WO2019064483A1 - イオン交換クロマトグラフィーを用いた一塩基置換検出方法 - Google Patents

イオン交換クロマトグラフィーを用いた一塩基置換検出方法 Download PDF

Info

Publication number
WO2019064483A1
WO2019064483A1 PCT/JP2017/035441 JP2017035441W WO2019064483A1 WO 2019064483 A1 WO2019064483 A1 WO 2019064483A1 JP 2017035441 W JP2017035441 W JP 2017035441W WO 2019064483 A1 WO2019064483 A1 WO 2019064483A1
Authority
WO
WIPO (PCT)
Prior art keywords
primer
allele
strand
base pairs
exchange chromatography
Prior art date
Application number
PCT/JP2017/035441
Other languages
English (en)
French (fr)
Inventor
海老沼 宏幸
内田 桂
百合子 塚本
Original Assignee
積水メディカル株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 積水メディカル株式会社 filed Critical 積水メディカル株式会社
Priority to EP17918697.8A priority Critical patent/EP3690039B1/en
Priority to JP2018544280A priority patent/JP6875411B2/ja
Priority to KR1020197009796A priority patent/KR102389120B1/ko
Priority to CN201780057860.0A priority patent/CN109863245A/zh
Priority to PCT/JP2017/035441 priority patent/WO2019064483A1/ja
Priority to US16/325,605 priority patent/US10626452B2/en
Publication of WO2019064483A1 publication Critical patent/WO2019064483A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6844Nucleic acid amplification reactions
    • C12Q1/6858Allele-specific amplification
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N15/00Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
    • C12N15/09Recombinant DNA-technology
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q1/00Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
    • C12Q1/68Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
    • C12Q1/6813Hybridisation assays
    • C12Q1/6827Hybridisation assays for detection of mutation or polymorphism
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/96Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation using ion-exchange
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2535/00Reactions characterised by the assay type for determining the identity of a nucleotide base or a sequence of oligonucleotides
    • C12Q2535/125Allele specific primer extension
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2563/00Nucleic acid detection characterized by the use of physical, structural and functional properties
    • C12Q2563/113Nucleic acid detection characterized by the use of physical, structural and functional properties the label being electroactive, e.g. redox labels
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12QMEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
    • C12Q2565/00Nucleic acid analysis characterised by mode or means of detection
    • C12Q2565/10Detection mode being characterised by the assay principle
    • C12Q2565/137Chromatographic separation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N30/00Investigating or analysing materials by separation into components using adsorption, absorption or similar phenomena or using ion-exchange, e.g. chromatography or field flow fractionation
    • G01N30/02Column chromatography
    • G01N30/88Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86
    • G01N2030/8809Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample
    • G01N2030/8813Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials
    • G01N2030/8827Integrated analysis systems specially adapted therefor, not covered by a single one of the groups G01N30/04 - G01N30/86 analysis specially adapted for the sample biological materials involving nucleic acids

Definitions

  • the present invention relates to a method for specifically detecting a mutation such as single base substitution or point mutation contained in a nucleic acid sample.
  • Gene mutations include genetically inherited germ cell mutations and acquired somatic mutations caused in individual cells, but among germ cell mutations, a single nucleotide polymorphism (Single Nucleotide of a specific gene) It has been reported that polymorphisms (SNPs) of specific genotypes and point mutations (single base substitutions), insertions, deletions, etc. of somatic mutations are associated with various diseases, and their base sequences have recently been identified. By doing this, it is used to select patients who are expected to be effective for specific drugs. For example, gene polymorphisms of UGT1A1 are used to determine the risk of onset of serious side effects of the anticancer drug irinotecan.
  • the JAK2 gene mutation used for the diagnosis of euthyroidism which is one of the gene mutations of myeloproliferative diseases, is a gain-of-function acquired somatic mutation, and a point of 1849 G> T in exon 14
  • the mutation results in constitutive receptor tyrosine kinase activation. Not only is this point mutation detected, but it is also required to calculate the allele frequency, as its quantitative transition is considered to be useful for medical treatment.
  • MPL Myeloproliferative leukemia virus
  • Ion exchange chromatography is used as a method for accurately separating and detecting nucleic acids in a short time.
  • nucleic acids can be separated according to their chain length, for example, by adjusting the length of amplification products by PCR (polymerase chain reaction) It is also possible to separate and detect the amplification product of
  • PCR polymerase chain reaction
  • Patent Document 1 discloses that a sequence (tag sequence) incompletely complementary to a template DNA is added to the 5 'end of an allele specific primer (Allele Specific Primer; ASP) to obtain an amplification product of PCR.
  • An allele specific primer Allele Specific Primer; ASP
  • a method of separating and detecting SNPs by ion exchange chromatography with artificially changing the length is disclosed.
  • the nucleotide sequence to be added is too long, the change in Tm value as a primer may be large, and the specificity may not be maintained.
  • Non-patent Document 1 Non-patent Document 1
  • amplification in which primers not related to mutation are paired proceeds, components necessary for amplification may be consumed, which may affect specific reactions.
  • two pairs of paired primers are used, differences in the efficiency of hybridization and amplification are likely to occur, and it is necessary to accurately calculate the allele frequency when detecting gene mutations such as JAK2 gene mutations. It was difficult.
  • An object of the present invention is to provide a method for accurately and quantitatively separating and detecting various types of gene mutations, particularly single base substitution or point mutations, in view of the above-mentioned conventional problems.
  • non-nucleotide components are added to at least one 5 'end of the ASP and its paired primer in ASP for analyzing gene mutation, particularly single base substitution or point mutation. Then, by amplifying by PCR and separating the amplification product by ion exchange chromatography, it was found that separation and detection can be performed even if the amplification product has the same length, and the present invention has been completed. That is, the present invention has the following constitutions [1] to [8].
  • Method for detecting a gene mutation wherein the 5 'end is added with a non-nucleotide component: wherein the non-nucleotide component is preferably a hydroxy group, an aldehyde group, a carboxy group, an amino group, An ionic functional group selected from the group consisting of a nitro group, a nitroso group, a thiol group, a sulfonic acid group, a fluoro group, a chloro group, a bromo group, and an iodo group, or at least one or more of the ionic functional groups It is a molecule, more preferably the fluorescent substance shown in Table 1, and the difference in size of the gene amplification product is preferably 0 salt
  • the base pair is 1
  • a method of detecting the presence of at least one allele at a polymorphic site contained in double stranded deoxyribonucleic acid in a sample comprising the following steps: (a) providing a sample comprising double stranded deoxyribonucleic acid comprising a polymorphic site; (b) providing a first primer, a second primer, and a third primer,
  • the sequence of the first primer is complementary to the second strand of double-stranded deoxyribonucleic acid having the first allele at the polymorphic site, and any one of the three bases at the 3 'end Or one or both bases of two or three bases or two bases at the 3 'end correspond to the polymorphic site
  • the sequence of the second primer is complementary to the second strand of double-stranded deoxyribonucleic acid having the second allele at the polymorphic site and is any one or two of the three bases at the 3 'end Or one or both bases of three bases or two bases at the 3 'end correspond to
  • the chain extension by the polymerase from the first primer hybridized to the second strand of double-stranded deoxyribonucleic acid having the first allele is a double strand having the first allele.
  • the chain extension by the polymerase from the second primer hybridized to is compared with the chain extension by the polymerase from the first primer hybridized to the second strand of double stranded deoxyribonucleic acid carrying the second allele And under the conditions that occur preferentially; (d) subjecting the amplification product of the polymerase chain reaction to ion exchange chromatography, wherein preferably the ion exchange chromatography is anion exchange chromatography;
  • the difference in size of the amplification product of the polymerase chain reaction from the first primer and the third primer and the amplification product of the polymerase chain reaction from the 21st primer and the third primer is 0 base pair, 1 Base pair, 2 base pairs, 3 base pairs, 4 base pairs, 5 base pairs
  • step (a) is a step of extracting genomic DNA from a mammalian somatic cell sample such as human.
  • the polymorphic site is UGT1A1 * 28 polymorphism (rs8175347), UGT1A1 * 6 polymorphism (rs4148323), JAK2 1849G> T (V617F) mutation site (rs77375493), MPL 1589G> T (W515L) mutation site (rs121913615), Or the method according to the above [4] or [5], wherein MPL 1588: 1599 TG> AA (W515K) mutation site (rs121913616).
  • the non-nucleotide component is a substance that causes a change in charge of the 5 'end of the primer.
  • the third primer is added with a non-nucleotide component:
  • the non-nucleotide component is preferably selected from a hydroxy group, an aldehyde group, a carboxy group, an amino group, a nitro group, a nitroso group, a thiol group, a sulfonic acid group, a fluoro group, a chloro group, a bromo group and an iodo group. It is an ionic functional group selected from the group consisting of or a molecule containing at least one or more of the ionic functional groups, and more preferably the fluorescent substance shown in Table 1.
  • ASP for analyzing single base substitution or point mutation
  • the lengths of amplification products are the same or depending on the sequence, they may differ by about 1 to 2 bases, but in general, separation detection by ion exchange chromatography is difficult. is there.
  • non-nucleotide component when added to the 5 'end of at least one of the ASP and the primer paired therewith and amplified by PCR, one or two non-nucleotide components are labeled on the amplification product It will be.
  • the slight differences in the physical properties and the number of labeled substances slightly change the ionic strength of the amplification product, and the elution position in ion exchange chromatography changes, and this characteristic can be used to separate and detect the amplification product. It is estimated that
  • the allele-specific primer used in the present invention may be any primer capable of specifically binding to the nucleotide sequence of the gene polymorphism or gene mutation, and is a base containing not only single base substitution but also insertion or deletion mutation. As long as it is specific to the sequence etc. and applicable to the separation according to the present invention, it can be used without particular limitation.
  • the non-nucleotide component used in the present invention is preferably a substance that causes a change in the charge at the 5 'end of the primer, and a gene amplification product amplified using an allele specific primer to which it is added In the case of analysis or discrimination using ion exchange chromatography, there is no particular limitation as long as the elution pattern changes.
  • Preferred non-nucleotide components include, for example, ionic functional groups themselves or molecules containing at least one or more ionic functional groups.
  • the ionic functional group is not particularly limited, and examples thereof include a hydroxy group, an aldehyde group, a carboxy group, an amino group, a nitro group, a nitroso group, a thiol group, a sulfonic group, a fluoro group, a chloro group, a bromo group and an iodo group. it can.
  • Fluorescent dyes used as modifications of primers can also be used as non-nucleotide components, and examples include Alexa Fluor series, Cy series, ATTO series, DY series, DyLight series, FAM, TAMRA and the like.
  • DIG digoxin
  • biotin amide group modification
  • amide group modification examples of fluorescent dyes that can be used as non-nucleotide components are shown in Table 1. The effects of these modifiers are further exerted by optimizing the length of gene amplification products amplified using allele specific primers. That is, even with the same modifier, the shorter the length of the gene amplification product, the more noticeable the difference.
  • cation exchange chromatography or anion exchange chromatography is selected as ion exchange chromatography in consideration of the isoelectric point of the substance to be measured, pH of the eluent (also referred to as mobile phase), etc. can do.
  • pH of the eluent also referred to as mobile phase
  • anion exchange chromatography it is preferable to use anion exchange chromatography.
  • nucleic acid is a generic term for ribonucleic acid (hereinafter also referred to as ribonucleic acid or RNA) and deoxyribonucleic acid (hereinafter also referred to as deoxyribonucleic acid or DNA), and includes a base, a sugar and a phosphate. A nucleotide consisting of is linked by phosphodiester bonds.
  • the nucleic acid to be extracted may be either DNA or RNA, and may or may not be fragmented. Sources of the nucleic acid include, but are not limited to, animals, plants, all organisms including microorganisms, and viruses.
  • nucleic acid in a cell nucleus may be a nucleic acid in a cell nucleus, or a nucleic acid derived from extranuclear that is retained by organelle represented by mitochondria, chloroplast, nucleolus or the like.
  • it may be an artificially synthesized nucleic acid, or a plasmid or virus vector generally used as a vector.
  • a double-stranded deoxyribonucleic acid can be exemplified as a preferred nucleic acid for the method of the present invention, and a more preferred nucleic acid is a double-stranded nucleic acid containing a nucleotide sequence in which single nucleotide polymorphism, point mutation, and / or deletion / insertion mutation enters the nucleotide sequence.
  • An example is chain deoxyribonucleic acid.
  • the method for PCR amplification is not particularly limited, and a known method can be appropriately selected and used according to the sequence, length, amount, etc. of the nucleic acid to be amplified.
  • the chain length of the PCR amplification product can be appropriately selected in consideration of factors such as shortening of PCR amplification time, shortening of analysis time in ion exchange chromatography, and maintenance of separation performance.
  • the upper limit of the chain length of the PCR amplification product is 1000 bp or less, 700 bp or less, 600 bp or less, 500 bp or less, 400 bp or less, 300 bp or less, 200 bp or less, 190 bp or less, 180 bp or less, 170 bp or less, 160 bp or less, 150 bp or less, 140 bp or less , 130 bp or less, or 120 bp or less.
  • the upper limit of the chain length of the PCR amplification product is 110 bp or less, 100 bp or less, 90 bp or less, 80 bp or less, 70 bp or less, 60 bp or less, or 50 bp or less.
  • the lower limit of the chain length of the PCR amplification product is 30 bp or more, or 40 bp or more.
  • the lower limit of the chain length of the PCR amplification product is 40 bp or more, 50 bp or more, 60 bp or more, 70 bp or more, 80 bp or more, 90 bp or more, 90 bp or more, 100 bp or more, or 110 bp or more.
  • the length of the PCR amplification product is 40 bp or more and 120 bp or less.
  • UGT1A1 * 28 polymorphism (rs8175347), UGT1A1 * 6 polymorphism (rs4148323), JAK2 1849G> T (V617F) as single nucleotide polymorphism, point mutation, and / or deletion / insertion mutation detectable by the method of the present invention 2.
  • the mutation site (rs77375493), the MPL 1589 G> T (W515L) mutation site (rs121913615), and the MPL 1588: 1599 TG> AA (W515K) mutation site (rs121913616) can be exemplified.
  • FIG. 1 shows the results of overlaying the elution peaks of amplification products by three fluorescently labeled primers (SEQ ID NOS: 3, 7 and 8).
  • FIG. 2 shows the separation and detection of amplification products from the * 6 polymorphic site of UGT1A1 gene using non-nucleotide component-added ASP.
  • FIG. 3 shows the separation and detection of amplification products from around the codon 515 site of the MPL gene using non-nucleotide component added ASP.
  • ASP SEQ ID NO: 1
  • SEQ ID NO: 12 reverse primer
  • SEQ ID NO: 12 another primer prepared by modifying non-nucleotide component at the 5 'end of ASP
  • SEQ ID NO: 2 consigns to Thermo Fisher Co., Ltd., SEQ ID NO: 8 to Eurofin Genomics Inc.
  • SEQ ID NOs: 4 and 6 are consigned to Integrated DNA Technologies MBL Ltd., otherwise consigned to Sigma Aldridge Inc.).
  • SEQ ID NO, primer sequence, oligonucleotide length (bp), type of non-nucleotide component, and excitation wavelength and fluorescence wavelength (nm) of non-nucleotide component are shown in Table 2.
  • Alexa 488 represents a mixture of "Alexa Fluor 488 meta-isomer” and “Alexa Fluor 488 para-isomer” in Table 1
  • FAM represents "5-FAM” in Table 1.
  • “ATTO 488” indicates “ATTO 488” in Table 1
  • “Cy3” indicates “Cy3” in Table 1
  • Alexa 546 indicates “Alexa Fluor 546” in Table 1
  • “TAMRA” indicates “TAMRA” of Table 1 is shown
  • “Cy 3.5” shows “Cy 3.5” of Table 1
  • “Cy 5" shows “Cy 5" of Table 1
  • “Cy 5.5” is “Cy 5 of Table 1.
  • “DIG” indicates “Digoxigenin” in Table 1.
  • FIG. 1 shows the results obtained by superimposing the elution peaks of amplification products by three fluorescently labeled primers (SEQ ID NO: 3, 7 and 8) where the change in elution time was particularly large.
  • SEQ ID NO: 3 As a primer for * 6 allele detection, SEQ ID NO: 3 described in Example 1 was used.
  • the primer for wild type detection at the * 6 polymorphic site is unlabeled and introduced into a mismatched base at one site to amplify wild type specifically as in SEQ ID NO: 1 described in Example 1. (SEQ ID NO: 13) was prepared separately.
  • purified DNAs collected from humans of wild-type, heterozygote of * 6 allele and homozygote for the UGT1A1 gene * 6 gene polymorphism site were used.
  • the codon 515 of the MPL gene has three mutation patterns of W515L, W515K, and W515A, and the sequences of the two bases at 1543-1544 differ from each other.
  • forward primers unlabeled ASPs (SEQ ID NOS: 14 to 16) for detection of each mutant type were prepared, and reverse primers (SEQ ID NO: 17) to be paired therewith were prepared.
  • ASP SEQ ID NOs: 18, 19, 20
  • plasmid DNAs into which the respective gene mutation sequences (SEQ ID NOS: 21 to 23) were incorporated were prepared as samples (consigned to Eurofin Genomics Co., Ltd.).
  • SEQ ID NO: 19 (ASP for amino group labeled W515K) 5'-NH2-CTGCTGCTGCTGAGGAA-3 '
  • SEQ ID NO: 20 (ASP for Cy3.5 fluorescent dye labeled W515K) 5'-Cy3.5-CTGCTGCTGCTGAGGAA-3 '
  • SEQ ID NO: 21 (W515L gene mutant sequence)
  • SEQ ID NO: 22 (W515K gene mutant sequence)
  • Reagent, amplification condition and ion exchange chromatography condition A 25 ⁇ L reaction solution containing the following reagent was prepared, and amplification by allele-specific PCR in two steps was performed with CFX96 (Bio-Rad).
  • FIG. 3 shows the results of ion exchange chromatography separation and detection of the amplification product from around the 515 site of the MPL gene using non-nucleotide component-added ASP.
  • the elution position of the W515A amplification product (45 bp) (elution time 3.82 minutes) is the elution position of the W515 L and W515 K amplification products (46 bp each) and Although they can be distinguished from each other, the amplification products of W515L and W515K have almost the same elution position (elution time of 4.42 minutes and 4.35 minutes), and although the presence or absence of mutation is confirmed, identification of the pattern can not be performed found.
  • the elution positions of the amplification product using ASP SEQ ID NOs: 18, 19 and 20 to which the non-nucleotide component for W515K is added are 4.16 minutes, 3.91 minutes and 4.97 minutes, respectively. In addition to the fact that they do not overlap, it was also confirmed that they did not overlap with the elution position of the W515A amplification product.
  • the result is to add an appropriate non-nucleotide component to ASP when amplification products using ASP have similar lengths and separation detection using ion exchange chromatography shows no difference due to elution position. Support that separation detection is possible.
  • various elutions can be achieved by adding multiple non-nucleotide components that change elution time by ion exchange chromatography to multiple ASPs and also adding non-nucleotide components to the paired primers. It is possible to adjust the time. Furthermore, by using a fluorescent dye as the non-nucleotide component, by selecting one that does not cause cross-talk of the fluorescence wavelength, it becomes possible to discriminate at the detection wavelength even if there is no difference in elution time.
  • a method of detecting amplification products in addition to the method of separating amplification reaction reagents as they are by ion exchange chromatography, a method of separately preparing a plurality of amplification reagents and separating the mixed solution by ion exchange chromatography is also possible. is there.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Organic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Zoology (AREA)
  • Wood Science & Technology (AREA)
  • Genetics & Genomics (AREA)
  • Proteomics, Peptides & Aminoacids (AREA)
  • General Engineering & Computer Science (AREA)
  • Bioinformatics & Cheminformatics (AREA)
  • Biotechnology (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Physics & Mathematics (AREA)
  • Molecular Biology (AREA)
  • Microbiology (AREA)
  • Biophysics (AREA)
  • Immunology (AREA)
  • Analytical Chemistry (AREA)
  • Biomedical Technology (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Plant Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

【課題】本発明は、多種類の遺伝子変異、特に一塩基置換若しくは点変異を、正確かつ定量的に分離及び検出する方法を提供することを目的とする。 【解決手段】遺伝子変異、特に一塩基置換若しくは点変異を解析するためのアレル特異的プライマー(ASP)において、そのASP及びそれと対をなすプライマーの少なくとも1つの5'末端に、非ヌクレオチド成分を付加してPCRにより増幅し、その増幅産物をイオン交換クロマトグラフィーにより分離することで、増幅産物の長さが同じでも、分離検出できる。

Description

イオン交換クロマトグラフィーを用いた一塩基置換検出方法
 本発明は、核酸試料中に含まれる一塩基置換若しくは点変異などの変異の特異的な検出方法に関する。
 遺伝子変異には、遺伝的に受け継がれる生殖細胞変異と後天的に一つ一つの細胞内で引き起こされる体細胞変異があるが、生殖細胞変異の中で特定の遺伝子の一塩基多型(Single Nucleotide Polymorphism; SNP)の特定の遺伝子型や体細胞変異の点変異(一塩基置換)、挿入、欠失などが、各種疾病に関連していることが報告されており、近年それらの塩基配列を同定することによって、特定の薬剤に効果が期待される患者の選別に利用されている。例えば、UGT1A1の遺伝子多型は、抗がん剤であるイリノテカンの重篤な副作用の発現のリスクを判断することに利用されている。UGT1A1の遺伝子多型検査においては、2つの塩基配列(*6、*28)を対象に、それぞれ変異を持たない野生型、野生型と変異型の両方を持つヘテロ接合体、変異型のみのホモ接合体を判別する必要がある。骨髄性増殖性疾患の遺伝子変異の1つである真性赤血球増加症の診断に用いられているJAK2遺伝子変異は、機能獲得型の後天的体細胞変異であり、エクソン14の1849 G>Tの点変異により、恒常的な受容体型チロシンキナーゼの活性化をもたらす。この点変異は、検出されるだけでなく、量的推移が診療上有用とされることから、アレル頻度を算出することが要求される。すなわち、遺伝子多型検出と同様に、点変異検出においても変異型及び野生型の両方を定量的に検出する必要がある。さらに、原発性骨髄繊維症でWHO分類の診断基準に設定されているMPL(Myeloproliferative leukemia virus)遺伝子変異は、エクソン10、コドン515の1543~1544番目の塩基に点変異や欠失・挿入変異が入ることから、同じ位置でいくつかの変異パターンがあり、そのパターンを区別して検出することが望ましい。
 核酸を短時間に精度良く分離検出できる方法として、イオン交換クロマトグラフィーが利用されている。このイオン交換クロマトグラフィーを核酸の検出に応用する利点としては、核酸をその鎖長に依り分離できることから、例えばPCR(ポリメラーゼ連鎖反応、polymerase chain reaction)による増幅産物の長さを調節すれば、複数の増幅産物を一度の測定で分離及び検出することも可能となることである。この原理は、上記のような複数存在する遺伝子変異の検出への応用も理論的には可能であるが、一塩基置換や点変異のような僅か1塩基の違いを検出するためには、工夫が必要である。一塩基置換検出の場合、単純にSNP部位を挟むようにPCR用のプライマーを設計して、増幅産物を得たとしても、一塩基の違いをイオン交換クロマトグラフィーで分離するのは困難である。これに対して、特許文献1には、アレル特異的プライマー(Allele Specific Primer; ASP)の5’末端に鋳型DNAと不完全相補な配列(タグ配列)を付加させることで、PCRによる増幅産物の長さを人為的に変化させて、イオン交換クロマトグラフィーにてSNPを分離検出する方法が開示されている。しかしながら、付加する塩基配列が長すぎるとプライマーとしてのTm値の変化が大きくなり、特異性が保てなくなる可能性がある。逆に短すぎると、増幅産物長の差が小さくなることでイオン交換クロマトグラフィーの分離が悪くなり、一塩基多型を正確に判定することが出来なくなることが懸念される。
 一方、ASPの設計を、二本鎖のフォワード側及びリバース側に設計し、その対となるプライマーを、変異部位以外の適当な場所に設計することにより、2種類の大きさが異なる増幅産物を得ることで、キャピラリー電気泳動を用いて分離できることが報告されている(非特許文献1)。しかしながら、この方法では変異と関係ないプライマー同士が対となった増幅が進んでしまうことから、増幅に必要な成分が消費され、特異反応に影響する可能性がある。さらに、2組の対となるプライマーを用いていることから、ハイブリダイゼーション及び増幅の効率に差が生じやすく、JAK2遺伝子変異などの遺伝子変異を検出する際に、アレル頻度を正確に算出するのは困難であった。さらに加えて、この方法では、2種類までの変異検出が限界であり、MPLのコドン515周辺の複数変異や、KRASやNRASなどのコドン12やコドン13の点変異のように、多くの種類の変異には適用することができない。
WO2012/133834
Takei H, Morishita S, Araki M, Edahiro Y, Sunami Y, Hironaka Y, Noda N, Sekiguchi Y, Tsuneda S, Ohsaka A, Komatsu N. Detection of MPLW515L/K mutations and determination of allele frequencies with a single-tube PCR assay. PLoS One. 2014 Aug 21;9(8):e104958.
 本発明は、上記のような従来の課題を鑑みて、多種類の遺伝子変異、特に一塩基置換若しくは点変異を、正確かつ定量的に分離及び検出する方法を提供することを目的とする。
 前記課題を解決するための手段として、遺伝子変異、特に一塩基置換若しくは点変異を解析するためのASPにおいて、そのASP及びそれと対をなすプライマーの少なくとも1つの5’末端に、非ヌクレオチド成分を付加してPCRにより増幅し、その増幅産物をイオン交換クロマトグラフィーにより分離することで、増幅産物の長さが同じでも、分離検出できることを見出し、本発明を完成させるに至った。即ち、本発明は以下の〔1〕~〔8〕の構成からなる。
 〔1〕
 2種類以上のアレル特異的プライマーを用いて増幅された2種類以上の遺伝子増幅産物を、イオン交換クロマトグラフィーを用いて判別する方法であって、前記2種類以上のアレル特異的プライマーの少なくとも一つの5’末端が、非ヌクレオチド成分を付加されていることを特徴とする、遺伝子変異を検出する方法: ここで、当該非ヌクレオチド成分は、好ましくは、ヒドロキシ基、アルデヒド基、カルボキシ基、アミノ基、ニトロ基、ニトロソ基、チオール基、スルホン酸基、フルオロ基、クロロ基、ブロモ基、及びヨード基からなる群から選択されるイオン性官能基、又は、当該イオン性官能基を少なくとも1つ以上含む分子であり、更に好ましくは、表1に示される蛍光物質であり、かつ、当該遺伝子増幅産物の大きさの差は、好ましくは、0塩基対、1塩基対、2塩基対、3塩基対、4塩基対、5塩基対、6塩基対、7塩基対、8塩基対、9塩基対、又は10塩基対であり、より好ましくは、0塩基対、1塩基対、又は2塩基対であり、更に好ましくは、0塩基対である。
 〔2〕
 イオン交換クロマトグラフィーが、アニオン交換クロマトグラフィーである上記〔1〕に記載の検出方法。
 〔3〕
 非ヌクレオチド成分が、プライマーの5’末端の電荷に変化を引き起こさせる物質である上記〔1〕又は〔2〕に記載の検出方法。
 〔4〕
 以下の工程を含む、試料中の二本鎖デオキシリボ核酸に含まれる多型部位における少なくとも一つのアレルの存在を検出する方法:
 (a)多型部位を含む二本鎖デオキシリボ核酸を含む試料を提供する工程;
 (b)第1のプライマー、第2のプライマー、及び第3のプライマーを提供する工程、
 ここで、第1のプライマーの配列は、当該多型部位において第1のアレルを持つ二本鎖デオキシリボ核酸の第2の鎖に相補的でありかつ3'末端の3つの塩基の何れか1つ又は2つ又は3つの塩基或いは3'末端の2つの塩基の一方又は両方の塩基が当該多型部位に対応し、
 第2のプライマーの配列は、当該多型部位において第2のアレルを持つ二本鎖デオキシリボ核酸の第2の鎖に相補的でありかつ3'末端の3つの塩基の何れか1つ又は2つ又は3つの塩基或いは3'末端の2つの塩基の一方又は両方の塩基が当該多型部位に対応し、
 第3のプライマーの配列は、当該多型部位を含まずかつ当該二本鎖デオキシリボ核酸の第1の鎖に相補的であり、
 第1のプライマー及び第2のプライマーの少なくとも1つが、非ヌクレオチド成分を付加されている、
 ここで、当該非ヌクレオチド成分は、好ましくは、ヒドロキシ基、アルデヒド基、カルボキシ基、アミノ基、ニトロ基、ニトロソ基、チオール基、スルホン酸基、フルオロ基、クロロ基、ブロモ基、及びヨード基からなる群から選択されるイオン性官能基、又は、当該イオン性官能基を少なくとも1つ以上含む分子であり、更に好ましくは、表1に示される蛍光物質である;
 (c)ポリメラーゼ連鎖反応を行う工程、
 ここで、当該ポリメラーゼ連鎖反応は、第1のアレルを持つ二本鎖デオキシリボ核酸の第2の鎖にハイブリダイズした第1のプライマーからのポリメラーゼによる鎖の伸長が、第1のアレルを持つ二本鎖デオキシリボ核酸の第2の鎖にハイブリダイズした第2のプライマーからのポリメラーゼによる鎖の伸長と比較して優先的に生じ、かつ、第2のアレルを持つ二本鎖デオキシリボ核酸の第2の鎖にハイブリダイズした第2のプライマーからのポリメラーゼによる鎖の伸長が、第2のアレルを持つ二本鎖デオキシリボ核酸の第2の鎖にハイブリダイズした第1のプライマーからのポリメラーゼによる鎖の伸長と比較して優先的に生じる条件で行われる;
 (d)当該ポリメラーゼ連鎖反応の増幅産物をイオン交換クロマトグラフィーに掛ける工程、ここで、好ましくは、イオン交換クロマトグラフィーは、アニオン交換クロマトグラフィーである;
 ここで、第1のプライマー及び第3のプライマーからのポリメラーゼ連鎖反応の増幅産物と第21のプライマー及び第3のプライマーからのポリメラーゼ連鎖反応の増幅産物の大きさの差は、0塩基対、1塩基対、2塩基対、3塩基対、4塩基対、5塩基対、6塩基対、7塩基対、8塩基対、9塩基対、又は10塩基対であり、より好ましくは、0塩基対、1塩基対、又は2塩基対であり、更に好ましくは、0塩基対である;及び
 第1及び第2のアレルの一方又は両方の存在を前記増幅産物の溶出位置又は溶出時間に基づいて検出する工程。
 〔5〕
 前記(a)の工程が、ヒトなどの哺乳類体細胞検体からゲノムDNAを抽出する工程である、上記〔4〕に記載の方法。
 〔6〕
 前記多型部位が、UGT1A1*28多型(rs8175347)、UGT1A1*6多型(rs4148323)、JAK2 1849G>T (V617F)変異部位(rs77375493)、MPL 1589G>T (W515L)変異部位(rs121913615)、又はMPL 1588:1599TG>AA (W515K)変異部位(rs121913616)である、上記〔4〕又は〔5〕に記載の方法。
 〔7〕
 前記非ヌクレオチド成分が、プライマーの5’末端の電荷に変化を引き起こさせる物質である、上記〔4〕~〔6〕の何れかに記載の方法。
 〔8〕
 第3のプライマーが非ヌクレオチド成分を付加されている、上記〔4〕~〔7〕の何れかに記載の方法:
 ここで、当該非ヌクレオチド成分は、好ましくは、ヒドロキシ基、アルデヒド基、カルボキシ基、アミノ基、ニトロ基、ニトロソ基、チオール基、スルホン酸基、フルオロ基、クロロ基、ブロモ基、及びヨード基からなる群から選択されるイオン性官能基、又は、当該イオン性官能基を少なくとも1つ以上含む分子であり、更に好ましくは、表1に示される蛍光物質である。
 一塩基置換若しくは点変異を解析するためのASPでは、増幅産物の長さが同じ、若しくは配列によっては、1~2塩基程度異なることはあるが、一般にイオン交換クロマトグラフィーでの分離検出は困難である。
 これに対して、ASP及びそれと対をなすプライマーの少なくとも1つの5’末端に、非ヌクレオチド成分を付加してPCRにより増幅すると、その増幅産物に1つ若しくは2つの非ヌクレオチド成分が標識されていることになる。この僅かな標識物の物性並びに個数の違いにより、増幅産物のイオン強度が微妙に変化し、イオン交換クロマトグラフィーでの溶出位置が変化し、この特性を用いて増幅産物の分離検出することが可能となると推測される。
 本発明で用いられるアレル特異的プライマーは、その遺伝子多型や遺伝子変異の塩基配列に対して特異的に結合できるプライマーであればよく、一塩基置換だけでなく、挿入や欠失変異を含む塩基配列などに特異的で、かつ本発明による分離に適用できるものであれば特に制限なく利用可能である。
 本発明に用いられる非ヌクレオチド成分としては、プライマーの5’末端の電荷に変化を引き起こさせる物質であることが好適で、それが付加されたアレル特異的プライマーを用いて増幅された遺伝子増幅産物を、イオン交換クロマトグラフィーを用いて分析又は判別する場合に、溶出パターンが変化するものであれば特に制限はない。好ましい非ヌクレオチド成分としては、例えば、イオン性官能基そのもの、若しくはイオン性官能基を少なくとも1つ以上含む分子が挙げられる。イオン性官能基は、特に制限されなく、ヒドロキシ基、アルデヒド基、カルボキシ基、アミノ基、ニトロ基、ニトロソ基、チオール基、スルホン酸基、フルオロ基、クロロ基、ブロモ基、ヨード基などが例示できる。プライマーの修飾として用いられる蛍光色素も非ヌクレオチド成分として利用でき、例えば、Alexa Fluorシリーズ、Cyシリーズ、ATTOシリーズ、DYシリーズ、DyLightシリーズ、FAM、TAMRAなどが挙げられる。さらに、ジゴキシン(DIG)、ビオチンなどの機能性物質の付加やアミド基修飾なども制限なく利用可能である。非ヌクレオチド成分として利用できる蛍光色素の例を、表1に示す。
 これら修飾物質の効果は、アレル特異的プライマーを用いて増幅された遺伝子増幅産物の長さを至適化することで、さらに発揮される。即ち、同じ修飾物質であっても、遺伝子増幅産物の長さが短いほどのその違いが顕著に表れる。従って、本発明では、5’末端に非ヌクレオチド成分が付加されたアレル特異的プライマーを用いて増幅された遺伝子増幅産物を、イオン交換クロマトグラフィーを用いて分析又は判別する際に、非ヌクレオチド成分の種類だけでなく、遺伝子増幅産物の長さを適切に組み合わせることによって、本発明の効果を最大限に発揮することが可能となる。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
Figure JPOXMLDOC01-appb-T000005
Figure JPOXMLDOC01-appb-T000006
Figure JPOXMLDOC01-appb-T000007
Figure JPOXMLDOC01-appb-T000008
Figure JPOXMLDOC01-appb-T000009
 本発明の方法において、イオン交換クロマトグラフィーとして、カチオン交換クロマトグラフィーまたはアニオン交換クロマトグラフィーを、測定対象物質の等電点、溶離液(移動相ともいう)のpHや塩濃度等を考慮して選択することができる。核酸など、負の電荷を帯びている測定対象物質の場合には、アニオン交換クロマトグラフィーを用いることが好ましい。
 本明細書において、「核酸」とは、リボ核酸(以下、ribonucleic acid、RNAともいう。)とデオキシリボ核酸(以下、deoxyribonucleic acid、DNAともいう。)の総称であり、塩基、糖、及びリン酸からなるヌクレオチドが、ホスホジエステル結合で連なったものを意味する。本発明において、抽出される核酸は、DNA及びRNAのどちらであってもよく、また断片化しているものであっても、していないものであっても対象となる。該核酸の由来は、動物、植物、微生物を含むあらゆる生物、ウィルスが挙げられるが、これらに限定されない。また、細胞核内の核酸や、ミトコンドリアや葉緑体や核小体等に代表されるオルガネラが保持する核外由来の核酸でもよい。更に、人工的合成された核酸や、一般にベクターとして用いられるプラスミドやウイルスベクターでもよい。本発明の方法に好ましい核酸として二本鎖デオキシリボ核酸が例示でき、より好ましい核酸として、その塩基配列に一塩基多型、点変異、及び/または欠失・挿入変異が入る塩基配列を含む二本鎖デオキシリボ核酸が例示できる。
 PCR増幅の方法としては特に制限はなく、増幅対象の核酸の配列、長さ、量などに応じて、公知の手法を適宜選択して用いることができる。PCR増幅産物の鎖長は、PCRの増幅時間の短縮、ならびにイオン交換クロマトグラフィーでの分析時間の短縮や分離性能の維持等の要素を勘案して適宜選択することができる。例えば、PCR増幅産物の鎖長の上限は、1000bp以下、700bp以下、600bp以下、500bp以下、400bp以下、300bp以下、200bp以下、190bp以下、180bp以下、170bp以下、160bp以下、150bp以下、140bp以下、130bp以下、又は120bp以下である。別の態様においては、PCR増幅産物の鎖長の上限は、110bp以下、100bp以下、90bp以下、80bp以下、70bp以下、60bp以下、又は50bp以下である。一方、PCR増幅産物の鎖長の下限は、30bp以上、又は40bp以上である。別の態様においては、PCR増幅産物の鎖長の下限は、40bp以上、50bp以上、60bp以上、70bp以上、80bp以上、90bp以上、100bp以上、又は110bp以上である。別の好ましい態様においては、PCR増幅産物の鎖長は40bp以上120bp以下である。
 本発明の方法で検出可能な一塩基多型、点変異、及び/または欠失・挿入変異として、UGT1A1*28多型(rs8175347)、UGT1A1*6多型(rs4148323)、JAK2 1849G>T (V617F)変異部位(rs77375493)、MPL 1589G>T (W515L)変異部位(rs121913615)、MPL 1588:1599TG>AA (W515K)変異部位(rs121913616)が例示できる。
図1は、3つの蛍光標識プライマー(配列番号3、7及び8)による増幅産物の溶出ピークを重ね書きした結果を示す。 図2は、非ヌクレオチド成分付加ASPを用いたUGT1A1遺伝子の*6多型部位からの増幅産物の分離及び検出を示す。 図3は、非ヌクレオチド成分付加ASPを用いたMPL遺伝子のコドン515部位周辺からの増幅産物の分離及び検出を示す。
 以下、実施例により本発明を詳細に説明するが、本発明は以下の実施例に限定されるものではない。
 [実施例1]非ヌクレオチド成分付加ASPを用いたUGT1A1遺伝子の*6多型部位からの増幅産物
 ヒトUGT1A1遺伝子の*6アレル(211G>A)で、ミスマッチ塩基を一箇所無味入れた当該アレルを特異的に増幅できるASP(配列番号1)及びそのリバースプライマー(配列番号12)を用意し(シグマアルドリッジ株式会社へ委託)、さらにASPの5’末端に、非ヌクレオチド成分を修飾したプライマーを別に用意した(配列番号2は、サーモフィッシャー株式会社へ委託、配列番号8は、ユーロフィンジェノミクス株式会社へ委託、配列番号4及び6は、Integrated DNA Technologies MBL株式会社へ委託、それ以外は、シグマアルドリッジ株式会社へ委託)。配列番号、プライマー配列、オリゴヌクレオチドの長さ(bp)、非ヌクレオチド成分の種類、並びに、非ヌクレオチド成分の励起波長及び蛍光波長(nm)を表2に示す。なお、実施例1~3において、「Alexa488」は表1の「Alexa Fluor 488 meta-isomer」と「Alexa Fluor 488 para-isomer」との混合物を示し、「FAM」は表1の「5-FAM」を示し、「ATTO488」は表1の「ATTO 488」を示し、「Cy3」は表1の「Cy3」を示し、「Alexa546」は表1の「Alexa Fluor 546」を示し、「TAMRA」は表1の「TAMRA」を示し、「Cy3.5」は表1の「Cy3.5」を示し、「Cy5」は表1の「Cy5」を示し、「Cy5.5」は表1の「Cy5.5」を示し、「DIG」は表1の「Digoxigenin」を示す。
Figure JPOXMLDOC01-appb-T000010
 ・試薬、増幅条件及びイオン交換クロマトグラフィー条件
 以下の試薬を含む25μLの反応溶液を調製し、CFX96(バイオラッド社)にて2ステップのアレル特異的PCRによる増幅を行った。この検討では、UGT1A1遺伝子*6のアレルがホモ接合体の人から採取した精製DNAを用いた。
Figure JPOXMLDOC01-appb-T000011
 その結果を表4に示す。すべての増幅産物の鎖長は117bpとなるが、未標識増幅産物と比較して、各種非ヌクレオチド成分が標識されたプライマーを用いて増幅された産物のイオン交換クロマトグラフィーでの溶出時間(保持時間とも言う。)は、早まったり遅延したりと様々なパターンを示す興味深い知見が得られた。その中から、特に溶出時間の変化が大きかった3つの蛍光標識プライマー(配列番号3、7及び8)による増幅産物の溶出ピークを重ね書きした結果を図1に示す。この結果は、同じ部位にいくつかパターンがある遺伝子多型や遺伝子変異を特定するための特異的なプライマー毎に、標識する非ヌクレオチド成分を変化させることによって、仮にその増幅産物の鎖長が同一になる場合においても、一回のイオン交換クロマトグラフィー分離において、複数変異のマルチプレックス解析が可能であることを支持するものである。
Figure JPOXMLDOC01-appb-T000012
 [実施例2]非ヌクレオチド成分付加ASPを用いたUGT1A1遺伝子の*6多型部位からの増幅産物の分離及び検出
 *6アレル検出用のプライマーは、実施例1に記載の配列番号3を用いた。一方、*6多型部位における野生型検出用のプライマーは、実施例1に記載の配列番号1と同様に、非標識でミスマッチ塩基を一箇所に導入して野生型を特異的に増幅できるASP(配列番号13)を別に用意した。この検討では、UGT1A1遺伝子*6の遺伝子多型部位が、野生型、*6アレルのヘテロ接合体及びホモ接合体の人から採取した精製DNAを用いた。
 配列番号13
 5’-GTTGTACATCAGAGACGAA-3’
 ・試薬、増幅条件及びイオン交換クロマトグラフィー条件
 以下の試薬を含む25μLの反応溶液を調製し、CFX96(バイオラッド社)にて2ステップのアレル特異的PCRによる増幅を行った。イオン交換クロマトグラフィーの測定は、実施例1と同じ条件を用いて実施した。
Figure JPOXMLDOC01-appb-T000013
 その結果を図2に示す。*6アレルのヘテロ接合体である検体1では、未標識増幅産物の溶出位置(溶出時間8.6分付近)とFAM標識増幅産物の溶出位置(溶出時間9.2分)に2つの溶出ピークを認め、*6アレルのホモ接合体である検体2では、FAM標識増幅産物の溶出位置にのみ溶出ピークを認め、野生型である検体3では、未標識増幅産物の溶出位置のみ溶出ピークを認めたことから、UGT1A1遺伝子の*6多型部位の遺伝子型が容易かつ正確に判別することが可能であることがわかった。
 実施例3 非ヌクレオチド成分付加ASPを用いたMPL遺伝子変異(コドン515)の分離検出
 MPL遺伝子のコドン515には、W515L、W515K、W515Aの3つの変異パターンがあり、それぞれ1543-1544番目の2塩基の配列が異なる。フォワードプライマーとして、それぞれの変異型検出用の未標識ASP(配列番号14~16)を用意し、それと対となるリバースプライマー(配列番号17)を用意した。別に、W515K用の非ヌクレオチド成分を付加したASP(配列番号18、19、20)も用意した。また、それぞれの遺伝子変異配列(配列番号21~23)を組み込んだプラスミドDNAを、検体用として用意(ユーロフィンジェノミクス株式会社へ委託)した。
 配列番号14 (W515L用ASP)
 5’-CTGCTGCTGCTGAGGTTTC-3’
 配列番号15 (W515K用ASP)
 5’-CTGCTGCTGCTGAGGAA-3’
 配列番号16 (W515A用ASP)
 5’-TGCTGCTGCTGAGCGC-3’
 配列番号17 (共通リバースプライマー)
 5’-GGCGGTACCTGTAGTGTGC-3’
 配列番号18 (ビオチン標識W515K用ASP)
 5’-Biotin-CTGCTGCTGCTGAGGAA-3’
 配列番号19 (アミノ基標識W515K用ASP)
 5’-NH2-CTGCTGCTGCTGAGGAA-3’
 配列番号20 (Cy3.5蛍光色素標識W515K用ASP)
 5’-Cy3.5-CTGCTGCTGCTGAGGAA-3’
 配列番号21 (W515L遺伝子変異配列)
Figure JPOXMLDOC01-appb-C000014
 配列番号22 (W515K遺伝子変異配列)
Figure JPOXMLDOC01-appb-C000015
 配列番号23 (W515A遺伝子変異配列)
Figure JPOXMLDOC01-appb-C000016
 ・試薬、増幅条件及びイオン交換クロマトグラフィー条件
 以下の試薬を含む25μLの反応溶液を調製し、CFX96(バイオラッド社)にて2ステップのアレル特異的PCRによる増幅を行った。
 図3に、非ヌクレオチド成分付加ASPを用いたMPL遺伝子のコドン515部位周辺からの増幅産物のイオン交換クロマトグラフィー分離及び検出結果を示す。先ず、未標識ASPを用いた場合のイオン交換クロマトグラフィー分離結果について、W515Aの増幅産物(45bp)の溶出位置(溶出時間3.82分)は、W515L及びW515Kの増幅産物(それぞれ46bp)の溶出位置と異なることから判別可能であるが、W515LとW515Kの増幅産物は、ほぼ同じ溶出位置(溶出時間4.42分と4.35分)となり、変異の有無は確認されるが、そのパターンの同定は出来ないことが判明した。それに対して、W515K用の非ヌクレオチド成分を付加したASP(配列番号18、19、20)を用いた増幅産物の溶出位置は、それぞれ、4.16分、3.91分、4.97分となり、W515Lの溶出位置と重ならないことに加えて、W515Aの増幅産物の溶出位置にも重ならないことも確認された。
 この結果は、ASPを用いた増幅産物の長さが類似して、イオン交換クロマトグラフィーを用いた分離検出で溶出位置による差が認められない場合に、ASPに適当な非ヌクレオチド成分を付加することで、分離検出が可能となることを支持する。
 上記の知見を踏まえると、複数のASPにイオン交換クロマトグラフィーによる溶出時間が変化する複数の非ヌクレオチド成分を付加し、さらにそれと対をなすプライマーにも非ヌクレオチド成分を付加することによって、様々な溶出時間を調整することが可能となる。さらに、非ヌクレオチド成分に、蛍光色素を用いることによって、蛍光波長がクロストークしないものを選択することで、溶出時間に差が無くとも、検出する波長で判別することも可能となる。
 増幅産物の検出方法としては、増幅反応した試薬をそのままイオン交換クロマトグラフィーで分離する方法以外に、複数の増幅試薬を別々に準備し、その混合液をイオン交換クロマトグラフィーで分離する方法も可能である。
 従って、本発明によれば、従来法では困難であった複数の遺伝子多型の遺伝子型や一塩基置換を、容易にかつ正確に検出でき、近年需要が高まってきている遺伝子検査のマルチプレックス化に対応可能な方法が提供される。

Claims (8)

  1.  2種類以上のアレル特異的プライマーを用いて増幅された2種類以上の遺伝子増幅産物を、イオン交換クロマトグラフィーを用いて判別する方法であって、前記2種類以上のアレル特異的プライマーの少なくとも一つの5’末端が、非ヌクレオチド成分を付加されていることを特徴とする、遺伝子変異を検出する方法。
  2.  イオン交換クロマトグラフィーが、アニオン交換クロマトグラフィーである請求項1に記載の検出方法。
  3.  非ヌクレオチド成分が、プライマーの5’末端の電荷に変化を引き起こさせる物質である請求項1又は2に記載の検出方法。
  4.  以下の工程を含む、試料中の二本鎖デオキシリボ核酸に含まれる多型部位における少なくとも一つのアレルの存在を検出する方法:
     (a)多型部位を含む二本鎖デオキシリボ核酸を含む試料を提供する工程;
     (b)第1のプライマー、第2のプライマー、及び第3のプライマーを提供する工程、
     ここで、第1のプライマーの配列は、当該多型部位において第1のアレルを持つ二本鎖デオキシリボ核酸の第2の鎖に相補的でありかつ3'末端の3つの塩基の何れか1つ又は2つ又は3つの塩基或いは3'末端の2つの塩基の一方又は両方の塩基が当該多型部位に対応し、
     第2のプライマーの配列は、当該多型部位において第2のアレルを持つ二本鎖デオキシリボ核酸の第2の鎖に相補的でありかつ3'末端の3つの塩基の何れか1つ又は2つ又は3つの塩基或いは3'末端の2つの塩基の一方又は両方の塩基が当該多型部位に対応し、
     第3のプライマーの配列は、当該多型部位を含まずかつ当該二本鎖デオキシリボ核酸の第1の鎖に相補的であり、
     第1のプライマー及び第2のプライマーの少なくとも1つが、非ヌクレオチド成分を付加されている;
     (c)ポリメラーゼ連鎖反応を行う工程、
     ここで、当該ポリメラーゼ連鎖反応は、第1のアレルを持つ二本鎖デオキシリボ核酸の第2の鎖にハイブリダイズした第1のプライマーからのポリメラーゼによる鎖の伸長が、第1のアレルを持つ二本鎖デオキシリボ核酸の第2の鎖にハイブリダイズした第2のプライマーからのポリメラーゼによる鎖の伸長と比較して優先的に生じ、かつ、第2のアレルを持つ二本鎖デオキシリボ核酸の第2の鎖にハイブリダイズした第2のプライマーからのポリメラーゼによる鎖の伸長が、第2のアレルを持つ二本鎖デオキシリボ核酸の第2の鎖にハイブリダイズした第1のプライマーからのポリメラーゼによる鎖の伸長と比較して優先的に生じる条件で行われる;
     (d)当該ポリメラーゼ連鎖反応の増幅産物をイオン交換クロマトグラフィーに掛ける工程;
     ここで、第1のプライマー及び第3のプライマーからのポリメラーゼ連鎖反応の増幅産物と第2のプライマー及び第3のプライマーからのポリメラーゼ連鎖反応の増幅産物の大きさの差は、0塩基対、1塩基対、2塩基対、3塩基対、4塩基対、5塩基対、6塩基対、7塩基対、8塩基対、9塩基対、又は10塩基対である;及び
     (e)第1及び第2のアレルの一方又は両方の存在を前記増幅産物の溶出位置又は溶出時間に基づいて検出する工程。
  5.  前記(a)の工程が、ヒトなどの哺乳類体細胞検体からゲノムDNAを抽出する工程である、請求項4に記載の方法。
  6.  前記多型部位が、UGT1A1*28多型(rs8175347)、UGT1A1*6多型(rs4148323)、JAK2 1849G>T (V617F)変異部位(rs77375493)、MPL 1589G>T (W515L)変異部位(rs121913615)、又はMPL 1588:1599TG>AA (W515K)変異部位(rs121913616)である、請求項4又は5に記載の方法。
  7.  前記非ヌクレオチド成分が、プライマーの5’末端の電荷に変化を引き起こさせる物質である、請求項4~6の何れかに記載の方法。
  8.  第3のプライマーが非ヌクレオチド成分を付加されている、請求項4~7の何れかに記載の方法。
PCT/JP2017/035441 2017-09-29 2017-09-29 イオン交換クロマトグラフィーを用いた一塩基置換検出方法 WO2019064483A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
EP17918697.8A EP3690039B1 (en) 2017-09-29 2017-09-29 Method for detecting single base substitution using ion exchange chromatography
JP2018544280A JP6875411B2 (ja) 2017-09-29 2017-09-29 イオン交換クロマトグラフィーを用いた一塩基置換検出方法
KR1020197009796A KR102389120B1 (ko) 2017-09-29 2017-09-29 이온 교환 크로마토그래피를 사용한 1염기 치환 검출 방법
CN201780057860.0A CN109863245A (zh) 2017-09-29 2017-09-29 使用离子交换层析的单碱基置换检测方法
PCT/JP2017/035441 WO2019064483A1 (ja) 2017-09-29 2017-09-29 イオン交換クロマトグラフィーを用いた一塩基置換検出方法
US16/325,605 US10626452B2 (en) 2017-09-29 2017-09-29 Method for detecting single base substitution using ion-exchange chromatography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/035441 WO2019064483A1 (ja) 2017-09-29 2017-09-29 イオン交換クロマトグラフィーを用いた一塩基置換検出方法

Publications (1)

Publication Number Publication Date
WO2019064483A1 true WO2019064483A1 (ja) 2019-04-04

Family

ID=65901132

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/035441 WO2019064483A1 (ja) 2017-09-29 2017-09-29 イオン交換クロマトグラフィーを用いた一塩基置換検出方法

Country Status (6)

Country Link
US (1) US10626452B2 (ja)
EP (1) EP3690039B1 (ja)
JP (1) JP6875411B2 (ja)
KR (1) KR102389120B1 (ja)
CN (1) CN109863245A (ja)
WO (1) WO2019064483A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114878725A (zh) * 2021-06-22 2022-08-09 长春大学 一种食品中二氧化硫的检测方法

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112941171A (zh) * 2021-03-30 2021-06-11 迈杰转化医学研究(苏州)有限公司 一种检测mpl基因w515l、w515s和w515a突变的引物探针及其应用

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002046393A1 (fr) * 2000-12-07 2002-06-13 Toyo Boseki Kabushiki Kaisha Procede d'identification de polymorphisme nucleotidique
JP2009125020A (ja) * 2007-11-26 2009-06-11 Canon Inc ハプロタイプの決定方法
WO2009132860A1 (en) * 2008-04-28 2009-11-05 Biotype Ag Substances and methods for a dna based profiling assay
JP2010035532A (ja) * 2008-08-08 2010-02-18 Canon Inc アレル特異的pcr法
WO2012096329A1 (ja) * 2011-01-12 2012-07-19 積水メディカル株式会社 一塩基多型の検出方法
WO2012133834A1 (ja) 2011-03-31 2012-10-04 積水メディカル株式会社 一塩基多型検出用の試料核酸、一塩基多型検出試料調製用のpcrプライマー及びイオン交換クロマトグラフィー分析に用いる一塩基多型検出用試料の調製方法
WO2017170101A1 (ja) * 2016-03-31 2017-10-05 積水メディカル株式会社 イオン交換クロマトグラフィーを用いた一塩基置換検出方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1023463A4 (en) * 1997-10-09 2003-01-02 Transgenomic Inc MODIFICATION OF DOUBLE-STRANDED DNA TO IMPROVE CHROMATOGRAPHIC SEPARATIONS OF MATCHED ION POLYNUCLEOTIDES
CN1592792B (zh) * 2000-05-19 2010-12-01 伊拉根生物科学公司 检测核酸的材料和方法
US20030235827A1 (en) * 2002-06-25 2003-12-25 Orchid Biosciences, Inc. Methods and compositions for monitoring primer extension and polymorphism detection reactions
JP4491276B2 (ja) 2004-05-17 2010-06-30 日本製粉株式会社 標的dna配列において一塩基変異多型の存在を検出する方法及びキット

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2002046393A1 (fr) * 2000-12-07 2002-06-13 Toyo Boseki Kabushiki Kaisha Procede d'identification de polymorphisme nucleotidique
JP2009125020A (ja) * 2007-11-26 2009-06-11 Canon Inc ハプロタイプの決定方法
WO2009132860A1 (en) * 2008-04-28 2009-11-05 Biotype Ag Substances and methods for a dna based profiling assay
JP2010035532A (ja) * 2008-08-08 2010-02-18 Canon Inc アレル特異的pcr法
WO2012096329A1 (ja) * 2011-01-12 2012-07-19 積水メディカル株式会社 一塩基多型の検出方法
WO2012133834A1 (ja) 2011-03-31 2012-10-04 積水メディカル株式会社 一塩基多型検出用の試料核酸、一塩基多型検出試料調製用のpcrプライマー及びイオン交換クロマトグラフィー分析に用いる一塩基多型検出用試料の調製方法
WO2017170101A1 (ja) * 2016-03-31 2017-10-05 積水メディカル株式会社 イオン交換クロマトグラフィーを用いた一塩基置換検出方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
OEFNER P. J. ET AL.: "High-resolution liquid chromatography offluorescent dye-labeled nucleic acids.", ANA. BIOCHEM., vol. 223, no. 1, 1994, pages 39 - 46, XP024762865 *
See also references of EP3690039A4
TAKEI H; MORISHITA S; ARAKI M; EDAHIRO Y; SUNAMI Y; HIRONAKA Y; NODA N; SEKIGUCHI Y; TSUNEDA S; OHSAKA A: "Detection of MPLW515L/K mutations and determination of allele frequencies with a single-tube PCR assay", PLOS ONE, vol. 9, no. 8, 21 August 2014 (2014-08-21), pages el04958

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114878725A (zh) * 2021-06-22 2022-08-09 长春大学 一种食品中二氧化硫的检测方法
CN114878725B (zh) * 2021-06-22 2023-08-11 长春大学 一种食品中二氧化硫的检测方法

Also Published As

Publication number Publication date
US20190203284A1 (en) 2019-07-04
KR102389120B1 (ko) 2022-04-20
CN109863245A (zh) 2019-06-07
JP6875411B2 (ja) 2021-05-26
EP3690039A1 (en) 2020-08-05
KR20200057667A (ko) 2020-05-26
EP3690039B1 (en) 2022-09-07
EP3690039A4 (en) 2021-05-05
US10626452B2 (en) 2020-04-21
JPWO2019064483A1 (ja) 2020-08-06

Similar Documents

Publication Publication Date Title
US20210054458A1 (en) Methods of fetal abnormality detection
Valencia et al. Assessment of target enrichment platforms using massively parallel sequencing for the mutation detection for congenital muscular dystrophy
CN105755109B (zh) 一种新的苯丙酮尿症基因筛查和诊断体系及试剂盒
JP6343404B2 (ja) 遺伝子変異検出法
Peitz et al. Multiplexed quantification of four neuroblastoma DNA targets in a single droplet digital PCR reaction
Butz et al. Brief summary of the most important molecular genetic methods (PCR, qPCR, microarray, next-generation sequencing, etc.)
US10214776B2 (en) Nanoprobe-based genetic testing
JP6875411B2 (ja) イオン交換クロマトグラフィーを用いた一塩基置換検出方法
WO2009036514A2 (en) Method of amplifying nucleic acid
CN107937493B (zh) 一种用于等位基因pcr的发夹修饰引物
WO2017170101A1 (ja) イオン交換クロマトグラフィーを用いた一塩基置換検出方法
Myllykangas et al. Targeted deep resequencing of the human cancer genome using next-generation technologies
AU2017289768B2 (en) Method for producing DNA probe and method for analyzing genomic DNA using the DNA probe
Cordeiro et al. Coupling an universal primer to SBE combined spectral codification strategy for single nucleotide polymorphism analysis
JP6728556B2 (ja) 一塩基多型検出用キット及び方法
Kim et al. New lung cancer panel for high-throughput targeted resequencing
JP2013009669A (ja) 同一又は近傍の検出波長を有する蛍光色素で修飾された複数のオリゴヌクレオチドを用いて、1種類の波長で複数の遺伝子多型を検出する方法
JP5530185B2 (ja) 核酸検出方法及び核酸検出用キット
WO2017070339A1 (en) Microfluidic device for enrichment of nucleic acid sequence alterations
WO2009143590A2 (en) Insertion sequence detection protocol

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2018544280

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17918697

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017918697

Country of ref document: EP

Effective date: 20200429