WO2019058865A1 - 濾過装置 - Google Patents
濾過装置 Download PDFInfo
- Publication number
- WO2019058865A1 WO2019058865A1 PCT/JP2018/031304 JP2018031304W WO2019058865A1 WO 2019058865 A1 WO2019058865 A1 WO 2019058865A1 JP 2018031304 W JP2018031304 W JP 2018031304W WO 2019058865 A1 WO2019058865 A1 WO 2019058865A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- flow path
- filtration
- path member
- flow
- filter
- Prior art date
Links
Images
Classifications
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/36—Other treatment of blood in a by-pass of the natural circulatory system, e.g. temperature adaptation, irradiation ; Extra-corporeal blood circuits
- A61M1/3621—Extra-corporeal blood circuits
- A61M1/3627—Degassing devices; Buffer reservoirs; Drip chambers; Blood filters
- A61M1/3633—Blood component filters, e.g. leukocyte filters
- A61M1/3635—Constructional details
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D46/00—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours
- B01D46/0039—Filters or filtering processes specially modified for separating dispersed particles from gases or vapours with flow guiding by feed or discharge devices
- B01D46/005—Crossflow filtration, i.e. having an inlet and two outlets
-
- A—HUMAN NECESSITIES
- A61—MEDICAL OR VETERINARY SCIENCE; HYGIENE
- A61M—DEVICES FOR INTRODUCING MEDIA INTO, OR ONTO, THE BODY; DEVICES FOR TRANSDUCING BODY MEDIA OR FOR TAKING MEDIA FROM THE BODY; DEVICES FOR PRODUCING OR ENDING SLEEP OR STUPOR
- A61M1/00—Suction or pumping devices for medical purposes; Devices for carrying-off, for treatment of, or for carrying-over, body-liquids; Drainage systems
- A61M1/34—Filtering material out of the blood by passing it through a membrane, i.e. hemofiltration or diafiltration
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D12/00—Displacing liquid, e.g. from wet solids or from dispersions of liquids or from solids in liquids, by means of another liquid
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12M—APPARATUS FOR ENZYMOLOGY OR MICROBIOLOGY; APPARATUS FOR CULTURING MICROORGANISMS FOR PRODUCING BIOMASS, FOR GROWING CELLS OR FOR OBTAINING FERMENTATION OR METABOLIC PRODUCTS, i.e. BIOREACTORS OR FERMENTERS
- C12M47/00—Means for after-treatment of the produced biomass or of the fermentation or metabolic products, e.g. storage of biomass
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2201/00—Details relating to filtering apparatus
- B01D2201/32—Flow characteristics of the filter
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B01—PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
- B01D—SEPARATION
- B01D2311/00—Details relating to membrane separation process operations and control
- B01D2311/04—Specific process operations in the feed stream; Feed pretreatment
Definitions
- the present invention relates to a filtration apparatus for filtering an object to be filtered contained in a fluid.
- Patent Document 1 discloses a filtration device that constitutes a circulatory system including a container containing a liquid containing a blood component and a ceramic filter, and cross-flow filters the liquid containing a blood component.
- An object of the present invention is to solve the above-mentioned problems, and to provide a filtration device in which clogging of a filtration target with a filtration filter is suppressed and foaming of a fluid is suppressed.
- the filtration device of one aspect of the present invention is A recessed portion recessed inward from the outer wall surface, a groove portion having an opening in the concave surface of the recessed portion, a first flow path and a second flow path formed by through holes connected to the groove portion, the groove portion and the first flow path
- a first flow path member having a first connection portion connecting the first and second connection portions, and a second connection portion connecting the groove portion and the second flow path
- a discharge channel is provided having a convex portion detachably fitted to the concave portion of the first flow channel member and having an opening on a convex surface of the convex portion disposed in the groove of the first flow channel member
- the third flow path is connected to the first flow path through the first connection portion, and is connected to the second flow path through the second connection portion.
- the cross-sectional area of the third flow path in which the filtration filter is disposed is smaller than the cross-sectional area of the first flow path.
- FIG. 2B is a cross-sectional view of FIG. 2A taken along line AA.
- FIG. 4B is a cross-sectional view of FIG. 4A taken along line B1-B1.
- FIG. 4B is a cross-sectional view of FIG. 4A taken along line B2-B2.
- It is sectional drawing which shows schematic structure of the 2nd flow path member in the filtration apparatus of Embodiment 1 which concerns on this invention.
- a filtration filter is provided along the flow direction of the fluid to be filtered, and the filtration is performed by the filtration filter.
- the fluid velocity is low, it is difficult for the filtration object in contact with the filtration filter to be detached, and the filtration object is easily clogged with the filtration object. For this reason, in order to suppress clogging of the filtration object with the filtration filter, it is conceivable to increase the fluid velocity.
- the fluid such as, for example, the medium may be easily bubbled.
- the activity of the cell may be reduced or the cell may be damaged.
- the inventors of the present invention suppress the increase in fluid velocity in the entire flow path by making the flow path cross-sectional area of the portion facing the filtration filter smaller than the other flow path cross-sectional areas, and the filtration filter It has been found to increase the velocity of the fluid in the facing part.
- the entire flow path is connected to, for example, a flow path larger than the flow path cross-sectional area of a portion facing the filtration filter in the filtration device, a flow path (piping) connected to the filtration device, and a flow path Pump.
- the present inventors have found that clogging of the filtration target with the filtration filter can be suppressed, and foaming of the fluid can be suppressed when the fluid to be filtered is a liquid.
- the filtration device is A recessed portion recessed inward from the outer wall surface, a groove portion having an opening in the concave surface of the recessed portion, a first flow path and a second flow path formed by through holes connected to the groove portion, the groove portion and the first flow path
- a first flow path member having a first connection portion connecting the first and second connection portions, and a second connection portion connecting the groove portion and the second flow path
- a discharge channel is provided having a convex portion detachably fitted to the concave portion of the first flow channel member and having an opening on a convex surface of the convex portion disposed in the groove of the first flow channel member
- the third flow path is connected to the first flow path through the first connection portion, and is connected to the second flow path through the second connection portion.
- the cross-sectional area of the third flow path in which the filtration filter is disposed is smaller than the cross-sectional area of the first flow path.
- the concave portion and the convex portion may be detachably fitted without a separate member.
- the second flow path member can be easily attached and detached.
- the first flow path member has a recess fitting surface on which the recess and the protrusion fit with each other on the side surface of the recess.
- the second flow path member has a protrusion fitting surface on which the recess and the protrusion are fitted on the side surface of the protrusion.
- the recess fitting surface is provided with a notch recessed toward the inside of the first flow path member,
- the protruding portion fitting surface is provided with a protruding portion protruding toward the outside of the second flow path member and fitted with the notch portion,
- the second flow path member may be detachably attached to the first flow path member by fitting the protruding portion to the cutout portion.
- the second flow path member can be easily and detachably attached to the first flow path member.
- the recess fitting surface is formed by a slope inclined with respect to the concave surface of the recess
- the convex portion fitting surface is formed by a slope inclined with respect to the convex surface of the convex portion in contact with the concave surface of the concave portion
- the first flow path member and the second flow path member may be fitted with the recess fitting surface and the protrusion fitting surface in surface contact.
- the contact area between the first flow path member and the second flow path member can be increased on the side surface of the recess. Therefore, the leakage of the fluid flowing through the first flow path member can be further suppressed.
- the concave surface of the recess of the first flow channel member is formed of a flat surface
- the convex surface of the convex portion of the second flow path member is formed of a flat surface
- the first flow path member and the second flow path member may be fitted such that the concave surface of the concave portion and the convex surface of the convex portion are in surface contact.
- the contact area between the first flow passage member and the second flow passage member can be increased in the concave surface of the recess. Therefore, the leakage of the fluid flowing through the first flow path member can be further suppressed.
- the filtration filter has a first main surface and a second main surface facing each other, The first main surface is disposed on the third flow path side, The second main surface is disposed on the discharge flow channel side, The first major surface and the convex surface may be flush with each other.
- Such a configuration can increase the flow velocity in the vicinity of the filtration filter.
- the cross-sectional area of the second flow passage may be larger than the cross-sectional area of the third flow passage.
- Such a configuration can suppress an increase in flow velocity in the second flow passage.
- the filtration filter may be attached to the second flow path member.
- the second flow path member can be removed from the first flow path member to easily replace the filtration filter.
- the groove may be provided in a straight line.
- Such a configuration can increase the flow velocity of the fluid passing through the groove.
- the first flow path member may form a plurality of the concave portions, and the respective concave portions may be fitted with the second flow path member to which the filtration filter is attached.
- Such a configuration allows the fluid to be filtered by a plurality of filtration filters.
- the second flow path member may form a plurality of the discharge flow paths having the openings, and the filtration filter may be disposed to the openings of the respective discharge flow paths.
- Such a configuration allows the fluid to be filtered by a plurality of filtration filters.
- FIG. 1 is schematic which shows an example of a mode that the filtration object 5 is filtered using the filtration apparatus 1 of Embodiment 1 which concerns on this invention.
- the filtration device 1 is a cross flow filtration device.
- the filtration device 1 is configured to introduce the fluid 6 including the object to be filtered 5 from the fluid inlet 1 a and discharge it from the fluid outlet 1 b. Further, the filtration device 1 filters a part of the fluid 6 flowing from the fluid inlet 1a to the fluid outlet 1b, and the fluid (hereinafter referred to as a filtrate) 7 from which the object to be filtered 5 is removed by filtration is a filtrate outlet. It is configured to discharge from 1c.
- the fluid 6 containing the filtration target 5 is contained in the fluid tank 2.
- the fluid 6 in the fluid tank 2 is taken into the pump 3 through the pipe 51, and is supplied to the fluid inlet 1 a of the filtration device 1 through the pipe 52 by the pump 3.
- the fluid 6 that has passed through the inside of the filtration device 1 and is discharged from the fluid discharge port 1 b is returned to the fluid tank 2 through the pipe 53.
- the fluid 6 circulates in the order of the fluid tank 2, the pipe 51, the pump 3, the pipe 52, the filtration device 1, and the pipe 53 while the pump 3 is driven.
- part of the fluid 6 supplied to the inside of the filtration device 1 is filtered and discharged as filtrate 7 from the filtrate outlet 1 c.
- the filtrate 7 discharged from the filtrate discharge port 1 c is put into the filtrate tank 4 through the pipe 54.
- filter target means an object to be filtered among the objects included in the fluid.
- the filtration target may be a biological substance contained in a fluid.
- biologically-derived substance means a substance derived from an organism such as a cell (eukaryote), bacteria (eubacteria), virus and the like.
- Examples of cells include induced pluripotent stem cells (iPS cells), ES cells, stem cells, mesenchymal stem cells, mononuclear cells, single cells, cell clusters, suspension cells, adherent cells, nerves
- Cells include white blood cells, cells for regenerative medicine, autologous cells, cancer cells, circulating cancer cells in blood (CTC), HL-60, HELA, and fungi.
- Examples of bacteria (eubacteria) include E. coli and tuberculosis bacteria.
- “fluid” means liquid.
- the fluid refers to a cell culture medium
- the filtration target refers to a cell (eukaryote).
- FIG. 2A is a perspective view showing a schematic configuration of a filtration device 1 according to Embodiment 1 of the present invention.
- FIG. 2B is a perspective view showing a schematic configuration in which the second flow passage member 20 is attached to the first flow passage member 10 in the filtration device 1.
- FIG. 3 is a cross-sectional view of FIG. 2A taken along line AA.
- the filtration device 1 includes a first flow passage member 10, a second flow passage member 20 detachably fitted to the first flow passage member 10, and a second flow passage member 20.
- the filtration filter 30 is attached to the second flow path member 20 by fastening the holder 40 with a screw or the like.
- the X, Y, and Z directions shown in the drawings respectively indicate the horizontal direction, the vertical direction, and the height direction of the filtration device 1.
- the second flow path member 20 is attached to the first flow path member 10 by sliding in the Y1 direction.
- a first flow passage 11, a second flow passage 12 and a third flow passage 13 are formed.
- the first channel 11 and the second channel 12 are formed by through holes.
- the 1st flow path 11 and the 3rd flow path 13 are connected via the 1st connection part 11a.
- the second flow path 12 and the third flow path 13 are connected via the second connection portion 12 a.
- the third flow path 13 corresponding to the portion to be filtered is formed to have a smaller cross-sectional area than the first flow path 11 and the second flow path 12.
- the first channel 11 and the second channel 12 are formed to have the same cross-sectional area.
- a cross-sectional area means the flow-path cross-sectional area when a flow path is cut
- FIG. 4A is a perspective view showing a schematic configuration of the first flow path member 10 in the filtration device 1 of the first embodiment according to the present invention.
- FIG. 4B is a cross-sectional view of FIG. 4A taken along line B1-B1.
- FIG. 4C is a cross-sectional view of FIG. 4A taken along line B2-B2.
- the first flow path member 10 is connected to the recess 15 recessed inward from the outer wall surface 14, the groove 17 having an opening 17a in the concave surface 16 of the recess 15, and the groove 17 It has the 1st flow path 11 and the 2nd flow path 12 which are formed by a penetration hole. Further, the first flow path member 10 has a first connection portion 11 a connecting the groove portion 17 and the first flow path 11, and a second connection portion 12 a connecting the groove portion 17 and the second flow path 12. Specifically, the first flow path member 10 has a recess 15 recessed from the flat outer wall surface 14 in the internal direction (-Z direction), and has the first flow path 11 and the second flow path 12 inside. .
- the second outer wall surface opposite to the first outer wall surface 14 is formed in parallel with the first outer wall surface 14.
- the first flow path 11 is formed extending in the ⁇ X direction
- the second flow path 12 is formed extending in the + X direction.
- the 1st flow path 11 and the 2nd flow path 12 are formed in circular pipe shape.
- the concave surface 16 of the recess 15 of the first channel member 10 forms a flat surface. Further, in the concave surface 16 of the concave portion 15, a groove portion 17 connected to the first flow path 11 and the second flow path 12 is provided.
- the groove portion 17 is formed in a concave shape.
- the groove 17 has an opening 17 a at the concave surface 16 of the recess 15.
- the groove part 17 is provided in linear form. In the first embodiment, the groove 17 has a semicircular cross section cut in the Y direction. Moreover, the groove part 17 is extended linearly in the X direction.
- the first flow passage 11 and the second flow passage 12 are connected to the groove portion 17.
- the first flow passage 11 is connected to the groove portion 17 via the first connection portion 11 a.
- the second flow passage 12 is connected to the groove portion 17 via the second connection portion 12a.
- the cross-sectional areas of the first flow passage 11 and the second flow passage 12 are As it goes to the groove part 17, it becomes small.
- the first connection portion 11 a forms a first connection slope 11 aa connecting the first flow path 11 and one end of the groove portion 17.
- the second connection portion 12 a forms a second connection slope 12 aa connecting the second flow path 12 and the other end of the groove portion 17.
- the first connection slope 11aa is inclined in the direction in which the first flow path 11 is narrowed.
- the second connection slope 12aa is inclined in the direction in which the groove 17 is expanded.
- the first flow path member 10 has a recess fitting surface 18 on the side surface of the recess 15 in which the recess 15 and a protrusion 27 described later fit.
- the recess fitting surface 18 is formed by a slope inclined with respect to the concave surface 16 of the recess 15.
- the recess fitting surface 18 has a first slope 18 a and a second slope 18 b.
- An angle ⁇ 1 formed by the first slope 18a and the concave surface 16 and an angle ⁇ 2 formed by the second slope 18b and the concave surface 16 are formed at 45 degrees, for example.
- the recess fitting surface 18 is provided with notches 19a and 19b that are recessed toward the inside of the first flow passage member 10.
- the first slope 18 a is provided with a first notch 19 a cut out in the direction (-X direction) in which the first flow path 11 extends.
- the second inclined surface 18 b is provided with a second notch 19 b cut out in a direction (+ X direction) in which the second flow path 12 extends at an end on the concave surface 16 side.
- the first notch 19a is formed to be inclined, for example, twice in the + X direction with respect to the Z axis
- the second notch 19b is formed to be inclined, for example, 2 degrees in the ⁇ X direction to the Z axis.
- the side surface of the recess 15 in the direction intersecting the third flow path 13 is open.
- the side surface of the recess 15 in the direction (Y direction) orthogonal to the third flow path 13 is open.
- the first projecting portion 25 a and the second projecting portion 25 b of the second flow path member 20 described later are engaged with the first notch 19 a and the second notch 19 b.
- the second flow passage member 20 slides to the first flow passage member 10.
- the second flow passage member 20 can be easily attached to and detached from the first flow passage member 10.
- the 1st notch 19a and the 2nd notch 19b are exaggerated and shown in the figure.
- the first flow path member 10 is formed of, for example, an acrylic resin (PMMA), polystyrene (PS), polyphenylene sulfide resin (PPS) or the like.
- PMMA acrylic resin
- PS polystyrene
- PPS polyphenylene sulfide resin
- FIG. 5A is a cross-sectional view showing a schematic configuration of the second flow passage member 20 in the filtration device 1 of the first embodiment according to the present invention.
- FIG. 5B is a view showing a schematic configuration when the second flow path member 20 in the filtration device 1 of the first embodiment according to the present invention is viewed from the convex surface 21 side.
- 5A and 5B are diagrams showing a schematic configuration of the second flow path member 20 to which the filtration filter 30 is attached.
- the second flow path member 20 has a convex portion 27 which is detachably fitted to the concave portion 15 of the first flow path member 10.
- the recess 15 and the protrusion 27 are detachably fitted to each other without using another member such as a screw, for example.
- the convex surface 21 of the convex portion 27 of the second flow path member 20 in contact with the concave surface 16 of the concave portion 15 forms a flat surface.
- a discharge flow path 23 having an opening 22 is provided in the convex surface 21 of the convex portion 27 disposed in the groove portion 17 so as to extend in the Z direction.
- the filtration filter 30 is located at the opening 22.
- the second flow path member 20 has a convex portion fitting surface 24 on the side surface of the convex portion 27 in which the concave portion 15 and the convex portion 27 are fitted.
- the convex portion fitting surface 24 is formed by a slope inclined with respect to the convex surface 21 of the convex portion 27 in contact with the concave surface 16 of the concave portion 15.
- the convex portion fitting surface 24 has a third inclined surface 24 a and a fourth inclined surface 24 b.
- the third slope 24a fits with the first slope 18a
- the fourth slope 24b fits with the second slope 18b.
- Protruding portions 25a and 25b are provided on the convex portion fitting surface 24 so as to project outward of the second flow path member 20 and to be fitted to the notches 19a and 19b.
- the third slope 24a is provided with a first projecting portion 25a fitted with the first notch 19a of the first flow path member 10
- the fourth slope 24b is provided with a second notch 19b and A second projecting portion 25b to be fitted is provided.
- the first projecting portion 25a is formed to project in the -X direction
- the second projecting portion 25b is formed to project in the + X direction.
- the slope of the first projecting portion 25a is formed by, for example, inclining twice in the + X direction with respect to the Z axis
- the slope of the second projecting portion 25b is, for example, inclining in the ⁇ X direction by 2 degrees with respect to the Z axis It is formed.
- the first projecting portion 25a and the second projecting portion 25b are shown exaggerated.
- the second flow path member 20 is detachably attachable to the first flow path by fitting the first protrusion 25a to the first notch 19a and fitting the second protrusion 25b to the second notch 19b. It is attached to the member 10. As a result, the second flow path member 20 can be made difficult to be separated from the first flow path member 10 in the Z direction. At this time, the first flow path member 10 and the second flow path member 20 are engaged with each other by bringing the concave surface 16 (see FIG. 4A) of the concave portion 15 and the convex surface 21 (see FIG.
- the first flow passage member 10 and the second flow passage member 20 are brought into contact with each other by bringing the first inclined surface 18a and the third inclined surface 24a into surface contact and bringing the second inclined surface 18b and the fourth inclined surface 24b into surface contact. doing. Further, the outer wall surface 14 of the first flow path member 10 and the outer wall surface 26 facing the convex surface 21 of the convex portion 27 in the second flow path member 20 form the same plane.
- the third flow path 13 is formed by disposing the convex surface 21 of the convex portion 27 of the second flow path member 20 in the opening 17 a of the groove portion 17 of the first flow path member 10. That is, the groove portion 17 forms the third flow path 13 by fitting the second flow path member 20 into the recess 15 of the first flow path member 10.
- the third flow path 13 is formed to extend in the X direction, facing the filtration filter 30 located at the opening 22 of the discharge flow path 23 of the second flow path member 20.
- the third flow path 13 is connected to the first flow path 11 via the first connection portion 11 a and connected to the second flow path 12 via the second connection portion 12 a.
- the third flow path 13 is connected to the first flow path 11 via the first connection slope 11aa of the first connection portion 11a, and via the second connection slope 12aa of the second connection portion 12a. It is connected to the second flow path 12.
- the first connection slope 11aa and the second connection slope 12aa are formed to be inclined such that the cross-sectional areas of the first channel 11 and the second channel 12 become smaller as they approach the third channel 13. As a result, it is possible to suppress rapid changes in the flow velocity of the fluid flowing from the first flow passage 11 to the third flow passage 13 and the fluid flowing from the third flow passage 13 to the second flow passage 12.
- FIG. 6 is a longitudinal sectional view showing a schematic configuration in which a part of the filtration device 1 according to the first embodiment of the present invention is cut in the Y direction in the filtration filter 30.
- the third flow path 13 is formed so that the cross-sectional area is smaller than the cross-sectional area of the first flow path 11 and the second flow path 12.
- the cross-sectional area of the third flow path 13 in which the filtration filter 30 is disposed is smaller than the cross-sectional area of the first flow path 11. That is, in the third flow path 13, the cross-sectional area of the portion where the filtration filter 30 is disposed is smaller than the cross-sectional area of the first flow path 11.
- the third flow path 13 has a half cross section of the first flow path 11 and the second flow path 12 having a circular pipe shape. That is, the third flow path 13 extends in the same direction (X direction) as the first flow path 11 and is formed in a semicircular pipe shape having a semicircular cross section.
- the fluid flowing from the first flow passage 11 to the third flow passage 13 by having the cross-sectional shape of the third flow passage 13 the same as the shape of the lower half of the cross-sectional shape of the first flow passage 11 and the second flow passage 12 And the rapid change in the flow velocity of the fluid flowing from the third flow passage 13 to the second flow passage 12 can be suppressed.
- the first flow path 11 and the second flow path 12 in a circular pipe shape and forming the third flow path 13 in a semicircular pipe shape, it is possible to suppress accumulation of the filtration target on the bottom. it can.
- the second flow passage member 20 is formed of, for example, polyacetal (POM), polypropylene (PP), polyetheretherketone (PEEK) or the like.
- POM polyacetal
- PP polypropylene
- PEEK polyetheretherketone
- the first flow path member 10 is formed of polystyrene and the second flow path member 20 is formed of polypropylene.
- the first flow path member 10 is formed of acrylic resin
- the second flow path member 20 is formed of polyacetal.
- the first flow path member 10 is formed of polystyrene
- the second flow path member 20 is formed of polyetheretherketone.
- the first flow path member 10 is formed of polyphenylene sulfide resin
- the second flow path member 20 is formed of polyetheretherketone.
- a preferable combination is a first combination.
- processability and biocompatibility can be improved in the first flow path member 10 and the second flow path member 20.
- first combination since the first flow path member 10 and the second flow path member 20 have high transparency, the fluid flowing inside without removing the second flow path member 20 from the first flow path member 10 You can easily observe the situation of Further, by forming the first flow path member 10 and the second flow path member 20 with different materials, impact resistance and wear resistance of the first flow path member 10 are improved, and the second flow path member 20 is formed. Can be formed of a soft member and easily fitted to the first flow path member 10.
- the filtration filter 30 is a filter that filters the filtration target contained in the fluid. As shown in FIG. 3, the filtration filter 30 is attached to the inside of the second flow passage member 20 and located at the opening 22 of the discharge flow passage 23 of the second flow passage member 20. The filtration filter 30 is disposed along the extending direction of the groove portion 17. In Embodiment 1, the filtration filter 30 is a metal porous membrane.
- FIG. 7 is a plan view showing a schematic configuration of the filtration filter 30.
- FIG. 8 is an enlarged perspective view of a part of the filtration filter 30.
- the X, Y, and Z directions in FIGS. 7 and 8 correspond to the X, Y, and Z directions in FIG. 2A, and respectively indicate the lateral direction, the longitudinal direction, and the thickness direction of the filtration filter 30.
- the filtration filter 30 includes a filter unit 31 and a holding unit 32 provided on the outer periphery of the filter unit 31.
- the filtration filter 30 has a first main surface PS1 and a second main surface PS2 facing each other.
- the first major surface PS1 is disposed on the third flow path 13 side, and the second major surface PS2 is disposed on the discharge flow path 23 side.
- the first main surface PS1 of the filtration filter 30 is flush with (the same surface as) the convex surface 21 of the convex portion 27 of the second flow path member 20.
- the filter portion 31 includes a filter base portion 34 in which a plurality of through holes 33 penetrating the first main surface PS1 and the second main surface PS2 are formed.
- the material constituting the filter base portion 34 forming the base portion of the filtration filter 30 is mainly composed of metal and / or metal oxide.
- the filter base portion 34 may be, for example, gold, silver, copper, platinum, nickel, palladium, titanium, their alloys and their oxides.
- the outer shape of the filtration filter 30 is, for example, a circle, a rectangle, or an ellipse. In the first embodiment, the outer shape of the filtration filter 30 is substantially circular. In the present specification, “substantially circular” means that the ratio of the length of the major axis to the length of the minor axis is 1.0 or more and 1.2 or less.
- the filter unit 31 is a plate-like structure in which a plurality of through holes 33 are formed.
- the shape of the filter unit 31 is, for example, a circle, a rectangle, or an ellipse. In the first embodiment, the shape of the filter unit 31 is substantially circular.
- FIG. 9 is a plan view showing a schematic configuration in which a part of the filter portion 31 is viewed from the thickness direction (+ Z direction).
- the plurality of through holes 33 are periodically arranged on the first main surface PS ⁇ b> 1 and the second main surface PS ⁇ b> 2 of the filter portion 31.
- the plurality of through holes 33 are provided in the filter portion 31 at equal intervals in a matrix.
- the through hole 33 has a square shape when viewed from the first main surface PS1 side of the filter portion 31, that is, the + Z direction.
- the shape seen from + Z direction of the through-hole 33 is not limited to a square, For example, shapes, such as a rectangle, circular, or an ellipse, may be sufficient.
- the shape (cross-sectional shape) of through hole 33 projected on a plane perpendicular to first main surface PS1 of filter portion 31 is rectangular.
- the cross-sectional shape of the through hole 33 is a rectangle in which the length of one side in the radial direction of the filtration filter 30 is longer than the length of one side in the thickness direction of the filtration filter 30.
- the cross-sectional shape of the through hole 33 is not limited to a rectangular shape, and may be, for example, a tapered shape such as a parallelogram or a trapezoid, or may be a symmetrical shape with respect to the center of the through hole 33 It may be asymmetric.
- the plurality of through holes 33 are arranged in two arrangement directions parallel to each side of the square as viewed from the first main surface PS1 side (+ Z direction) of the filter portion 31, that is, the X direction in FIG. It is provided at equal intervals in the Y direction.
- the aperture ratio can be increased, and the flow resistance of the fluid to the filtration filter 30 can be reduced.
- processing time can be shortened and stress on cells can be reduced.
- the arrangement of the plurality of through holes 33 is not limited to the square lattice arrangement, and may be, for example, a quasi-periodic arrangement or a periodic arrangement.
- the periodic arrangement as long as it is a rectangular arrangement, it may be a rectangular arrangement in which the intervals in the two arrangement directions are not equal, or it may be a triangular lattice arrangement or an equilateral triangular lattice arrangement.
- the through-hole 33 should just be provided with two or more by the filter part 31, and arrangement
- the distance between the through holes 33 is appropriately designed according to the type (size, shape, properties, elasticity) or amount of cells to be separated.
- the distance between the through holes 33 refers to the distance between the through holes 33 adjacent to the center of an arbitrary through hole 33 when the through hole 33 is viewed from the first main surface PS1 side of the filter portion 31 as shown in FIG. It means the distance b to the center.
- the distance b between the through holes 33 is, for example, greater than 1 and not more than 10 times the side d of the through hole 33, and preferably 3 times or less of the side d of the through hole 33.
- the aperture ratio of the filter unit 31 is 10% or more, and preferably the aperture ratio is 25% or more.
- the aperture ratio is calculated by (area occupied by the through hole 33) / (projected area of the first main surface PS1 assuming that the through hole 33 is not open).
- the thickness of the filter portion 31 is preferably greater than 0.1 times the size (one side d) of the through hole 33 and 100 times or less. More preferably, the thickness of the filter portion 31 is more than 0.5 times and not more than 10 times the size (one side d) of the through hole 33. Such a configuration can reduce the resistance of the filtration filter 30 to the fluid and can shorten the processing time. As a result, stress on cells can be reduced.
- the first main surface PS1 in contact with the fluid containing the object to be filtered has a small surface roughness.
- the surface roughness means the average value of the difference between the maximum value and the minimum value measured by the stylus type step gauge at any five points on the first major surface PS1.
- the surface roughness is preferably smaller than the size of cells, and more preferably smaller than half the size of cells.
- the openings of the plurality of through holes 33 on the first main surface PS1 of the filter portion 31 are formed on the same plane (XY plane).
- substrate part 34 which is a part in which the through-hole 33 is not formed among the filter parts 31 is connected, and is integrally formed.
- the through holes 33 of the filter portion 31 communicate with each other through a wall surface in which an opening on the first main surface PS1 side and an opening on the second main surface PS2 side are continuous.
- the through hole 33 is provided so that an opening on the first main surface PS1 side can be projected to an opening on the second main surface PS2 side. That is, when the filter portion 31 is viewed from the side of the first main surface PS1, the through holes 33 are provided such that the opening on the side of the first main surface PS1 overlaps the opening on the side of the second main surface PS2.
- through hole 33 is provided such that the inner wall thereof is perpendicular to first main surface PS1 and second main surface PS2.
- the holding portion 32 is provided on the outer periphery of the filter portion 31.
- the thickness of the holding portion 32 may be thicker than the thickness of the filter portion 31. Such a configuration can increase the mechanical strength of the filtration filter 30.
- the holding portion 32 is formed in a ring shape as viewed from the first main surface PS1 side of the filter portion 31.
- the center of the holding portion 32 coincides with the center of the filter portion 31. That is, the holding portion 32 is formed concentrically with the filter portion 31.
- the information on the filter (such as the dimensions of the through holes 33) may be displayed on the holding unit 32.
- FIG. 10 is an enlarged cross-sectional view of the filtration filter 30 of FIG.
- the holding portion 32 is formed by bending the outer peripheral portion of the filtration filter 30 to the second main surface PS2 side.
- the holding portion 32 is a portion on the outer edge side of the filtration filter 30 from the position where bending starts in the filter portion 31.
- the holding portion 32 has a first bent portion 32 ba and a second bent portion 32 bb.
- the first bent portion 32 ba is a portion bent toward the second main surface PS 2 of the filter portion 31.
- the second bent portion 32bb is a portion that is formed on the outer edge side of the filtration filter 30 than the first bent portion 32ba and that is bent in the extension direction D1 of the filter portion 31.
- the first bent portion 32 ba is bent in the direction from the first main surface PS 1 to the second main surface PS 2 of the filter portion 31.
- the second bent portion 32bb is bent in parallel to the first main surface PS1 and the second main surface PS2 of the filter portion 31. Therefore, in the portion between the first bent portion 32ba and the second bent portion 32bb, the holding portion 32 extends from the first main surface PS1 to the second main surface PS2 of the filter portion 31. In the portion on the outer edge side of the filtration filter 30 from the second bent portion 32bb, the holding portion 32 extends in the extension direction D1 of the filter portion 31, that is, the first main surface PS1 and the second main surface PS2 of the filter portion 31. It extends in parallel.
- the extending direction D1 of the filter portion 31 of the filtration filter 30 includes the direction toward the outer edge side of the filtration filter 30, and the direction opposite to the outer edge of the filtration filter 30.
- the second bent portion 32bb of the holding portion 32 is bent in the direction toward the outer edge side of the filtration filter 30 than the first bent portion 32ba.
- the first bending portion 32 ba and the second bending portion 32 bb may be, for example, a portion bent in an arc shape or a portion bent at an obtuse angle.
- the filtration filter 30 is sandwiched by the first frame 28 of the second flow path member 20 and the second frame 41 of the holder 40.
- the first frame portion 28 is a portion which is formed inside the second flow path member 20 and sandwiches the holding portion 32 of the filtration filter 30 with the second frame portion 41 of the holder 40. Specifically, the first frame portion 28 is formed to protrude from the side wall of the discharge flow path 23.
- the first frame portion 28 is formed in an annular shape (for example, an annular shape), and is configured to receive the second frame portion 41 of the holder 40 with the holding portion 32 of the filtration filter 30 interposed therebetween. .
- the first frame portion 28 is located on the outer edge side of the filtration filter 30 with respect to the boundary between the filter portion 31 and the holding portion 32 and is in contact with the holding portion 32 on the first main surface PS1 side of the filtration filter 30.
- the boundary between the filter portion 31 and the holding portion 32 is a position at which the outer peripheral portion of the filtration filter 30 starts to bend toward the second main surface PS2.
- the first frame portion 28 is located in the extending direction D1 from the bending position of the first bending portion 32ba, and contacts the holding portion 32 on the first main surface PS1 side of the filtration filter 30. However, it does not touch the filter unit 31.
- the space enclosed by the first frame portion 28 functions as the opening 22 of the discharge flow path 23.
- the second frame portion 41 is provided on the outer wall surface of the holder 40 and is a portion that holds the holding portion 32 of the filtration filter 30 with the first frame portion 28. Specifically, the second frame portion 41 is formed in a cylindrical shape. In addition, a first step portion 41 a that protrudes toward a part of the filter portion 31 of the filtration filter 30 is provided on an inner circumferential portion of the second frame portion 41. The second frame portion 41 is disposed inside the first frame portion 28 with the holding portion 32 of the filtration filter 30 interposed therebetween. The second frame portion 41 is configured such that the first step portion 41 a is fitted to the inside of the first frame portion 28. That is, the second frame portion 41 is in contact with the holding portion 32 and a part of the filter portion 31 on the second main surface PS2 side of the filtration filter 30.
- the second frame portion 41 defines the position of the first major surface PS1 of the filter portion 31 by pushing the filter portion 31 in the direction from the second major surface PS2 to the first major surface PS1 by the first step portion 41a. be able to.
- the first step portion 41a protrudes toward a part of the filter portion 31, and pushes the filter portion 31 from the second main surface PS2 toward the first main surface PS1 by the first contact surface 41aa.
- the filter portion 31 contacts the second frame portion 41 on the second main surface PS2 side, but does not contact the first frame portion 28 on the first main surface side PS1. Since the position of the filter portion 31 is not limited by the first frame portion 28, the holding position of the filter portion 31 can be freely determined by changing the height h 1 of the first step portion 41 a of the second frame portion 41. . That is, by changing the height h1 of the first step portion 41a of the second frame portion 41, the position of the first main surface PS1 of the filter portion 31 can be freely determined.
- the height h1 of the first step portion 41a is the distance between the first contact surface 41aa of the first step portion 41a of the second frame portion 41 and the second contact surface 41ab of the second frame portion 41. Means the distance.
- the height of the first step portion 41a is determined such that the first main surface PS1 of the filter portion 31 and the convex surface 21 are substantially the same surface. Specifically, the height h 1 of the first step portion 41 a is substantially equal to the distance h 2 between the third contact surface 28 ab of the first frame portion 28 and the convex surface 21.
- substantially equal means that the difference between the distance h1 and the distance h2 is in the range of ⁇ 10%.
- FIG. 11 is a cross-sectional view showing an example of the flow of fluid in the filtration device 1 of FIG.
- the filtration device 1 when using the filtration device 1, the filtration device 1 is disposed such that the outer wall surface 26 of the second flow passage member 20 faces downward, that is, the discharge flow passage 23 extends downward. Ru.
- the fluid including the filtration target flows from the first flow path 11 to the second flow path 12 through the third flow path 13.
- a part of the fluid flowing through the third flow path 13 is cross-flow filtered by the filtration filter 30 and discharged to the discharge flow path 23.
- the velocity V3 of the fluid flowing through the third flow path 13 is the first flow path 11 and the third flow path 13. It is faster than the velocities V1 and V2 of the fluid flowing through the second flow passage 12.
- the cross-sectional area of 12 decreases toward the groove 17. For this reason, it can suppress that the flow velocity change of the fluid which flows from the 1st flow path 11 to the 3rd flow path 13, and the fluid which flows from the 3rd flow path 13 to the 2nd flow path 12 becomes sudden.
- first flow path member 10 and the second flow path member 20 are fitted with the concave surface 16 of the concave portion 15 and the convex surface 21 of the convex portion 27 in surface contact. For this reason, the fluid flowing through the third flow path 13 is suppressed from leaking out through the concave surface 16.
- first flow path member 10 and the second flow path member 20 are fitted with the concave fitting surface 18 and the convex fitting surface 24 in surface contact.
- first flow path member 10 and the second flow path member 20 are fitted with the first slope 18a and the third slope 24a and the second slope 18b and the fourth slope 24b in surface contact with each other. There is. For this reason, the fluid flowing through the third flow path 13 is suppressed from leaking out through the recess fitting surface 18.
- the first flow path member 10 including the first flow path member 10, the second flow path member 20, and the filtration filter 30 is a concave portion 15 recessed from the outer wall surface 14 in the inward direction.
- the concave portion 16 has a groove 17 having an opening 17a, a first flow passage 11 and a second flow passage 12 formed by through holes connected to the groove 17, a first connection portion 11a, and a second connection portion 12a.
- the first connection portion 11 a connects the groove portion 17 and the first flow path 11.
- the second connection portion 12 a connects the groove portion 17 and the second flow path 12.
- the second flow path member 20 has a convex portion 27 detachably fitted to the concave portion 15 of the first flow path member 10 and a convex surface 21 of the convex portion 27 disposed in the groove portion 17 of the first flow path member 10.
- An outlet channel 23 having an opening 22 is provided.
- the filtration filter 30 is disposed along the extending direction of the groove portion 17 of the first flow passage member 10 and is located at the opening 22 of the discharge flow passage 23 of the second flow passage member 20.
- the third flow path 13 is formed by disposing the convex surface 21 of the convex portion 27 of the second flow path member 20 in the opening 17 a of the groove portion 17 of the first flow path member 10.
- the third flow path 13 is connected to the first flow path 11 via the first connection portion 11 a and connected to the second flow path 12 via the second connection portion 12 a.
- the cross-sectional area of the third flow path 13 in which the filtration filter 30 is disposed is smaller than the cross-sectional area of the first flow path 11.
- the shape of the second flow path member 20 is changed to make the third flow path 13
- the cross sectional area can be easily changed. For example, by providing a portion protruding on the convex surface 21 of the convex portion 27 of the second flow path member 20 and extending the portion to the periphery of the lower end portion (end portion in the -Z direction) of the groove portion 17, The cross-sectional area of the third flow path 13 can be further reduced.
- the third flow path 13 can be easily formed by the first flow path member 10 and the second flow path member 20.
- the second flow passage member 20 When the second flow passage member 20 is removed from the first flow passage member 10 by placing the second outer wall surface opposite to the first outer wall surface 14 of the first flow passage member 10 on the mounting surface, The object to be filtered can be observed and sampled while the fluid is accumulated in the one flow passage member 10. Further, the fluid containing the object to be filtered can be easily recovered from the groove portion 17.
- the concave portion 15 and the convex portion 27 may be detachably fitted without intervening separate members.
- the second flow passage member 20 can be easily attached and detached from the first flow passage member 70.
- the first flow path member 10 has a recess fitting surface 18 in which the recess 15 and the protrusion 27 are fitted on the side surface of the recess 15.
- the second flow path member 20 has a convex portion fitting surface 24 on the side surface of the convex portion 27 in which the concave portion 15 and the convex portion 27 are fitted.
- the recess fitting surface 18 is provided with notches 19 a and 19 b which are recessed toward the inside of the first flow passage member 10.
- Protruding portions 25a and 25b are provided on the convex portion fitting surface 24 so as to protrude outward of the second flow path member 20 and to be fitted to the notches 19a and 19b.
- the second flow path member 20 is detachably attached to the first flow path member 10 by fitting the protruding portions 25a and 25b to the cutout portions 19a and 19b.
- the second flow passage member 20 can be easily attached to and detached from the first flow passage member 10.
- the recess fitting surface 18 is formed by slopes 18 a and 18 b inclined with respect to the concave surface 16 of the recess 15.
- the convex portion fitting surface 24 is formed by slopes 24 a and 24 b inclined with respect to the convex surface 21 of the convex portion 27 in contact with the concave surface 16 of the concave portion 15.
- the first flow passage member 10 and the second flow passage member 20 are brought into surface contact with each other with the concave fitting surface 18 and the convex fitting surface 24 fitted.
- the contact area between the first flow passage member 10 and the second flow passage member 20 can be increased on the side surface of the recess 15. Therefore, the leakage of the fluid flowing through the third flow path 13 can be further suppressed.
- the concave surface 16 of the concave portion 15 of the first flow path member 10 is formed as a flat surface.
- the convex surface 21 of the convex portion 27 of the second flow path member 20 is formed as a flat surface.
- the first flow passage member 10 and the second flow passage member 20 are fitted with the concave surface 16 of the concave portion 15 and the convex surface 21 of the convex portion 27 in surface contact.
- the contact area between the first flow path member 10 and the second flow path member 20 can be increased in the concave surface 16 of the recess 15. Therefore, the leakage of the fluid flowing through the third flow path 13 can be further suppressed.
- the filtration filter 30 has a first main surface PS1 and a second main surface PS2 facing each other.
- the first major surface PS1 is disposed on the third flow path 13 side
- the second major surface PS2 is disposed on the discharge flow path 23 side.
- the first major surface PS1 and the convex surface 21 are flush with each other.
- Such a configuration can increase the flow velocity in the vicinity of the filtration filter 30.
- the cross-sectional area of the second flow passage 12 is larger than the cross-sectional area of the third flow passage 13.
- Such a configuration can suppress an increase in the flow velocity in the second flow passage 12.
- the filtration filter 30 is attached to the second flow path member 20.
- the second flow path member 20 can be removed from the first flow path member 10, and the filtration filter 30 can be easily replaced.
- the grooves 17 are provided in a straight line.
- Embodiment 1 demonstrated the example in which the 1st flow path 11 and the 2nd flow path 12 were formed so that a cross-sectional area might become the same, it is not limited to this.
- the cross-sectional areas of the first channel 11 and the second channel 12 may be different from each other.
- FIG. 12 is a cross-sectional view showing a schematic configuration of a filtration device 1A of a modification.
- the 1st flow-path member 10a of 1 A of filtration apparatuses may form multiple recessed parts 15a.
- the first flow path member 10a is fitted with the second flow path member 20 to which the filtration filter 30 is attached with respect to each of the concave portions 15a.
- Such a configuration allows the fluid to be filtered by the plurality of filtration filters 30. Therefore, the filtration efficiency of the fluid can be further improved.
- the angle ⁇ 1 formed by the first slope 18a and the concave surface 16 and the angle ⁇ 2 formed by the second slope 18b and the concave surface 16 are 45 degrees, but the invention is not limited thereto.
- the angles ⁇ 1 and ⁇ 2 are not limited to 45 degrees. Also, ⁇ 1 and ⁇ 2 may be different from each other.
- the first notch 19a is provided at the end of the first slope 18a on the concave 16 side
- the second notch 19b is provided at the end of the second slope 18b on the concave 16 side.
- the first notch 19a may be provided on the first slope 18a other than the end on the concave 16 side of the first slope 18a.
- the second notch 19b may be provided on the second slope 18b other than the end on the concave 16 side of the second slope 18b.
- the first notch 19a is formed at an angle of 2 degrees in the + X direction with respect to the Z axis
- the second notch 19b is formed at an angle of 2 degrees in the -X direction with respect to the Z axis.
- the first projecting portion 25a is formed so as to be inclined by 2 degrees in the + X direction with respect to the Z axis direction
- the second projecting portion 25b is formed by being inclined twice in the ⁇ X direction with respect to the Z axis But it is not limited to this.
- the inclination angles of the first notch 19a, the second notch 19b, the first protrusion 25a, and the second protrusion 25b are not limited to two degrees.
- FIG. 13 is a cross-sectional view showing a schematic configuration of a filtration device 1B of a modification.
- the second flow passage member 20a may form a plurality of discharge flow passages 23a having openings 22a, and the filtration filter 30 may be attached to the openings 22a of the respective discharge flow passages 23a.
- Such a configuration allows the fluid to be filtered by the plurality of filtration filters 30. Therefore, the filtration efficiency of the fluid can be improved.
- the outer wall surface 14 of the first flow path member 10 and the outer wall surface 26 facing the convex surface 21 in the second flow path member 20 form the same plane, and the first flow path member 10
- the 1st outer wall surface 14 and the 2nd outer wall surface on the opposite side are formed in parallel with the 1st outer wall surface 14, it is not limited to this.
- the outer wall surface 26 of the second flow passage member 20 may be formed higher in the + Z direction than the outer wall surface 14 of the first flow passage member 10.
- the second outer wall surface of the first flow passage member 10 may have a shape different from that of the first outer wall surface 14 and may be formed, for example, in a curved surface.
- the cross-sectional area of the 2nd flow path 12 explained the example which becomes small as it goes to slot 17, it is not limited to this. If the first flow passage member 10 and the second flow passage member 20 are fitted so that the cross-sectional area of the third flow passage 13 is smaller than the cross-sectional area of the first flow passage 11, another configuration is obtained. It is also good.
- FIG. 14 is a cross-sectional view showing a schematic configuration of a filtration device 1C of a modification.
- the third flow path 13a may be formed such that the cross-sectional area of the first flow path 11b and the second flow path 12b is reduced. That is, the first connection portion 11 c connecting the first flow passage 11 b and the third flow passage 13 a may be formed by the third slope 24 aa of the second flow passage member 20.
- the second connection portion 12 c connecting the second flow passage 12 b and the third flow passage 13 a may be formed by the fourth slope 24 ba of the second flow passage member 20.
- This configuration also makes it possible to suppress clogging of the filtration object with the filtration object, and to suppress foaming of the fluid (liquid) to be filtered.
- the filtration target is a cell
- the shape of the third flow passage 13a can be easily changed by changing the shape of the second flow passage member 20b.
- the cross-sectional area of the third flow passage 13a can be further reduced by forming the second flow passage member 20b so as to extend toward the lower end portion (the end portion in the -Z direction) of the groove portion 17.
- the filter filter 30 demonstrated the example which is a metal porous film, it is not limited to this.
- the filtration filter 30 may be any filter that can filter the filtration target contained in the fluid, and may be, for example, another filter such as a membrane.
- Embodiment 1 described the example in which the fluid containing the filtration target is a liquid, the present invention is not limited to this.
- the fluid may be a gas.
- the cross-sectional area of the second flow passage 12 is reduced toward the groove portion 17. It is not limited.
- the second flow passage 12, the second connection portion 12a, and the third flow passage 13 may be formed to have the same cross-sectional area. This also makes it possible to suppress an increase in the fluid velocity in the first channel 11 and to increase the fluid velocity in the third channel 13 facing the filtration filter 30.
- the recess fitting surfaces 18 are provided with the notches 19a and 19b, and the protrusion fitting surfaces 24 are provided with the protrusions 25a and 25b, but the present invention is not limited thereto. I will not.
- a projection may be provided on the recess fitting surface 18 and a notch may be provided on the projection fitting surface 24. Also by this, the concave portion 15 and the convex portion 27 can be fitted more easily.
- the filter filter 30 demonstrated the example attached to the 2nd flow-path member 20, it is not limited to this.
- the filtration filter 30 may be disposed in the third flow path 13, and for example, the filtration filter 30 may be attached to the first flow path member 10.
- Embodiment 1 demonstrated the form of FIG. 1 as an example which filters using the filtration apparatus 1, it is not limited to this.
- the pump 3 may be disposed in the path of the pipe 53 instead of between the pipe 51 and the pipe 52.
- a closed system filtration device may be realized with the fluid tank 2 and the filtrate tank 4 as closed containers.
- the second flow path member 20 is detachably attached to the first flow path member 10 by fitting the protruding portions 25a and 25b to the cutout portions 19a and 19b has been described. Not limited to this.
- the second flow passage member 20 may be screwed to the first flow passage member 10 and may be detachably attached.
- the recess fitting surface 18 is formed by a slope inclined with respect to the concave surface 16 of the recess 15, and the protrusion mating surface 24 is a convex surface 21 of the protrusion 27 in contact with the concave surface 16 of the recess 15.
- the 1st flow path member 10 and the 2nd flow path member 20 may be the composition of filtration device 1D as shown in Drawing 15, for example.
- the recess fitting surface of the first flow passage member 10c has a first fitting surface 18c and a second fitting surface 18d. The first fitting surface 18c and the second fitting surface 18d are not formed to be inclined.
- first fitting surface 18c and the second fitting surface 18d are formed in a direction (Z direction) orthogonal to the direction in which the third flow path 13 extends.
- the convex portion fitting surface of the second flow passage member 20c has a third fitting surface 24c and a fourth fitting surface 24d.
- the third fitting surface 24c and the fourth fitting surface 24d are not formed to be inclined.
- the third fitting surface 24 c and the fourth fitting surface 24 d are formed in a direction (Z direction) orthogonal to the direction in which the third flow path 13 extends.
- the first fitting surface 18c is provided with a first notch 19c which is cut away in the direction (-X direction) in which the first flow path 11 extends.
- the second fitting surface 18 d is provided with a second notch 19 d cut out in a direction (+ X direction) in which the second flow path 12 extends at an end on the concave surface 16 side.
- the third fitting surface 24c is provided with a first projecting portion 25c fitted with the first notch 19c of the first flow path member 10c, and the fourth fitting surface 24d is fitted with the second notch 19d.
- a second projecting portion 25d is provided. Also with such a configuration, the second flow passage member 20c can be easily and detachably attached to the first flow passage member 10c.
- the filtration device of the present invention can suppress clogging of the filtration object with the filtration filter and can suppress the effervescence of the fluid to be filtered, and therefore is useful for the application of filtering the fluid including the filtration object.
Landscapes
- Health & Medical Sciences (AREA)
- Chemical & Material Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Engineering & Computer Science (AREA)
- Heart & Thoracic Surgery (AREA)
- Vascular Medicine (AREA)
- General Health & Medical Sciences (AREA)
- Biomedical Technology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Veterinary Medicine (AREA)
- Wood Science & Technology (AREA)
- Animal Behavior & Ethology (AREA)
- Anesthesiology (AREA)
- Public Health (AREA)
- Organic Chemistry (AREA)
- Biotechnology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- Hematology (AREA)
- Zoology (AREA)
- Dispersion Chemistry (AREA)
- Microbiology (AREA)
- Sustainable Development (AREA)
- Biochemistry (AREA)
- General Engineering & Computer Science (AREA)
- Genetics & Genomics (AREA)
- Cardiology (AREA)
- Filtration Of Liquid (AREA)
- Filtering Materials (AREA)
- Separation Using Semi-Permeable Membranes (AREA)
Abstract
本発明に係る濾過装置は、外壁面から内部方向に窪んだ凹部、凹部の凹面に開口を有する溝部、溝部と接続される貫通孔で形成される第1流路及び第2流路、及び溝部と第1流路とを接続する第1接続部を有する第1流路部材と、凹部に着脱可能に嵌合する凸部を有すると共に、溝部に配置される凸部の凸面に開口を有する排出流路が設けられた第2流路部材と、溝部の延びる方向に沿って配置され、排出流路の開口に位置する濾過フィルタとを備え、溝部の開口に凸部の凸面が配置されることによって第3流路が形成され、第3流路は、第1接続部を介して第1流路に接続され、濾過フィルタが配置される第3流路の断面積は、第1流路の断面積よりも小さい。
Description
本発明は、流体に含まれる濾過対象物を濾過する濾過装置に関する。
特許文献1には、血液成分を含む液体を収容した容器と、セラミックフィルターとを具備した循環系を構成し、血液成分を含む液体をクロスフロー濾過する濾過装置が開示されている。
しかしながら、特許文献1の濾過装置においては、濾過する流体の速度が遅い場合には、濾過フィルタに接触した濾過対象物が脱離しにくくなることで、濾過フィルタに濾過対象物が目詰まりしやすくなるという課題がある。一方、流路全体の流体の速度が速い場合には、流体が泡立ちやすくなるという課題がある。
本発明の目的は、前記課題を解決することにあって、濾過フィルタへの濾過対象物の目詰まりを抑制すると共に、流体の泡立ちを抑制した濾過装置を提供することにある。
本発明の一の態様の濾過装置は、
外壁面から内部方向に窪んだ凹部、前記凹部の凹面に開口を有する溝部、前記溝部と接続される貫通孔で形成される第1流路及び第2流路、前記溝部と前記第1流路とを接続する第1接続部、及び前記溝部と前記第2流路とを接続する第2接続部を有する第1流路部材と、
前記第1流路部材の前記凹部に着脱可能に嵌合する凸部を有すると共に、前記第1流路部材の前記溝部に配置される前記凸部の凸面に開口を有する排出流路が設けられた第2流路部材と、
前記第1流路部材の前記溝部の延びる方向に沿って配置され、前記第2流路部材の前記排出流路の前記開口に位置する濾過フィルタと、
を備え、
前記第1流路部材の前記溝部の前記開口に前記第2流路部材の前記凸部の前記凸面が配置されることによって第3流路が形成され、
前記第3流路は、前記第1接続部を介して前記第1流路に接続され、且つ前記第2接続部を介して前記第2流路に接続され、
前記濾過フィルタが配置される前記第3流路の断面積は、前記第1流路の断面積よりも小さい。
外壁面から内部方向に窪んだ凹部、前記凹部の凹面に開口を有する溝部、前記溝部と接続される貫通孔で形成される第1流路及び第2流路、前記溝部と前記第1流路とを接続する第1接続部、及び前記溝部と前記第2流路とを接続する第2接続部を有する第1流路部材と、
前記第1流路部材の前記凹部に着脱可能に嵌合する凸部を有すると共に、前記第1流路部材の前記溝部に配置される前記凸部の凸面に開口を有する排出流路が設けられた第2流路部材と、
前記第1流路部材の前記溝部の延びる方向に沿って配置され、前記第2流路部材の前記排出流路の前記開口に位置する濾過フィルタと、
を備え、
前記第1流路部材の前記溝部の前記開口に前記第2流路部材の前記凸部の前記凸面が配置されることによって第3流路が形成され、
前記第3流路は、前記第1接続部を介して前記第1流路に接続され、且つ前記第2接続部を介して前記第2流路に接続され、
前記濾過フィルタが配置される前記第3流路の断面積は、前記第1流路の断面積よりも小さい。
本発明によれば、濾過フィルタへの濾過対象物の目詰まりを抑制すると共に、流体の泡立ちを抑制することができる。
(本発明の基礎となった知見)
クロスフロー型の濾過装置においては、濾過する流体の流れる方向に沿って濾過フィルタが設けられ、当該濾過フィルタにより濾過を行っている。このとき、流体の速度が遅い場合には、濾過フィルタに接触した濾過対象物が脱離しにくくなることで、濾過フィルタに濾過対象物が目詰まりしやすくなる。このため、濾過フィルタへの濾過対象物の目詰まりを抑制するために、流体の速度を速くすることが考えられる。
クロスフロー型の濾過装置においては、濾過する流体の流れる方向に沿って濾過フィルタが設けられ、当該濾過フィルタにより濾過を行っている。このとき、流体の速度が遅い場合には、濾過フィルタに接触した濾過対象物が脱離しにくくなることで、濾過フィルタに濾過対象物が目詰まりしやすくなる。このため、濾過フィルタへの濾過対象物の目詰まりを抑制するために、流体の速度を速くすることが考えられる。
しかしながら、流路全体の流体の速度を速くした場合には、例えば培地のような流体は、泡立ちやすくなるおそれがある。また、濾過対象物が細胞である場合は、細胞の活性が低下するおそれや細胞が破損するおそれがある。
そこで、本発明者らは、濾過フィルタが面する部分の流路断面積を他の流路断面積よりも小さくすることで、流路全体における流体の速度の増加を抑制すると共に、濾過フィルタが面する部分において流体の速度を速くすることを見出した。ここで、流路全体とは、例えば、濾過装置内において濾過フィルタが面する部分の流路断面積よりも大きい流路、濾過装置に接続される流路(配管)、及び流路に接続されるポンプである。これにより、本発明者らは、濾過フィルタへの濾過対象物の目詰まりを抑制すると共に、濾過する流体が液体の場合において流体の泡立ちを抑制できることを見出した。また、濾過対象物が細胞である場合、細胞の活性の低下や細胞の破損を抑制できることを見出した。
これらの点を踏まえて、本発明者らは、以下の発明に至った。
本発明の一態様に係る濾過装置は、
外壁面から内部方向に窪んだ凹部、前記凹部の凹面に開口を有する溝部、前記溝部と接続される貫通孔で形成される第1流路及び第2流路、前記溝部と前記第1流路とを接続する第1接続部、及び前記溝部と前記第2流路とを接続する第2接続部を有する第1流路部材と、
前記第1流路部材の前記凹部に着脱可能に嵌合する凸部を有すると共に、前記第1流路部材の前記溝部に配置される前記凸部の凸面に開口を有する排出流路が設けられた第2流路部材と、
前記第1流路部材の前記溝部の延びる方向に沿って配置され、前記第2流路部材の前記排出流路の前記開口に位置する濾過フィルタと、
を備え、
前記第1流路部材の前記溝部の前記開口に前記第2流路部材の前記凸部の前記凸面が配置されることによって第3流路が形成され、
前記第3流路は、前記第1接続部を介して前記第1流路に接続され、且つ前記第2接続部を介して前記第2流路に接続され、
前記濾過フィルタが配置される前記第3流路の断面積は、前記第1流路の断面積よりも小さい。
外壁面から内部方向に窪んだ凹部、前記凹部の凹面に開口を有する溝部、前記溝部と接続される貫通孔で形成される第1流路及び第2流路、前記溝部と前記第1流路とを接続する第1接続部、及び前記溝部と前記第2流路とを接続する第2接続部を有する第1流路部材と、
前記第1流路部材の前記凹部に着脱可能に嵌合する凸部を有すると共に、前記第1流路部材の前記溝部に配置される前記凸部の凸面に開口を有する排出流路が設けられた第2流路部材と、
前記第1流路部材の前記溝部の延びる方向に沿って配置され、前記第2流路部材の前記排出流路の前記開口に位置する濾過フィルタと、
を備え、
前記第1流路部材の前記溝部の前記開口に前記第2流路部材の前記凸部の前記凸面が配置されることによって第3流路が形成され、
前記第3流路は、前記第1接続部を介して前記第1流路に接続され、且つ前記第2接続部を介して前記第2流路に接続され、
前記濾過フィルタが配置される前記第3流路の断面積は、前記第1流路の断面積よりも小さい。
このような構成により、流路全体における流体の速度の増加を抑制すると共に、濾過フィルタに面する第3流路において流体の速度を増加させることができる。その結果、濾過フィルタへの濾過対象物の目詰まりを抑制すると共に、濾過する流体(液体)の泡立ちを抑制できる。また、濾過対象物が細胞である場合、細胞の活性の低下や細胞の破損を抑制できる。
前記濾過装置において、前記凹部と前記凸部とは、別部材を介さずに着脱可能に嵌合してもよい。
このような構成により、ねじ等を使用する必要が無いため、第2流路部材の着脱を容易に行うことができる。
前記濾過装置において、前記第1流路部材は、前記凹部の側面において、前記凹部と前記凸部とが嵌合する凹部嵌合面を有し、
前記第2流路部材は、前記凸部の側面において、前記凹部と前記凸部とが嵌合する凸部嵌合面を有し、
前記凹部嵌合面には、前記第1流路部材の内側に向かって窪む切欠部が設けられ、
前記凸部嵌合面には、前記第2流路部材の外側に向かって突設し、前記切欠部と嵌合する突設部が設けられ、
前記第2流路部材は、前記突設部を前記切欠部に嵌合させることで、前記第1流路部材に着脱可能に取り付けられてもよい。
前記第2流路部材は、前記凸部の側面において、前記凹部と前記凸部とが嵌合する凸部嵌合面を有し、
前記凹部嵌合面には、前記第1流路部材の内側に向かって窪む切欠部が設けられ、
前記凸部嵌合面には、前記第2流路部材の外側に向かって突設し、前記切欠部と嵌合する突設部が設けられ、
前記第2流路部材は、前記突設部を前記切欠部に嵌合させることで、前記第1流路部材に着脱可能に取り付けられてもよい。
このような構成により、第2流路部材を第1流路部材により容易に着脱可能に取り付けることができる。
前記濾過装置において、前記凹部嵌合面は、前記凹部の前記凹面に対して傾斜した斜面で形成され、
前記凸部嵌合面は、前記凹部の前記凹面と接触する前記凸部の前記凸面に対して傾斜した斜面で形成され、
前記第1流路部材と前記第2流路部材とは、前記凹部嵌合面と前記凸部嵌合面とを面接触させて嵌合してもよい。
前記凸部嵌合面は、前記凹部の前記凹面と接触する前記凸部の前記凸面に対して傾斜した斜面で形成され、
前記第1流路部材と前記第2流路部材とは、前記凹部嵌合面と前記凸部嵌合面とを面接触させて嵌合してもよい。
このような構成により、凹部の側面において、第1流路部材と第2流路部材との接触面積を増加させることができる。このため、第1流路部材を流れる流体の漏出をより抑制することができる。
前記濾過装置において、前記第1流路部材の前記凹部の前記凹面は、平坦面で形成され、
前記第2流路部材の前記凸部の前記凸面は、平坦面で形成され、
前記第1流路部材と前記第2流路部材とは、前記凹部の前記凹面と前記凸部の前記凸面とを面接触させて嵌合してもよい。
前記第2流路部材の前記凸部の前記凸面は、平坦面で形成され、
前記第1流路部材と前記第2流路部材とは、前記凹部の前記凹面と前記凸部の前記凸面とを面接触させて嵌合してもよい。
このような構成により、凹部の凹面において、第1流路部材と第2流路部材との接触面積を増加させることができる。このため、第1流路部材を流れる流体の漏出をより抑制することができる。
前記濾過装置において、前記濾過フィルタは、互いに対向する第1主面と第2主面とを有し、
前記第1主面は、前記第3流路側に配置され、
前記第2主面は、前記排出流路側に配置され、
前記第1主面と前記凸面とは面一であってもよい。
前記第1主面は、前記第3流路側に配置され、
前記第2主面は、前記排出流路側に配置され、
前記第1主面と前記凸面とは面一であってもよい。
このような構成により、濾過フィルタ近傍の流速を増加させることができる。
前記濾過装置において、前記第2流路の断面積は、前記第3流路の断面積よりも大きくてもよい。
このような構成により、第2流路における流速の増加を抑制することができる。
前記濾過装置において、前記濾過フィルタは、前記第2流路部材に取り付けられてもよい。
このような構成により、第2流路部材を第1流路部材から取り外して濾過フィルタの交換を容易に行うことができる。
前記濾過装置において、前記溝部は、直線状に設けられてもよい。
このような構成により、溝部を通過する流体の流速を増加させることができる。
前記濾過装置において、前記第1流路部材は、前記凹部を複数形成し、それぞれの前記凹部に対して、前記濾過フィルタが取り付けられた前記第2流路部材と嵌合してもよい。
このような構成により、複数の濾過フィルタで流体を濾過することができる。
前記濾過装置において、前記第2流路部材は、前記開口を有する前記排出流路を複数形成し、それぞれの前記排出流路の前記開口に対して前記濾過フィルタが配置されてもよい。
このような構成により、複数の濾過フィルタで流体を濾過することができる。
以下、本発明に係る実施の形態について、添付の図面を参照しながら説明する。また、各図においては、説明を容易なものとするため、各要素を誇張して示している。
(実施の形態1)
図1は、本発明に係る実施の形態1の濾過装置1を用いて濾過対象物5を濾過する様子の一例を示す概略図である。図1に示すように、濾過装置1は、クロスフロー方式の濾過装置である。濾過装置1は、濾過対象物5を含む流体6を流体導入口1aから導入し、流体排出口1bから排出するように構成されている。また、濾過装置1は、流体導入口1aから流体排出口1bへ流れる流体6の一部を濾過し、当該濾過により濾過対象物5が取り除かれた流体(以下、濾液という)7を濾液排出口1cから排出するように構成されている。
図1は、本発明に係る実施の形態1の濾過装置1を用いて濾過対象物5を濾過する様子の一例を示す概略図である。図1に示すように、濾過装置1は、クロスフロー方式の濾過装置である。濾過装置1は、濾過対象物5を含む流体6を流体導入口1aから導入し、流体排出口1bから排出するように構成されている。また、濾過装置1は、流体導入口1aから流体排出口1bへ流れる流体6の一部を濾過し、当該濾過により濾過対象物5が取り除かれた流体(以下、濾液という)7を濾液排出口1cから排出するように構成されている。
濾過対象物5を含む流体6は、流体タンク2内に入れられている。流体タンク2内の流体6は、配管51を通じてポンプ3内に取り込まれ、当該ポンプ3によって配管52を通じて濾過装置1の流体導入口1aへ供給される。濾過装置1の内部を通過して流体排出口1bより排出された流体6は、配管53を通じて流体タンク2内に戻される。このようにして、流体6は、ポンプ3が駆動する間、流体タンク2、配管51、ポンプ3、配管52、濾過装置1、配管53の順に循環する。
一方、濾過装置1の内部に供給された流体6の一部は、濾過されて濾液7として濾液排出口1cより排出される。濾液排出口1cより排出された濾液7は、配管54を通じて濾液タンク4内に入れられる。
なお、本明細書において、「濾過対象物」とは、流体に含まれる対象物のうち濾過されるべき対象物を意味している。例えば、濾過対象物は、流体に含まれる生物由来物質であってもよい。「生物由来物質」とは、細胞(真核生物)、細菌(真性細菌)、ウィルス等の生物に由来する物質を意味する。細胞(真核生物)としては、例えば、人工多能性幹細胞(iPS細胞)、ES細胞、幹細胞、間葉系幹細胞、単核球細胞、単細胞、細胞塊、浮遊性細胞、接着性細胞、神経細胞、白血球、再生医療用細胞、自己細胞、がん細胞、血中循環がん細胞(CTC)、HL-60、HELA、菌類を含む。細菌(真性細菌)としては、例えば、大腸菌、結核菌を含む。また、「流体」とは、液体を意味する。実施の形態1では、流体は細胞培養液を意味し、濾過対象物は細胞(真核生物)を意味する。細胞を濾過する場合において細胞は変形しやすいため、濾過対象物が細胞のとき、本発明に係る濾過装置1は特に優れている。
以下、濾過装置1の構成について詳細に説明する。
[全体構成]
図2Aは、本発明に係る実施の形態1の濾過装置1の概略構成を示す斜視図である。図2Bは、濾過装置1において、第1流路部材10に第2流路部材20を取り付ける概略構成を示す斜視図である。図3は、図2AをA-A線で切断した断面図である。図2A及び図3に示すように、濾過装置1は、第1流路部材10と、第1流路部材10と着脱可能に嵌合する第2流路部材20と、第2流路部材20に取り付けられる濾過フィルタ30とを備える。実施の形態1においては、濾過フィルタ30は、保持具40をねじ等で締結することにより第2流路部材20に取り付けられている。なお、以下、図に示すX、Y、Z方向は、それぞれ濾過装置1の横方向、縦方向、高さ方向を示している。
図2Aは、本発明に係る実施の形態1の濾過装置1の概略構成を示す斜視図である。図2Bは、濾過装置1において、第1流路部材10に第2流路部材20を取り付ける概略構成を示す斜視図である。図3は、図2AをA-A線で切断した断面図である。図2A及び図3に示すように、濾過装置1は、第1流路部材10と、第1流路部材10と着脱可能に嵌合する第2流路部材20と、第2流路部材20に取り付けられる濾過フィルタ30とを備える。実施の形態1においては、濾過フィルタ30は、保持具40をねじ等で締結することにより第2流路部材20に取り付けられている。なお、以下、図に示すX、Y、Z方向は、それぞれ濾過装置1の横方向、縦方向、高さ方向を示している。
図2Bに示すように、本実施の形態1では、第2流路部材20は、第1流路部材10に対してY1方向にスライド移動させることで取り付けられる。
図3に示すように、濾過装置1において、第1流路11と第2流路12と第3流路13とが形成されている。第1流路11及び第2流路12は、貫通孔で形成されている。第1流路11と第3流路13とは、第1接続部11aを介して接続されている。第2流路12と第3流路13とは、第2接続部12aを介して接続されている。濾過する部分に相当する第3流路13は、第1流路11及び第2流路12よりも断面積が小さく形成されている。実施の形態1では、第1流路11及び第2流路12は、断面積が同じになるように形成されている。なお、本明細書において、断面積とは、流路が延びる方向と直交する方向に流路を切断したときの流路断面積を意味する。
<第1流路部材>
図4Aは、本発明に係る実施の形態1の濾過装置1における第1流路部材10の概略構成を示す斜視図である。図4Bは、図4AをB1-B1線で切断した断面図である。図4Cは、図4AをB2-B2線で切断した断面図である。
図4Aは、本発明に係る実施の形態1の濾過装置1における第1流路部材10の概略構成を示す斜視図である。図4Bは、図4AをB1-B1線で切断した断面図である。図4Cは、図4AをB2-B2線で切断した断面図である。
図4Aから図4Cに示すように、第1流路部材10は、外壁面14から内部方向に窪んだ凹部15、凹部15の凹面16に開口17aを有する溝部17、及び溝部17と接続される貫通孔で形成される第1流路11及び第2流路12を有する。また、第1流路部材10は、溝部17と第1流路11とを接続する第1接続部11a、及び溝部17と第2流路12とを接続する第2接続部12aを有する。具体的には、第1流路部材10は、平坦な外壁面14から内部方向(-Z方向)に窪んだ凹部15を有すると共に、内部に第1流路11及び第2流路12を有する。また、第1流路部材10の外壁面14を第1外壁面14とした場合、第1外壁面14と反対側の第2外壁面は、第1外壁面14と平行に形成されている。第1流路11は-X方向に延在して形成され、第2流路12は+X方向に延在して形成されている。これにより、第1流路部材10の高さ(Z方向の長さ)を小さくすることができる。また、第1流路11及び第2流路12は、円管形状に形成されている。
第1流路部材10の凹部15の凹面16は、平坦面を形成している。また、凹部15の凹面16には、第1流路11及び第2流路12に接続される溝部17が設けられている。溝部17は、凹状に形成されている。溝部17は、凹部15の凹面16において開口17aを有する。また、溝部17は、直線状に設けられている。実施の形態1では、溝部17は、Y方向に切断した断面が半円形状に形成されている。また、溝部17は、X方向に直線状に延びている。
第1流路11及び第2流路12は、溝部17に接続される。第1流路11は、第1接続部11aを介して溝部17に接続される。第2流路12は、第2接続部12aを介して溝部17に接続される。第1流路11と溝部17との第1接続部11a、及び第2流路12と溝部17との第2接続部12aにおいて、第1流路11及び第2流路12の断面積は、溝部17に向かうにつれて小さくなっている。具体的には、第1接続部11aは、第1流路11と、溝部17の一端とを接続する第1接続斜面11aaを形成する。第2接続部12aは、第2流路12と、溝部17の他端とを接続する第2接続斜面12aaを形成する。第1接続斜面11aaは、第1流路11を狭める方向に傾斜している。第2接続斜面12aaは、溝部17を広げる方向に傾斜している。
第1流路部材10は、凹部15の側面において、凹部15と後述する凸部27とが嵌合する凹部嵌合面18を有する。凹部嵌合面18は、凹部15の凹面16に対して傾斜した斜面で形成されている。本実施の形態1では、凹部嵌合面18は、第1斜面18aと、第2斜面18bとを有する。第1斜面18aと凹面16とが成す角度θ1、及び第2斜面18bと凹面16とが成す角度θ2は、例えば45度に形成されている。
図4B及び図4Cに示すように、凹部嵌合面18には、第1流路部材10の内側に向かって窪む切欠部19a,19bが設けられている。具体的には、第1斜面18aには、凹面16側の端部において、第1流路11が延びる方向(-X方向)に向かって切り欠かれた第1切欠部19aが設けられている。第2斜面18bには、凹面16側の端部において、第2流路12が延びる方向(+X方向)に向かって切り欠かれた第2切欠部19bが設けられている。第1切欠部19aはZ軸に対して+X方向に例えば2度傾斜して形成され、第2切欠部19bはZ軸に対して-X方向に例えば2度傾斜して形成されている。
また、第3流路13と交差する方向の凹部15の側面は開放されている。本実施の形態1では、第3流路13と直交する方向(Y方向)の凹部15の側面は開放されている。これにより、図2Bに示すように、第1流路部材10と第2流路部材20とを嵌合させる際、凹部15において開放された方向の側面から第2流路部材20を溝部17の延びる方向(X方向)と交差(例えば、直交)する方向(Y1方向)にスライドして第1流路部材10に挿入することができる。このとき、図3に示すように、第1切欠部19a及び第2切欠部19bに対して、後述する第2流路部材20の第1突設部25a及び第2突設部25bが嵌合した状態で、第2流路部材20が第1流路部材10にスライド移動する。第2流路部材20を第1流路部材10に対してスライド移動させることで、第2流路部材20を第1流路部材10に対して容易に着脱することができる。なお、図において第1切欠部19a及び第2切欠部19bは誇張して示されている。
第1流路部材10は、例えば、アクリル樹脂(PMMA)、ポリスチレン(PS)、ポリフェニレンサルファイド樹脂(PPS)等で形成される。
<第2流路部材>
図5Aは、本発明に係る実施の形態1の濾過装置1における第2流路部材20の概略構成を示す断面図である。図5Bは、本発明に係る実施の形態1の濾過装置1における第2流路部材20を凸面21側から見た場合の概略構成を示す図である。図5A及び図5Bは、濾過フィルタ30を取り付けた第2流路部材20の概略構成を示す図である。
図5Aは、本発明に係る実施の形態1の濾過装置1における第2流路部材20の概略構成を示す断面図である。図5Bは、本発明に係る実施の形態1の濾過装置1における第2流路部材20を凸面21側から見た場合の概略構成を示す図である。図5A及び図5Bは、濾過フィルタ30を取り付けた第2流路部材20の概略構成を示す図である。
第2流路部材20は、第1流路部材10の凹部15に着脱可能に嵌合する凸部27を有する。凹部15と凸部27とは、例えばねじ等の別部材を介さずに着脱可能に嵌合する。図5A及び図5Bに示すように、第2流路部材20において、凹部15の凹面16と接触する、第2流路部材20の凸部27の凸面21は、平坦面を形成している。第2流路部材20には、溝部17に配置される凸部27の凸面21に開口22を有する排出流路23がZ方向に延在して設けられている。開口22には、濾過フィルタ30が位置している。
第2流路部材20は、凸部27の側面において、凹部15と凸部27とが嵌合する凸部嵌合面24を有する。凸部嵌合面24は、凹部15の凹面16と接触する凸部27の凸面21に対して傾斜した斜面で形成されている。本実施の形態1では、凸部嵌合面24は、第3斜面24aと、第4斜面24bとを有する。第3斜面24aは第1斜面18aと嵌合し、第4斜面24bは第2斜面18bと嵌合する。
凸部嵌合面24には、第2流路部材20の外側に向かって突設し、切欠部19a,19bと嵌合する突設部25a,25bが設けられている。具体的には、第3斜面24aには第1流路部材10の第1切欠部19aと嵌合する第1突設部25aが設けられ、第4斜面24bには、第2切欠部19bと嵌合する第2突設部25bが設けられている。第1突設部25aは、-X方向に突出して形成され、第2突設部25bは+X方向に突出して形成されている。第1突設部25aの斜面はZ軸に対して+X方向に例えば2度傾斜して形成され、第2突設部25bの斜面はZ軸に対して-X方向に例えば2度傾斜して形成されている。なお、図において第1突設部25a及び第2突設部25bは誇張して示されている。
次に、第1流路部材10の凹部15と第2流路部材20とが嵌合した状態について、図3を用いて説明する。第2流路部材20は、第1突設部25aを第1切欠部19aに嵌合させ第2突設部25bを第2切欠部19bに嵌合させることで、着脱可能に第1流路部材10に取り付けられている。これにより、第2流路部材20を第1流路部材10からZ方向に外れにくくすることができる。このとき、第1流路部材10と第2流路部材20とは、凹部15の凹面16(図4A参照)と凸部27の凸面21(図5A参照)とを面接触させて嵌合している。さらに、第1流路部材10と第2流路部材20とは、第1斜面18aと第3斜面24aとを面接触させ、第2斜面18bと第4斜面24bとを面接触させて嵌合している。また、第1流路部材10の外壁面14と、第2流路部材20において凸部27の凸面21に対向する外壁面26とは、同一平面を形成している。
図3に示すように、第1流路部材10の溝部17の開口17aに第2流路部材20の凸部27の凸面21が配置されることによって第3流路13が形成される。すなわち、溝部17は、第2流路部材20が第1流路部材10の凹部15に嵌合することで、第3流路13を形成している。第3流路13は、第2流路部材20の排出流路23の開口22に位置する濾過フィルタ30に面して、X方向に延在して形成されている。
第3流路13は、第1接続部11aを介して第1流路11に接続され、且つ第2接続部12aを介して第2流路12に接続される。具体的には、第3流路13は、第1接続部11aの第1接続斜面11aaを介して第1流路11に接続され、且つ第2接続部12aの第2接続斜面12aaを介して第2流路12に接続される。第1接続斜面11aa及び第2接続斜面12aaは、第1流路11及び第2流路12の断面積が第3流路13に近づくにつれて小さくなるように傾斜して形成される。これにより、第1流路11から第3流路13に流れる流体、及び第3流路13から第2流路12に流れる流体の流速変化が急激になることを抑制することができる。
図6は、本発明に係る実施の形態1の濾過装置1の一部を濾過フィルタ30においてY方向に切断した概略構成を示す縦断面図である。図6に示すように、第3流路13は、断面積が第1流路11及び第2流路12の断面積よりも小さくなるように形成されている。具体的には、濾過フィルタ30が配置される第3流路13の断面積は、第1流路11の断面積よりも小さい。すなわち、第3流路13において、濾過フィルタ30が配置される部分の断面積は、第1流路11の断面積よりも小さい。また、第3流路13は、円管形状を成す第1流路11及び第2流路12の半分の断面積を有する。すなわち、第3流路13は、第1流路11と同一方向(X方向)に延在すると共に、断面が半円形状の半円管形状に形成されている。第3流路13の断面形状が、第1流路11及び第2流路12の断面形状の下半分の形状と同じであることによって、第1流路11から第3流路13に流れる流体、及び第3流路13から第2流路12に流れる流体の流速変化が急激になることを抑制することができる。また、第1流路11及び第2流路12を円管形状に形成して第3流路13を半円管形状に形成することで、底に濾過対象物が溜まることを抑制することができる。
第2流路部材20は、例えば、ポリアセタール(POM)、ポリプロピレン(PP)、ポリエーテルエーテルケトン(PEEK)等で形成される。第1流路部材10及び第2流路部材20の組合せとして、例えば、以下の4つの例が挙げられる。第1の組合せにおいて、第1流路部材10はポリスチレン、第2流路部材20はポリプロピレンで形成される。第2の組合せにおいて、第1流路部材10はアクリル樹脂、第2流路部材20はポリアセタールで形成される。第3の組合せにおいて、第1流路部材10はポリスチレン、第2流路部材20はポリエーテルエーテルケトンで形成される。第2の組合せにおいて、第1流路部材10はポリフェニレンサルファイド樹脂、第2流路部材20はポリエーテルエーテルケトンで形成される。
第1流路部材10及び第2流路部材20の素材の組合せとして、好ましい組合せは第1の組合せである。第1の組合せにより、第1流路部材10及び第2流路部材20において、加工性及び生体適合性を向上させることができる。さらに、第1の組合せにおいて、第1流路部材10及び第2流路部材20は透明性が高いため、第2流路部材20を第1流路部材10から取り外すことなく、内部を流れる流体の様子を容易に観察することができる。また、第1流路部材10と第2流路部材20とを異なる材料で形成することにより、第1流路部材10の耐衝撃性及び耐摩耗性を向上させると共に、第2流路部材20を軟らかい部材で形成して第1流路部材10に対して容易に嵌合させることができる。
<濾過フィルタ>
濾過フィルタ30は、流体に含まれる濾過対象物を濾過するフィルタである。図3に示すように、濾過フィルタ30は、第2流路部材20の内部に取り付けられ、第2流路部材20の排出流路23の開口22に位置する。濾過フィルタ30は、溝部17の延びる方向に沿って配置される。実施の形態1では、濾過フィルタ30は、金属製多孔膜である。
濾過フィルタ30は、流体に含まれる濾過対象物を濾過するフィルタである。図3に示すように、濾過フィルタ30は、第2流路部材20の内部に取り付けられ、第2流路部材20の排出流路23の開口22に位置する。濾過フィルタ30は、溝部17の延びる方向に沿って配置される。実施の形態1では、濾過フィルタ30は、金属製多孔膜である。
図7は、濾過フィルタ30の概略構成を示す平面図である。図8は、濾過フィルタ30の一部の拡大斜視図である。図7及び図8中のX、Y、Z方向は、図2A中のX、Y、Z方向に対応しており、それぞれ濾過フィルタ30の横方向、縦方向、厚み方向を示している。図7に示すように、濾過フィルタ30は、フィルタ部31と、フィルタ部31の外周に設けられた保持部32とを備える。図8に示すように、濾過フィルタ30は、互いに対向する第1主面PS1と第2主面PS2とを有している。第1主面PS1は、第3流路13側に配置され、第2主面PS2は、排出流路23側に配置される。実施の形態1において、濾過フィルタ30の第1主面PS1は、第2流路部材20の凸部27の凸面21と同一面(面一)となっている。フィルタ部31は、第1主面PS1と第2主面PS2とを貫通する複数の貫通孔33が形成されたフィルタ基体部34を備える。
濾過フィルタ30の基体部分を形成するフィルタ基体部34を構成する材料は、金属及び/又は金属酸化物を主成分としている。フィルタ基体部34は、例えば、金、銀、銅、白金、ニッケル、パラジウム、チタン、これらの合金及びこれらの酸化物であってもよい。
濾過フィルタ30の外形は、例えば、円形、長方形、又は楕円形である。実施の形態1では、濾過フィルタ30の外形は、略円形である。なお、本明細書において、「略円形」とは、短径の長さに対する長径の長さの比が1.0以上1.2以下であることをいう。
フィルタ部31は、複数の貫通孔33が形成された板状構造体である。フィルタ部31の形状は、例えば、円形、長方形、楕円形である。実施の形態1では、フィルタ部31の形状は、略円形である。
図9は、フィルタ部31の一部を厚み方向(+Z方向)から見た概略構成を示す平面図である。図9に示すように、複数の貫通孔33は、フィルタ部31の第1主面PS1及び第2主面PS2上に周期的に配置されている。具体的には、複数の貫通孔33は、フィルタ部31においてマトリクス状に等間隔で設けられている。
実施の形態1では、貫通孔33は、フィルタ部31の第1主面PS1側、即ち+Z方向から見て、正方形の形状を有する。なお、貫通孔33は、+Z方向から見た形状が正方形に限定されず、例えば長方形、円形、又は楕円などの形状であってもよい。
実施の形態1では、フィルタ部31の第1主面PS1に対して垂直な面に投影した貫通孔33の形状(断面形状)は、長方形である。具体的には、貫通孔33の断面形状は、濾過フィルタ30の半径方向の一辺の長さが濾過フィルタ30の厚み方向の一辺の長さより長い長方形である。なお、貫通孔33の断面形状は、長方形に限定されず、例えば、平行四辺形又は台形等のテーパー形状であってもよいし、貫通孔33の中心に対して、対称形状であってもよいし非対称形状であってもよい。
実施の形態1では、複数の貫通孔33は、フィルタ部31の第1主面PS1側(+Z方向)から見て正方形の各辺と平行な2つの配列方向、即ち図9中のX方向とY方向に等しい間隔で設けられている。このように、複数の貫通孔33を正方格子配列で設けることによって、開口率を高めることが可能であり、濾過フィルタ30に対する流体の通過抵抗を低減することができる。このような構成により、処理時間を短くし、細胞へのストレスを低減することができる。
なお、複数の貫通孔33の配列は、正方格子配列に限定されず、例えば、準周期配列、又は周期配列であってもよい。周期配列の例としては、方形配列であれば、2つの配列方向の間隔が等しくない長方形配列でもよく、三角格子配列又は正三角格子配列などであってもよい。なお、貫通孔33は、フィルタ部31に複数設けられていればよく、配列は限定されない。
貫通孔33の間隔は、分離する細胞の種類(大きさ、形態、性質、弾性)又は量に応じて適宜設計されるものである。ここで、貫通孔33の間隔とは、図9に示すように、貫通孔33をフィルタ部31の第1主面PS1側から見て、任意の貫通孔33の中心と隣接する貫通孔33の中心との距離bを意味する。周期配列の構造体の場合、貫通孔33の間隔bは、例えば、貫通孔33の一辺dの1倍より大きく10倍以下であり、好ましくは貫通孔33の一辺dの3倍以下である。あるいは、例えば、フィルタ部31の開口率は、10%以上であり、好ましくは開口率は、25%以上である。このような構成により、フィルタ部31に対する流体の通過抵抗を低減することができる。そのため、処理時間を短くすることができ、細胞へのストレスを低減することができる。なお、開口率とは、(貫通孔33が占める面積)/(貫通孔33が空いていないと仮定したときの第1主面PS1の投影面積)で計算される。
フィルタ部31の厚みは、貫通孔33の大きさ(一辺d)の0.1倍より大きく100倍以下が好ましい。より好ましくは、フィルタ部31の厚みは、貫通孔33の大きさ(一辺d)の0.5倍より大きく10倍以下である。このような構成により、流体に対する濾過フィルタ30の抵抗を低減することができ、処理時間を短くすることができる。その結果、細胞へのストレスを低減することができる。
フィルタ部31において、濾過対象物を含む流体が接触する第1主面PS1は、表面粗さが小さいことが好ましい。ここで、表面粗さとは、第1主面PS1の任意の5箇所において触針式段差計で測定された最大値と最小値の差の平均値を意味する。実施の形態1では、表面粗さは、細胞の大きさより小さいことが好ましく、細胞の大きさの半分より小さいことがより好ましい。言い換えると、フィルタ部31の第1主面PS1上の複数の貫通孔33の開口が同一平面(XY平面)上に形成されている。また、フィルタ部31のうち貫通孔33が形成されていない部分であるフィルタ基体部34は、繋がっており、一体に形成されている。このような構成により、フィルタ部31の表面(第1主面PS1)への細胞の付着が低減され、流体の抵抗を低減することができる。
フィルタ部31の貫通孔33は、第1主面PS1側の開口と第2主面PS2側の開口とが連続した壁面を通じて連通している。具体的には、貫通孔33は、第1主面PS1側の開口が第2主面PS2側の開口に投影可能に設けられている。即ち、フィルタ部31を第1主面PS1側から見た場合に、貫通孔33は、第1主面PS1側の開口が第2主面PS2側の開口と重なるように設けられている。実施の形態1において、貫通孔33は、その内壁が第1主面PS1及び第2主面PS2に対して垂直となるように設けられている。
保持部32は、フィルタ部31の外周に設けられている。保持部32の厚みは、フィルタ部31の厚みよりも厚くてもよい。このような構成により、濾過フィルタ30の機械強度を高めることができる。
保持部32は、フィルタ部31の第1主面PS1側から見て、リング状に形成されている。濾過フィルタ30を第1主面PS1側から見て、保持部32の中心は、フィルタ部31の中心と一致する。即ち、保持部32は、フィルタ部31と同心円上に形成されている。また、保持部32には、フィルタの情報(貫通孔33の寸法など)を表示してもよい。
図10は、図6の濾過フィルタ30の拡大断面図である。図10に示すように、保持部32は、濾過フィルタ30の外周部分を第2主面PS2側に曲げて形成されている。保持部32は、フィルタ部31において曲がり始まる位置から濾過フィルタ30の外縁側の部分である。実施の形態1において、保持部32は、第1曲げ部32baと、第2曲げ部32bbとを有する。第1曲げ部32baは、フィルタ部31の第2主面PS2側に曲がる部分である。第2曲げ部32bbは、第1曲げ部32baよりも濾過フィルタ30の外縁側に形成され、且つフィルタ部31の延在方向D1に曲がる部分である。実施の形態1において、第1曲げ部32baは、フィルタ部31の第1主面PS1から第2主面PS2の方向へ曲げられている。また、第2曲げ部32bbは、フィルタ部31の第1主面PS1及び第2主面PS2と平行に曲げられている。したがって、第1曲げ部32baから第2曲げ部32bbの間の部分において、保持部32は、フィルタ部31の第1主面PS1から第2主面PS2の方向へ延びている。また、第2曲げ部32bbより濾過フィルタ30の外縁側の部分において、保持部32は、フィルタ部31の延在方向D1、即ち、フィルタ部31の第1主面PS1及び第2主面PS2と平行に延びている。濾過フィルタ30のフィルタ部31の延在方向D1とは、濾過フィルタ30の外縁側に向かう方向及び、濾過フィルタ30の外縁と反対側の方向を含む。実施の形態1においては、上述したように、保持部32の第2曲げ部32bbは、第1曲げ部32baよりも濾過フィルタ30の外縁側に向かう方向に曲げられている。なお、第1曲げ部32ba及び第2曲げ部32bbは、例えば、円弧状に曲げられた部分であってもよいし、鈍角に折り曲げられた部分であってもよい。
濾過フィルタ30は、第2流路部材20の第1枠部28と、保持具40の第2枠部41とで挟持される。
<第1枠部>
第1枠部28は、第2流路部材20の内部に形成され、保持具40の第2枠部41との間で濾過フィルタ30の保持部32を挟持する部分である。具体的には、第1枠部28は、排出流路23の側壁から突設して形成されている。第1枠部28は、環状(例えば、円環状)に形成されており、濾過フィルタ30の保持部32を間に挟んで、保持具40の第2枠部41を受けるように構成されている。第1枠部28は、フィルタ部31と保持部32との境界よりも濾過フィルタ30の外縁側に位置し、濾過フィルタ30の第1主面PS1側の保持部32に接触している。フィルタ部31と保持部32との境界は、濾過フィルタ30の外周部分において第2主面PS2側に曲がり始める位置である。実施の形態1において、第1枠部28は、第1曲げ部32baの曲げ位置から延在方向D1に位置しており、濾過フィルタ30の第1主面PS1側において、保持部32に接触しているが、フィルタ部31に接触していない。実施の形態1では、保持具40をZ方向から見たとき、第1枠部28で囲われたスペースが排出流路23の開口22として機能している。
第1枠部28は、第2流路部材20の内部に形成され、保持具40の第2枠部41との間で濾過フィルタ30の保持部32を挟持する部分である。具体的には、第1枠部28は、排出流路23の側壁から突設して形成されている。第1枠部28は、環状(例えば、円環状)に形成されており、濾過フィルタ30の保持部32を間に挟んで、保持具40の第2枠部41を受けるように構成されている。第1枠部28は、フィルタ部31と保持部32との境界よりも濾過フィルタ30の外縁側に位置し、濾過フィルタ30の第1主面PS1側の保持部32に接触している。フィルタ部31と保持部32との境界は、濾過フィルタ30の外周部分において第2主面PS2側に曲がり始める位置である。実施の形態1において、第1枠部28は、第1曲げ部32baの曲げ位置から延在方向D1に位置しており、濾過フィルタ30の第1主面PS1側において、保持部32に接触しているが、フィルタ部31に接触していない。実施の形態1では、保持具40をZ方向から見たとき、第1枠部28で囲われたスペースが排出流路23の開口22として機能している。
<第2枠部>
第2枠部41は、保持具40の外壁面に設けられ、第1枠部28との間で濾過フィルタ30の保持部32を挟持する部分である。具体的には、第2枠部41は、円筒状に形成されている。また、第2枠部41の内周部分には、濾過フィルタ30のフィルタ部31の一部に向かって突出する第1段差部41aが設けられている。第2枠部41は、濾過フィルタ30の保持部32を間に挟んで、第1枠部28の内側に配置されている。第2枠部41においては、第1枠部28の内側に、第1段差部41aがはめ込まれるように構成されている。即ち、第2枠部41は、濾過フィルタ30の第2主面PS2側において、保持部32とフィルタ部31の一部とにまたがって接触している。
第2枠部41は、保持具40の外壁面に設けられ、第1枠部28との間で濾過フィルタ30の保持部32を挟持する部分である。具体的には、第2枠部41は、円筒状に形成されている。また、第2枠部41の内周部分には、濾過フィルタ30のフィルタ部31の一部に向かって突出する第1段差部41aが設けられている。第2枠部41は、濾過フィルタ30の保持部32を間に挟んで、第1枠部28の内側に配置されている。第2枠部41においては、第1枠部28の内側に、第1段差部41aがはめ込まれるように構成されている。即ち、第2枠部41は、濾過フィルタ30の第2主面PS2側において、保持部32とフィルタ部31の一部とにまたがって接触している。
第2枠部41は、第1段差部41aによって、第2主面PS2から第1主面PS1の方向へフィルタ部31を押し出すことによって、フィルタ部31の第1主面PS1の位置を規定することができる。
第1段差部41aは、フィルタ部31の一部に向かって突出しており、第1接触面41aaによってフィルタ部31を第2主面PS2から第1主面PS1の方向へ押し出している。フィルタ部31は、第2主面PS2側において第2枠部41に接触するが、第1主面側PS1における第1枠部28に接触しない。第1枠部28によってフィルタ部31の位置が制限されないので、第2枠部41の第1段差部41aの高さh1を変えることによって、フィルタ部31の保持位置を自由に決定することができる。即ち、第2枠部41の第1段差部41aの高さh1を変えることによって、フィルタ部31の第1主面PS1の位置を自由に決定することができる。本明細書において、第1段差部41aの高さh1とは、第2枠部41の第1段差部41aの第1接触面41aaと、第2枠部41の第2接触面41abとの間の距離を意味する。
実施の形態1においては、フィルタ部31の第1主面PS1と凸面21とが略同一面となるように、第1段差部41aの高さを決定している。具体的には、第1段差部41aの高さh1は、第1枠部28の第3接触面28abと、凸面21との間の距離h2に略等しくなっている。ここで、略等しいとは、距離h1と距離h2との差が±10%の範囲内にあることを意味する。
[動作]
次に、濾過対象物を含む流体を濾過するときの濾過装置1の動作について、図11を用いて説明する。図11は、図3の濾過装置1において流体が流れる様子の一例を示す断面図である。図11に示すように、濾過装置1を使用する際、第2流路部材20の外壁面26が下方に向くように、すなわち排出流路23が下方に延びるように、濾過装置1が配置される。濾過装置1の第1流路部材10の内部において、濾過対象物が含まれる流体は、第1流路11から第3流路13を通じて第2流路12へ流れる。第3流路13を流れる流体の一部は、濾過フィルタ30によりクロスフロー濾過されて排出流路23へと排出される。このとき、第3流路13の断面積は第1流路11及び第2流路12の断面積よりも小さいため、第3流路13を流れる流体の速度V3は、第1流路11及び第2流路12を流れる流体の速度V1,V2よりも速くなっている。
次に、濾過対象物を含む流体を濾過するときの濾過装置1の動作について、図11を用いて説明する。図11は、図3の濾過装置1において流体が流れる様子の一例を示す断面図である。図11に示すように、濾過装置1を使用する際、第2流路部材20の外壁面26が下方に向くように、すなわち排出流路23が下方に延びるように、濾過装置1が配置される。濾過装置1の第1流路部材10の内部において、濾過対象物が含まれる流体は、第1流路11から第3流路13を通じて第2流路12へ流れる。第3流路13を流れる流体の一部は、濾過フィルタ30によりクロスフロー濾過されて排出流路23へと排出される。このとき、第3流路13の断面積は第1流路11及び第2流路12の断面積よりも小さいため、第3流路13を流れる流体の速度V3は、第1流路11及び第2流路12を流れる流体の速度V1,V2よりも速くなっている。
また、第1流路11と溝部17とを接続する第1接続部11a、及び第2流路12と溝部17とを接続する第2接続部12aにおいて、第1流路11及び第2流路12の断面積は、溝部17に向かうにつれて小さくなっている。このため、第1流路11から第3流路13に流れる流体、及び第3流路13から第2流路12に流れる流体の流速変化が急激になることを抑制することができる。
また、第1流路部材10と第2流路部材20とは、凹部15の凹面16と凸部27の凸面21とを面接触させて嵌合している。このため、第3流路13を流れる流体は、凹面16を通じて外部に漏出することを抑制されている。また、第1流路部材10と第2流路部材20とは、凹部嵌合面18と凸部嵌合面24とを面接触させて嵌合している。具体的には、第1流路部材10と第2流路部材20とは、第1斜面18aと第3斜面24a、及び第2斜面18bと第4斜面24bを面接触させて嵌合している。このため、第3流路13を流れる流体は、凹部嵌合面18を通じて外側に漏出することを抑制されている。
[効果]
実施の形態1に係る濾過装置1によれば、以下の効果を奏することができる。
実施の形態1に係る濾過装置1によれば、以下の効果を奏することができる。
濾過装置1において、第1流路部材10と、第2流路部材20と、濾過フィルタ30とを備える、第1流路部材10は、外壁面14から内部方向に窪んだ凹部15、凹部15の凹面16に開口17aを有する溝部17、溝部17と接続される貫通孔で形成される第1流路11及び第2流路12、第1接続部11a、及び第2接続部12aを有する。第1接続部11aは、溝部17と第1流路11とを接続する。第2接続部12aは、溝部17と第2流路12とを接続する。第2流路部材20は、第1流路部材10の凹部15に着脱可能に嵌合する凸部27を有すると共に、第1流路部材10の溝部17に配置される凸部27の凸面21に開口22を有する排出流路23が設けられる。濾過フィルタ30は、第1流路部材10の溝部17の延びる方向に沿って配置され、第2流路部材20の排出流路23の開口22に位置する。第1流路部材10の溝部17の開口17aに第2流路部材20の凸部27の凸面21が配置されることによって第3流路13が形成される。第3流路13は、第1接続部11aを介して第1流路11に接続され、且つ第2接続部12aを介して第2流路12に接続される。濾過フィルタ30が配置される第3流路13の断面積は、第1流路11の断面積よりも小さい。
このような構成により、第1流路11及び第2流路12において流体の速度の増加を抑制すると共に、濾過フィルタ30に面する第3流路13において流体の速度を増加させることができる。このため、濾過フィルタ30への濾過対象物の目詰まりを抑制すると共に、濾過する流体(液体)の泡立ちを抑制できる。また、濾過対象物が細胞である場合、細胞の活性の低下や細胞の破損を抑制できる。
また、濾過装置1は第1流路部材10と第2流路部材20とに分離して形成しているため、第2流路部材20の形状を変更することによって、第3流路13の断面積を容易に変更することができる。例えば、第2流路部材20の凸部27の凸面21に突設した部分を設け、当該部分を溝部17の下端部(-Z方向の端部)周辺まで延在して形成することによって、第3流路13の断面積をより小さくすることができる。また、第1流路部材10及び第2流路部材20によって、第3流路13を容易に形成することができる。また、第1流路部材10の第1外壁面14の反対側の第2外壁面を載置面に置くことで、第2流路部材20を第1流路部材10から取り外した際、第1流路部材10に流体を溜めたまま濾過対象物の観察及びサンプリングを行うことができる。また、溝部17から、濾過対象物を含む流体を容易に回収することができる。
濾過装置1において、凹部15と凸部27とは、別部材を介さずに着脱可能に嵌合してもよい。
このような構成により、ねじ等を使用する必要がないため、第1流路部材70から第2流路部材20を容易に着脱することができる。
濾過装置1において、第1流路部材10は、凹部15の側面において、凹部15と凸部27とが嵌合する凹部嵌合面18を有する。第2流路部材20は、凸部27の側面において、凹部15と凸部27とが嵌合する凸部嵌合面24を有する。凹部嵌合面18には、第1流路部材10の内側に向かって窪む切欠部19a,19bが設けられる。凸部嵌合面24には、第2流路部材20の外側に向かって突設し、切欠部19a,19bと嵌合する突設部25a,25bが設けられる。第2流路部材20は、突設部25a,25bを切欠部19a,19bに嵌合させることで、第1流路部材10に着脱可能に取り付けられる。
このような構成により、第2流路部材20を第1流路部材10により容易に着脱可能に取り付けることができる。
濾過装置1において、凹部嵌合面18は、凹部15の凹面16に対して傾斜した斜面18a,18bで形成される。凸部嵌合面24は、凹部15の凹面16と接触する凸部27の凸面21に対して傾斜した斜面24a,24bで形成される。第1流路部材10と第2流路部材20とは、凹部嵌合面18と凸部嵌合面24とを面接触させて嵌合する。
このような構成により、凹部15の側面において、第1流路部材10と第2流路部材20との接触面積を増加させることができる。このため、第3流路13を流れる流体の漏出をより抑制することができる。
濾過装置1において、第1流路部材10の凹部15の凹面16は、平坦面で形成される。第2流路部材20の凸部27の凸面21は、平坦面で形成される。第1流路部材10と第2流路部材20とは、凹部15の凹面16と凸部27の凸面21とを面接触させて嵌合する。
このような構成により、凹部15の凹面16において、第1流路部材10と第2流路部材20との接触面積を増加させることができる。このため、第3流路13を流れる流体の漏出をより抑制することができる。
濾過装置1において、濾過フィルタ30は、互いに対向する第1主面PS1と第2主面PS2とを有する。第1主面PS1は、第3流路13側に配置され、第2主面PS2は、排出流路23側に配置される。第1主面PS1と凸面21とは面一である。
このような構成により、濾過フィルタ30近傍の流速を増加させることができる。
濾過装置1において、第2流路12の断面積は、第3流路13の断面積よりも大きい。
このような構成により、第2流路12における流速の増加を抑制することができる。
濾過装置1において、濾過フィルタ30は、第2流路部材20に取り付けられる。
このような構成により、第2流路部材20を第1流路部材10から取り外して濾過フィルタ30の交換を容易に行うことができる。
濾過装置1において、溝部17は、直線状に設けられる。
このような構成により、溝部17で形成される第3流路13を通過する流体の流速を増加させることができる。
なお、本発明は実施の形態1に限定されるものではなく、その他種々の態様で実施できる。実施の形態1では、第1流路11及び第2流路12は、断面積が同じになるように形成されている例を説明したが、これに限定されない。第1流路11及び第2流路12の断面積は、互いに異なっていてもよい。
実施の形態1では、第1流路部材10が1つの凹部15を有するとしたが、これに限定されない。図12は、変形例の濾過装置1Aの概略構成を示す断面図である。図12に示すように、濾過装置1Aの第1流路部材10aは、凹部15aを複数形成してもよい。第1流路部材10aは、それぞれの凹部15aに対して、濾過フィルタ30が取り付けられた第2流路部材20と嵌合している。このような構成により、複数の濾過フィルタ30で流体を濾過することができる。このため、流体の濾過効率をより向上させることができる。
実施の形態1では、第1斜面18aと凹面16とが成す角度θ1、及び第2斜面18bと凹面16とが成す角度θ2は、45度に形成されているとしたが、これに限定されない。θ1及びθ2は45度に限定されない。また、θ1及びθ2は互いに異なる角度であってもよい。
実施の形態1では、第1切欠部19aは第1斜面18aにおける凹面16側の端部に設けられ、第2切欠部19bは第2斜面18bにおける凹面16側の端部に設けられるとしたが、これに限定されない。第1切欠部19aは第1斜面18aの凹面16側の端部以外の第1斜面18aに設けられてもよい。第2切欠部19bは第2斜面18bの凹面16側の端部以外の第2斜面18bに設けられていてもよい。
実施の形態1では、第1切欠部19aは、Z軸に対して+X方向に2度傾斜して形成され、第2切欠部19bはZ軸に対して-X方向に2度傾斜して形成されているとしたが、これに限定されない。また、第1突設部25aは、Z軸方向に対して+X方向に2度傾斜して形成され、第2突設部25bはZ軸に対して-X方向に2度傾斜して形成されているとしたが、これに限定されない。第1切欠部19a、第2切欠部19b、第1突設部25a、及び第2突設部25bの傾斜角度は2度に限定されない。
実施の形態1では、第2流路部材20には、1つの開口22が設けられる例を説明したが、これに限定されない。図13は、変形例の濾過装置1Bの概略構成を示す断面図である。図13に示すように、第2流路部材20aは、開口22aを有する排出流路23aを複数形成し、それぞれの排出流路23aの開口22aに対して濾過フィルタ30が取り付けられてもよい。このような構成により、複数の濾過フィルタ30で流体を濾過することができる。このため、流体の濾過効率を向上させることができる。
実施の形態1では、第1流路部材10の外壁面14と、第2流路部材20において凸面21に対向する外壁面26とは、同一平面を形成し、第1流路部材10の第1外壁面14と反対側の第2外壁面は第1外壁面14と平行に形成されているとしたが、これに限定されない。例えば、第2流路部材20の外壁面26は、第1流路部材10の外壁面14よりも+Z方向に高く形成されていてもよい。また、第1流路部材10の第2外壁面は、第1外壁面14と異なる形状であってもよく、例えば曲面に形成されていてもよい。
実施の形態1では、第1流路11と溝部17とを接続する第1接続部11a、及び第2流路12と溝部17とを接続する第2接続部12aにおいて、第1流路11及び第2流路12の断面積は、溝部17に向かうにつれて小さくなっている例を説明したが、これに限定されない。第3流路13の断面積が第1流路11の断面積よりも小さくなるように、第1流路部材10と第2流路部材20とが嵌合すれば、他の構成であってもよい。
図14は、変形例の濾過装置1Cの概略構成を示す断面図である。図14に示すように、第1流路部材10bの凹部15bと第2流路部材20bとが嵌合した状態で、第2流路部材20bの第3斜面24aa及び第4斜面24baの一部が第1流路11b及び第2流路12bの断面積を小さくするように、第3流路13aが形成されてもよい。即ち、第1流路11bと第3流路13aとを接続する第1接続部11cは、第2流路部材20の第3斜面24aaで形成されていてもよい。第2流路12bと第3流路13aとを接続する第2接続部12cは、第2流路部材20の第4斜面24baで形成されていてもよい。
この構成によっても、濾過フィルタ30への濾過対象物の目詰まりを抑制すると共に、濾過する流体(液体)の泡立ちを抑制することができる。また、濾過対象物が細胞である場合、細胞の活性の低下や細胞の破損を抑制できる。また、第2流路部材20bの形状を変更することによって、第3流路13aの形状を容易に変更することができる。例えば、第2流路部材20bを溝部17の下端部(-Z方向の端部)に向かって延在して形成することによって、第3流路13aの断面積をより小さくすることができる。
実施の形態1では、濾過フィルタ30は金属製多孔膜である例を説明したが、これに限定されない。濾過フィルタ30は、流体に含まれる濾過対象物を濾過することができるものであればよく、例えば、メンブレン等の他のフィルタであってもよい。
実施の形態1では、濾過対象物を含む流体が液体である例について説明したが、これに限定されない。例えば、流体は、気体であってもよい。
実施の形態1では、第2流路12と溝部17とを接続する第2接続部12aにおいて、第2流路12の断面積は、溝部17に向かうにつれて小さくなっているとしたが、これに限定されない。例えば、第2流路12、第2接続部12a、及び第3流路13は、同じ断面積で形成されていてもよい。これによっても、第1流路11において流体の速度の増加を抑制すると共に、濾過フィルタ30に面する第3流路13において流体の速度を増加させることができる。
実施の形態1では、凹部嵌合面18には切欠部19a,19bが設けられており、凸部嵌合面24には突設部25a,25bが設けられているとしたが、これに限定されない。例えば、凹部嵌合面18に突設部を設けて、凸部嵌合面24に切欠部を設けた構成であってもよい。これによっても、凹部15と凸部27とをより容易に嵌合させることができる。
実施の形態1では、濾過フィルタ30は、第2流路部材20に取り付けられる例について説明したが、これに限定されない。濾過フィルタ30は、第3流路13に配置されていればよく、例えば、濾過フィルタ30は、第1流路部材10に取り付けられていてもよい。
実施の形態1では、濾過装置1を用いて濾過を行う一例として図1の形態を説明したが、これに限定されない。図1の他の形態として、ポンプ3を配管51と配管52の間ではなく、配管53の経路内に配置してもよい。あるいは、流体タンク2や濾液タンク4を密閉容器として、閉鎖系の濾過装置を実現してもよい。
実施の形態1では、第2流路部材20は、突設部25a,25bを切欠部19a,19bに嵌合させることで、第1流路部材10に着脱可能に取り付けられる例について説明したが、これに限定されない。第2流路部材20は、第1流路部材10に螺合して着脱可能に取り付けられてもよい。
実施の形態1では、凹部嵌合面18は、凹部15の凹面16に対して傾斜した斜面で形成され、凸部嵌合面24は、凹部15の凹面16と接触する凸部27の凸面21に対して傾斜した斜面で形成される例について説明したが、これに限定されない。第1流路部材10及び第2流路部材20は、例えば、図15に示すような濾過装置1Dの構成であってもよい。図15に示すように、第1流路部材10cの凹部嵌合面は、第1嵌合面18cと、第2嵌合面18dとを有する。第1嵌合面18c及び第2嵌合面18dは、傾斜して形成されていない。具体的には、第1嵌合面18c及び第2嵌合面18dは、第3流路13が延びる方向に直交する方向(Z方向)に形成される。第2流路部材20cの凸部嵌合面は、第3嵌合面24cと、第4嵌合面24dとを有する。第3嵌合面24c及び第4嵌合面24dは、傾斜して形成されていない。具体的には、第3嵌合面24c及び第4嵌合面24dは、第3流路13が延びる方向に直交する方向(Z方向)に形成される。
第1嵌合面18cには、第1流路11が延びる方向(-X方向)に向かって切り欠かれた第1切欠部19cが設けられている。第2嵌合面18dには、凹面16側の端部において、第2流路12が延びる方向(+X方向)に向かって切り欠かれた第2切欠部19dが設けられている。第3嵌合面24cには第1流路部材10cの第1切欠部19cと嵌合する第1突設部25cが設けられ、第4嵌合面24dには、第2切欠部19dと嵌合する第2突設部25dが設けられている。このような構成によっても、第2流路部材20cを第1流路部材10cにより容易に着脱可能に取り付けることができる。
本発明は、添付図面を参照しながら好ましい実施の形態に関連して充分に記載されているが、この技術の熟練した人々にとっては種々の変形や修正は明白である。そのような変形や修正は、添付した特許請求の範囲による本発明の範囲から外れない限りにおいて、その中に含まれると理解されるべきである。
本発明の濾過装置は、濾過フィルタへの濾過対象物の目詰まりを抑制すると共に、濾過する流体の泡立ちを抑制することができるので、濾過対象物を含む流体を濾過する用途に有用である。
1,1A,1B,1C,1D 濾過装置
1a 流体導入口
1b 流体排出口
1c 濾液排出口
2 流体タンク
3 ポンプ
4 濾液タンク
5 濾過対象物
6,7 流体
10,10a,10b,10c 第1流路部材
11,11b 第1流路
11a,11c 第1接続部
11aa 第1接続斜面
12,12b 第2流路
12a、12c 第2接続部
12aa 第2接続斜面
13,13a 第3流路
14 外壁面
15,15a,15b 凹部
16 凹面
17 溝部
17a 開口
18,18aa,18ba 凹部嵌合面
18a 第1斜面
18b 第2斜面
18c 第1嵌合面
18d 第2嵌合面
19a,19c 第1切欠部
19b,19d 第2切欠部
20,20a,20b,20c 第2流路部材
21 凸面
22,22a 開口
23,23a 排出流路
24 凸部嵌合面
24a,24aa 第3斜面
24b,24ba 第4斜面
24c 第3嵌合面
24d 第4嵌合面
25a,25c 第1突設部
25b,25d 第2突設部
26 外壁面
27 凸部
28 第1枠部
28ab 第3接触面
30 濾過フィルタ
31 フィルタ部
32 保持部
32ba 第1曲げ部
32bb 第2曲げ部
33 貫通孔
34 フィルタ基体部
40 保持具
41 第2枠部
41a 第1段差部
41aa 第1接触面
41ab 第2接触面
51,52,53,54 配管
1a 流体導入口
1b 流体排出口
1c 濾液排出口
2 流体タンク
3 ポンプ
4 濾液タンク
5 濾過対象物
6,7 流体
10,10a,10b,10c 第1流路部材
11,11b 第1流路
11a,11c 第1接続部
11aa 第1接続斜面
12,12b 第2流路
12a、12c 第2接続部
12aa 第2接続斜面
13,13a 第3流路
14 外壁面
15,15a,15b 凹部
16 凹面
17 溝部
17a 開口
18,18aa,18ba 凹部嵌合面
18a 第1斜面
18b 第2斜面
18c 第1嵌合面
18d 第2嵌合面
19a,19c 第1切欠部
19b,19d 第2切欠部
20,20a,20b,20c 第2流路部材
21 凸面
22,22a 開口
23,23a 排出流路
24 凸部嵌合面
24a,24aa 第3斜面
24b,24ba 第4斜面
24c 第3嵌合面
24d 第4嵌合面
25a,25c 第1突設部
25b,25d 第2突設部
26 外壁面
27 凸部
28 第1枠部
28ab 第3接触面
30 濾過フィルタ
31 フィルタ部
32 保持部
32ba 第1曲げ部
32bb 第2曲げ部
33 貫通孔
34 フィルタ基体部
40 保持具
41 第2枠部
41a 第1段差部
41aa 第1接触面
41ab 第2接触面
51,52,53,54 配管
Claims (11)
- 外壁面から内部方向に窪んだ凹部、前記凹部の凹面に開口を有する溝部、前記溝部と接続される貫通孔で形成される第1流路及び第2流路、前記溝部と前記第1流路とを接続する第1接続部、及び前記溝部と前記第2流路とを接続する第2接続部を有する第1流路部材と、
前記第1流路部材の前記凹部に着脱可能に嵌合する凸部を有すると共に、前記第1流路部材の前記溝部に配置される前記凸部の凸面に開口を有する排出流路が設けられた第2流路部材と、
前記第1流路部材の前記溝部の延びる方向に沿って配置され、前記第2流路部材の前記排出流路の前記開口に位置する濾過フィルタと、
を備え、
前記第1流路部材の前記溝部の前記開口に前記第2流路部材の前記凸部の前記凸面が配置されることによって第3流路が形成され、
前記第3流路は、前記第1接続部を介して前記第1流路に接続され、且つ前記第2接続部を介して前記第2流路に接続され、
前記濾過フィルタが配置される前記第3流路の断面積は、前記第1流路の断面積よりも小さい、濾過装置。 - 前記凹部と前記凸部とは、別部材を介さずに着脱可能に嵌合する、請求項1に記載の濾過装置。
- 前記第1流路部材は、前記凹部の側面において、前記凹部と前記凸部とが嵌合する凹部嵌合面を有し、
前記第2流路部材は、前記凸部の側面において、前記凹部と前記凸部とが嵌合する凸部嵌合面を有し、
前記凹部嵌合面には、前記第1流路部材の内側に向かって窪む切欠部が設けられ、
前記凸部嵌合面には、前記第2流路部材の外側に向かって突設し、前記切欠部と嵌合する突設部が設けられ、
前記第2流路部材は、前記突設部を前記切欠部に嵌合させることで、前記第1流路部材に着脱可能に取り付けられる、
請求項2に記載の濾過装置。 - 前記凹部嵌合面は、前記凹部の前記凹面に対して傾斜した斜面で形成され、
前記凸部嵌合面は、前記凹部の前記凹面と接触する前記凸部の前記凸面に対して傾斜した斜面で形成され、
前記第1流路部材と前記第2流路部材とは、前記凹部嵌合面と前記凸部嵌合面とを面接触させて嵌合する、
請求項3に記載の濾過装置。 - 前記第1流路部材の前記凹部の前記凹面は、平坦面で形成され、
前記第2流路部材の前記凸部の前記凸面は、平坦面で形成され、
前記第1流路部材と前記第2流路部材とは、前記凹部の前記凹面と前記凸部の前記凸面とを面接触させて嵌合する、
請求項1~4のいずれか一項に記載の濾過装置。 - 前記濾過フィルタは、互いに対向する第1主面と第2主面とを有し、
前記第1主面は、前記第3流路側に配置され、
前記第2主面は、前記排出流路側に配置され、
前記第1主面と前記凸面とは面一である、
請求項5に記載の濾過装置。 - 前記第2流路の断面積は、前記第3流路の断面積よりも大きい、
請求項1~6のいずれか一項に記載の濾過装置。 - 前記濾過フィルタは、前記第2流路部材に取り付けられる、
請求項1~7のいずれか一項に記載の濾過装置。 - 前記溝部は、直線状に設けられる、
請求項1~8のいずれか一項に記載の濾過装置。 - 前記第1流路部材は、前記凹部を複数形成し、それぞれの前記凹部に対して、前記濾過フィルタが取り付けられた前記第2流路部材と嵌合する、請求項1~9のいずれか一項に記載の濾過装置。
- 前記第2流路部材は、前記開口を有する前記排出流路を複数形成し、それぞれの前記排出流路の前記開口に対して前記濾過フィルタが配置される、請求項1~10のいずれか一項に記載の濾過装置。
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019543496A JP6927314B2 (ja) | 2017-09-25 | 2018-08-24 | 濾過装置 |
CN201880061257.4A CN111107920A (zh) | 2017-09-25 | 2018-08-24 | 过滤装置 |
US16/751,649 US11529579B2 (en) | 2017-09-25 | 2020-01-24 | Filtration device |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-183884 | 2017-09-25 | ||
JP2017183884 | 2017-09-25 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/751,649 Continuation US11529579B2 (en) | 2017-09-25 | 2020-01-24 | Filtration device |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019058865A1 true WO2019058865A1 (ja) | 2019-03-28 |
Family
ID=65810182
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/031304 WO2019058865A1 (ja) | 2017-09-25 | 2018-08-24 | 濾過装置 |
Country Status (4)
Country | Link |
---|---|
US (1) | US11529579B2 (ja) |
JP (1) | JP6927314B2 (ja) |
CN (1) | CN111107920A (ja) |
WO (1) | WO2019058865A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023218149A1 (fr) | 2022-05-13 | 2023-11-16 | Saint-Gobain Glass France | Miroir pouvant être facilement enlevé d'un support sur lequel il est collé |
Families Citing this family (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US12031970B2 (en) | 2020-04-30 | 2024-07-09 | Precision Planting Llc | Agricultural sampling system and related methods |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1989009646A1 (en) * | 1988-04-08 | 1989-10-19 | Reson System Aps | A method of filter-cleaning and an apparatus for carrying out the method |
US5914042A (en) * | 1993-06-10 | 1999-06-22 | Pall Corporation | Device and method for separating plasma from a blood product |
WO2006130815A2 (en) * | 2005-06-02 | 2006-12-07 | The Board Of Trustees The Leland Stanford Junior University | Crossflow membrane filtration module |
JP2009106881A (ja) * | 2007-10-31 | 2009-05-21 | Seiko Epson Corp | フィルタ、これを備えた圧力調整弁および機能液供給機構、並びに液滴吐出装置、電気光学装置の製造方法および電気光学装置 |
WO2013098487A1 (en) * | 2011-12-30 | 2013-07-04 | Kemira Oyj | Method and device for taking samples and use of the method and the device |
WO2017104261A1 (ja) * | 2015-12-14 | 2017-06-22 | 株式会社村田製作所 | 濾過装置 |
Family Cites Families (28)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
SE406039B (sv) | 1974-08-29 | 1979-01-22 | Transcodan | I vetskestrommen fran infusions- och transfusionsapparater inkopplad filterenhet |
JPS5156063A (ja) * | 1974-11-13 | 1976-05-17 | Hitachi Ltd | |
US4274285A (en) | 1980-01-11 | 1981-06-23 | The United States Of America As Represented By The Administrator Of The National Aeronautics And Space Administration | Automated syringe sampler |
JPS57174597A (en) | 1981-04-20 | 1982-10-27 | Ikujirou Matsushita | Construction of underground structure |
JPH0657254B2 (ja) | 1985-07-18 | 1994-08-03 | 清孝 酒井 | 血液用濾過装置 |
US6159232A (en) | 1997-12-16 | 2000-12-12 | Closys Corporation | Clotting cascade initiating apparatus and methods of use and methods of closing wounds |
US6274090B1 (en) | 1998-08-05 | 2001-08-14 | Thermogenesis Corp. | Apparatus and method of preparation of stable, long term thrombin from plasma and thrombin formed thereby |
JP3877572B2 (ja) * | 2001-08-09 | 2007-02-07 | オリンパス株式会社 | 微細流路装置およびその使用方法 |
EP1619500A4 (en) * | 2003-04-25 | 2007-10-17 | Jsr Corp | BIOPUCE AND BIOPUCES KIT AND PRODUCTION METHOD AND METHOD OF USING SAME |
CN1267179C (zh) * | 2003-07-10 | 2006-08-02 | 张世昌 | 具有交叉流过滤功能的过滤装置及其使用方法 |
US7063216B2 (en) * | 2003-09-04 | 2006-06-20 | Millipore Corporation | Underdrain useful in the construction of a filtration device |
US7731678B2 (en) | 2004-10-13 | 2010-06-08 | Hyprotek, Inc. | Syringe devices and methods for mixing and administering medication |
JP4762521B2 (ja) | 2004-10-22 | 2011-08-31 | Jsr株式会社 | バイオセパレーション用キットおよびその使用方法 |
US7650805B2 (en) | 2005-10-11 | 2010-01-26 | Millipore Corporation | Integrity testable multilayered filter device |
JP5017152B2 (ja) * | 2008-03-14 | 2012-09-05 | 株式会社コガネイ | コネクタ |
CN201669063U (zh) * | 2010-05-18 | 2010-12-15 | 中国科学院上海应用物理研究所 | 错流过滤装置和错流过滤系统 |
US9707410B2 (en) | 2010-11-01 | 2017-07-18 | General Electric Company | Pierce and fill device |
EP2644258A1 (en) | 2012-03-29 | 2013-10-02 | Roche Diagniostics GmbH | Micro flow filtration system and flow filtration method for a fluid sample |
US9675755B2 (en) * | 2012-04-04 | 2017-06-13 | National Scientific Company | Syringe filter |
KR20130113207A (ko) | 2012-04-05 | 2013-10-15 | 삼성전자주식회사 | 타겟 물질 포획용 필터 |
JP6022814B2 (ja) * | 2012-06-08 | 2016-11-09 | 株式会社ミクニ | 制御弁用フィルタおよび制御弁の挿入構造 |
CN104755603B (zh) * | 2012-09-28 | 2018-01-02 | 希森美康株式会社 | 试样调制装置 |
KR101418302B1 (ko) * | 2012-11-16 | 2014-07-10 | 문정희 | 산업용 필터 |
WO2014204894A2 (en) | 2013-06-18 | 2014-12-24 | Enable Injections, Llc | Vial transfer and injection apparatus and method |
CN113564722A (zh) | 2013-11-13 | 2021-10-29 | 通用电气健康护理有限公司 | 双重运行盒 |
JP6469393B2 (ja) * | 2014-09-09 | 2019-02-13 | 旭化成メディカル株式会社 | 血液処理フィルター、及び血液処理フィルターの製造方法 |
CN205199075U (zh) * | 2015-12-01 | 2016-05-04 | 中国石油集团川庆钻探工程有限公司工程技术研究院 | 一种可拆式滤网安装结构 |
JP6137438B1 (ja) | 2015-12-14 | 2017-05-31 | 株式会社村田製作所 | 濾過フィルタ |
-
2018
- 2018-08-24 CN CN201880061257.4A patent/CN111107920A/zh active Pending
- 2018-08-24 WO PCT/JP2018/031304 patent/WO2019058865A1/ja active Application Filing
- 2018-08-24 JP JP2019543496A patent/JP6927314B2/ja active Active
-
2020
- 2020-01-24 US US16/751,649 patent/US11529579B2/en active Active
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1989009646A1 (en) * | 1988-04-08 | 1989-10-19 | Reson System Aps | A method of filter-cleaning and an apparatus for carrying out the method |
US5914042A (en) * | 1993-06-10 | 1999-06-22 | Pall Corporation | Device and method for separating plasma from a blood product |
WO2006130815A2 (en) * | 2005-06-02 | 2006-12-07 | The Board Of Trustees The Leland Stanford Junior University | Crossflow membrane filtration module |
JP2009106881A (ja) * | 2007-10-31 | 2009-05-21 | Seiko Epson Corp | フィルタ、これを備えた圧力調整弁および機能液供給機構、並びに液滴吐出装置、電気光学装置の製造方法および電気光学装置 |
WO2013098487A1 (en) * | 2011-12-30 | 2013-07-04 | Kemira Oyj | Method and device for taking samples and use of the method and the device |
WO2017104261A1 (ja) * | 2015-12-14 | 2017-06-22 | 株式会社村田製作所 | 濾過装置 |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023218149A1 (fr) | 2022-05-13 | 2023-11-16 | Saint-Gobain Glass France | Miroir pouvant être facilement enlevé d'un support sur lequel il est collé |
FR3135413A1 (fr) | 2022-05-13 | 2023-11-17 | Saint-Gobain Glass France | Miroir pouvant être facilement enlevé d’un support sur lequel il est collé |
Also Published As
Publication number | Publication date |
---|---|
US20200155990A1 (en) | 2020-05-21 |
JPWO2019058865A1 (ja) | 2020-07-30 |
CN111107920A (zh) | 2020-05-05 |
JP6927314B2 (ja) | 2021-08-25 |
US11529579B2 (en) | 2022-12-20 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6645576B2 (ja) | 濾過フィルタデバイス | |
JP6428972B2 (ja) | 濾過フィルタデバイス | |
WO2019058865A1 (ja) | 濾過装置 | |
WO2017022484A1 (ja) | 濾過フィルタデバイス | |
US10940410B2 (en) | Fluid purification device | |
US20200215497A1 (en) | Filtration filter | |
US10960330B2 (en) | Filtration filter device | |
US11389752B2 (en) | Filtration device | |
JP6137438B1 (ja) | 濾過フィルタ | |
WO2017104261A1 (ja) | 濾過装置 | |
JP2020142157A (ja) | 濾過装置 | |
CN111801150B (zh) | 过滤滤除器以及过滤装置 | |
US20200155981A1 (en) | Filtration device and filtration method | |
WO2018180614A1 (ja) | 濾過フィルタ | |
JP2015040359A (ja) | アクリル繊維原液の製造方法およびフィルタハウジング |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18857465 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019543496 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 18857465 Country of ref document: EP Kind code of ref document: A1 |