WO2019066047A1 - タンパク質繊維の製造方法、タンパク質繊維の製造装置、およびタンパク質繊維の加工方法 - Google Patents
タンパク質繊維の製造方法、タンパク質繊維の製造装置、およびタンパク質繊維の加工方法 Download PDFInfo
- Publication number
- WO2019066047A1 WO2019066047A1 PCT/JP2018/036510 JP2018036510W WO2019066047A1 WO 2019066047 A1 WO2019066047 A1 WO 2019066047A1 JP 2018036510 W JP2018036510 W JP 2018036510W WO 2019066047 A1 WO2019066047 A1 WO 2019066047A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- protein
- amino acid
- seq
- fiber
- sequence
- Prior art date
Links
Images
Classifications
-
- D—TEXTILES; PAPER
- D01—NATURAL OR MAN-MADE THREADS OR FIBRES; SPINNING
- D01F—CHEMICAL FEATURES IN THE MANUFACTURE OF ARTIFICIAL FILAMENTS, THREADS, FIBRES, BRISTLES OR RIBBONS; APPARATUS SPECIALLY ADAPTED FOR THE MANUFACTURE OF CARBON FILAMENTS
- D01F4/00—Monocomponent artificial filaments or the like of proteins; Manufacture thereof
- D01F4/02—Monocomponent artificial filaments or the like of proteins; Manufacture thereof from fibroin
-
- D—TEXTILES; PAPER
- D02—YARNS; MECHANICAL FINISHING OF YARNS OR ROPES; WARPING OR BEAMING
- D02J—FINISHING OR DRESSING OF FILAMENTS, YARNS, THREADS, CORDS, ROPES OR THE LIKE
- D02J1/00—Modifying the structure or properties resulting from a particular structure; Modifying, retaining, or restoring the physical form or cross-sectional shape, e.g. by use of dies or squeeze rollers
- D02J1/22—Stretching or tensioning, shrinking or relaxing, e.g. by use of overfeed and underfeed apparatus, or preventing stretch
Definitions
- the present disclosure relates to a method of producing protein fiber, a device for producing protein fiber, and a method of processing protein fiber.
- Some protein fibers have the property of shrinking upon contact with moisture (eg, immersion in water or hot water, exposure to a high humidity environment, etc.), and further upon subsequent drying. This property can cause various problems. Conventionally, techniques for preventing protein fiber contraction have been proposed.
- Patent Document 1 discloses a silk fabric in which a silk fabric using high twisting yarn after completion of scouring is immersed in water, another solvent, or a mixed system thereof in a tensioned state and heated for a predetermined time.
- a shrink proofing process is disclosed.
- Patent Document 2 describes a method of processing silk fibers which imparts washability and antifouling properties to silk fibers woven and formed into a dough-like shape, wherein water soluble cyanuric chloride derivatives or water soluble vinyl sulfones are added to the silk fibers.
- Patent Document 3 discloses a tenter at the time of finishing a blended fabric comprising 30 to 70% by weight of a halogen-containing fiber containing 6 to 50% by weight of a flame retardant containing an Sb compound as a main component and 70 to 30% by weight of wool. There is disclosed a method of producing a flame retardant fabric which is thermally set at 140 to 160 ° C. while being overfed to be subjected to a mechanical shrink proofing process.
- Patent Document 4 discloses a first step of primary oxidation treatment of -S-S- bond (cystine bond) in animal hair epidermal cells to lower oxidation state, and primary oxidized -S-S- bond.
- a second step of oxidation treatment with ozone to one or more higher oxidation states in any one of di-, tri- or tetra-oxidation states, and the above-mentioned di-, tri- or tetra-oxidation states A process for producing animal hair fibers is disclosed which comprises the third step of reducing the —S—S— bond.
- Patent Documents 1 to 3 are shrinkage-preventing techniques for fiber products, and it is difficult to apply them as they are to the shrinkage of protein fibers which are materials. That is, these techniques can not solve the problems caused when obtaining various products using protein fibers. Further, the technology disclosed in Patent Document 4 is a shrink-proof technology for fibers, but requires extremely complicated steps.
- the present disclosure describes a method for producing protein fiber and an apparatus for producing protein fiber capable of easily producing protein fiber in which contraction, so-called water shrinkage, which is caused upon contact with moisture and subsequent drying is suppressed. .
- the present disclosure also describes a method of processing protein fibers that can suppress protein fiber shrinkage (water shrinkage) that occurs upon contact with moisture and subsequent drying.
- the method for producing a protein fiber according to one aspect of the present invention is a protein raw material which is heated by a heating step of heating a protein raw material fiber containing protein, simultaneously with the heating step, or after the heating step and heated by the heating step. And, relaxing and contracting the fibers.
- protein fiber in which water shrinkage which occurs upon contact with moisture and further drying is suppressed by relaxing and shrinking protein raw material fiber in a heated state It can be easily manufactured.
- At least one of the heating temperature of the protein raw material fiber in the heating step and the relaxation amount of the protein raw material fiber in the relaxation contraction step may be adjusted.
- the amount of contraction (the amount of water contraction) that occurs upon contact with moisture and subsequent drying can be arbitrarily adjusted.
- the protein raw material fiber may be relaxed and contracted by continuously delivering the protein raw material fiber at a predetermined delivery rate and continuously winding it at a slower winding speed than the delivery rate.
- the relaxation state of the protein material fiber can be created by making the delivery speed and the winding speed different. As a result, the productivity of protein fibers in which water contraction is suppressed is improved.
- the delivery speed of the protein raw material fiber in the relaxation and contraction step may be 1.4 or more times the winding speed. In this case, the effect of suppressing water contraction can be obtained more reliably.
- the heating temperature of the protein raw material fiber in the heating step may be equal to or higher than the softening temperature of the protein. In this case, the effect of suppressing water contraction can be obtained more reliably.
- the heating step and the relaxation contraction step may be simultaneously performed, and the heating time in the relaxation contraction step may be 5 seconds or less. In this case, the effect of suppressing water shrinkage can be obtained while maintaining the physical properties of the fiber.
- the protein may be a structural protein.
- a structural protein fiber in which water contraction is suppressed can be easily produced.
- the structural protein may be fibroin.
- fibroin fibers in which water shrinkage is suppressed can be easily produced.
- the fibroin may be spider silk fibroin.
- spider silk fibroin fibers in which water contraction is suppressed can be easily produced.
- An apparatus for producing a protein fiber comprises heating means for heating a protein raw material fiber containing protein, and relaxation contraction means for relaxing and shrinking the protein raw material fiber in a heated state by the heating means. And.
- the protein raw material fiber in the heated state is relaxed (not tensioned or not tensioned) and contracted to be in contact with moisture and further drying. It is possible to easily produce a protein fiber in which the resulting water contraction is suppressed.
- the relaxation and contraction means continuously takes up the delivery means for continuously delivering the protein raw fiber at a predetermined delivery rate, and continuously takes up the protein raw fiber delivered by the delivery means at a take-up speed slower than the delivery rate And winding means.
- the apparatus for producing protein fiber may further comprise a velocity adjusting means for adjusting at least one of the delivery speed of the delivery means and the winding speed of the winding means.
- a velocity adjusting means for adjusting at least one of the delivery speed of the delivery means and the winding speed of the winding means.
- the apparatus for producing protein fibers may further comprise temperature control means for controlling the heating temperature of the protein raw material fibers in the heating means.
- temperature control means for controlling the heating temperature of the protein raw material fibers in the heating means.
- the apparatus for producing protein fibers may further comprise spinning means for spinning protein raw fibers.
- spinning of the protein raw fiber and the heating and relaxation contraction of the protein raw fiber are continuously performed.
- productivity of protein fibers in which water contraction is suppressed is improved.
- a method of processing a protein fiber according to still another aspect of the present invention is a heating step of heating a protein fiber containing protein, and a protein which is performed simultaneously with or after the heating step and which is in a heated state by the heating step. And, relaxing and contracting the fibers.
- this protein fiber processing method by relaxing and shrinking the protein fiber in a heated state, it is possible to suppress the water shrinkage of the protein fiber which occurs upon contact with moisture and further upon drying. it can.
- At least one of the heating temperature of the protein fiber in the heating step and the relaxation amount of the protein fiber in the relaxation contraction step may be adjusted.
- the amount of contraction (the amount of water contraction) that occurs upon contact with moisture and subsequent drying can be arbitrarily adjusted.
- the protein fiber may be relaxed and contracted by continuously delivering the protein fiber at a predetermined delivery rate and continuously winding it at a slower take-up speed than the delivery rate.
- the relaxation state of the protein fiber can be generated by making the delivery speed and the winding speed different. As a result, the productivity of protein fibers in which water contraction is suppressed is improved.
- FIG. 1 is a schematic view showing the domain sequence of modified fibroin.
- FIG. 2 is a diagram showing the distribution of the value of z / w (%) of naturally occurring fibroin.
- FIG. 3 shows the distribution of x / y (%) values of naturally occurring fibroin. It is a schematic diagram which shows an example of the domain arrangement
- FIG. 6 is a schematic view of a protein fiber manufacturing apparatus according to an embodiment of the present disclosure.
- FIG. 7 is a figure which shows the speed control means and temperature control means which can be provided in the high temperature heating furnace in FIG.
- the method for producing a protein fiber according to the present embodiment includes a heating step of heating a protein raw material fiber containing protein, and a protein raw material fiber which is performed simultaneously with or after the heating step and heated in the heating step. Relaxing and contracting.
- the apparatus for producing a protein fiber according to the present embodiment includes a heating means for heating a protein raw material fiber containing protein, and a relaxation contraction means for relaxing and shrinking the protein raw material fiber in a heated state by the heating means. Prepare. By relaxing and shrinking the protein raw material fiber in the heated state, it is possible to easily produce a protein fiber in which the water shrinkage which occurs upon contact with water and further drying is suppressed.
- protein A protein fiber produced according to the production method of the present invention, or a protein raw material fiber as a raw material, contains, as a main component, a protein that gives a fiber that shrinks upon contact with moisture.
- the protein is not particularly limited, and may be one produced by a microorganism or the like by genetic recombination technology, or may be one produced synthetically, or one obtained by purifying a protein of natural origin It may be Also, the protein may be, for example, a structural protein.
- the structural protein refers to a protein that forms a biological structure or a protein derived therefrom. That is, the structural protein may be a naturally occurring structural protein, and is a modified protein in which a portion (for example, 10% or less of the amino acid sequence) of the amino acid sequence is altered based on the amino acid sequence of the naturally occurring structural protein. It may be
- structural proteins include fibroin, collagen, resilin, elastin and keratin, and proteins derived therefrom, and the like.
- the fibroin may be, for example, one or more selected from the group consisting of silk fibroin, spider silk fibroin, and hornet silk fibroin.
- the structural protein may be silk fibroin, spider silk fibroin or a combination thereof. When silk fibroin and spider silk fibroin are used in combination, the proportion of silk fibroin may be, for example, 40 parts by mass or less, 30 parts by mass or less, or 10 parts by mass or less with respect to 100 parts by mass of spider silk fibroin.
- the modified fibroin according to this embodiment has a domain sequence represented by Formula 1: [(A) n Motif -REP] m , or Formula 2: [(A) n Motif -REP] m- (A) n Motif It is a protein that contains.
- the modified fibroin may further have an amino acid sequence (N-terminal sequence and C-terminal sequence) added to either or both of the N-terminal side and the C-terminal side of the domain sequence.
- An N-terminal sequence and a C-terminal sequence are typically, but not limited to, regions having no repeat of the amino acid motif characteristic of fibroin, and consist of about 100 amino acids.
- modified fibroin means artificially produced fibroin (artificial fibroin).
- the modified fibroin may be fibroin whose domain sequence is different from the amino acid sequence of naturally occurring fibroin, or fibroin whose amino acid sequence is identical to that of naturally occurring fibroin.
- naturally-derived fibroin is also represented by Formula 1: [(A) n Motif-REP] m , or Formula 2: [(A) n Motif-REP] m- (A) n Motif A protein comprising the domain sequence
- the “modified fibroin” may be one obtained by directly using the amino acid sequence of naturally occurring fibroin, or one obtained by modifying the amino acid sequence based on the amino acid sequence of naturally occurring fibroin (eg, cloned natural origin)
- the amino acid sequence may be modified by modifying the gene sequence of fibroin), or artificially designed and synthesized without relying on naturally occurring fibroin (eg, a nucleic acid encoding the designed amino acid sequence) It may be one having a desired amino acid sequence by chemical synthesis).
- domain sequence refers to a crystal region specific to fibroin (typically corresponding to the (A) n motif of the amino acid sequence) and an amorphous region (typically the REP of the amino acid sequence).
- Amino acid sequence which corresponds to the following formula 1: [(A) n motif -REP] m , or formula 2: [(A) n motif -REP] m- (A) n motif Means sequence.
- (A) n motif indicates an amino acid sequence mainly comprising an alanine residue, and the number of amino acid residues is 2 to 27.
- the number of amino acid residues of the n motif may be an integer of 2 to 20, 4 to 27, 4 to 20, 8 to 20, 10 to 20, 4 to 16, 8 to 16, or 10 to 16 .
- the ratio of the number of alanine residues to the total number of amino acid residues in (A) n motif may be 40% or more, 60% or more, 70% or more, 80% or more, 83% or more, 85% or more, It may be 86% or more, 90% or more, 95% or more, or 100% (meaning it consists only of alanine residues).
- At least seven of the (A) n motifs present in the domain sequence may consist of only alanine residues.
- REP represents an amino acid sequence composed of 2 to 200 amino acid residues.
- the REP may be an amino acid sequence composed of 10 to 200 amino acid residues.
- m is an integer of 2 to 300, and may be an integer of 10 to 300.
- the plurality of (A) n motifs may be identical to each other or different from each other.
- the plurality of REPs may be identical amino acid sequences to each other or different amino acid sequences.
- the modified fibroin according to the present embodiment is, for example, an amino acid sequence corresponding to, for example, substitution, deletion, insertion and / or addition of one or more amino acid residues with respect to a cloned naturally occurring fibroin gene sequence.
- Can be obtained by modifying Substitutions, deletions, insertions and / or additions of amino acid residues can be carried out by methods known to those skilled in the art such as partial directed mutagenesis. Specifically, Nucleic Acid Res. 10, 6487 (1982), Methods in Enzymology, 100, 448 (1983) and the like.
- Naturally occurring fibroin is a protein comprising a domain sequence represented by Formula 1: [(A) n Motif-REP] m , or Formula 2: [(A) n Motif -REP] m- (A) n Motif Specifically, for example, fibroin produced by insects or spiders can be mentioned.
- fibroin produced by insects include Bombyx mori (Bombyx mori), Quwaco (Bombyx mandarina), pemphigus (Antheraea yamamai), moth (Anteraea pernyi), moth (Eriogyna pyretorum), moth (Pilosamia Cynthia ricini) ), Silk proteins produced by silkworms such as silkworms (Samia cynthia), chestnut beetles (Caligura japonica), tussah silkworms (Antheraea mylitta), and muga silkworms (Antheraea assama), and larvae of the hornets (Vespa simillima xanthoptera) Hornet silk protein is mentioned.
- insect-produced fibroin include, for example, silkworm fibroin L chain (GenBank accession number M76430 (base sequence) and AAA27840.1 (amino acid sequence)).
- the fibroins produced by the spiders include, for example, spiders belonging to the genus Araneus such as spider spiders, spider spiders, spider spiders, blue spider spiders, and spider spiders, spider spiders (genus Neoscona) such as spider spiders, spider spiders, spider spiders and spiders , Spiders belonging to the genus Pronus (Pronus), such as Torino Fundamas, spiders belonging to the genus Torino Fundama (Cyrtarachne) such as Torino Fundamas, and Otorino Fundames, such as spiders such as Togegumo and Tibusegumo Spiders belonging to the genus Gasteracantha, spiders belonging to the genus Ordgarius, such as the spiders belonging to the genus Gasteracantha and those belonging to the genus Ordgarius A spider belonging to the genus Angiope (Argiope), a spider belonging to the genus Angiope, a spider
- spider silk proteins produced by spiders include, for example, fibroin-3 (adf-3) [derived from Araneus diadematus] (GenBank accession numbers AAC 47010 (amino acid sequence), U47855 (base sequence)), fibroin-4 (adf-4) [derived from Araneus diadematus] (GenBank accession number AAC47011 (amino acid sequence), U47856 (base sequence)), dragline silk protein spidroin 1 derived from Nephila clavipes (genbank accession number AAC 04504 (amino acid sequence) ), U37520 (base sequence)), major ampullate spidro n 1 [Latrodectus hesperus derived] (GenBank accession No.
- ABR68856 amino acid sequence
- EF 595246 base sequence
- dragline silk protein spidroin 2 [derived from Nephila clavata] (GenBank accession No. AAL 32 472 (amino acid sequence), AF 441 245 (base sequence ), Major ampullate spidroin 1 [from Euprosthenops australis] (GenBank accession number CAJ00428 (amino acid sequence), AJ 973 155 (base sequence)), and major ampullate spidroin 2 [Euprosthenops australi (GenBank Accession No. CAM 32249.
- Naturally derived fibroin further include fibroin whose sequence information is registered in NCBI GenBank.
- sequence information is registered in NCBI GenBank.
- spidroin, ampullate, fibroin, “silk and polypeptide”, or “silk and protein” are described as keywords among sequences including INV as DIVISION among sequence information registered in NCBI GenBank.
- the sequence can be confirmed by extracting a specified product string from CDS, and a described sequence of a specific string from SOURCE to TISSUE TYPE.
- the modified fibroin according to this embodiment may be a modified silk (silk) fibroin (a modified amino acid sequence of a silk protein produced by silkworm), or a modified spider silk fibroin (a spider silk protein produced by spiders)
- the amino acid sequence may be modified).
- modified spider silk fibroin is preferred.
- a modified fibroin (first modified fibroin) derived from the large nasogastric silkworm silk protein produced in the large vein of the spider, a domain sequence with a reduced content of glycine residues (A) a modified fibroin (a third modified fibroin) having a domain sequence with a reduced content of n motif, a content of a glycine residue, and (A) n Modified fibroin (fourth modified fibroin) having a reduced content of motif, modified fibroin having a domain sequence including a region locally having a large hydrophobicity index (fifth modified fibroin), and content of glutamine residue And modified fibroin (sixth modified fibroin) having a reduced domain sequence.
- the first modified fibroin includes a protein comprising a domain sequence represented by Formula 1: [(A) n Motif-REP] m .
- the amino acid residue number of the (A) n motif is preferably an integer of 3 to 20, more preferably an integer of 4 to 20, still more preferably an integer of 8 to 20, and an integer of 10 to 20 Is still more preferred, the integer of 4 to 16 is even more preferred, the integer of 8 to 16 is particularly preferred, and the integer of 10 to 16 is most preferred.
- the number of amino acid residues constituting the REP is preferably 10 to 200 residues, more preferably 10 to 150 residues, and 20 to 100 residues More preferably, it is 20 to 75 residues.
- the total number of residues of glycine, serine and alanine residues contained in the amino acid sequence represented by the formula 1: [(A) n motif-REP] m is an amino acid residue
- the total number is preferably 40% or more, more preferably 60% or more, and still more preferably 70% or more.
- the first modified fibroin comprises a unit of the amino acid sequence represented by the formula 1: [(A) n motif-REP] m , and the amino acid sequence whose C-terminal sequence is shown in any one of SEQ ID NOs: 1 to 3 or It may be a polypeptide which is an amino acid sequence having 90% or more homology with the amino acid sequence shown in any of SEQ ID NOs: 1 to 3.
- the amino acid sequence shown in SEQ ID NO: 1 is identical to the amino acid sequence consisting of 50 C-terminal amino acids of the amino acid sequence of ADF3 (GI: 1263287, NCBI), and the amino acid sequence shown in SEQ ID NO: 2 is a sequence It is identical to the amino acid sequence obtained by removing 20 residues from the C-terminus of the amino acid sequence shown in No. 1, and the amino acid sequence shown in SEQ ID NO: 3 has 29 residues removed from the C terminus of the amino acid sequence shown in SEQ ID NO. It is identical to the amino acid sequence.
- the amino acid sequence represented by (1-i) SEQ ID NO: 4 (recombinant spider silk protein ADF3KaiLargeNRSH1), or (1-ii) the amino acid sequence represented by SEQ ID NO: Mention may be made of modified fibroins which comprise amino acid sequences with% or more sequence identity.
- the sequence identity is preferably 95% or more.
- the amino acid sequence shown by SEQ ID NO: 4 is the first amino acid sequence of the amino acid sequence of ADF3 to which an amino acid sequence (SEQ ID NO: 5) consisting of an initiation codon, His10 tag and HRV3C protease (Human rhinovirus 3C protease) recognition site is added at the N terminus.
- the 13th repeat region is about doubled and the translation is mutated to terminate at amino acid residue 1154.
- the amino acid sequence at the C-terminus of the amino acid sequence shown in SEQ ID NO: 4 is identical to the amino acid sequence shown in SEQ ID NO: 3.
- the modified fibroin of (1-i) may consist of the amino acid sequence shown by SEQ ID NO: 4.
- the second modified fibroin has an amino acid sequence whose domain sequence has a reduced content of glycine residues as compared to naturally occurring fibroin.
- the second modified fibroin can be said to have an amino acid sequence corresponding to the replacement of at least one glycine residue in REP with another amino acid residue as compared to naturally occurring fibroin .
- GGX and GPGXX in REP (wherein G is a glycine residue, P is a proline residue, and X is an amino acid residue other than glycine) in the second modified fibroin in comparison with the naturally derived fibroin in its domain sequence In which at least one glycine residue in at least one or more motif sequences is substituted with another amino acid residue.
- the percentage of the motif sequence in which the above-mentioned glycine residue is replaced with another amino acid residue may be 10% or more with respect to the entire motif sequence.
- the second modified fibroin contains a domain sequence represented by the formula 1: [(A) n motif-REP] m , and from the above domain sequence to the most C-terminally located (A) n motif from the above domain sequence
- the alanine residue number relative to the total number of amino acid residues in the n motif may be 83% or more, preferably 86% or more, more preferably 90% or more, and 95% or more It is more preferred that there be 100%, meaning that it consists only of alanine residues.
- the second modified fibroin is preferably one in which the content of the amino acid sequence consisting of XGX is increased by replacing one glycine residue of the GGX motif with another amino acid residue.
- the content ratio of the amino acid sequence consisting of GGX in the domain sequence is preferably 30% or less, more preferably 20% or less, still more preferably 10% or less, and 6 % Or less is even more preferable, 4% or less is even more preferable, and 2% or less is particularly preferable.
- the content ratio of the amino acid sequence consisting of GGX in the domain sequence can be calculated by the same method as the calculation method of the content ratio (z / w) of the amino acid sequence consisting of XGX described below.
- fibroin modified fibroin or naturally-derived fibroin
- fibroin containing a domain sequence represented by the formula 1: [(A) n motif-REP] m , (A) n located most C-terminally from the domain sequence
- An amino acid sequence consisting of XGX is extracted from all the REP contained in the sequence excluding the sequence from the motif to the C-terminus of the domain sequence.
- w is the total number of amino acid residues contained in the sequence excluding the sequence from the (A) n motif located closest to the C-terminus to the C-terminus of the domain sequence from the domain sequence.
- z / w (%) can be calculated by dividing z by w.
- z / w in naturally derived fibroin will be described.
- 663 types of fibroin (of which 415 types of fibroin derived from spiders) were extracted.
- z / w was calculated by the above-mentioned calculation method. The results are shown in FIG.
- the horizontal axis of FIG. 2 indicates z / w (%) and the vertical axis indicates frequency.
- z / w in all naturally occurring fibroin is less than 50.9% (highest, 50.86%).
- z / w is preferably 50.9% or more, more preferably 56.1% or more, still more preferably 58.7% or more, and 70% or more It is further more preferred that the ratio is 80% or more.
- the upper limit of z / w is not particularly limited, and may be, for example, 95% or less.
- the second modified fibroin can be obtained, for example, by replacing at least a part of the nucleotide sequence encoding a glycine residue from the cloned gene sequence of naturally occurring fibroin to encode another amino acid residue You can get it.
- a glycine residue to be modified one glycine residue in the GGX motif and the GPGXX motif may be selected, or z / w may be substituted so as to be 50.9% or more.
- it can be obtained by designing an amino acid sequence satisfying the above embodiment from the amino acid sequence of naturally derived fibroin, and chemically synthesizing a nucleic acid encoding the designed amino acid sequence.
- one or more amino acid residues are further substituted or deleted.
- the amino acid sequence may be modified corresponding to the insertion and / or addition.
- the above other amino acid residue is not particularly limited as long as it is an amino acid residue other than glycine residue, but valine (V) residue, leucine (L) residue, isoleucine (I) residue, methionine ( M) Hydrophobic amino acid residues such as residue, proline (P) residue, phenylalanine (F) residue and tryptophan (W) residue, glutamine (Q) residue, asparagine (N) residue, serine (S ), Hydrophilic amino acid residues such as lysine (K) residue and glutamic acid (E) residue are preferable, and valine (V) residue, leucine (L) residue, isoleucine (I) residue, phenylalanine ( F) The residue and glutamine (Q) residue are more preferred, and glutamine (Q) residue is even more preferred.
- SEQ ID NO: 6 (Met-PRT380), SEQ ID NO: 7 (Met-PRT410), SEQ ID NO: 8 (Met-PRT 525) or SEQ ID NO: 9 (Met)
- the modified fibroin of (2-i) will be described.
- the amino acid sequence shown by SEQ ID NO: 6 is one in which all GGX in the REP of the amino acid sequence shown by SEQ ID NO: 10 (Met-PRT313) corresponding to naturally occurring fibroin is replaced with GQX.
- the amino acid sequence shown by SEQ ID NO: 7 is such that every other (A) n motif is deleted from the amino acid sequence shown by SEQ ID NO. [(A) n Motif-REP] is inserted into.
- the amino acid sequence shown by SEQ ID NO: 8 inserts two alanine residues at the C-terminal side of each (A) n motif of the amino acid sequence shown by SEQ ID NO: 7, and further contains some glutamine (Q) residues.
- SEQ ID NO: 9 is a region of 20 domain sequences present in the amino acid sequence shown by SEQ ID NO: 7 (however, several amino acid residues at the C-terminal side of the region are substituted).
- a predetermined hinge sequence and a His tag sequence are added to the C terminus of the sequence repeated four times.
- the value of z / w in the amino acid sequence shown in SEQ ID NO: 10 is 46.8%.
- the value of x / y in the Giza ratio (described later) 1: 1.8 to 11.3 of the amino acid sequences represented by SEQ ID NO: 10, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8 and SEQ ID NO: 9 is 15.0%, 15.0%, 93.4%, 92.7% and 89.8%, respectively.
- the modified fibroin of (2-i) may consist of the amino acid sequence shown by SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8 or SEQ ID NO: 9.
- the modified fibroin of (2-ii) comprises an amino acid sequence having 90% or more sequence identity with the amino acid sequence shown by SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8 or SEQ ID NO: 9.
- the modified fibroin of (2-ii) is also a protein comprising a domain sequence represented by Formula 1: [(A) n Motif-REP] m .
- the above sequence identity is preferably 95% or more.
- the modified fibroin of (2-ii) has 90% or more sequence identity with the amino acid sequence shown by SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8 or SEQ ID NO: 9, and However, when X represents the total number of amino acid residues of the amino acid sequence consisting of amino acid residues other than glycine) as z, and the total number of amino acid residues of REP in the above domain sequence as w, z / w Is preferably 50.9% or more.
- the second modified fibroin may contain a tag sequence at either or both of the N-terminus and the C-terminus. This makes it possible to isolate, immobilize, detect, visualize, etc., the modified fibroin.
- an affinity tag utilizing specific affinity (binding, affinity) with another molecule can be mentioned.
- a histidine tag (His tag) can be mentioned as a specific example of an affinity tag.
- the His tag is a short peptide consisting of 4 to 10 histidine residues, and has the property of binding specifically to metal ions such as nickel, so isolation of the modified fibroin by metalating metal chromatography It can be used to Specific examples of the tag sequence include, for example, the amino acid sequence shown in SEQ ID NO: 11 (His tag sequence and amino acid sequence including hinge sequence).
- tag sequences such as glutathione-S-transferase (GST) that specifically binds to glutathione and maltose binding protein (MBP) that specifically binds to maltose can also be used.
- GST glutathione-S-transferase
- MBP maltose binding protein
- epitope tags utilizing antigen-antibody reactions can also be used.
- a peptide (epitope) showing antigenicity as a tag sequence an antibody against the epitope can be bound.
- the epitope tag include HA (peptide sequence of hemagglutinin of influenza virus) tag, myc tag, FLAG tag and the like.
- tag sequence can be separated by a specific protease
- modified fibroin from which the tag sequence has been separated can also be recovered by subjecting the protein adsorbed via the tag sequence to a protease treatment.
- modified fibroin containing a tag sequence (2-iii) SEQ ID NO: 12 (PRT 380), SEQ ID NO: 13 (PRT 410), SEQ ID NO: 14 (PRT 525) or SEQ ID NO: 15 (PRT 799)
- a modified fibroin can be mentioned, which comprises an amino acid sequence having 90% or more sequence identity with the sequence or (2-iv) the amino acid sequence shown in SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14 or SEQ ID NO: 15 .
- amino acid sequences represented by SEQ ID NO: 16 (PRT 313), SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14 and SEQ ID NO: 15 are respectively SEQ ID NO: 10, SEQ ID NO: 6, SEQ ID NO: 7, SEQ ID NO: 8 and SEQ ID NO: 9
- amino acid sequence shown in SEQ ID NO: 11 (including His tag sequence and hinge sequence) is added to the N-terminus of the amino acid sequence shown.
- the modified fibroin of (2-iii) may consist of the amino acid sequence shown by SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14 or SEQ ID NO: 15.
- the modified fibroin of (2-iv) comprises an amino acid sequence having 90% or more sequence identity with the amino acid sequence shown by SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14 or SEQ ID NO: 15.
- the modified fibroin of (2-iv) is also a protein comprising a domain sequence represented by the formula 1: [(A) n motif-REP] m .
- the above sequence identity is preferably 95% or more.
- the modified fibroin of (2-iv) has 90% or more sequence identity with the amino acid sequence shown by SEQ ID NO: 12, SEQ ID NO: 13, SEQ ID NO: 14 or SEQ ID NO: 15, and However, when X represents the total number of amino acid residues of the amino acid sequence consisting of amino acid residues other than glycine) as z, and the total number of amino acid residues of REP in the above domain sequence as w, z / w Is preferably 50.9% or more.
- the second modified fibroin may comprise a secretion signal for releasing the protein produced in the recombinant protein production system outside the host.
- the sequence of the secretion signal can be appropriately set according to the type of host.
- the third modified fibroin has an amino acid sequence in which the content of the (A) n motif is reduced as compared to naturally occurring fibroin.
- the domain sequence of the third modified fibroin can be said to have an amino acid sequence corresponding to deletion of at least one or more (A) n motifs as compared to naturally occurring fibroin.
- the third modified fibroin may have an amino acid sequence corresponding to 10-40% of the (A) n motif deleted from naturally occurring fibroin.
- the third modification fibroin its domain sequence, compared to the naturally occurring fibroin, at least from the N-terminal side toward the C-terminal one to three (A) n motif every one (A) n motif It may have an amino acid sequence corresponding to the deletion of
- the third modified fibroin has a deletion of two consecutive (A) n motifs whose domain sequences are at least N-terminal to C-terminal as compared to naturally occurring fibroin, and one (A The amino acid sequence may correspond to the fact that the deletion of the n motif is repeated in this order.
- the third modified fibroin may have an amino acid sequence corresponding to the deletion of (A) n motif every other two domain sequences from at least the N terminal side to the C terminal side .
- the third modified fibroin contains a domain sequence represented by the formula 1: [(A) n motif-REP] m , and two adjacent [(A) n motifs from the N terminal side toward the C terminal side
- the ratio of the number of amino acid residues of the other REP is 1.8 to Assuming that the maximum value of the sum of the amino acid residue numbers of two adjacent [(A) n motif-REP] units to be 11.3 is x and the total amino acid residue number of the domain sequence is y
- it may have an amino acid sequence in which x / y is 20% or more, 30% or more, 40% or more, or 50% or more.
- the alanine residue number relative to the total number of amino acid residues in the n motif may be 83% or more, preferably 86% or more, more preferably 90% or more, and 95% or more It is more preferred that there be 100%, meaning that it consists only of alanine residues.
- FIG. 1 shows domain sequences obtained by removing the N- and C-terminal sequences from the modified fibroin. From the N-terminal side (left side), the domain sequence is (A) n motif-first REP (50 amino acid residues)-(A) n motif-second REP (100 amino acid residues)-(A) n Motif-third REP (10 amino acid residues)-(A) n motif-fourth REP (20 amino acid residues)-(A) n motif-fifth REP (30 amino acid residues)-(A) It has a sequence called n motif.
- the number of amino acid residues of each REP in two adjacent selected [(A) n motif-REP] units is compared.
- the comparison is carried out by determining the ratio of the number of amino acid residues of the other, assuming that the smaller number of amino acid residues is 1.
- each pattern the numbers of all amino acid residues of two adjacent [(A) n motif-REP] units shown by the solid line are added (not only REP, but also the number of amino acid residues of (A) n motif is there.). Then, the summed total values are compared, and the total value (maximum value of the total values) of the patterns for which the total value is the largest is defined as x. In the example shown in FIG. 1, the total value of pattern 1 is the largest.
- x / y (%) can be calculated by dividing x by the total number of amino acid residues y of the domain sequence.
- x / y is preferably 50% or more, more preferably 60% or more, still more preferably 65% or more, still more preferably 70% or more It is more preferably 75% or more, still more preferably 80% or more.
- x / y is preferably 50% or more, more preferably 60% or more, still more preferably 65% or more, still more preferably 70% or more It is more preferably 75% or more, still more preferably 80% or more.
- the upper limit of x / y may be, for example, 100% or less.
- x / y is preferably 89.6% or more, and in the case of a Giza ratio of 1: 1.8 to 3.4, x It is preferable that / y is 77.1% or more, and when the Giza ratio is 1: 1.9 to 8.4, x / y is preferably 75.9% or more, and the Giza ratio is 1 In the case of 1.9 to 4.1, x / y is preferably 64.2% or more.
- x / y is 46.4% or more Is preferably 50% or more, more preferably 55% or more, still more preferably 60% or more, still more preferably 70% or more, and 80% or more. Being particularly preferred.
- the upper limit of x / y is not particularly limited, and may be 100% or less.
- the horizontal axis of FIG. 3 indicates x / y (%) and the vertical axis indicates frequency.
- x / y in naturally derived fibroin is less than 64.2% in all cases (highest, 64.14%).
- the third modified fibroin deletes one or more of the sequences encoding the (A) n motif so that x / y is 64.2% or more from the cloned naturally-occurring fibroin gene sequence It can be obtained by Also, for example, from the amino acid sequence of naturally occurring fibroin, an amino acid sequence corresponding to deletion of one or more (A) n motifs so that x / y is 64.2% or more is designed and designed It can also be obtained by chemically synthesizing a nucleic acid encoding the above amino acid sequence.
- one or more amino acid residues are further substituted, deleted, inserted and / or added.
- the amino acid sequence corresponding to the above may be modified.
- the third modified fibroin (3-i) SEQ ID NO: 17 (Met-PRT399), SEQ ID NO: 7 (Met-PRT410), SEQ ID NO: 8 (Met-PRT 525) or SEQ ID NO: 9 (Met)
- the modified fibroin of (3-i) will be described.
- the amino acid sequence shown by SEQ ID NO: 17 is different from the amino acid sequence shown by SEQ ID NO: 10 (Met-PRT313) corresponding to naturally-occurring fibroin from every N terminal side toward C terminal side (A) n
- the motif is deleted, and one [(A) n motif-REP] is inserted in front of the C-terminal sequence.
- the amino acid sequence shown by SEQ ID NO: 7, SEQ ID NO: 8 or SEQ ID NO: 9 is as described in the second modified fibroin.
- the value of x / y in the Giza ratio 1: 1.8 to 11.3 of the amino acid sequence (corresponding to naturally occurring fibroin) represented by SEQ ID NO: 10 is 15.0%.
- the amino acid sequence shown by SEQ ID NO: 17 and the value of x / y in the amino acid sequence shown by SEQ ID NO: 7 are both 93.4%.
- the value of x / y in the amino acid sequence shown by SEQ ID NO: 8 is 92.7%.
- the value of x / y in the amino acid sequence shown by SEQ ID NO: 9 is 89.8%.
- the values of z / w in the amino acid sequences shown by SEQ ID NO: 10, SEQ ID NO: 17, SEQ ID NO: 7, SEQ ID NO: 8 and SEQ ID NO: 9 are 46.8%, 56.2%, 70.1%, 66. 1% and 70.0%.
- the modified fibroin of (3-i) may consist of the amino acid sequence shown by SEQ ID NO: 17, SEQ ID NO: 7, SEQ ID NO: 8 or SEQ ID NO: 9.
- the modified fibroin of (3-ii) comprises an amino acid sequence having 90% or more sequence identity with the amino acid sequence shown by SEQ ID NO: 17, SEQ ID NO: 7, SEQ ID NO: 8 or SEQ ID NO: 9.
- the modified fibroin of (3-ii) is also a protein comprising a domain sequence represented by the formula 1: [(A) n motif-REP] m .
- the above sequence identity is preferably 95% or more.
- the modified fibroin of (3-ii) has 90% or more sequence identity with the amino acid sequence shown by SEQ ID NO: 17, SEQ ID NO: 7, SEQ ID NO: 8 or SEQ ID NO: 9, and from N-terminal to C-terminal Sequentially comparing the number of amino acid residues of REP of two [(A) n motif-REP] units adjacent to each other, and assuming that the number of amino acid residues of REP having a small number of amino acid residues is 1, Amino acid residues of two adjacent [(A) n motif-REP] units in which the ratio of the number of amino acid residues of REP is 1.8 to 11.3 (the Giza ratio is 1: 1.8 to 11.3) It is preferable that x / y be 64.2% or more, where x is the maximum value of the sum total of the number of bases and x is the total number of amino acid residues in the domain sequence.
- the third modified fibroin may contain the above-described tag sequence at either or both of the N-terminus and the C-terminus.
- modified fibroin containing the tag sequence 3-iii) SEQ ID NO: 18 (PRT 399), SEQ ID NO: 13 (PRT 410), SEQ ID NO: 14 (PRT 525) or SEQ ID NO: 15 (PRT 799)
- a modified fibroin can be mentioned, which comprises an amino acid sequence having 90% or more sequence identity with the sequence or (3-iv) the amino acid sequence shown in SEQ ID NO: 18, SEQ ID NO: 13, SEQ ID NO: 14 or SEQ ID NO: 15 .
- amino acid sequences shown by SEQ ID NO: 18, SEQ ID NO: 13, SEQ ID NO: 14 and SEQ ID NO: 15 correspond to SEQ ID NO: 11 at the N-terminus of the amino acid sequences shown by SEQ ID NO: 17, SEQ ID NO: 7, SEQ ID NO: 8 and SEQ ID NO: 9, respectively.
- the amino acid sequence (including His tag sequence and hinge sequence) is added.
- the modified fibroin of (3-iii) may consist of the amino acid sequence shown by SEQ ID NO: 18, SEQ ID NO: 13, SEQ ID NO: 14 or SEQ ID NO: 15.
- the modified fibroin of (3-iv) comprises an amino acid sequence having 90% or more sequence identity with the amino acid sequence shown by SEQ ID NO: 18, SEQ ID NO: 13, SEQ ID NO: 14 or SEQ ID NO: 15.
- the modified fibroin of (3-iv) is also a protein comprising a domain sequence represented by the formula 1: [(A) n motif-REP] m .
- the above sequence identity is preferably 95% or more.
- the modified fibroin of (3-iv) has 90% or more sequence identity with the amino acid sequence shown by SEQ ID NO: 18, SEQ ID NO: 13, SEQ ID NO: 14 or SEQ ID NO: 15, and N-terminal to C-terminal Sequentially comparing the number of amino acid residues of REP of two [(A) n motif-REP] units adjacent to each other, and assuming that the number of amino acid residues of REP having a small number of amino acid residues is 1, The maximum value of the sum of the amino acid residue numbers of two adjacent [(A) n motif-REP] units in which the ratio of the amino acid residue number of REP is 1.8 to 11.3 is x.
- x / y is 64.2% or more, where y is the total number of amino acid residues in the domain sequence.
- the third modified fibroin may contain a secretion signal for releasing the protein produced in the recombinant protein production system to the outside of the host.
- the sequence of the secretion signal can be appropriately set according to the type of host.
- the fourth modified fibroin has an amino acid sequence in which the content of the glycine residue is reduced in addition to the content of the (A) n motif being reduced as compared to the naturally derived fibroin of the domain sequence. It is possessed.
- the domain sequence of the fourth modified fibroin has at least one or more glycine residues in the REP in addition to the deletion of at least one or more (A) n motifs as compared to naturally occurring fibroin It can be said to have an amino acid sequence corresponding to substitution with another amino acid residue. That is, the fourth modified fibroin is a modified fibroin having the characteristics of the second modified fibroin described above and the third modified fibroin. Specific embodiments and the like are as described in the second modified fibroin and the third modified fibroin.
- modified fibroin As more specific examples of the fourth modified fibroin, (4-i) SEQ ID NO: 7 (Met-PRT410), SEQ ID NO: 8 (Met-PRT525), SEQ ID NO: 9 (Met-PRT799), SEQ ID NO: 13 (PRT410) Or the amino acid sequence shown in SEQ ID NO: 14 (PRT 525) or SEQ ID NO: 15 (PRT 799), or (4-ii) SEQ ID NO: 7, SEQ ID NO: 8, SEQ ID NO: 9, SEQ ID NO: 13, SEQ ID NO: 14 or SEQ ID NO: 15
- modified fibroin comprising an amino acid sequence having 90% or more sequence identity with the amino acid sequence shown in Specific embodiments of the modified fibroin comprising the amino acid sequence shown by SEQ ID NO: 7, SEQ ID NO: 9, SEQ ID NO: 9, SEQ ID NO: 13, SEQ ID NO: 14 or SEQ ID NO: 15 are as described above.
- the fifth modified fibroin is that its domain sequence has one or more amino acid residues in REP replaced with an amino acid residue having a large hydrophobicity index, as compared to naturally occurring fibroin, and / or REP It may have an amino acid sequence including a region having a locally large hydrophobicity index corresponding to insertion of one or more hydrophobicity index large amino acid residues therein.
- the region locally having a large hydrophobicity index is preferably composed of 2 to 4 consecutive amino acid residues.
- the amino acid residue having a large hydrophobicity index mentioned above is an amino acid selected from isoleucine (I), valine (V), leucine (L), phenylalanine (F), cysteine (C), methionine (M) and alanine (A) It is more preferable that it is a residue.
- one or more amino acid residues in the REP are replaced with an amino acid residue having a large hydrophobicity index, as compared with naturally occurring fibroin, and / or one or more in the REP.
- substitution, deletion, insertion and / or addition of one or more amino acid residues as compared with naturally occurring fibroin There may be amino acid sequence modifications corresponding to those described above.
- the fifth modified fibroin is, for example, a hydrophobic amino acid residue remaining in one or more hydrophilic amino acid residues (for example, an amino acid residue having a negative hydrophobicity index) in REP from the cloned naturally occurring fibroin gene sequence. It can be obtained by substituting a group (for example, an amino acid residue whose hydrophobicity index is plus) and / or inserting one or more hydrophobic amino acid residues into the REP. Also, for example, from the amino acid sequence of naturally-derived fibroin, one or more hydrophilic amino acid residues in REP are substituted with hydrophobic amino acid residues, and / or one or more hydrophobic amino acid residues in REP.
- an amino acid sequence corresponding to the insertion of X can also be obtained by designing an amino acid sequence corresponding to the insertion of X, and chemically synthesizing a nucleic acid encoding the designed amino acid sequence.
- one or more hydrophilic amino acid residues in the REP are substituted with hydrophobic amino acid residues from the amino acid sequence of naturally derived fibroin, and / or one or more hydrophobic amino acids in the REP
- the amino acid sequence corresponding to the substitution, deletion, insertion and / or addition of one or more amino acid residues may be further modified.
- the fifth modified fibroin contains a domain sequence represented by the formula 1: [(A) n motif-REP] m , and from the (A) n motif located most at the C-terminal end to the C-terminus of the domain sequence
- Let p be the total number of amino acid residues contained in a region in which the average value of the hydrophobicity index of 4 consecutive amino acid residues is 2.6 or more in all REPs contained in the sequence excluding the above sequence from the above domain sequence,
- p / q is 6
- hydrophobicity index of amino acid residues
- known indices Hydropathy index: Kyte J, & Doolittle R (1982) “A simple method for displaying the hydropathic character of a protein”, J. Mol. Biol., 157, pp. Use 105-132).
- the hydrophobicity index (hydropathy index, hereinafter also referred to as "HI" of each amino acid is as shown in Table 1 below.
- sequence A [(A) n motif-REP] m to the sequence from the (A) n motif located closest to the C terminal to the C terminus of the domain sequence (Hereinafter, referred to as "sequence A") is used.
- sequence A the average value of the hydrophobicity index of 4 consecutive amino acid residues is calculated. The average value of the hydrophobicity index is determined by dividing the sum of HI of each amino acid residue contained in 4 consecutive amino acid residues by 4 (the number of amino acid residues).
- the average value of the hydrophobicity index is determined for all four consecutive amino acid residues (each amino acid residue is used to calculate an average of 1 to 4 times). Next, a region in which the average value of the hydrophobicity index of 4 consecutive amino acid residues is 2.6 or more is identified. Even if a certain amino acid residue corresponds to "a series of 4 amino acid residues in which the average value of the hydrophobicity index is 2.6 or more", the region is included as one amino acid residue become. And, the total number of amino acid residues contained in the region is p. In addition, the total number of amino acid residues contained in the sequence A is q.
- the average value of the hydrophobicity index of 4 consecutive amino acid residues is 2
- p / q is preferably 6.2% or more, more preferably 7% or more, still more preferably 10% or more, and preferably 20% or more. Still more preferably, it is 30% or more.
- the upper limit of p / q is not particularly limited, and may be, for example, 45% or less.
- the fifth modified fibroin is, for example, one or more hydrophilic amino acid residues (for example, a hydrophobicity index) in the REP such that the amino acid sequence of the cloned naturally-derived fibroin satisfies the above p / q condition.
- a hydrophobic amino acid residue eg, an amino acid residue with a positive hydrophobicity index
- insertion of one or more hydrophobic amino acid residues into the REP By doing this, it can be obtained by locally modifying the amino acid sequence including the region having a large hydrophobicity index.
- one or more amino acid residues in the REP are replaced with an amino acid residue having a large hydrophobicity index, and / or one or more amino acids in the REP as compared to naturally occurring fibroin, and / or
- modification corresponding to substitution, deletion, insertion and / or addition of one or more amino acid residues may be performed. .
- the amino acid residue having a large hydrophobicity index is not particularly limited, and isoleucine (I), valine (V), leucine (L), phenylalanine (F), cysteine (C), methionine (M) and alanine (A) are preferred, and valine (V), leucine (L) and isoleucine (I) are more preferred.
- the fifth modified fibroin (5-i) an amino acid sequence represented by SEQ ID NO: 19 (Met-PRT720), SEQ ID NO: 20 (Met-PRT665) or SEQ ID NO: 21 (Met-PRT666), Or (5-ii) a modified fibroin comprising an amino acid sequence having a sequence identity of 90% or more with the amino acid sequence shown by SEQ ID NO: 19, SEQ ID NO: 20 or SEQ ID NO: 21.
- the modified fibroin of (5-i) will be described.
- the amino acid sequence shown by SEQ ID NO: 19 consists of three amino acid residues for every REP, except for the domain sequence at the C-terminal end of the amino acid sequence shown by SEQ ID NO: 7 (Met-PRT410)
- the amino acid sequence (VLI) is inserted in two places, and a part of glutamine (Q) residues is replaced with a serine (S) residue and a part of amino acids at the C-terminal side is deleted.
- the amino acid sequence shown by SEQ ID NO: 20 is one obtained by inserting one amino acid sequence (VLI) consisting of three amino acid residues for every REP in addition to the amino acid sequence shown by SEQ ID NO: 8 (Met-PRT525). is there.
- the amino acid sequence shown by SEQ ID NO: 21 is one obtained by inserting two amino acid sequences (VLI) consisting of three amino acid residues for every REP, to the amino acid sequence shown by SEQ ID NO: 8.
- the modified fibroin of (5-i) may consist of the amino acid sequence shown by SEQ ID NO: 19, SEQ ID NO: 20 or SEQ ID NO: 21.
- the modified fibroin of (5-ii) comprises an amino acid sequence having a sequence identity of 90% or more with the amino acid sequence shown by SEQ ID NO: 19, SEQ ID NO: 20 or SEQ ID NO: 21.
- the modified fibroin of (5-ii) is also a protein comprising a domain sequence represented by the formula 1: [(A) n motif-REP] m .
- the above sequence identity is preferably 95% or more.
- the modified fibroin of (5-ii) has 90% or more sequence identity with the amino acid sequence shown by SEQ ID NO: 19, SEQ ID NO: 20 or SEQ ID NO: 21 and is most C-terminally located (A) n Amino acids included in a region in which the average value of the hydrophobicity index of 4 consecutive amino acid residues is 2.6 or more in all REPs included in the sequence excluding the sequence from the motif to the C-terminus of the domain sequence from the domain sequence Assuming that the total number of residues is p, and the total number of amino acid residues contained in the sequence obtained by removing the sequence from the (A) n motif located closest to the C terminal to the C terminus of the domain sequence from the domain sequence is q. And p / q is preferably 6.2% or more.
- the fifth modified fibroin may contain a tag sequence at either or both of the N-terminus and the C-terminus.
- modified fibroin containing the tag sequence examples include (5-iii) the amino acid sequence represented by SEQ ID NO: 22 (PRT720), SEQ ID NO: 23 (PRT665) or SEQ ID NO: 24 (PRT666), or (5-iv) A modified fibroin comprising an amino acid sequence having a sequence identity of 90% or more with the amino acid sequence shown by SEQ ID NO: 22, SEQ ID NO: 23 or SEQ ID NO: 24).
- amino acid sequences shown by SEQ ID NO: 22, SEQ ID NO: 23 and SEQ ID NO: 24 are the amino acid sequences shown by SEQ ID NO: 11 (His tag) at the N terminus of the amino acid sequences shown by SEQ ID NO: 19, SEQ ID NO: 20 and SEQ ID NO: 21 respectively (Including sequence and hinge sequence).
- the modified fibroin of (5-iii) may consist of the amino acid sequence shown by SEQ ID NO: 22, SEQ ID NO: 23 or SEQ ID NO: 24.
- the modified fibroin of (5-iv) comprises an amino acid sequence having a sequence identity of 90% or more with the amino acid sequence shown by SEQ ID NO: 22, SEQ ID NO: 23 or SEQ ID NO: 24.
- the modified fibroin of (5-iv) is also a protein comprising a domain sequence represented by the formula 1: [(A) n motif-REP] m .
- the above sequence identity is preferably 95% or more.
- the modified fibroin of (5-iv) has 90% or more sequence identity with the amino acid sequence shown by SEQ ID NO: 22, SEQ ID NO: 23 or SEQ ID NO: 24 and is most C-terminally located (A) n Amino acids included in a region in which the average value of the hydrophobicity index of 4 consecutive amino acid residues is 2.6 or more in all REPs included in the sequence excluding the sequence from the motif to the C-terminus of the domain sequence from the domain sequence Assuming that the total number of residues is p, and the total number of amino acid residues contained in the sequence obtained by removing the sequence from the (A) n motif located closest to the C terminal to the C terminus of the domain sequence from the domain sequence is q. And p / q is preferably 6.2% or more.
- the fifth modified fibroin may contain a secretion signal for releasing the protein produced in the recombinant protein production system to the outside of the host.
- the sequence of the secretion signal can be appropriately set according to the type of host.
- the sixth modified fibroin has an amino acid sequence with a reduced content of glutamine residues as compared to naturally occurring fibroin.
- the sixth modified fibroin preferably contains at least one motif selected from the GGX motif and the GPGXX motif in the amino acid sequence of REP.
- the GPGXX motif content is usually 1% or more, may be 5% or more, and preferably 10% or more.
- the upper limit of the GPGXX motif content is not particularly limited, and may be 50% or less, or 30% or less.
- GPGXX motif content is a value calculated by the following method.
- Formula 1 [(A) n Motif -REP] m
- Formula 2 [(A) n Motif -REP] m- (A) fibroin containing a domain sequence represented by n motif (modified fibroin or naturally derived In fibroin)
- the number of GPGXX motifs contained in the region of all REPs contained in the sequence excluding the sequence from the (A) n motif located most C-terminal to the C-terminus of the domain sequence from the domain sequence Let s be the number obtained by multiplying the total number by 3 (that is, the total number of G and P in the GPGXX motif) be s, and the sequence from the (A) n motif located closest to the C terminal to the C terminal of the domain sequence GPGXX motif content ratio is calculated as s / t, where t is the total number of amino acid residues of all REP excluding (A) n motif
- GPGXX motif content “the sequence obtained by removing the sequence from the (A) n motif located at the most C terminal side to the C terminus of the domain sequence from the domain sequence” is “most C terminal side (A)
- a sequence from the n motif to the C terminus of the domain sequence (sequence corresponding to REP) may contain a sequence with low correlation with the sequence characteristic of fibroin, and m is small If this is the case (that is, if the domain sequence is short), this affects the result of calculation of the GPGXX motif content, so this effect is eliminated.
- GPGXX motif is located at the C-terminal of REP, even if “XX” is, for example, “AA”, it is treated as “GPGXX motif”.
- FIG. 5 is a schematic view showing the domain sequence of modified fibroin.
- all the REPs are "the sequence from the (A) n motif located at the most C-terminal end to the C-terminal end of the domain sequence removed from the domain sequence" (the sequence shown in "region A” in FIG.
- the sixth modified fibroin preferably has a glutamine residue content of 9% or less, more preferably 7% or less, still more preferably 4% or less, and particularly preferably 0%. .
- glucose residue content is a value calculated by the following method.
- Formula 1 [(A) n Motif -REP] m
- Formula 2 [(A) n Motif -REP] m- (A) fibroin containing a domain sequence represented by n motif (modified fibroin or naturally derived In fibroin), the sequence from the (A) n motif located closest to the C terminus to the C terminus of the domain sequence is all removed from the domain sequence (sequence corresponding to "region A" in Fig. 5).
- the total number of glutamine residues contained in the area as u, except from the most located C-terminal side (a) sequence domain sequence from n motif to the C-terminal domain sequence, further (a) n
- the glutamine residue content is calculated as u / t, where t is the total number of amino acid residues of all REPs excluding the motif.
- the reason why “a sequence from the (A) n motif located at the most C-terminal side to the C-terminus of the domain sequence is excluded from the domain sequence” is the reason described above It is similar.
- the sixth modified fibroin corresponds to deletion of one or more glutamine residues in the REP or substitution of another amino acid residue as compared to naturally occurring fibroin. It may have an amino acid sequence.
- the “other amino acid residue” may be an amino acid residue other than a glutamine residue, but is preferably an amino acid residue having a larger hydrophobicity index than a glutamine residue.
- the hydrophobicity index of amino acid residues is as shown in Table 1.
- amino acid residues having a larger hydrophobicity index than glutamine residues isoleucine (I), valine (V), leucine (L), phenylalanine (F), cysteine (C), methionine (M) )
- amino acid residues selected from alanine (A), glycine (G), threonine (T), serine (S), tryptophan (W), tyrosine (Y), proline (P) and histidine (H) it can.
- the amino acid residue is selected from isoleucine (I), valine (V), leucine (L), phenylalanine (F), cysteine (C), methionine (M) and alanine (A). More preferably, it is an amino acid residue selected from isoleucine (I), valine (V), leucine (L) and phenylalanine (F).
- the sixth modified fibroin preferably has a hydrophobicity of -0.8 or more, more preferably -0.7 or more, still more preferably 0 or more, and 0.3 or more. It is further more preferable that the ratio be 0.4 or more, and particularly preferable.
- the upper limit of the hydrophobicity of REP is not particularly limited, and may be 1.0 or less, or 0.7 or less.
- the hydrophobicity of REP is a value calculated by the following method.
- Formula 1 [(A) n Motif -REP] m
- Formula 2 [(A) n Motif -REP] m-
- A) fibroin containing a domain sequence represented by n motif modified fibroin or naturally derived In fibroin
- the sequence from the (A) n motif located closest to the C terminus to the C terminus of the domain sequence is all removed from the domain sequence (sequence corresponding to "region A" in Fig. 5).
- the total of the hydrophobicity index of each amino acid residue in the region is v
- the sequence from the (A) n motif located most C-terminal to the C-terminus of the domain sequence is removed from the domain sequence
- the hydrophobicity of REP is calculated as v / t, where t is the total number of amino acid residues of all REP excluding n motif.
- the reason for targeting “a sequence from the (A) n motif located closest to the C terminal to the C terminus of the domain sequence is excluded from the domain sequence” in the calculation of the hydrophobicity of REP is the reason described above and It is similar.
- the sixth modified fibroin has its domain sequence deleted one or more glutamine residues in the REP as compared to naturally occurring fibroin, and / or one or more glutamine residues in the REP
- the modification corresponding to substitution of the amino acid with another amino acid residue there may be a modification of the amino acid sequence corresponding to substitution, deletion, insertion and / or addition of one or more amino acid residues.
- the sixth modified fibroin may, for example, delete one or more glutamine residues in the REP from the cloned naturally occurring fibroin gene sequence and / or one or more glutamine residues in the REP It can be obtained by substitution of amino acid residues of Also, for example, one or more glutamine residues in REP are deleted from the amino acid sequence of naturally-derived fibroin, and / or one or more glutamine residues in REP are replaced with another amino acid residue. Particularly, it can be obtained by designing a corresponding amino acid sequence and chemically synthesizing a nucleic acid encoding the designed amino acid sequence.
- SEQ ID NO: 25 (Met-PRT888), SEQ ID NO: 26 (Met-PRT965), SEQ ID NO: 27 (Met-PRT889), SEQ ID NO: 28 (Met Modified fibroin comprising the amino acid sequence shown in SEQ ID NO: 29 (Met-PRT 918), SEQ ID NO: 30 (Met-PRT699), SEQ ID NO: 31 (Met-PRT 698) or SEQ ID NO: 32 (Met-PRT966), or (6-ii) 90% or more sequence identity with the amino acid sequence represented by SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 30, SEQ ID NO: 30, SEQ ID NO: 31, SEQ ID NO: 31 or SEQ ID NO: 32 Mention may be made of modified fibroin which comprises the amino acid sequence it has.
- the modified fibroin of (6-i) will be described.
- the amino acid sequence shown by SEQ ID NO: 25 is one in which all QQs in the amino acid sequence (Met-PRT410) shown by SEQ ID NO: 7 are replaced with VL.
- the amino acid sequence shown by SEQ ID NO: 26 is one in which all QQs in the amino acid sequence shown by SEQ ID NO: 7 are replaced with TS, and the remaining Q is replaced with A.
- the amino acid sequence shown by SEQ ID NO: 27 is one in which all QQs in the amino acid sequence shown by SEQ ID NO: 7 are replaced with VL, and the remaining Q is replaced with I.
- the amino acid sequence shown by SEQ ID NO: 28 is one in which all QQs in the amino acid sequence shown by SEQ ID NO: 7 are replaced with VI, and the remaining Q is replaced with L.
- the amino acid sequence shown by SEQ ID NO: 29 is one in which all QQs in the amino acid sequence shown by SEQ ID NO: 7 are replaced with VF, and the remaining Q is replaced with I.
- the amino acid sequence shown by SEQ ID NO: 30 is one in which all QQs in the amino acid sequence (Met-PRT 525) shown by SEQ ID NO: 8 are replaced with VL.
- the amino acid sequence shown by SEQ ID NO: 31 is one in which all QQs in the amino acid sequence shown by SEQ ID NO: 8 are replaced with VL, and the remaining Q is replaced with I.
- amino acid sequence shown by SEQ ID NO: 32 is the same as the one shown in SEQ ID NO: 7 (Met-PRT410), in which the QQ in the double repeated sequence of the region of 20 domain sequences is replaced with VF, And the remaining Q is replaced by I.
- amino acid sequences shown by SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31 and SEQ ID NO: 32 all have glutamine residue content of 9% or less Yes (Table 2).
- the modified fibroin of (6-i) consists of the amino acid sequence shown by SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31 or SEQ ID NO: 32 It may be.
- the modified fibroin of (6-ii) has 90% or more amino acid sequence shown by SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27, SEQ ID NO: 28, SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31 or SEQ ID NO: 32 Containing an amino acid sequence having the sequence identity of
- the modified fibroin of (6-ii) is also a domain represented by Formula 1: [(A) n Motif -REP] m , or Formula 2: [(A) n Motif -REP] m- (A) n Motif It is a protein containing a sequence.
- the above sequence identity is preferably 95% or more.
- the modified fibroin of (6-ii) preferably has a glutamine residue content of 9% or less. Moreover, it is preferable that the modified fibroin of (6-ii) has a GPGXX motif content of 10% or more.
- the sixth modified fibroin may contain a tag sequence at either or both of the N-terminus and the C-terminus. This makes it possible to isolate, immobilize, detect, visualize, etc., the modified fibroin.
- modified fibroin containing the tag sequence are (6-iii) SEQ ID NO: 33 (PRT 888), SEQ ID NO: 34 (PRT 965), SEQ ID NO: 35 (PRT 889), SEQ ID NO: 36 (PRT 916), SEQ ID NO: 37 (PRT 918), SEQ ID NO: 38 (PRT 699), SEQ ID NO: 39 (PRT 698) or modified fibroin comprising the amino acid sequence shown by SEQ ID NO: 40 (PRT 966), or (6-iv) SEQ ID NO: 33, SEQ ID NO: 34, SEQ ID NO: Mention may be made of modified fibroin comprising an amino acid sequence having a sequence identity of 90% or more with the amino acid sequence shown in SEQ ID NO: 35, SEQ ID NO: 37, SEQ ID NO: 38, SEQ ID NO: 39 or SEQ ID NO: 40.
- amino acid sequences represented by SEQ ID NO: 33, SEQ ID NO: 34, SEQ ID NO: 36, SEQ ID NO: 37, SEQ ID NO: 38, SEQ ID NO: 39 and SEQ ID NO: 40 are SEQ ID NO: 25, SEQ ID NO: 26, SEQ ID NO: 27 respectively.
- SEQ ID NO: 28 SEQ ID NO: 29, SEQ ID NO: 30, SEQ ID NO: 31 and SEQ ID NO: 32
- the amino acid sequence shown in SEQ ID NO: 11 was added to the N terminus of the amino acid sequence shown in It is a thing.
- amino acid sequence shown by SEQ ID NO: 40 has a glutamine residue content of 9% or less (Table 3).
- the modified fibroin of (6-iii) consists of the amino acid sequence shown by SEQ ID NO: 33, SEQ ID NO: 34, SEQ ID NO: 35, SEQ ID NO: 36, SEQ ID NO: 37, SEQ ID NO: 38, SEQ ID NO: 39 or SEQ ID NO: 40 It may be.
- the modified fibroin of (6-iv) has 90% or more of the amino acid sequence represented by SEQ ID NO: 33, SEQ ID NO: 34, SEQ ID NO: 35, SEQ ID NO: 36, SEQ ID NO: 37, SEQ ID NO: 38, SEQ ID NO: 39 or SEQ ID NO: 40 Containing an amino acid sequence having the sequence identity of
- the modified fibroin of (6-iv) is also a domain represented by Formula 1: [(A) n Motif -REP] m , or Formula 2: [(A) n Motif -REP] m- (A) n Motif It is a protein containing a sequence.
- the above sequence identity is preferably 95% or more.
- the modified fibroin of (6-iv) preferably has a glutamine residue content of 9% or less. Moreover, it is preferable that the modified fibroin of (6-iv) has a GPGXX motif content of 10% or more.
- the sixth modified fibroin may contain a secretion signal for releasing the protein produced in the recombinant protein production system to the outside of the host.
- the sequence of the secretion signal can be appropriately set according to the type of host.
- the modified fibroin is at least two or more of the characteristics possessed by the first modified fibroin, the second modified fibroin, the third modified fibroin, the fourth modified fibroin, the fifth modified fibroin, and the sixth modified fibroin It may be a modified fibroin having the characteristics of
- a protein comprising a domain sequence represented by Formula 2: [REP2] p (wherein, in Formula 2, p represents an integer of 5 to 300.
- REP2 is Gly-XY)
- X and Y each represent any amino acid residue other than Gly, and a plurality of REP2 may be identical amino acid sequences to each other or may be different amino acid sequences).
- SEQ ID NO: 41 a protein comprising the amino acid sequence shown by SEQ ID NO: 41 can be mentioned.
- the amino acid sequence shown by SEQ ID NO: 41 corresponds to the repeat portion and motif of a partial sequence of human collagen type 4 (NCBI GenBank accession numbers: CAA56335.1, GI: 3702452) obtained from the NCBI database.
- the amino acid sequence (tag sequence and hinge sequence) shown in SEQ ID NO: 11 is added to the N-terminus of the amino acid sequence from residue 301 to residue 540.
- REP3 As a protein derived from resilin, for example, a protein comprising a domain sequence represented by the formula 3: [REP3] q (wherein, in the formula 3, q represents an integer of 4 to 300.
- REP3 is a Ser-J-J- An amino acid sequence consisting of Tyr-Gly-U-Pro is shown, J is any amino acid residue, preferably an amino acid residue selected from the group consisting of Asp, Ser and Thr, and U is any option.
- the amino acid residue is preferably an amino acid residue selected from the group consisting of Pro, Ala, Thr and Ser.
- the plurality of REP 4 may be identical to each other or different from each other. Can be mentioned.
- the amino acid sequence shown by SEQ ID NO: 2 is the amino acid sequence of resilin (NCBI GenBank accession numbers NP 611 157, Gl: 24654243), wherein Thr at position 87 is substituted with Ser and Asn at position 95
- the amino acid sequence (tag sequence and hinge sequence) shown in SEQ ID NO: 11 is added to the N-terminal of the amino acid sequence from the 19th residue to the 321st residue of the sequence in which
- a protein derived from elastin for example, a protein having an amino acid sequence such as Accession Nos. AAC98395 (human), I47076 (sheep), NP786966 (bovine) of GenBank of NCBI can be mentioned.
- a protein comprising the amino acid sequence shown in SEQ ID NO: 43 can be mentioned.
- the amino acid sequence set forth in SEQ ID NO: 43 is the amino acid sequence set forth in SEQ ID NO: 11 at the N-terminus of the amino acid sequence from residue 121 to residue 390 of the amino acid sequence of NCBI GenBank accession number AAC 98395 (tag sequence And hinge arrangement) are added.
- a protein derived from keratin for example, type I keratin of Capra hircus etc. can be mentioned. Specifically, a protein comprising the amino acid sequence shown in SEQ ID NO: 44 (amino acid sequence of accession number ACY30466 of GenBank of NCBI) can be mentioned.
- the structural protein described above and the protein derived from the structural protein can be used singly or in combination of two or more.
- a protein fiber and a protein contained as a main component in a protein raw material fiber are transformed, for example, with an expression vector having a nucleic acid sequence encoding the protein and one or more regulatory sequences operably linked to the nucleic acid sequence. It can be produced by expressing the nucleic acid by the selected host.
- the nucleic acid can be produced by a method of amplification and cloning by polymerase chain reaction (PCR) or the like, or a method of chemical synthesis, using a gene encoding a natural structural protein.
- the method for chemically synthesizing nucleic acid is not particularly limited, and, for example, AKTA oligopilot plus 10/100 (GE Healthcare Japan Co., Ltd.), etc. based on the amino acid sequence information of structural proteins obtained from the NCBI web database etc.
- the gene can be chemically synthesized by a method of ligating the oligonucleotide synthesized at step S by PCR or the like.
- a nucleic acid encoding a protein consisting of an amino acid sequence obtained by adding an amino acid sequence consisting of an initiation codon and a His10 tag to the N terminus of the above amino acid sequence is synthesized It is also good.
- the regulatory sequence is a sequence that controls the expression of a recombinant protein in a host (for example, a promoter, an enhancer, a ribosome binding sequence, a transcription termination sequence, etc.), and can be appropriately selected depending on the type of host.
- a promoter an inducible promoter which functions in a host cell and is capable of inducible expression of a target protein may be used.
- An inducible promoter is a promoter that can control transcription due to the presence of an inducer (expression inducer), the absence of a repressor molecule, or physical factors such as temperature, osmotic pressure or an increase or decrease in pH value.
- the type of expression vector can be appropriately selected according to the type of host, such as a plasmid vector, a virus vector, a cosmid vector, a fosmid vector, an artificial chromosome vector and the like.
- a vector capable of autonomous replication in a host cell or capable of integration into the host chromosome and containing a promoter at a position capable of transcribing a nucleic acid encoding a target protein is suitably used. .
- any of prokaryotes and eukaryotes such as yeast, filamentous fungi, insect cells, animal cells and plant cells can be suitably used.
- Preferred examples of the prokaryotic host include bacteria belonging to the genus Escherichia, Brevibacillus, Serratia, Bacillus, Microbacterium, Microbacterium, Brevibacterium, Corynebacterium and Pseudomonas.
- Examples of microorganisms belonging to the genus Escherichia include Escherichia coli and the like.
- Examples of microorganisms belonging to the genus Brevibacillus include Brevibacillus agri and the like.
- microorganisms belonging to the genus Serratia include Serratia liquofaciens and the like.
- Bacillus subtilis and the like can be mentioned.
- microorganism belonging to the genus Microbacterium examples include, for example, Microbacterium ammoniafilum and the like.
- microorganisms belonging to the genus Brevibacterium examples include Brevibacterium divaricatam and the like.
- microorganisms belonging to the genus Corynebacterium examples include Corynebacterium ammoniagenes and the like.
- Pseudomonas for example, Pseudomonas putida etc. can be mentioned.
- examples of vectors for introducing a nucleic acid encoding a target protein include pBTrp2 (manufactured by Boehringer Mannheim), pGEX (manufactured by Pharmacia), pUC18, pBluescriptII, pSupex, pET22b, pCold, pUB110, pNCO2 (Japanese Patent Application Laid-Open No. 2002-238569) and the like can be mentioned.
- Eukaryotic hosts can include, for example, yeast and filamentous fungi (molds and the like).
- yeast the yeast which belongs to Saccharomyces genus, Pichia genus, Schizosaccharomyces genus etc. can be mentioned, for example.
- filamentous fungi include filamentous fungi belonging to the genus Aspergillus, Penicillium, Trichoderma, and the like.
- examples of vectors into which a nucleic acid encoding a target protein is introduced include YEP13 (ATCC 37115), YEp24 (ATCC 37051), and the like.
- a method of introducing the expression vector into the host cell any method of introducing DNA into the host cell can be used. For example, a method using calcium ion [Proc. Natl. Acad. Sci. USA, 69, 2110 (1972)], electroporation method, spheroplast method, protoplast method, lithium acetate method, competent method and the like.
- a method for expressing a nucleic acid by a host transformed with an expression vector in addition to direct expression, secretion production, fusion protein expression and the like can be performed according to the method described in Molecular Cloning 2nd Edition, etc. .
- a protein can be produced, for example, by culturing a host transformed with an expression vector in a culture medium, producing and accumulating the protein in the culture medium, and collecting the protein from the culture medium.
- the method of culturing the host in a culture medium can be carried out according to a method usually used for culturing the host.
- the culture medium When the host is a prokaryote such as E. coli or a eukaryote such as yeast, the culture medium contains a carbon source which can be used by the host, a nitrogen source, inorganic salts and the like, and the medium can efficiently culture the host. If it is, either a natural culture medium or a synthetic culture medium may be used.
- the carbon source may be any as long as the above-mentioned transformed microorganism can assimilate, for example, glucose, fructose, sucrose and molasses containing them, carbohydrates such as starch and starch hydrolysate, acetic acid and propionic acid etc. Organic acids and alcohols such as ethanol and propanol can be used.
- Nitrogen sources include, for example, ammonium, ammonium salts of inorganic acids or organic acids such as ammonia, ammonium chloride, ammonium sulfate, ammonium acetate and ammonium phosphate, other nitrogen-containing compounds, peptone, meat extract, yeast extract, corn steep liquor, Casein hydrolyzate, soybean meal and soybean meal hydrolyzate, various fermented cells and digests thereof can be used.
- inorganic salts for example, potassium phosphate, potassium phosphate, magnesium phosphate, magnesium sulfate, sodium chloride, ferrous sulfate, manganese sulfate, copper sulfate and calcium carbonate can be used.
- the culture of a prokaryote such as E. coli or a eukaryote such as yeast can be performed under aerobic conditions such as shake culture or submerged aeration culture, for example.
- the culture temperature is, for example, 15 to 40 ° C.
- the culture time is usually 16 hours to 7 days.
- the pH of the culture medium during culture is preferably maintained at 3.0 to 9.0. Adjustment of the pH of the culture medium can be carried out using an inorganic acid, an organic acid, an alkaline solution, urea, calcium carbonate, ammonia and the like.
- antibiotics such as ampicillin and tetracycline may be added to the culture medium as needed.
- an inducer may be added to the medium as needed.
- indole acrylic An acid or the like may be added to the medium.
- Isolation and purification of the expressed protein can be performed by a commonly used method. For example, when the protein is expressed in a dissolved state in cells, after completion of culture, host cells are recovered by centrifugation and suspended in an aqueous buffer, and then sonicator, French press, Manton Gaulin The host cells are disrupted by a homogenizer, dynomill or the like to obtain a cell-free extract.
- resin such as diethylaminoethyl (DEAE) -s
- the host cell When the protein is expressed in the form of an insoluble form in cells, the host cell is similarly recovered and then disrupted and centrifuged to recover the insoluble form of the protein as a precipitate fraction.
- the insoluble matter of the recovered protein can be solubilized with a protein denaturant.
- a purified preparation of protein can be obtained by the same isolation and purification method as described above.
- the protein When the protein is secreted extracellularly, the protein can be recovered from the culture supernatant. That is, a culture supernatant is obtained by treating the culture according to a technique such as centrifugation, and a purified preparation can be obtained from the culture supernatant by using the same isolation and purification method as described above.
- the protein raw material fiber is obtained by spinning the above-described protein, and contains the above-described protein as a main component.
- the protein raw material fiber can be produced by a known spinning method. That is, for example, when producing a protein raw material fiber containing spider silk fibroin as a main component, first, spider silk fibroin produced according to the method described above is dimethylsulfoxide (DMSO), N, N-dimethylformamide (DMF) ) Or hexafluoroisopronol (HFIP), formic acid or the like to dissolve it to prepare a dope solution. At this time, inorganic salts may be added as necessary. Then, using this dope solution, spinning can be performed by a known spinning method such as wet, dry or dry / wet to obtain the target protein raw material fiber.
- DMSO dimethylsulfoxide
- DMF N, N-dimethylformamide
- HFIP hexafluoroisopronol
- FIG. 6 is a schematic view of a protein fiber manufacturing apparatus according to an embodiment of the present disclosure.
- FIG. 7 is a figure which shows the speed control means and temperature control means which can be provided in the high temperature heating furnace in FIG.
- the manufacturing apparatus 10 shown in FIG. 6 is an apparatus capable of easily manufacturing a non-contractile protein fiber by spinning a protein raw material fiber and further performing a predetermined treatment on the protein raw material fiber.
- the manufacturing apparatus 10 includes a spinning device (spinning means) 25 for spinning the protein raw material fiber 36, and a high temperature heating relaxation device 40 for heating and shrinking the protein raw material fiber 36 spun by the spinning device 25 at a high temperature There is.
- the spinning process and the shrinking process by relaxation contraction in a heated state are continuously performed. The realization of such a continuous process makes it possible to produce the shrink-resistant protein fiber 50 with high productivity.
- the spinning device 25 is, for example, a spinning device for dry-wet spinning, and includes an extrusion device 1, a coagulation device 2, a washing device 3, and a drying device 4 in this order from the upstream side.
- the extrusion device 1 has a storage tank 7 in which a dope solution (spinning stock solution) 6 is stored.
- the coagulation device 2 has a coagulation bath 20, in which coagulation liquid 11 (for example, methanol) is stored.
- the dope solution 6 is pushed out from a nozzle 9 provided by opening a air gap 19 between the dope solution 6 and the coagulating solution 11 by a gear pump 8 attached to the lower end of the storage tank 7.
- the extruded dope 6 is supplied into the coagulating liquid 11 through the air gap 19.
- the solvent is removed from the dope solution 6 in the coagulation solution 11 to coagulate the protein.
- the coagulating solution 11 may be any solution which can remove the solvent, and examples thereof include lower alcohols having 1 to 5 carbon atoms such as methanol, ethanol and 2-propanol, and acetone.
- the coagulation liquid 11 may contain water as appropriate.
- the temperature of the coagulating solution 11 is preferably 0 to 30 ° C.
- the distance the coagulated protein passes through in the coagulation solution 11 is such that desolvation can be efficiently performed. It is good if there is a length that can secure the stay time.
- the residence time in the coagulating liquid 11 may be, for example, 0.01 to 3 minutes, or may be 0.5 to 1 minute. Alternatively, stretching (pre-stretching) may be performed in the coagulating solution 11.
- the cleaning device 3 has a cleaning bath 21, and the cleaning bath 12 stores cleaning liquid 12 (for example, water).
- the proteins coagulated in the coagulation bath 20 are guided to the washing bath 21 and washed with the washing solution 12.
- This protein is sent to the drying device 4 by the first nip roller 13 and the second nip roller 14 installed in the washing bath 21.
- the rotational speed of the second nip roller 14 is set to be faster than the rotational speed of the first nip roller 13, whereby a protein raw material fiber 36 drawn at a magnification corresponding to the rotational speed ratio is obtained.
- Reference numerals 18a to 18e denote yarn guides.
- the stretching performed in the washing bath 21 when obtaining the protein raw material fiber may be so-called wet heat stretching performed in warm water, in a solution in which an organic solvent or the like is added to warm water, or the like.
- the temperature of the wet heat drawing may be, for example, 0 to 90 ° C., preferably 20 to 70 ° C., and more preferably 30 to 60 ° C.
- the draw ratio of the undrawn yarn (or pre-drawn yarn) in wet heat drawing may be, for example, 1 to 10 times or 2 to 8 times.
- the protein raw material fiber 36 drawn in the washing liquid 12 is dried when passing through the drying device 4 after leaving the inside of the washing bath 21.
- the drying device 4 includes, for example, a drying-type drying oven 17.
- a delivery roller 31 and a winding roller 32 are provided.
- the protein raw material fibers 36 stay in the drying furnace 17 for a predetermined staying time by the delivery roller 31 and the take-up roller 32, and are then sent to the high temperature heating and relaxing device 40.
- the rotational speed of the take-up roller 32 may be set to be faster than the rotational speed of the delivery roller 31, so that the protein raw material fiber 36 may be drawn at a magnification corresponding to the rotational speed ratio.
- a heater (not shown) is provided.
- the temperature in the drying oven 17, that is, the drying temperature of the protein raw material fiber 36 is, for example, 80.degree.
- An oiling device 30 may be provided between the cleaning device 3 and the drying device 4.
- the high-temperature heat relaxation device 40 is provided on the downstream side of the spinning device 25 in the traveling direction of the protein raw material fiber 36.
- the high-temperature heating and relaxing apparatus 40 which is a dry pressure-reduction apparatus, includes, for example, a high-temperature heating furnace 43 of a dry heat type.
- a delivery roller (delivery means) 41 and a take-up roller (take-up means) 42 are provided in the high temperature heating furnace 43.
- the delivery roller 41 and the take-up roller 42 both have a cylindrical shape, and the protein raw material fiber 36 is wound around the circumferential surface thereof.
- the protein raw material fibers 36 stay in the high-temperature heating furnace 43 for a predetermined staying time by the delivery roller 41 and the take-up roller 42, and are then taken up by a winder.
- the rotational speed of the take-up roller 42 is set to be slower than the rotational speed of the delivery roller 41, whereby the protein raw fiber 36 is relaxed at a magnification corresponding to the rotational speed ratio. That is, the delivery roller 41 is configured to continuously deliver the protein raw material fiber 36 at a predetermined delivery speed.
- the take-up roller 42 is configured to communicably wind the protein raw material fiber 36 delivered by the delivery roller 41 at a take-up speed that is slower than the delivery speed of the delivery roller 41.
- the protein raw material fiber 36 is overfed, and the protein raw material fiber 36 is provided between the delivery roller 41 and the take-up roller 42.
- a relaxed state (not tensioned or tensioned) occurs.
- a speed controller 46 is connected to the delivery roller 41 and the take-up roller 42.
- the speed controller 46 is connected to a drive motor (not shown) provided on each of the delivery roller 41 and the winding roller 42.
- the speed controller 46 is a computer including hardware such as a central processing unit (CPU), read only memory (ROM), and random access memory (RAM), and software such as a program stored in the ROM. .
- the speed controller 46 regulates the delivery speed and / or the take-up speed as described above by controlling both the delivery roller 41 and the take-up roller 42, or any one of them.
- the speed controller 46 constitutes speed adjusting means for adjusting at least one of the delivery speed of the delivery roller 41 and the take-up speed of the take-up roller 42.
- the speed controller 46 may, for example, set the delivery speed and the delivery speed such that the delivery speed by the delivery roller 41 is an arbitrary ratio (relaxation factor) in the range of 1 to 3 times the take-up speed by the take-up roller 42. And / or take-up speed can be adjusted.
- a high temperature heater 44 is attached in the high temperature heating furnace 43 of the high temperature heating and relaxing device 40.
- a temperature controller 47 is connected to the high temperature heater 44.
- the temperature controller 47 is a computer including hardware such as a CPU, a ROM, and a RAM, and software such as a program stored in the ROM.
- the temperature controller 47 controls the temperature of the high temperature heating furnace 43 by controlling the high temperature heater 44.
- Information on the temperature in the high temperature heating furnace 43 is input to the temperature controller 47 from a temperature sensor (not shown) provided in the high temperature heating furnace 43, and the temperature controller 47 controls the high temperature heater 44 based on the information. It is also good.
- the temperature controller 47 constitutes temperature control means for controlling the heating temperature of the protein raw material fiber 36 in the high temperature heating furnace 43.
- the temperature controller 47 controls the high temperature heater 44 such that the heating temperature in the high temperature heating furnace 43 is higher than the heating temperature in the drying furnace 17 of the drying device 4.
- the temperature controller 47 can adjust the heating temperature of the protein raw material fiber 36 so as to be an arbitrary temperature in the range of 80 to 300 ° C., for example.
- the speed controller 46 and the temperature controller 47 are separately shown, the present invention is not limited to such an aspect.
- the speed controller 46 and the temperature controller 47 may be incorporated into an integrated controller, or a controller that controls the entire manufacturing apparatus 10 may be provided with functions equivalent to the speed controller 46 and the temperature controller 47. .
- the high temperature heating and relaxing device 40 constitutes a heating means for heating the protein raw material fiber 36 and a relaxation and contraction means for relaxing and shrinking the protein raw material fiber 36 in the heated state.
- the high-temperature heating and relaxing apparatus 40 is an apparatus that combines heating means and relaxation and contraction means.
- the heating step and the relaxation and contraction step are simultaneously performed.
- the high-temperature heat relaxation device 40 produces the shrink-proof protein fiber 50, which is a protein fiber in which water shrinkage that occurs upon contact with moisture and further drying is suppressed. As shown in FIG.
- a winder is provided on the downstream side of the high-temperature heat relaxation device 40 in the traveling direction of the protein raw material fiber 36 and the shrink-resistant protein fiber 50.
- the shrunken protein fiber 50 is shrunk with a winder after being subjected to a shrunk treatment in the high-temperature heat relaxation apparatus 40, and the wound product 5 is obtained.
- the method of producing the non-shrinkage protein fiber 50 using the production apparatus 10 will be described in more detail.
- the protein raw material fiber 36 is spun, for example, by dry-wet spinning, using the above-described dope solution.
- the protein raw material fiber 36 is heated (heating step) by the high-temperature heating and relaxing device 40, and the protein raw material fiber 36 in the heated state is relaxed and contracted (relaxation and contraction step).
- the heating temperature of the protein raw material fiber 36 is preferably equal to or higher than the softening temperature of the protein used for the protein raw material fiber 36.
- the softening temperature of the protein in the present specification is a temperature at which contraction due to stress relaxation of the protein raw material fiber 36 is started. In the heat relaxation contraction above the softening temperature of the protein, the fibers are shrunk to such an extent that the water in the fibers can not be obtained merely by detachment, and as a result, the water shrinkage of the obtained protein fibers is more sufficiently It is efficiently reduced.
- the water shrinkage is a shrinkage that occurs when the obtained protein fiber is brought into contact with moisture and when it is subsequently dried.
- the heating temperature of the protein raw material fiber 36 is more preferably 180 ° C. or higher.
- protein fibers such as spider silk fibroin fibers can shrink when heated to, for example, 80 ° C. or higher.
- the contraction mechanism in the low temperature range of 80 to 180 ° C. and the contraction in the high temperature range of 180 ° C. or more are different. That is, the shrinkage in the low temperature range is considered to be due to the release of water from the fiber, while the shrinkage in the high temperature range is the stress generated by the stretching in the spinning process in addition to the release of water. It is considered to be due to mitigation.
- the shrinkage rate may change depending on the amount of moisture in the fiber (remaining amount of moisture in the fiber), in other words, the heating time. That is, if the temperature is increased or the heating time is lengthened, the amount of water desorbed is increased, so that the contraction rate in the heat relaxation contraction step is increased. As a result, control can be made to reduce the water shrinkage rate. On the other hand, the water contraction rate decreases as the stress relaxation increases.
- the heating temperature of the protein raw material fiber 36 is preferably 80 ° C. or higher, more preferably 180 ° C. to 280 ° C., still more preferably 200 ° C. to 240 ° C., particularly preferably 220 ° C. to 240 ° C. It is.
- the heating time in the heating step is preferably 60 seconds or less, more preferably 30 seconds or less, still more preferably 5 seconds or less from the viewpoint of the elongation of the fiber after heat treatment. is there.
- the length of this heating time is considered not to greatly affect the stress.
- the heating temperature is 200 ° C. and the heating time exceeds 5 seconds, the elongation of the fiber after the heat treatment tends to decrease.
- the relaxation ratio is preferably more than 1 time, more preferably 1.4 or more, still more preferably 1.7 or more, particularly preferably 2 or more.
- the relaxation ratio is the ratio of the delivery speed to the winding speed of the protein raw material fiber 36, more specifically, the ratio of the delivery speed by the delivery roller 41 to the winding speed by the winding roller 42. .
- the speed of the delivery roller 41 and the winding roller 42 is kept unchanged, and the heating temperature is also kept constant.
- protein fibers having a constant water shrinkage can be stably produced.
- the delivery roller 41 and the take-up roller 42 may be arbitrarily adjustable in speed, and / or the heating temperature may be optionally adjustable.
- the water contraction rate of the protein fiber can be arbitrarily controlled.
- the heating step and the relaxing step may be performed separately if the protein raw material fiber 36 can be relaxed in a heated state. That is, the heating device may be a device separate and independent from the relaxation device. In that case, a relaxation device is provided downstream of the heating device (downstream in the traveling direction of the protein raw material fiber 36) so that the relaxation and contraction step is performed after the heating step.
- the protein raw material fiber 36 in the heated state is relaxed and shrunk to contact with moisture and further drying thereafter.
- the non-shrinkage protein fiber 50 in which the resulting water shrinkage is suppressed can be easily manufactured.
- the delivery speed of the protein raw material fiber 36 in the relaxation and contraction step is 1.4 times or more of the winding speed, the effect of suppressing water contraction can be obtained more reliably.
- the heating temperature of the protein raw material fiber 36 in the heating step is equal to or higher than the softening temperature of the protein, the effect of suppressing water contraction can be obtained more reliably.
- the heating time in the relaxation shrinkage step is 5 seconds or less, the effect of suppressing water shrinkage can be obtained while maintaining the physical properties of the fiber.
- the processes from the dope solution to the manufacturing of the crimped fiber can be performed in series. As a result, the productivity of the shrink-resistant protein fiber 50 in which the water shrinkage is suppressed is improved.
- the method for producing a protein fiber of the present disclosure described above is a processing method for processing a protein fiber produced through any known step, and a heating step of heating a protein fiber containing protein, and a heating step simultaneously or It can also be grasped as a processing method of protein fiber, which is performed after the heating step, and comprises a relaxation and contraction step of relaxing and shrinking the protein fiber in a heated state by the heating step.
- the amino acid sequence shown by SEQ ID NO: 15 has an amino acid sequence obtained by substituting, inserting and deleting amino acid residues for the purpose of improving productivity with respect to the amino acid sequence of fibroin derived from Nephila clavipes, further The amino acid sequence (tag sequence and hinge sequence) shown in SEQ ID NO: 11 is added to the N-terminus.
- nucleic acid encoding PRT799 was synthesized.
- the NdeI site at the 5 'end and the EcoRI site downstream of the stop codon were added to the nucleic acid.
- the nucleic acid was cloned into a cloning vector (pUC118). Thereafter, the same nucleic acid was digested with NdeI and EcoRI, cut out, and then recombined into a protein expression vector pET-22b (+) to obtain an expression vector.
- E. coli BLR (DE3) was transformed with the pET22b (+) expression vector containing a nucleic acid encoding PRT799.
- the transformed E. coli was cultured in 2 mL of LB medium containing ampicillin for 15 hours.
- the culture broth was added to 100 mL of seed culture medium (Table 4) containing ampicillin so that the OD 600 was 0.005.
- the culture solution temperature was maintained at 30 ° C., and flask culture was performed until the OD 600 reached 5 (about 15 hours) to obtain a seed culture solution.
- the seed culture solution was added to a jar fermenter to which 500 ml of a production medium (Table 5 below) was added so that the OD 600 was 0.05.
- the temperature of the culture solution was maintained at 37 ° C., and the culture was controlled at a constant pH of 6.9. Also, the dissolved oxygen concentration in the culture solution was maintained at 20% of the dissolved oxygen saturation concentration.
- the feed solution (glucose 455 g / 1 L, Yeast Extract 120 g / 1 L) was added at a rate of 1 mL / min.
- the temperature of the culture solution was maintained at 37 ° C., and the culture was controlled at a constant pH of 6.9. Further, the culture was carried out for 20 hours while maintaining the dissolved oxygen concentration in the culture solution at 20% of the dissolved oxygen saturation concentration. Thereafter, 1 M isopropyl- ⁇ -thiogalactopyranoside (IPTG) was added to the culture solution to a final concentration of 1 mM to induce expression of PRT799. Twenty hours after the addition of IPTG, the culture solution was centrifuged to recover the cells. SDS-PAGE was performed using cells prepared from the culture solution before IPTG addition and after IPTG addition, and the expression of PRT 799 was confirmed by the appearance of a band having a size corresponding to PRT 799 depending on IPTG addition.
- IPTG isopropyl- ⁇ -thiogalactopyranoside
- the precipitate after washing is suspended in 8 M guanidine buffer (8 M guanidine hydrochloride, 10 mM sodium dihydrogen phosphate, 20 mM NaCl, 1 mM Tris-HCl, pH 7.0) to a concentration of 100 mg / mL, 60 ° C. The solution was stirred for 30 minutes and dissolved. After dissolution, dialysis was performed with water using a dialysis tube (cellulose tube 36/32 manufactured by Sanko Pure Chemical Industries, Ltd.). The white aggregated protein (PRT 799) obtained after dialysis was collected by centrifugation, the water was removed by a lyophilizer, and the lyophilized powder was collected.
- 8 M guanidine buffer 8 M guanidine hydrochloride, 10 mM sodium dihydrogen phosphate, 20 mM NaCl, 1 mM Tris-HCl, pH 7.0
- the heat relaxation shrinkage process was performed using the protein raw material fiber obtained as mentioned above.
- the protein raw material fiber was passed over the dry hot plate while being in contact with the dry hot plate heated to a predetermined temperature.
- the delivery speed was increased relative to the winding speed, and the protein fiber was relaxed.
- the dry relaxation treatment was performed by shrinking the slack by heat.
- the value obtained by dividing the delivery speed by the take-up speed was taken as the relaxation rate.
- the relaxation rate was adjusted so that the slack portion of the protein raw material fiber caused by excessive delivery had a limit contraction rate (maximum contraction rate) offset by relaxation. Adjustment of the relaxation ratio was performed by adjusting at least one of the delivery side roller and the take-up side roller.
- the water shrinkage evaluation (Test Examples 1 to 3) was performed in the following procedure.
- the fiber (test piece) after the heat relaxation shrinkage treatment was cut into 300 mm and immersed in water at 40 ° C. for 10 minutes with no load. Immediately thereafter, the length of the test piece (wet length) was measured and dried at room temperature for 2 hours. Thereafter, the length of the test piece (fiber length after drying) was measured, and the water shrinkage was measured.
- Test Example 1 The relationship between heating temperature and relaxation rate was confirmed.
- Test Example 1 in all of Examples 1 to 5 and Comparative Example 1, the length before immersion in water was set to 300 mm, and tests were performed while changing other conditions. Specifically, the test was performed by changing the heating temperature, the relaxation rate, and the residence time. The temperature conditions and relaxation conditions and the measurement results of the contraction rate are shown in Table 6. As shown in Table 6, the higher the heating temperature and the higher the relaxation rate, the lower the water shrinkage rate. As shown in the results of Examples 3, 4 and 5, a water shrinkage of 4% or less was obtained by heating at 220 ° C. or more. In Example 5 in which the heating temperature was 280 ° C., coloring of the fibers was observed. As a result of this test, the optimum heating temperature was considered to be 240.degree.
- Test Example 2 Next, the relationship between the relaxation rate and the water contraction rate was confirmed.
- the length before immersion in water is 300 mm
- the heating temperature is 240 ° C.
- the staying time is 1 minute (60 sec) in all of Examples 6 to 10 and Comparative Example 3, and other conditions.
- the test was performed by changing. Specifically, tests were conducted by changing the relaxation rate (delivery rate).
- the measurement results of the relaxation conditions and the contraction rate are shown in Table 7. As shown in Table 7, the water shrinkage decreased as the relaxation rate increased. As shown in the results of Examples 8, 9 and 10, by setting the relaxation rate to 1.4 to 2.0 times, a water contraction rate of 16% or less was obtained.
- Test Example 3 The relationship between various heating temperatures, heating times, and relaxation rates and water shrinkage rates was confirmed.
- Test Example 3 in all of Examples 11 to 19 and Comparative Example 4, the length before immersion in water was set to 300 mm, and the test was performed while changing other conditions. Specifically, the test was conducted by changing the heating temperature, the heating time (dwelling time), and the relaxation rate (delivery speed / winding speed). The temperature conditions and relaxation conditions, and the measurement results of the contraction rate are shown in Table 8.
- Comparative Example 4 only immersion and drying of the test piece in water were performed, and relaxation and heating were not performed.
- the heating temperature is 200 ° C. or higher, a water shrinkage of less than 15% was obtained.
- By setting the heating temperature to 220 ° C. or higher, a low water shrinkage of 4% or less was obtained.
- the residence time required for contraction was 5 seconds, and even if the residence time was extended, the contraction rate did not change so much.
Landscapes
- Engineering & Computer Science (AREA)
- Textile Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Chemical Kinetics & Catalysis (AREA)
- General Chemical & Material Sciences (AREA)
- Peptides Or Proteins (AREA)
- Artificial Filaments (AREA)
- Preparation Of Compounds By Using Micro-Organisms (AREA)
Abstract
タンパク質繊維の製造方法は、タンパク質を含むタンパク質原料繊維36を加熱する加熱工程と、加熱工程と同時にまたは加熱工程より後に行われ、加熱工程によって加熱された状態にあるタンパク質原料繊維36を弛緩して収縮させる弛緩収縮工程と、を備える。
Description
本開示は、タンパク質繊維の製造方法、タンパク質繊維の製造装置、およびタンパク質繊維の加工方法に関する。
タンパク質繊維は、水分との接触(例えば、水または湯への浸漬または高湿度環境への暴露等)により、更にはその後の乾燥により、収縮する特性を有するものがある。この特性は、種々の問題を引き起こし得る。従来、タンパク質繊維の収縮を防止する技術が提案されている。
例えば特許文献1には、精練を完了した強撚糸使用の絹織物を、緊張した状態で水、その他の溶媒、またはその混合系に浸漬して所定時間加温することを特徴とする絹織物の防縮加工法が開示されている。特許文献2には、製織して生地状にしたシルク繊維にウォッシャブル性と防汚性とを付与するシルク繊維の加工方法であって、前記シルク繊維に、水溶性塩化シアヌル誘導体若しくは水溶性ビニルスルホン誘導体を架橋剤として用いる劣化防止処理と、蒸絨法、真空蒸絨法、若しくはサンフォライズ法のいずれかを用いる防縮処理と、フッ素系撥水加工剤を用いる撥水加工処理とを施すことを特徴とするシルク繊維の加工方法が開示されている。
特許文献3には、Sb化合物を主体とする難燃剤を6~50重量%含有するハロゲン含有繊維30~70重量%とウール70~30重量%とで構成された混紡織物の仕上げ時に、幅出し、オーバーフィードをしながら140~160℃で熱セットして機械的防縮加工を施す難燃性織物の製造法が開示されている。特許文献4には、獣毛表皮細胞中の-S-S-結合(シスチン結合)を低次の酸化状態へ一次酸化処理する第1の工程と、一次酸化された-S-S-結合を、オゾンにより、ジ-、トリ-またはテトラ-酸化状態のいずれか1種または2種以上の高次酸化状態へ酸化処理する第2の工程と、上記ジ-、トリ-またはテトラ-酸化状態の-S-S-結合を、還元切断処理する第3の工程とを含む獣毛繊維の製造方法が開示されている。
上記した特許文献1~3に開示される技術は、繊維製品に対する防縮技術であり、素材であるタンパク質繊維の防縮にそのまま適用することは困難である。すなわち、これらの技術は、タンパク質繊維を用いて様々な製品を得る際等に惹起される問題を解決し得るものではない。また特許文献4に開示される技術は、繊維に対する防縮技術であるが、極めて煩雑な工程を必要とする。
本開示は、水分との接触時、更にはその後の乾燥時に生ずる収縮、所謂水収縮が抑制されたタンパク質繊維を容易に製造することができるタンパク質繊維の製造方法およびタンパク質繊維の製造装置を説明する。また本開示は、水分との接触時、更にはその後の乾燥時に生ずるタンパク質繊維の収縮(水収縮)を抑制することができるタンパク質繊維の加工方法を説明する。
本発明の一態様に係るタンパク質繊維の製造方法は、タンパク質を含むタンパク質原料繊維を加熱する加熱工程と、加熱工程と同時にまたは加熱工程より後に行われ、加熱工程によって加熱された状態にあるタンパク質原料繊維を弛緩して収縮させる弛緩収縮工程と、を備える。
このタンパク質繊維の製造方法によれば、加熱された状態にあるタンパク質原料繊維を弛緩して収縮させることにより、水分との接触時、更にはその後の乾燥時に生ずる水収縮が抑制されたタンパク質繊維を容易に製造することができる。
加熱工程におけるタンパク質原料繊維の加熱温度および弛緩収縮工程におけるタンパク質原料繊維の弛緩量のうち少なくともいずれか一方を調節してもよい。この場合、水分との接触時やその後の乾燥時に生ずる収縮量(水収縮量)を任意に調整することができる。
弛緩収縮工程では、タンパク質原料繊維を所定の送出し速度で連続的に送り出すと共に送出し速度よりも遅い巻取り速度で連続的に巻き取ることで、タンパク質原料繊維を弛緩して収縮させてもよい。この場合、送出し速度および巻取り速度を違わせることによりタンパク質原料繊維の弛緩状態を生み出すことができる。その結果として、水収縮が抑制されたタンパク質繊維の生産性が向上する。
弛緩収縮工程におけるタンパク質原料繊維の送出し速度が、巻取り速度の1.4倍以上であってもよい。この場合、水収縮の抑制効果をより確実に得ることができる。
加熱工程におけるタンパク質原料繊維の加熱温度が、タンパク質の軟化温度以上であってもよい。この場合、水収縮の抑制効果をより確実に得ることができる。
加熱工程と弛緩収縮工程とが同時に行われ、弛緩収縮工程における加熱時間が5秒以下であってもよい。この場合、繊維の物理的特性を維持したまま、水収縮の抑制効果を得ることができる。
タンパク質が構造タンパク質であってもよい。この場合、水収縮が抑制された構造タンパク質繊維を容易に製造することができる。
構造タンパク質がフィブロインであってもよい。この場合、水収縮が抑制されたフィブロイン繊維を容易に製造することができる。
フィブロインがクモ糸フィブロインであってもよい。この場合、水収縮が抑制されたクモ糸フィブロイン繊維を容易に製造することができる。
本発明の別の態様に係るタンパク質繊維の製造装置は、タンパク質を含むタンパク質原料繊維を加熱する加熱手段と、加熱手段によって加熱された状態にあるタンパク質原料繊維を弛緩して収縮させる弛緩収縮手段と、を備える。
このタンパク質繊維の製造装置によれば、加熱された状態にあるタンパク質原料繊維を弛緩して(緊張させない乃至は引張させない状態で)収縮させることにより、水分との接触時、更にはその後の乾燥時に生ずる水収縮が抑制されたタンパク質繊維を容易に製造することができる。
弛緩収縮手段が、タンパク質原料繊維を所定の送出し速度で連続的に送り出す送出し手段と、送出し手段によって送り出されたタンパク質原料繊維を送出し速度よりも遅い巻取り速度で連続的に巻き取る巻取り手段と、を有してもよい。この場合、送出し速度および巻取り速度を違わせることによりタンパク質原料繊維の弛緩状態(緊張させない乃至は引張させない状態)を生み出すことができる。その結果として、水収縮が抑制されたタンパク質繊維の生産性が向上する。
タンパク質繊維の製造装置は、送出し手段の送出し速度と巻取り手段の巻取り速度の少なくともいずれか一方を調節する速度調節手段を更に備えてもよい。この場合、水分との接触時やその後の乾燥時に生ずる収縮量(水収縮量)を任意に調整することができる。
タンパク質繊維の製造装置は、加熱手段におけるタンパク質原料繊維の加熱温度を調節する温度調節手段を更に備えてもよい。この場合、水分との接触時やその後の乾燥時に生ずる収縮量(水収縮量)を任意に調整することができる。
タンパク質繊維の製造装置は、タンパク質原料繊維を紡糸する紡糸手段を更に備えてもよい。この場合、タンパク質原料繊維の紡糸と、タンパク質原料繊維の加熱および弛緩収縮とが連続して行われる。その結果として、水収縮が抑制されたタンパク質繊維の生産性が向上する。
本発明の更に別の態様に係るタンパク質繊維の加工方法は、タンパク質を含むタンパク質繊維を加熱する加熱工程と、加熱工程と同時にまたは加熱工程より後に行われ、加熱工程によって加熱された状態にあるタンパク質繊維を弛緩して収縮させる弛緩収縮工程と、を備える。
このタンパク質繊維の加工方法によれば、加熱された状態にあるタンパク質繊維を弛緩して収縮させることにより、水分との接触時、更にはその後の乾燥時に生ずるタンパク質繊維の水収縮を抑制することができる。
加熱工程におけるタンパク質繊維の加熱温度および弛緩収縮工程におけるタンパク質繊維の弛緩量のうち少なくともいずれか一方を調節してもよい。この場合、水分との接触時やその後の乾燥時に生ずる収縮量(水収縮量)を任意に調整することができる。
弛緩収縮工程では、タンパク質繊維を所定の送出し速度で連続的に送り出すと共に送出し速度よりも遅い巻取り速度で連続的に巻き取ることで、タンパク質繊維を弛緩して収縮させてもよい。この場合、送出し速度および巻取り速度を違わせることによりタンパク質繊維の弛緩状態を生み出すことができる。その結果として、水収縮が抑制されたタンパク質繊維の生産性が向上する。
本開示のいくつかの態様によれば、水分との接触時、更にはその後の乾燥時に生ずる水収縮が抑制されたタンパク質繊維を容易に製造することができる。
以下、場合により図面を参照しつつ、本発明の実施形態について詳細に説明するが、本発明は以下の実施形態に限定されるものではない。なお、図面中、同一又は相当部分には同一符号を付し、重複する説明は適宜省略する。
〔タンパク質繊維の製造方法および製造装置〕
本実施形態に係るタンパク質繊維の製造方法は、タンパク質を含むタンパク質原料繊維を加熱する加熱工程と、加熱工程と同時にまたは加熱工程より後に行われ、加熱工程によって加熱された状態にあるタンパク質原料繊維を弛緩して収縮させる弛緩収縮工程と、を備える。また本実施形態に係るタンパク質繊維の製造装置は、タンパク質を含むタンパク質原料繊維を加熱する加熱手段と、加熱手段によって加熱された状態にあるタンパク質原料繊維を弛緩して収縮させる弛緩収縮手段と、を備える。加熱された状態にあるタンパク質原料繊維を弛緩して収縮させることにより、水分との接触時、更にはその後の乾燥時に生ずる水収縮が抑制されたタンパク質繊維を容易に製造することができる。
本実施形態に係るタンパク質繊維の製造方法は、タンパク質を含むタンパク質原料繊維を加熱する加熱工程と、加熱工程と同時にまたは加熱工程より後に行われ、加熱工程によって加熱された状態にあるタンパク質原料繊維を弛緩して収縮させる弛緩収縮工程と、を備える。また本実施形態に係るタンパク質繊維の製造装置は、タンパク質を含むタンパク質原料繊維を加熱する加熱手段と、加熱手段によって加熱された状態にあるタンパク質原料繊維を弛緩して収縮させる弛緩収縮手段と、を備える。加熱された状態にあるタンパク質原料繊維を弛緩して収縮させることにより、水分との接触時、更にはその後の乾燥時に生ずる水収縮が抑制されたタンパク質繊維を容易に製造することができる。
(タンパク質)
本発明の製造方法に従って製造されるタンパク質繊維、又は原料であるタンパク質原料繊維は、水分との接触により収縮する繊維を与えるタンパク質を主成分として含む。当該タンパク質は、特に限定されるものではなく、遺伝子組換え技術により微生物等で製造したものであってもよく、合成により製造されたものであってもよく、また天然由来のタンパク質を精製したものであってもよい。また、当該タンパク質は、例えば構造タンパク質であってよい。構造タンパク質とは、生体構造を形成するタンパク質又はそれに由来するタンパク質を示す。すなわち、構造タンパク質は、天然由来の構造タンパク質であってよく、天然由来の構造タンパク質のアミノ酸配列に依拠してそのアミノ酸配列の一部(例えば、当該アミノ酸配列の10%以下)を改変した改変タンパク質であってもよい。
本発明の製造方法に従って製造されるタンパク質繊維、又は原料であるタンパク質原料繊維は、水分との接触により収縮する繊維を与えるタンパク質を主成分として含む。当該タンパク質は、特に限定されるものではなく、遺伝子組換え技術により微生物等で製造したものであってもよく、合成により製造されたものであってもよく、また天然由来のタンパク質を精製したものであってもよい。また、当該タンパク質は、例えば構造タンパク質であってよい。構造タンパク質とは、生体構造を形成するタンパク質又はそれに由来するタンパク質を示す。すなわち、構造タンパク質は、天然由来の構造タンパク質であってよく、天然由来の構造タンパク質のアミノ酸配列に依拠してそのアミノ酸配列の一部(例えば、当該アミノ酸配列の10%以下)を改変した改変タンパク質であってもよい。
構造タンパク質としては、例えば、フィブロイン、コラ-ゲン、レシリン、エラスチン及びケラチン、並びにこれら由来のタンパク質等を挙げることができる。フィブロインは、例えば、絹フィブロイン、クモ糸フィブロイン、及びホーネットシルクフィブロインからなる群より選択される1種以上であってよい。構造タンパク質は、絹フィブロイン、クモ糸フィブロイン又はこれらの組み合わせであってもよい。絹フィブロインとクモ糸フィブロインとを併用する場合、絹フィブロインの割合は、例えば、クモ糸フィブロイン100質量部に対して、40質量部以下、30質量部以下、又は10質量部以下であってよい。
<改変フィブロイン>
本実施形態に係る改変フィブロインは、式1:[(A)nモチーフ-REP]m、又は式2:[(A)nモチーフ-REP]m-(A)nモチーフで表されるドメイン配列を含むタンパク質である。改変フィブロインは、ドメイン配列のN末端側及びC末端側のいずれか一方又は両方に更にアミノ酸配列(N末端配列及びC末端配列)が付加されていてもよい。N末端配列及びC末端配列は、これに限定されるものではないが、典型的には、フィブロインに特徴的なアミノ酸モチーフの反復を有さない領域であり、100残基程度のアミノ酸からなる。
本実施形態に係る改変フィブロインは、式1:[(A)nモチーフ-REP]m、又は式2:[(A)nモチーフ-REP]m-(A)nモチーフで表されるドメイン配列を含むタンパク質である。改変フィブロインは、ドメイン配列のN末端側及びC末端側のいずれか一方又は両方に更にアミノ酸配列(N末端配列及びC末端配列)が付加されていてもよい。N末端配列及びC末端配列は、これに限定されるものではないが、典型的には、フィブロインに特徴的なアミノ酸モチーフの反復を有さない領域であり、100残基程度のアミノ酸からなる。
本明細書において「改変フィブロイン」とは、人為的に製造されたフィブロイン(人造フィブロイン)を意味する。改変フィブロインは、そのドメイン配列が、天然由来のフィブロインのアミノ酸配列とは異なるフィブロインであってもよく、天然由来のフィブロインのアミノ酸配列と同一であるフィブロインであってもよい。本明細書でいう「天然由来のフィブロイン」もまた、式1:[(A)nモチーフ-REP]m、又は式2:[(A)nモチーフ-REP]m-(A)nモチーフで表されるドメイン配列を含むタンパク質である。
「改変フィブロイン」は、天然由来のフィブロインのアミノ酸配列をそのまま利用したものであってもよく、天然由来のフィブロインのアミノ酸配列に依拠してそのアミノ酸配列を改変したもの(例えば、クローニングした天然由来のフィブロインの遺伝子配列を改変することによりアミノ酸配列を改変したもの)であってもよく、また天然由来のフィブロインに依らず人工的に設計及び合成したもの(例えば、設計したアミノ酸配列をコードする核酸を化学合成することにより所望のアミノ酸配列を有するもの)であってもよい。
本明細書において「ドメイン配列」とは、フィブロイン特有の結晶領域(典型的には、アミノ酸配列の(A)nモチーフに相当する。)と非晶領域(典型的には、アミノ酸配列のREPに相当する。)を生じるアミノ酸配列であり、式1:[(A)nモチーフ-REP]m、又は式2:[(A)nモチーフ-REP]m-(A)nモチーフで表されるアミノ酸配列を意味する。ここで、(A)nモチーフは、アラニン残基を主とするアミノ酸配列を示し、アミノ酸残基数は2~27である。(A)nモチーフのアミノ酸残基数は、2~20、4~27、4~20、8~20、10~20、4~16、8~16、又は10~16の整数であってよい。また、(A)nモチーフ中の全アミノ酸残基数に対するアラニン残基数の割合は40%以上であればよく、60%以上、70%以上、80%以上、83%以上、85%以上、86%以上、90%以上、95%以上、又は100%(アラニン残基のみで構成されることを意味する。)であってもよい。ドメイン配列中に複数存在する(A)nモチーフは、少なくとも7つがアラニン残基のみで構成されてもよい。REPは2~200アミノ酸残基から構成されるアミノ酸配列を示す。REPは、10~200アミノ酸残基から構成されるアミノ酸配列であってもよい。mは2~300の整数を示し、10~300の整数であってもよい。複数存在する(A)nモチーフは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。複数存在するREPは、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。
本実施形態に係る改変フィブロインは、例えば、クローニングした天然由来のフィブロインの遺伝子配列に対し、例えば、1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変を行うことで得ることができる。アミノ酸残基の置換、欠失、挿入及び/又は付加は、部分特異的突然変異誘発法等の当業者に周知の方法により行うことができる。具体的には、Nucleic Acid Res.10,6487(1982)、Methods in Enzymology,100,448(1983)等の文献に記載されている方法に準じて行うことができる。
天然由来のフィブロインは、式1:[(A)nモチーフ-REP]m、又は式2:[(A)nモチーフ-REP]m-(A)nモチーフで表されるドメイン配列を含むタンパク質であり、具体的には、例えば、昆虫又はクモ類が産生するフィブロインが挙げられる。
昆虫が産生するフィブロインとしては、例えば、ボンビックス・モリ(Bombyx mori)、クワコ(Bombyx mandarina)、天蚕(Antheraea yamamai)、柞蚕(Anteraea pernyi)、楓蚕(Eriogyna pyretorum)、蓖蚕(Pilosamia Cynthia ricini)、樗蚕(Samia cynthia)、栗虫(Caligura japonica)、チュッサー蚕(Antheraea mylitta)、ムガ蚕(Antheraea assama)等のカイコが産生する絹タンパク質、及びスズメバチ(Vespa simillima xanthoptera)の幼虫が吐出するホーネットシルクタンパク質が挙げられる。
昆虫が産生するフィブロインのより具体的な例としては、例えば、カイコ・フィブロインL鎖(GenBankアクセッション番号M76430(塩基配列)、及びAAA27840.1(アミノ酸配列))が挙げられる。
クモ類が産生するフィブロインとしては、例えば、オニグモ、ニワオニグモ、アカオニグモ、アオオニグモ及びマメオニグモ等のオニグモ属(Araneus属)に属するクモ、ヤマシロオニグモ、イエオニグモ、ドヨウオニグモ及びサツマノミダマシ等のヒメオニグモ属(Neoscona属)に属するクモ、コオニグモモドキ等のコオニグモモドキ属(Pronus属)に属するクモ、トリノフンダマシ及びオオトリノフンダマシ等のトリノフンダマシ属(Cyrtarachne属)に属するクモ、トゲグモ及びチブサトゲグモ等のトゲグモ属(Gasteracantha属)に属するクモ、マメイタイセキグモ及びムツトゲイセキグモ等のイセキグモ属(Ordgarius属)に属するクモ、コガネグモ、コガタコガネグモ及びナガコガネグモ等のコガネグモ属(Argiope属)に属するクモ、キジロオヒキグモ等のオヒキグモ属(Arachnura属)に属するクモ、ハツリグモ等のハツリグモ属(Acusilas属)に属するクモ、スズミグモ、キヌアミグモ及びハラビロスズミグモ等のスズミグモ属(Cytophora属)に属するクモ、ゲホウグモ等のゲホウグモ属(Poltys属)に属するクモ、ゴミグモ、ヨツデゴミグモ、マルゴミグモ及びカラスゴミグモ等のゴミグモ属(Cyclosa属)に属するクモ、及びヤマトカナエグモ等のカナエグモ属(Chorizopes属)に属するクモが産生するスパイダーシルクタンパク質、並びにアシナガグモ、ヤサガタアシナガグモ、ハラビロアシダカグモ及びウロコアシナガグモ等のアシナガグモ属(Tetragnatha属)に属するクモ、オオシロカネグモ、チュウガタシロカネグモ及びコシロカネグモ等のシロカネグモ属(Leucauge属)に属するクモ、ジョロウグモ及びオオジョロウグモ等のジョロウグモ属(Nephila属)に属するクモ、キンヨウグモ等のアズミグモ属(Menosira属)に属するクモ、ヒメアシナガグモ等のヒメアシナガグモ属(Dyschiriognatha属)に属するクモ、クロゴケグモ、セアカゴケグモ、ハイイロゴケグモ及びジュウサンボシゴケグモ等のゴケグモ属(Latrodectus属)に属するクモ、及びユープロステノプス属(Euprosthenops属)に属するクモ等のアシナガグモ科(Tetragnathidae科)に属するクモが産生するスパイダーシルクタンパク質が挙げられる。スパイダーシルクタンパク質としては、例えば、MaSp(MaSp1及びMaSp2)、ADF(ADF3及びADF4)等の牽引糸タンパク質、MiSp(MiSp1及びMiSp2)等が挙げられる。
クモ類が産生するスパイダーシルクタンパク質のより具体的な例としては、例えば、fibroin-3(adf-3)[Araneus diadematus由来](GenBankアクセッション番号AAC47010(アミノ酸配列)、U47855(塩基配列))、fibroin-4(adf-4)[Araneus diadematus由来](GenBankアクセッション番号AAC47011(アミノ酸配列)、U47856(塩基配列))、dragline silk protein spidroin 1[Nephila clavipes由来](GenBankアクセッション番号AAC04504(アミノ酸配列)、U37520(塩基配列))、major ampullate spidroin 1[Latrodectus hesperus由来](GenBankアクセッション番号ABR68856(アミノ酸配列)、EF595246(塩基配列))、dragline silk protein spidroin 2[Nephila clavata由来](GenBankアクセッション番号AAL32472(アミノ酸配列)、AF441245(塩基配列))、major ampullate spidroin 1[Euprosthenops australis由来](GenBankアクセッション番号CAJ00428(アミノ酸配列)、AJ973155(塩基配列))、及びmajor ampullate spidroin 2[Euprosthenops australis](GenBankアクセッション番号CAM32249.1(アミノ酸配列)、AM490169(塩基配列))、minor ampullate silk protein 1[Nephila clavipes](GenBankアクセッション番号AAC14589.1(アミノ酸配列))、minor ampullate silk protein 2[Nephila clavipes](GenBankアクセッション番号AAC14591.1(アミノ酸配列))、minor ampullate spidroin-like protein[Nephilengys cruentata](GenBankアクセッション番号ABR37278.1(アミノ酸配列)等が挙げられる。
天然由来のフィブロインのより具体的な例としては、更に、NCBI GenBankに配列情報が登録されているフィブロインを挙げることができる。例えば、NCBI GenBankに登録されている配列情報のうちDIVISIONとしてINVを含む配列の中から、DEFINITIONにspidroin、ampullate、fibroin、「silk及びpolypeptide」、又は「silk及びprotein」がキーワードとして記載されている配列、CDSから特定のproductの文字列、SOURCEからTISSUE TYPEに特定の文字列の記載された配列を抽出することにより確認することができる。
本実施形態に係る改変フィブロインは、改変絹(シルク)フィブロイン(カイコが産生する絹タンパク質のアミノ酸配列を改変したもの)であってもよく、改変クモ糸フィブロイン(クモ類が産生するスパイダーシルクタンパク質のアミノ酸配列を改変したもの)であってもよい。改変フィブロインとしては、改変クモ糸フィブロインが好ましい。
改変フィブロインの具体的な例として、クモの大瓶状腺で産生される大吐糸管しおり糸タンパク質に由来する改変フィブロイン(第1の改変フィブロイン)、グリシン残基の含有量が低減されたドメイン配列を有する改変フィブロイン(第2の改変フィブロイン)、(A)nモチーフの含有量が低減されたドメイン配列を有する改変フィブロイン(第3の改変フィブロイン)、グリシン残基の含有量、及び(A)nモチーフの含有量が低減された改変フィブロイン(第4の改変フィブロイン)、局所的に疎水性指標の大きい領域を含むドメイン配列を有する改変フィブロイン(第5の改変フィブロイン)、並びにグルタミン残基の含有量が低減されたドメイン配列を有する改変フィブロイン(第6の改変フィブロイン)が挙げられる。
第1の改変フィブロインとしては、式1:[(A)nモチーフ-REP]mで表されるドメイン配列を含むタンパク質が挙げられる。第1の改変フィブロインにおいて、(A)nモチーフのアミノ酸残基数は、3~20の整数が好ましく、4~20の整数がより好ましく、8~20の整数が更に好ましく、10~20の整数が更により好ましく、4~16の整数が更によりまた好ましく、8~16の整数が特に好ましく、10~16の整数が最も好ましい。第1の改変フィブロインは、式1中、REPを構成するアミノ酸残基の数は、10~200残基であることが好ましく、10~150残基であることがより好ましく、20~100残基であることが更に好ましく、20~75残基であることが更により好ましい。第1の改変フィブロインは、式1:[(A)nモチーフ-REP]mで表されるアミノ酸配列中に含まれるグリシン残基、セリン残基及びアラニン残基の合計残基数がアミノ酸残基数全体に対して、40%以上であることが好ましく、60%以上であることがより好ましく、70%以上であることが更に好ましい。
第1の改変フィブロインは、式1:[(A)nモチーフ-REP]mで表されるアミノ酸配列の単位を含み、かつC末端配列が配列番号1~3のいずれかに示されるアミノ酸配列又は配列番号1~3のいずれかに示されるアミノ酸配列と90%以上の相同性を有するアミノ酸配列であるポリペプチドであってもよい。
配列番号1に示されるアミノ酸配列は、ADF3(GI:1263287、NCBI)のアミノ酸配列のC末端の50残基のアミノ酸からなるアミノ酸配列と同一であり、配列番号2に示されるアミノ酸配列は、配列番号1に示されるアミノ酸配列のC末端から20残基取り除いたアミノ酸配列と同一であり、配列番号3に示されるアミノ酸配列は、配列番号1に示されるアミノ酸配列のC末端から29残基取り除いたアミノ酸配列と同一である。
第1の改変フィブロインのより具体的な例として、(1-i)配列番号4(recombinant spider silk protein ADF3KaiLargeNRSH1)で示されるアミノ酸配列、又は(1-ii)配列番号4で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。配列同一性は、95%以上であることが好ましい。
配列番号4で示されるアミノ酸配列は、N末端に開始コドン、His10タグ及びHRV3Cプロテアーゼ(Human rhinovirus 3Cプロテアーゼ)認識サイトからなるアミノ酸配列(配列番号5)を付加したADF3のアミノ酸配列において、第1~13番目の反復領域をおよそ2倍になるように増やすとともに、翻訳が第1154番目アミノ酸残基で終止するように変異させたものである。配列番号4で示されるアミノ酸配列のC末端のアミノ酸配列は、配列番号3で示されるアミノ酸配列と同一である。
(1-i)の改変フィブロインは、配列番号4で示されるアミノ酸配列からなるものであってもよい。
第2の改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、グリシン残基の含有量が低減されたアミノ酸配列を有する。第2の改変フィブロインは、天然由来のフィブロインと比較して、少なくともREP中の1又は複数のグリシン残基が別のアミノ酸残基に置換されたことに相当するアミノ酸配列を有するものということができる。
第2の改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、REP中のGGX及びGPGXX(但し、Gはグリシン残基、Pはプロリン残基、Xはグリシン以外のアミノ酸残基を示す。)から選ばれる少なくとも一つのモチーフ配列において、少なくとも1又は複数の当該モチーフ配列中の1つのグリシン残基が別のアミノ酸残基に置換されたことに相当するアミノ酸配列を有するものであってもよい。
第2の改変フィブロインは、上述のグリシン残基が別のアミノ酸残基に置換されたモチーフ配列の割合が、全モチーフ配列に対して、10%以上であってもよい。
第2の改変フィブロインは、式1:[(A)nモチーフ-REP]mで表されるドメイン配列を含み、上記ドメイン配列から、最もC末端側に位置する(A)nモチーフから上記ドメイン配列のC末端までの配列を除いた配列中の全REPに含まれるXGX(但し、Xはグリシン以外のアミノ酸残基を示す。)からなるアミノ酸配列の総アミノ酸残基数をzとし、上記ドメイン配列から、最もC末端側に位置する(A)nモチーフから上記ドメイン配列のC末端までの配列を除いた配列中の総アミノ酸残基数をwとしたときに、z/wが30%以上、40%以上、50%以上又は50.9%以上であるアミノ酸配列を有するものであってもよい。(A)nモチーフ中の全アミノ酸残基数に対するアラニン残基数は83%以上であってよいが、86%以上であることが好ましく、90%以上であることがより好ましく、95%以上であることが更に好ましく、100%であること(アラニン残基のみで構成されることを意味する)が更により好ましい。
第2の改変フィブロインは、GGXモチーフの1つのグリシン残基を別のアミノ酸残基に置換することにより、XGXからなるアミノ酸配列の含有割合を高めたものであることが好ましい。第2の改変フィブロインは、ドメイン配列中のGGXからなるアミノ酸配列の含有割合が30%以下であることが好ましく、20%以下であることがより好ましく、10%以下であることが更に好ましく、6%以下であることが更により好ましく、4%以下であることが更によりまた好ましく、2%以下であることが特に好ましい。ドメイン配列中のGGXからなるアミノ酸配列の含有割合は、下記XGXからなるアミノ酸配列の含有割合(z/w)の算出方法と同様の方法で算出することができる。
z/wの算出方法を更に詳細に説明する。まず、式1:[(A)nモチーフ-REP]mで表されるドメイン配列を含むフィブロイン(改変フィブロイン又は天然由来のフィブロイン)において、ドメイン配列から、最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列を除いた配列に含まれる全てのREPから、XGXからなるアミノ酸配列を抽出する。XGXを構成するアミノ酸残基の総数がzである。例えば、XGXからなるアミノ酸配列が50個抽出された場合(重複はなし)、zは50×3=150である。また、例えば、XGXGXからなるアミノ酸配列の場合のように2つのXGXに含まれるX(中央のX)が存在する場合は、重複分を控除して計算する(XGXGXの場合は5アミノ酸残基である)。wは、ドメイン配列から、最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列を除いた配列に含まれる総アミノ酸残基数である。例えば、図1に示したドメイン配列の場合、wは4+50+4+100+4+10+4+20+4+30=230である(最もC末端側に位置する(A)nモチーフは除いている。)。次に、zをwで除すことによって、z/w(%)を算出することができる。
ここで、天然由来のフィブロインにおけるz/wについて説明する。まず、上述のように、NCBI GenBankにアミノ酸配列情報が登録されているフィブロインを例示した方法により確認したところ、663種類のフィブロイン(このうち、クモ類由来のフィブロインは415種類)が抽出された。抽出された全てのフィブロインのうち、式1:[(A)nモチーフ-REP]mで表されるドメイン配列を含み、フィブロイン中のGGXからなるアミノ酸配列の含有割合が6%以下である天然由来のフィブロインのアミノ酸配列から、上述の算出方法により、z/wを算出した。その結果を図2に示す。図2の横軸はz/w(%)を示し、縦軸は頻度を示す。図2から明らかなとおり、天然由来のフィブロインにおけるz/wは、いずれも50.9%未満である(最も高いもので、50.86%)。
第2の改変フィブロインにおいて、z/wは、50.9%以上であることが好ましく、56.1%以上であることがより好ましく、58.7%以上であることが更に好ましく、70%以上であることが更により好ましく、80%以上であることが更によりまた好ましい。z/wの上限に特に制限はないが、例えば、95%以下であってもよい。
第2の改変フィブロインは、例えば、クローニングした天然由来のフィブロインの遺伝子配列から、グリシン残基をコードする塩基配列の少なくとも一部を置換して別のアミノ酸残基をコードするように改変することにより得ることができる。このとき、改変するグリシン残基として、GGXモチーフ及びGPGXXモチーフにおける1つのグリシン残基を選択してもよいし、またz/wが50.9%以上になるように置換してもよい。また、例えば、天然由来のフィブロインのアミノ酸配列から上記態様を満たすアミノ酸配列を設計し、設計したアミノ酸配列をコードする核酸を化学合成することにより得ることもできる。いずれの場合においても、天然由来のフィブロインのアミノ酸配列からREP中のグリシン残基を別のアミノ酸残基に置換したことに相当する改変に加え、更に1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変を行ってもよい。
上記の別のアミノ酸残基としては、グリシン残基以外のアミノ酸残基であれば特に制限はないが、バリン(V)残基、ロイシン(L)残基、イソロイシン(I)残基、メチオニン(M)残基、プロリン(P)残基、フェニルアラニン(F)残基及びトリプトファン(W)残基等の疎水性アミノ酸残基、グルタミン(Q)残基、アスパラギン(N)残基、セリン(S)残基、リシン(K)残基及びグルタミン酸(E)残基等の親水性アミノ酸残基が好ましく、バリン(V)残基、ロイシン(L)残基、イソロイシン(I)残基、フェニルアラニン(F)残基及びグルタミン(Q)残基がより好ましく、グルタミン(Q)残基が更に好ましい。
第2の改変フィブロインのより具体的な例として、(2-i)配列番号6(Met-PRT380)、配列番号7(Met-PRT410)、配列番号8(Met-PRT525)若しくは配列番号9(Met-PRT799)で示されるアミノ酸配列、又は(2-ii)配列番号6、配列番号7、配列番号8若しくは配列番号9で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
(2-i)の改変フィブロインについて説明する。配列番号6で示されるアミノ酸配列は、天然由来のフィブロインに相当する配列番号10(Met-PRT313)で示されるアミノ酸配列のREP中の全てのGGXをGQXに置換したものである。配列番号7で示されるアミノ酸配列は、配列番号6で示されるアミノ酸配列から、N末端側からC末端側に向かって2つおきに(A)nモチーフを欠失させ、更にC末端配列の手前に[(A)nモチーフ-REP]を1つ挿入したものである。配列番号8で示されるアミノ酸配列は、配列番号7で示されるアミノ酸配列の各(A)nモチーフのC末端側に2つのアラニン残基を挿入し、更に一部のグルタミン(Q)残基をセリン(S)残基に置換し、配列番号7の分子量とほぼ同じとなるようにC末端側の一部のアミノ酸を欠失させたものである。配列番号9で示されるアミノ酸配列は、配列番号7で示されるアミノ酸配列中に存在する20個のドメイン配列の領域(但し、当該領域のC末端側の数アミノ酸残基が置換されている。)を4回繰り返した配列のC末端に所定のヒンジ配列とHisタグ配列が付加されたものである。
配列番号10で示されるアミノ酸配列(天然由来のフィブロインに相当)におけるz/wの値は、46.8%である。配列番号6で示されるアミノ酸配列、配列番号7で示されるアミノ酸配列、配列番号8で示されるアミノ酸配列、及び配列番号9で示されるアミノ酸配列におけるz/wの値は、それぞれ58.7%、70.1%、66.1%及び70.0%である。また、配列番号10、配列番号6、配列番号7、配列番号8及び配列番号9で示されるアミノ酸配列のギザ比率(後述する)1:1.8~11.3におけるx/yの値は、それぞれ15.0%、15.0%、93.4%、92.7%及び89.8%である。
(2-i)の改変フィブロインは、配列番号6、配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列からなるものであってもよい。
(2-ii)の改変フィブロインは、配列番号6、配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(2-ii)の改変フィブロインもまた、式1:[(A)nモチーフ-REP]mで表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
(2-ii)の改変フィブロインは、配列番号6、配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列と90%以上の配列同一性を有し、かつREP中に含まれるXGX(但し、Xはグリシン以外のアミノ酸残基を示す。)からなるアミノ酸配列の総アミノ酸残基数をzとし、上記ドメイン配列中のREPの総アミノ酸残基数をwとしたときに、z/wが50.9%以上であることが好ましい。
第2の改変フィブロインは、N末端及びC末端のいずれか一方又は両方にタグ配列を含んでいてもよい。これにより、改変フィブロインの単離、固定化、検出及び可視化等が可能となる。
タグ配列として、例えば、他の分子との特異的親和性(結合性、アフィニティ)を利用したアフィニティタグを挙げることができる。アフィニティタグの具体例として、ヒスチジンタグ(Hisタグ)を挙げることができる。Hisタグは、ヒスチジン残基が4から10個程度並んだ短いペプチドで、ニッケル等の金属イオンと特異的に結合する性質があるため、金属キレートクロマトグラフィー(chelating metal chromatography)による改変フィブロインの単離に利用することができる。タグ配列の具体例として、例えば、配列番号11で示されるアミノ酸配列(Hisタグ配列及びヒンジ配列を含むアミノ酸配列)が挙げられる。
また、グルタチオンに特異的に結合するグルタチオン-S-トランスフェラーゼ(GST)、マルトースに特異的に結合するマルトース結合タンパク質(MBP)等のタグ配列を利用することもできる。
さらに、抗原抗体反応を利用した「エピトープタグ」を利用することもできる。抗原性を示すペプチド(エピトープ)をタグ配列として付加することにより、当該エピトープに対する抗体を結合させることができる。エピトープタグとして、HA(インフルエンザウイルスのヘマグルチニンのペプチド配列)タグ、mycタグ、FLAGタグ等を挙げることができる。エピトープタグを利用することにより、高い特異性で容易に改変フィブロインを精製することができる。
さらにタグ配列を特定のプロテアーゼで切り離せるようにしたものも使用することができる。当該タグ配列を介して吸着したタンパク質をプロテアーゼ処理することにより、タグ配列を切り離した改変フィブロインを回収することもできる。
タグ配列を含む改変フィブロインのより具体的な例として、(2-iii)配列番号12(PRT380)、配列番号13(PRT410)、配列番号14(PRT525)若しくは配列番号15(PRT799)で示されるアミノ酸配列、又は(2-iv)配列番号12、配列番号13、配列番号14若しくは配列番号15で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
配列番号16(PRT313)、配列番号12、配列番号13、配列番号14及び配列番号15で示されるアミノ酸配列は、それぞれ配列番号10、配列番号6、配列番号7、配列番号8及び配列番号9で示されるアミノ酸配列のN末端に配列番号11で示されるアミノ酸配列(Hisタグ配列及びヒンジ配列を含む)を付加したものである。
(2-iii)の改変フィブロインは、配列番号12、配列番号13、配列番号14又は配列番号15で示されるアミノ酸配列からなるものであってもよい。
(2-iv)の改変フィブロインは、配列番号12、配列番号13、配列番号14又は配列番号15で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(2-iv)の改変フィブロインもまた、式1:[(A)nモチーフ-REP]mで表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
(2-iv)の改変フィブロインは、配列番号12、配列番号13、配列番号14又は配列番号15で示されるアミノ酸配列と90%以上の配列同一性を有し、かつREP中に含まれるXGX(但し、Xはグリシン以外のアミノ酸残基を示す。)からなるアミノ酸配列の総アミノ酸残基数をzとし、上記ドメイン配列中のREPの総アミノ酸残基数をwとしたときに、z/wが50.9%以上であることが好ましい。
第2の改変フィブロインは、組換えタンパク質生産系において生産されたタンパク質を宿主の外部に放出するための分泌シグナルを含んでいてもよい。分泌シグナルの配列は、宿主の種類に応じて適宜設定することができる。
第3の改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、(A)nモチーフの含有量が低減されたアミノ酸配列を有する。第3の改変フィブロインのドメイン配列は、天然由来のフィブロインと比較して、少なくとも1又は複数の(A)nモチーフが欠失したことに相当するアミノ酸配列を有するものということができる。
第3の改変フィブロインは、天然由来のフィブロインから(A)nモチーフを10~40%欠失させたことに相当するアミノ酸配列を有するものであってもよい。
第3の改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、少なくともN末端側からC末端側に向かって1~3つの(A)nモチーフ毎に1つの(A)nモチーフが欠失したことに相当するアミノ酸配列を有するものであってもよい。
第3の改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、少なくともN末端側からC末端側に向かって2つ連続した(A)nモチーフの欠失、及び1つの(A)nモチーフの欠失がこの順に繰り返されたことに相当するアミノ酸配列を有するものであってもよい。
第3の改変フィブロインは、そのドメイン配列が、少なくともN末端側からC末端側に向かって2つおきに(A)nモチーフが欠失したことに相当するアミノ酸配列を有するものであってもよい。
第3の改変フィブロインは、式1:[(A)nモチーフ-REP]mで表されるドメイン配列を含み、N末端側からC末端側に向かって、隣合う2つの[(A)nモチーフ-REP]ユニットのREPのアミノ酸残基数を順次比較して、アミノ酸残基数が少ないREPのアミノ酸残基数を1としたとき、他方のREPのアミノ酸残基数の比が1.8~11.3となる隣合う2つの[(A)nモチーフ-REP]ユニットのアミノ酸残基数を足し合わせた合計値の最大値をxとし、ドメイン配列の総アミノ酸残基数をyとしたときに、x/yが20%以上、30%以上、40%以上又は50%以上であるアミノ酸配列を有するものであってもよい。(A)nモチーフ中の全アミノ酸残基数に対するアラニン残基数は83%以上であってよいが、86%以上であることが好ましく、90%以上であることがより好ましく、95%以上であることが更に好ましく、100%であること(アラニン残基のみで構成されることを意味する)が更により好ましい。
x/yの算出方法を図1を参照しながら更に詳細に説明する。図1には、改変フィブロインからN末端配列及びC末端配列を除いたドメイン配列を示す。当該ドメイン配列は、N末端側(左側)から(A)nモチーフ-第1のREP(50アミノ酸残基)-(A)nモチーフ-第2のREP(100アミノ酸残基)-(A)nモチーフ-第3のREP(10アミノ酸残基)-(A)nモチーフ-第4のREP(20アミノ酸残基)-(A)nモチーフ-第5のREP(30アミノ酸残基)-(A)nモチーフという配列を有する。
隣合う2つの[(A)nモチーフ-REP]ユニットは、重複がないように、N末端側からC末端側に向かって、順次選択する。このとき、選択されない[(A)nモチーフ-REP]ユニットが存在してもよい。図1には、パターン1(第1のREPと第2のREPの比較、及び第3のREPと第4のREPの比較)、パターン2(第1のREPと第2のREPの比較、及び第4のREPと第5のREPの比較)、パターン3(第2のREPと第3のREPの比較、及び第4のREPと第5のREPの比較)、パターン4(第1のREPと第2のREPの比較)を示した。なお、これ以外にも選択方法は存在する。
次に各パターンについて、選択した隣合う2つの[(A)nモチーフ-REP]ユニット中の各REPのアミノ酸残基数を比較する。比較は、よりアミノ酸残基数の少ない方を1としたときの、他方のアミノ酸残基数の比を求めることによって行う。例えば、第1のREP(50アミノ酸残基)と第2のREP(100アミノ酸残基)の比較の場合、よりアミノ酸残基数の少ない第1のREPを1としたとき、第2のREPのアミノ酸残基数の比は、100/50=2である。同様に、第4のREP(20アミノ酸残基)と第5のREP(30アミノ酸残基)の比較の場合、よりアミノ酸残基数の少ない第4のREPを1としたとき、第5のREPのアミノ酸残基数の比は、30/20=1.5である。
図1中、よりアミノ酸残基数の少ない方を1としたときに、他方のアミノ酸残基数の比が1.8~11.3となる[(A)nモチーフ-REP]ユニットの組を実線で示した。本明細書中、この比をギザ比率と呼ぶ。よりアミノ酸残基数の少ない方を1としたときに、他方のアミノ酸残基数の比が1.8未満又は11.3超となる[(A)nモチーフ-REP]ユニットの組は破線で示した。
各パターンにおいて、実線で示した隣合う2つの[(A)nモチーフ-REP]ユニットの全てのアミノ酸残基数を足し合わせる(REPのみではなく、(A)nモチーフのアミノ酸残基数もである。)。そして、足し合わせた合計値を比較して、当該合計値が最大となるパターンの合計値(合計値の最大値)をxとする。図1に示した例では、パターン1の合計値が最大である。
次に、xをドメイン配列の総アミノ酸残基数yで除すことによって、x/y(%)を算出することができる。
第3の改変フィブロインにおいて、x/yは、50%以上であることが好ましく、60%以上であることがより好ましく、65%以上であることが更に好ましく、70%以上であることが更により好ましく、75%以上であることが更によりまた好ましく、80%以上であることが特に好ましい。x/yの上限に特に制限はなく、例えば、100%以下であってよい。ギザ比率が1:1.9~11.3の場合には、x/yは89.6%以上であることが好ましく、ギザ比率が1:1.8~3.4の場合には、x/yは77.1%以上であることが好ましく、ギザ比率が1:1.9~8.4の場合には、x/yは75.9%以上であることが好ましく、ギザ比率が1:1.9~4.1の場合には、x/yは64.2%以上であることが好ましい。
第3の改変フィブロインが、ドメイン配列中に複数存在する(A)nモチーフの少なくとも7つがアラニン残基のみで構成される改変フィブロインである場合、x/yは、46.4%以上であることが好ましく、50%以上であることがより好ましく、55%以上であることが更に好ましく、60%以上であることが更により好ましく、70%以上であることが更によりまた好ましく、80%以上であることが特に好ましい。x/yの上限に特に制限はなく、100%以下であればよい。
ここで、天然由来のフィブロインにおけるx/yについて説明する。まず、上述のように、NCBI GenBankにアミノ酸配列情報が登録されているフィブロインを例示した方法により確認したところ、663種類のフィブロイン(このうち、クモ類由来のフィブロインは415種類)が抽出された。抽出された全てのフィブロインのうち、式1:[(A)nモチーフ-REP]mで表されるドメイン配列で構成される天然由来のフィブロインのアミノ酸配列から、上述の算出方法により、x/yを算出した。ギザ比率が1:1.9~4.1の場合の結果を図3に示す。
図3の横軸はx/y(%)を示し、縦軸は頻度を示す。図3から明らかなとおり、天然由来のフィブロインにおけるx/yは、いずれも64.2%未満である(最も高いもので、64.14%)。
第3の改変フィブロインは、例えば、クローニングした天然由来のフィブロインの遺伝子配列から、x/yが64.2%以上になるように(A)nモチーフをコードする配列の1又は複数を欠失させることにより得ることができる。また、例えば、天然由来のフィブロインのアミノ酸配列から、x/yが64.2%以上になるように1又は複数の(A)nモチーフが欠失したことに相当するアミノ酸配列を設計し、設計したアミノ酸配列をコードする核酸を化学合成することにより得ることもできる。いずれの場合においても、天然由来のフィブロインのアミノ酸配列から(A)nモチーフが欠失したことに相当する改変に加え、更に1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変を行ってもよい。
第3の改変フィブロインのより具体的な例として、(3-i)配列番号17(Met-PRT399)、配列番号7(Met-PRT410)、配列番号8(Met-PRT525)若しくは配列番号9(Met-PRT799)で示されるアミノ酸配列、又は(3-ii)配列番号17、配列番号7、配列番号8若しくは配列番号9で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
(3-i)の改変フィブロインについて説明する。配列番号17で示されるアミノ酸配列は、天然由来のフィブロインに相当する配列番号10(Met-PRT313)で示されるアミノ酸配列から、N末端側からC末端側に向かって2つおきに(A)nモチーフを欠失させ、更にC末端配列の手前に[(A)nモチーフ-REP]を1つ挿入したものである。配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列は、第2の改変フィブロインで説明したとおりである。
配列番号10で示されるアミノ酸配列(天然由来のフィブロインに相当)のギザ比率1:1.8~11.3におけるx/yの値は15.0%である。配列番号17で示されるアミノ酸配列、及び配列番号7で示されるアミノ酸配列におけるx/yの値は、いずれも93.4%である。配列番号8で示されるアミノ酸配列におけるx/yの値は、92.7%である。配列番号9で示されるアミノ酸配列におけるx/yの値は、89.8%である。配列番号10、配列番号17、配列番号7、配列番号8及び配列番号9で示されるアミノ酸配列におけるz/wの値は、それぞれ46.8%、56.2%、70.1%、66.1%及び70.0%である。
(3-i)の改変フィブロインは、配列番号17、配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列からなるものであってもよい。
(3-ii)の改変フィブロインは、配列番号17、配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(3-ii)の改変フィブロインもまた、式1:[(A)nモチーフ-REP]mで表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
(3-ii)の改変フィブロインは、配列番号17、配列番号7、配列番号8又は配列番号9で示されるアミノ酸配列と90%以上の配列同一性を有し、かつN末端側からC末端側に向かって、隣合う2つの[(A)nモチーフ-REP]ユニットのREPのアミノ酸残基数を順次比較して、アミノ酸残基数が少ないREPのアミノ酸残基数を1としたとき、他方のREPのアミノ酸残基数の比が1.8~11.3(ギザ比率が1:1.8~11.3)となる隣合う2つの[(A)nモチーフ-REP]ユニットのアミノ酸残基数を足し合わせた合計値の最大値をxとし、ドメイン配列の総アミノ酸残基数をyとしたときに、x/yが64.2%以上であることが好ましい。
第3の改変フィブロインは、N末端及びC末端のいずれか一方又は両方に上述したタグ配列を含んでいてもよい。
タグ配列を含む改変フィブロインのより具体的な例として、(3-iii)配列番号18(PRT399)、配列番号13(PRT410)、配列番号14(PRT525)若しくは配列番号15(PRT799)で示されるアミノ酸配列、又は(3-iv)配列番号18、配列番号13、配列番号14若しくは配列番号15で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
配列番号18、配列番号13、配列番号14及び配列番号15で示されるアミノ酸配列は、それぞれ配列番号17、配列番号7、配列番号8及び配列番号9で示されるアミノ酸配列のN末端に配列番号11で示されるアミノ酸配列(Hisタグ配列及びヒンジ配列を含む)を付加したものである。
(3-iii)の改変フィブロインは、配列番号18、配列番号13、配列番号14又は配列番号15で示されるアミノ酸配列からなるものであってもよい。
(3-iv)の改変フィブロインは、配列番号18、配列番号13、配列番号14又は配列番号15で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(3-iv)の改変フィブロインもまた、式1:[(A)nモチーフ-REP]mで表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
(3-iv)の改変フィブロインは、配列番号18、配列番号13、配列番号14又は配列番号15で示されるアミノ酸配列と90%以上の配列同一性を有し、かつN末端側からC末端側に向かって、隣合う2つの[(A)nモチーフ-REP]ユニットのREPのアミノ酸残基数を順次比較して、アミノ酸残基数が少ないREPのアミノ酸残基数を1としたとき、他方のREPのアミノ酸残基数の比が1.8~11.3となる隣合う2つの[(A)nモチーフ-REP]ユニットのアミノ酸残基数を足し合わせた合計値の最大値をxとし、ドメイン配列の総アミノ酸残基数をyとしたときに、x/yが64.2%以上であることが好ましい。
第3の改変フィブロインは、組換えタンパク質生産系において生産されたタンパク質を宿主の外部に放出するための分泌シグナルを含んでいてもよい。分泌シグナルの配列は、宿主の種類に応じて適宜設定することができる。
第4の改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、(A)nモチーフの含有量が低減されたことに加え、グリシン残基の含有量が低減されたアミノ酸配列を有するものである。第4の改変フィブロインのドメイン配列は、天然由来のフィブロインと比較して、少なくとも1又は複数の(A)nモチーフが欠失したことに加え、更に少なくともREP中の1又は複数のグリシン残基が別のアミノ酸残基に置換されたことに相当するアミノ酸配列を有するものということができる。すなわち、第4の改変フィブロインは、上述した第2の改変フィブロインと、第3の改変フィブロインの特徴を併せ持つ改変フィブロインである。具体的な態様等は、第2の改変フィブロイン、及び第3の改変フィブロインで説明したとおりである。
第4の改変フィブロインのより具体的な例として、(4-i)配列番号7(Met-PRT410)、配列番号8(Met-PRT525)、配列番号9(Met-PRT799)、配列番号13(PRT410)、配列番号14(PRT525)若しくは配列番号15(PRT799)で示されるアミノ酸配列、又は(4-ii)配列番号7、配列番号8、配列番号9、配列番号13、配列番号14若しくは配列番号15で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。配列番号7、配列番号8、配列番号9、配列番号13、配列番号14又は配列番号15で示されるアミノ酸配列を含む改変フィブロインの具体的な態様は上述のとおりである。
第5の改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、REP中の1又は複数のアミノ酸残基が疎水性指標の大きいアミノ酸残基に置換されたこと、及び/又はREP中に1又は複数の疎水性指標の大きいアミノ酸残基が挿入されたことに相当する、局所的に疎水性指標の大きい領域を含むアミノ酸配列を有するものであってよい。
局所的に疎水性指標の大きい領域は、連続する2~4アミノ酸残基で構成されていることが好ましい。
上述の疎水性指標の大きいアミノ酸残基は、イソロイシン(I)、バリン(V)、ロイシン(L)、フェニルアラニン(F)、システイン(C)、メチオニン(M)及びアラニン(A)から選ばれるアミノ酸残基であることがより好ましい。
第5の改変フィブロインは、天然由来のフィブロインと比較して、REP中の1又は複数のアミノ酸残基が疎水性指標の大きいアミノ酸残基に置換されたこと、及び/又はREP中に1又は複数の疎水性指標の大きいアミノ酸残基が挿入されたことに相当する改変に加え、更に、天然由来のフィブロインと比較して、1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変があってもよい。
第5の改変フィブロインは、例えば、クローニングした天然由来のフィブロインの遺伝子配列からREP中の1又は複数の親水性アミノ酸残基(例えば、疎水性指標がマイナスであるアミノ酸残基)を疎水性アミノ酸残基(例えば、疎水性指標がプラスであるアミノ酸残基)に置換すること、及び/又はREP中に1又は複数の疎水性アミノ酸残基を挿入することにより得ることができる。また、例えば、天然由来のフィブロインのアミノ酸配列からREP中の1又は複数の親水性アミノ酸残基を疎水性アミノ酸残基に置換したこと、及び/又はREP中に1又は複数の疎水性アミノ酸残基を挿入したことに相当するアミノ酸配列を設計し、設計したアミノ酸配列をコードする核酸を化学合成することにより得ることもできる。いずれの場合においても、天然由来のフィブロインのアミノ酸配列からREP中の1又は複数の親水性アミノ酸残基を疎水性アミノ酸残基に置換したこと、及び/又はREP中に1又は複数の疎水性アミノ酸残基を挿入したことに相当する改変に加え、更に1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変を行ってもよい。
第5の改変フィブロインは、式1:[(A)nモチーフ-REP]mで表されるドメイン配列を含み、最もC末端側に位置する(A)nモチーフから上記ドメイン配列のC末端までの配列を上記ドメイン配列から除いた配列に含まれる全てのREPにおいて、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域に含まれるアミノ酸残基の総数をpとし、最もC末端側に位置する(A)nモチーフから上記ドメイン配列のC末端までの配列を上記ドメイン配列から除いた配列に含まれるアミノ酸残基の総数をqとしたときに、p/qが6.2%以上であるアミノ酸配列を有してもよい。
アミノ酸残基の疎水性指標については、公知の指標(Hydropathy index:Kyte J,&Doolittle R(1982)“A simple method for displaying the hydropathic character of a protein”,J.Mol.Biol.,157,pp.105-132)を使用する。具体的には、各アミノ酸の疎水性指標(ハイドロパシー・インデックス、以下「HI」とも記す。)は、下記表1に示すとおりである。
p/qの算出方法を更に詳細に説明する。算出には、式1:[(A)nモチーフ-REP]mで表されるドメイン配列から、最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列を除いた配列(以下、「配列A」とする)を用いる。まず、配列Aに含まれる全てのREPにおいて、連続する4アミノ酸残基の疎水性指標の平均値を算出する。疎水性指標の平均値は、連続する4アミノ酸残基に含まれる各アミノ酸残基のHIの総和を4(アミノ酸残基数)で除して求める。疎水性指標の平均値は、全ての連続する4アミノ酸残基について求める(各アミノ酸残基は、1~4回平均値の算出に用いられる。)。次いで、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域を特定する。あるアミノ酸残基が、複数の「疎水性指標の平均値が2.6以上となる連続する4アミノ酸残基」に該当する場合であっても、領域中には1アミノ酸残基として含まれることになる。そして、当該領域に含まれるアミノ酸残基の総数がpである。また、配列Aに含まれるアミノ酸残基の総数がqである。
例えば、「疎水性指標の平均値が2.6以上となる連続する4アミノ酸残基」が20カ所抽出された場合(重複はなし)、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域には、連続する4アミノ酸残基(重複はなし)が20含まれることになり、pは20×4=80である。また、例えば、2つの「疎水性指標の平均値が2.6以上となる連続する4アミノ酸残基」が1アミノ酸残基だけ重複して存在する場合、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域には、7アミノ酸残基含まれることになる(p=2×4-1=7。「-1」は重複分の控除である。)。例えば、図4に示したドメイン配列の場合、「疎水性指標の平均値が2.6以上となる連続する4アミノ酸残基」が重複せずに7つ存在するため、pは7×4=28となる。また、例えば、図4に示したドメイン配列の場合、qは4+50+4+40+4+10+4+20+4+30=170である(C末端側の最後に存在する(A)nモチーフは含めない)。次に、pをqで除すことによって、p/q(%)を算出することができる。図4の場合28/170=16.47%となる。
第5の改変フィブロインにおいて、p/qは、6.2%以上であることが好ましく、7%以上であることがより好ましく、10%以上であることが更に好ましく、20%以上であることが更により好ましく、30%以上であることが更によりまた好ましい。p/qの上限は、特に制限されないが、例えば、45%以下であってもよい。
第5の改変フィブロインは、例えば、クローニングした天然由来のフィブロインのアミノ酸配列を、上記のp/qの条件を満たすように、REP中の1又は複数の親水性アミノ酸残基(例えば、疎水性指標がマイナスであるアミノ酸残基)を疎水性アミノ酸残基(例えば、疎水性指標がプラスであるアミノ酸残基)に置換すること、及び/又はREP中に1又は複数の疎水性アミノ酸残基を挿入することにより、局所的に疎水性指標の大きい領域を含むアミノ酸配列に改変することにより得ることができる。また、例えば、天然由来のフィブロインのアミノ酸配列から上記のp/qの条件を満たすアミノ酸配列を設計し、設計したアミノ酸配列をコードする核酸を化学合成することにより得ることもできる。いずれの場合においても、天然由来のフィブロインと比較して、REP中の1又は複数のアミノ酸残基が疎水性指標の大きいアミノ酸残基に置換されたこと、及び/又はREP中に1又は複数の疎水性指標の大きいアミノ酸残基が挿入されたことに相当する改変に加え、更に1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当する改変を行ってもよい。
疎水性指標の大きいアミノ酸残基としては、特に制限はないが、イソロイシン(I)、バリン(V)、ロイシン(L)、フェニルアラニン(F)、システイン(C)、メチオニン(M)及びアラニン(A)が好ましく、バリン(V)、ロイシン(L)及びイソロイシン(I)がより好ましい。
第5の改変フィブロインのより具体的な例として、(5-i)配列番号19(Met-PRT720)、配列番号20(Met-PRT665)若しくは配列番号21(Met-PRT666)で示されるアミノ酸配列、又は(5-ii)配列番号19、配列番号20若しくは配列番号21で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
(5-i)の改変フィブロインについて説明する。配列番号19で示されるアミノ酸配列は、配列番号7(Met-PRT410)で示されるアミノ酸配列に対し、C末端側の端末のドメイン配列を除いて、REP一つ置きにそれぞれ3アミノ酸残基からなるアミノ酸配列(VLI)を2カ所挿入し、更に一部のグルタミン(Q)残基をセリン(S)残基に置換し、かつC末端側の一部のアミノ酸を欠失させたものである。配列番号20で示されるアミノ酸配列は、配列番号8(Met-PRT525)で示されるアミノ酸配列に対し、REP一つ置きにそれぞれ3アミノ酸残基からなるアミノ酸配列(VLI)を1カ所挿入したものである。配列番号21で示されるアミノ酸配列は、配列番号8で示されるアミノ酸配列に対し、REP一つ置きにそれぞれ3アミノ酸残基からなるアミノ酸配列(VLI)を2カ所挿入したものである。
(5-i)の改変フィブロインは、配列番号19、配列番号20又は配列番号21で示されるアミノ酸配列からなるものであってもよい。
(5-ii)の改変フィブロインは、配列番号19、配列番号20又は配列番号21で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(5-ii)の改変フィブロインもまた、式1:[(A)nモチーフ-REP]mで表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
(5-ii)の改変フィブロインは、配列番号19、配列番号20又は配列番号21で示されるアミノ酸配列と90%以上の配列同一性を有し、かつ最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列に含まれる全てのREPにおいて、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域に含まれるアミノ酸残基の総数をpとし、最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列に含まれるアミノ酸残基の総数をqとしたときに、p/qが6.2%以上であることが好ましい。
第5の改変フィブロインは、N末端及びC末端のいずれか一方又は両方にタグ配列を含んでいてもよい。
タグ配列を含む改変フィブロインのより具体的な例として、(5-iii)配列番号22(PRT720)、配列番号23(PRT665)若しくは配列番号24(PRT666)で示されるアミノ酸配列、又は(5-iv)配列番号22、配列番号23若しくは配列番号24で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む、改変フィブロインを挙げることができる。
配列番号22、配列番号23及び配列番号24で示されるアミノ酸配列は、それぞれ配列番号19、配列番号20及び配列番号21で示されるアミノ酸配列のN末端に配列番号11で示されるアミノ酸配列(Hisタグ配列及びヒンジ配列を含む)を付加したものである。
(5-iii)の改変フィブロインは、配列番号22、配列番号23又は配列番号24で示されるアミノ酸配列からなるものであってもよい。
(5-iv)の改変フィブロインは、配列番号22、配列番号23又は配列番号24で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(5-iv)の改変フィブロインもまた、式1:[(A)nモチーフ-REP]mで表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
(5-iv)の改変フィブロインは、配列番号22、配列番号23又は配列番号24で示されるアミノ酸配列と90%以上の配列同一性を有し、かつ最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列に含まれる全てのREPにおいて、連続する4アミノ酸残基の疎水性指標の平均値が2.6以上となる領域に含まれるアミノ酸残基の総数をpとし、最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列に含まれるアミノ酸残基の総数をqとしたときに、p/qが6.2%以上であることが好ましい。
第5の改変フィブロインは、組換えタンパク質生産系において生産されたタンパク質を宿主の外部に放出するための分泌シグナルを含んでいてもよい。分泌シグナルの配列は、宿主の種類に応じて適宜設定することができる。
第6の改変フィブロインは、天然由来のフィブロインと比較して、グルタミン残基の含有量が低減されたアミノ酸配列を有する。
第6の改変フィブロインは、REPのアミノ酸配列中に、GGXモチーフ及びGPGXXモチーフから選ばれる少なくとも一つのモチーフが含まれていることが好ましい。
第6の改変フィブロインが、REP中にGPGXXモチーフを含む場合、GPGXXモチーフ含有率は、通常1%以上であり、5%以上であってもよく、10%以上であるのが好ましい。GPGXXモチーフ含有率の上限に特に制限はなく、50%以下であってよく、30%以下であってもよい。
本明細書において、「GPGXXモチーフ含有率」は、以下の方法により算出される値である。
式1:[(A)nモチーフ-REP]m、又は式2:[(A)nモチーフ-REP]m-(A)nモチーフで表されるドメイン配列を含むフィブロイン(改変フィブロイン又は天然由来のフィブロイン)において、最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列に含まれる全てのREPにおいて、その領域に含まれるGPGXXモチーフの個数の総数を3倍した数(即ち、GPGXXモチーフ中のG及びPの総数に相当)をsとし、最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列をドメイン配列から除き、更に(A)nモチーフを除いた全REPのアミノ酸残基の総数をtとしたときに、GPGXXモチーフ含有率はs/tとして算出される。
式1:[(A)nモチーフ-REP]m、又は式2:[(A)nモチーフ-REP]m-(A)nモチーフで表されるドメイン配列を含むフィブロイン(改変フィブロイン又は天然由来のフィブロイン)において、最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列に含まれる全てのREPにおいて、その領域に含まれるGPGXXモチーフの個数の総数を3倍した数(即ち、GPGXXモチーフ中のG及びPの総数に相当)をsとし、最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列をドメイン配列から除き、更に(A)nモチーフを除いた全REPのアミノ酸残基の総数をtとしたときに、GPGXXモチーフ含有率はs/tとして算出される。
GPGXXモチーフ含有率の算出において、「最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列」を対象としているのは、「最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列」(REPに相当する配列)には、フィブロインに特徴的な配列と相関性の低い配列が含まれることがあり、mが小さい場合(つまり、ドメイン配列が短い場合)、GPGXXモチーフ含有率の算出結果に影響するので、この影響を排除するためである。なお、REPのC末端に「GPGXXモチーフ」が位置する場合、「XX」が例えば「AA」の場合であっても、「GPGXXモチーフ」として扱う。
図5は、改変フィブロインのドメイン配列を示す模式図である。図5を参照しながらGPGXXモチーフ含有率の算出方法を具体的に説明する。まず、図5に示した改変フィブロインのドメイン配列(「[(A)nモチーフ-REP]m-(A)nモチーフ」タイプである。)では、全てのREPが「最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列」(図5中、「領域A」で示した配列。)に含まれているため、sを算出するためのGPGXXモチーフの個数は7であり、sは7×3=21となる。同様に、全てのREPが「最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列」(図5中、「領域A」で示した配列。)に含まれているため、当該配列から更に(A)nモチーフを除いた全REPのアミノ酸残基の総数tは50+40+10+20+30=150である。次に、sをtで除すことによって、s/t(%)を算出することができ、図5の改変フィブロインの場合21/150=14.0%となる。
第6の改変フィブロインは、グルタミン残基含有率が9%以下であることが好ましく、7%以下であることがより好ましく、4%以下であることが更に好ましく、0%であることが特に好ましい。
本明細書において、「グルタミン残基含有率」は、以下の方法により算出される値である。
式1:[(A)nモチーフ-REP]m、又は式2:[(A)nモチーフ-REP]m-(A)nモチーフで表されるドメイン配列を含むフィブロイン(改変フィブロイン又は天然由来のフィブロイン)において、最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列(図5の「領域A」に相当する配列。)に含まれる全てのREPにおいて、その領域に含まれるグルタミン残基の総数をuとし、最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列をドメイン配列から除き、更に(A)nモチーフを除いた全REPのアミノ酸残基の総数をtとしたときに、グルタミン残基含有率はu/tとして算出される。グルタミン残基含有率の算出において、「最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列」を対象としている理由は、上述した理由と同様である。
式1:[(A)nモチーフ-REP]m、又は式2:[(A)nモチーフ-REP]m-(A)nモチーフで表されるドメイン配列を含むフィブロイン(改変フィブロイン又は天然由来のフィブロイン)において、最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列(図5の「領域A」に相当する配列。)に含まれる全てのREPにおいて、その領域に含まれるグルタミン残基の総数をuとし、最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列をドメイン配列から除き、更に(A)nモチーフを除いた全REPのアミノ酸残基の総数をtとしたときに、グルタミン残基含有率はu/tとして算出される。グルタミン残基含有率の算出において、「最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列」を対象としている理由は、上述した理由と同様である。
第6の改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、REP中の1又は複数のグルタミン残基を欠失したこと、又は他のアミノ酸残基に置換したことに相当するアミノ酸配列を有するものであってよい。
「他のアミノ酸残基」は、グルタミン残基以外のアミノ酸残基であればよいが、グルタミン残基よりも疎水性指標の大きいアミノ酸残基であることが好ましい。アミノ酸残基の疎水性指標は表1に示すとおりである。
表1に示すとおり、グルタミン残基よりも疎水性指標の大きいアミノ酸残基としては、イソロイシン(I)、バリン(V)、ロイシン(L)、フェニルアラニン(F)、システイン(C)、メチオニン(M)アラニン(A)、グリシン(G)、スレオニン(T)、セリン(S)、トリプトファン(W)、チロシン(Y)、プロリン(P)及びヒスチジン(H)から選ばれるアミノ酸残基を挙げることができる。これらの中でも、イソロイシン(I)、バリン(V)、ロイシン(L)、フェニルアラニン(F)、システイン(C)、メチオニン(M)及びアラニン(A)から選ばれるアミノ酸残基であることがより好ましく、イソロイシン(I)、バリン(V)、ロイシン(L)及びフェニルアラニン(F)から選ばれるアミノ酸残基であることが更に好ましい。
第6の改変フィブロインは、REPの疎水性度が、-0.8以上であることが好ましく、-0.7以上であることがより好ましく、0以上であることが更に好ましく、0.3以上であることが更により好ましく、0.4以上であることが特に好ましい。REPの疎水性度の上限に特に制限はなく、1.0以下であってよく、0.7以下であってもよい。
本明細書において、「REPの疎水性度」は、以下の方法により算出される値である。
式1:[(A)nモチーフ-REP]m、又は式2:[(A)nモチーフ-REP]m-(A)nモチーフで表されるドメイン配列を含むフィブロイン(改変フィブロイン又は天然由来のフィブロイン)において、最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列(図5の「領域A」に相当する配列。)に含まれる全てのREPにおいて、その領域の各アミノ酸残基の疎水性指標の総和をvとし、最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列をドメイン配列から除き、更に(A)nモチーフを除いた全REPのアミノ酸残基の総数をtとしたときに、REPの疎水性度はv/tとして算出される。REPの疎水性度の算出において、「最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列」を対象としている理由は、上述した理由と同様である。
式1:[(A)nモチーフ-REP]m、又は式2:[(A)nモチーフ-REP]m-(A)nモチーフで表されるドメイン配列を含むフィブロイン(改変フィブロイン又は天然由来のフィブロイン)において、最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列(図5の「領域A」に相当する配列。)に含まれる全てのREPにおいて、その領域の各アミノ酸残基の疎水性指標の総和をvとし、最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列をドメイン配列から除き、更に(A)nモチーフを除いた全REPのアミノ酸残基の総数をtとしたときに、REPの疎水性度はv/tとして算出される。REPの疎水性度の算出において、「最もC末端側に位置する(A)nモチーフからドメイン配列のC末端までの配列をドメイン配列から除いた配列」を対象としている理由は、上述した理由と同様である。
第6の改変フィブロインは、そのドメイン配列が、天然由来のフィブロインと比較して、REP中の1又は複数のグルタミン残基を欠失したこと、及び/又はREP中の1又は複数のグルタミン残基を他のアミノ酸残基に置換したことに相当する改変に加え、更に1又は複数のアミノ酸残基を置換、欠失、挿入及び/又は付加したことに相当するアミノ酸配列の改変があってもよい。
第6の改変フィブロインは、例えば、クローニングした天然由来のフィブロインの遺伝子配列からREP中の1又は複数のグルタミン残基を欠失させること、及び/又はREP中の1又は複数のグルタミン残基を他のアミノ酸残基に置換することにより得ることができる。また、例えば、天然由来のフィブロインのアミノ酸配列からREP中の1又は複数のグルタミン残基を欠失したこと、及び/又はREP中の1又は複数のグルタミン残基を他のアミノ酸残基に置換したことに相当するアミノ酸配列を設計し、設計したアミノ酸配列をコードする核酸を化学合成することにより得ることもできる。
第6の改変フィブロインのより具体的な例として、(6-i)配列番号25(Met-PRT888)、配列番号26(Met-PRT965)、配列番号27(Met-PRT889)、配列番号28(Met-PRT916)、配列番号29(Met-PRT918)、配列番号30(Met-PRT699)、配列番号31(Met-PRT698)若しくは配列番号32(Met-PRT966)で示されるアミノ酸配列を含む改変フィブロイン、又は(6-ii)配列番号25、配列番号26、配列番号27、配列番号28、配列番号29、配列番号30、配列番号31若しくは配列番号32で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む改変フィブロインを挙げることができる。
(6-i)の改変フィブロインについて説明する。配列番号25で示されるアミノ酸配列は、配列番号7で示されるアミノ酸配列(Met-PRT410)中のQQを全てVLに置換したものである。配列番号26で示されるアミノ酸配列は、配列番号7で示されるアミノ酸配列中のQQを全てTSに置換し、かつ残りのQをAに置換したものである。配列番号27で示されるアミノ酸配列は、配列番号7で示されるアミノ酸配列中のQQを全てVLに置換し、かつ残りのQをIに置換したものである。配列番号28で示されるアミノ酸配列は、配列番号7で示されるアミノ酸配列中のQQを全てVIに置換し、かつ残りのQをLに置換したものである。配列番号29で示されるアミノ酸配列は、配列番号7で示されるアミノ酸配列中のQQを全てVFに置換し、かつ残りのQをIに置換したものである。
配列番号30で示されるアミノ酸配列は、配列番号8で示されるアミノ酸配列(Met-PRT525)中のQQを全てVLに置換したものである。配列番号31で示されるアミノ酸配列は、配列番号8で示されるアミノ酸配列中のQQを全てVLに置換し、かつ残りのQをIに置換したものである。
配列番号32で示されるアミノ酸配列は、配列番号7で示されるアミノ酸配列(Met-PRT410)中に存在する20個のドメイン配列の領域を2回繰り返した配列中のQQを全てVFに置換し、かつ残りのQをIに置換したものである。
配列番号25、配列番号26、配列番号27、配列番号28、配列番号29、配列番号30、配列番号31及び配列番号32で示されるアミノ酸配列は、いずれもグルタミン残基含有率は9%以下である(表2)。
(6-i)の改変フィブロインは、配列番号25、配列番号26、配列番号27、配列番号28、配列番号29、配列番号30、配列番号31又は配列番号32で示されるアミノ酸配列からなるものであってもよい。
(6-ii)の改変フィブロインは、配列番号25、配列番号26、配列番号27、配列番号28、配列番号29、配列番号30、配列番号31又は配列番号32で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(6-ii)の改変フィブロインもまた、式1:[(A)nモチーフ-REP]m、又は式2:[(A)nモチーフ-REP]m-(A)nモチーフで表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
(6-ii)の改変フィブロインは、グルタミン残基含有率が9%以下であることが好ましい。また、(6-ii)の改変フィブロインは、GPGXXモチーフ含有率が10%以上であることが好ましい。
第6の改変フィブロインは、N末端及びC末端のいずれか一方又は両方にタグ配列を含んでいてもよい。これにより、改変フィブロインの単離、固定化、検出及び可視化等が可能となる。
タグ配列を含む改変フィブロインのより具体的な例として、(6-iii)配列番号33(PRT888)、配列番号34(PRT965)、配列番号35(PRT889)、配列番号36(PRT916)、配列番号37(PRT918)、配列番号38(PRT699)、配列番号39(PRT698)若しくは配列番号40(PRT966)で示されるアミノ酸配列を含む改変フィブロイン、又は(6-iv)配列番号33、配列番号34、配列番号35、配列番号36、配列番号37、配列番号38、配列番号39若しくは配列番号40で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含む改変フィブロインを挙げることができる。
配列番号33、配列番号34、配列番号35、配列番号36、配列番号37、配列番号38、配列番号39及び配列番号40で示されるアミノ酸配列は、それぞれ配列番号25、配列番号26、配列番号27、配列番号28、配列番号29、配列番号30、配列番号31及び配列番号32で示されるアミノ酸配列のN末端に配列番号11で示されるアミノ酸配列(Hisタグ配列及びヒンジ配列を含む)を付加したものである。N末端にタグ配列を付加しただけであるため、グルタミン残基含有率に変化はなく、配列番号33、配列番号34、配列番号35、配列番号36、配列番号37、配列番号38、配列番号39及び配列番号40で示されるアミノ酸配列は、いずれもグルタミン残基含有率が9%以下である(表3)。
(6-iii)の改変フィブロインは、配列番号33、配列番号34、配列番号35、配列番号36、配列番号37、配列番号38、配列番号39又は配列番号40で示されるアミノ酸配列からなるものであってもよい。
(6-iv)の改変フィブロインは、配列番号33、配列番号34、配列番号35、配列番号36、配列番号37、配列番号38、配列番号39又は配列番号40で示されるアミノ酸配列と90%以上の配列同一性を有するアミノ酸配列を含むものである。(6-iv)の改変フィブロインもまた、式1:[(A)nモチーフ-REP]m、又は式2:[(A)nモチーフ-REP]m-(A)nモチーフで表されるドメイン配列を含むタンパク質である。上記配列同一性は、95%以上であることが好ましい。
(6-iv)の改変フィブロインは、グルタミン残基含有率が9%以下であることが好ましい。また、(6-iv)の改変フィブロインは、GPGXXモチーフ含有率が10%以上であることが好ましい。
第6の改変フィブロインは、組換えタンパク質生産系において生産されたタンパク質を宿主の外部に放出するための分泌シグナルを含んでいてもよい。分泌シグナルの配列は、宿主の種類に応じて適宜設定することができる。
改変フィブロインは、第1の改変フィブロイン、第2の改変フィブロイン、第3の改変フィブロイン、第4の改変フィブロイン、第5の改変フィブロイン、及び第6の改変フィブロインが有する特徴のうち、少なくとも2つ以上の特徴を併せ持つ改変フィブロインであってもよい。
コラーゲン由来のタンパク質として、例えば、式2:[REP2]pで表されるドメイン配列を含むタンパク質(ここで、式2中、pは5~300の整数を示す。REP2は、Gly-X-Yから構成されるアミノ酸配列を示し、X及びYはGly以外の任意のアミノ酸残基を示す。複数存在するREP2は、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。)を挙げることができる。具体的には、配列番号41で示されるアミノ酸配列を含むタンパク質を挙げることができる。配列番号41で示されるアミノ酸配列は、NCBIデータベースから入手したヒトのコラーゲンタイプ4の部分的な配列(NCBIのGenBankのアクセッション番号:CAA56335.1、GI:3702452)のリピート部分及びモチーフに該当する301残基目から540残基目までのアミノ酸配列のN末端に配列番号11で示されるアミノ酸配列(タグ配列及びヒンジ配列)が付加されたものである。
レシリン由来のタンパク質として、例えば、式3:[REP3]qで表されるドメイン配列を含むタンパク質(ここで、式3中、qは4~300の整数を示す。REP3はSer-J-J-Tyr-Gly-U-Proから構成されるアミノ酸配列を示す。Jは任意のアミノ酸残基を示し、特にAsp、Ser及びThrからなる群から選ばれるアミノ酸残基であることが好ましい。Uは任意のアミノ酸残基を示し、特にPro、Ala、Thr及びSerからなる群から選ばれるアミノ酸残基であることが好ましい。複数存在するREP4は、互いに同一のアミノ酸配列でもよく、異なるアミノ酸配列でもよい。)を挙げることができる。具体的には、配列番号42で示されるアミノ酸配列を含むタンパク質を挙げることができる。配列番号2で示されるアミノ酸配列は、レシリン(NCBIのGenBankのアクセッション番号NP 611157、Gl:24654243)のアミノ酸配列において、87残基目のThrをSerに置換し、かつ95残基目のAsnをAspに置換した配列の19残基目から321残基目までのアミノ酸配列のN末端に配列番号11で示されるアミノ酸配列(タグ配列及びヒンジ配列)が付加されたものである。
エラスチン由来のタンパク質として、例えば、NCBIのGenBankのアクセッション番号AAC98395(ヒト)、I47076(ヒツジ)、NP786966(ウシ)等のアミノ酸配列を有するタンパク質を挙げることができる。具体的には、配列番号43で示されるアミノ酸配列を含むタンパク質を挙げることができる。配列番号43で示されるアミノ酸配列は、NCBIのGenBankのアクセッション番号AAC98395のアミノ酸配列の121残基目から390残基目までのアミノ酸配列のN末端に配列番号11で示されるアミノ酸配列(タグ配列及びヒンジ配列)が付加されたものである。
ケラチン由来のタンパク質として、例えば、カプラ・ヒルクス(Capra hircus)のタイプIケラチン等を挙げることができる。具体的には、配列番号44で示されるアミノ酸配列(NCBIのGenBankのアクセッション番号ACY30466のアミノ酸配列)を含むタンパク質を挙げることができる。
上述した構造タンパク質及び当該構造タンパク質に由来するタンパク質は、1種を単独で、又は2種以上を組み合わせて用いることができる。
タンパク質繊維及びタンパク質原料繊維に主成分として含まれるタンパク質は、例えば、当該タンパク質をコードする核酸配列と、当該核酸配列に作動可能に連結された1又は複数の調節配列とを有する発現ベクターで形質転換された宿主により、当該核酸を発現させることにより生産することができる。
タンパク質繊維及びタンパク質原料繊維に主成分として含まれるタンパク質をコードする核酸の製造方法は、特に制限されない。例えば、天然の構造タンパク質をコードする遺伝子を利用して、ポリメラーゼ連鎖反応(PCR)などで増幅しクローニングする方法、又は、化学的に合成する方法によって、当該核酸を製造することができる。核酸の化学的な合成方法も特に制限されず、例えば、NCBIのウェブデータベースなどより入手した構造タンパク質のアミノ酸配列情報をもとに、AKTA oligopilot plus 10/100(GEヘルスケア・ジャパン株式会社)などで自動合成したオリゴヌクレオチドをPCRなどで連結する方法によって遺伝子を化学的に合成することができる。この際に、タンパク質の精製及び/又は確認を容易にするため、上記のアミノ酸配列のN末端に開始コドン及びHis10タグからなるアミノ酸配列を付加したアミノ酸配列からなるタンパク質をコードする核酸を合成してもよい。
調節配列は、宿主における組換えタンパク質の発現を制御する配列(例えば、プロモーター、エンハンサー、リボソーム結合配列、転写終結配列等)であり、宿主の種類に応じて適宜選択することができる。プロモーターとして、宿主細胞中で機能し、目的とするタンパク質を発現誘導可能な誘導性プロモーターを用いてもよい。誘導性プロモーターは、誘導物質(発現誘導剤)の存在、リプレッサー分子の非存在、又は温度、浸透圧若しくはpH値の上昇若しくは低下等の物理的要因により、転写を制御できるプロモーターである。
発現ベクターの種類は、プラスミドベクター、ウイルスベクター、コスミドベクター、フォスミドベクター、人工染色体ベクター等、宿主の種類に応じて適宜選択することができる。発現ベクターとしては、宿主細胞において自立複製が可能、又は宿主の染色体中への組込みが可能で、目的とするタンパク質をコードする核酸を転写できる位置にプロモーターを含有しているものが好適に用いられる。
宿主として、原核生物、並びに酵母、糸状真菌、昆虫細胞、動物細胞及び植物細胞等の真核生物のいずれも好適に用いることができる。
原核生物の宿主の好ましい例として、エシェリヒア属、ブレビバチルス属、セラチア属、バチルス属、ミクロバクテリウム属、ブレビバクテリウム属、コリネバクテリウム属及びシュードモナス属等に属する細菌を挙げることができる。エシェリヒア属に属する微生物として、例えば、エシェリヒア・コリ等を挙げることができる。ブレビバチルス属に属する微生物として、例えば、ブレビバチルス・アグリ等を挙げることができる。セラチア属に属する微生物として、例えば、セラチア・リクエファシエンス等を挙げることができる。バチルス属に属する微生物として、例えば、バチルス・サチラス等を挙げることができる。ミクロバクテリウム属に属する微生物として、例えば、ミクロバクテリウム・アンモニアフィラム等を挙げることができる。ブレビバクテリウム属に属する微生物として、例えば、ブレビバクテリウム・ディバリカタム等を挙げることができる。コリネバクテリウム属に属する微生物として、例えば、コリネバクテリウム・アンモニアゲネス等を挙げることができる。シュードモナス(Pseudomonas)属に属する微生物として、例えば、シュードモナス・プチダ等を挙げることができる。
原核生物を宿主とする場合、目的タンパク質をコードする核酸を導入するベクターとしては、例えば、pBTrp2(ベーリンガーマンハイム社製)、pGEX(Pharmacia社製)、pUC18、pBluescriptII、pSupex、pET22b、pCold、pUB110、pNCO2(特開2002-238569号公報)等を挙げることができる。
真核生物の宿主としては、例えば、酵母及び糸状真菌(カビ等)を挙げることができる。酵母としては、例えば、サッカロマイセス属、ピキア属、シゾサッカロマイセス属等に属する酵母を挙げることができる。糸状真菌としては、例えば、アスペルギルス属、ペニシリウム属、トリコデルマ(Trichoderma)属等に属する糸状真菌を挙げることができる。
真核生物を宿主とする場合、目的タンパク質をコードする核酸を導入するベクターとしては、例えば、YEP13(ATCC37115)、YEp24(ATCC37051)等を挙げることができる。上記宿主細胞への発現ベクターの導入方法としては、上記宿主細胞へDNAを導入する方法であればいずれも用いることができる。例えば、カルシウムイオンを用いる方法〔Proc. Natl. Acad. Sci. USA,69,2110(1972)〕、エレクトロポレーション法、スフェロプラスト法、プロトプラスト法、酢酸リチウム法、コンピテント法等を挙げることができる。
発現ベクターで形質転換された宿主による核酸の発現方法としては、直接発現のほか、モレキュラー・クローニング第2版に記載されている方法等に準じて、分泌生産、融合タンパク質発現等を行うことができる。
タンパク質は、例えば、発現ベクターで形質転換された宿主を培養培地中で培養し、培養培地中に当該タンパク質を生成蓄積させ、該培養培地から採取することにより製造することができる。宿主を培養培地中で培養する方法は、宿主の培養に通常用いられる方法に従って行うことができる。
宿主が、大腸菌等の原核生物又は酵母等の真核生物である場合、培養培地として、宿主が資化し得る炭素源、窒素源及び無機塩類等を含有し、宿主の培養を効率的に行える培地であれば天然培地、合成培地のいずれを用いてもよい。
炭素源としては、上記形質転換微生物が資化し得るものであればよく、例えば、グルコース、フラクトース、スクロース、及びこれらを含有する糖蜜、デンプン及びデンプン加水分解物等の炭水化物、酢酸及びプロピオン酸等の有機酸、並びにエタノール及びプロパノール等のアルコール類を用いることができる。窒素源としては、例えば、アンモニア、塩化アンモニウム、硫酸アンモニウム、酢酸アンモニウム及びリン酸アンモニウム等の無機酸又は有機酸のアンモニウム塩、その他の含窒素化合物、並びにペプトン、肉エキス、酵母エキス、コーンスチープリカー、カゼイン加水分解物、大豆粕及び大豆粕加水分解物、各種発酵菌体及びその消化物を用いることができる。無機塩類としては、例えば、リン酸第一カリウム、リン酸第二カリウム、リン酸マグネシウム、硫酸マグネシウム、塩化ナトリウム、硫酸第一鉄、硫酸マンガン、硫酸銅及び炭酸カルシウムを用いることができる。
大腸菌等の原核生物又は酵母等の真核生物の培養は、例えば、振盪培養又は深部通気攪拌培養等の好気的条件下で行うことができる。培養温度は、例えば、15~40℃である。培養時間は、通常16時間~7日間である。培養中の培養培地のpHは3.0~9.0に保持することが好ましい。培養培地のpHの調整は、無機酸、有機酸、アルカリ溶液、尿素、炭酸カルシウム及びアンモニア等を用いて行うことができる。
また、培養中、必要に応じて、アンピシリン及びテトラサイクリン等の抗生物質を培養培地に添加してもよい。プロモーターとして誘導性のプロモーターを用いた発現ベクターで形質転換した微生物を培養するときには、必要に応じてインデューサーを培地に添加してもよい。例えば、lacプロモーターを用いた発現ベクターで形質転換した微生物を培養するときにはイソプロピル-β-D-チオガラクトピラノシド等を、trpプロモーターを用いた発現ベクターで形質転換した微生物を培養するときにはインドールアクリル酸等を培地に添加してもよい。
発現させたタンパク質の単離、精製は通常用いられている方法で行うことができる。例えば、当該タンパク質が、細胞内に溶解状態で発現した場合には、培養終了後、宿主細胞を遠心分離により回収し、水系緩衝液に懸濁した後、超音波破砕機、フレンチプレス、マントンガウリンホモゲナイザー及びダイノミル等により宿主細胞を破砕し、無細胞抽出液を得る。該無細胞抽出液を遠心分離することにより得られる上清から、タンパク質の単離精製に通常用いられている方法、すなわち、溶媒抽出法、硫安等による塩析法、脱塩法、有機溶媒による沈殿法、ジエチルアミノエチル(DEAE)-セファロース、DIAION HPA-75(三菱化成社製)等のレジンを用いた陰イオン交換クロマトグラフィー法、S-Sepharose FF(Pharmacia社製)等のレジンを用いた陽イオン交換クロマトグラフィー法、ブチルセファロース、フェニルセファロース等のレジンを用いた疎水性クロマトグラフィー法、分子篩を用いたゲルろ過法、アフィニティークロマトグラフィー法、クロマトフォーカシング法、等電点電気泳動等の電気泳動法等の方法を単独又は組み合わせて使用し、精製標品を得ることができる。
また、タンパク質が細胞内に不溶体を形成して発現した場合は、同様に宿主細胞を回収後、破砕し、遠心分離を行うことにより、沈殿画分としてタンパク質の不溶体を回収する。回収したタンパク質の不溶体はタンパク質変性剤で可溶化することができる。該操作の後、上記と同様の単離精製法によりタンパク質の精製標品を得ることができる。当該タンパク質が細胞外に分泌された場合には、培養上清から当該タンパク質を回収することができる。すなわち、培養物を遠心分離等の手法により処理することにより培養上清を取得し、その培養上清から、上記と同様の単離精製法を用いることにより、精製標品を得ることができる。
(タンパク質原料繊維)
タンパク質原料繊維は、上述したタンパク質を紡糸したものであり、上述したタンパク質を主成分として含む。タンパク質原料繊維は、公知の紡糸方法によって製造することができる。すなわち、例えば、クモ糸フィブロインを主成分として含むタンパク質原料繊維を製造する際には、まず、上述した方法に準じて製造したクモ糸フィブロインをジメチルスルホキシド(DMSO)、N,N-ジメチルホルムアミド(DMF)、又はヘキサフルオロイソプロノール(HFIP)、ギ酸等の溶媒にて溶解させ、ドープ液を作成する。この際、必要に応じて無機塩を添加してもよい。次いで、このドープ液を用い、湿式、乾式又は乾湿式等の公知の紡糸方法により紡糸を行うことで、目的とするタンパク質原料繊維を得ることができる。
タンパク質原料繊維は、上述したタンパク質を紡糸したものであり、上述したタンパク質を主成分として含む。タンパク質原料繊維は、公知の紡糸方法によって製造することができる。すなわち、例えば、クモ糸フィブロインを主成分として含むタンパク質原料繊維を製造する際には、まず、上述した方法に準じて製造したクモ糸フィブロインをジメチルスルホキシド(DMSO)、N,N-ジメチルホルムアミド(DMF)、又はヘキサフルオロイソプロノール(HFIP)、ギ酸等の溶媒にて溶解させ、ドープ液を作成する。この際、必要に応じて無機塩を添加してもよい。次いで、このドープ液を用い、湿式、乾式又は乾湿式等の公知の紡糸方法により紡糸を行うことで、目的とするタンパク質原料繊維を得ることができる。
(タンパク質繊維の製造装置)
図6および図7を参照して、タンパク質繊維の製造装置について説明する。図6は、本開示の一実施形態に係るタンパク質繊維の製造装置を概略的に示す図である。図7は、図6中の高温加熱炉に設けられ得る、速度調節手段および温度調節手段を示す図である。図6に示される製造装置10は、タンパク質原料繊維を紡糸し、更にタンパク質原料繊維に所定の処理を施すことにより、防縮タンパク質繊維を容易に製造することができる装置である。この製造装置10は、タンパク質原料繊維36を紡糸する紡糸装置(紡糸手段)25と、紡糸装置25によって紡糸されたタンパク質原料繊維36を高温で加熱して収縮させる高温加熱弛緩装置40とを備えている。製造装置10では、紡糸工程と、加熱状態での弛緩収縮による防縮工程とが連続して行われる。このような連続工程の実現により、高い生産性をもって防縮タンパク質繊維50を製造することができる。
図6および図7を参照して、タンパク質繊維の製造装置について説明する。図6は、本開示の一実施形態に係るタンパク質繊維の製造装置を概略的に示す図である。図7は、図6中の高温加熱炉に設けられ得る、速度調節手段および温度調節手段を示す図である。図6に示される製造装置10は、タンパク質原料繊維を紡糸し、更にタンパク質原料繊維に所定の処理を施すことにより、防縮タンパク質繊維を容易に製造することができる装置である。この製造装置10は、タンパク質原料繊維36を紡糸する紡糸装置(紡糸手段)25と、紡糸装置25によって紡糸されたタンパク質原料繊維36を高温で加熱して収縮させる高温加熱弛緩装置40とを備えている。製造装置10では、紡糸工程と、加熱状態での弛緩収縮による防縮工程とが連続して行われる。このような連続工程の実現により、高い生産性をもって防縮タンパク質繊維50を製造することができる。
紡糸装置25は、例えば乾湿式紡糸用の紡糸装置であり、押出し装置1と、凝固装置2と、洗浄装置3と、乾燥装置4とを、上流側から順に備えている。押出し装置1は貯槽7を有しており、この貯槽7にドープ液(紡糸原液)6が貯留される。凝固装置2は凝固浴槽20を有しており、この凝固浴槽20に凝固液11(例えば、メタノール)が貯留される。ドープ液6は、貯槽7の下端部に取り付けられたギヤポンプ8により、凝固液11との間にエアギャップ19を開けて設けられたノズル9から押し出される。押し出されたドープ液6は、エアギャップ19を経て凝固液11内に供給される。凝固液11内でドープ液6から溶媒が除去されてタンパク質が凝固する。
凝固液11としては、脱溶媒できる溶液であればよく、例えば、メタノール、エタノール及び2-プロパノール等の炭素数1~5の低級アルコール、並びにアセトン等を挙げることができる。凝固液11は、適宜水を含んでいてもよい。凝固液11の温度は、0~30℃であることが好ましい。凝固したタンパク質が凝固液11中を通過する距離(実質的には、糸ガイド18aから糸ガイド18bまでの距離)は、脱溶媒が効率的に行える、凝固液11中でのタンパク質原料繊維36の滞在時間を確保可能な長さがあればよい。凝固液11中での滞留時間は、例えば、0.01~3分であってよく、0.5~1分であってもよい。また、凝固液11中で延伸(前延伸)をしてもよい。
洗浄装置3は、洗浄浴槽21を有しており、この洗浄浴槽21に洗浄液12(例えば、水)が貯留される。凝固浴槽20内で凝固したタンパク質は、洗浄浴槽21に導かれ、洗浄液12により洗浄される。このタンパク質は、洗浄浴槽21内に設置された第1ニップローラ13と第2ニップローラ14により、乾燥装置4へと送られる。例えば、第2ニップローラ14の回転速度が第1ニップローラ13の回転速度よりも速く設定されることで、回転速度比に応じた倍率で延伸されたタンパク質原料繊維36が得られる。なお、18a~18eは糸ガイドである。
なお、タンパク質原料繊維を得る際に洗浄浴槽21内で実施される延伸は、温水中、温水に有機溶剤等を加えた溶液中等で行う、いわゆる湿熱延伸であってもよい。この湿熱延伸の温度としては、例えば、0~90℃であってよく、20~70℃が好ましく、30~60℃がより好ましい。湿熱延伸での未延伸糸(又は前延伸糸)の延伸倍率は、例えば、1~10倍であってもよく、2~8倍であってもよい。
洗浄液12中で延伸されたタンパク質原料繊維36は、洗浄浴槽21内を離脱してから、乾燥装置4内を通過する際に乾燥される。乾燥装置4は、例えば乾熱式の乾燥炉17を有している。乾燥炉17内には、送出しローラ31と巻取りローラ32とが設けられている。タンパク質原料繊維36は、これらの送出しローラ31および巻取りローラ32により、乾燥炉17内を所定の滞在時間で滞在し、その後に高温加熱弛緩装置40に送られる。乾燥炉17では、例えば、巻取りローラ32の回転速度が送出しローラ31の回転速度よりも速く設定されることで、回転速度比に応じた倍率で、タンパク質原料繊維36が延伸されてもよい。乾燥炉17内には、図示しないヒータが設けられる。乾燥炉17内の温度すなわちタンパク質原料繊維36の乾燥温度は、例えば80℃である。なお、洗浄装置3と乾燥装置4との間に、オイリング装置30が設けられてもよい。
高温加熱弛緩装置40は、タンパク質原料繊維36の走行方向における紡糸装置25の下流側に設けられている。乾式防縮装置である高温加熱弛緩装置40は、例えば乾熱式の高温加熱炉43を有している。高温加熱炉43内には、送出しローラ(送出し手段)41と巻取りローラ(巻取り手段)42とが設けられている。送出しローラ41および巻取りローラ42はいずれも円筒状であり、これらの周面に、タンパク質原料繊維36が巻き掛けられる。タンパク質原料繊維36は、これらの送出しローラ41および巻取りローラ42により、高温加熱炉43内を所定の滞在時間で滞在し、その後、ワインダーにて巻き取られる。
高温加熱炉43では、例えば、巻取りローラ42の回転速度が送出しローラ41の回転速度よりも遅く設定されることで、回転速度比に応じた倍率で、タンパク質原料繊維36が弛緩される。すなわち、送出しローラ41は、タンパク質原料繊維36を所定の送出し速度で連続的に送り出すように構成されている。巻取りローラ42は、送出しローラ41によって送り出されたタンパク質原料繊維36を、送出しローラ41の送出し速度よりも遅い巻取り速度で、連絡的に巻き取るように構成されている。このように構成された送出しローラ41および巻取りローラ42によれば、タンパク質原料繊維36はオーバーフィードされることになり、送出しローラ41と巻取りローラ42の間で、タンパク質原料繊維36の弛緩状態(緊張させない乃至は引張させない状態)が発生する。
図7を参照して、高温加熱弛緩装置40についてより詳細に説明する。送出しローラ41および巻取りローラ42には、速度コントローラ46が接続されている。例えば、速度コントローラ46は、送出しローラ41および巻取りローラ42のそれぞれに設けられた図示しない駆動モータに接続される。速度コントローラ46は、例えばCPU(Central Processing Unit)、ROM(Read Only Memory)、およびRAM(Random Access Memory)等のハードウェアと、ROMに記憶されたプログラム等のソフトウェアとから構成されたコンピュータである。速度コントローラ46は、送出しローラ41および巻取りローラ42の両方、または、これらのいずれか一方を制御することにより、上記したように送出し速度および/または巻取り速度を調節する。すなわち、速度コントローラ46は、送出しローラ41の送出し速度と巻取りローラ42の巻取り速度の少なくともいずれか一方を調節する速度調節手段を構成する。速度コントローラ46は、例えば、送出しローラ41による送出し速度が巻取りローラ42による巻取り速度の1倍~3倍の範囲内の任意の比率(弛緩倍率)となるように、送出し速度および/または巻取り速度を調節することができる。
高温加熱弛緩装置40の高温加熱炉43内には、例えば、高温ヒータ44が取り付けられている。この高温ヒータ44には温度コントローラ47が接続されている。温度コントローラ47は、例えばCPU、ROM、およびRAM等のハードウェアと、ROMに記憶されたプログラム等のソフトウェアとから構成されたコンピュータである。温度コントローラ47は、高温ヒータ44を制御することにより、高温加熱炉43内の温度を調節する。温度コントローラ47には、高温加熱炉43に設けられた図示しない温度センサから、高温加熱炉43内の温度に関する情報が入力され、温度コントローラ47が、当該情報に基づいて高温ヒータ44を制御してもよい。温度コントローラ47は、高温加熱炉43におけるタンパク質原料繊維36の加熱温度を調節する温度調節手段を構成する。温度コントローラ47は、高温加熱炉43内の加熱温度が、乾燥装置4の乾燥炉17における加熱温度よりも高い温度となるように高温ヒータ44を制御する。温度コントローラ47は、例えば、80~300℃の範囲内の任意の温度となるように、タンパク質原料繊維36の加熱温度を調節することができる。
なお、本実施形態では、速度コントローラ46および温度コントローラ47を別々に表したが、このような態様に限られない。例えば、速度コントローラ46および温度コントローラ47が、一体のコントローラに組み込まれてもよいし、製造装置10の全体を制御するコントローラに、速度コントローラ46および温度コントローラ47に相当する機能が備えられてもよい。
高温加熱弛緩装置40は、タンパク質原料繊維36を加熱する加熱手段と、加熱された状態にあるタンパク質原料繊維36を弛緩して収縮させる弛緩収縮手段とを構成する。言い換えれば、高温加熱弛緩装置40は、加熱手段と弛緩収縮手段とを兼ねる装置である。高温加熱弛緩装置40を用いた防縮タンパク質繊維50の製造方法では、加熱工程と、弛緩収縮工程とが同時に行われる。高温加熱弛緩装置40によって、水分との接触時、更にはその後の乾燥時に生ずる水収縮が抑制されたタンパク質繊維である防縮タンパク質繊維50が製造される。図6に示されるように、タンパク質原料繊維36および防縮タンパク質繊維50の走行方向における高温加熱弛緩装置40の下流側には、例えばワインダーが設けられる。防縮タンパク質繊維50は、高温加熱弛緩装置40における防縮処理を受けた後、ワインダーにて巻き取られ、巻回物5が得られる。
(タンパク質繊維の製造方法)
製造装置10を用いた防縮タンパク質繊維50の製造方法について、より詳細に説明する。製造装置10の紡糸装置25では、上述したドープ液を用いて、たとえば乾湿式紡糸により、タンパク質原料繊維36を紡糸する。高温加熱弛緩装置40によって、タンパク質原料繊維36を加熱し(加熱工程)、加熱された状態にあるタンパク質原料繊維36を弛緩して収縮させる(弛緩収縮工程)。
製造装置10を用いた防縮タンパク質繊維50の製造方法について、より詳細に説明する。製造装置10の紡糸装置25では、上述したドープ液を用いて、たとえば乾湿式紡糸により、タンパク質原料繊維36を紡糸する。高温加熱弛緩装置40によって、タンパク質原料繊維36を加熱し(加熱工程)、加熱された状態にあるタンパク質原料繊維36を弛緩して収縮させる(弛緩収縮工程)。
加熱工程では、タンパク質原料繊維36の加熱温度が、タンパク質原料繊維36に用いられるタンパク質の軟化温度以上であることが好ましい。本明細書におけるタンパク質の軟化温度とは、タンパク質原料繊維36の応力緩和による収縮が開始される温度である。タンパク質の軟化温度以上での加熱弛緩収縮では、単に繊維中の水分が離脱するだけでは得られない程度まで繊維が収縮し、その結果、得られたタンパク質繊維の水収縮率が、より十分に且つ効率的に低減される。水収縮率とは、得られたタンパク質繊維を水分に接触させた際やその後の乾燥時に生ずる収縮率である。
タンパク質原料繊維36の加熱温度は、180℃以上であることがより好ましい。例えばクモ糸フィブロイン繊維等のタンパク質繊維は、例えば80℃以上に加熱されると収縮し得る。しかし、80~180℃の低温度範囲での収縮と、180℃以上の高温度範囲での収縮では、その収縮メカニズムが異なると考えられる。つまり、低温度範囲での収縮は、繊維中からの水分の離脱によるものと考えられ、一方で、高温度範囲での収縮は、水分の離脱に加え、紡糸工程中の延伸により生じた応力の緩和によるものと考えられる。そのため、もし加熱弛緩収縮を低温度範囲で実施した場合には、繊維中の水分の離脱量(繊維中の水分の残存量)、換言すれば、加熱時間に応じて、収縮率が変わり得る。すなわち、温度を高くするか、或いは加熱時間を長くすれば、水分の離脱量が多くなるため、加熱弛緩収縮工程での収縮率が大きくなる。その結果、水収縮率を小さくするようにコントロールできる。一方で、水収縮率は、応力緩和が大きいほど小さくなる。
上記した軟化温度に対応する温度として、例えば、180℃が挙げられる。180℃以上の高温度範囲で加熱弛緩収縮を実施した場合、弛緩倍率が大きい程、或いは温度が高い程、水収縮率を小さくできる。したがって、タンパク質原料繊維36の加熱温度は、好ましくは80℃以上であり、より好ましくは180℃~280℃であり、更により好ましくは200℃~240℃であり、特に好ましくは220℃~240℃である。
加熱工程における加熱時間、すなわち高温加熱炉43内での滞在時間は、加熱処理後の繊維の伸度の観点から、好ましくは60秒以下、より好ましくは30秒以下、更に好ましくは5秒以下である。この加熱時間の長さは、応力には大きな影響を与えないと考えられる。なお、加熱温度200℃で加熱時間が5秒を超えると、加熱処理後の繊維の伸度が低下する傾向がある。
弛緩収縮工程では、弛緩倍率は、好ましくは1倍超であり、より好ましくは1.4倍以上であり、更により好ましくは1.7倍以上であり、特に好ましくは2倍以上である。弛緩倍率とは、タンパク質原料繊維36の巻取り速度に対する送出し速度の比率であり、より具体的には、巻取りローラ42による巻取り速度に対する、送出しローラ41による送出し速度の比率である。
高温加熱弛緩装置40を用いた加熱弛緩方法では、例えば、送出しローラ41と巻取りローラ42とをそれぞれ速度不変とし、且つ加熱温度も一定とする。この場合、一定の水収縮率を有するタンパク質繊維を安定的に製造可能である。送出しローラ41と巻取りローラ42とをそれぞれ任意に速度調節可能とする及び/又は加熱温度を任意に調節可能としてもよい。この場合、タンパク質繊維の水収縮率を任意にコントロール可能である。なお、タンパク質原料繊維36が加熱された状態で弛緩可能であれば、加熱工程と弛緩工程とを別個に行ってもよい。すなわち、加熱装置を、弛緩装置とは分離し独立した装置としてもよい。その場合に、加熱工程の後に弛緩収縮工程が行われるよう、加熱装置の後段(タンパク質原料繊維36の走行方向における下流側)に弛緩装置が設けられる。
なお、タンパク質原料繊維の製造工程とは別で、タンパク質原料繊維に対する加熱弛緩工程を実施してもよい。すなわち、紡糸装置25とは別個の独立した装置として高温加熱弛緩装置40と同様の装置を設けてもよい。別個に製造されたタンパク質原料繊維36を送出しローラにセットし、そこから送り出す方式を採ってもよい。加熱弛緩工程は、タンパク質原料繊維の1本に対して行ってもよく、或いは束ねられた複数本に対して行ってもよい。
本実施形態の防縮タンパク質繊維50の製造装置10および製造方法によれば、加熱された状態にあるタンパク質原料繊維36を弛緩して収縮させることにより、水分との接触時、更にはその後の乾燥時に生ずる水収縮が抑制された防縮タンパク質繊維50を容易に製造することができる。
送出し速度および巻取り速度を違わせて弛緩倍率を適切に設定することにより、タンパク質原料繊維36の弛緩状態を生み出すことができる。その結果として、水収縮が抑制された防縮タンパク質繊維50の生産性が向上する。
弛緩収縮工程におけるタンパク質原料繊維36の送出し速度が、巻取り速度の1.4倍以上であると、水収縮の抑制効果をより確実に得ることができる。
加熱工程におけるタンパク質原料繊維36の加熱温度が、タンパク質の軟化温度以上であると、水収縮の抑制効果をより確実に得ることができる。
弛緩収縮工程における加熱時間が5秒以下であると、繊維の物理的特性を維持したまま、水収縮の抑制効果を得ることができる。
製造装置10のように、タンパク質原料繊維の製造工程後に引き続いて、加熱弛緩工程を行えば、ドープ液から防縮繊維の製造までを一連で行うことができる。その結果として、水収縮が抑制された防縮タンパク質繊維50の生産性が向上する。
〔タンパク質繊維の加工方法〕
以上説明した本開示のタンパク質繊維の製造方法は、何らかの公知の工程を経て製造されたタンパク質繊維を加工する加工方法であって、タンパク質を含むタンパク質繊維を加熱する加熱工程と、加熱工程と同時にまたは加熱工程より後に行われ、加熱工程によって加熱された状態にあるタンパク質繊維を弛緩して収縮させる弛緩収縮工程と、を備える、タンパク質繊維の加工方法と捉えることもできる。
以上説明した本開示のタンパク質繊維の製造方法は、何らかの公知の工程を経て製造されたタンパク質繊維を加工する加工方法であって、タンパク質を含むタンパク質繊維を加熱する加熱工程と、加熱工程と同時にまたは加熱工程より後に行われ、加熱工程によって加熱された状態にあるタンパク質繊維を弛緩して収縮させる弛緩収縮工程と、を備える、タンパク質繊維の加工方法と捉えることもできる。
以下、実施例に基づいて本発明をより具体的に説明する。ただし、本発明は以下の実施例に限定されるものではない。
〔タンパク質原料繊維の製造〕
<(1)クモ糸タンパク質(クモ糸フィブロイン:PRT799)の製造>
(クモ糸タンパク質をコードする遺伝子の合成、及び発現ベクターの構築)
ネフィラ・クラビペス(Nephila clavipes)由来のフィブロイン(GenBankアクセッション番号:P46804.1、GI:1174415)の塩基配列及びアミノ酸配列に基づき、配列番号15で示されるアミノ酸配列を有する改変フィブロイン(以下、「PRT799」ともいう。)を設計した。
<(1)クモ糸タンパク質(クモ糸フィブロイン:PRT799)の製造>
(クモ糸タンパク質をコードする遺伝子の合成、及び発現ベクターの構築)
ネフィラ・クラビペス(Nephila clavipes)由来のフィブロイン(GenBankアクセッション番号:P46804.1、GI:1174415)の塩基配列及びアミノ酸配列に基づき、配列番号15で示されるアミノ酸配列を有する改変フィブロイン(以下、「PRT799」ともいう。)を設計した。
配列番号15で示されるアミノ酸配列は、ネフィラ・クラビペス由来のフィブロインのアミノ酸配列に対して、生産性の向上を目的としてアミノ酸残基の置換、挿入及び欠失を施したアミノ酸配列を有し、さらにN末端に配列番号11で示されるアミノ酸配列(タグ配列及びヒンジ配列)が付加されている。
次に、PRT799をコードする核酸を合成した。当該核酸には、5’末端にNdeIサイト及び終止コドン下流にEcoRIサイトを付加した。当該核酸をクローニングベクター(pUC118)にクローニングした。その後、同核酸をNdeI及びEcoRIで制限酵素処理して切り出した後、タンパク質発現ベクターpET-22b(+)に組換えて発現ベクターを得た。
PRT799をコードする核酸を含むpET22b(+)発現ベクターで、大腸菌BLR(DE3)を形質転換した。当該形質転換大腸菌を、アンピシリンを含む2mLのLB培地で15時間培養した。当該培養液を、アンピシリンを含む100mLのシード培養用培地(表4)にOD600が0.005となるように添加した。培養液温度を30℃に保ち、OD600が5になるまでフラスコ培養を行い(約15時間)、シード培養液を得た。
当該シード培養液を500mlの生産培地(下記表5)を添加したジャーファーメンターにOD600が0.05となるように添加した。培養液温度を37℃に保ち、pH6.9で一定に制御して培養した。また培養液中の溶存酸素濃度を、溶存酸素飽和濃度の20%に維持するようにした。
生産培地中のグルコースが完全に消費された直後に、フィード液(グルコース455g/1L、Yeast Extract 120g/1L)を1mL/分の速度で添加した。培養液温度を37℃に保ち、pH6.9で一定に制御して培養した。また培養液中の溶存酸素濃度を、溶存酸素飽和濃度の20%に維持するようにし、20時間培養を行った。その後、1Mのイソプロピル-β-チオガラクトピラノシド(IPTG)を培養液に対して終濃度1mMになるよう添加し、PRT799を発現誘導させた。IPTG添加後20時間経過した時点で、培養液を遠心分離し、菌体を回収した。IPTG添加前とIPTG添加後の培養液から調製した菌体を用いてSDS-PAGEを行い、IPTG添加に依存したPRT799に相当するサイズのバンドの出現により、PRT799の発現を確認した。
(PRT799の精製)
IPTGを添加してから2時間後に回収した菌体を20mM Tris-HCl buffer(pH7.4)で洗浄した。洗浄後の菌体を約1mMのPMSFを含む20mM Tris-HCl緩衝液(pH7.4)に懸濁させ、高圧ホモジナイザー(GEA Niro Soavi社)で細胞を破砕した。破砕した細胞を遠心分離し、沈殿物を得た。得られた沈殿物を、高純度になるまで20mM Tris-HCl緩衝液(pH7.4)で洗浄した。洗浄後の沈殿物を100mg/mLの濃度になるように8M グアニジン緩衝液(8M グアニジン塩酸塩、10mM リン酸二水素ナトリウム、20mM NaCl、1mM Tris-HCl、pH7.0)で懸濁し、60℃で30分間、スターラーで撹拌し、溶解させた。溶解後、透析チューブ(三光純薬株式会社製のセルロースチューブ36/32)を用いて水で透析を行った。透析後に得られた白色の凝集タンパク質(PRT799)を遠心分離により回収し、凍結乾燥機で水分を除き、凍結乾燥粉末を回収した。
IPTGを添加してから2時間後に回収した菌体を20mM Tris-HCl buffer(pH7.4)で洗浄した。洗浄後の菌体を約1mMのPMSFを含む20mM Tris-HCl緩衝液(pH7.4)に懸濁させ、高圧ホモジナイザー(GEA Niro Soavi社)で細胞を破砕した。破砕した細胞を遠心分離し、沈殿物を得た。得られた沈殿物を、高純度になるまで20mM Tris-HCl緩衝液(pH7.4)で洗浄した。洗浄後の沈殿物を100mg/mLの濃度になるように8M グアニジン緩衝液(8M グアニジン塩酸塩、10mM リン酸二水素ナトリウム、20mM NaCl、1mM Tris-HCl、pH7.0)で懸濁し、60℃で30分間、スターラーで撹拌し、溶解させた。溶解後、透析チューブ(三光純薬株式会社製のセルロースチューブ36/32)を用いて水で透析を行った。透析後に得られた白色の凝集タンパク質(PRT799)を遠心分離により回収し、凍結乾燥機で水分を除き、凍結乾燥粉末を回収した。
得られた凍結乾燥粉末におけるPRT799の精製度は、粉末のポリアクリルアミドゲル電気泳動の結果をTotallab(nonlinear dynamics ltd.)を用いて画像解析することにより確認した。
<(2)タンパク質原料繊維の製造>
(ドープ液の調製)
ギ酸に、上述のクモ糸フィブロイン(PRT799)を濃度24wt%となるよう添加した後、室温撹拌にて1時間溶解させた。その後、ゴミと泡を取り除き、ドープ液とした。
(ドープ液の調製)
ギ酸に、上述のクモ糸フィブロイン(PRT799)を濃度24wt%となるよう添加した後、室温撹拌にて1時間溶解させた。その後、ゴミと泡を取り除き、ドープ液とした。
(紡糸)
上記のようにして得られたドープ液と図6に示される製造装置10を用いて公知の乾湿式紡糸を行い、タンパク質原料繊維を得た。なお、ここでは、乾湿式紡糸を下記の条件で行った。
凝固液(メタノール)の温度:5~10℃
延伸倍率:6倍
乾燥温度:80℃
上記のようにして得られたドープ液と図6に示される製造装置10を用いて公知の乾湿式紡糸を行い、タンパク質原料繊維を得た。なお、ここでは、乾湿式紡糸を下記の条件で行った。
凝固液(メタノール)の温度:5~10℃
延伸倍率:6倍
乾燥温度:80℃
〔試験例:タンパク質繊維の製造〕
上記のようにして得られたタンパク質原料繊維を用いて加熱弛緩収縮処理を行った。このタンパク質原料繊維を、所定の温度に加熱した乾燥熱板に接触させながら、乾燥熱板上を通過させた。巻取り速度に対して送出し速度を速くし、タンパク質原料繊維を弛緩させた。弛み分を熱により収縮させることで、乾式弛緩処理を行った。送出し速度を巻取り速度で割った値を弛緩倍率とした。本試験では、過剰の送出しによって生じるタンパク質原料繊維の弛み分が、弛緩により相殺される限界の収縮倍率(最大収縮率)となるように、弛緩倍率を調整した。弛緩倍率の調整は、送出し側のローラおよび巻取り側のローラの少なくともいずれか一方を調整することにより行った。
上記のようにして得られたタンパク質原料繊維を用いて加熱弛緩収縮処理を行った。このタンパク質原料繊維を、所定の温度に加熱した乾燥熱板に接触させながら、乾燥熱板上を通過させた。巻取り速度に対して送出し速度を速くし、タンパク質原料繊維を弛緩させた。弛み分を熱により収縮させることで、乾式弛緩処理を行った。送出し速度を巻取り速度で割った値を弛緩倍率とした。本試験では、過剰の送出しによって生じるタンパク質原料繊維の弛み分が、弛緩により相殺される限界の収縮倍率(最大収縮率)となるように、弛緩倍率を調整した。弛緩倍率の調整は、送出し側のローラおよび巻取り側のローラの少なくともいずれか一方を調整することにより行った。
水収縮評価(試験例1~3)は、次の手順で行った。加熱弛緩収縮処理後の繊維(試験片)を300mmに切断し、40℃の水に荷重無しで10分間浸漬した。その後すぐに試験片の長さ(湿潤時長さ)を測定すると共に、室温で2時間乾燥させた。その後、試験片の長さ(乾燥後の繊維長さ)を測定し、水収縮率を測定した。水収縮率は、以下の式(1)で算出される数値である。
水収縮率=(1-乾燥後の繊維長さ/浸漬前の繊維長さ)×100・・・(1)
水収縮率=(1-乾燥後の繊維長さ/浸漬前の繊維長さ)×100・・・(1)
(試験例1)
加熱温度と弛緩倍率の関係を確認した。この試験例1では、実施例1~5と比較例1のすべてにおいて、水浸漬前長さを300mmとすると共に、他の条件を変化させて試験を行った。具体的には、加熱温度、弛緩倍率、および滞在時間を変化させて試験を行った。温度条件および弛緩条件と、収縮率の測定結果とを表6に示す。表6に示されるように、加熱温度が高くなるほど、また、弛緩倍率が高くなるほど、水収縮率が低減した。実施例3、4、5の結果に示されるように、220℃以上の加熱で、4%以下の水収縮率が得られた。なお、加熱温度280℃とした実施例5では、繊維に着色が見られた。この試験の結果、最適な加熱温度は240℃であると考えられた。
加熱温度と弛緩倍率の関係を確認した。この試験例1では、実施例1~5と比較例1のすべてにおいて、水浸漬前長さを300mmとすると共に、他の条件を変化させて試験を行った。具体的には、加熱温度、弛緩倍率、および滞在時間を変化させて試験を行った。温度条件および弛緩条件と、収縮率の測定結果とを表6に示す。表6に示されるように、加熱温度が高くなるほど、また、弛緩倍率が高くなるほど、水収縮率が低減した。実施例3、4、5の結果に示されるように、220℃以上の加熱で、4%以下の水収縮率が得られた。なお、加熱温度280℃とした実施例5では、繊維に着色が見られた。この試験の結果、最適な加熱温度は240℃であると考えられた。
(試験例2)
次に、弛緩倍率と水収縮率の関係を確認した。この試験例2では、実施例6~10および比較例3のすべてにおいて、水浸漬前長さを300mmとし、加熱温度を240℃とし、滞在時間を1分(60sec)とすると共に、他の条件を変化させて試験を行った。具体的には、弛緩倍率(送出し速度)を変化させて試験を行った。弛緩条件と収縮率の測定結果を表7に示す。表7に示されるように、弛緩倍率の上昇に伴って、水収縮率が低減した。実施例8、9、10の結果に示されるように、弛緩倍率を1.4倍~2.0倍とすることで、16%以下の水収縮率が得られた。
次に、弛緩倍率と水収縮率の関係を確認した。この試験例2では、実施例6~10および比較例3のすべてにおいて、水浸漬前長さを300mmとし、加熱温度を240℃とし、滞在時間を1分(60sec)とすると共に、他の条件を変化させて試験を行った。具体的には、弛緩倍率(送出し速度)を変化させて試験を行った。弛緩条件と収縮率の測定結果を表7に示す。表7に示されるように、弛緩倍率の上昇に伴って、水収縮率が低減した。実施例8、9、10の結果に示されるように、弛緩倍率を1.4倍~2.0倍とすることで、16%以下の水収縮率が得られた。
(試験例3)
各種の加熱温度、加熱時間、および弛緩倍率と、水収縮率との関係を確認した。この試験例3では、実施例11~19と比較例4のすべてにおいて、水浸漬前長さを300mmとすると共に、他の条件を変化させて試験を行った。具体的には、加熱温度、加熱時間(滞在時間)、および弛緩倍率(送出し速度/巻取り速度)を変化させて試験を行った。温度条件および弛緩条件と、収縮率の測定結果とを表8に示す。比較例4では、試験片の水への浸漬および乾燥のみを行っており、弛緩および加熱は行っていない。実施例14~19の結果に示されるように、加熱温度を200℃以上とすることで、15%未満の水収縮率が得られた。加熱温度を220℃以上とすることで、4%以下の低い水収縮率が得られた。収縮に必要な滞在時間は、5secで十分であり、滞在時間を伸ばしても、収縮率はさほど変化しなかった。
各種の加熱温度、加熱時間、および弛緩倍率と、水収縮率との関係を確認した。この試験例3では、実施例11~19と比較例4のすべてにおいて、水浸漬前長さを300mmとすると共に、他の条件を変化させて試験を行った。具体的には、加熱温度、加熱時間(滞在時間)、および弛緩倍率(送出し速度/巻取り速度)を変化させて試験を行った。温度条件および弛緩条件と、収縮率の測定結果とを表8に示す。比較例4では、試験片の水への浸漬および乾燥のみを行っており、弛緩および加熱は行っていない。実施例14~19の結果に示されるように、加熱温度を200℃以上とすることで、15%未満の水収縮率が得られた。加熱温度を220℃以上とすることで、4%以下の低い水収縮率が得られた。収縮に必要な滞在時間は、5secで十分であり、滞在時間を伸ばしても、収縮率はさほど変化しなかった。
本開示のいくつかの態様によれば、水分との接触時、更にはその後の乾燥時に生ずる水収縮が抑制されたタンパク質繊維を容易に製造することができる。
10…製造装置、25…紡糸装置、40…弛緩収縮手段(加熱手段)、41…送出し手段、42…巻取り手段、46…速度調節手段、47…温度調節手段。
Claims (17)
- タンパク質を含むタンパク質原料繊維を加熱する加熱工程と、
前記加熱工程と同時にまたは前記加熱工程より後に行われ、前記加熱工程によって加熱された状態にある前記タンパク質原料繊維を弛緩して収縮させる弛緩収縮工程と、
を備える、タンパク質繊維の製造方法。 - 前記加熱工程における前記タンパク質原料繊維の加熱温度および前記弛緩収縮工程における前記タンパク質原料繊維の弛緩量のうち少なくともいずれか一方を調節する、請求項1に記載のタンパク質繊維の製造方法。
- 前記弛緩収縮工程では、前記タンパク質原料繊維を所定の送出し速度で連続的に送り出すと共に前記送出し速度よりも遅い巻取り速度で連続的に巻き取ることで、前記タンパク質原料繊維を弛緩して収縮させる、請求項1または2に記載のタンパク質繊維の製造方法。
- 前記弛緩収縮工程における前記タンパク質繊維の前記送出し速度が、前記巻取り速度の1.4倍以上である、請求項3に記載のタンパク質繊維の製造方法。
- 前記加熱工程における前記タンパク質原料繊維の加熱温度が、前記タンパク質の軟化温度以上である、請求項1~4のいずれか一項に記載のタンパク質繊維の製造方法。
- 前記加熱工程と前記弛緩収縮工程とが同時に行われ、
前記弛緩収縮工程における加熱時間が5秒以下である、請求項1~5のいずれか一項に記載のタンパク質繊維の製造方法。 - 前記タンパク質が構造タンパク質である、請求項1~6のいずれか一項に記載のタンパク質繊維の製造方法。
- 前記構造タンパク質がフィブロインである、請求項7に記載のタンパク質繊維の製造方法。
- 前記フィブロインがクモ糸フィブロインである、請求項8に記載のタンパク質繊維の製造方法。
- タンパク質を含むタンパク質原料繊維を加熱する加熱手段と、
前記加熱手段によって加熱された状態にある前記タンパク質原料繊維を弛緩して収縮させる弛緩収縮手段と、
を備える、タンパク質繊維の製造装置。 - 前記弛緩収縮手段が、
前記タンパク質原料繊維を所定の送出し速度で連続的に送り出す送出し手段と、
前記送出し手段によって送り出されたタンパク質原料繊維を前記送出し速度よりも遅い巻取り速度で連続的に巻き取る巻取り手段と、を有する、請求項10に記載のタンパク質繊維の製造装置。 - 前記送出し手段の前記送出し速度と前記巻取り手段の前記巻取り速度の少なくともいずれか一方を調節する速度調節手段を更に備える、請求項11に記載のタンパク質繊維の製造装置。
- 前記加熱手段における前記タンパク質原料繊維の加熱温度を調節する温度調節手段を更に備える、請求項10~12のいずれか一項に記載のタンパク質繊維の製造装置。
- 前記タンパク質原料繊維を紡糸する紡糸手段を更に備える、請求項10~13のいずれか一項に記載のタンパク質繊維の製造装置。
- タンパク質を含むタンパク質繊維を加熱する加熱工程と、
前記加熱工程と同時にまたは前記加熱工程より後に行われ、前記加熱工程によって加熱された状態にある前記タンパク質繊維を弛緩して収縮させる弛緩収縮工程と、
を備える、タンパク質繊維の加工方法。 - 前記加熱工程における前記タンパク質繊維の加熱温度および前記弛緩収縮工程における前記タンパク質繊維の弛緩量のうち少なくともいずれか一方を調節する、請求項15に記載のタンパク質繊維の加工方法。
- 前記弛緩収縮工程では、前記タンパク質繊維を所定の送出し速度で連続的に送り出すと共に前記送出し速度よりも遅い巻取り速度で連続的に巻き取ることで、前記タンパク質繊維を弛緩して収縮させる、請求項15または16に記載のタンパク質繊維の加工方法。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019545182A JP7237314B2 (ja) | 2017-09-29 | 2018-09-28 | タンパク質繊維の製造方法、タンパク質繊維の製造装置、およびタンパク質繊維の加工方法 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-191735 | 2017-09-29 | ||
JP2017191735 | 2017-09-29 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019066047A1 true WO2019066047A1 (ja) | 2019-04-04 |
Family
ID=65903470
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/036510 WO2019066047A1 (ja) | 2017-09-29 | 2018-09-28 | タンパク質繊維の製造方法、タンパク質繊維の製造装置、およびタンパク質繊維の加工方法 |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP7237314B2 (ja) |
WO (1) | WO2019066047A1 (ja) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020027153A1 (ja) * | 2018-07-31 | 2020-02-06 | Spiber株式会社 | 改変フィブロイン繊維及びその製造方法 |
EP4036291A4 (en) * | 2019-09-27 | 2023-08-09 | Spiber Inc. | PROTEIN FIBER PRODUCTION METHODS, PROTEIN FIBER PRODUCTION METHODS, AND PROTEIN FIBER SHRINKING METHODS |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4839371B1 (ja) * | 1969-05-02 | 1973-11-24 | ||
JP2009155774A (ja) * | 2007-12-27 | 2009-07-16 | Toray Ind Inc | 繊維構造物およびその製造方法 |
JP2013506058A (ja) * | 2009-09-28 | 2013-02-21 | タフツ ユニバーシティー/トラスティーズ オブ タフツ カレッジ | 延伸したシルクegel繊維およびその製造方法 |
JP2014029054A (ja) * | 2012-06-28 | 2014-02-13 | Spiber Inc | 原着タンパク質繊維及びその製造方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2007321265A (ja) | 2006-05-31 | 2007-12-13 | Toray Ind Inc | 大豆蛋白繊維とポリアミド繊維混用織物およびその製造方法 |
-
2018
- 2018-09-28 WO PCT/JP2018/036510 patent/WO2019066047A1/ja active Application Filing
- 2018-09-28 JP JP2019545182A patent/JP7237314B2/ja active Active
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS4839371B1 (ja) * | 1969-05-02 | 1973-11-24 | ||
JP2009155774A (ja) * | 2007-12-27 | 2009-07-16 | Toray Ind Inc | 繊維構造物およびその製造方法 |
JP2013506058A (ja) * | 2009-09-28 | 2013-02-21 | タフツ ユニバーシティー/トラスティーズ オブ タフツ カレッジ | 延伸したシルクegel繊維およびその製造方法 |
JP2014029054A (ja) * | 2012-06-28 | 2014-02-13 | Spiber Inc | 原着タンパク質繊維及びその製造方法 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2020027153A1 (ja) * | 2018-07-31 | 2020-02-06 | Spiber株式会社 | 改変フィブロイン繊維及びその製造方法 |
EP4036291A4 (en) * | 2019-09-27 | 2023-08-09 | Spiber Inc. | PROTEIN FIBER PRODUCTION METHODS, PROTEIN FIBER PRODUCTION METHODS, AND PROTEIN FIBER SHRINKING METHODS |
Also Published As
Publication number | Publication date |
---|---|
JPWO2019066047A1 (ja) | 2020-11-05 |
JP7237314B2 (ja) | 2023-03-13 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6337252B1 (ja) | 高収縮人造フィブロイン繊維及びその製造方法、並びに人造フィブロイン繊維の収縮方法 | |
US11286286B2 (en) | Method and device for manufacturing protein fiber | |
WO2018164234A1 (ja) | タンパク質繊維の製造方法、及びタンパク質繊維の防縮方法 | |
WO2018164190A1 (ja) | 人造フィブロイン繊維 | |
JP7320790B2 (ja) | 人工毛髪用繊維、及びその製造方法、並びに人工毛髪 | |
JP7340262B2 (ja) | 高収縮人造フィブロイン紡績糸及びその製造方法、並びに人造フィブロイン紡績糸及びその収縮方法 | |
JP7542823B2 (ja) | 人工毛髪用繊維、人工毛髪、人工毛髪用繊維を製造する方法、及び人工毛髪を製造する方法 | |
JP7237314B2 (ja) | タンパク質繊維の製造方法、タンパク質繊維の製造装置、およびタンパク質繊維の加工方法 | |
WO2020158900A1 (ja) | 人工毛髪用繊維を製造する方法、人工毛髪を製造する方法、人工毛髪用繊維、及び人工毛髪 | |
JP7367977B2 (ja) | タンパク質捲縮ステープルの製造方法 | |
WO2019066053A1 (ja) | タンパク質繊維の製造方法、タンパク質繊維の製造装置、およびタンパク質繊維の加工方法 | |
WO2019151437A1 (ja) | タンパク質紡績糸の製造方法 | |
WO2021066040A1 (ja) | 人工毛髪用繊維及びその製造方法 | |
JP7446578B2 (ja) | 人造繊維綿 | |
WO2019151432A1 (ja) | 油剤付着タンパク質捲縮繊維の製造方法 | |
WO2019066006A1 (ja) | 撚糸の製造方法、仮撚り糸の製造方法、及び糸の撚り加工方法 | |
WO2019194261A1 (ja) | 人造フィブロイン繊維 | |
WO2019151433A1 (ja) | タンパク質フィラメントの開繊トウ及びその製造方法 | |
WO2019194260A1 (ja) | 高収縮人造フィブロイン繊維及びその製造方法、並びに人造フィブロイン繊維の収縮方法 | |
JP2020122251A (ja) | 賦形性付与材、賦形性繊維製品及びその製造方法、並びに、形状が付与された繊維製品及びその製造方法 | |
JP2019183301A (ja) | 人造フィブロイン繊維の防縮方法、人造フィブロイン繊維及びその製造方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18863093 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019545182 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18863093 Country of ref document: EP Kind code of ref document: A1 |