WO2019064876A1 - 検査システムおよび検査方法 - Google Patents

検査システムおよび検査方法 Download PDF

Info

Publication number
WO2019064876A1
WO2019064876A1 PCT/JP2018/028245 JP2018028245W WO2019064876A1 WO 2019064876 A1 WO2019064876 A1 WO 2019064876A1 JP 2018028245 W JP2018028245 W JP 2018028245W WO 2019064876 A1 WO2019064876 A1 WO 2019064876A1
Authority
WO
WIPO (PCT)
Prior art keywords
inspection
tester
prober
control unit
wafer
Prior art date
Application number
PCT/JP2018/028245
Other languages
English (en)
French (fr)
Inventor
徹也 加賀美
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to US16/649,928 priority Critical patent/US20210364550A1/en
Priority to KR1020207010949A priority patent/KR20200053587A/ko
Publication of WO2019064876A1 publication Critical patent/WO2019064876A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R1/00Details of instruments or arrangements of the types included in groups G01R5/00 - G01R13/00 and G01R31/00
    • G01R1/02General constructional details
    • G01R1/06Measuring leads; Measuring probes
    • G01R1/067Measuring probes
    • G01R1/073Multiple probes
    • G01R1/07307Multiple probes with individual probe elements, e.g. needles, cantilever beams or bump contacts, fixed in relation to each other, e.g. bed of nails fixture or probe card
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/286External aspects, e.g. related to chambers, contacting devices or handlers
    • G01R31/2868Complete testing stations; systems; procedures; software aspects
    • G01R31/287Procedures; Software aspects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2832Specific tests of electronic circuits not provided for elsewhere
    • G01R31/2834Automated test systems [ATE]; using microprocessors or computers
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/286External aspects, e.g. related to chambers, contacting devices or handlers
    • G01R31/2863Contacting devices, e.g. sockets, burn-in boards or mounting fixtures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2855Environmental, reliability or burn-in testing
    • G01R31/286External aspects, e.g. related to chambers, contacting devices or handlers
    • G01R31/2868Complete testing stations; systems; procedures; software aspects
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2886Features relating to contacting the IC under test, e.g. probe heads; chucks
    • G01R31/2891Features relating to contacting the IC under test, e.g. probe heads; chucks related to sensing or controlling of force, position, temperature
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/28Testing of electronic circuits, e.g. by signal tracer
    • G01R31/2851Testing of integrated circuits [IC]
    • G01R31/2893Handling, conveying or loading, e.g. belts, boats, vacuum fingers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof

Definitions

  • An inspection system that performs such electrical inspection generally includes a prober and a tester.
  • the prober has a wafer stage, an aligner for aligning the wafer, and a probe card having a wafer transfer system and a probe that contacts a device formed on the wafer.
  • the tester provides an electrical signal to the device through the probe card to inspect various electrical characteristics of the device.
  • FOUPs which are storage containers for storing a plurality of wafers
  • the present disclosure provides an inspection system and an inspection method that can reduce the waiting time of a tester when inspecting an individual object.
  • FIG. 1 is a horizontal sectional view schematically showing the entire configuration of an inspection system according to an embodiment of the present invention
  • FIG. 2 is a sectional view taken along line II-II 'of the inspection system of FIG.
  • the inspection apparatus 10 of the present embodiment inspects the electrical characteristics of a plurality of devices formed on a wafer which is an inspection object.
  • the inspection system of the present embodiment has a plurality of testers and a prober.
  • the prober unit has a mechanism for transferring a wafer to a plurality of testers, a wafer stage (chuck top) for sucking and holding the wafer corresponding to each tester, and an interface such as a probe card.
  • the interface is for establishing electrical connection between a device under test (hereinafter referred to as "DUT") formed on a wafer and each tester.
  • DUT device under test
  • the loading / unloading area 13 is divided into a plurality of ports, and includes a plurality of wafer loading / unloading ports 16a, a pre-alignment unit 16b, a probe card loader 16c, and a control port 16d.
  • the wafer loading / unloading port 16 a accommodates the FOUP 17, which is a container for accommodating the wafer W.
  • the pre-alignment unit 16 b aligns the wafer to be transported.
  • the probe card loader 16c accommodates the probe card, and the probe card is carried in and out.
  • the control port 16 d houses a prober control unit 40 that controls the operation of the prober of the inspection system 10.
  • the transport mechanism 19 transports a probe card requiring maintenance from each inspection room 20 to the probe card loader 16 c, and transports a new or maintenance probe card to each inspection room 20.
  • FIG. 3 is a view showing a schematic configuration of the inspection unit 30.
  • the inspection unit 30 includes, in addition to the tester 50, a probe card 32, a support plate 33, a contact block 34, a bellows 35, and a chuck top (stage) 36.
  • the probe card 32 has a plurality of probes 32 a in contact with electrodes of a plurality of devices formed on the wafer W.
  • the support plate 33 is for supporting the probe card 32, and is provided below the tester 50.
  • the contact block 34 is for connecting the tester 50 and the probe card 32.
  • the bellows 35 is provided so as to hang from the support plate 33 and surround the probe card 32.
  • the Z block 45 of the aligner 22 is retracted downward, and the aligner 22 is moved to another inspection unit 30 after the inspection. Then, in the reverse operation to the above, the chuck top 36 after inspection is lowered, and the wafer W after inspection of the chuck top 36 is returned to the FOUP 17 by the transport mechanism 19.
  • the tester 50 is a power supply unit having a device power supply (DPS) and a parametric measurement unit (PMU), a pattern generator, a timing generator, power supply to DUTs on a wafer, waveform input (driver), waveform measurement (comparator) And a circuit unit having a circuit for performing voltage, current output, and measurement.
  • DPS device power supply
  • PMU parametric measurement unit
  • PMU pattern generator
  • timing generator timing generator
  • power supply to DUTs on a wafer waveform input
  • driver waveform measurement
  • circuit unit having a circuit for performing voltage, current output, and measurement.
  • components other than the plurality of testers 50 constitute a prober
  • the prober control unit 40 controls the prober
  • the tester control unit 60 controls the tester.
  • the CPU 111 executes a program stored in the storage medium of the ROM 113 or the storage device 105 using the RAM 112 as a work area to drive the transport system of the inspection system 10 and operate the vacuum mechanism etc. Control the
  • FIG. 6 is a functional block diagram for explaining the main control of the prober control unit 40 and the tester control unit 60 according to this embodiment.
  • the tester control unit 60 sends control signals (commands to the test execution scheduled portion 121 that executes a test, scheduled test end time obtaining unit 122 that obtains scheduled test end time, aligner 22 and transport mechanism 19. And a carrier control signal output unit 123 for outputting the signal.
  • the prober control unit 40 has a conveyance control unit 221 that controls the aligner 22 and the conveyance mechanism 19, and a priority comparison unit 222.
  • the prober control unit 40 and the tester control unit 60 also have other control functions, only main functions of the present embodiment are described in FIG.
  • the scheduled test end time acquisition unit 122 acquires the scheduled test end time at a predetermined stage at which the scheduled test end time can be predicted.
  • the scheduled inspection end time acquisition unit 122 outputs the acquired scheduled inspection end time to the conveyance control signal output unit 123.
  • the transfer control signal output unit 123 controls the transfer control of the prober control unit 40 so that the next wafer W is prepared in the tester 50 by the scheduled inspection end time (so that it can be carried into the inspection chamber 20).
  • the control signal (command) is output to the unit 221.
  • the transport control unit 221 controls the transport mechanism 19 and the aligner 22 as transport means so that the wafer W is transported into the inspection chamber 20 corresponding to the tester 50 by the scheduled inspection end time.
  • the transport control signal output unit 123 outputs control signals to the transport control unit 221 corresponding to the plurality of testers 50. Be done. Therefore, when the transfer control unit 221 receives a control signal corresponding to one tester 50 and then receives a control signal (command) corresponding to another tester 50 before the end of the transfer operation of the wafer W, priority is given.
  • the degree comparison unit 222 compares the priorities.
  • the priority comparing unit 222 causes the transport mechanism 19 and the aligner 22 configuring the transport unit to perform the transport operation by giving priority to the signal of which it is determined that the priority is high.
  • FIG. 7 is a flow chart showing a schematic flow centering on the tester 50 side about the inspection method in the inspection system 10, and FIG. 8 mainly shows the prober control unit 40 when receiving a control signal from the tester control unit 60. It is a flow chart which shows a control flow.
  • the operator sets the FOUP 17 in the wafer loading / unloading port 16a (step 1), and puts a predetermined tester 50 in a state of waiting for a test start (step 2 (system operation)).
  • the wafer W is loaded into the inspection chamber 20 corresponding to the predetermined tester 50 by the transfer mechanism 19 and the aligner 22 (step 3 (system operation)).
  • the aligner 22 is moved to the corresponding inspection room 20, and the chuck top 36 of the inspection unit 30 in the inspection room 20 is placed on the aligner 22, and from the transport mechanism 19 to the chuck top 36. Deliver the wafer W on top.
  • the wafer W (DUT formed on the wafer W) is brought into contact with the probe 32a of the prober 32 (step 4 (system operation)).
  • the Z block 45 of the aligner 22 is raised to probe the DUT of the wafer W and the probe card 32. Contact with. Alignment at this time is performed using the upper camera 24 and the lower camera 46.
  • the bellows 35 forms a sealed space including the probe card 32 and the wafer W, and the sealed space is vacuumed via a vacuum line to cause the chuck top 36 to be adsorbed to the support plate 33.
  • the aligner 22 is free and can be moved to another examination room 20.
  • the inspection execution unit 121 of the tester control unit 60 executes the inspection contents as shown in FIG.
  • the inspection contents at this time consist of a plurality of parts, and after the inspection start, initial setting (Part 1), contact confirmation (Part 2), and actual inspection (test details 1 to n (parts 3 to n + 2)) are performed.
  • a transport control signal (command) is transmitted to the prober control unit 40 (step 6). Specifically, when the inspection reaches a predetermined stage, the same operation is performed on any wafer W after that. Therefore, when the stage reaches that stage, the inspection termination scheduled time acquisition unit 122 get.
  • the transfer control signal output unit 123 moves the transfer control unit 221 of the prober control unit 40 so that the transfer mechanism 19 mounting the aligner 22 and the wafer W is moved to the inspection room 20 corresponding to the tester 50 by the scheduled inspection end time. Output control signal (command) to.
  • the test ends and the test end signal is output (step 7).
  • the wafer W is unloaded from the inspection room 20 (step 8 (system operation)).
  • the aligner 22 is moved to the inspection chamber 20 to align the aligner 22 in the XY direction, and then the Z block 45 is raised to support the chuck top 36 by the aligner 22.
  • the wafer W is removed from the probe card 32 by releasing the vacuum of the space formed by the bellows 35, and the Z block 45 is lowered. In this state, the wafer W on the chuck top 36 on the aligner 22 is received by the transfer mechanism 19 and transferred to the FOUP 17.
  • the above operation is performed on a plurality of wafers W using a plurality of testers 50, and when it is detected that all the wafers in the FOUP 17 are finished (step 9 (system operation)), a tester control unit 60 to a prober control unit
  • the test end notification is output to 40 (step 10 (system operation).
  • the prober control unit 40 that has received the test end notification causes the alarm device (not shown) to generate an alarm sound and to blink Patlite (registered trademark), and The end is notified to the upper server (customer server) (step 11 (system operation)) Thereafter, the operator takes out the FOUP 17 (step 12).
  • the prober control unit 40 receives a control signal (command) from the tester control unit 60 based on the scheduled inspection end time of the predetermined tester 50 (step 21).
  • the conveyance control unit 221 of the prober control unit 40 receives a control signal based on the scheduled inspection end time of the predetermined tester 50 from the conveyance control signal output unit 123 of the tester control unit 60.
  • step 22 it is determined whether or not the control command can be executed (step 22). If the control command can be executed, if the control signal (command) from another tester is received, the priority is compared (step 23). Then, if the priority of the first control command is high, preparation is made to transfer the wafer W to the inspection room 20 corresponding to the tester 50 based on the control command (step 24). Next, the wafer W to be measured next is mounted on the transfer mechanism 19 (step 25), and the transfer mechanism 19 transfers the wafer W to the inspection room 20 corresponding to the tester 50 by the scheduled inspection end time of the tester 50. At the same time, the aligner 22 is made to stand by (step 26).
  • step 27 The end of the inspection by the tester 50 is confirmed (step 27), and then the chuck top 36 holding the wafer W after inspection is held by the aligner 22 (step 28), and the inspected wafer W and the next are inspected by the transport mechanism 19.
  • the wafer W to be inspected is replaced (step 29). Then, the wafer W to be inspected is mounted on the tester 50, and the inspection is started (step 30).
  • the other control commands are prioritized.
  • the priority can transfer the wafer W more efficiently based on the scheduled inspection end time and the moving time (moving distance) of the transfer mechanism 19 and the aligner 22 (hereinafter referred to as a transfer unit) on which the wafer W is loaded.
  • a transfer unit On which the wafer W is loaded.
  • an inspection room in which the conveyance unit corresponds to the control instruction of another tester 50 received next rather than the time when the conveyance unit reaches the corresponding inspection room 20 in response to the control instruction of the tester 50 received first.
  • the time to reach 20 is earlier.
  • priority of the wafer or FOUP to which the inspection should be prioritized may be set high.
  • the number of control signals for comparing the priorities may be three or more. However, since control becomes complicated when there are too many control signals for comparing the priorities, it is preferable to limit the number of control signals for comparing the priorities to, for example, two (or three). Of course, without comparing the priorities, the next wafer may be transported / standby to the corresponding tester 50 in the order of the received control signals.
  • testers and probers were generally controlled by separate control systems.
  • a signal is issued when inspection of a wafer in a tester of one inspection unit is completed, and the aligner of the prober detects that signal based on the signal. I am going to pick up the wafer. For this reason, it is not always possible to pick up the wafer after the end of the test at an optimal timing.
  • the end time of inspection varies depending on the wafer, it is also difficult to predict the end of inspection. For this reason, the waiting time of each tester at the time of carrying a wafer continuously and inspecting it becomes long, and even if it uses the technique of the above-mentioned patent documents 2, the problem that the waiting time becomes long is not solved.
  • the tester control unit 60 acquires the scheduled test end time, and at the scheduled test end time.
  • the control signal (command) based on the above is transmitted to the prober control unit 40.
  • the prober control unit 40 controls the transport mechanism 19 on which the wafer W to be measured next is mounted and the aligner 22 by the scheduled inspection end time so that the next wafer can be carried into the inspection room 20. It can be done. Therefore, after the inspection of the wafer W by each tester 50 is completed, the time until the start of the inspection of the next wafer W by the tester 50 can be shortened, the inspection lead time is reduced, and the inspection efficiency of the entire inspection system Can be enhanced.
  • the prober control unit 40 when the prober control unit 40 receives a plurality of control signals (commands) from the tester control unit 60, it compares the priorities and gives priority to the transfer of the wafer W to the tester 50 having the higher priority. be able to. As a result, the inspection efficiency can be further enhanced by giving priority to the control signal that can transfer the wafer W more efficiently.
  • the prober control unit 40 by setting a wafer to which inspection is to be prioritized or a FOUP with high priority, it is possible to preferentially inspect a specific type of wafer or a wafer accommodated in a specific FOUP.
  • the control command from the tester control unit to the prober control unit is preparation of the next wafer to the tester.
  • the control command may be another control command.
  • the tester control unit performs probe grinding (probe polishing), needle tip confirmation (probe tip confirmation), etc. It can be mentioned that the control command of (1) is sent to the prober control unit. This makes it possible to confirm these at an optimal time.

Abstract

プローバと、テスタと、プローバを制御するプローバ制御部と、テスタを制御するテスタ制御部とを備えた検査システムであって、テスタ制御部は、テスタに被検査体に形成された被検査デバイスに対し、複数のパートから構成される検査を実行させるとともに、検査が所定の段階に達した際に、検査終了予定時刻を取得し、該検査終了予定時刻までに、被検査体がテスタを収容する検査室へ搬送されるように、プローバ制御部へ制御信号を送信する。

Description

検査システムおよび検査方法
 本開示は、被検査体の検査を行う検査システムおよび検査方法に関する。
 半導体デバイスの製造プロセスにおいては、半導体ウエハ(以下単にウエハと記す)における全てのプロセスが終了した段階で、ウエハに形成されている複数のデバイス(ICチップ)の電気的検査が行われる。このような電気的検査を行う検査システムは、一般的に、プローバとテスタを有している。プローバは、ウエハステージ、ウエハの位置合わせを行うアライナー、およびウエハ搬送系を有するとともに、ウエハに形成されたデバイスに接触するプローブを有するプローブカードが装着される。また、テスタは、プローブカードを介してデバイスに電気的信号を与え、デバイスの種々の電気特性を検査する。
 このような電気的検査を多数のウエハに対して効率的に行うため、ウエハステージ、プローブカード、およびテスタを備えた検査ユニットを、高さ方向に複数段積層し、各段において検査部を横方向に複数並べ、横方向の複数の検査ユニットに対して共通のアライナーを各段に設けてウエハの位置合わせを行うようする技術が知られている(例えば特許文献1)。
 検査システムにおいては、複数のウエハを収容する収容容器であるFOUPを搬出入領域の複数のポートにセットすることにより、複数のウエハに対して連続的に検査を行うことが可能となる。
 FOUPのセットは、複数のポートにセットされた従前の一または全てのFOUPのウエハの検査が終了した時点でテスタから出力された終了信号に基づいて行う。この場合、ウエハに形成されたデバイスによってはテスト終了予定時刻がわかり難いものもあるので、タイムリーにFOUPをセットしておくことが難しい。したがって、従前のFOUPのウエハのテストが終了した時点で、FOUPの回収および次のFOUPのセットが終了していない場合には、検査システムの待機時間が長くなり、稼働率が低くなってしまう。
 このため、特許文献2には、FOUP内のウエハに対する処理の終了前に、ウエハに対して予め指定されたレシピの内容に基づいて、FOUPに対する処理の終了予定時刻を求め、当該予定時刻を上位HOSTに出力する技術が提案されている。
特開2016-46285号公報 特開2016-192457号公報
 本開示は、個々の被検査体の検査を行う際のテスタの待機時間を短縮することができる検査システムおよび検査方法を提供する。
 本開示の一態様に係る検査システムは、検査室内で複数の被検査デバイスが形成された被検査体を保持するステージと、複数の被検査体を収納する収納容器を載置する搬入出部と、前記被検査体を前記収納容器から前記ステージに搬送する搬送手段と、複数のプローブを前記被検査体に形成された前記複数の被検査デバイスに接触させるプローブカードとを有するプローバと、前記検査室内で前記プローブカードを介して前記被検査体に形成された前記複数の被検査デバイスに電気的信号を与え、前記デバイスの電気特性を検査するテスタと、前記プローバを制御するプローバ制御部と、前記テスタを制御するテスタ制御部とを備え、前記テスタ制御部は、前記テスタに前記被検査デバイスに対し、複数のパートから構成される検査を実行させるとともに、前記検査が所定の段階に達した際に、検査終了予定時刻を取得し、該検査終了予定時刻までに、次の被検査体が前記テスタを収容する前記検査室へ搬入可能になるように、前記プローバ制御部へ制御信号を送信する。
 本開示によれば、個々の被検査体の検査を行う際のテスタの待機時間を短縮することができる。
本発明の一実施形態に係る検査システムの全体構成を概略的に示す水平断面図である。 図1の検査システムのII-II′線による断面図である。 検査装置における検査ユニットの概略構成を示す図である。テスタの検査回路ボードからウエハまでの構成を説明するための図である。 プローバ制御部のハードウェア構成の一例を示すブロック図である。 テスタ制御部のハードウェア構成の一例を示すブロック図である。 プローバ制御部とテスタ制御部の本発明の一実施形態の主要な制御を説明するための機能ブロック図である。 本発明の一実施形態に係る検査システムにおける検査方法についてのテスタ側を中心とした概略のフローを示すフローチャートである。 テスタ制御部60から制御信号を受けた際のプローバ制御部40を中心とした制御フローを示すフローチャートである。
 以下、添付図面を参照して実施の形態について詳細に説明する。
 <検査システムの全体構成>
 まず、一実施形態に係る検査システム全体の構成について説明する。
 図1は、本発明の一実施形態に係る検査システムの全体構成を概略的に示す水平断面図であり、図2は図1の検査システムのII-II′線による断面図である。本実施形態の検査装置10は、被検査体であるウエハに形成された複数のデバイスの電気的特性の検査するものである。
 本実施形態の検査システムは、複数のテスタと、プローバとを有する。プローバ部は、複数のテスタにウエハを搬送する機構と、各テスタに対応してウエハを吸着保持するウエハステージ(チャックトップ)と、プローブカード等のインターフェイスとを有する。インターフェイスは、ウエハに形成された被検査デバイス(Device Under Test(以下「DUT」と記す)と各テスタとの間の電気的接続をとるためのものである。
 図1において、検査システム10は、筐体11を有し、筐体11内には、検査領域12と、搬入出領域13と、搬送領域14とを有する。検査領域12は、ウエハWに形成されたDUTの電気的特性の検査を行う領域である。搬入出領域13は、検査領域12に対するウエハWやプローブカードの搬入・搬出を行い、かつ制御系を有する領域である。搬送領域14は、検査領域12および搬入出領域13の間に設けられ、これらの間でウエハ等を搬送する。
 検査領域12は、図2に示すように、X方向に沿って6つの検査室(セル)20が配列され、このような検査室列がZ方向(上下方向)に3段配置されている。各検査室20には、ウエハWに形成されたDUTの検査を行うテスタ50が配置されている。これらテスタ50は、テスタ制御部60により制御される。
 そして、各段に、X方向に配列された検査室20に対して、X方向に移動可能なウエハの搬送ステージとして機能する1台のアライナー22がテスタ50の下方に設けられている。また、検査領域12の各段ごとに、テスタ50よりも搬送領域14よりの部分をX方向に沿って移動可能に1台のアライメント用の上カメラ24が設けられている。
 搬入出領域13は複数のポートに区画されており、複数のウエハ搬入出ポート16a、プリアライメント部16b、プローブカードローダ16c、制御ポート16dを有する。ウエハ搬入出ポート16aは、ウエハWを収容する容器であるFOUP17を収容する。プリアライメント部16bは、搬送するウエハの位置合わせを行う。プローブカードローダ16cは、プローブカードを収容し、プローブカードが搬入されかつ搬出される。制御ポート16dには、検査システム10のプローバの動作を制御するプローバ制御部40が収納されている。
 搬送領域14には複数の搬送アームを有する搬送機構19が配置される。搬送機構19の本体はZ方向およびθ方向に移動可能であり、搬送アームは前後方向に移動可能である。これにより、搬送機構19は、ウエハWをX方向、Y方向、Z方向、θ方向に移動自在となっている。搬送機構19は、全ての段の検査室20にアクセス可能となっている。搬送機構19は、搬入出領域13のウエハ搬入出ポート16aからウエハWを受け取って、検査ユニット30内のチャックトップ(ウエハステージ)へ搬送する。また、搬送機構19は、デバイスの電気的特性の検査が終了したウエハWを対応する検査ユニット30のチャックトップから検査終了後のウエハWを受け取ってウエハ搬入出ポート16aへ搬送する。このときのチャックトップに対するウエハWの授受は、後述するようにアライナー22を用いて行われ、アライナー22と搬送機構19がウエハ搬送手段を構成する。
 また、搬送機構19は各検査室20からメンテナンスを必要とするプローブカードをプローブカードローダ16cへ搬送し、また、新規やメンテナンス済みのプローブカードを各検査室20へ搬送する。
 各検査室20内には、テスタ50と、検査のために必要な他の要素とを有する検査ユニット30が構成されている。
 図3は、検査ユニット30の概略構成を示す図である。検査ユニット30は、テスタ50の他、プローブカード32と、支持プレート33と、コンタクトブロック34と、ベローズ35と、チャックトップ(ステージ)36とを有する。プローブカード32は、ウエハWに形成された複数のデバイスの電極に接触する複数のプローブ32aを有する。支持プレート33は、プローブカード32を支持するためのものであり、テスタ50の下に設けられる。コンタクトブロック34は、テスタ50とプローブカード32とを接続するものである。ベローズ35は、支持プレート33から垂下し、プローブカード32を囲繞するように設けられている。チャックトップ(ステージ)36は、ウエハWを真空吸着により吸着支持し、ウエハWを温調するためのものである。コンタクトブロック34の上下面には、プローブカード32とテスタ50を電気的に接続する多数のポゴピン34aが設けられている。これらのうち、プローブカード32と、支持プレート33と、コンタクトブロック34とで検査用のインターフェイスを構成する。
 ベローズ35は、チャックトップ36上のウエハWをプローブカード32の複数のプローブ32aをウエハWに接触した状態で、プローブカード32とウエハWを含む密閉空間を形成するためのものである。その密閉空間を、バキュームラインを介して真空引きすることにより、チャックトップ36が支持プレート33に吸着される。また、プローブカード32も同様に真空引きすることにより支持プレート33に吸着される。
 各段のアライナー22は、Xブロック42と、Yブロック44と、Zブロック45とを有する。Xブロック42は、アライナー22が属する段のベース板の上に設けられたガイドレール41上をX方向に移動する。Yブロック44は、Xブロック42上にY方向に沿って設けられたガイドレール43上をY方向に移動する。Zブロック45は、Yブロック44に対してZ方向に移動する。Zブロック45上には、チャックトップ36が所定の位置関係を保った状態で係合される。なお、Yブロック44の周壁には、プローブカード32の下面を撮影するための下カメラ46が設けられている。
 アライナー22は、X方向に移動して各検査ユニット30の真下にアクセス可能である。アライナー22は、以下の4つの機能を有している。1つ目は、搬送機構19から各検査ユニット30のチャックトップ36に対してウエハWを授受する際にチャックトップ36を支持するウエハ授受機能である。2つ目は、各検査ユニット30に対して被検査体であるウエハWの位置合わせを行う機能である。3つ目は、チャックトップ36上のウエハWのプローブカード32へコンタクトさせる機能である。4つ目は、プローブカード32からチャックトップ36を取り外す際にチャックトップ36を受け取る機能である。アライナー22は、ウエハを載置するチャックトップをX,Y,Z方向に移動させる移動機構を有している。
 チャックトップ36にウエハWを搬送してウエハWをプローブカード32に装着するときは、以下のように行う。最初に、搬送機構19からチャックトップ36にウエハを受け取る。次いで、ウエハWのプローブカード32に対する位置合わせを行う。次いで、アライナー22によりチャックトップ36を上昇させて、ウエハWをプローブカード32のプローブ32aに接触させる。その後、さらにチャックトップ36を上昇させ、ウエハWをプローブ32aに押し付ける。その状態でベローズ35に囲まれた空間を真空引きしてチャックトップ36を支持プレート33に吸着させるとともに、ウエハがプローブ32aに押し付けられた状態を維持し、テスタ50による電気的検査を開始する。このとき、アライナー22のZブロック45は下方に退避され、アライナー22は検査終了後の他の検査ユニット30に移動される。そして、上記と逆動作により、検査後のチャックトップ36を下降させて、チャックトップ36の検査後のウエハWを搬送機構19によりFOUP17に戻す。
 テスタ50は、デバイス電源(DPS)とパラメトリック測定ユニット(PMU)とを有する電源部と、パターンジェネレータと、タイミングジェネレータと、ウエハ上のDUTに対する電力供給、波形入力(ドライバ)、波形測定(コンパレータ)、電圧、電流出力および測定を行う回路等を有する回路部とを有している。
 なお、検査システム10において、複数のテスタ50以外の構成要素がプローバを構成し、プローバ制御部40がプローバを制御し、テスタ制御部60がテスタを制御する。
 プローバ制御部40は、コンピュータからなり、検査システム10のうちプローバの各構成部、例えば、アライナー22、搬送機構19、真空吸着のためのバキューム機構等を制御する。図4は、プローバ制御部40のハードウェア構成の一例を示している。制御部40は、主制御部101と、キーボード、マウス等の入力装置102と、プリンタ等の出力装置103と、表示装置104と、記憶装置105と、外部インターフェイス106と、これらを互いに接続するバス107とを備えている。主制御部101は、CPU(中央処理装置)111、RAM(ランダムアクセスメモリ)112およびROM(リードオンリメモリ)113を有している。記憶装置105は、コンピュータ読み取り可能な記憶媒体に対する情報の記録および読み取りを行うようになっている。記憶媒体としては、例えばハードディスク、光ディスク、フラッシュメモリのような半導体メモリ等を挙げることができる。記憶媒体には、プローバにおける処理レシピ等が記憶されている。
 プローバ制御部40では、CPU111が、RAM112を作業領域として用いて、ROM113または記憶装置105の記憶媒体に格納されたプログラムを実行することにより、検査システム10の搬送系の駆動およびバキューム機構等の動作の制御を行う。
 テスタ制御部60もプローバ制御部40と同様、コンピュータからなり、検査システム10の各テスタ50を制御する。図5は、テスタ制御部60のハードウェア構成の一例を示している。テスタ制御部60は、主制御部201と、キーボード、マウス等の入力装置202と、プリンタ等の出力装置203と、表示装置204と、記憶装置205と、外部インターフェイス206と、これらを互いに接続するバス207とを備えている。主制御部201は、CPU211、RAM212およびROM213を有している。記憶装置205は、コンピュータ読み取り可能な記憶媒体に対する情報の記録および読み取りを行うようになっている。記憶媒体としては、例えばハードディスク、光ディスク、フラッシュメモリのような半導体メモリ等を挙げることができる。記憶媒体には、プローバにおける処理レシピ等が記憶されている。
 テスタ制御部60では、CPU211が、RAM212を作業領域として用いて、ROM213または記憶装置205の記憶媒体に格納されたプログラムを実行することにより、各テスタの制御を行う。
 図6は、プローバ制御部40とテスタ制御部60の本実施形態の主要な制御を説明するための機能ブロック図である。図6に示すように、テスタ制御部60は、検査を実行する検査実行部121と、検査終了予定時刻を取得する検査終了予定時刻取得部122と、アライナー22および搬送機構19に制御信号(指令)を出力する搬送制御信号出力部123とを有する。一方、プローバ制御部40は、アライナー22および搬送機構19を制御する搬送制御部221と、優先度比較部222とを有する。なお、プローバ制御部40およびテスタ制御部60は、他の制御機能も有するが、図6では本実施形態の主要な機能のみを記載している。
 テスタ50で実行される検査(テスト)は、複数のパートからなり、一つのパートが終了した後、テスタ50からDUTにコマンド(信号)を送信して応答を確認してから、次のパートを実行する。しかし、応答時間はDUTによって異なり、所定時間経っても応答のないDUTがある場合は、さらにコマンドの送信を繰り返し、所定回数繰り返しても応答のないDUTは不合格として省いて、合格になったDUTのみ応答が確立されたとして次のパートに進む。このため、応答が確立する時間がウエハ間でまちまちである。また、一つのパートであるストレステストにおいてもDUTにより時間にバラツキがある。また、ウエハWによってテスト・パート内容やメモリサイズが異なり、そのことによっても検査時間が異なる。このため、検査前にその検査が終了する時刻を予測することはできない。
 しかし、テスタ制御部60の検査実行部121により検査を実行させ、検査が所定の段階まで進行したときには、検査終了の時刻を予測することができる。このため、検査終了の時刻が予測可能となる所定の段階で、検査終了予定時刻取得部122により検査終了予定時刻を取得する。検査終了予定時刻取得部122は取得した検査終了予定時刻を搬送制御信号出力部123に出力する。そして、搬送制御信号出力部123は、検査終了予定時刻までに当該テスタ50に次のウエハWが準備されるように(検査室20に搬入可能になるように)、プローバ制御部40の搬送制御部221に制御信号(指令)を出力する。搬送制御部221は、検査終了予定時刻までに、当該テスタ50に対応する検査室20内にウエハWが搬送されるように搬送手段である搬送機構19およびアライナー22を制御する。
 一方、テスタ50は複数あるため、複数のテスタ50により同時並行してウエハにおけるDUTの検査を行い、複数のテスタ50に対応して搬送制御信号出力部123から搬送制御部221に制御信号が出力される。このため、搬送制御部221が、一つのテスタ50に対応する制御信号を受け取ってから、ウエハWの搬送動作の終了前に他のテスタ50に対応する制御信号(指令)を受けたときには、優先度比較部222により優先度を比較する。優先度比較部222は、優先度が高いと判断した方の信号を優先して搬送手段を構成する搬送機構19およびアライナー22に搬送動作を行わせる。
 <検査方法>
 次に、このように構成された検査システム10における検査方法について説明する。図7は、検査システム10における検査方法についてのテスタ50側を中心とした概略のフローを示すフローチャートであり、図8は、テスタ制御部60から制御信号を受けた際のプローバ制御部40を中心とした制御フローを示すフローチャートである。
 図7に示すように、テスタ側においては、オペレータがウエハ搬入出ポート16aにFOUP17をセットし(ステップ1)、所定のテスタ50をテスト開始待ちの状態とする(ステップ2(システム動作))。
 次いで、搬送機構19およびアライナー22により所定のテスタ50に対応する検査室20にウエハWを搬入する(ステップ3(システム動作))。ウエハを搬入する際には、アライナー22を対応する検査室20に移動させ、その検査室20における検査ユニット30のチャックトップ36をアライナー22の上に載せた状態で、搬送機構19からチャックトップ36上にウエハWを受け渡す。
 次いで、プローバ32のプローブ32aにウエハW(ウエハWに形成されたDUT)をコンタクトさせる(ステップ4(システム動作))。このとき、アライナー22によりチャックトップ36上のウエハWとプローバ32とのX-Y方向の位置合わせを行った後、アライナー22のZブロック45を上昇させ、ウエハWのDUTとプローブカード32のプローブとをコンタクトさせる。このときの位置合わせは、上カメラ24および下カメラ46を用いて行われる。そして、ベローズ35により、プローブカード32とウエハWを含む密閉空間を形成し、その密閉空間を、バキュームラインを介して真空引きして、チャックトップ36を支持プレート33に吸着させる。この状態でアライナー22がフリーとなり、他の検査室20への移動が可能となる。
 次いで、テスタ50による検査を開始する(ステップ5)。このとき、テスタ制御部60の検査実行部121により図7に示すような検査内容を実行させる。このときの検査内容は複数のパートからなり、検査スタート後、初期設定(パート1)、コンタクト確認(パート2)、実際の検査(テスト詳細1~n(パート3~n+2))が行われる。
 テスタ50による検査の途中で、検査終了の時刻を予測することができる所定の段階に達した時点で、プローバ制御部40に搬送制御信号(指令)を送信する(ステップ6)。具体的には、検査が所定の段階に達すると、その後はどのウエハWに対しても同じ動作となるため、その段階に達した時点で、検査終了予定時刻取得部122により検査終了予定時刻を取得する。搬送制御信号出力部123は、検査終了予定時刻までにアライナー22およびウエハWを搭載した搬送機構19がそのテスタ50に対応する検査室20に移動するように、プローバ制御部40の搬送制御部221に制御信号(指令)を出力する。
 テスト詳細nまで行われるとテストエンドとなり、検査終了信号が出力される(ステップ7)。次いで、そのウエハWをその検査室20から搬出する(ステップ8(システム動作))。このとき、その検査室20にアライナー22を移動させ、アライナー22のX-Y方向の位置合わせを行った後、Zブロック45を上昇させてチャックトップ36をアライナー22により支持する。これとともに、ベローズ35により形成された空間の真空を解除することによりウエハWをプローブカード32から取り外し、Zブロック45を下降させる。この状態で、アライナー22上のチャックトップ36のウエハWを搬送機構19により受け取り、FOUP17に搬送する。
 以上の動作を複数のウエハWに対して複数のテスタ50を用いて行い、FOUP17内の全てのウエハが終了したことを検出したら(ステップ9(システム動作))、テスタ制御部60からプローバ制御部40へテスト終了通知を出力する(ステップ10(システム動作)。テスト終了通知を受け取ったプローバ制御部40は、アラーム装置(図示せず)にアラーム音発生およびパトライト(登録商標)点滅をさせるとともに、上位のサーバ(客先サーバ)へ終了を通知する(ステップ11(システム動作))。その後、オペレータがFOUP17を取り出す(ステップ12)。
 一方、図8に示すように、テスタ制御部60からの所定のテスタ50の検査終了予定時刻に基づく制御信号(指令)をプローバ制御部40が受信する(ステップ21)。詳細には、テスタ制御部60の搬送制御信号出力部123からの所定のテスタ50の検査終了予定時刻に基づく制御信号をプローバ制御部40の搬送制御部221が受信する。
 次に、制御指令が実行可能か否かを判断し(ステップ22)、実行可能の場合には、他のテスタからの制御信号(指令)を受信していれば、優先度を比較する(ステップ23)。そして、最初の制御指令の優先度が高ければ、その制御指令に基づくテスタ50に対応する検査室20にウエハWを搬送する準備を行う(ステップ24)。次いで、次に測定予定のウエハWを搬送機構19に搭載し(ステップ25)、当該テスタ50の検査終了予定時刻までに、当該テスタ50に対応する検査室20に搬送機構19によりウエハWを搬送し待機させるとともに、アライナー22を待機させる(ステップ26)。
 当該テスタ50での検査終了を確認し(ステップ27)、次いで、アライナー22により検査後のウエハWを吸着したチャックトップ36を保持し(ステップ28)、搬送機構19により検査済みのウエハWと次に検査予定のウエハWを交換する(ステップ29)。そして、検査予定のウエハWを当該テスタ50に装着し検査を開始する(ステップ30)。
 このとき、最初の制御指令の優先度が低ければ他の制御指令を優先する。優先度は、検査終了予定時刻、ならびにウエハWを搭載した搬送機構19およびアライナー22(以下、搬送部と記す)の移動時間(移動距離)に基づいて、より効率的にウエハWの搬送が行えるように決定する。例えば、最初に受けたテスタ50の制御指令に対して搬送部が対応する検査室20に到達する時刻よりも、次に受けた他のテスタ50の制御指令に対して搬送部が対応する検査室20に到達する時刻のほうが早い場合である。その場合は、その到達する時刻が他のテスタ50の検査終了予定時刻よりも早ければ、他のテスタ50に対するウエハWの搬送を優先する。また、検査を優先したいウエハやFOUPの優先度を高く設定してもよい。
 なお、優先度を比較する制御信号は3つ以上であってもよい。ただし、優先度を比較する制御信号が多すぎると制御が複雑になることから、優先度を比較する制御信号の数を例えば2つ(または3つ)に限定することが好ましい。もちろん、優先度の比較を行わず、受信した制御信号順に対応するテスタ50へ次のウエハの搬送・待機を行ってもよい。
 従来、テスタとプローバは別個の制御系により制御されるのが一般的であった。特に、特許文献1のような複数の検査ユニットを有する検査システムにおいては、一つの検査ユニットのテスタにおけるウエハの検査が終了した時点で信号を発し、その信号に基づいてプローバのアライナーがその検査ユニットにウエハを取りに行くようになっている。このため、テスト終了後のウエハを必ずしも最適なタイミングで取りに行くことができない。また、検査の終了時間はウエハによってまちまちであるため、検査の終了予想も難しい。このため、ウエハを連続的に搬送して検査を行う際の個々のテスタの待機時間が長くなってしまい、上記特許文献2の技術を用いても待機時間が長くなる問題は解消しない。
 これに対して、本実施形態によれば、以上のように、所定のテスタ50での検査が終了する前に、テスタ制御部60が検査終了予定時刻を取得して、その検査終了予定時刻に基づく制御信号(指令)をプローバ制御部40に送信する。そして、プローバ制御部40により、検査終了予定時刻までに、次の測定を行うウエハWを搭載した搬送機構19およびアライナー22を制御して検査室20内に次のウエハが搬入可能なように準備しておくことができる。このため、各テスタ50でのウエハWの検査終了後、そのテスタ50における次のウエハWの検査開始までの時間を短縮することができ、検査リードタイムを削減して、検査システム全体の検査効率を高めることができる。
 また、プローバ制御部40が、テスタ制御部60からの複数の制御信号(指令)を受けた場合に、優先度を比較し、優先度が高いほうのテスタ50へのウエハWの搬送を優先することができる。これにより、より効率的にウエハWの搬送を行える制御信号を優先することにより検査効率を一層高めることができる。また、検査を優先したいウエハやFOUPの優先度を高く設定することにより、特定の種類のウエハまたは特定のFOUPに収容されているウエハを優先的に検査することができる。
 <他の適用>
 以上、実施形態について説明したが、今回開示された実施形態は、全ての点で例示であって制限的なものではないと考えられるべきである。上記の実施形態は、添付の特許請求の範囲およびその主旨を逸脱することなく、様々な形態で省略、置換、変更されてもよい。
 例えば、上記実施形態においては、複数のテスタを有する検査システムに本発明を適用した場合について示したが、これに限らず一つのテスタを有する検査システムであってもよい。
 また、上記実施形態では、テスタ制御部からプローバ制御部への制御指令が、テスタに対する次のウエハの準備であったが、これに限らず他の制御指令であってもよい。例えば、検査実行中に針先汚れ(プローブ先端部汚れ)等による測定精度不良等の兆候を検出した際に、テスタ制御部から針研(プローブ研磨)、針先確認(プローブ先端部確認)等の制御指令をプローバ制御部に送信することを挙げることができる。これにより、最適な時期にこれらを確認することができる。
 10;検査装置、17;FOUP、19;搬送機構(搬送手段)、20;検査室、22;アライナー(搬送手段)、30;検査ユニット、36;チャックトップ、40;プローバ制御部、50;テスタ、60;テスタ制御部、121;検査実行部、122;検査終了予定時刻取得部、123;搬送制御信号出力部、221;搬送制御部、222;優先度比較部、W;ウエハ(被検査体)

Claims (14)

  1.  検査室内で複数の被検査デバイスが形成された被検査体を保持するステージと、複数の被検査体を収納する収納容器を載置する搬入出部と、前記被検査体を前記収納容器から前記ステージに搬送する搬送手段と、複数のプローブを前記被検査体に形成された前記複数の被検査デバイスに接触させるプローブカードとを有するプローバと、
     前記検査室内で前記プローブカードを介して前記被検査体に形成された前記複数の被検査デバイスに電気的信号を与え、前記デバイスの電気特性を検査するテスタと、
     前記プローバを制御するプローバ制御部と、
     前記テスタを制御するテスタ制御部と
    を備え、
     前記テスタ制御部は、前記テスタに前記被検査デバイスに対し、複数のパートから構成される検査を実行させるとともに、前記検査が所定の段階に達した際に、検査終了予定時刻を取得し、該検査終了予定時刻までに、次の被検査体が前記テスタを収容する前記検査室へ搬入可能となるように、前記プローバ制御部へ制御信号を送信する、検査システム。
  2.  前記プローバ制御部は、前記テスタからの制御信号に基づいて、前記搬送手段を制御する、請求項1に記載の検査システム。
  3.  前記テスタを複数有し、前記プローバは、前記複数のテスタに対応して、前記検査室、前記ステージ、および前記プローブカードを複数有し、
     前記搬送手段は、前記収納容器と前記複数の検査室との間で被検査体を搬送する、請求項1または請求項2に記載の検査システム。
  4.  前記プローバ制御部は、前記複数のテスタから前記制御信号を受信した場合に、優先度の比較を行い、優先度が高いと判断した方の信号を優先して前記搬送手段を制御する、請求項3に記載の検査システム。
  5.  前記プローバ制御部は、前記優先度を、検査終了予定時刻および搬送手段の移動時間に基づいて、より効率的に前記被検査体の搬送が行えるように決定する、請求項4に記載の検査システム。
  6.  前記プローバ制御部は、前記優先度を比較する制御信号の数を予め設定する、請求項4または請求項5に記載の検査システム。
  7.  前記検査終了予定時刻の取得は、前記検査が進行し、検査終了の時刻が予測可能となる所定の段階で行う、請求項1から請求項6のいずれか1項に記載の検査システム。
  8.  検査室内で複数の被検査デバイスが形成された被検査体を保持するステージと、複数の被検査体を収納する収納容器を載置する搬入出部と、被検査体を前記収納容器から前記ステージに搬送する搬送手段と、複数のプローブを前記被検査体に形成された前記複数の被検査デバイスに接触させるプローブカードとを有するプローバと、
     前記プローブカードを介して前記被検査体に形成された前記複数の被検査デバイスに電気的信号を与え、前記デバイスの電気特性を検査するテスタと、
     前記プローバを制御するプローバ制御部と、
     前記テスタを制御するテスタ制御部と
    を有する検査システムを準備することと、
     前記テスタにより、前記被検査デバイスに対し、複数のパートから構成される検査を実行することと、
     前記テスタ制御部により、前記検査が所定の段階に達した際に、検査終了予定時刻を取得し、該検査終了予定時刻までに、次の被検査体が前記テスタを収容する前記検査室へ搬入可能になるように、前記プローバ制御部に制御信号を送信することと、
    を有する、検査方法。
  9.  前記プローバ制御部は、前記テスタからの制御信号に基づいて、前記搬送手段を制御する、請求項8に記載の検査方法。
  10.  前記検査システムは、前記テスタを複数有し、前記プローバは、前記複数のテスタに対応して、前記検査室、前記ステージ、および前記プローブカードを複数有し、
     前記搬送手段は、前記収納容器と前記複数の検査室との間で被検査体を搬送する、請求項8または請求項9に記載の検査方法。
  11.  前記プローバ制御部は、前記複数のテスタから前記制御信号を受信した場合に、優先度の比較を行い、優先度が高いと判断した方の信号を優先して前記搬送手段を制御する、請求項10に記載の検査方法。
  12.  前記プローバ制御部は、前記優先度を、検査終了予定時刻および搬送手段の移動時間に基づいて、より効率的に前記被検査体の搬送が行えるように決定する、請求項11に記載の検査方法。
  13.  前記プローバ制御部は、前記優先度を比較する制御信号の数を予め設定する、請求項11または請求項12に記載の検査方法。
  14.  前記検査終了予定時刻の取得は、前記検査が進行し、検査終了の時刻が予測可能となる所定の段階で行う、請求項8から請求項13のいずれか1項に記載の検査方法。
PCT/JP2018/028245 2017-09-28 2018-07-27 検査システムおよび検査方法 WO2019064876A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/649,928 US20210364550A1 (en) 2017-09-28 2018-07-27 Testing system and testing method
KR1020207010949A KR20200053587A (ko) 2017-09-28 2018-07-27 검사 시스템 및 검사 방법

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-187559 2017-09-28
JP2017187559A JP2019062138A (ja) 2017-09-28 2017-09-28 検査システムおよび検査方法

Publications (1)

Publication Number Publication Date
WO2019064876A1 true WO2019064876A1 (ja) 2019-04-04

Family

ID=65901607

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/028245 WO2019064876A1 (ja) 2017-09-28 2018-07-27 検査システムおよび検査方法

Country Status (5)

Country Link
US (1) US20210364550A1 (ja)
JP (1) JP2019062138A (ja)
KR (1) KR20200053587A (ja)
TW (1) TWI759545B (ja)
WO (1) WO2019064876A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11387129B2 (en) * 2018-10-05 2022-07-12 Tokyo Electron Limited Substrate warehouse, substrate processing system, and substrate inspection method
WO2023127529A1 (ja) * 2021-12-27 2023-07-06 東京エレクトロン株式会社 予測装置、検査システム、予測方法及び予測プログラム

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0192671A (ja) * 1987-10-02 1989-04-11 Mitsubishi Electric Corp Icテスト装置
JPH06291006A (ja) * 1993-04-01 1994-10-18 Nec Yamagata Ltd 半導体ウェーハの生産方法
JPH10293159A (ja) * 1997-04-17 1998-11-04 Hitachi Ltd Lsi検査装置
JP2005195340A (ja) * 2003-12-26 2005-07-21 Hitachi Sci Syst Ltd 電子線装置による半導体ウェハの検査方法
JP2008268071A (ja) * 2007-04-23 2008-11-06 Yokogawa Electric Corp Lsiテスタおよびテストシステム
JP2013008804A (ja) * 2011-06-23 2013-01-10 Nikon Corp 基板貼り合わせ装置、基板貼り合わせ方法および積層半導体装置の製造方法
JP2016046285A (ja) * 2014-08-20 2016-04-04 東京エレクトロン株式会社 ウエハ検査装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6288561B1 (en) * 1988-05-16 2001-09-11 Elm Technology Corporation Method and apparatus for probing, testing, burn-in, repairing and programming of integrated circuits in a closed environment using a single apparatus
DE102004013707B9 (de) * 2003-08-28 2016-06-23 Cascade Microtech, Inc. Vorrichtung zum Testen von Substraten
JP4353903B2 (ja) * 2005-01-07 2009-10-28 東京エレクトロン株式会社 クラスタツールの処理システム
KR20100084607A (ko) * 2007-05-15 2010-07-27 로널드 씨 슈버트 웨이퍼 프로브 테스트 및 검사 시스템
JP2016192457A (ja) 2015-03-31 2016-11-10 株式会社日立ハイテクノロジーズ 半導体検査装置
TWI616664B (zh) * 2016-03-23 2018-03-01 創意電子股份有限公司 使用探針卡之方法、系統及其探針卡裝置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0192671A (ja) * 1987-10-02 1989-04-11 Mitsubishi Electric Corp Icテスト装置
JPH06291006A (ja) * 1993-04-01 1994-10-18 Nec Yamagata Ltd 半導体ウェーハの生産方法
JPH10293159A (ja) * 1997-04-17 1998-11-04 Hitachi Ltd Lsi検査装置
JP2005195340A (ja) * 2003-12-26 2005-07-21 Hitachi Sci Syst Ltd 電子線装置による半導体ウェハの検査方法
JP2008268071A (ja) * 2007-04-23 2008-11-06 Yokogawa Electric Corp Lsiテスタおよびテストシステム
JP2013008804A (ja) * 2011-06-23 2013-01-10 Nikon Corp 基板貼り合わせ装置、基板貼り合わせ方法および積層半導体装置の製造方法
JP2016046285A (ja) * 2014-08-20 2016-04-04 東京エレクトロン株式会社 ウエハ検査装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11387129B2 (en) * 2018-10-05 2022-07-12 Tokyo Electron Limited Substrate warehouse, substrate processing system, and substrate inspection method
WO2023127529A1 (ja) * 2021-12-27 2023-07-06 東京エレクトロン株式会社 予測装置、検査システム、予測方法及び予測プログラム

Also Published As

Publication number Publication date
TW201933504A (zh) 2019-08-16
TWI759545B (zh) 2022-04-01
US20210364550A1 (en) 2021-11-25
KR20200053587A (ko) 2020-05-18
JP2019062138A (ja) 2019-04-18

Similar Documents

Publication Publication Date Title
JP5450391B2 (ja) ウェーハプローブ試験および検査システム
JP6423660B2 (ja) ウエハ検査装置における検査用圧力設定値決定方法
US11346861B2 (en) Contact accuracy assurance method, contact accuracy assurance mechanism, and inspection apparatus
KR102126097B1 (ko) 대량 병렬 다중 웨이퍼 테스트를 위한 방법 및 장치
US11378610B2 (en) Inspection system and temperature measuring method for inspection system
JP2013191737A (ja) ウエハ検査装置
KR20120114809A (ko) 발광 소자 검사 방법
WO2019064876A1 (ja) 検査システムおよび検査方法
US11073589B2 (en) Diagnostic method for inspection device and inspection system
JP2006317346A (ja) プロービングシステム及びプローバ
JP2008008895A (ja) 半導体デバイスの検査装置および半導体デバイスの検査方法
JPH05136219A (ja) 検査装置
US10871516B2 (en) Inspection system
KR101838805B1 (ko) 반도체 소자 테스트 장치 및 방법
JP6232129B2 (ja) ウェハ表面検査を行うことができるウェハプローバシステム
WO2023008309A1 (ja) 検査システムの検査方法、および検査システム
JPH0210752A (ja) 半導体素子の検査装置
JP2007042864A (ja) プローバ及びプロービングテスト方法
JPH06252237A (ja) 半導体ウエハテスト装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18863547

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207010949

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18863547

Country of ref document: EP

Kind code of ref document: A1