 실질적으로 동등 하거나 향상된 효과를 갖는 한, 면역 글로불린의 중쇄와 경쇄 가변영역만을 제외하고, 일부 또는 전체 중쇄 불변영역 1(CH1) 및/또는 경쇄 불변영역(CL)을 포함하는 확장된 면역글로불린 불변영역일 수 있다. 또한, CH2 및/또는 CH3에 해당하는 상당히 긴 일부 아미노산 서열이 제거된 영역일 수도 있다. 즉, 본 발명의 면역글로불린 불변영역은 (1) CH1 도메인, CH2 도메인, CH3 도메인 및 CH4 도메인, (2) CH1 도메인 및 CH2 도메인, (3) CH1 도메인 및 CH3 도메인, (4) CH2 도메인 및 CH3 도메인, (5) 1개 또는 2개의 이상의 불변영역 도메인과 면역글로불린 힌지 영역(또는 힌지 영역의 일부)과의 조합, (6) 중쇄 불변영역 각 도메인과 경쇄 불변영역의 이량체일 수 있다. 면역글로불린 Fc 단편을 비롯한 불변영역은 생체 내에서 대사되는 생분해성의 폴리펩타이드이기 때문에, 약물의 캐리어로 사용하기에 안전하다. 또한, 면역글로불린 Fc 단편은 면역글로불린 전체 분자에 비해 상대적으로 분자량이 적기 때문에 결합체의 제조, 정제 및 수율 면에서 유리할 뿐만 아니라, 아미노산 서열이 항체마다 달라 높은 비균질성을 나타내는 Fab 부분이 제거되기 때문에, 물질의 동질성이 크게 증가되고, 혈중 항원성의 유발 가능성도 낮아지게 되는 효과도 기대할 수 있다.
한편, 면역글로불린 불변영역은 인간 또는 소, 염소, 돼지, 마우스, 래빗, 햄스터, 랫트, 기니아 픽 등의 동물기원일 수 있으며, 구체적으로는 인간기원이다. 또한, 면역글로불린 불변영역은 IgG, IgA, IgD, IgE, IgM 유래 또는 이들의 조합(combination) 또는 이들의 혼성(hybrid)에 의한 불변영역으로 이루어진 군으로부터 선택될 수 있다. 구체적으로는 인간 혈액에 가장 풍부한 IgG 또는 IgM 유래이며 가장 구체적으로는 리간드 결합 단백질의 반감기를 향상시키는 것으로 공지된 IgG 유래일 수 있다. 본 발명에서 면역글로불린 Fc 영역은 동일한 기원의 도메인으로 이루어진 단쇄 면역글로불린으로 구성된 이량체 또는 다량체일 수 있다.
본 발명에서 "조합(combination)"이란 이량체 또는 다량체를 형성할 때, 동일 기원 단쇄 면역글로불린 불변영역(구체적으로는 Fc 영역)을 암호화하는 폴리펩타이드가 상이한 기원의 단쇄 폴리펩타이드와 결합을 형성하는 것을 의미한다. 즉, IgG Fc, IgA Fc, IgM Fc, IgD Fc 및 IgE의 Fc 단편으로 이루어진 그룹으로부터 선택된 2개 이상의 단편으로부터 이량체 또는 다량체의 제조가 가능하다.
본 발명에서 "하이브리드(hybrid)"란 단쇄의 면역글로불린 불변영역(구체적으로는 Fc 영역)내에 2개 이상의 상이한 기원의 면역글로불린 불변영역에 해당하는 서열이 존재함을 의미하는 용어이다. 본 발명의 경우 여러 형태의 하이브리드가 가능하다. 즉, IgG Fc, IgM Fc, IgA Fc, IgE Fc 및 IgD Fc의 CH1, CH2, CH3 및 CH4로 이루어진 그룹으로부터 선택된 1개 내지 4개 도메인으로 이루어진 도메인의 하이브리드가 가능하며, 힌지영역을 추가로 포함할 수 있다.
IgG 역시 IgG1, IgG2, IgG3 및 IgG4의 서브클래스로 나눌 수 있고 본 발명에서는 이들의 조합 또는 이들의 혼성화된 형태도 가능하다. 구체적으로는 IgG2 및 IgG4 서브클래스이며, 더욱 구체적으로는 보체 의존적 독성(CDC, Complementdependent cytotoxicity)과 같은 이펙터 기능(effector function)이 거의 없는 IgG4의 Fc 영역일 수 있다.
또한, 면역글로불린 불변영역은 천연형 당쇄, 천연형에 비해 증가된 당쇄, 천연형에 비해 감소한 당쇄 또는 당쇄가 제거된 형태일 수 있다. 이러한 면역글로불린 불변영역 당쇄의 증감 또는 제거에는 화학적 방법, 효소학적 방법 및 미생물을 이용한 유전 공학적 방법과 같은 통상적인 방법이 이용될 수 있다. 여기서, 면역글로불린 불변영역에서 당쇄가 제거된 면역글로불린 불변영역은 보체(c1q)의 결합력이 현저히 저하되고, 항체-의존성 세포독성 또는 보체-의존성 세포독성이 감소 또는 제거되므로, 생체 내에서 불필요한 면역반응을 유발하지 않는다. 이런 점에서 약물의 캐리어로서의 본래의 목적에 보다 부합하는 형태는 당쇄가 제거되거나 비당쇄화된 면역글로불린 불변영역이라 할 것이다. 따라서, 더욱더 구체적으로는, 인간 IgG4 유래의 비-당쇄화된 Fc 영역, 즉 인간 비당쇄화 IgG4 Fc 영역을 사용할 수 있다. 인간 유래의 Fc 영역은 인간 생체에서 항원으로 작용하여 이에 대한 새로운 항체를 생성하는 등의 바람직하지 않은 면역 반응을 일으킬 수 있는 비-인간 유래의 Fc 영역에 비하여 바람직할 수 있다.
또한, 본 발명의 면역글로불린 불변영역은 천연형 아미노산 서열뿐만 아니라 이의 서열유도체(mutant)를 포함한다. 아미노산 서열 유도체란 천연 아미노산 서열중의 하나 이상의 아미노산 잔기가 결실, 삽입, 비보전적 또는 보전적 치환 또는 이들의 조합에 의하여 상이한 서열을 가지는 것을 의미한다. 예를 들면, IgG Fc의 경우 결합에 중요하다고 알려진 214 내지 238, 297 내지 299, 318 내지 322 또는 327 내지 331번 아미노산 잔기들이 변형을 위해 적당한 부위로서 이용될 수 있다. 또한, 이황화 결합을 형성할 수 있는 부위가 제거되거나, 천연형 Fc에서 N-말단의 몇몇 아미노산이 제거되거나 또는 천연형 Fc의 N-말단에 메티오닌 잔기가 부가되는 등 다양한 종류의 유도체가 가능하다. 또한, 이펙터 기능을 없애기 위해 보체결합부위, 예를 들어 C1q 결합부위가 제거될 수도 있고, ADCC 부위가 제거될 수도 있다. 이러한 면역글로불린 불변영역의 서열 유도체를 제조하는 기술은 국제특허공개 제97/34631호, 국제특허공개 제96/32478호 등에 개시되어 있다.
분자의 활성을 전체적으로 변경시키지 않는 단백질 및 펩티드에서의 아미노산 교환은 당해 분야에 공지되어 있다(H.Neurath, R.L.Hill, The Proteins, Academic Press, New York, 1979). 가장 통상적으로 일어나는 교환은 아미노산 잔기 Ala/Ser, Val/Ile, Asp/Glu, Thr/Ser, Ala/Gly, Ala/Thr, Ser/Asn, Ala/Val, Ser/Gly, Thr/Phe, Ala/Pro, Lys/Arg, Asp/Asn, Leu/Ile, Leu/Val, Ala/Glu, Asp/Gly 간의 교환이다. 경우에 따라서는 인산화(phosphorylation), 황화(sulfation), 아크릴화(acrylation), 당화(glycosylation), 메틸화(methylation), 파네실화(farnesylation), 아세틸화(acetylation), 아밀화(amidation) 등으로 수식(modification)될 수도 있다.
상기 기술한 면역글로불린 불변영역 유도체는 본 발명의 면역글로불린 불변영역과 동일한 생물학적 활성을 나타내나, 면역글로불린 불변영역의 열, pH 등에 대한 구조적 안정성을 증대시킨 유도체일 수 있다. 또한, 이러한 면역글로불린 불변영역은 인간 및 소, 염소, 돼지, 마우스, 래빗, 햄스터, 랫트, 기니아 픽 등의 동물의 생체 내에서 분리한 천연형으로부터 얻어질 수도 있고, 형질전환된 동물세포 또는 미생물로부터 얻어진 재조합형 또는 이의 유도체일 수 있다. 여기서, 천연형으로부터 획득하는 방법은 전체 면역글로불린을 인간 또는 동물의 생체로부터 분리한 후, 단백질 분해효소를 처리하여 얻을 수 있다. 파파인을 처리할 경우에는 Fab 및 Fc로 절단되고, 펩신을 처리할 경우에는 pF'c 및 F(ab)2로 절단된다. 이를 크기 배제 크로마토그래피(size-exclusion chromatography) 등을 이용하여 Fc 또는 pF'c를 분리할 수 있다.
구체적으로는 인간 유래의 면역글로불린 불변영역을 미생물로부터 수득한 재 조합형 면역글로불린 불변영역일 수 있다.
하나의 구체적인 실시 형태에서 본 발명의 결합체는 단쇄 인슐린 아날로그 및 이의 생체 내 반감기를 증가시킬 수 있는 물질이 링커를 통해 연결될 수 있다.
본 발명에서 상기 링커는 단쇄 인슐린 아날로그 또는 이의 생체 내 반감기를 증가시킬 수 있는 물질 각각의 N-말단, C-말단, 라이신, 히스티딘, 또는 시스테인에 결합된 형태일 수 있다.
상기 링커는 펩타이드성 링커 또는 비펩타이드성 링커일 수 있다.
상기 비펩타이드성 링커로서 단백질분해효소에 저항성 있는 중합체를 사용하여, 단쇄 인슐린 아날로그의 생체 내 반감기를 증가시킬 수 있는 물질과 유사하게 단쇄 인슐린 아날로그의 혈중반감기를 유지할 수 있다. 그러므로, 본 발명에서 사용될 수 있는 비펩타이드성 링커는 상기와 같은 역할, 즉 생체 내 단백질분해효소에 저항성 있는 비펩타이드성 중합체이면 제한없이 사용될 수 있다.
본 발명에서 "비펩타이드성 중합체"는 반복 단위가 2개 이상 결합된 생체 적합성 중합체를 포함하고, "비펩타이드성 링커"와 혼용된다. 상기 반복 단위들은 펩타이드 결합이 아닌 임의의 공유결합을 통해 서로 연결된다. 본 발명에서 비펩타이드성 중합체는 말단에 반응기를 포함하여, 결합체를 구성하는 다른 구성 요소와 반응을 통해 결합체를 형성할 수 있다.
본 발명에서 "비펩타이드성 중합체 연결부(linkage moiety)"는 양 말단에 반응기를 갖는 비펩타이드성 중합체가 각 반응기를 통해 면역글로불린 Fc 영역 및 단쇄 인슐린 아날로그와 결합하여 형성한 결합체 내의 일 구성 요소를 의미한다.
하나의 구체적인 실시 형태에서 상기 단쇄 인슐린 아날로그 결합체는 양쪽 말단에 면역글로불린 Fc 영역 및 단쇄 인슐린 아날로그와 결합될 수 있는 반응기를 포함하는 비펩타이드성 중합체를 통하여, 면역글로불린 Fc 영역 및 단쇄 인슐린 아날로그가 서로 공유결합적으로 연결된 것일 수 있다.
구체적으로, 특별히 이에 제한되지 않으나, 상기 비펩타이드성 중합체는 폴리에틸렌 글리콜, 폴리프로필렌 글리콜, 에틸렌 글리콜과 프로필렌 글리콜의 공중합체, 폴리옥시 에틸화 폴리올, 폴리비닐 알콜, 폴리사카라이드, 덱스트란, 폴리비닐 에틸에테르, PLA(polylactic acid) 및 PLGA(polylactic-glycolic acid)와 같은 생분해성 고분자, 지질 중합체, 키틴류, 히아루론산, 올리고뉴클레오타이드 및 이들의 조합으로 구성된 군으로부터 선택될 수 있다. 보다 구체적인 실시 형태에서 상기 비펩타이드성 중합체는 폴리에틸렌글리콜일 수 있으나, 이에 제한되지 않는다. 또한, 당해 분야에 이미 알려진 이들의 유도체 및 당해 분야의 기술 수준에서 용이하게 제조할 수 있는 유도체들도 본 발명의 범위에 포함된다.
상기 링커에 의한 결합은 비공유화학 결합 혹은 공유화학결합 등 어떠한 화학적 결합일 수 있으며, 그 제한은 없다.
보다 구체적으로, 본 발명에서 비펩타이드성 중합체는 반복 단위가 2개 이상 결합된 생체적합성 중합체를 포함하며, 상기 반복 단위들은 펩타이드 결합이 아닌 임의의 공유결합을 통해 서로 연결된다. 이와 같은 비펩타이드성 중합체는 양 말단 또는 세 말단을 가질 수 있다.
본 발명에서 사용될 수 있는 비펩타이드성 중합체는 생체 내 단백질분해효소에 저항성 있는 중합체이면 제한 없이 사용될 수 있으나, 구체적으로 비펩타이드성 중합체의 분자량은 0 초과 200 kDa 범위, 구체적으로, 1 내지 100 kDa 범위, 보다 구체적으로, 1 내지 50 kDa 범위, 보다 더 구체적으로, 1 내지 20kDa 범위, 보다 더 구체적으로 3.4kDa 내지 10 kDa, 범위, 보다 더 구체적으로 약 3.4kDa일 수 있으나, 이에 제한되지 않는다.
또한, 상기 캐리어, 특히 면역글로불린 Fc 영역과 결합되는 본 발명의 비펩타이드성 중합체는 한 종류의 중합체뿐만 아니라 상이한 종류의 중합체들의 조합이 사용될 수도 있다.
하나의 구체적인 실시 형태에서 상기 비펩타이드성 중합체의 양 말단은 각각 면역글로불린 Fc 영역 또는 단쇄 인슐린 아날로그의 아민기, 티올기, 하이드록실기에 결합할 수 있다.
구체적으로, 상기 비펩타이드성 중합체는 양쪽 말단에 각각 면역글로불린 Fc 및 단쇄 인슐린 아날로그와 결합될 수 있는 반응기, 구체적으로는 단쇄 인슐린 아날로그 또는 면역글로불린 Fc 영역의 N-말단, 라이신, 및/또는 히스티딘에 위치한 아민기, C-말단에 위치한 하이드록실기 및/또는 시스테인의 티올기와 결합될 수 있는 반응기를 포함할 수 있으나, 이에 제한되지 않는다.
보다 구체적으로, 상기 비펩타이드성 중합체의 반응기는 알데히드 그룹, 프로피온알데히드 그룹, 부틸 알데히드 그룹, 말레이미드 그룹 및 석시니미드 유도체로 이루어진 군으로부터 선택되는 하나 이상일 수 있으나, 이에 제한되지 않는다.
상기에서, 알데히드기로 프로피온 알데히드기 또는 부틸 알데히드기를 예로서 들 수 있으나, 이에 제한되지 않는다.
상기에서, 석시니미드 유도체로는 상기 석신이미드 유도체는 석시니미딜 카르복시메틸, 석시니미딜 발레르에이트, 석시니미딜 메틸부타노에이트, 석시니미딜 메틸프로피온에이트, 석시니미딜 부타노에이트, 석시니미딜 프로피온에이트, N-하이드록시석시니미드인 또는 석시니미딜 카보네이트가 이용될 수 있으나, 이에 제한되지 않는다.
상기 비펩타이드성 중합체는 상기와 같은 반응기를 통해 면역글로불린 Fc 및 단쇄 인슐린 아날로그에 연결되어, 비펩타이드성 중합체 연결부로 전환될 수 있다.
또한, 알데히드 결합에 의한 환원성 알킬화로 생성된 최종 산물은 아미드 결합으로 연결된 것보다 훨씬 안정적이다. 알데히드 반응기는 낮은 pH에서 N-말단에 선택적으로 반응하며, 높은 pH, 예를 들어 pH 9.0 조건에서는 리신 잔기와 공유결합을 형성할 수 있다.
본 발명의 비펩타이드성 중합체의 말단 반응기는 서로 같거나 다를 수 있다. 상기 비펩타이드성 중합체는 말단에 알데히드 그룹 반응기를 갖는 것일 수 있고, 또한 상기 비펩타이드성 중합체는 말단에 각각 알데히드 그룹 및 말레이미드 반응기를 가질 수 있거나, 말단에 각각 알데히드 그룹 및 석시니미드 반응기를 가질 수 있으나, 이에 제한되지 않는다.
예를 들어, 한쪽 말단에는 말레이미드 그룹을, 다른 쪽 말단에는 알데히드 그룹, 프로피온 알데히드 그룹 또는 부틸 알데히드 그룹을 가질 수 있다. 또 한 가지 예로, 한쪽 말단에는 석시니미딜 그룹을, 다른 쪽 말단에는 프로피온 알데히드 그룹 또는 부틸 알데히드 그룹을 가질 수 있다.
프로피온쪽 말단에 하이드록시 반응기를 갖는 폴리(에틸렌 글리콜)을 비펩타이드성 중합체로 이용하는 경우에는, 공지의 화학반응에 의해 상기 하이드록시기를 상기 다양한 반응기로 활성화하거나, 상업적으로 입수가능한 변형된 반응기를 갖는 폴리(에틸렌 글리콜)을 이용하여 본 발명의 결합체를 제조할 수 있다.
하나의 구체적인 실시 형태에서 상기 비펩타이드성 중합체의 반응기가 단쇄 인슐린 아날로그의 시스테인 잔기, 보다 구체적으로 시스테인의 -SH 기에 연결되는 것일 수 있으나, 이에 제한되지 않는다.
만약, 말레이미드-PEG-알데히드를 사용하는 경우, 말레이미드 기는 단쇄 인슐린 아날로그의 -SH 기와 티오에테르(thioether) 결합으로 연결하고, 알데히드기는 면역글로불린 Fc의 -NH2 기와 환원적 알킬화 반응을 통해 연결할 수 있으나, 이에 제한되지 않으며, 이는 하나의 일례에 해당한다.
이와 같은 환원적 알킬화를 통하여 PEG의 한쪽 말단에 위치한 산소 원자에 면역글로불린 Fc 영역의 N-말단 아미노기가 -CH2CH2CH2-의 구조를 가지는 링커 작용기를 통해 서로 연결되어, -PEG-O-CH2CH2CH2NH-면역글로불린 Fc와 같은 구조를 형성할 수 있고, 티오에테르 결합을 통하여 PEG의 한쪽 말단이 단쇄 인슐린 아날로그의 시스테인에 위치한 황 원자에 연결된 구조를 형성할 수 있다. 상술한 티오에테르 결합은
Figure PCTKR2018011557-appb-I000001
의 구조를 포함할 수 있다.
그러나, 상술한 예에 특별히 제한되는 것은 아니며, 이는 하나의 일례에 해당한다.
또한, 상기 결합체에서, 비펩타이드성 중합체의 반응기가 면역글로불린 Fc 영역의 N-말단에 위치한 -NH2와 연결된 것일 수 있으나, 이는 하나의 일례에 해당한다. 구체적으로, 본 발명의 단쇄 인슐린 아날로그는 반응기를 갖는 비펩타이드성 중합체와 C-말단을 통해 연결될 수 있다.
본 발명에서 “C-말단”은, 펩타이드의 카르복시 말단을 의미하는 것으로, 본 발명의 목적상 비펩타이드성 중합체와 결합할 수 있는 위치를 말한다. 그 예로, 이에 제한되지는 않으나, C-말단의 최말단 아미노산 잔기뿐만 아니라 C-말단 주위의 아미노산 잔기를 모두 포함할 수 있으며, 구체적으로는 최말단으로부터 첫 번째 내지 20 번째의 아미노산 잔기를 포함할 수 있다.
하나의 구체적인 실시 형태에서, 단쇄 인슐린 아날로그와 생체 내 반감기를 연장할 수 있는 물질의 연결은 유전자 재조합 방법일 수 있다.
본 발명의 또 다른 하나의 양태는 상기 단쇄 인슐린 아날로그 및 이의 생체 내 반감기를 증가시킬 수 있는 물질을 연결하는 단계를 포함하는, 단쇄 인슐린 아날로그 결합체를 제조하는 방법을 제공한다.
상기 단쇄 인슐린 아날로그, 이의 생체 내 반감기를 증가시킬 수 있는 물질 및 단쇄 인슐린 아날로그 결합체는 앞서 설명한 바와 같다.
구체적으로, 상기 방법은
(a) 2 이상의 말단 반응기를 가지는 비펩타이드성 중합체와 단쇄 인슐린 아날로그 또는 캐리어 중 하나를 반응시켜, 단쇄 인슐린 아날로그 또는 캐리어가 한쪽 말단에 부착되고, 다른 쪽 말단에 반응기(reactive end group)를 가지는, 연결체를 제조하는 단계; 및
(b) 상기 (a) 단계에서 제조된 연결체와 캐리어 또는 단쇄 인슐린 아날로그 중 연결체에 부착되지 않은 다른 하나를 반응시켜, 단쇄 인슐린 아날로그와 캐리어가 비펩타이드성 중합체를 통하여 연결된, 결합체를 제조하는 단계를 포함할 수 있다.
상기 비펩타이드성 중합체, 캐리어, 단쇄 인슐린 아날로그와 이들의 연결 구성에 대해서는 앞서 기술한 설명이 모두 적용된다.
본 발명에서 용어 "연결체"란 비펩타이드성 중합체와 단쇄 인슐린 아날로그 또는 캐리어 중 하나만이 공유결합으로 연결된 중간체로서, 상기 연결체에서 단쇄 인슐린 아날로그 또는 캐리어가 연결되지 않은 비펩타이드성 중합체의 말단에, 연결체에 부착되지 않은 단쇄 인슐린 아날로그 또는 캐리어가 결합될 수 있다.
상기 단쇄 인슐린 아날로그는 앞서 설명한 단쇄 인슐린 아날로그를 제조하는 방법에 따라 얻을 수 있으며, 상업적으로 의뢰하여 제조할 수 있다.
본 발명의 또 다른 하나의 양태는 상기 단쇄 인슐린 아날로그 또는 단쇄 인슐린 아날로그 결합체를 포함하는, 생체 내 지속성 및 안정성이 증가된 단쇄 인슐린 지속성 제제를 제공한다.
한편, 생체이용율을 증가 혹은 지속적인 활성유지를 할 수 있는 제제로는 PLGA, 히알루론산, 키토산등을 이용한 마이크로 파티클, 나노파티클 등에 의한 서방성(sustained release) 제형이 이에 포함될 수 있다.
또한, 생체이용율을 증가 혹은 지속적인 활성유지를 할 수 있는 다른 양태의 제제로는 임플란트(implant), 흡입제(inhalation), 나잘(nasal) 제제, 패치(patch)와 같은 형태의 제제일 수 있다.
이러한 본 발명의 단쇄 인슐린 아날로그 또는 단쇄 인슐린 아날로그 결합체는 에너지 대사 및 당 대사와 같은 기존의 인슐린의 생체 내 활성이 유지될 뿐만 아니라 인슐린 아날로그의 혈중 반감기 및 이로 인한 상기 펩타이드의 생체 내 효력 지속효과가 획기적으로 증가하게 하므로, 당뇨(Diabetes)의 치료에 유용하다.
본 발명의 또 다른 양태는 상기 단쇄 인슐린 아날로그 또는 단쇄 인슐린 아날로그 결합체를 포함하는, 당뇨병의 예방 또는 치료용 약학적 조성물을 제공한다.
상기 단쇄 인슐린 아날로그 및 단쇄 인슐린 아날로그 결합체는 앞서 설명한 바와 같다.
본 발명에서 사용된 용어 "예방"은 상기 약학적 조성물의 투여로 당뇨병 질환의 발병을 억제 또는 지연시키는 모든 행위를 의미하며, "치료"는 상기 약학적 조성물의 투여로 당뇨병 질환의 증세가 호전되거나 이롭게 되는 모든 행위를 의미한다.
본 발명에서 사용된 용어 "투여"는 어떠한 적절한 방법으로 환자에게 소정의 물질을 도입하는 것을 의미하며, 상기 약학적 조성물의 투여 경로는 특별히 이에 제한되지 않으나, 상기 조성물이 생체 내 표적에 도달할 수 있는 어떠한 일반적인 경로를 통하여 투여될 수 있으며, 예를 들어 복강 내 투여, 정맥 내 투여, 근육 내 투여, 피하 투여, 피 내 투여, 경구 투여, 국소 투여, 비 내 투여, 폐 내 투여, 또는 직장 내 투여 등이 될 수 있다.
본 발명의 약학적 조성물은 약학적으로 허용가능한 담체, 부형제 또는 희석제를 추가로 포함할 수 있다. 이러한 약학적으로 허용가능한 담체, 부형제, 또는 희석제는 비자연적으로 발생된 것일 수 있다. 상기 담체는 특별히 이에 제한되지는 않으나, 경구 투여 시에는 결합제, 활택제, 붕해제, 부형제, 가용화제, 분산제, 안정화제, 현탁화제, 색소, 향료 등을 사용할 수 있고, 주사제의 경우에는 완충제, 보존제, 무통화제, 가용화제, 등장화제, 안정화제 등을 혼합하여 사용할 수 있으며, 국소투여용의 경우에는 기제, 부형제, 윤활제, 보존제 등을 사용할 수 있다.
본 발명에서 사용된 용어 "약학적으로 허용가능한"이란 치료효과를 나타낼 수 있을 정도의 충분한 양과 부작용을 일으키지 않는 것을 의미하며, 질환의 종류, 환자의 연령, 체중, 건강, 성별, 환자의 약물에 대한 민감도, 투여 경로, 투여 방법, 투여횟수, 치료 기간, 배합 또는 동시 사용되는 약물 등 의학 분야에 잘 알려진 요소에 따라 당업자에 의해 용이하게 결정될 수 있다.
본 발명의 조성물의 제형은 상술한 바와 같은 약학적으로 허용가능한 담체와 혼합하여 다양하게 제조될 수 있다. 예를 들어, 경구 투여 시에는 정제, 트로키, 캡슐, 엘릭서, 서스펜션, 시럽, 웨이퍼 등의 형태로 제조할 수 있으며, 주사제의 경우에는 단위 투약 앰플 또는 다수회 투약 형태로 제조할 수 있다. 기타, 용액, 현탁액, 정제, 환약, 캡슐, 서방형 제제 등으로 제형화할 수 있다.
한편, 제제화에 적합한 담체, 부형제 및 희석제의 예로는 락토스, 덱스트로스, 수크로스, 솔비톨, 만니톨, 자일리톨, 에리스리톨, 말티톨, 전분, 아카시아, 알지네이트, 젤라틴, 칼슘 포스페이트, 칼슘 실리케이트, 셀룰로스, 메틸 셀룰로스, 미정질 셀룰로스, 폴리비닐피롤리돈, 물, 메틸하이드록시벤조에이트, 프로필하이드록시벤조에이트, 탈크, 마그네슘 스테아레이트 또는 광물유 등이 사용될 수 있다. 또한, 충진제, 항응집제, 윤활제, 습윤제, 향료, 방부제 등을 추가로 포함할 수 있다.
또한, 본 발명의 약학적 조성물은 정제, 환제, 산제, 과립제, 캡슐제, 현탁제, 내용액제, 유제, 시럽제, 멸균된 수용액, 비수성용제, 동결건조제제 및 좌제로 이루어진 군으로부터 선택되는 어느 하나의 제형을 가질 수 있다.
또한, 상기 조성물은 약학적 분야에서 통상의 방법에 따라 환자의 신체 내 투여에 적합한 단위 투여형의 제제, 구체적으로는 단백질 의약품의 투여에 유용한 제제 형태로 제형화시켜 당업계에서 통상적으로 사용하는 투여 방법을 이용하여 경구, 또는 피부, 정맥 내, 근육 내, 동맥 내, 골수 내, 수막강 내, 심실 내, 폐, 경피, 피하, 복 내, 비강 내, 소화관 내, 국소, 설하, 질 내 또는 직장 경로를 포함하는 비경구 투여 경로에 의하여 투여될 수 있으나, 이들에 한정되는 것은 아니다.
또한, 상기 결합체는 생리식염수 또는 유기용매와 같이 약제로 허용된 여러 전달체(carrier)와 혼합하여 사용될 수 있고, 안정성이나 흡수성을 증가시키기 위하여 글루코스, 수크로스 또는 덱스트란과 같은 탄수화물, 아스코르브산(ascorbic acid) 또는 글루타티온과 같은 항산화제(antioxidants), 킬레이트제, 저분자 단백질 또는 다른 안정화제(stabilizers) 등이 약제로 사용될 수 있다.
본 발명의 약학적 조성물의 투여량과 횟수는 치료할 질환, 투여 경로, 환자의 연령, 성별 및 체중 및 질환의 중등도 등의 여러 관련 인자와 함께, 활성성분인 약물의 종류에 따라 결정된다.
본 발명의 조성물의 총 유효량은 단일 투여량(single dose)으로 환자에게 투여될 수 있으며, 다중 투여량(multiple dose)으로 장기간 투여되는 분할 치료 방법 (fractionated treatment protocol)에 의해 투여될 수 있다. 본 발명의 약학적 조성물은 질환의 정도에 따라 유효성분의 함량을 달리할 수 있다. 구체적으로, 본 발명의 결합체의 바람직한 전체 용량은 하루에 환자 체중 1 kg당 약 0.0001 mg 내지 500 mg일 수 있다. 그러나 상기 결합체의 용량은 약학적 조성물의 투여 경로 및 치료 횟수뿐만 아니라 환자의 연령, 체중, 건강 상태, 성별, 질환의 중증도, 식이 및 배설율 등 다양한 요인들을 고려하여 환자에 대한 유효 투여량이 결정되는 것이므로, 이러한 점을 고려할 때 당분야의 통상적인 지식을 가진 자라면 상기 본 발명의 조성물의 특정한 용도에 따른 적절한 유효 투여량을 결정할 수 있을 것이다. 본 발명에 따른 약학적 조성물은 본 발명의 효과를 보이는 한 그 제형, 투여 경로 및 투여 방법에 특별히 제한되지 아니한다.
본 발명의 또 다른 하나의 양태는 상기 단쇄 인슐린 아날로그 또는 단쇄 인슐린 아날로그 결합체를 포함하는 약학적 조성물을 이를 필요로 하는 개체에 투여하는 단계를 포함하는, 당뇨병 질환의 예방 또는 치료 방법을 제공한다.
상기 단쇄 인슐린 아날로그, 단쇄 인슐린 아날로그 결합체, 예방 및 치료는 앞서 설명한 바와 같다.
본 발명에서 사용된 용어 "개체"는 당뇨병 질환이 의심되는 개체로서, 상기 당뇨병 질환 의심 개체는 해당 질환이 발병하였거나, 발병할 수 있는 인간을 포함한 쥐, 가축 등을 포함하는 포유동물을 의미하나, 본 발명의 단쇄 인슐린 아날로그, 단쇄 인슐린 아날로그 결합체 혹은 이를 포함하는 상기 조성물로 치료 가능한 개체는 제한 없이 포함된다.
본 발명의 방법은 상기 약학적 조성물을 약학적 유효량으로 투여할 수 있다. 적합한 총 1일 사용량은 올바른 의학적 판단범위 내에서 처치의에 의해 결정될 수 있으며, 1회 또는 수회로 나누어 투여할 수 있다. 그러나 본 발명의 목적상, 특정 환자에 대한 구체적인 치료적 유효량은 달성하고자 하는 반응의 종류와 정도, 경우에 따라 다른 제제가 사용되는지의 여부를 비롯한 구체적 조성물, 환자의 연령, 체중, 일반 건강 상태, 성별 및 식이, 투여 시간, 투여 경로 및 조성물의 분비율, 치료기간, 구체적 조성물과 함께 사용되거나 동시 사용되는 약물을 비롯한 다양한 인자와 의약 분야에 잘 알려진 유사 인자에 따라 다르게 적용하는 것이 바람직하다.
이하, 실시예를 통하여 본 발명을 더욱 상세히 설명하고자 한다. 이들 실시예는 오로지 본 발명을 보다 구체적으로 설명하기 위한 것으로, 본 발명의 범위가 이들 실시예에 의해 제한되는 것은 아니다.
실시예 1: 단쇄 인슐린 아날로그 발현 벡터의 제작
1. 프로인슐린 아날로그(A쇄-C 펩타이드-B쇄)의 제작
인슐린 아날로그, 프로인슐린 아날로그를 대장균에서 발현시킬 수 있도록 하는 염기서열을 가진 발현 벡터를 제작하였다. 상기 발현 벡터는 인슐린 A쇄의 아미노말단을 자유롭게 하기 위하여, 천연형 프로인슐린(B쇄-C 펩타이드-A쇄; 서열번호 4 및 5)과 다른 프로인슐린 아날로그(A쇄-C 펩타이드-B쇄, 서열번호 6 및 7)를 발현시킬 수 있는 염기서열을 포함하며, 다음과 같이 제조되었다.
Figure PCTKR2018011557-appb-T000001
86개의 아미노산을 암호화하는 프로인슐린 아날로그의 발현 벡터를 제작하기 위해, 보고된 프로인슐린 유전자 서열(NM_000207.2, NCBI)을 바탕으로 아래와 같은 6개의 프라이머를 합성하였다. 또한, 프로인슐린 cDNA(Origene)를 주형으로 하여 A쇄, C 펩타이드 및 B쇄를 PCR 방법으로 각각 증폭한 뒤, 3개의 PCR 증폭 산물과 상기 프라이머를 함께 섞어 PCR을 수행하여, 프로인슐린 아날로그 유전자를 합성하였다.
구체적으로, 프로인슐린 아날로그 유전자의 A쇄 합성을 위하여, 순방향 프라이머(서열번호 8)는 개시 ATG 코돈 및 NdeI 제한 효소 부위를 포함하도록 합성하고, 역방향 프라이머(서열번호 9)는 A쇄의 3' 말단 부위 서열과 C 펩타이드의 5' 부위 서열을 포함하도록 합성하였다. C 펩타이드를 암호화하는 유전자를 합성하기, 위하여 순 방향 프라이머(서열번호 10)는 A쇄의 아미노말단 서열 및 C 펩타이드의 서열을, 그리고 역 방향 프라이머(서열번호 11)는 C 펩타이드의 3' 말단 서열 및 B쇄의 5' 말단 서열을 포함하도록 합성하였다. B쇄를 암호화하는 유전자를 합성하기 위하여, 순 방향 프라이머(서열번호 12)는 C 펩타이드의 3' 말단 서열 및 B쇄의 서열을, 그리고 역 방향 프라이머(서열번호 13)는 B쇄의 5' 말단 서열 및 제한 효소 BamH I 서열을 포함하도록 합성하였다. 상기 프라이머의 서열은 하기와 같다.
5' GGAATTCCATATGGGCATTGTGGAACAATGCTGT 3' (서열 번호 8)
5' CTGCCTCCCGGCGGTTGCAGTAGTTCTCCAGCTG 3' (서열 번호 9)
5' GAACTACTGCAACCGCCGGGAGGCAGAGGACCTG 3' (서열 번호 10)
5' GTTGGTTCACAAAACGCTTCTGCAGGGACCCCTC 3' (서열 번호 11)
5' CCTGCAGAAGCGTTTTGTGAACCAACACCTGTGC 3' (서열 번호 12)
5' CGCGGATCCCTAGGTCTTGGGTGTGTAGAAGAAG 3' (서열 번호 13)
상기의 프라이머를 이용하여 각각의 유전자를 증폭한 뒤, 각각의 PCR 증폭 산물과 서열번호 8로 기재되는 올리고 뉴클레오타이드 및 서열번호 13으로 기재되는 프라이머를 함께 섞어서, 최종 A쇄-C 펩타이드-B쇄의 서열을 가지는 프로인슐린 아날로그를 합성하였다(도 1). 상기의 프로인슐린 아날로그의 증폭을 위해 어닐링을 60℃에서 20초로, 연장을 68℃에서 20초로하여 PCR을 수행하였다.
상기에서 얻어진 프로인슐린 아날로그 단편을 pET22b 벡터(Novagen)에 클로닝하였다. 프로인슐린 아날로그를 세포내의 봉입체의 형태로 발현시키기 위하여 pET22b 벡터를 제한 효소 Nde I 및 BamH I로 처리하여 신호 서열을 제거하고, 프로인슐린 아날로그 PCR 산물을 동일한 제한효소 Nde I과 BamH I으로 처리하고 분리된 각각의 DNA를 T4 DNA 리가제를 이용하여, pET22b 클로닝 벡터에 삽입하였다. 상기 결과로 얻어진 발현벡터를 pET22b-InvPI 명명하였다.
2. 단쇄 인슐린 아날로그(InvPI ΔRRKR)의 제작
상기에서 얻어진 프로인슐린 아날로그의 염기서열(서열번호 7)에서 C 펩타이드의 첫 번째, 두 번째 아미노산인 알지닌(서열번호 3에서 1번, 2번)과 C 펩타이드의 마지막 두 개의 아미노산(서열번호 3에서 34번 라이신, 35번 알지닌)을 하기 서열번호 14 내지 17번 프라이머를 이용하여 제거하였다.
5' GCTGGAGAACTACTGCAACGAGGCAGAGGACCTGCAGG 3' (순 방향, 서열 번호 14)
5' CCTGCAGGTCCTCTGCCTCGTTGCAGTAGTTCTCCAGC 3' (역 방향, 서열 번호 15)
5' GGGGTCCCTGCAGTTTGTGAACCAACACCTGTGC 3' (순 방향, 서열번호 16)
5' GTTGGTTCACAAACTGCAGGGACCCCTCCAGGGC 3' (역 방향, 서열번호 17)
상기에서 얻어진 프로인슐린 아날로그의 발현벡터를 pET22b-InvPI ΔRRKR이라고 명명하고, 단쇄 인슐린 아날로그를 InvPI ΔRRKR(서열번호 18 및 19)이라고 명명하였다.
천연형 프로인슐린 서열 및 단쇄 인슐린 아날로그 서열
아날로그 서열 서열번호
단쇄 인슐린아날로그(InvPI△RRKR) DNA GGC ATT GTG GAA CAA TGC TGT ACC AGC ATC TGC TCC CTC TAC CAG CTG GAG AAC TAC TGC AAC GAG GCA GAG GAC CTG CAG GTG GGG CAG GTG GAG CTG GGC GGG GGC CCT GGT GCA GGC AGC CTG CAG CCC TTG GCC CTG GAG GGG TCC CTG CAG TTT GTG AAC CAA CAC CTG TGC GGC TCA CAC CTG GTG GAA GCT CTC TAC CTA GTG TGC GGG GAA CGA GGC TTC TTC TAC ACA CCC AAG ACC TAG 18
단백질 GIVEQCCTSICSLYQLENYCNEAEDLQVGQVELGGGPGAGSLQPLALEGSLQFVNQHLCGSHLVEALYLVCGERGFFYTPKT 19
3. 결합단백질 서열이 삽입된 단쇄 인슐린 아날로그( FInvPI ΔRRKR ) 및 이의 발현 벡터의 제작
상기 실시예에서 제작된 pET22b-InvPI ΔRRKR에서 단백질 발현에 도움을 주고, 아미노말단 메치오닌 삭제를 용이하게 하기 위한 목적으로, 상기 InvPI ΔRRKR의 염기서열의 5' 부분에 10개의 아미노산 서열(MATTSTATTR: 서열번호 20)을 인코딩하는 염기서열을 추가하기 위해, 하기 프라이머를 합성하였다.
구체적으로, 서열번호 20으로 기재되는 10개의 아미노산 서열 삽입을 위하여, 순방향 프라이머(서열번호 21)는 개시 ATG 코돈 및 NdeI 제한 효소 부위와 10개의 아미노산 서열을 포함하도록 합성하고, 역방향 프라이머(서열번호 22)는 제한 효소 BamH I 서열을 포함하도록 합성하였다. 상기 프라이머의 서열은 하기와 같다.
5' TTTAAGAAGGAGATATACATCATATGGCAACAACATCAACAGCAACT
ACGCGTGGCATTGTGGAACAATGCTG 3' (서열번호 21)
5' CAGCATTGTTCCACAATGCCACGCGTAGTTGCTGTTGATGTTGTTGC
CATATGATGTATATCTCCTTCTTAAA 3' (서열번호 22)
상기의 프라이머를 이용하여 결합단백질이 삽입된 단쇄 인슐린 아날로그의 증폭을 위해 어닐링을 60℃에서 30초로, 연장을 68℃에서 30초로하여 PCR을 수행하였다.
상기에서 얻어진 결합단백질이 삽입된 단쇄 인슐린 아날로그 단편을 pET22b 벡터(Novagen)에 클로닝하였다. 단쇄 인슐린 아날로그를 세포내의 봉입체의 형태로 발현시키기 위하여 pET22b 벡터를 제한 효소 Nde I 및 BamH I로 처리하여 신호 서열을 제거하고, 결합단백질이 삽입된 단쇄 인슐린 아날로그 PCR 산물을 동일한 제한효소 Nde I과 BamH I으로 처리하고 분리된 각각의 DNA를 T4 DNA 리가제를 이용하여, pET22b 클로닝 벡터에 삽입하였다. 상기 결과로 얻어진 발현벡터를 pET22b-FInvPI ΔRRKR이라고 명명하고, 결합단백질이 삽입된 단쇄 인슐린 아날로그를 FInvPI ΔRRKR(Fusion-A-C-B RRKR; 서열번호 23 및 24)이라고 명명하였다.
결합 단백질이 삽입된 단쇄 인슐린 아날로그(FInvPI △RRKR) 서열
아날로그 서열 서열번호
결합단백질단쇄인슐린아날로그(Fusion-A-C-B △RRKR) DNA ATG GCA ACA ACA TCA ACA GCA ACT ACG CGT GGC ATT GTG GAA CAA TGC TGT ACC AGC ATC TGC TCC CTC TAC CAG CTG GAG AAC TAC TGC AAC GAG GCA GAG GAC CTG CAG GTG GGG CAG GTG GAG CTG GGC GGG GGC CCT GGT GCA GGC AGC CTG CAG CCC TTG GCC CTG GAG GGG TCC CTG CAG TTT GTG AAC CAA CAC CTG TGC GGC TCA CAC CTG GTG GAA GCT CTC TAC CTA GTG TGC GGG GAA CGA GGC TTC TTC TAC ACA CCC AAG ACC TAG 23
단백질 MATTSTATTRGIVEQCCTSICSLYQLENYCNEAEDLQVGQVELGGGPGAGSLQPLALEGSLQFVNQHLCGSHLVEALYLVCGERGFFYTPKT 24
상기 pET22b-FInvPI ΔRRKR 발현 벡터는 T7 프로모터의 조절 하에 서열번호 24의 아미노산 서열을 암호화하며, 숙주 세포 내에서 프로인슐린 아날로그 단백질을 봉입체의 형태로 발현시켰다.
실시예 2: 단쇄 인슐린 아날로그의 발현
상기 실시예 1에서 제조한 발현 벡터를 이용하여, T7 프로모터 조절하의 재조합 단쇄 인슐린 아날로그를 발현시켰다. 각각의 재조합 단쇄 인슐린 아날로그 발현 벡터로 E. coli BL21DE3(E. coli B F-dcm ompT hsdS(rB-mB-) gal λ(DE3); 노바젠)을 형질전환하였다. 형질전환 방법은 노바젠사에서 추천하는 방법을 이용하였다. 각 재조합 발현 벡터가 형질전환된 각각의 단일 콜로니를 취하여, 암피실린(50㎍/ml)이 포함된 2X 루리아 브로스(Luria Broth) 배지에 접종하고, 37℃에서 15시간 동안 배양하였다. 재조합 균주 배양액과 30% 글리세롤이 포함된 2X LB 배지를 1:1(v/v)의 비율로 혼합하여, 각 1ml씩 cryo-튜브에 분주하고, -140℃에 보관하였다. 이를 재조합 융합 단백질의 생산을 위한 세포 스톡(cell stock)으로 사용하였다.
재조합 단쇄 인슐린 아날로그들의 발현을 위하여, 각 세포 스톡 1 바이알(vial)을 녹여 500ml의 2X LB에 접종하고, 37℃에서 14~16시간 동안 진탕 배양하였다. OD.600nm의 값이 4.0 이상을 나타내면 배양을 종료하고, 이를 종 배양액으로 사용하였다. 5L 발효기(Bioflo-320, NBS, 미국)를 이용하여, 종 배양액을 1.6L의 발효 배지에 접종하고, 초기 발효를 시작하였다. 배양조건은 온도 37℃, 공기량 2.0 L/min(1vvm), 교반 속도 650rpm 및 30% 암모니아수를 사용하여, pH 6.70으로 유지시켰다. 발효 진행은 배양액 내의 영양소가 제한되었을 때, 추가 배지(feeding solution)을 첨가하여 유가배양을 진행하였다. 균주의 성장은 OD 값에 의해 모니터링하고, OD 값 70 이상에서 최종 농도 500μM의 IPTG를 도입하였다. 배양은 IPTG 도입 후 약 23~25시간까지 더 진행하였으며, 배양 종료 후 원심 분리기를 사용하여 재조합 균주를 수확하여 사용 시까지 -80℃에 보관하였다.
실시예 3: 재조합 단쇄 인슐린 아날로그의 추출 및 재접힘(refolding)
상기 실시예에서 얻은 단쇄 인슐린 아날로그 발현 대장균으로부터 단쇄 인슐린 아날로그를 가용성 형태로 바꾸기 위해 세포를 파쇄하고 재접힘하였다. 배양액 1 L 분량에 해당하는 세포 펠렛을 1 L의 파쇄 완충 용액(20 mM Tris-HCl pH9.0, 1 mM EDTA pH8.0, 0.2 M NaCl, 0.5% Triton X-100)에 부유시킨 후, 미세용액화(Microfludizer)를 이용하여 15,000 psi로 재조합 대장균을 파쇄하였다. 12,000 g에서 30분간 원심분리하여 상층액을 버리고, 1 L의 세척 완충 용액(50 mM Tris-HCl pH9.0, 1 mM EDTA pH9.0, 0.2 M NaCl, 0.5% Triton X-100)으로 펠렛을 세척하였다. 상기와 동일 조건으로 원심분리하여 상층액을 버리고, 증류수로 펠렛을 재부유한 후, 동일 조건으로 원심분리하여 세척된 대장균 봉입체(inclusion body) 펠렛을 수득하였다. 세척된 봉입체 펠렛을 1 L의 가용화 완충액(6 M Urea, 15 mM Glycine pH10.6)에 재부유하여 상온에서 3시간 동안 교반하였다. 가용화된 단쇄 인슐린 아날로그의 환원화를 위하여, 최종 농도 15 mM의 L-Cysteine-HCl을 도입 후, 상온에서 1.5시간 동안 교반하였다. 환원된 단쇄 인슐린 아날로그를 3 L의 95 mM Glycine pH10.5 용액과 4℃에서 혼합하여 40~70시간 동안 교반함으로서 재접힘 과정을 수행하였다. 재접힘 반응 종료를 위해 용액 부피의 7%에 해당하는 반응 멈춤 용액(1 M Na-Cit pH2.0: acetic acid=1:1.67 (v/v))을 첨가하였다. 12,000 g에서 30분간 원심분리하여 부유물을 제거한 후, 0.45 ㎛ 필터를 통과시켜 추가 부유물을 제거하였다.
실시예 4: 1차 양이온 컬럼 크로마토그래피
상기 실시예 3에서 얻은 단쇄 인슐린 아날로그 재접힘 용액을 양이온 성질의 SP FF(GE healthcare) 컬럼에 적용하여 정제하였다. 컬럼은 재접힘 용액 도입 전 결합 완충 용액(20 mM Na-Citrate pH3.0, 45% ethanol)으로 평형화하였고, 용출 완충 용액(20 mM Na-Citrate pH3.0, 0.5 M KCl, 45% ethanol)을 0-100% 구배로 4 컬럼 볼륨 흘려주어 용출하였다.
실시예 5: 단백질 분해 효소를 이용한 결합 단백질 제거
단백질 발현을 용이하게 하기 위해 단쇄 인슐린 아날로그의 아미노 말단에는 결합 단백질(fusion protein)가 존재한다. 이 결합 단백질을 제거하기 위하여 단백질 분해효소인 트립신(trypsin, Roche)을 이용하였다. 양이온 컬럼 크로마토그래피에서 얻어진 용출액을 효소반응을 위한 완충용액(50 mM Tris-HCl pH8.0)으로 교체하기 위하여 Sephadex G-25(GE healthcare) 컬럼을 이용하였다. 컬럼에서 용출된 단백질 g 당 163.28 units의 트립신을 처리한 후 15℃에서 15시간 동안 반응을 진행하였다. 15시간 이후 제거 반응을 중단시키기 위해 20 mM Na-phosphate pH2.0 완충용액으로 컬럼을 이용하여 버퍼 교체를 진행 하였다.
실시예 6: 2차 양이온 컬럼 크로마토그래피
결합 단백질이 제거된 단쇄 인슐린 아날로그의 정제를 위하여 SP HP(GE healthcare) 컬럼을 이용하였다. 컬럼은 결합 완충 용액(20 mM Na-Citrate pH3.0, 45% ethanol)으로 평형화하였고, 용출 완충 용액(20 mM Na-Citrate pH3.0, 0.5 M KCl, 45% ethanol)을 0-56% 구배로 8 컬럼 볼륨 흘려주어 용출하였다.
실시예 7: 역상 컬럼 크로마토그래피
상기 실시예 6의 양이온 컬럼 크로마토그래피에서 용출된 단백질을 역상 컬럼으로 추가 정제하기 위하여 Source 30RPC(GE healthcare)를 이용하였다. 정제 과정에 사용할 완충 용액 제조를 위하여 기본 완충 용액인 0.05 M Na-phosphate, 0.1 M Na-percholate pH2.3을 제조하여 0.22 ㎛ 필터(Sartorious)로 여과하여 준비하였다. 결합 완충 용액은 기본 완충 용액 90%와 10%의 아이소프로필 알코올을 혼합 (w/v)하여 제조하였고, 용출 완충 용액은 기본 완충용액 55%와 45%의 아이소프로필 알코올을 혼합하여 제조하였다. 용출 완충용액을 0-100%의 구배로 12.5 컬럼 볼륨 흘려주어 용출하였다. 용출된 시료는 RP-HPLC(C18, C4)와 SE-HPLC 분석을 통해 순도를 측정하였다. 순도 측정 결과를 도 2에 나타내었다.
실시예 8: 단쇄 인슐린 아날로그 페길화(Pegylation)
상기 실시예 7의 공정으로 고 순도로 정제된 단쇄 인슐린 아날로그를 100mM 포타슘포스페이트(pH 6.0)으로 버퍼 교환 후 5 mg/mL로 농도를 맞추고, 3.4 kDa PropionylALD2 PEG를 단쇄 인슐린 아날로그의 아미노 말단에 페길화시키기 위하여 단쇄 인슐린 아날로그와 PEG 몰비 1:10 이 되도록 PEG를 첨가한 후 완전히 녹였다. 이후 환원제인 소디움시아노보로하이드라이드(NaCNBH3)를 20 mM이 되도록 넣어준 후 상온에서 70 분 동안 반응시켰다. 이후 30% 에탄올이 포함된 20 mM 소디움 사이트레이트 pH 2.0 버퍼로 10배 희석한 후 Source S 컬럼(15 mm/ 15.5 cm, GE Healtcare 사)에 주입하였다. Source S 컬럼은 30% 에탄올이 포함된 20 mM 소디움 사이트레이트, pH 2.0 q버퍼로 평형이 잡힌 컬럼이며, 유속은 2.5 mL/min으로 하였다. 하나의 페길화 단쇄 인슐린 아날로그를 정제하기 위해 30% 에탄올이 포함된 20 mM 소디움 사이트레이트, pH 2.0, 0.25 M KCl 버퍼를 0에서 100 %가 되도록 10 컬럼 부피를 흘려주어 하나 페길화된 단쇄 인슐린 아날로그를 정제하였다.
실시예 9: 단쇄 인슐린 아날로그 결합체 제조
상기 실시예 8의 방법을 이용하여 얻은 페길화된 단쇄 인슐린 아날로그를 면역글로블린 Fc와 커플링 시켰다. 단쇄 인슐린 아날로그와 면역글로블린 Fc 몰 비를 1:4으로 하였으며, 전체단백질농도를 30 mg/mL로 하여 4℃에서 18시간 반응시켰다. 이때 환원제로 20 mM이 되도록 소디움시아노보로하이드라이드(NaCNBH3)를 넣어 주었다. 이후 Sephadex G25 컬럼을 이용하여 20 mM Tris, pH 7.5 버퍼로 버퍼 교환을 해준 후 Source Q 컬럼(25 mm/ 17.6 cm, GE Healthcare사)에 주입하였다. Source Q 컬럼은 20mM Tris, pH 7.5 버퍼로 평형이 잡힌 컬럼이며, 유속은 7 mL/min으로 하였다. 커플링 단백질을 용출하기 위해 20 mM Tris, pH 7.5, 0.5M NaCl 버퍼를 0 %에서 30 %까지 선형적으로 10 컬럼 부피를 흘려주어 용출하였다. Source Q 컬럼으로 미 반응한 면역글로블린 Fc를 제거할 수 있었다. 상기 Source Q에서 용출된 커플링 단백질 용액에 1.5 M 암모늄설페이트를 첨가하여 Source iso 컬럼(25 mm/ 12.3 cm, GE Healthcare사)에 주입하였다. Source iso 컬럼은 20 mM Tris-HCl, pH 7.5, 1.5 M 암모늄설페이트 버퍼로 평형이 잡힌 컬럼이며, 유속은 7.5 mL/min으로 하였다. 단쇄 인슐린 아날로그-PEG-면역글로블린 Fc를 정제하기 위해 20 mM Tris-HCl, pH 7.5 버퍼를 0%에서 100%까지 선형적으로 37 컬럼 부피를 흘려주었다.
상기 Source iso 컬럼에서 최종 정제된 단쇄 인슐린 아날로그 결합체(단쇄 인슐린 아날로그-PEG-면역글로블린 Fc)를 SE-HPLC, IE-HPLC 로 분석하여 도 3에 나타내었다.
실시예 10: 단쇄 인슐린 아날로그 및 단쇄 인슐린 아날로그 결합체의 인슐린 수용체 결합력 확인
단쇄 인슐린 아날로그의 인슐린 수용체 결합력을 측정하기 위하여, Scintillation proximity assay(SPA) 방법을 이용하여 분석하였다. 96 well pico-plate에 인슐린 수용체가 발현된 CHO 세포주의 세포막과 PVT SPA bead를 함께 넣어 주었다. 인슐린 수용체에 대한 결합력을 확인하기 위하여, 10개 이상의 농도로 희석한 인간 인슐린 및 각각의 인슐린 아날로그, 그리고 경쟁자로서 방사성 동위원소인 125 요오드가 부착된 인슐린을 함께 넣은 뒤 상온에서 4시간동안 경쟁 반응 시켰다. 4시간 뒤 베타 카운터를 이용하여 인슐린 수용체의 결합력을 측정하였다. 각 물질의 결합력은 GraphPad Prism 6 소프트웨어를 이용 IC50로 산출 하였으며, 천연 인슐린의 인슐린 수용체 결합력에 대한 상대적인 단쇄 인슐린 아날로그의 인슐린 수용체 결합력으로 수치화 하였다.
그 결과, 천연 인슐린과 대비하여 단쇄 인슐린 아날로그는 69%, 단쇄 인슐린 아날로그 결합체는 1.9%의 수용체 결합력이 각각 확인되었다(표 4). 이와 같이 본 발명의 단쇄 인슐린 아날로그는 천연 인슐린에 비해 인슐린 수용체 결합력이 감소되었다.
단쇄 인슐린 아날로그 및 결합체의 인슐린 수용체 결합력
물질 인슐린 수용체 결합력(vs. 천연 인슐린)
단쇄 인슐린 아날로그 단쇄 인슐린 아날로그 90 %
면역글로불린 결합체 천연 인슐린 결합체 4.6 %
단쇄 인슐린 아날로그 결합체 1.0 %
실시예 11: 단쇄 인슐린 아날로그 결합체의 in vitro 효력 확인
단쇄 인슐린 아날로그 결합체의 in vitro 효력을 측정하기 위하여, 지방세포로 분화시킨 마우스 유래의 3T3-L1 세포주를 이용한 글루코스 흡수능(glucose uptake, 또는 지질 합성능) 시험을 실시하였다. 3T3-L1 세포를 10% NBCS(신생 송아지 혈청)를 포함한 DMEM(Dulbeco's Modified Eagle's Medium, Gibco, Cat.No, 12430) 배지를 이용하여 주 2~3회 계대 배양하며 유지하였다. 3T3-L1 세포를 분화용 배지(10% FBS를 포함한 DMEM)를 이용하여 현탁한 후, 48구판에 구 당 5 x 104개 되도록 접종하여 48시간 동안 배양하였다. 지방세포로의 분화를 위하여 분화용 배지에 1 μg/mL 인간 인슐린(Sigma, Cat. No. I9278), 0.5 μM IBMX(3-isobutyl-1-methylxanthine, Sigma, Cat. No.I5879), 1 μM Dexamethasone(Sigma, Cat. No. D4902)을 혼합하고, 기존 배지를 제거한 후 구당 250 ㎕씩 넣어주었다. 48시간 후 분화용 배지에 1 μg/mL의 인간 인슐린만을 첨가한 배지로 다시 교환하였다. 이후, 48시간마다 1 μg/mL의 인간 인슐린을 첨가한 분화용 배지로 교환하면서 12일 간 지방세포로의 분화가 유도되는 것을 확인하였다. 글루코스 흡수능 시험을 위하여, 분화가 끝난 세포를 무혈청 DMEM 배지로 1회 수세한 후 250 ㎕씩 넣어 4시간 동안 혈청 고갈을 유도하였다. 인간 인슐린은 10 μM부터 0.001 nM까지, 단쇄 인슐린-면역글로불린 Fc 결합체는 20 μM부터 0.002 nM까지 무혈청 DMEM 배지로 10배씩 순차적으로 희석하여 준비하였다. 준비된 시료를 세포에 각각 250 ㎕씩 첨가한 후, 24시간 동안 37℃, 5% CO2 배양기에서 배양하였다. 배양이 끝난 배지의 글루코스 잔량을 측정을 위해 200 ㎕의 배지를 취해 D-PBS로 각각 5배 희석하여 GOPOD(GOPOD Assay Kit, Megazyme, Cat. No. K-GLUC)분석을 진행하였다. 글루코스 표준용액의 흡광도를 기준으로 배지의 잔여 글루코스 농도를 환산하고, 글루코즈 흡수능에 대한 EC50를 각각 산출하였다.
그 결과, 인간 인슐린과 대비하여 단쇄 인슐린 아날로그 결합체(단쇄 인슐린 아날로그-PEG-면역글로블린 Fc)는 8.1% 의 글루코스 흡수능이 확인되었다(표 5, 도 4).
단쇄 인슐린 아날로그 결합체의 글루코스 흡수능
물질 EC50(nM) % vs. Human insulin
천연 인슐린 7.5 100
단쇄 인슐린 아날로그 결합체 92.8 8.1
실시예 12. 단쇄 인슐린 아날로그 결합체의 약동학( Pharmacokinetics ) 확인
단쇄 인슐린 아날로그 결합체의 약동학을 확인하기 위하여 정상 랫드(SD rat, 수컷, 6주령)에서 시간에 따른 혈중 농도 비교 시험을 진행하였다. 단쇄 인슐린 아날로그 결합체를 65.1 nmol/kg, 그리고 260.4 nmol/kg를 각각 피하 투여한 후 0, 1, 4, 8, 24, 48, 72, 96, 120, 144, 168, 192, 그리고 216 시간에서 채혈하였다. 각 시간에서의 단쇄 인슐린 아날로그 결합체의 혈중 내 잔여 농도는 효소결합 면역흡착 분석법(ELISA, enzyme linked immunosorbent assay)이용하여 측정하였으며, 사용된 키트는 Insulin ELISA(ALPCO, 미국)을 사용하였다. 단, 측정항체(detection antibody)로는 mouse anti-human IgG4 HRP conjugate(Alpha Diagnostic Intl, Inc, 미국)를 사용하였다.
단쇄 인슐린 아날로그 결합체의 약동학을 살펴본 결과, 단쇄 인슐린 아날로그 결합체의 반감기는 31~32 시간으로, 이는 현재 시판되고 있는 지속형 인슐린 아날로그인 인슐린 글라진의 보고 된 랫드에서의 반감기(4.3 시간)에 비해 약 7배 이상 증가된 결과임을 알 수 있었다(도 5).
이와 같은 결과는 인슐린 수용체 결합력이 감소하도록 변형된 본 발명의 단쇄 인슐린 아날로그가 면역글로불린 Fc 영역과 결합된 결합체를 형성하였을 경우 실제 생체 내에서 혈중 반감기가 획기적으로 증가하여 안정적인 인슐린 제제로 제공될 수 있으며 당뇨병 치료제로 효과적으로 사용될 수 있음을 시사하는 것이다. 아울러, 본 발명에 따른 단쇄 인슐린 아날로그 자체 역시 인슐린 수용체와의 결합력 감소 및 역가가 감소되어 다양한 캐리어 등과 결합하여도 역시 동일한 효과를 나타낼 수 있음을 시사하는 것이다.
이상의 설명으로부터, 본 발명이 속하는 기술분야의 당업자는 본 발명이 그 기술적 사상이나 필수적 특징을 변경하지 않고서 다른 구체적인 형태로 실시될 수 있다는 것을 이해할 수 있을 것이다. 이와 관련하여, 이상에서 기술한 실시 예들은 모든 면에서 예시적인 것이며 한정적인 것이 아닌 것으로서 이해해야만 한다. 본 발명의 범위는 상기 상세한 설명보다는 후술하는 특허 청구범위의 의미 및 범위 그리고 그 등가 개념으로부터 도출되는 모든 변경 또는 변형된 형태가 본 발명의 범위에 포함되는 것으로 해석되어야 한다.

Claims (30)

  1. 하기 화학식 1을 갖는 단쇄 인슐린 아날로그 결합체:
    [화학식 1]
    X-Y-Z-La-F
    여기에서,
    X는 천연형 인슐린 A쇄, B쇄 또는 이들의 아날로그이고,
    Y는 천연형 인슐린 C-펩타이드 또는 이의 아날로그이고,
    Z는 천연형 인슐린 B쇄, A쇄 또는 이들의 아날로그이고,
    L은 링커이고,
    a는 0 또는 자연수이며, 단 a가 2 이상일 때 각각의 L은 서로 독립적이고,
    F는 인슐린 아날로그의 생체 내 반감기를 증가시킬 수 있는 물질이고,
    단, X, Y 및 Z가 각각 천연형 인슐린의 B쇄, C-펩타이드 및 A쇄이거나, 천연형 인슐린의 A쇄, C-펩타이드 및 B쇄인 경우는 제외되며,
    X-Y-Z는 단쇄 인슐린 아날로그를 형성한다.
  2. 제1항에 있어서, 상기 단쇄 인슐린 아날로그는 천연형 프로인슐린에 비하여 적어도 하나 이상의 아미노산이 치환(Substitution); 추가(Addition); 제거(Deletion); 수식(Modification); 및 인슐린 A쇄, C-펩타이드 및 B쇄의 배열 순서의 변환 중에서 선택되는 어느 하나 이상의 방법으로 변이된 아날로그, 변이체, 또는 이들의 단편인 단쇄 인슐린 아날로그 결합체.
  3. 제1항 또는 제2항에 있어서, 상기 단쇄 인슐린 아날로그는 X, Y 및 Z가 각각 링커로 연결된 단쇄 인슐린 아날로그 결합체.
  4. 제1항 내지 제3항 중 어느 한 항에 있어서, 상기 C-펩타이드의 아날로그는 천연형 인슐린 C-펩타이드의 1번 아미노산, 2번 아미노산, 34번 아미노산 및 35번 아미노산으로 이루어진 군에서 선택된 하나 이상의 아미노산이 다른 아미노산으로 치환 또는 결실된 것인, 단쇄 인슐린 아날로그 결합체.
  5. 제1항 내지 제4항 중 어느 한 항에 있어서, 인슐린 아날로그의 생체 내 반감기를 증가시킬 수 있는 물질은 폴리에틸렌 글리콜, 지방산, 콜레스테롤, 알부민 및 이의 단편, 알부민 결합물질, 특정 아미노산 서열의 반복단위의 중합체, 항체, 항체 단편, FcRn 결합물질, 생체 내 결합조직, 뉴클레오타이드, 파이브로넥틴, 트랜스페린(Transferrin), 사카라이드(saccharide) 및 고분자 중합체로 이루어진 군에서 선택된 것인, 단쇄 인슐린 아날로그 결합체.
  6. 제1항 내지 제5항 중 어느 한 항에 있어서, L은 펩타이드, 폴리에틸렌 글리콜, 지방산, 사카라이드, 고분자 중합체, 저분자 화합물, 뉴클레오타이드 및 이들의 조합으로 이루어진 군으로부터 선택되는 것인, 단쇄 인슐린 아날로그 결합체.
  7. 제1항 내지 제6항 중 어느 한 항에 있어서, X-Y-Z와 F는 공유 화학 결합, 비공유 화학 결합 또는 이들의 조합으로 L에 의해 서로 결합되는 것인, 단쇄 인슐린 아날로그 결합체.
  8. 제6항에 있어서, 고분자 중합체는 폴리프로필렌 글리콜, 에틸렌 글리콜-프로필렌 글리콜 공중합체, 폴리옥시에틸화폴리올, 폴리비닐알콜, 폴리사카라이드, 덱스트란, 폴리비닐에틸에테르, 생분해성 고분자, 지질 중합체, 키틴, 히아루론산, 올리고뉴클레오타이드 및 이들의 조합으로 이루어진 군으로부터 선택되는 것인, 단쇄 인슐린 아날로그 결합체.
  9. 제5항에 있어서, 상기 FcRn 결합물질은 면역글로불린 Fc 영역인 것인, 단쇄 인슐린 아날로그 결합체.
  10. 제9항에 있어서, 면역글로불린 Fc 영역이 비당쇄화됨을 특징으로 하는, 단쇄 인슐린 아날로그 결합체.
  11. 제9항 또는 제10항에 있어서, 면역글로불린 Fc 영역이 CH1, CH2, CH3 및 CH4 도메인으로 이루어진 군으로부터 1개 내지 4개 선택되는 도메인으로 이루어진, 단쇄 인슐린 아날로그 결합체.
  12. 제9항 내지 제11항 중 어느 한 항에 있어서, 면역글로불린 Fc 영역이 IgG, IgA, IgD, IgE 또는 IgM에서 유래된 Fc 영역인, 단쇄 인슐린 아날로그 결합체.
  13. 제12항에 있어서, 면역글로불린 Fc 영역의 각각의 도메인이 IgG, IgA, IgD, IgE 및 IgM로 이루어진 군에서 선택되는 면역글로불린에서 유래된 상이한 기원을 가진 도메인의 하이브리드인, 단쇄 인슐린 아날로그 결합체.
  14. 제9항 내지 제12항 중 어느 한 항에 있어서, 면역글로불린 Fc 영역이 동일한 기원의 도메인으로 이루어진 단쇄 면역글로불린으로 구성된 이량체 또는 다량체인, 단쇄 인슐린 아날로그 결합체.
  15. 제9항 내지 제14항 중 어느 한 항에 있어서, 면역글로불린 Fc 영역이 힌지영역을 추가로 포함하는, 단쇄 인슐린 아날로그 결합체.
  16. 제9항에 있어서, 면역글로불린 Fc 영역이 IgG4 Fc 영역인, 단쇄 인슐린 아날로그 결합체.
  17. 제9항에 있어서, 면역글로불린 Fc 영역이 인간 비당쇄화 IgG4 Fc 영역인, 단쇄 인슐린 아날로그 결합체.
  18. 하기 화학식 2를 갖는 단쇄 인슐린 아날로그:
    [화학식 2]
    X-Y-Z
    여기에서,
    X는 천연형 인슐린 A쇄, B쇄 또는 이들의 아날로그이고,
    Y는 천연형 인슐린 C-펩타이드 또는 이의 아날로그이고,
    Z는 천연형 인슐린 B쇄, A쇄 또는 이들의 아날로그이고,
    단, X, Y 및 Z가 각각 천연형 인슐린의 B쇄, C-펩타이드 및 A쇄이거나, 천연형 인슐린의 A쇄, C-펩타이드 및 B쇄인 경우는 제외된다.
  19. 제18항에 있어서, 상기 C-펩타이드의 아날로그는 천연형 인슐린 C-펩타이드의 1번 아미노산, 2번 아미노산, 34번 아미노산 및 35번 아미노산으로 이루어진 군에서 선택된 하나 이상의 아미노산이 다른 아미노산으로 치환 또는 결실된 것인, 단쇄 인슐린 아날로그.
  20. 제1항 내지 제17항 중 어느 한 항의 단쇄 인슐린 아날로그 결합체; 또는 제18항 또는 제19항의 단쇄 인슐린 아날로그를 포함하는, 생체 내 지속성 및 안정성이 증가된 단쇄 인슐린 지속성 제제.
    .
  21. 제1항 내지 제17항 중 어느 한 항의 단쇄 인슐린 아날로그 결합체; 또는 제18항 또는 제19항의 단쇄 인슐린 아날로그를 포함하는, 당뇨병의 예방 또는 치료용 약학적 조성물.
  22. 제18항 또는 제19항의 단쇄 인슐린 아날로그 및 이의 생체 내 반감기를 증가시킬 수 있는 물질을 연결하는 단계를 포함하는, 제1항 내지 제17항 중 어느 한 항의 단쇄 인슐린 아날로그 결합체를 제조하는 방법.
  23. 제22항에 있어서, 상기 단쇄 인슐린 아날로그 및 이의 생체 내 반감기를 증가시킬 수 있는 물질을 링커를 통해 연결하는 것인, 제조하는 방법.
  24. 제23항에 있어서, 상기 링커는 알데히드 그룹, 말레이미드 그룹 및 석시니미드 유도체로 이루어진 군으로부터 선택되는 반응기를 가진 비펩타이드성 링커인, 제조하는 방법.
  25. 제24항에 있어서, 상기 석시니미드 유도체는 석시니미딜 카르복시메틸, 석시니미딜 발레르에이트, 석시니미딜 메틸부타노에이트, 석시니미딜 메틸프로피온에이트, 석시니미딜 부타노에이트, 석시니미딜 프로피온에이트, N-하이드록시석시니미드인 또는 석시니미딜 카보네이트인, 제조하는 방법.
  26. 제22항 내지 제25항 중 어느 한 항에 있어서, 상기 단쇄 인슐린 아날로그는 하기 (a) 및 (b)를 포함하는 방법으로 수득하는 것인, 제조하는 방법:
    (a) 단백질 분해효소 절단 부위를 포함하는 5 내지 20개의 아미노산으로 구성된 펩타이드가 상기 단쇄 인슐린 아날로그의 아미노 말단에 융합된 형태로 단쇄 인슐린 아날로그를 발현하는 단계; 및
    (b) 단쇄 인슐린 아날로그에 융합된 펩타이드를 제거하는 단계.
  27. 제18항 또는 제19항의 단쇄 인슐린 아날로그를 코딩하는 분리된 핵산.
  28. 제27항에 따른 핵산을 포함하는 재조합 발현 벡터.
  29. 제28항에 따른 재조합 발현 벡터를 포함하는, 형질전환체.
  30. 하기 단계를 포함하는 제18항 또는 제19항의 단쇄 인슐린 아날로그를 제조하는 방법:
    a) 제18항 또는 제19항의 단쇄 인슐린 아날로그를 코딩하는 핵산을 포함하는 형질전환체를 배양하여 단쇄 인슐린 아날로그를 발현시키는 단계; 및
    b) 발현된 단쇄 인슐린 아날로그를 분리 및 정제하는 단계.
PCT/KR2018/011557 2017-09-28 2018-09-28 지속형 단쇄 인슐린 아날로그 및 이의 결합체 WO2019066570A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US16/651,765 US20200254108A1 (en) 2017-09-28 2018-09-28 Long-acting single-chain insulin analog and conjugate thereof
CN201880076224.7A CN111386130A (zh) 2017-09-28 2018-09-28 长效单链胰岛素类似物及其缀合物
EP18862746.7A EP3689382A4 (en) 2017-09-28 2018-09-28 LONG-ACTING SINGLE CHAIN INSULIN ANALOGUE AND CONJUGATE OF IT
JP2020518504A JP2020534855A (ja) 2017-09-28 2018-09-28 持続型単鎖インスリンアナログ及びその結合体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0126476 2017-09-28
KR1020170126476A KR20190036956A (ko) 2017-09-28 2017-09-28 지속형 단쇄 인슐린 아날로그 및 이의 결합체

Publications (1)

Publication Number Publication Date
WO2019066570A1 true WO2019066570A1 (ko) 2019-04-04

Family

ID=65901726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/011557 WO2019066570A1 (ko) 2017-09-28 2018-09-28 지속형 단쇄 인슐린 아날로그 및 이의 결합체

Country Status (6)

Country Link
US (1) US20200254108A1 (ko)
EP (1) EP3689382A4 (ko)
JP (1) JP2020534855A (ko)
KR (1) KR20190036956A (ko)
CN (1) CN111386130A (ko)
WO (1) WO2019066570A1 (ko)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021022149A1 (en) 2019-07-31 2021-02-04 Eli Lilly And Company Insulin analogs and methods of using the same
US11098102B2 (en) 2018-12-11 2021-08-24 Sanofi Insulin conjugates

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113929762B (zh) * 2021-12-16 2022-04-26 清华大学 3-羟基丁酰化和/或3-羟基戊酰化修饰胰岛素及其应用
CN115894719B (zh) * 2022-11-24 2023-10-20 武汉禾元生物科技股份有限公司 一种人血清白蛋白胰岛素偶联物及其制备方法
CN115894720B (zh) * 2023-01-16 2024-07-09 中国科学院上海药物研究所 一种长效胰岛素-Fc融合蛋白

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0055945A2 (en) 1981-01-02 1982-07-14 Genentech, Inc. Human proinsulin and analogs thereof and method of preparation by microbial polypeptide expression and conversion thereof to human insulin
WO1996032478A1 (en) 1995-04-14 1996-10-17 Genentech, Inc. Altered polypeptides with increased half-life
WO1997034631A1 (en) 1996-03-18 1997-09-25 Board Of Regents, The University Of Texas System Immunoglobin-like domains with increased half lives
WO2008019368A2 (en) * 2006-08-07 2008-02-14 Teva Biopharmaceuticals Usa, Inc. Albumin-insulin fusion proteins
EP1926749A1 (en) 2005-09-14 2008-06-04 Sanofi-Aventis Deutschland GmbH Cleavage of precursors of insulins by a variant of trypsin
KR20110134209A (ko) * 2010-06-08 2011-12-14 한미홀딩스 주식회사 면역글로불린 단편을 이용한 단쇄 인슐린 아날로그 약물 결합체
KR20160101702A (ko) * 2015-02-17 2016-08-25 한미약품 주식회사 지속형 인슐린 또는 이의 아날로그 결합체
KR20170036643A (ko) * 2015-09-24 2017-04-03 한미약품 주식회사 인슐린의 제조 방법

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0055945A2 (en) 1981-01-02 1982-07-14 Genentech, Inc. Human proinsulin and analogs thereof and method of preparation by microbial polypeptide expression and conversion thereof to human insulin
WO1996032478A1 (en) 1995-04-14 1996-10-17 Genentech, Inc. Altered polypeptides with increased half-life
WO1997034631A1 (en) 1996-03-18 1997-09-25 Board Of Regents, The University Of Texas System Immunoglobin-like domains with increased half lives
EP1926749A1 (en) 2005-09-14 2008-06-04 Sanofi-Aventis Deutschland GmbH Cleavage of precursors of insulins by a variant of trypsin
WO2008019368A2 (en) * 2006-08-07 2008-02-14 Teva Biopharmaceuticals Usa, Inc. Albumin-insulin fusion proteins
KR20110134209A (ko) * 2010-06-08 2011-12-14 한미홀딩스 주식회사 면역글로불린 단편을 이용한 단쇄 인슐린 아날로그 약물 결합체
KR20160101702A (ko) * 2015-02-17 2016-08-25 한미약품 주식회사 지속형 인슐린 또는 이의 아날로그 결합체
KR20170036643A (ko) * 2015-09-24 2017-04-03 한미약품 주식회사 인슐린의 제조 방법

Non-Patent Citations (8)

* Cited by examiner, † Cited by third party
Title
"NCBI", Database accession no. NM_000207.2
DEREWENDA, U. ET AL., J. MOL. BIOL., vol. 220, 1991, pages 425 - 433
H. NEURATHR.L. HILL: "The Proteins", 1979, ACADEMIC PRESS
SCHEIT: "Nucleotide Analogs", 1980, JOHN WILEY
See also references of EP3689382A4 *
UHLMANPEYMAN, CHEMICAL REVIEWS, vol. 90, 1990, pages 543 - 584
WANG, Y.: "Proinsulin-transferrin fusion protein as a novel long-acting insulin analog for the inhibition of hepatic glucose production", DIABETES, vol. 3, 6 May 2014 (2014-05-06), pages 1779 - 1788, XP055510624, DOI: doi:10.2337/db13-0973 *
WILLIAM F ET AL., THE JOURNAL OF BIOLOGICAL CHEMISTRY, vol. 267, 1992, pages 419 - 425

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11098102B2 (en) 2018-12-11 2021-08-24 Sanofi Insulin conjugates
WO2021022149A1 (en) 2019-07-31 2021-02-04 Eli Lilly And Company Insulin analogs and methods of using the same
JP2022542980A (ja) * 2019-07-31 2022-10-07 イーライ リリー アンド カンパニー インスリン類似体およびその使用方法
JP7270105B2 (ja) 2019-07-31 2023-05-09 イーライ リリー アンド カンパニー インスリン類似体およびその使用方法

Also Published As

Publication number Publication date
CN111386130A (zh) 2020-07-07
KR20190036956A (ko) 2019-04-05
JP2020534855A (ja) 2020-12-03
EP3689382A1 (en) 2020-08-05
EP3689382A4 (en) 2021-06-30
US20200254108A1 (en) 2020-08-13

Similar Documents

Publication Publication Date Title
WO2015108398A1 (ko) 지속형 인슐린 및 그 용도
WO2017116205A1 (ko) 글루카곤, glp-1 및 gip 수용체 모두에 활성을 갖는 삼중 활성체의 지속형 결합체
WO2019066570A1 (ko) 지속형 단쇄 인슐린 아날로그 및 이의 결합체
WO2017052321A1 (ko) 다수의 생리활성 폴리펩타이드 및 면역글로불린 Fc 영역을 포함하는, 단백질 결합체
WO2019066586A1 (ko) 글루카곤 유사 펩타이드-2(glp-2) 유도체의 지속형 결합체
WO2018004283A2 (ko) 글루카곤 유도체, 이의 결합체, 및 이를 포함하는 조성물, 및 이의 치료적 용도
WO2018117613A1 (ko) 뇌 표적 지속성 단백질 결합체
WO2012173422A9 (en) A conjugate comprising oxyntomodulin and an immunoglobulin fragment, and use thereof
WO2010123290A2 (ko) 체내 지속성을 유지함으로 체내 반감기가 증가된 단백질 또는 펩티드 융합체, 및 이를 이용하여 체내 반감기를 증가시키는 방법
WO2018056764A1 (ko) 인슐린 수용체와의 결합력이 감소된, 인슐린 아날로그 및 이의 용도
WO2017116207A1 (ko) Fgf21 아날로그, fgf21 결합체, 및 이의 용도
EP3322437A1 (en) Glucagon derivative and a composition comprising a long acting conjugate of the same
WO2018143729A1 (ko) 지속성이 증가된 생리활성 물질의 결합체 및 이의 용도
WO2022211537A1 (ko) 신규한 면역 활성 인터루킨 2 아날로그 결합체 및 이의 제조 방법
WO2019125059A1 (ko) 신규한 구조를 갖는 치료학적 효소 융합단백질 및 이의 용도
WO2018174668A2 (ko) 인슐린 수용체와의 결합력이 감소된 인슐린 아날로그의 결합체 및 이의 용도
WO2019190293A1 (ko) 뇌 표적 지속성 단백질 결합체, 이의 제조 방법, 및 이를 포함하는 조성물
WO2020130749A1 (ko) 글루카곤, glp-1 및 gip 수용체 모두에 활성을 갖는 삼중 활성체 및 인슐린을 포함하는 약학 조성물
WO2020071865A1 (ko) 글루카곤 및 이를 포함하는 조합물의 치료학적 용도
WO2022080986A1 (ko) Glp-1/gip 이중작용제, 이의 지속형 결합체, 및 이를 포함하는 약학적 조성물
WO2022015082A1 (ko) 글루카곤 유도체 또는 이의 결합체의 간질환에 대한 치료적 용도
WO2020130751A1 (ko) 인슐린 및 글루카곤을 포함하는 약학 조성물
WO2023106845A1 (ko) 신규한 아디포넥틴 아날로그 및 결합체
WO2022216129A1 (ko) 글루카곤 유도체를 포함하는 만성 신장 질환 예방 또는 치료용 약학 조성물
WO2021235907A1 (ko) 글루카곤 유도체의 지속형 결합체의 액상 제제

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18862746

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020518504

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2018862746

Country of ref document: EP

Effective date: 20200428