WO2019054249A1 - 燃料電池システム - Google Patents

燃料電池システム Download PDF

Info

Publication number
WO2019054249A1
WO2019054249A1 PCT/JP2018/032879 JP2018032879W WO2019054249A1 WO 2019054249 A1 WO2019054249 A1 WO 2019054249A1 JP 2018032879 W JP2018032879 W JP 2018032879W WO 2019054249 A1 WO2019054249 A1 WO 2019054249A1
Authority
WO
WIPO (PCT)
Prior art keywords
heat exchanger
fuel cell
adsorber
ammonia
reformed gas
Prior art date
Application number
PCT/JP2018/032879
Other languages
English (en)
French (fr)
Inventor
松本祥平
久保秀人
森研二
湯本修士
Original Assignee
株式会社豊田自動織機
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社豊田自動織機 filed Critical 株式会社豊田自動織機
Publication of WO2019054249A1 publication Critical patent/WO2019054249A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/02Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen
    • C01B3/04Production of hydrogen or of gaseous mixtures containing a substantial proportion of hydrogen by decomposition of inorganic compounds, e.g. ammonia
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B3/00Hydrogen; Gaseous mixtures containing hydrogen; Separation of hydrogen from mixtures containing it; Purification of hydrogen
    • C01B3/50Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification
    • C01B3/56Separation of hydrogen or hydrogen containing gases from gaseous mixtures, e.g. purification by contacting with solids; Regeneration of used solids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/06Combination of fuel cells with means for production of reactants or for treatment of residues
    • H01M8/0662Treatment of gaseous reactants or gaseous residues, e.g. cleaning
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/10Fuel cells with solid electrolytes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/36Hydrogen production from non-carbon containing sources, e.g. by water electrolysis
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fuel cell system.
  • the fuel cell system described in Patent Document 1 includes a solid polymer fuel cell that generates electricity using a hydrogen-containing gas as a fuel gas, an adsorber that adsorbs ammonia of the fuel gas, and a fuel gas by reforming ammonia. And a pump provided between the storage tank and the reformer and supplying ammonia in the liquid state to the reformer, A pump for supplying air and a pump for supplying air to the fuel cell are provided.
  • the performance of the fuel cell system adsorber decreases as the amount of ammonia adsorbed by the adsorbent increases. For this reason, it is necessary to remove ammonia from the adsorbent (regenerate the adsorbent).
  • the gas discharged from the fuel cell is recovered, and the hydrogen contained in the gas is made to collide with the ammonia adsorbed in the adsorber to regenerate the adsorbent of the adsorber.
  • An object of the present invention is to provide a fuel cell system capable of regenerating the adsorbent even when heat is required for the regeneration of the adsorbent, and capable of improving the system efficiency.
  • a fuel cell system comprises a tank storing ammonia in a liquid state, a vaporizer for vaporizing ammonia in a liquid state supplied from the tank, and reforming ammonia vaporized by the vaporizer.
  • a fuel gas is generated having a reformer that generates a reformed gas, a heat exchanger that cools the reformed gas, and an adsorbent that adsorbs ammonia contained in the reformed gas that has been cooled by the heat exchanger.
  • a plurality of adsorbers a fuel cell generating electricity using a fuel gas, an air supply unit for supplying air heat-exchanged with the reformed gas to the heat exchanger, and a supply destination of the reformed gas passing through the heat exchanger Any one of a plurality of adsorbers and a switch valve that switches the supply destination of air that has passed through the heat exchanger to another adsorber among the plurality of adsorbers while switching to any one of the plurality of adsorbers and any of the plurality of adsorbers Through the heat exchanger to the The reformed gas is introduced to generate fuel gas, and the switch valve is set so that the air that has passed through the heat exchanger is introduced to the other of the plurality of adsorbers to regenerate the adsorbent. And a control unit to control.
  • the adsorbent is regenerated by the air that has passed through the heat exchanger.
  • the air is heated by the heat of the reformed gas in a heat exchanger.
  • the adsorbent can be regenerated even in the case where the adsorbent that requires a large amount of heat for regeneration is used.
  • the system efficiency can be improved.
  • the fuel cell system is disposed between the heat exchanger and the plurality of adsorbers, and performs heat exchange between the reformed gas and the cooling water to cool the reformed gas, and other heat exchangers.
  • the flow path for supplying the cooling water which has passed through the heat exchanger to the vaporizer, and the vaporizer heats ammonia in the liquid state by exchanging heat between the cooling water which has passed through the other heat exchanger and ammonia in the liquid state. It may be vaporized.
  • the cooling water is heated by the heat of the reformed gas in the other heat exchanger.
  • the heat of the heated cooling water vaporizes ammonia in a liquid state.
  • the system efficiency can be further improved.
  • the fuel cell system may further include a flow path for supplying cooling water to the fuel cell.
  • the cooling water is supplied to the fuel cell, and the fuel cell is cooled by the cooling water. Therefore, since it is not necessary to separately provide a cooling system for cooling the fuel cell, the cost of the fuel cell system can be reduced.
  • the present invention it is possible to provide a fuel cell system capable of regenerating the adsorbent and improving the system efficiency even when the amount of heat is required to regenerate the adsorbent.
  • FIG. 1 is a system configuration diagram showing a fuel cell system according to an embodiment of the present invention.
  • the fuel cell system 1 shown in FIG. 1 can be used, for example, in a fuel cell automobile or a home fuel cell.
  • the fuel cell system 1 includes a tank 10 for storing ammonia, a vaporizer 20 for vaporizing ammonia, a reformer 30 for reforming the vaporized ammonia to generate a reformed gas, and cooling the reformed gas.
  • a fuel cell 60 that generates electric power using a fuel gas
  • an air supply unit 70 that supplies air that exchanges heat with the reformed gas to the first heat exchanger 40A, and a plurality of first adsorbers 50A and second adsorbers that are adsorbers.
  • the control valve 90 includes switching valves 80A, 80B, 80C, and 80D for switching the adsorber 50B, and a control unit 90 for controlling the switching valves 80A to 80D.
  • the tank 10 is an ammonia tank which stores ammonia in a liquid state.
  • the tank 10 stores ammonia at, for example, normal temperature (about 20 ° C. to 25 ° C.) and several atmospheres (about 8 atmospheres to 10 atmospheres).
  • the ammonia is stored in a liquid state instead of a gas, so that the ammonia can be stored efficiently. Thereby, the operation time of the fuel cell system 1 can be extended. Further, the tank 10 can be easily replenished with ammonia.
  • the vaporizer 20 is provided downstream of the tank 10, and is connected to the tank 10 by an ammonia supply pipe L1.
  • a pump P1 is disposed between the vaporizer 20 and the tank 10 in order to introduce ammonia into the vaporizer 20.
  • the vaporizer 20 vaporizes ammonia in a liquid state, for example, by heating ammonia in a liquid state.
  • the reformer 30 is provided downstream of the vaporizer 20, and is connected to the vaporizer 20 via an ammonia gas supply pipe L2. Between the reformer 30 and the vaporizer 20, an injector I for adjusting the amount of ammonia gas introduced into the reformer 30 is provided.
  • the fuel cell system 1 may include a mass flow controller or the like instead of the injector I. In addition, the fuel cell system 1 may not have the injector I.
  • the reformer 30 is, for example, an ATR (Auto Thermal Reforming) type reformer.
  • the reformer 30 introduces air to reform ammonia to generate a reformed gas containing hydrogen.
  • the air introduced into the reformer 30 is supplied from the air supply unit 70 via the air supply pipe L3.
  • the reformer 30 includes an ammonia oxidizing unit 30a and an ammonia decomposing unit 30b disposed downstream of the ammonia oxidizing unit 30a.
  • the ammonia oxidizing unit 30a generates heat by oxidizing ammonia. More specifically, in the ammonia oxidizing unit 30a, a part of ammonia chemically reacts with oxygen in the air as in the following formula, and the oxidation reaction of the ammonia generates heat (exothermic reaction).
  • platinum (Pt) is used as a catalyst.
  • the ammonia decomposition unit 30 b decomposes ammonia by the heat generated in the ammonia oxidizing unit 30 a to generate hydrogen. More specifically, in the ammonia decomposition section 30b, decomposition reaction of the remaining ammonia occurs (heat endothermic reaction) by the heat generated in the ammonia oxidation section 30a as in the following formula (reformed gas in a hydrogen-rich state) It is generated.
  • the reformed gas may contain a small amount of ammonia.
  • ruthenium (Ru) is used as a catalyst in the ammonia decomposition unit 30 b. NH 3 ⁇ 3 / 2H 2 + 1 / 2N 2
  • the reformer 30 includes the ammonia oxidizing unit 30a and the ammonia decomposing unit 30b, when using a catalyst having activity in both the oxidation and decomposition reactions of ammonia, the ammonia oxidizing unit 30a is used.
  • an integrated reformer 30 having both functions of oxidation and decomposition of ammonia may be used without separating the ammonia decomposition unit 30b and the ammonia decomposition unit 30b.
  • the oxidation reaction generally occurs earlier than the decomposition reaction, the same reaction as described above occurs.
  • rhodium (Rh) or the like can be used as a catalyst having activity in both oxidation and decomposition reactions.
  • the reformer 30 may have a heater unit that generates heat for decomposing ammonia during start-up operation of the fuel cell system 1.
  • the heater unit is provided, for example, upstream of the ammonia oxidizing unit 30a.
  • the first heat exchanger (heat exchanger) 40A is provided downstream of the reformer 30, and is connected to the reformer 30 via a reformed gas supply pipe L4.
  • the reformed gas generated by the reformer 30 is introduced into the first heat exchanger 40A.
  • the first heat exchanger 40A is connected to the air supply unit 70 via the air supply pipe L5. Air is supplied from the air supply unit 70 to the first heat exchanger 40A.
  • the reformed gas is cooled by heat exchange between the reformed gas and the air, and the introduced air is heated.
  • the reformed gas is cooled to about 600 ° C. to 800 ° C. to about 300 ° C. to 400 ° C.
  • the air is heated from room temperature of about 25 ° C. to about 200 ° C. to 300 ° C.
  • the second heat exchanger (other heat exchanger) 40B is provided downstream of the first heat exchanger 40A. More specifically, the second heat exchanger 40B is disposed between the first heat exchanger 40A and adsorbers (first adsorber 50A and second adsorber 50B) described later.
  • the second heat exchanger 40B is connected to the first heat exchanger 40A via a reformed gas supply pipe L6. Further, cooling water is supplied to the second heat exchanger 40B.
  • the reformed gas is further cooled by heat exchange between the reformed gas cooled by the first heat exchanger 40A and the cooling water. The cooling water is heated by the reformed gas.
  • the reformed gas that has passed through the first heat exchanger 40A is cooled to about 300 ° C. to 400 ° C. to about 30 ° C. to 100 ° C.
  • the cooling water is introduced into the second heat exchanger 40B via the cooling water supply pipe (flow path) L7.
  • a radiator 100 for cooling the cooling water and a pump P2 for delivering the cooling water to the second heat exchanger 40B are disposed on the cooling water supply pipe L7.
  • the cooling water is heated to about 60 ° C. to 70 ° C. by heat exchange with the reformed gas in the second heat exchanger 40B.
  • the cooling water heated passing through the second heat exchanger 40B is introduced into the vaporizer 20 via the cooling water supply pipe (flow path) L8.
  • the heat of the cooling water heated by the second heat exchanger 40B is used in the vaporizer 20 for efficiently vaporizing ammonia in a liquid state.
  • the cooling water having passed through the vaporizer 20 is cooled by the radiator 100 on the cooling water supply pipe L7, and is again introduced into the second heat exchanger 40B. That is, the cooling water circulates between the second heat exchanger 40B, the vaporizer 20, and the radiator 100 via the cooling water supply pipe L7 and the cooling water supply pipe L8.
  • the first adsorber 50A is provided downstream of the second heat exchanger 40B, and is connected to the second heat exchanger 40B via the reformed gas supply pipe L9.
  • the first adsorber 50A removes the ammonia contained in the reformed gas to generate a fuel gas which is a high purity hydrogen gas.
  • the fuel gas generated by the first adsorber 50A is introduced into the fuel cell 60 via the fuel gas supply pipe L10.
  • the first adsorber 50 ⁇ / b> A has an adsorbent 51 for adsorbing ammonia contained in the reformed gas.
  • the adsorbent 51 is, for example, a porous body having a large number of pores, and adsorbs ammonia to the pores by electrostatic interaction or the like.
  • the adsorbent 51 may adsorb ammonia by chemical bonding.
  • a porous body of activated carbon, alumina, or zeolite may be used as the adsorbent 51.
  • the second adsorber 50B is provided downstream of the second heat exchanger 40B like the first adsorber 50A, and the second heat exchanger 40B is provided via the reformed gas supply pipe L9. And connected.
  • the second adsorber 50B is disposed in parallel to the first adsorber 50A.
  • the second adsorber 50B has the adsorbing material 51 in the same manner as the first adsorber 50A, and generates the fuel gas which is a high purity hydrogen gas by removing the ammonia contained in the reformed gas.
  • the fuel gas generated by the second adsorber 50B is introduced into the fuel cell 60 via the fuel gas supply pipe L10.
  • a switching valve 80A is provided on the reformed gas supply pipe L9.
  • the switching valve 80A is, for example, a three-way valve, and switches the connection between the second heat exchanger 40B and the first adsorber 50A and the connection between the second heat exchanger 40B and the second adsorber 50B. That is, the switching valve 80A switches the reformed gas supply pipe L9 such that the reformed gas supplied from the second heat exchanger 40B is introduced into the first adsorber 50A or the second adsorber 50B.
  • a switching valve 80B is provided on the fuel gas supply pipe L10.
  • the switching valve 80B is, for example, a three-way valve, and switches the connection between the first adsorber 50A and the fuel cell 60 and the connection between the second adsorber 50B and the fuel cell 60. That is, the switching valve 80B switches the fuel gas supply pipe L10 such that the fuel gas supplied from the first adsorber 50A or the second adsorber 50B is introduced into the fuel cell 60.
  • the first adsorber 50A and the second adsorber 50B are connected to the first heat exchanger 40A via the air supply pipe L11.
  • the air heated by the first heat exchanger 40A is supplied to the first adsorber 50A or the second adsorber 50B via the air supply pipe L11.
  • the performance of the first adsorber 50A and the second adsorber 50B decreases as the amount of ammonia adsorbed by the adsorbent 51 increases. Therefore, it is necessary to remove ammonia from the adsorbent 51 (regenerate the adsorbent 51).
  • the adsorbent 51 of the first adsorber 50A and the second adsorber 50B is regenerated using the air heated by the first heat exchanger 40A.
  • the air having passed through the first adsorber 50A and the second adsorber 50B is discharged as the exhaust gas to the outside of the fuel cell system 1 through the air discharge pipe L12.
  • a switching valve 80C is provided on the air supply pipe L11.
  • the switching valve 80C is, for example, a three-way valve, and switches the connection between the first heat exchanger 40A and the first adsorber 50A and the connection between the first heat exchanger 40A and the second adsorber 50B. That is, the switching valve 80C switches the air supply pipe L11 so that the air heated by the first heat exchanger 40A is introduced to the first adsorber 50A or the second adsorber 50B.
  • the switching valves 80A and 80C switch the supply destination of the reformed gas having passed through the second heat exchanger 40B to any one of the plurality of adsorbers, and pass through the first heat exchanger 40A.
  • the air supply destination is switched to another adsorber among the plurality of adsorbers.
  • a switching valve 80D is provided on the air discharge pipe L12.
  • the switching valve 80D is, for example, a three-way valve, and switches the connection between the first adsorber 50A and the outside of the fuel cell system 1 and the connection between the second adsorber 50B and the outside of the fuel cell system 1. That is, the switching valve 80D switches the air discharge pipe L12 so that the exhaust gas is discharged from the first adsorber 50A or the second adsorber 50B to the outside of the fuel cell system 1.
  • the switching valves 80A to 80D are controlled by the control unit 90.
  • the control unit 90 is configured such that the reformed gas that has passed through the second heat exchanger 40B is introduced into any one of the plurality of adsorbers to generate a fuel gas, and the other adsorption among the plurality of adsorbers
  • the switching valves 80A to 80D are controlled so that the air which has passed through the first heat exchanger 40A is introduced into the unit and the adsorbent 51 is regenerated.
  • control unit 90 connects the second heat exchanger 40B and the first adsorber 50A by the switching valve 80A and introduces the reformed gas into the first adsorber 50A to generate the fuel gas
  • the first heat exchanger 40A and the second adsorber 50B are connected by the switching valve 80C, and the heated air is introduced into the second adsorber 50B to regenerate the adsorbent 51 of the second adsorber 50B.
  • the control unit 90 controls the switching valve 80B so that the first adsorber 50A and the fuel cell 60 are connected. That is, the control unit 90 switches the switching valve 80B so that the fuel gas generated by the first adsorber 50A is introduced into the fuel cell 60. Further, the control unit 90 controls the switching valve 80D such that the exhaust gas from the second adsorber 50B is discharged to the outside.
  • the control unit 90 connects the second heat exchanger 40B and the second adsorber 50B by the switching valve 80A and introduces the reformed gas into the second adsorber 50B to generate the fuel gas
  • the switching valve 80C connects the first heat exchanger 40A and the first adsorber 50A, and the heated air is introduced into the first adsorber 50A to regenerate the adsorbent 51 of the first adsorber 50A.
  • the control unit 90 controls the switching valve 80B so that the fuel gas generated by the second adsorber 50B is introduced into the fuel cell 60.
  • the control unit 90 controls the switching valve 80D so that the exhaust gas from the first adsorber 50A is discharged to the outside.
  • the fuel valves 60 are controlled by controlling the switching valves 80A to 80D so as to regenerate the adsorbing material 51 of the other adsorber. Fuel gas can be supplied continuously.
  • the fuel cell 60 is provided downstream of the first adsorber 50A and the second adsorber 50B, and is connected to the first adsorber 50A and the second adsorber 50B via a fuel gas supply pipe L10. Also, the fuel cell 60 is connected to the air supply unit 70 via the air supply pipe L13.
  • the fuel cell 60 generates electric power using the fuel gas supplied from the first adsorber 50A or the second adsorber 50B and the air supplied from the air supply unit 70 via the air supply pipe L13.
  • a polymer electrolyte fuel cell may be used as the fuel cell 60.
  • the fuel cell 60 is not limited to the solid polymer type, and may be a solid oxide type or alkaline type fuel cell.
  • Air supply pipes L3, L5, and L13 are connected to the air supply unit 70.
  • the air supply unit 70 supplies air to the reformer 30, the first heat exchanger 40A, and the fuel cell 60 through the air supply pipes L3, L5, and L13.
  • the adsorbent 51 is regenerated by the air that has passed through the first heat exchanger 40A.
  • the air is heated by the heat of the reformed gas in the first heat exchanger 40A.
  • the adsorbent 51 is regenerated even if the adsorbent 51, which requires a large amount of heat for regeneration, is used. can do.
  • the system efficiency can be improved.
  • the fuel cell system 1 is disposed between the first heat exchanger 40A and the plurality of adsorbers (the first adsorber 50A and the second adsorber 50B), and exchanges heat between the reformed gas and the cooling water.
  • the fuel cell system 1 includes a second heat exchanger 40B for cooling the reformed gas, and a cooling water supply pipe L8 for supplying the cooling water having passed through the second heat exchanger 40B to the vaporizer 20.
  • the ammonia in the liquid state is vaporized by heat exchange between the cooling water having passed through the heat exchanger 40B and the ammonia in the liquid state.
  • the cooling water is heated by the heat of the reformed gas in the second heat exchanger 40B.
  • the heat of the heated cooling water vaporizes ammonia in a liquid state.
  • the system efficiency can be further improved.
  • first heat exchanger 40A upstream of the second heat exchanger 40B, it is possible to exchange heat between the reformed gas having a higher temperature and air. Therefore, it is possible to heat the air used for regeneration of adsorption material 51 efficiently.
  • FIG. 3 is a system configuration diagram showing a modification of the fuel cell system 1 of FIG.
  • the fuel cell system 2 includes the tank 10, the vaporizer 20, the reformer 30, the first heat exchanger 40A, and the second heat exchanger, as in the fuel cell system 1.
  • a first adsorber 50A and a second adsorber 50B, a fuel cell 60, an air supply unit 70, switching valves 80A, 80B, 80C and 80D, and a control unit 90 are provided.
  • the fuel cell system 2 further includes a cooling water supply pipe (flow path) L14 that supplies cooling water to the fuel cell 60.
  • the radiator 100 and the pump P2 are provided on the cooling water supply pipe L14.
  • the cooling water having passed through the fuel cell 60 is introduced into the second heat exchanger 40B via the cooling water supply pipe L7. That is, the cooling water circulates between the fuel cell 60, the second heat exchanger 40B, the vaporizer 20, and the radiator 100 via the cooling water supply pipes L7, L8, L14.
  • the adsorbent 51 is regenerated by the air that has passed through the first heat exchanger 40A.
  • the air is heated by the heat of the reformed gas in the first heat exchanger 40A.
  • the adsorbent 51 is regenerated even if the adsorbent 51, which requires a large amount of heat for regeneration, is used. can do.
  • the system efficiency can be improved.
  • the fuel cell system 2 further includes a cooling water supply pipe L14 for supplying cooling water to the fuel cell 60.
  • a cooling water supply pipe L14 for supplying cooling water to the fuel cell 60.
  • FIG. 4 is a system configuration diagram showing another modification of the fuel cell system 1 of FIG.
  • FIG. 5 schematically shows the structure of the heat exchanger of FIG.
  • the fuel cell system 3 according to the modification is similar to the fuel cell system 1 in that the tank 10, the vaporizer 20, the reformer 30, the first adsorber 50A, A second adsorber 50B, a fuel cell 60, an air supply unit 70, switching valves 80A, 80B, 80C, 80D, and a control unit 90 are provided.
  • the fuel cell system 3 differs from the fuel cell system 1 in that a heat exchanger 40C is provided instead of the first heat exchanger 40A and the second heat exchanger 40B.
  • the fuel cell system 3 does not include the reformed gas supply pipe L6, and the reformed gas supply pipe L9 is connected to the heat exchanger 40C.
  • a cooling water supply pipe L15 is connected to the heat exchanger 40C, and the cooling water is supplied.
  • the cooling water having passed through the heat exchanger 40C is supplied to the vaporizer 20 via the cooling water supply pipe L16.
  • an air supply pipe L5 is connected to the heat exchanger 40C, and air is introduced from the air supply unit 70.
  • the heat exchanger 40C includes a pipe 41 through which the reformed gas passes, a first cooling unit 42 through which the air introduced into the heat exchanger 40C passes, and a through which the cooling water introduced into the heat exchanger 40C passes. And a cooling unit 43.
  • the first cooling unit 42 is provided, for example, in a portion on the upstream side of the pipe portion 41 so as to surround the pipe portion 41.
  • the second cooling unit 43 is provided, for example, at the downstream side of the pipe portion 41 so as to surround the pipe portion 41.
  • the number of adsorbers may be three or more.
  • the fuel gas may be generated by two adsorbers and the adsorbent 51 of one other adsorber may be regenerated.
  • one adsorber may generate fuel gas and the adsorbers 51 of the other two adsorbers may be regenerated.
  • switching valves 80A to 80D are used to switch between the first adsorber 50A and the second adsorber 50B.
  • the first adsorber 50A and the second adsorber are described.
  • the configuration of the switching valve for switching 50 B is not particularly limited, and can be changed as appropriate. Further, the switching valves 80A to 80D may not be three-way valves.
  • the fuel cell system 1 is described as including the cooling system including the cooling water supply pipes L7 and L8, the radiator 100, and the pump P2.
  • the fuel cell system 1 has such a cooling system. It is not necessary to have it.
  • modifier 30 is not specifically limited, It can change suitably.
  • Fuel cell system 10 1, 2, 3 Fuel cell system 10 Tank 20 Vaporizer 30 Reformer 40A 1st heat exchanger (heat exchanger) 40B 2nd heat exchanger (other heat exchangers) 50A first adsorber (adsorber) 50B Second adsorber (adsorber) DESCRIPTION OF SYMBOLS 51 Adsorbent 60 Fuel cell 70 Air supply part 80A, 80B, 80C, 80D switching valve 90 Control part L7, L8, L14, L15, L16 Cooling water supply pipe (flow path)

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Sustainable Energy (AREA)
  • Sustainable Development (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Inorganic Chemistry (AREA)
  • Manufacturing & Machinery (AREA)
  • Fuel Cell (AREA)
  • Health & Medical Sciences (AREA)
  • General Health & Medical Sciences (AREA)
  • Hydrogen, Water And Hydrids (AREA)

Abstract

燃料電池システムは、アンモニアを貯蔵するタンクと、アンモニアを気化させる気化器と、改質ガスを生成する改質器と、改質ガスを冷却する第1熱交換器と、改質ガスに含まれるアンモニアを吸着する吸着材を有し、燃料ガスを生成する複数の吸着器と、燃料ガスを用いて発電する燃料電池と、空気を第1熱交換器に供給する空気供給部と、複数の吸着器のうち何れかの吸着器に第2熱交換器を通過した改質ガスが導入されて燃料ガスが生成されると共に、他の吸着器に第1熱交換器を通過した空気が導入されて吸着材が再生されるように、切替弁を制御する制御部と、を備える。

Description

燃料電池システム
 本発明は、燃料電池システムに関する。
 従来の燃料電池システムとして、例えば特許文献1に記載されている技術が知られている。特許文献1に記載の燃料電池システムは、水素含有ガスを燃料ガスとして用いて発電する固体高分子型の燃料電池と、燃料ガスのアンモニアを吸着する吸着器と、アンモニアを改質して燃料ガスを発生する改質装置と、液体状態のアンモニアを貯留する貯留タンクと、貯留タンクと改質装置との間に設けられ、液体状態のアンモニアを改質装置に供給するポンプと、改質装置に空気を供給するポンプと、燃料電池に空気を供給するポンプとを備えている。
特開2011-146175号公報
 ところで、燃料電池システムの吸着器は、吸着材に吸着されたアンモニアの量が多くなると性能が低下する。このため、吸着材からアンモニアを除去する(吸着材を再生する)必要がある。特許文献1に記載の燃料電池システムでは、燃料電池から排出されるガスを回収し、このガスに含まれる水素を吸着器内で吸着されたアンモニアに衝突させることにより、吸着器の吸着材を再生する。しかしながら、再生に熱量が必要となる吸着材が用いられる場合、吸着材を再生することが困難となる場合がある。この場合、吸着材を再生するためにヒータ等を用いて吸着材を加熱する必要があるので、システム効率が悪い。
 本発明は、吸着材の再生に熱量が必要となる場合でも吸着材を再生することができると共に、システム効率の向上を図ることが可能な燃料電池システムを提供することを目的とする。
 本発明の一側面に係る燃料電池システムは、液体状態のアンモニアを貯蔵するタンクと、タンクから供給された液体状態のアンモニアを気化させる気化器と、気化器により気化されたアンモニアを改質して改質ガスを生成する改質器と、改質ガスを冷却する熱交換器と、熱交換器により冷却された改質ガスに含まれるアンモニアを吸着する吸着材を有し、燃料ガスを生成する複数の吸着器と、燃料ガスを用いて発電する燃料電池と、改質ガスと熱交換する空気を熱交換器に供給する空気供給部と、熱交換器を通過した改質ガスの供給先を複数の吸着器のうち何れかの吸着器に切り替えるとともに、熱交換器を通過した空気の供給先を複数の吸着器のうち他の吸着器に切り替える切替弁と、複数の吸着器のうち何れかの吸着器に熱交換器を通過した改質ガスが導入されて燃料ガスが生成されると共に、複数の吸着器のうち他の吸着器に熱交換器を通過した空気が導入されて吸着剤が再生されるように、切替弁を制御する制御部と、を備える。
 この燃料電池システムでは、熱交換器を通過した空気によって吸着材を再生する。空気は、熱交換器において改質ガスの熱によって加熱されている。このように、加熱された空気が吸着器に導入されるので、再生に熱量が必要となる吸着材が用いられる場合であっても、吸着材を再生することができる。また、改質ガスからの廃熱を利用して空気が加熱されるので、システム効率の向上を図ることができる。
 燃料電池システムは、熱交換器と複数の吸着器との間に配置され、改質ガスと冷却水とを熱交換することで改質ガスを冷却する他の熱交換器と、他の熱交換器を通過した冷却水を気化器に供給する流路とを更に備え、気化器は、他の熱交換器を通過した冷却水と液体状態のアンモニアとを熱交換することで液体状態のアンモニアを気化させてもよい。この構成によれば、他の熱交換器において改質ガスの熱によって冷却水が加熱される。気化器においては、加熱された冷却水の熱によって、液体状態のアンモニアを気化する。このように、改質ガスからの廃熱を利用してアンモニアが気化されるので、システム効率の更なる向上を図ることができる。
 燃料電池システムは、冷却水を燃料電池に供給する流路を更に備えてもよい。この構成によれば、燃料電池に冷却水が供給され、冷却水によって燃料電池が冷却される。したがって、燃料電池を冷却するための冷却系を別途設ける必要が無いので、燃料電池システムのコストを低減することができる。
 本発明によれば、吸着材の再生に熱量が必要となる場合でも吸着材を再生することができると共に、システム効率の向上を図ることが可能な燃料電池システムが提供される。
一実施形態に係る燃料電池システムを示すシステム構成図である。 図1の吸着器の構造を概略的に示す図である。 図1の燃料電池システムの変形例を示すシステム構成図である。 図1の燃料電池システムの他の変形例を示すシステム構成図である。 図4の熱交換器の構造を概略的に示す図である。
 以下、図面を参照して種々の実施形態について詳細に説明する。なお、各図面において同一又は相当の部分に対しては同一の符号を付し、重複する説明を省略する。
 図1は、本発明の一実施形態に係る燃料電池システムを示すシステム構成図である。図1に示される燃料電池システム1は、例えば燃料電池自動車又は家庭用燃料電池に用いられ得る。燃料電池システム1は、アンモニアを貯蔵するタンク10と、アンモニアを気化させる気化器20と、気化されたアンモニアを改質して改質ガスを生成する改質器30と、改質ガスを冷却する第1熱交換器40Aと、改質ガスを冷却する第2熱交換器40Bと、改質ガスから燃料ガスを生成する複数の吸着器(第1吸着器50A及び第2吸着器50B)と、燃料ガスを用いて発電する燃料電池60と、改質ガスと熱交換する空気を第1熱交換器40Aに供給する空気供給部70と、複数の吸着器である第1吸着器50A及び第2吸着器50Bをそれぞれ切り替える切替弁80A,80B,80C,80Dと、切替弁80A~80Dを制御する制御部90と、を備えている。
 タンク10は、アンモニアを液体状態で貯蔵するアンモニアタンクである。タンク10は、例えば常温(20℃~25℃程度)且つ数気圧(8気圧~10気圧程度)でアンモニアを貯蔵する。タンク10では、アンモニアを気体ではなく液体状態で貯蔵するので、アンモニアを効率よく貯蔵することができる。これにより、燃料電池システム1の稼働時間を長くすることができる。また、タンク10へのアンモニアの補充を容易に行うことができる。
 気化器20は、タンク10の下流に設けられており、アンモニア供給管L1によってタンク10と接続されている。気化器20とタンク10との間には、アンモニアを気化器20内に導入するためにポンプP1が配置されている。気化器20は、例えば液体状態のアンモニアを加熱することにより、液体状態のアンモニアを気化させる。
 改質器30は、気化器20の下流に設けられており、アンモニアガス供給管L2を介して気化器20と接続されている。改質器30と気化器20との間には、改質器30に導入されるアンモニアガスの量を調整するインジェクタIが設けられている。なお、燃料電池システム1はインジェクタIに変えてマスフローコントローラ等を備えてもよい。また、燃料電池システム1はインジェクタIを備えていなくてもよい。
 改質器30は、例えばATR(Auto Thermal Reforming)型の改質器である。改質器30は、空気を導入してアンモニアを改質することで、水素を含有する改質ガスを生成する。改質器30に導入される空気は、空気供給管L3を介して空気供給部70から供給される。改質器30は、アンモニア酸化部30aと、このアンモニア酸化部30aの下流側に配置されたアンモニア分解部30bとを有している。アンモニア酸化部30aは、アンモニアを酸化させることで、熱を発生させる。より具体的には、アンモニア酸化部30aにおいて、下記の式のように一部のアンモニアと空気中の酸素とが化学反応し、そのアンモニアの酸化反応により熱が発生する(発熱反応)。アンモニア酸化部30aでは、例えば白金(Pt)が触媒として用いられる。
   NH+3/4O→1/2N+3/2H
 アンモニア分解部30bは、アンモニア酸化部30aで発生した熱によってアンモニアを分解して水素を生成する。より具体的には、アンモニア分解部30bにおいて、下記の式のようにアンモニア酸化部30aで発生した熱により残りのアンモニアの分解反応が起こり(吸熱反応)、水素がリッチな状態の改質ガスが生成される。なお、改質ガスには少量のアンモニアが含まれていても良い。アンモニア分解部30bでは、例えばルテニウム(Ru)が触媒として用いられる。
   NH→3/2H+1/2N
 なお、ここでは、改質器30がアンモニア酸化部30a及びアンモニア分解部30bを有しているが、アンモニアの酸化及び分解の両反応に活性を有する触媒を使用する場合には、アンモニア酸化部30aとアンモニア分解部30bとを分けずに、アンモニアの酸化及び分解の両機能を有する一体型の改質器30を使用してもよい。この場合には、一般的に酸化反応が分解反応よりも早く起きるため、上記と同様の反応が生じる。酸化及び分解の両反応に活性を有する触媒としては、例えばロジウム(Rh)等が用いられ得る。
 また、改質器30は、燃料電池システム1の起動運転時にアンモニアを分解するための熱を発生させるヒータ部を有していてもよい。ヒータ部は、例えばアンモニア酸化部30aの上流に設けられる。
 第1熱交換器(熱交換器)40Aは、改質器30の下流に設けられており、改質ガス供給管L4を介して改質器30と接続されている。第1熱交換器40Aには、改質器30で生成された改質ガスが導入される。また、第1熱交換器40Aは、空気供給管L5を介して空気供給部70と接続されている。第1熱交換器40Aには、空気供給部70から空気が供給される。第1熱交換器40Aでは、改質ガスと空気とを熱交換することにより、改質ガスを冷却すると共に、導入された空気を加熱する。これにより、改質ガスは、600℃~800℃程度から300℃~400℃程度まで冷却される。一方、空気は25℃程度の室温から200℃~300℃程度に加熱される。
 第2熱交換器(他の熱交換器)40Bは、第1熱交換器40Aの下流に設けられている。より具体的には、第2熱交換器40Bは、第1熱交換器40Aと後述の吸着器(第1吸着器50Aと第2吸着器50B)との間に配置されている。第2熱交換器40Bは、改質ガス供給管L6を介して第1熱交換器40Aに接続されている。また、第2熱交換器40Bには、冷却水が供給される。第2熱交換器40Bでは、第1熱交換器40Aで冷却された改質ガスと冷却水とを熱交換することにより、改質ガスを更に冷却する。冷却水は、改質ガスによって加熱される。これにより、第1熱交換器40Aを通過した改質ガスは、300℃~400℃程度から30℃~100℃程度まで冷却される。
 冷却水は、冷却水供給管(流路)L7を介して第2熱交換器40Bに導入される。冷却水供給管L7上には、冷却水を冷却するためのラジエータ100及び冷却水を第2熱交換器40Bに向けて送り出すポンプP2が配置されている。冷却水は、第2熱交換器40Bにおける改質ガスとの熱交換により、60℃~70℃程度に加熱される。第2熱交換器40Bを通過して加熱された冷却水は、冷却水供給管(流路)L8を介して気化器20に導入される。第2熱交換器40Bによって加熱された冷却水の熱は、気化器20において液体状態のアンモニアを効率よく気化させるために利用される。気化器20を通過した冷却水は冷却水供給管L7上のラジエータ100によって冷却され、再び第2熱交換器40Bに導入される。すなわち、冷却水は、冷却水供給管L7及び冷却水供給管L8を介して、第2熱交換器40B、気化器20、及びラジエータ100の間を循環している。
 第1吸着器50Aは、第2熱交換器40Bの下流に設けられており、改質ガス供給管L9を介して第2熱交換器40Bと接続されている。第1吸着器50Aは、改質ガスに含まれるアンモニアを除去することにより、高純度の水素ガスである燃料ガスを生成する。第1吸着器50Aで生成された燃料ガスは、燃料ガス供給管L10を介して燃料電池60に導入される。
 図2に示されるように、第1吸着器50Aは、改質ガスに含まれるアンモニアを吸着するための吸着材51を有している。吸着材51は、例えば多数の細孔を有する多孔体であり、静電相互作用等によってアンモニアを細孔に吸着させる。また、吸着材51は化学的結合によってアンモニアを吸着してもよい。吸着材51としては、例えば活性炭の多孔体、アルミナ、又はゼオライト等が用いられ得る。
 再び図1に戻り、第2吸着器50Bは、第1吸着器50Aと同様に第2熱交換器40Bの下流に設けられており、改質ガス供給管L9を介して第2熱交換器40Bと接続されている。第2吸着器50Bは、第1吸着器50Aに対して並列に配置されている。第2吸着器50Bは、第1吸着器50Aと同様に吸着材51を有しており、改質ガスに含まれるアンモニアを除去することにより、高純度の水素ガスである燃料ガスを生成する。第2吸着器50Bで生成された燃料ガスは、燃料ガス供給管L10を介して燃料電池60に導入される。
 改質ガス供給管L9上には、切替弁80Aが設けられている。切替弁80Aは、例えば三方弁であり、第2熱交換器40Bと第1吸着器50Aとの接続、及び、第2熱交換器40Bと第2吸着器50Bとの接続を切り替える。すなわち、切替弁80Aは、第2熱交換器40Bから供給される改質ガスが第1吸着器50A又は第2吸着器50Bに導入されるように、改質ガス供給管L9を切り替える。
 燃料ガス供給管L10上には、切替弁80Bが設けられている。切替弁80Bは、例えば三方弁であり、第1吸着器50Aと燃料電池60との接続、及び、第2吸着器50Bと燃料電池60との接続を切り替える。すなわち、切替弁80Bは、第1吸着器50A又は第2吸着器50Bから供給される燃料ガスが燃料電池60に導入されるように、燃料ガス供給管L10を切り替える。
 また、第1吸着器50A及び第2吸着器50Bは、空気供給管L11を介して第1熱交換器40Aと接続されている。第1熱交換器40Aで加熱された空気は、空気供給管L11を介して第1吸着器50A又は第2吸着器50Bに供給される。第1吸着器50A及び第2吸着器50Bは、吸着材51に吸着されたアンモニアの量が多くなると性能が低下する。このため、吸着材51からアンモニアを除去する(吸着材51を再生する)必要がある。燃料電池システム1では、第1熱交換器40Aで加熱された空気を用いて第1吸着器50A及び第2吸着器50Bの吸着材51を再生する。第1吸着器50A及び第2吸着器50Bを通過した空気は、排ガスとして空気排出管L12を介して燃料電池システム1の外部に排出される。
 空気供給管L11上には、切替弁80Cが設けられている。切替弁80Cは、例えば三方弁であり、第1熱交換器40Aと第1吸着器50Aとの接続、及び、第1熱交換器40Aと第2吸着器50Bとの接続を切り替える。すなわち、切替弁80Cは、第1熱交換器40Aで加熱された空気が第1吸着器50A又は第2吸着器50Bに導入されるように、空気供給管L11を切り替える。
 このように、切替弁80A,80Cは、第2熱交換器40Bを通過した改質ガスの供給先を複数の吸着器のうち何れかの吸着器に切り替えると共に、第1熱交換器40Aを通過した空気の供給先を複数の吸着器のうち他の吸着器に切り替える。
 空気排出管L12上には、切替弁80Dが設けられている。切替弁80Dは、例えば三方弁であり、第1吸着器50Aと燃料電池システム1の外部との接続、及び、第2吸着器50Bと燃料電池システム1の外部との接続を切り替える。すなわち、切替弁80Dは、第1吸着器50A又は第2吸着器50Bから排ガスが燃料電池システム1の外部に排出されるように、空気排出管L12を切り替える。
 切替弁80A~80Dは、制御部90によって制御される。制御部90は、複数の吸着器のうち何れかの吸着器に第2熱交換器40Bを通過した改質ガスが導入されて燃料ガスが生成されると共に、複数の吸着器のうち他の吸着器に第1熱交換器40Aを通過した空気が導入されて吸着材51が再生されるように、切替弁80A~80Dを制御する。
 例えば、制御部90は、切替弁80Aによって第2熱交換器40Bと第1吸着器50Aとを接続し、改質ガスを第1吸着器50Aに導入して燃料ガスを生成する場合には、切替弁80Cによって第1熱交換器40Aと第2吸着器50Bとを接続し、加熱された空気を第2吸着器50Bに導入して第2吸着器50Bの吸着材51を再生する。このとき、制御部90は、第1吸着器50Aと燃料電池60とが接続されるように切替弁80Bを制御する。すなわち、制御部90は、第1吸着器50Aで生成された燃料ガスが燃料電池60に導入されるように切替弁80Bを切り替える。また、制御部90は、第2吸着器50Bからの排ガスが外部に排出されるように、切替弁80Dを制御する。
 反対に、制御部90は、切替弁80Aによって第2熱交換器40Bと第2吸着器50Bとを接続し、改質ガスを第2吸着器50Bに導入して燃料ガスを生成する場合には、切替弁80Cによって第1熱交換器40Aと第1吸着器50Aとを接続し、加熱された空気を第1吸着器50Aに導入して第1吸着器50Aの吸着材51を再生する。このとき、制御部90は、第2吸着器50Bで生成された燃料ガスが燃料電池60に導入されるように切替弁80Bを制御する。また、制御部90は、第1吸着器50Aからの排ガスが外部に排出されるように、切替弁80Dを制御する。このように、制御部90が一方の吸着器で燃料ガスを生成している間に他方の吸着器の吸着材51を再生するように切替弁80A~80Dを制御することにより、燃料電池60に燃料ガスを継続して供給することができる。
 燃料電池60は、第1吸着器50A及び第2吸着器50Bの下流に設けられており、燃料ガス供給管L10を介して第1吸着器50A及び第2吸着器50Bと接続されている。また、燃料電池60は、空気供給管L13を介して空気供給部70と接続されている。燃料電池60は、第1吸着器50A又は第2吸着器50Bから供給された燃料ガスと、空気供給管L13を介して空気供給部70から供給された空気とを用いて発電を行う。燃料電池60としては、例えば固体高分子形の燃料電池(PEFC:Polymer electrolyte Fuel Cell)が用いられ得る。なお、燃料電池60は固体高分子形に限定されず、固体酸化物形又はアルカリ形の燃料電池等であってもよい。
 空気供給部70には、空気供給管L3,L5,L13が接続されている。空気供給部70は、空気供給管L3,L5,L13を介して、それぞれ改質器30、第1熱交換器40A、及び燃料電池60に空気を供給する。
 以上説明したように、燃料電池システム1においては、第1熱交換器40Aを通過した空気によって吸着材51を再生する。空気は、第1熱交換器40Aにおいて改質ガスの熱によって加熱されている。このように、加熱された空気が第1吸着器50A又は第2吸着器50Bに導入されるので、再生に熱量が必要となる吸着材51が用いられる場合であっても、吸着材51を再生することができる。また、改質ガスからの廃熱を利用して空気が加熱されるので、システム効率の向上を図ることができる。
 また、燃料電池システム1は、第1熱交換器40Aと複数の吸着器(第1吸着器50A及び第2吸着器50B)との間に配置され、改質ガスと冷却水とを熱交換することで改質ガスを冷却する第2熱交換器40Bと、第2熱交換器40Bを通過した冷却水を気化器20に供給する冷却水供給管L8とを更に備え、気化器20は、第2熱交換器40Bを通過した冷却水と液体状態のアンモニアとを熱交換することで液体状態のアンモニアを気化させる。これにより、第2熱交換器40Bにおいて改質ガスの熱によって冷却水が加熱される。気化器20においては、加熱された冷却水の熱によって、液体状態のアンモニアを気化する。このように、改質ガスからの廃熱を利用してアンモニアが気化されるので、システム効率の更なる向上を図ることができる。
 また、第1熱交換器40Aが第2熱交換器40Bよりも上流に配置されていることにより、より高温の改質ガスと空気とを熱交換することができる。したがって、吸着材51の再生に用いる空気を効率よく加熱することが可能である。
 次に、図3を参照して、変形例に係る燃料電池システム2について説明する。図3は、図1の燃料電池システム1の変形例を示すシステム構成図である。図3に示されるように、燃料電池システム2は、燃料電池システム1と同様に、タンク10と、気化器20と、改質器30と、第1熱交換器40Aと、第2熱交換器40Bと、第1吸着器50A及び第2吸着器50Bと、燃料電池60と、空気供給部70と、切替弁80A,80B,80C,80Dと、制御部90と、を備えている。
 燃料電池システム2が燃料電池システム1と相違する点は、冷却水を燃料電池60に供給する冷却水供給管(流路)L14を更に備える点である。ラジエータ100及びポンプP2は、冷却水供給管L14上に設けられている。燃料電池60を通過した冷却水は、冷却水供給管L7を介して第2熱交換器40Bに導入される。すなわち、冷却水は、冷却水供給管L7,L8,L14を介して、燃料電池60、第2熱交換器40B、気化器20、及びラジエータ100の間を循環している。
 以上説明したように、変形例に係る燃料電池システム2においても、第1熱交換器40Aを通過した空気によって吸着材51を再生する。空気は、第1熱交換器40Aにおいて改質ガスの熱によって加熱されている。このように、加熱された空気が第1吸着器50A又は第2吸着器50Bに導入されるので、再生に熱量が必要となる吸着材51が用いられる場合であっても、吸着材51を再生することができる。また、改質ガスからの廃熱を利用して空気が加熱されるので、システム効率の向上を図ることができる。
 また、燃料電池システム2は、冷却水を燃料電池60に供給する冷却水供給管L14を更に備えている。これにより、燃料電池60に冷却水が供給され、冷却水によって燃料電池60が冷却される。したがって、燃料電池60を冷却するための冷却系を別途設ける必要が無いので、燃料電池システム2のコストを低減することができる。
 次に、図4及び図5を参照して変形例に係る燃料電池システム3について説明する。図4は、図1の燃料電池システム1の他の変形例を示すシステム構成図である。図5は、図4の熱交換器の構造を概略的に示す図である。図4及び図5に示されるように、変形例に係る燃料電池システム3は、燃料電池システム1と同様に、タンク10と、気化器20と、改質器30と、第1吸着器50A及び第2吸着器50Bと、燃料電池60と、空気供給部70と、切替弁80A,80B,80C,80Dと、制御部90と、を備えている。燃料電池システム3が燃料電池システム1と相違する点は、第1熱交換器40A及び第2熱交換器40Bに代えて、熱交換器40Cを備える点である。燃料電池システム3は、改質ガス供給管L6を備えておらず、改質ガス供給管L9が熱交換器40Cに接続されている。
 熱交換器40Cには、冷却水供給管L15が接続されており、冷却水が供給される。熱交換器40Cを通過した冷却水は、冷却水供給管L16を介して気化器20に供給される。また、熱交換器40Cには空気供給管L5が接続されており、空気供給部70から空気が導入される。熱交換器40Cでは、改質器30から供給された改質ガスと冷却水との熱交換、及び改質ガスと空気との熱交換が同時に行われる。熱交換器40Cは、改質ガスが通過する管部41と、熱交換器40Cに導入された空気が通過する第1冷却部42と、熱交換器40Cに導入された冷却水が通過する第2冷却部43と、を有している。第1冷却部42は、例えば管部41の上流側の部分において、管部41の周囲を囲むように設けられている。第2冷却部43は、例えば管部41の下流側の部分において、管部41の周囲を囲むように設けられている。このように、熱交換器40Cが、改質ガスと冷却水との熱交換、及び、改質ガスと空気との熱交換の両方を行うことにより、燃料電池システム3の簡略化を図ることができる。
 以上、本発明の実施形態について説明してきたが、本発明は上記の実施形態に限定されず、種々の変更を行うことができる。例えば、上記の実施形態では、第1吸着器50A及び第2吸着器50Bの2つの吸着器を備える例について説明したが、吸着器の数は3つ以上であってもよい。例えば、燃料電池システムが3つの吸着器を備える場合には、2つの吸着器によって燃料ガスを生成し、他の1つの吸着器の吸着材51を再生してもよい。また、1つの吸着器によって燃料ガスを生成し、他の2つの吸着器の吸着材51を再生してもよい。
 また、上記の実施形態では、第1吸着器50A及び第2吸着器50Bの切り替えを行うために4つの切替弁80A~80Dを用いる例について説明したが、第1吸着器50A及び第2吸着器50Bの切り替えを行うための切替弁の構成は特に限定されず、適宜変更可能である。また、切替弁80A~80Dは三方弁でなくてもよい。
 また、上記の実施形態では、燃料電池システム1が冷却水供給管L7,L8、ラジエータ100、及びポンプP2を含む冷却系を備える例について説明したが、燃料電池システム1はこのような冷却系を備えていなくてもよい。
 また、上記の実施形態では、ATR型の改質器30を用いる例について説明したが、改質器30の種類は特に限定されず、適宜変更可能である。
 1,2,3  燃料電池システム
 10  タンク
 20  気化器
 30  改質器
 40A  第1熱交換器(熱交換器)
 40B  第2熱交換器(他の熱交換器)
 50A  第1吸着器(吸着器)
 50B  第2吸着器(吸着器)
 51  吸着材
 60  燃料電池
 70  空気供給部
 80A,80B,80C,80D  切替弁
 90  制御部
 L7,L8,L14,L15,L16  冷却水供給管(流路)

Claims (3)

  1.  液体状態のアンモニアを貯蔵するタンクと、
     前記タンクから供給された液体状態のアンモニアを気化させる気化器と、
     前記気化器により気化されたアンモニアを改質して改質ガスを生成する改質器と、
     前記改質ガスを冷却する熱交換器と、
     前記熱交換器により冷却された前記改質ガスに含まれる前記アンモニアを吸着する吸着材を有し、燃料ガスを生成する複数の吸着器と、
     前記燃料ガスを用いて発電する燃料電池と、
     前記改質ガスと熱交換する空気を前記熱交換器に供給する空気供給部と、
     前記熱交換器を通過した前記改質ガスの供給先を前記複数の吸着器のうち何れかの吸着器に切り替えると共に、前記熱交換器を通過した前記空気の供給先を前記複数の吸着器のうち他の吸着器に切り替える切替弁と、
     前記複数の吸着器のうち何れかの吸着器に前記熱交換器を通過した前記改質ガスが導入されて前記燃料ガスが生成されると共に、前記複数の吸着器のうち他の吸着器に前記熱交換器を通過した前記空気が導入されて前記吸着材が再生されるように、前記切替弁を制御する制御部と、を備える、燃料電池システム。
  2.  前記熱交換器と前記複数の吸着器との間に配置され、前記改質ガスと冷却水とを熱交換することで前記改質ガスを冷却する他の熱交換器と、
     前記他の熱交換器を通過した冷却水を前記気化器に供給する流路とを更に備え、
     前記気化器は、前記他の熱交換器を通過した冷却水と前記液体状態のアンモニアとを熱交換することで前記液体状態のアンモニアを気化させる、請求項1に記載の燃料電池システム。
  3.  前記冷却水を前記燃料電池に供給する流路を更に備える、請求項2に記載の燃料電池システム。
PCT/JP2018/032879 2017-09-13 2018-09-05 燃料電池システム WO2019054249A1 (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-175880 2017-09-13
JP2017175880A JP2019053854A (ja) 2017-09-13 2017-09-13 燃料電池システム

Publications (1)

Publication Number Publication Date
WO2019054249A1 true WO2019054249A1 (ja) 2019-03-21

Family

ID=65722839

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/032879 WO2019054249A1 (ja) 2017-09-13 2018-09-05 燃料電池システム

Country Status (2)

Country Link
JP (1) JP2019053854A (ja)
WO (1) WO2019054249A1 (ja)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6720244B2 (ja) * 2018-04-18 2020-07-08 三菱重工エンジニアリング株式会社 アンモニア分解システム及びアンモニア分解方法
US11994061B2 (en) 2021-05-14 2024-05-28 Amogy Inc. Methods for reforming ammonia
US11724245B2 (en) 2021-08-13 2023-08-15 Amogy Inc. Integrated heat exchanger reactors for renewable fuel delivery systems
JP2024521417A (ja) 2021-06-11 2024-05-31 アモジー インコーポレイテッド アンモニアを処理するためのシステムおよび方法
US11539063B1 (en) 2021-08-17 2022-12-27 Amogy Inc. Systems and methods for processing hydrogen
US11912574B1 (en) 2022-10-06 2024-02-27 Amogy Inc. Methods for reforming ammonia
US11795055B1 (en) 2022-10-21 2023-10-24 Amogy Inc. Systems and methods for processing ammonia
US11866328B1 (en) 2022-10-21 2024-01-09 Amogy Inc. Systems and methods for processing ammonia

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003286006A (ja) * 2002-03-28 2003-10-07 Nissan Motor Co Ltd 燃料改質システム
JP2004176978A (ja) * 2002-11-26 2004-06-24 Nippon Shokubai Co Ltd 半導体製造装置に供給する空気の浄化・空調方法および半導体製造装置の空気浄化・空調ユニット
JP2006032153A (ja) * 2004-07-16 2006-02-02 Ebara Ballard Corp 燃料電池コージェネレーションシステム
JP2009138978A (ja) * 2007-12-04 2009-06-25 Shinwa Controls Co Ltd 超高純度空気の調製方法
JP2010282909A (ja) * 2009-06-08 2010-12-16 Honda Motor Co Ltd 燃料電池システム
JP2011146175A (ja) * 2010-01-12 2011-07-28 Toyota Motor Corp 燃料電池システム
JP2018137149A (ja) * 2017-02-22 2018-08-30 トヨタ自動車株式会社 燃料ガス供給方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003286006A (ja) * 2002-03-28 2003-10-07 Nissan Motor Co Ltd 燃料改質システム
JP2004176978A (ja) * 2002-11-26 2004-06-24 Nippon Shokubai Co Ltd 半導体製造装置に供給する空気の浄化・空調方法および半導体製造装置の空気浄化・空調ユニット
JP2006032153A (ja) * 2004-07-16 2006-02-02 Ebara Ballard Corp 燃料電池コージェネレーションシステム
JP2009138978A (ja) * 2007-12-04 2009-06-25 Shinwa Controls Co Ltd 超高純度空気の調製方法
JP2010282909A (ja) * 2009-06-08 2010-12-16 Honda Motor Co Ltd 燃料電池システム
JP2011146175A (ja) * 2010-01-12 2011-07-28 Toyota Motor Corp 燃料電池システム
JP2018137149A (ja) * 2017-02-22 2018-08-30 トヨタ自動車株式会社 燃料ガス供給方法

Also Published As

Publication number Publication date
JP2019053854A (ja) 2019-04-04

Similar Documents

Publication Publication Date Title
JP6996181B2 (ja) 燃料電池システム
WO2019054249A1 (ja) 燃料電池システム
EP1841515B1 (en) System and method for regulating heating assembly operation through pressure swing adsorption purge control
US6964692B2 (en) Carbon monoxide adsorption for carbon monoxide clean-up in a fuel cell system
JP4463803B2 (ja) Co2固定を伴うディーゼルスチームリフォーミング
US6506510B1 (en) Hydrogen generation via methane cracking for integrated heat and electricity production using a fuel cell
JP4098167B2 (ja) 燃料ガス発生方法及び装置
JP3890020B2 (ja) 水吸着を用いる燃料プロセッサの迅速な始動
JP2008078140A (ja) スタック停止時の追い出し(パージ)方法
JP2020040860A (ja) 熱交換型改質器
WO2001093360A1 (en) Reformate fuel treatment system for a fuel cell power plant
US7276095B2 (en) Fuel processor module for hydrogen production for a fuel cell engine using pressure swing adsorption
JP2011146175A (ja) 燃料電池システム
WO2001002296A1 (en) Process for regenerating a carbon monoxide oxidation reactor
US20050188616A1 (en) Fuel processing treatment system and fuel processing systems containing the same
US20210155859A1 (en) Fuel processing system and method for sulfur bearing fuels
JP4271472B2 (ja) 水素発生装置および水素発生装置の運転方法
JP2005050788A (ja) 燃料加工システム用の改質燃料精製システム
JP2003306308A (ja) 水蒸気改質と燃料電池システム
JP2003249254A (ja) 電力、水素及び芳香族炭化水素の併産システム
JP2020011883A (ja) 熱交換型改質器
JP2016009594A (ja) 燃料電池発電装置
WO2009040649A1 (en) Fuel cell system and fuel cell system control method
JP2016184456A (ja) ガス製造装置
JP2020007185A (ja) 水素製造装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18855419

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18855419

Country of ref document: EP

Kind code of ref document: A1