WO2019053167A1 - Verfahren zur herstellung einer porösen sintermagnesia, versatz zur herstellung eines grobkeramischen feuerfesten erzeugnisses mit einer körnung aus der sintermagnesia, derartiges erzeugnis sowie verfahren zu seiner herstellung, zustellung eines industrieofens und industrieofen - Google Patents

Verfahren zur herstellung einer porösen sintermagnesia, versatz zur herstellung eines grobkeramischen feuerfesten erzeugnisses mit einer körnung aus der sintermagnesia, derartiges erzeugnis sowie verfahren zu seiner herstellung, zustellung eines industrieofens und industrieofen Download PDF

Info

Publication number
WO2019053167A1
WO2019053167A1 PCT/EP2018/074817 EP2018074817W WO2019053167A1 WO 2019053167 A1 WO2019053167 A1 WO 2019053167A1 EP 2018074817 W EP2018074817 W EP 2018074817W WO 2019053167 A1 WO2019053167 A1 WO 2019053167A1
Authority
WO
WIPO (PCT)
Prior art keywords
grain
din
product
furnace
magnesia
Prior art date
Application number
PCT/EP2018/074817
Other languages
English (en)
French (fr)
Inventor
Hans-Jürgen KLISCHAT
Robert Plummer
Carsten Vellmer
Holger Wirsing
Original Assignee
Refratechnik Holding Gmbh
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Refratechnik Holding Gmbh filed Critical Refratechnik Holding Gmbh
Priority to EP18769685.1A priority Critical patent/EP3523264B1/de
Priority to JP2019542172A priority patent/JP7299157B2/ja
Priority to RU2020100219A priority patent/RU2752414C2/ru
Priority to MX2020002853A priority patent/MX2020002853A/es
Priority to AU2018334019A priority patent/AU2018334019B2/en
Priority to PL18769685.1T priority patent/PL3523264T3/pl
Priority to RS20230947A priority patent/RS64721B1/sr
Priority to CN201880011985.4A priority patent/CN110325487B/zh
Priority to KR1020197027533A priority patent/KR102399226B1/ko
Priority to ES18769685T priority patent/ES2956739T3/es
Priority to CA3070785A priority patent/CA3070785C/en
Priority to JOP/2020/0061A priority patent/JOP20200061A1/ar
Priority to US16/646,409 priority patent/US11440847B2/en
Priority to BR112020005054-7A priority patent/BR112020005054A2/pt
Publication of WO2019053167A1 publication Critical patent/WO2019053167A1/de

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • C04B35/043Refractories from grain sized mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/01Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics
    • C04B35/03Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite
    • C04B35/04Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products based on oxide ceramics based on magnesium oxide, calcium oxide or oxide mixtures derived from dolomite based on magnesium oxide
    • C04B35/043Refractories from grain sized mixtures
    • C04B35/0435Refractories from grain sized mixtures containing refractory metal compounds other than chromium oxide or chrome ore
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/6261Milling
    • C04B35/6262Milling of calcined, sintered clinker or ceramics
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62625Wet mixtures
    • C04B35/6264Mixing media, e.g. organic solvents
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • C04B35/62695Granulation or pelletising
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/63Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B using additives specially adapted for forming the products, e.g.. binder binders
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/64Burning or sintering processes
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/66Monolithic refractories or refractory mortars, including those whether or not containing clay
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • C04B38/0058Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity open porosity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/0003Linings or walls
    • F27D1/0006Linings or walls formed from bricks or layers with a particular composition or specific characteristics
    • F27D1/0009Comprising ceramic fibre elements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F27FURNACES; KILNS; OVENS; RETORTS
    • F27DDETAILS OR ACCESSORIES OF FURNACES, KILNS, OVENS, OR RETORTS, IN SO FAR AS THEY ARE OF KINDS OCCURRING IN MORE THAN ONE KIND OF FURNACE
    • F27D1/00Casings; Linings; Walls; Roofs
    • F27D1/04Casings; Linings; Walls; Roofs characterised by the form, e.g. shape of the bricks or blocks used
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3205Alkaline earth oxides or oxide forming salts thereof, e.g. beryllium oxide
    • C04B2235/3208Calcium oxide or oxide-forming salts thereof, e.g. lime
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3217Aluminum oxide or oxide forming salts thereof, e.g. bauxite, alpha-alumina
    • C04B2235/3222Aluminates other than alumino-silicates, e.g. spinel (MgAl2O4)
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3241Chromium oxides, chromates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3231Refractory metal oxides, their mixed metal oxides, or oxide-forming salts thereof
    • C04B2235/3244Zirconium oxides, zirconates, hafnium oxides, hafnates, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/32Metal oxides, mixed metal oxides, or oxide-forming salts thereof, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/327Iron group oxides, their mixed metal oxides, or oxide-forming salts thereof
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3418Silicon oxide, silicic acids, or oxide forming salts thereof, e.g. silica sol, fused silica, silica fume, cristobalite, quartz or flint
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/34Non-metal oxides, non-metal mixed oxides, or salts thereof that form the non-metal oxides upon heating, e.g. carbonates, nitrates, (oxy)hydroxides, chlorides
    • C04B2235/3427Silicates other than clay, e.g. water glass
    • C04B2235/3436Alkaline earth metal silicates, e.g. barium silicate
    • C04B2235/3445Magnesium silicates, e.g. forsterite
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/30Constituents and secondary phases not being of a fibrous nature
    • C04B2235/40Metallic constituents or additives not added as binding phase
    • C04B2235/404Refractory metals
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5418Particle size related information expressed by the size of the particles or aggregates thereof
    • C04B2235/5436Particle size related information expressed by the size of the particles or aggregates thereof micrometer sized, i.e. from 1 to 100 micron
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/02Composition of constituents of the starting material or of secondary phases of the final product
    • C04B2235/50Constituents or additives of the starting mixture chosen for their shape or used because of their shape or their physical appearance
    • C04B2235/54Particle size related information
    • C04B2235/5463Particle size distributions
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/604Pressing at temperatures other than sintering temperatures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/60Aspects relating to the preparation, properties or mechanical treatment of green bodies or pre-forms
    • C04B2235/606Drying
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6562Heating rate
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/65Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes
    • C04B2235/656Aspects relating to heat treatments of ceramic bodies such as green ceramics or pre-sintered ceramics, e.g. burning, sintering or melting processes characterised by specific heating conditions during heat treatment
    • C04B2235/6567Treatment time
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/74Physical characteristics
    • C04B2235/77Density
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B2235/00Aspects relating to ceramic starting mixtures or sintered ceramic products
    • C04B2235/70Aspects relating to sintered or melt-casted ceramic products
    • C04B2235/96Properties of ceramic products, e.g. mechanical properties such as strength, toughness, wear resistance
    • C04B2235/9607Thermal properties, e.g. thermal expansion coefficient
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/622Forming processes; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • C04B35/626Preparing or treating the powders individually or as batches ; preparing or treating macroscopic reinforcing agents for ceramic products, e.g. fibres; mechanical aspects section B
    • C04B35/62605Treating the starting powders individually or as mixtures
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B38/00Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof
    • C04B38/0051Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity
    • C04B38/0054Porous mortars, concrete, artificial stone or ceramic ware; Preparation thereof characterised by the pore size, pore shape or kind of porosity the pores being microsized or nanosized

Definitions

  • the invention relates to a process for the production of a porous sintered magnesia and to an offset for the production of a porous sintered magnesia, offset for the production of a coarse ceramic refractory product with a grain of sintered magnesia, such a product and method for its production coarse ceramic, refractory, molded or unshaped product containing the porous sintered magnesia.
  • the invention also relates to such a product made from the offset and a method for its production.
  • the invention relates to a delivery, in particular a working lining and / or a back wall, a large-volume industrial furnace, wherein the delivery, in particular the working lining and / or the Schumautation having at least one such product, as well as such an industrial furnace.
  • Refractory should not be limited in the context of the invention to the definition according to ISO 836 or DIN 51060, which define a cone drop point of> 1500 ° C.
  • Refractory products according to the invention have a printer softening point T 0 , s according to DIN EN ISO 1893: 2009-09 of T 0 , s ⁇ 600 ° C, preferably To, 5 ⁇ 800 ° C.
  • refractory or refractory granular materials or granulations in the sense of the invention are those materials or granules which are suitable for a refractory
  • the refractory products according to the invention are used to protect aggregate constructions in aggregates in which temperatures between 600 and 2000 ° C., in particular between 1000 and 1800 ° C., prevail "or" granular material "according to the invention, a pourable solid, which consists of many small, solid grains. If the grains have a grain size ⁇ 200 ⁇ , it is in the Grain around a flour or powder.
  • the grains are produced by mechanical comminution, eg breaking and / or grinding. Grain size distribution is usually adjusted by sieving.
  • refractory materials are known to those skilled in the art as being based on six refractory base oxides, as well as carbon and refractory carbon compounds, e.g. in "Gerald Routschka / Hartmut Wuthnow, practical guide” refractory materials ", 5th edition, Vulkan-Verlag, (hereinafter referred to only with” practical guide "), pp.
  • non-basic and basic refractory products based on the chemical reaction behavior
  • the non-basic product group comprises the materials of the SiO2-Al2O3 series and other materials which are not grouped according to their chemical reaction behavior, such as SiC and carbon Highly SiO2-containing materials are referred to as "acidic.”
  • An essential feature of most basic products is that the sum of the oxides MgO and CaO outweighs, and chromite, picrochromite, spinel, and forsterite rocks are also considered basic products although they are nearly neutral, the shaped basic products include in particular magnesia-containing E in particular, magnesia products, magnesia chromosome products, magnesia spinach products, magnesia zirconia products, magnesia peanut products, magnesia talox products, magnesia hercynite products, magnesia adolomics (see, e.g. Practical Guide,
  • Typical Magnesiarohstoffe for the production of magnesia products are granules or granules of sintered and / or fused magnesia.
  • Sintered magnesia is produced by firing at a temperature of> 1 700 ° C, preferably> 1800 ° C, in order to achieve the highest possible grain density.
  • Melt magnesia is produced at a temperature> 2800 ° C in order to also achieve the highest possible grain density and the lowest possible grain porosity.
  • Conventional sintered magnesia varieties have a grain density of> 3.10 g / cm 3 .
  • the target values are> 3.30 - 3.40 g / cm 3 .
  • the corresponding grain porosities (total porosity) are usually 4-10% by volume.
  • Granulations of fused magnesia generally have a grain density of> 3.50 g / cm 3 , with a grain porosity (total porosity) ⁇ 2.5% by volume.
  • Shaped products according to the invention are ceramic fired or unfired, in particular pressed, preferably produced in a ceramic factory, products, in particular stones or plates.
  • the molded products, in particular the bricks are bricked up, preferably with mortar, walled or mortar-free ("crunchy"), to form the furnace lining or furnace back-wall.
  • Unformed products are usually placed behind formwork in larger fields at the place of use and, after hardening, form the furnace lining or furnace back wall They are preferably used as working feed in non-ferrous kilns, preferably in cement kilns, in other fired industrial aggregates, eg in a large-volume industrial furnace to form a refractory lining on the inside of the casing plants, lime pit or lime kilns, or furnaces or furnaces for energy production or used in furnaces of steelmaking or the non-ferrous metal industry.
  • the products according to the invention can also be used as insulating backings in one of the ovens mentioned. Generic refractory products should therefore have a low thermal conductivity and a high infiltration resistance.
  • the molded products should ensure a good temperature resistance at application temperatures, chemical resistance, thermal shock resistance, good structural elasticity, adapted pressure switch and low gas permeability and high hot bending strength.
  • the molded products should have a cold compressive strength adapted to the intended use, which should in particular also be sufficiently high for their handling during and after their production and also after temperature changes.
  • Generic refractory products are known from DE 10 2006 040 269 A1 and DE 10 2013 020 732 A1. In these, a desired porosity is set via the particle size distribution:
  • refractory products made of different refractory materials are known, which may possibly be used as working fats and possibly also have a relatively low thermal conductivity owing to an open porosity> 10% by volume.
  • fine-grained products which are made from a Versetz, the 50-90 wt .-% finely divided refractory material having a particle size d9o ⁇ 100 ⁇ , wherein the proportion of grain size d9o between 100-500 ⁇ to ⁇ 10 wt ..-% is limited.
  • the open porosity of the products consists of more than half of pores with a diameter d9o ⁇ 15 ⁇ and more than 1/10 of pores with a diameter d9o> 100 ⁇ . In this case, the pore content between 15 and 100 ⁇ maximum 1/7 of the open total porosity.
  • DE 10 2013 020 732 A1 discloses a coarse ceramic, refractory product of at least one granular refractory material which has an open porosity of between 22 and 45% by volume, in particular between 23 and 29 Vol .-%, and has a grain structure in which the middle grain fraction with grain sizes between 0, 1 and 0.5 mm 10 to 55 wt .-%, in particular 35 to 50 wt .-%, wherein the remainder of the grain structure flour meal content with Grain sizes up to 0, 1 mm and / or coarse grain fraction with grain sizes over 0.5 mm.
  • the refractory product is used in particular for producing a working chuck of a large-volume industrial furnace.
  • US Pat. No. 4,927,611 describes a magnesia clinker having a porosity of> 40% by volume, preferably in the range from 50 to 70% by volume, and a grain bulk density of ⁇ 2.0 g / cm 3 . In addition, more than 90% by volume of the pores have a pore size ⁇ 50 ⁇ m.
  • the Magnesiaklinkers is prepared by granulation of a magnesium oxide-forming component with a particle size of ⁇ 150 ⁇ (100 mesh) and a burnable substance in an additional amount of 10-40 wt .-% and the addition of 1 -15% of a magnesium salt and subsequent firing at 1300 to 1600 ° C.
  • the magnesia clinker produced in this way is used in sprayable suspensions for coating nozzles and distributor channels.
  • magnesia spinel-based lightweight basic grits are also described by Wen Yan et al. 128, UNITECR 2015, and by Wen Yan et al., in "Effect of Spinel Content of the Lightweight Aggregates on the Reaction Characteristics of Periclase-spinel Reactories with Cement Clinker", Effect of Spinel Content on the Reaction of Porous Periclase Spinet Ceramics and Cement Clinker "from Key Engineering Materials, Vol. 697, pp 581-585.
  • Grains are then produced from MgO and from MgO-spinel mixtures, ie MgO or MgO spinel Co clinker, with a porosity of 24.8-30.0% by volume, and then with magnesia mixed as a matrix, shaped and fired at a temperature of 1550 ° C. These molded products are characterized by a porosity of about 30 vol .-%.
  • MgO grains have a maximum in their pore size distribution at a pore diameter of 50 [im to; the average pore diameter of the MgO spinel Co-clinker grains is reported to be between 1 1, 33 [im and 27.58 ⁇ stated, the average pore diameter of the matrix is 50.52 ⁇ .
  • CN 106747594 A discloses the production of granules from a mixture of 5-95% by weight of MgO causal flour and 5-95% by weight of magnesite flour. These mixtures are mixed with ligus sulfonate and pressed into compacts. The pellets are dried for 20 to 50 hours and then fired at 1450-1700 ° C in the tunnel kiln or shuttle kiln for 10-20 hours. Grains prepared by way of example with 95% by weight of MgO causal flour and 5% by weight of magnesite flour have a porosity of 16.5% by volume and a density of 2.97 g / cm 3 .
  • the object of the invention is to provide a sintered magnesia with good grain strength for an offset for producing refractory products with high porosity and low thermal conductivity, which have suitable properties for use in large-volume industrial furnaces and in particular a low infiltration tendency against alkali infiltration.
  • Another object of the invention is to provide such an offset as well as a molded or unshaped refractory product made from the offset, and a method for its production.
  • the object of the invention is to provide a refractory lining of a large-volume industrial furnace, in particular a kiln of non-metal industry, preferably a cement kiln plant, a Kalkschacht- or Kalkfitrohrofen, a furnace for the production of magnesia or Doloma o- of a heating furnace or a furnace for energy production , or else a furnace of the non-ferrous or steel industry, with at least one or formed from at least one product according to the invention.
  • a kiln of non-metal industry preferably a cement kiln plant, a Kalkschacht- or Kalkfitrohrofen
  • a furnace for the production of magnesia or Doloma o- of a heating furnace or a furnace for energy production or else a furnace of the non-ferrous or steel industry, with at least one or formed from at least one product according to the invention.
  • FIG. 1 shows by way of example a pore diameter distribution of a grain of porous sintered magnesia according to the invention
  • FIG. 2 shows by way of example a pore diameter distribution of a molded block according to the invention
  • FIG. 3 a photomicrograph (incident light) of a sintered stomach according to the invention, sintered in an HT oven at 1530 ° C., burning time 6 h
  • MgO flour preferably of MgO cereal flour
  • a reduced maximum firing temperature instead of the usual temperatures of> 1700 ° C.
  • a sintered magnesia can be produced, which has a grain porosity (total porosity) according to DIN EN 993-1: 195-04 and DIN EN 993-18: 1999-01 of 15 to 38 vol .-%, preferably from 20 to 38 % By volume.
  • the MgO flour may e.g. also consist of deadburned magnesia (DBM) or enamel magnesia. Preferably, however, it is MgO-causal flour.
  • DBM deadburned magnesia
  • enamel magnesia Preferably, however, it is MgO-causal flour.
  • the burning time and the sintering temperatures, ie the temperature profile or the temperature regime or the temperature profile, the sintering or the sintering process are thus set according to the invention so that the grain of porous sintered magnesia according to the invention a grain porosity (total porosity) according to DIN 993-18: 2002 -1 1 and DIN 993-1: 1995-4 from 15 to 38 vol. %, preferably 20 to 38% by volume, and preferably has a grain density according to DIN 993-18: 2002-1 1 of 2.20 to 2.85 g / cm 3 , preferably 2.20 to 2.75 g / cm 3 .
  • the temperature regime depends, for example, on the magnesia variety (its reactivity) and the particle size of the MgO flour.
  • the sintering takes place at a maximum temperature ⁇ 1600 ° C, preferably ⁇ 1550 ° C, preferably ⁇ 1500 ° C, more preferably ⁇ 1400 ° C.
  • sintering takes place at a maximum temperature between 1100-1600 ° C, preferably between 1200-1600 ° C, preferably between 1200-1550 ° C, more preferably between 1200-1500 ° C.
  • the firing time at the maximum temperature for producing the sintered magnesia according to the invention is preferably 0.5 h to 7 h, preferably 2 h to 6 h.
  • the entire burning time preferably corresponds to that of the customary production of sintered magnesia.
  • the firing is preferably carried out in an oxidizing atmosphere, but can also take place in a reducing atmosphere. After firing, the sintered magnesia is mechanically comminuted, in particular broken, and classified by sieving.
  • the flour-shaped MgO causter used or the MgO causal flour is preferably prepared in the usual way from magnesium hydroxide or from magnesium carbonate.
  • the MgO flour used preferably the MgO causal flour, preferably has a particle size distribution with the following values: dgo between 80 and 100 ⁇ and / or dso between 5 and 15 ⁇ and / or dio between 1 and 3 ⁇ .
  • the d x value is known to mean that x% by weight the particles are smaller than the specified value. It is determined by means of laser granulometry according to DIN ISO 13320: 2009.
  • the MgO flour is dispersed by means of ultrasound in ethanol.
  • the MgO flour used preferably the MgO-mastic used, preferably at least 88 wt .-%, preferably at least 95 wt .-% MgO, more preferably at least 97 wt .-% MgO, determined by X-ray fluorescence analysis (RFA) according to DIN 12677: 2013-02.
  • the MgO flour used preferably the MgO-mastic used, preferably contains not more than 4% by weight, preferably not more than 2% by weight of CaO, determined by X-ray fluorescence analysis (RFA) according to DIN 12677: 2013-02.
  • the MgO flour preferably the MgO causal flour
  • a conventional press preferably a pelleting press or briquetting press or a hydraulic press, in such a way that the compacts have a raw density in accordance with DIN 66133: 1993-06 from 1, 8 to 2 , 3 g / cm 3 , preferably 1, 9 to 2.2 g / cm 3 , and / or a porosity according to DIN 66133: 1993-06 of 32 to 52% by volume, preferably 35 to 45% by volume, respectively.
  • the compacts are preferably pellets. But it may also be advantageously briquettes or stones.
  • only the MgO flour, preferably the MgO causal flour if appropriate with the addition of a little water, is compressed, ie without binders and thus without any combustibles.
  • the compacts thus consist, based on their dry matter, preferably at least 96 wt .-%, preferably at least 98 wt .-%, particularly preferably 100 wt .-%, of MgO flour, preferably from MgO-Kaustermehl.
  • the pellets in particular contain no magnesite flour.
  • the burning time and the sintering temperatures are, as already explained, adjusted so that the grain of the invention of porous sintered magnesia a grain porosity (total porosity) according to DIN 993-18: 2002-1 1 and DIN 993-1: 1995-4 of 15 to 38% by volume, preferably 20 to 38% by volume, and preferably a grain density according to DIN 993- 18: 2002-1 1 from 2.20 to 2.85 g / cm 3 , preferably 2.20 to 2.75 g / cm 3 . This also applies to the other properties of the grain.
  • the grain of porous sintered magnesia according to the invention preferably has a small mean pore diameter d 50 of from 0.1 to 10 ⁇ m, preferably from 2 to 8 ⁇ m, determined in accordance with DIN 66133: 1993-06.
  • the pore diameter distribution can be monomodal (see FIG. 1).
  • the structure of the sintered magnesia according to the invention is shown in FIG. 3. It has a homogeneous distribution of magnesia particles 1 and small pores 2. Larger pores are not recognizable. The lighter pores 2 are filled with epoxy resin pores, the slightly darker pores 2 are unfilled.
  • the grain size of porous sintered magnesia according to the invention also preferably has a grain compressive strength in accordance with DIN 13055: 2016-1 1 (10 mm instead of 20 mm) of 10 to 30 MPa, preferably from 1 to 25 MPa.
  • the grain size of porous sintered magnesia according to the invention preferably also has the following thermal conductivities (WLF) according to DIN EN 821-2: 1997-08: TABLE 1 Preferred thermal conductivities of the sintered magnesia according to the invention
  • the granulation according to the invention is characterized in particular by the following properties: Table 2: Properties of inventive, porous and dense sintered magnesia
  • the sintered magnesia according to the invention is used in offsets according to the invention for the production of shaped, shaped or unshaped refractory products according to the invention.
  • An inventive offset comprises a dry matter mixture containing the sintered magnesia according to the invention and binder. That is, the amount of binder (dry or liquid) is added additively and refers to the total dry matter of the dry matter mixture. If appropriate, it is also possible for a liquid additive to be present, which is likewise added in an additive manner and relates to the total dry matter of the dry substance mixture.
  • the offset is at least 90 wt .-%, preferably at least 99 wt .-%, more preferably 100 wt .-%, of binder and the dry material mixture, based on the total mass of the offset.
  • the dry substance mixture preferably has the following constituents, based in each case on the total dry matter of the dry substance mixture (the Quantities indicate in each case the total sum of the respective components, ie, for example, the total amount of coarse grains of sintered magnesia according to the invention, the total amount of flour grain or on further grain size): a) at least one coarse grain of the sintered magnesia according to the invention with a particle size> 200 ⁇ , preferably in an amount of 10 to 90 wt .-%, preferably from 20 to 80 wt .-% b) at least one flour grain of magnesia, for example from the sintered magnesia invention, with a particle size ⁇ 200 ⁇ , preferably in an amount of 90 to 10 wt %, preferably from 80 to 20 wt .-% c) optionally at least one further granulation of a refractory material, preferably in a total amount of further grain size from 0.5 to 40 wt .-%, preferably from
  • -% d) optionally at least one additive for refractory materials, preferably in a total amount ⁇ 5 wt .-% e) optionally at least one additive for refractory Wer hydrocarbons, preferably in a total amount of ⁇ 5% by weight.
  • the components may be included in the dry mix in any combination.
  • the offset according to the invention also contains, as already explained, in addition to the dry substance mixture at least one liquid or solid binder for refractory materials, preferably in a total amount of 1 to 9 wt .-%, preferably from 2.5 to 6 wt .-%, based on the dry total mass of the dry substance mixture.
  • the liquid binder is preferably included in a container separate from the dry components of the batch.
  • the coarse grain size of the sintered magnesia according to the invention preferably has a grain size of at most 8 mm, preferably up to a maximum of 6 mm, particularly preferably up to a maximum of 4 mm.
  • the grain distribution of the coarse grains from the sintered magnesia according to the invention and / or the dry substance mixture according to the invention is preferably continuous, preferably according to a Litzow, Furnas or Fuller curve, or it has a Gaussian distribution.
  • the further granulation preferably consists of an elasticizing raw material, that is to say a raw material which typically serves to lower the elasticity modulus.
  • the further granulation preferably consists of a raw material from the following group:
  • the invention is particularly effective with a dry matter mixture of the following materials:
  • Magnesia with zirconia As explained, combinations of different further grains are also possible, preferably a combination of a further grain of hercynite with a further grain of magnesium aluminate spinel.
  • the further grain size preferably has a maximum grain size of ⁇ 8 mm, preferably of ⁇ 6 mm, particularly preferably of ⁇ 4 mm.
  • the dry binder is a binder suitable for refractory products. These binders are given for example in the Practical Guide, page 28 / point 3.2.
  • the liquid binder is preferably a binder from the following group: thermosetting synthetic resin binder, in particular phenol-formaldehyde resin, or molasses or lignin sulfonate or a sulfur-free binder, in particular a dextrose-based binder, an organic acid, sucrose, an A. Os binder, phosphoric acid, a phosphate binder, water glass, ethyl silicate, or a sulfate, e.g. As magnesium sulfate or aluminum sulfate, or a sol-gel system.
  • the dry additive is an additive suitable for refractory products. These additives are given for example in the Practical Guide, page 28 / point 3.3. They are used to improve the processability or deformability or to modify the structure of the products and thus to achieve special properties.
  • the offset according to the invention is used to produce refractory shaped or unshaped products according to the invention.
  • a mixture or plastic mass is prepared from the dry mixture of the inventive offset with at least one liquid and / or solid binder and / or water. If the offset contains a liquid binder, the addition of water is not necessary, but possible. For optimum distribution of the binder (s) and / or water, mixing is carried out, for example, for 3 to 10 minutes.
  • the mixture is poured into molds and pressed so that moldings are formed.
  • the pressing pressures are in common ranges, e.g. at 60-180 MPa, preferably at 100-150 MPa.
  • drying is carried out after pressing, e.g. between 60 and 200 ° C, in particular between 90 and 140 ° C.
  • the drying is preferably carried out to a residual moisture content of between 0.1 and 0.6% by weight, in particular between 0.2 and 0.5% by weight, determined in accordance with DIN 51078: 2002-12.
  • the production of moldings with conventional pressing pressures is possible in order to achieve the said porosities with the corresponding mechanical and thermal properties.
  • the porosity of the sintered magnesia according to the invention which is used in particular in the usual grain sizes after the filler or Litzowkornver whatsoever the material mixtures throughout the grain build-up mixture that especially when pressing the pore volume according to the invention can form without the grains a supporting framework have to train in the structure according to DE 10 2013 020 732 A1.
  • the shaped bodies according to the invention in particular the stones, can be used unfired or tempered or fired. Preferably, however, they are burned used.
  • the green pressed stones are tempered in a ceramic kiln, e.g. a tunnel kiln, between 400 and 1000 ° C, in particular see between 500 and 800 ° C.
  • a ceramic kiln e.g. a tunnel kiln
  • a ceramic kiln such as a tunnel kiln
  • ceramic burned preferably between 1200 and 1800 ° C, in particular between 1400 and 1700 ° C.
  • it is oxidatively fired, but depending on the material composition, a reducing fire may also be advantageous.
  • the thermal conductivity according to the hot-wire (parallel) method according to DIN 993-15: 2005-14 of the fired, shaped products according to the invention, in particular the stones, is preferably at 300 ° C. at 4.0 to 6.0 W / mK, preferably at 4.5 to 5.8 W / mK, at 700 ° C at 3.0 to 5.0 W / mK, preferably 3.0 to 4.8 W / mK, and at 1000 ° C at 2.0 to 3.5 W / mK, preferably at 2.0 to 3.2 W / mK.
  • the fired, shaped products, in particular the stones preferably have a high open porosity of 22 to 45% by volume, preferably 23 to 35% by volume, determined in accordance with DIN EN 993-1: 1995-04.
  • the fired, shaped products, in particular the stones preferably have a low bulk density of from 1.9 to 2.9 g / cm 3 , in particular from 2.0 to 2.8 g / cm 3 , determined in accordance with DIN 993-1: 1995-04 on.
  • the cold compressive strength according to DIN EN 993-5: 1998-12 of the fired, shaped products according to the invention, in particular the stones, is preferably 30 and 100 MPa, in particular 45 and 90 MPa.
  • the cold bending strength according to DIN EN 993-6: 1995-04 of the fired, shaped products according to the invention, in particular of the stones, is preferably from 2 to 18 MPa, in particular from 3 to 10 MPa.
  • the gas permeability according to DIN EN 993-4: 1995-04 of the fired, shaped products according to the invention, in particular the stones, is preferably 0.2 to 8 nPm, in particular 0.5 to 6 nPm.
  • the thermal shock resistance determined according to DIN EN 993-1 1: 2008-03 in air at an elevated test temperature of 1100 ° C. of the fired, shaped products according to the invention, in particular of the bricks, is preferably> 20 quench cycles, in particular> 30 quench cycles.
  • a mixture of the dry material mixture according to the invention with at least one dry and / or liquid binder and / or water is also prepared. If the offset contains a liquid binder, the addition of water is not necessary, but possible.
  • the invention provides highly porous, but with respect to thermal conductivity and pore size and thus the gas permeability as working food and also as a backrounding extremely suitable refractory products.
  • Particularly advantageous is the small average pore diameter dso of the sintered magnesia according to the invention, which is preferably at 2-8 ⁇ and in the manufactured product, in addition to the average pore diameter dso of the matrix of about 4 ⁇ , still present (see Figure 2).
  • the shaped, in particular pressed, or unshaped, large-ceramic refractory products according to the invention can be used as working feed in a fired industrial furnace aggregate, despite their high porosity, because they have the required mechanical, thermomechanical and thermochemical working feed properties.
  • the caustic magnesia was pressed into almond-shaped pellets with dimensions of 13 ⁇ 20 ⁇ 30 mm 3 using a pelleting press. These green pellets had a grain density of 2.0 g / cm 3 .
  • pellets were sintered in a high temperature laboratory furnace with a temperature profile in which the temperature was increased to 800 ° C at 2 K / min. After a holding time of 6 hours, the temperature was further raised to 1450 ° C. at 2 K / min. The residence time at this temperature was 5 h. The cooling was carried out continuously by heat emission of the high-temperature laboratory furnace to the environment.
  • porous sintered magnesia was crushed and classified by sieving.
  • the granules of the porous sintered magnesia according to the invention had a grain density of 2.59 g / cm 3 .
  • the corresponding open porosity was 25.8% by volume (DIN EN 993-18: 2002-1 1, DIN EN 993-1: 1 195-04).
  • the raw materials used had the following properties:
  • the corresponding raw materials according to Table 3 with a particle size distribution by filler were mixed in a mixer for 3 min dry, provided with the liquid binder, and further mixed for 5 min.
  • the mixture was placed on a hydraulic press and in a B-format for rotary kiln stones Pressed a pressing pressure according to Table 3.
  • the stones were dried in a dryer at about 130 ° C and then fired at 1600 ° C in a tunnel oven for 50 hours oxidizing.
  • the holding time at maximum temperature was 5 h.
  • the burning shrinkage by measuring, the finished density by measuring and weighing, the open porosity according to DIN EN 993-1: 1995- 04, the cold compressive strength according to DIN EN 993-5: 1998-12, the cold bending strength according to DIN EN 993-6: 1995-04, the gas permeability according to DIN EN 993-4: 1995- 04 and the thermal conductivity according to the hot-wire (parallel) method DIN 993-15: 2005-14.
  • the thermal shock resistance was determined in accordance with DIN EN 993-1 1: 2008-03 in air at an elevated test temperature of 1100 ° C.
  • the stone properties compared to the conventional dense stones according to b) change in the case of a) and also c), which have a significantly increased porosity and a significantly reduced bulk density, without exerting a negative impact on the other stone properties.
  • the gas permeability and the pore diameter are reduced in the bricks according to the present invention.
  • the reduction in the bulk density and the increase in the open porosity compared with b) are clear.
  • the average pore diameter dso is dramatically reduced compared to b) and c), so that there is a reduced infiltration tendency towards alkalis and clinker melts.
  • the cold compressive strength and the cold bending strength remain safe in the typical area for dense stones.
  • Example 3 The stone properties compared to the stones according to Example 1 change only slightly with the use of porous magnesia and porous spinel, but a further reduced thermal conductivity can be observed. All other positive mechanical and thermal properties are retained.
  • Example 3 The stone properties compared to the stones according to Example 1 change only slightly with the use of porous magnesia and porous spinel, but a further reduced thermal conductivity can be observed. All other positive mechanical and thermal properties are retained.
  • Table 4 shows that the porous sintered magnesia according to the invention can also be used with magnesia pebbles, the porosity is significantly increased by the use of the sintered magnesia according to the invention, all positive mechanical and thermal properties are retained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Ceramic Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Organic Chemistry (AREA)
  • Structural Engineering (AREA)
  • Materials Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Compositions Of Oxide Ceramics (AREA)
  • Furnace Housings, Linings, Walls, And Ceilings (AREA)
  • Ceramic Products (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
  • Porous Artificial Stone Or Porous Ceramic Products (AREA)

Abstract

Die vorliegende Erfindung betrifft ein Verfahren zur Herstellung einer Körnung aus Sintermagnesia, wobei die Sintermagnesia durch Sintern von Presslingen, insbesondere Pellets, aus MgO-Mehl, vorzugsweise aus MgO-Kaustermehl, und anschließendes mechanisches Zerkleinern der Presslinge hergestellt wird, wobei derart gesintert wird, dass die Körnung eine Kornporosität (Gesamtporosität) gemäß DIN EN 993-1:1195-04 und DIN EN 993-18:1999-01 von 15 bis 38 Vol.-%, vorzugsweise von 20 bis 38 Vol.-% aufweist, sowie einen Versatz zur Herstellung eines grobkeramischen, feuerfesten, geformten oder ungeformten, die poröse Sintermagnesia enthaltenden Erzeugnisses, ein derartiges, aus dem Versatz hergestelltes Erzeugnis sowie ein Verfahren zu dessen Herstellung, eine Zustellung, insbesondere ein Arbeitsfutter und/oder eine Hintermauerung, eines großvolumigen Industrieofens, wobei die Zustellung, insbesondere das Arbeitsfutter und/oder die Hintermauerung, mindestens ein derartiges Erzeugnis aufweist, sowie einen derartigen Industrieofen.

Description

Verfahren zur Herstellung einer porösen Sintermagnesia, Versatz zur Herstellung eines grobkeramischen feuerfesten Erzeugnisses mit einer Körnung aus der Sintermagnesia, derartiges Erzeugnis sowie Verfahren zu seiner Herstellung, Zustellung eines Industrieofens und Industrieofen Die Erfindung betrifft ein Verfahren zur Herstellung einer porösen Sintermagnesia und einen Versatz zur Herstellung eines grobkeramischen, feuerfesten, geformten oder ungeformten, die poröse Sintermagnesia enthaltenden Erzeugnisses. Die Erfindung betrifft außerdem ein derartiges, aus dem Versatz hergestelltes Erzeugnis sowie ein Verfahren zu dessen Herstellung. Des Weiteren betrifft die Erfindung eine Zustellung, insbesondere ein Arbeitsfutter und/oder eine Hintermauerung, eines großvolumigen Industrieofens, wobei die Zustellung, insbesondere das Arbeitsfutter und/oder die Hintermauerung, mindestens ein derartiges Erzeugnis aufweist, sowie einen derartigen Industrieofen.
Der Begriff„feuerfest" soll im Rahmen der Erfindung nicht begrenzt sein auf die Definition gemäß ISO 836 bzw. DIN 51060, die einen Kegelfallpunkt von > 1500° C definieren. Feuerfeste Erzeugnisse im Sinne der Erfindung haben einen Druckerweichungspunkt T0,s gemäß DIN EN ISO 1893: 2009-09 von T0,s ^ 600 °C, bevorzugt To,5 ^ 800 °C. Demnach sind feuerfeste bzw. refraktäre körnige Werkstoffe bzw. Körnungen im Sinne der Erfindung solche Werkstoffe bzw. Körnungen, die für ein feuerfestes Erzeugnis mit dem oben genannten Druckerweichungspunkt To,5 geeignet sind. Die erfindungsgemäßen feuerfesten Erzeugnisse werden zum Schutz von Aggregatkonstruktionen in Aggregaten eingesetzt, in denen Temperaturen zwischen 600 und 2000 °C, insbesondere zwischen 1000 und 1800° C vorherrschen. Dabei umfasst der Begriff„Körnung" bzw.„körniger Werkstoff' im Sinne der Erfindung einen schüttbaren Feststoff, der aus vielen kleinen, festen Körnern besteht. Weisen die Körner eine Korngröße < 200 μιτι auf, handelt es sich bei der Körnung um ein Mehl bzw. Pulver. Die Körner sind durch mechanisches Zerkleinern, z.B. Brechen und/oder Mahlen hergestellt. Die Kornverteilung der Körnung wird in der Regel durch Siebung eingestellt.
Von den feuerfesten Werkstoffen ist dem Fachmann bekannt, dass sie auf sechs feuerfesten Grundoxiden sowie Kohlenstoff und feuerfesten Kohlenstoffverbindungen basieren, die z.B. in„Gerald Routschka/Hartmut Wuthnow, Praxishandbuch„Feuerfeste Werkstoffe", 5. Auflage, Vulkan-Verlag, (im Folgenden lediglich mit„Praxishandbuch" bezeichnet), S. 1 -7", benannt und klassifiziert sind. Gemäß DIN EN ISO 10081 :2005-05 wird basierend auf dem chemischen Reaktionsverhalten zwischen nicht basischen und basischen feuerfesten Erzeugnissen unterschieden. Die Erzeugnisgruppe der nicht basischen Erzeugnisse umfasst die Werkstoffe der SiO2-Al2O3-Reihe und andere, nach ihrem chemischen Reaktionsverhalten nicht näher eingruppierbare Werkstoffe wie SiC- und Kohlenstoff-Produkte. Die hoch SiO2-haltigen Werkstoffe werden als sauer bezeichnet. Wesentliches Merkmal der meisten basischen Erzeugnisse ist es, dass die Summe der Oxide MgO und CaO überwiegt. Außerdem werden Chromit-, Picrochromit-, Spinell- und Forsteritsteine zu den basischen Erzeugnissen gerechnet, obwohl sie nahezu neutral sind. Zu den geformten basischen Erzeugnissen zählen insbesondere Magnesia enthaltende Erzeugnisse, insbe- sondere Magnesiaerzeugnisse, Magnesiachromiterzeugnisse, Magnesiaspinellerzeugnisse, Magnesiazirkoniaerzeugnisse, Magnesiapleonasterzeug- nisse, Magnesiagalaxiterzeugnisse, Magnesiahercyniterzeugnisse, Magnesi- adolomaerzeugnisse (siehe z.B. Praxishandbuch, S. 99, Tabelle 4.26). Basische ungeformte Erzeugnisse sind Erzeugnisse, deren Zuschlagstoffe im We- sentlichen aus Magnesia, Dolomit, Chrommagnesia, Chromerz und Spinell bestehen (siehe z.B. Praxishandbuch, S. 146).
Typische Magnesiarohstoffe zur Herstellung von Magnesiaerzeugnissen sind Körnungen bzw. Granulate aus Sinter- und/oder Schmelzmagnesia. Sintermagnesia wird durch Brennen bei einer Temperatur von > 1 700 °C, bevorzugt > 1800 °C, hergestellt, um eine möglichst hohe Kornrohdichte zu erreichen. Schmelzmagnesia wird bei einer Temperatur > 2800 °C hergestellt, um ebenfalls eine möglichst hohe Kornrohdichte und eine möglichst niedrige Kornporosität zu erreichen. Übliche Sintermagnesiasorten weisen eine Kornrohdichte von > 3,10 g/cm3 auf. Angestrebt werden Werte von > 3,30 - 3,40 g/cm3. Die entsprechenden Kornporositäten (Gesamtporosität) liegen üblicherweise bei 4-10 Vol. -%. Körnungen aus Schmelzmagnesia weisen in der Regel eine Kornrohdichte von > 3,50 g/cm3 auf, mit einer Kornporosität (Gesamtporosität) < 2,5 Vol.-%.
Erfindungsgemäße geformte Erzeugnisse sind keramisch gebrannte oder un- gebrannte, insbesondere gepresste, vorzugsweise in einer keramischen Fabrik hergestellte, Produkte, insbesondere Steine oder Platten. Die geformten Erzeugnisse, insbesondere die Steine, werden zur Ausbildung der Ofenauskleidung oder der Ofenhintermauerung, vorzugsweise mit Mörtel, vermauert oder mörtelfrei („knirsch") vermauert. Bei den erfindungsgemäßen ungeformten Er- Zeugnissen handelt es sich um Erzeugnisse, die, meist beim Anwender, aus einer ungeformten Masse, z.B. durch Gießen oder Spritzen, hergestellt werden. Ungeformte Erzeugnisse werden am Verwendungsort meist hinter Schalungen in größeren Feldern eingebracht und bilden nach der Erhärtung die Ofenauskleidung oder die Ofenhintermauerung. Die erfindungsgemäßen Erzeugnisse werden vorzugsweise in industriellen Brenn- oder Schmelz- oder in anderen befeuerten industriellen Aggregaten, z.B. in einem großvolumigen Industrieofen zur Bildung einer feuerfesten, feuerseiti- gen bzw. aggregatinnenseitigen Auskleidung (Arbeitsfutter) derselben verwendet. Vorzugsweise werden sie als Arbeitsfutter in Brennöfen der Nichtmetallin- dustrie, bevorzugt in Zementofenanlagen, Kalkschacht- oder Kalkdrehrohrofen, oder Wärmeöfen oder Öfen zur Energieerzeugung oder in Öfen der Stahlerzeugung oder der Nichteisenmetallindustrie verwendet. Die erfindungsgemäßen Erzeugnisse können zudem auch als isolierende Hintermauerung in einem der genannten Öfen verwendet werden. Gattungsgemäße feuerfeste Erzeugnisse sollen deshalb eine geringe Wärmeleitfähigkeit und eine hohe Infiltrationsbeständigkeit aufweisen. Des Weiteren sollen sie eine gute Temperaturbeständigkeit bei Anwendungstemperaturen, chemische Beständigkeit, Thermoschock- beständigkeit, gute Gefügeelastizität, angepasstes Druckerweichen und nied- rige Gasdurchlässigkeit und hohe Heißbiegefestigkeit gewährleisten. Außerdem sollen die geformten Erzeugnisse eine dem Anwendungszweck ange- passte Kaltdruckfestigkeit aufweisen, die insbesondere auch für deren Handhabbarkeit bei und nach ihrer Herstellung und auch noch nach Temperaturwechseln ausreichend hoch sein soll. Gattungsgemäße feuerfeste Erzeugnisse sind aus der DE 10 2006 040 269 A1 und der DE 10 2013 020 732 A1 bekannt. Bei diesen wird eine gewünschte Porosität über die Korngrößenverteilung eingestellt:
Aus der DE 10 2006 040 269 A1 sind gebrannte grobkeramische, feuerfeste Produkte aus unterschiedlichen feuerfesten Werkstoffen bekannt, die möglich- erweise als Arbeitsfutter verwendbar sind und aufgrund einer offenen Porosität > 10 Vol.-% gegebenenfalls wohl auch eine relativ geringe Wärmeleitfähigkeit aufweisen. Dabei handelt es sich um feinkörnige Produkte, die hergestellt sind aus einem Versetz, der 50-90 Gew.-% feinteiliges refraktäres Material mit einer Korngröße d9o<100 μιτι aufweist, wobei der Anteil der Korngröße d9o zwischen 100-500 μιτι auf < 10 Gew..-% begrenzt ist. Daraus ergibt sich ein grobkörniger Anteil von 10-50 Gew.-% mit d9o > 500 μιτι, wobei die spezifische Kornauswahl des Versatzes entscheidend für das Gefüge des gebrannten Produktes und dessen Eigenschaften ist. Die offene Porosität der Produkte besteht zu mehr als der Hälfte aus Poren mit einem Durchmesser d9o < 15 μιτι und zu mehr als 1/10 aus Poren mit einem Durchmesser d9o> 100 μιτι. Dabei beträgt der Porenanteil zwischen 15 und 100 μιτι maximal 1/7 der offenen Gesamtporosität.
Aus der DE 10 2013 020 732 A1 geht ein grobkeramisches, feuerfestes Erzeugnis aus mindestens einem körnigen feuerfesten Werkstoff hervor, das eine offene Porosität zwischen 22 und 45 Vol.-%, insbesondere zwischen 23 und 29 Vol.-%, und einen Kornaufbau aufweist, bei dem der Mittelkornanteil mit Korngrößen zwischen 0, 1 und 0,5 mm 10 bis 55 Gew.-%, insbesondere 35 bis 50 Gew.-% beträgt, wobei der Rest des Kornaufbaus Mehlkornanteil mit Korngrößen bis 0, 1 mm und/oder Grobkornanteil mit Korngrößen über 0,5 mm ist. Das feuerfeste Erzeugnis wird insbesondere zur Herstellung eines Arbeitsfutters eines großvolumigen Industrieofens verwendet.
Die US-PS 4,927,61 1 beschreibt einen Magnesiaklinker mit einer Porosität von > 40 Vol.-%, vorzugsweise im Bereich 50 bis 70 Vol.-%, und einer Kornrohdichte von < 2,0 g/cm3. Zudem weisen mehr als 90 Vol.-% der Poren eine Porengröße < 50 μιτι auf. Die Herstellung des Magnesiaklinkers erfolgt durch Granulation einer magnesiumoxidbildenden Komponente mit einer Korngröße von < 150 μιτι (100 mesh) und einem ausbrennbaren Stoff in einer Zusatzmenge von 10-40 Gew.-% sowie dem Zusatz von 1 -15 % eines Magnesiumsalzes und anschließendes Brennen bei 1300 bis 1600 °C. Der so hergestellte Magnesi- aklinker wird in spritzbaren Suspensionen zur Beschichtung von Düsen und Verteilerrinnen eingesetzt.
Die Verwendung von leichtgewichtigen basischen Körnungen auf Basis von Magnesia-Spinell wird außerdem von Wen Yan et al. in„Effect of Spinel Content of lightweight aggregates on the reaction characteristics of periclase-spinel re- fractories with cement clinker" in Proc. 128, UNITECR 2015, sowie von Wen Yan et al. in„Effect of Spinel Content on the Reaction of Porous Periclase-Spi- nel Ceramics and Cement Clinker" aus Key Engineering Materials, Vol. 697, pp 581 -585, dargestellt. Danach werden Körnungen aus MgO und aus MgO-Spi- nell-Mischungen erzeugt, also MgO bzw. MgO-Spinell-Co-Klinker, mit einer Po- rosität von 24,8 - 30,0 Vol.-%, und anschließend mit Magnesia als Matrix vermischt, geformt und bei einer Temperatur von 1550 °C gebrannt. Diese geformten Erzeugnisse sind gekennzeichnet durch eine Porosität von ca. 30 Vol.-%. MgO-Körner weisen in ihrer Porengrößenverteilung ein Maximum bei einem Porendurchmesser von 50 [im auf; der durchschnittliche Porendurchmesser der MgO-Spinell-Co-Klinker-Körner wird mit Werten zwischen 1 1 ,33 [im und 27,58 μιη angegeben, der durchschnittliche Porendurchmesser der Matrix liegt bei 50,52 μιτι. Generell steigt mit steigendem Spinellgehalt die Anfälligkeit gegen Zementklinkerangriff. Den höchsten Widerstand zeigen ein reines Magnesiaerzeugnis und ein Erzeugnis mit einem Co-Klinker aus 75 % Magnesia und 25 % Spinell. Weitere technologisch wichtige Größen, etwa Festigkeit, Feuerfestigkeit, Elastizität (Elastizitätsmodul, Schubmodul), Temperaturwechselbeständigkeit, Volumenbeständigkeit etc. werden nicht genannt. Es ist daher zu vermuten, dass derartige Steine in einem Zementdrehofen aufgrund mangelnder technologischer Eigenschaften nicht eingesetzt werden können. Bemer- kenswert ist der große Porendurchmesser, der auf die Verwendung von Aus- brennstoffen für die Porenbildung schließen lässt (organische Verbindungen, Hydroxide, Carbonate), und wie sie auch vom gleichen Autor beschrieben werden (Wen Yan et al., Preparation and characterization of porous MgO-A Os refractory aggregates using an in-situ decomposition pore-forming technique, Ceram. Int. 2015 Jan., pp. 515-520).
Die CN 106747594 A offenbart die Herstellung von Körnungen aus einer Mischung aus 5-95 Gew.-% MgO-Kaustermehl und 5-95 Gew.-% Magnesitmehl. Diese Mischungen werden mit Liginsulfonat vermischt und zu Presslingen ge- presst. Die Presslinge werden für 20 bis 50 Stunden getrocknet und anschlie- ßend bei 1450-1700°C im Tunnelofen oder Herdwagenofen für 10-20 Stunden gebrannt. Beispielhaft mit 95 Gew.-% MgO-Kaustermehl und 5 Gew.-% Magnesitmehl hergestellte Körnungen weisen eine Porosität von 16,5 Vol.-% und eine Dichte von 2,97 g/cm3 auf.
Aufgabe der Erfindung ist es, eine Sintermagnesia mit guter Kornfestigkeit für einen Versatz zur Herstellung feuerfester Erzeugnisse mit hoher Porosität und niedriger Wärmeleitfähigkeit bereit zu stellen, die für den Einsatz in großvolumi- gen Industrieöfen geeignete Eigenschaften und insbesondere eine geringe Infiltrationsneigung gegen Alkaliinfiltration aufweisen. Weitere Aufgabe der Erfindung ist die Bereitstellung eines derartigen Versatzes sowie eines aus dem Versatz hergestellten geformten oder ungeformten feuerfesten Erzeugnisses, sowie eines Verfahrens zu dessen Herstellung.
Zudem ist Aufgabe der Erfindung die Bereitstellung einer feuerfesten Zustellung eines großvolumigen Industrieofens, insbesondere eines Brennofens der Nicht- metallindustrie, bevorzugt einer Zementofenanlage, eines Kalkschacht- oder Kalkdrehrohrofens, eines Ofens zur Herstellung von Magnesia oder Doloma o- der eines Wärmeofens oder eines Ofens zur Energieerzeugung, oder auch eines Ofens der Nichteisen- oder Stahlindustrie, mit mindestens einem bzw. aus- gebildet aus mindestens einem erfindungsgemäßen Erzeugnis.
Die Zustellung kann z. B. mehrschichtig aufgebaut sein und ein feuerseitiges bzw. heißseitiges Arbeitsfutter bzw. eine aggregatinnenseitige Auskleidung und ein dahinter angeordnete isolierende Hintermauerung aufweisen.
Diese Aufgaben werden durch die Merkmale der Ansprüche 1 , 15, 25, 26, 38, 40, 41 und 45 gelöst. Vorteilhafte Ausführungsformen der Erfindung werden in den von diesen Ansprüchen abhängigen Ansprüchen gekennzeichnet.
Im Folgenden wird die Erfindung anhand einer Zeichnung beispielhaft näher erläutert:
Es zeigen: Figur 1 : Beispielhaft eine Porendurchmesserverteilung einer erfindungsgemäßen Körnung aus poröser Sintermagnesia
Figur 2: Beispielhaft eine Porendurchmesserverteilung eines erfindungsgemäßen Formsteins
Figur 3: Eine lichtmikroskopische Aufnahme (Auflicht) einer erfindungsgemä- ßen Sintermagensia, gesintert in einem HT-Ofen bei 1530°C, Brenndauer 6 h Im Rahmen der Erfindung wurde überraschenderweise herausgefunden, dass durch Sintern von Presslingen, insbesondere Pellets, aus MgO-Mehl, vorzugsweise aus MgO-Kaustermehl, bei einer reduzierten maximalen Brenntemperatur (anstelle von den üblichen Temperaturen von > 1700 °C) und anschließen- des mechanisches Zerkleinern der Presslinge eine Sintermagnesia hergestellt werden kann, welche eine Kornporosität (Gesamtporosität) gemäß DIN EN 993- 1 :1 195-04 und DIN EN 993-18:1999-01 von 15 bis 38 Vol.-%, vorzugsweise von 20 bis 38 Vol.-% aufweist.
Das MgO-Mehl kann z.B. auch aus totgebrannter Magnesia (DBM) oder Schmelzmagnesia bestehen. Vorzugsweise handelt es sich aber um MgO- Kaustermehl.
Und unter Verwendung dieser körnigen, porösen Sintermagnesia, können feuerfeste Erzeugnisse mit typischen mechanischen und chemischen Eigenschaften hergestellt werden, die gegenüber den bisher eingesetzten Erzeugnissen eine höhere Porosität und damit niedrigere Wärmeleitfähigkeit, aber dennoch eine geringe Infiltrationsneigung aufweisen.
Insbesondere wurde im Rahmen der Erfindung herausgefunden, dass es ohne Zusatz von Ausbrennstoffen möglich ist, nur durch eine reduzierte maximale Brenntemperatur anstelle der üblichen Temperaturen > 1700 °C, aus den Presslingen aus MgO-Mehlkörnern, vorzugsweise MgO Kauster-Partikeln, eine Körnung aus Sintermagnesia herzustellen, die im Vergleich zu bekannter Sintermagnesia und Schmelzmagnesia eine deutlich geringere Kornrohdichte und deutlich höhere Porosität aufweist, welche wiederum zu den verbesserten Eigenschaften der daraus hergestellten Erzeugnisse führt. Die Brenndauer und die Sintertemperaturen, also der Temperaturverlauf bzw. das Temperaturregime bzw. das Temperaturprofil, der Sinterung bzw. des Sintervorgangs, werden also erfindungsgemäß so eingestellt, dass die erfindungsgemäße Körnung aus poröser Sintermagnesia eine Kornporosität (Gesamtporosität) gemäß DIN 993-18:2002-1 1 und DIN 993-1 :1995-4 von 15 bis 38 Vol.- %, bevorzugt 20 bis 38 Vol.-%, und vorzugsweise eine Kornrohdichte gemäß DIN 993-18:2002-1 1 von 2,20 bis 2,85 g/cm3, bevorzugt 2.20 bis 2.75 g/cm3 aufweist. Das Temperaturregime hängt dabei beispielsweise von der Magnesiasorte (deren Reaktivität) und der Partikelgröße des MgO-Mehls ab. Vorzugsweise erfolgt die Sinterung bei einer maximalen Temperatur < 1600 °C, vorzugsweise < 1550 °C, bevorzugt < 1500 °C, besonders bevorzugt < 1400 °C.
Bzw. vorzugsweise erfolgt die Sinterung bei einer maximalen Temperatur zwischen 1 100-1600 °C, vorzugsweise zwischen 1200-1600 °C, bevorzugt zwi- sehen 1200-1550 °C, besonders bevorzugt zwischen 1200-1500 °C.
Die Brenndauer bei der Maximaltemperatur zur Herstellung der erfindungsgemäßen Sintermagnesia liegt dabei vorzugsweise bei 0,5 h bis 7 h, bevorzugt 2 h bis 6 h. Die gesamte Brenndauer entspricht vorzugsweise derjenigen der üblichen Herstellung von Sintermagnesia. Das Brennen erfolgt vorzugsweise in oxidierender Atmosphäre, kann aber auch in reduzierender Atmosphäre erfolgen. Nach dem Brennen wird die Sintermagnesia mechanisch zerkleinert, insbesondere gebrochen, und durch Sieben klassiert.
Der verwendete mehlförmige MgO-Kauster bzw. das MgO-Kaustermehl ist vor- zugsweise in üblicher Weise hergestellt aus Magnesiumhydroxid oder aus Mag- nesiumearbonat.
Zudem weist das verwendete MgO-Mehl, bevorzugt das MgO-Kaustermehl, vorzugsweise eine Partikelgrößenverteilung mit folgenden Werten auf: dgo zwischen 80 und 100 μιη und/oder dso zwischen 5 und 15 μιη und/oder dio zwischen 1 und 3 μιτι. Der dx-Wert bedeutet bekanntermaßen, dass x Gew.-% der Partikel kleiner sind als der angegebene Wert. Er wird bestimmt mittels La- sergranulometrie gemäß DIN ISO 13320:2009. Das MgO-Mehl wird dazu mittels Ultraschall in Ethanol dispergiert.
Zudem enthält das verwendete MgO-Mehl, bevorzugt der verwendete MgO- Kauster, vorzugsweise mindestens 88 Gew.-%, bevorzugt mindestens 95 Gew.-% MgO, besonders bevorzugt mindestens 97 Gew.-% MgO, bestimmt mittels Röntgenfluoreszenzanalyse (RFA) gemäß DIN 12677:2013-02. Des Weiteren enthält das verwendete MgO-Mehl, bevorzugt der verwendete MgO- Kauster, vorzugsweise maximal 4 Gew.-%, bevorzugt maximal 2 Gew.-% CaO, bestimmt mittels Röntgenfluoreszenzanalyse (RFA) gemäß DIN 12677:2013- 02.
Das MgO-Mehl, vorzugsweise das MgO-Kaustermehl, wird zudem auf einer üblichen Presse, vorzugsweise einer Pellertierpresse oder Brikettierpresse oder einer hydraulischen Presse derart verpresst, dass die Presslinge eine Roh- dichte gemäß DIN 66133:1993-06 von 1 ,8 bis 2,3 g/cm3, bevorzugt 1 ,9 bis 2,2 g/cm3, und/oder eine Porosität gemäß DIN 66133: 1993-06 von 32 bis 52 Vol.-%, bevorzugt 35 bis 45 Vol.-%, aufweisen. Bei den Presslingen handelt es sich vorzugsweise um Pellets. Es kann sich aber vorteilhafterweise auch um Briketts oder Steine handeln. Vorzugsweise wird dabei ausschließlich das MgO-Mehl, vorzugsweise das MgO-Kaustermehl, ggf. unter Zugabe von etwas Wasser, verpresst, also ohne Bindemittel und somit ohne jegliche Ausbrennstoffe.
Die Presslinge bestehen somit, bezogen auf Ihre Trockenmasse, vorzugsweise zu mindestens 96 Gew.-%, bevorzugt zu mindestens 98 Gew.-%, besonders bevorzugt zu 100 Gew.-%, aus MgO-Mehl, bevorzugt aus MgO-Kaustermehl.
Die Presslinge enthalten insbesondere kein Magnesitmehl.
Die Brenndauer und die Sintertemperaturen werden, wie bereits erläutert, so eingestellt, dass die erfindungsgemäße Körnung aus poröser Sintermagnesia eine Kornporosität (Gesamtporosität) gemäß DIN 993-18:2002-1 1 und DIN 993-1 :1995-4 von 15 bis 38 Vol.-%, bevorzugt 20 bis 38 Vol.-%, und vorzugsweise eine Kornrohdichte gemäß DIN 993-18:2002-1 1 von 2,20 bis 2,85 g/cm3, bevorzugt 2.20 bis 2.75 g/cm3 aufweist. Dies gilt auch für die übri- gen Eigenschaften der Körnung.
Insbesondere weist die erfindungsgemäße Körnung aus poröser Sintermagnesia vorzugsweise einen geringen mittleren Porendurchmesser dso von 0,1 bis 10 pm, bevorzugt von 2 bis 8 μιη, bestimmt gemäß DIN 66133:1993-06 auf. Dabei kann die Porendurchmesserverteilung monomodal sein (siehe Figur 1 ). Das Gefüge der erfindungsgemäßen Sintermagnesia zeigt Figur 3. Es weist eine homogene Verteilung von Magnesiapartikeln 1 und kleinen Poren 2 auf. Größere Poren sind nicht zu erkennen. Die helleren Poren 2 sind mit Epoxidharz gefüllte Poren, die etwas dunkleren Poren 2 sind ungefüllt.
Die erfindungsgemäße Körnung aus poröser Sintermagnesia weist zudem vor- zugsweise eine Korndruckfestigkeit in Anlehnung an DIN 13055:2016-1 1 (10 mm statt 20 mm) von 10 bis 30 MPa, bevorzugt von 1 1 bis 25 MPa, auf.
Die erfindungsgemäße Körnung aus poröser Sintermagnesia weist zudem vorzugsweise folgende Wärmeleitfähigkeiten (WLF) gemäß DIN EN 821 -2:1997- 08 auf: Tabelle 1 : Bevorzugte Wärmeleitfähigkeiten der erfindungsgemäßen Sintermagnesia
Figure imgf000013_0001
Die erfindungsgemäße Körnung zeichnet sich insbesondere durch folgende Eigenschaften aus: Tabelle 2: Eigenschaften erfindungsgemäßer, poröser und dichter Sintermagnesia
Figure imgf000014_0001
Wie bereits erläutert, wird die erfindungsgemäße Sintermagnesia in erfindungsgemäßen Versätzen zur Herstellung von erfindungsgemäßen, geformten oder ungeformten feuerfesten Erzeugnissen verwendet.
Ein erfindungsgemäßer Versatz weist ein die erfindungsgemäße Sintermagnesia enthaltendes Trockenstoffgemisch und Bindemittel auf. Das heißt, die Menge an Bindemittel (trocken oder flüssig) wird additiv zugegeben und bezieht sich auf die gesamte Trockenmasse des Trockenstoffgemisches. Gegebenen- falls kann auch noch ein flüssiges Zusatzmittel enthalten sein, welches ebenfalls additiv zugegeben wird und sich auf die gesamte Trockenmasse des Tro- ckenstoffgemisches bezieht. Vorzugsweise besteht der Versatz zu mindestens 90 Gew.-%, bevorzugt zu mindestens 99 Gew.-%, besonders bevorzugt zu 100 Gew.-%, aus Bindemittel und dem Trockenstoffgemisch, bezogen auf die Gesamtmasse des Versatzes.
Das Trockenstoffgemisch weist vorzugsweise folgende Bestandteile, jeweils bezogen auf die gesamte Trockenmasse des Trockenstoffgemisches, auf (die Mengenangaben geben jeweils die Gesamtsumme der jeweiligen Komponenten an, also z.B. den Gesamtanteil an grober Körnung aus erfindungsgemäßer Sintermagnesia, den Gesamtanteil an Mehlkörnung oder an weiterer Körnung): a) zumindest eine grobe Körnung aus der erfindungsgemäßen Sintermagnesia mit einer Korngröße > 200 μιτι, vorzugsweise in einer Menge von 10 bis 90 Gew.-%, bevorzugt von 20 bis 80 Gew.-% b) zumindest eine Mehlkörnung aus Magnesia, z.B. aus der erfindungsgemäßen Sintermagnesia, mit einer Korngröße < 200 μητι, vorzugsweise in einer Menge von 90 bis 10 Gew.-%, bevorzugt von 80 bis 20 Gew.-% c) gegebenenfalls zumindest eine weitere Körnung aus einem feuerfesten Werkstoff, vorzugsweise in einer Gesamtmenge an weiterer Körnung von 0,5 bis 40 Gew.-%, bevorzugt von 3 bis 30 Gew.-% d) gegebenenfalls zumindest einen Zusatzstoff für feuerfeste Werkstoffe, vorzugsweise in einer Gesamtmenge < 5 Gew.-% e) gegebenenfalls zumindest ein Zusatzmittel für feuerfeste Werkstoffe, vorzugsweise in einer Gesamtmenge von < 5 Gew.-%
Die Komponenten können in dem Trockenstoffgemisch in jeglicher Kombination enthalten sein.
Der erfindungsgemäße Versatz enthält zudem, wie bereits erläutert, additiv zu dem Trockenstoffgemisch zumindest ein flüssiges oder festes Bindemittel für feuerfeste Werkstoffe, vorzugsweise in einer Gesamtmenge von 1 bis 9 Gew.- %, bevorzugt von 2,5 bis 6 Gew.-%, bezogen auf die trockene Gesamtmasse des Trockenstoffgemisches.
Im Fall von ungeformten Erzeugnissen ist das flüssige Bindemittel vorzugsweise beigepackt in einem von den trockenen Bestandteilen des Versatzes getrennten Behältnis. Des Weiteren weist die grobe Körnung aus der erfindungsgemäßen Sintermagnesia vorzugsweise eine Korngröße bis maximal 8 mm, bevorzugt bis maximal 6 mm, besonders bevorzugt bis maximal 4 mm, auf.
Die Kornverteilung der groben Körnung aus der erfindungsgemäßen Sintermag- nesia und/oder des erfindungsgemäßen Trockenstoffgemisches ist vorzugsweise stetig, bevorzugt gemäß einer Litzow-, Furnas- oder Fullerkurve oder sie weist eine Gaußsche Verteilung auf.
Die weitere Körnung besteht vorzugsweise aus einem elastifizierenden Rohstoff, also einem Rohstoff, der typischerweise der Senkung des Elastizitätsmo- duls dient.
Vorzugsweise besteht die weitere Körnung aus einem Rohstoff aus der folgenden Gruppe:
Magnesiumaluminat-Spinell, Bauxit, Tonerde, Hercynit, Pleonast, Chromerz, pleonastischem Spinell, Zirkonoxid, Olivin und/oder Forsterit. Ganz besonders wirksam gelingt die Erfindung mit einem Trockenstoffgemisch aus folgenden Werkstoffen:
Magnesia
Magnesia mit Magnesiumaluminat-Spinell Magnesia mit Hercynit Magnesia mit Forsterit
Magnesia mit Pleonast bzw. pleonastischem Spinell Magnesia mit Chromerz
Magnesia mit Zirkonoxid. Wie erläutert, sind auch Kombinationen verschiedener weiterer Körnungen möglich, bevorzugt eine Kombination einer weiteren Körnung aus Hercynit mit einer weiteren Körnung aus Magnesiumaluminat-Spinell.
Des Weiteren weist die weitere Körnung vorzugsweise eine maximale Korn- große von < 8 mm, bevorzugt von < 6 mm, besonders bevorzugt von < 4 mm, auf.
Bei dem trockenen Bindemittel handelt es sich um ein für feuerfeste Erzeugnisse geeignetes Bindemittel. Diese Bindemittel sind beispielsweise im Praxishandbuch, Seite 28/Punkt 3.2 angegeben. Vorzugsweise handelt es sich bei dem flüssigen Bindemittel um ein Bindemittel aus der folgenden Gruppe: wärmehärtendes Kunstharzbindemittel, insbesondere Phenol-Formaldehydharz, oder Melasse oder Ligninsulfonat oder um ein schwefelfreies Bindemittel, insbesondere um ein Bindemittel auf Basis Dextrose, eine organische Säure, Saccharose, einen A Os-Binder, Phosphorsäure, einen Phosphatbinder, Wasserglas, Ethylsilicat, oder ein Sulfat, z. B. Magnesiumsulfat oder Aluminiumsulfat, oder ein Sol-Gel-System.
Bei dem trockenen Zusatzstoff handelt es sich um einen für feuerfeste Erzeugnisse geeigneten Zusatzstoff. Diese Zusatzstoffe sind beispielsweise im Praxishandbuch, Seite 28/Punkt 3.3 angegeben. Sie werden verwendet, um die Ver- arbeitbarkeit bzw. Verformbarkeit zu verbessern oder das Gefüge der Erzeugnisse zu modifizieren und damit besondere Eigenschaften zu erzielen.
Wie bereits erläutert, dient der erfindungsgemäße Versatz zur Herstellung erfindungsgemäßer feuerfester geformter oder ungeformter Erzeugnisse.
Für die Herstellung von geformten Erzeugnissen, insbesondere Steinen, wird eine Mischung bzw. bildsame Masse aus dem Trockenstoffgemisch des erfindungsgemäßen Versatzes mit zumindest einem flüssigen und/oder festen Bindemittel und/oder Wasser hergestellt. Wenn der Versatz ein flüssiges Bindemittel enthält, ist die Zugabe von Wasser nicht notwendig, aber möglich. Zur optimalen Verteilung des oder der Bindemittel und/oder des Wassers wird z.B. 3 bis 10 Minuten lang gemischt.
Die Mischung wird in Formen gegeben und gepresst, so dass Formkörper gebildet werden. Die Pressdrücke liegen in üblichen Bereichen, z.B. bei 60- 180 MPa, bevorzugt bei 100-150 MPa.
Vorzugsweise wird nach dem Pressen eine Trocknung durchgeführt, z.B. zwischen 60 und 200 °C, insbesondere zwischen 90 und 140 °C. Die Trocknung erfolgt vorzugsweise bis auf eine Restfeuchte zwischen 0,1 und 0,6 Gew.%, insbesondere zwischen 0,2 und 0,5 Gew.-%, bestimmt gemäß DIN 51078:2002- 12.
Es hat sich somit im Rahmen der Erfindung herausgestellt, dass die Herstellung von Formkörpern mit üblichen Pressdrücken möglich ist, um die genannten Porositäten mit den entsprechenden mechanischen und thermischen Eigenschaften zu erzielen. Offenbar sorgt die Porosität der erfindungsgemäßen Sintermag- nesia, die insbesondere in den üblichen Körnungen nach der Füller- oder Litzowkornverteilung der Werkstoffmischungen eingesetzt wird, in der gesamten Kornaufbaumischung dafür, dass sich insbesondere beim Pressen das erfindungsgemäße Porenvolumen bilden kann, ohne dass die Körner ein Stützgerüst im Gefüge nach der DE 10 2013 020 732 A1 ausbilden müssen. Die erfindungsgemäßen Formkörper, insbesondere die Steine, können ungebrannt oder getempert oder gebrannt verwendet werden. Vorzugsweise werden sie allerdings gebrannt verwendet.
Getempert werden die grünen gepressten Steine in einem keramischen Brennofen, z.B. einem Tunnelofen, zwischen 400 und 1000 °C, insbesondere zwi- sehen 500 und 800 °C.
Zum Brennen werden die, vorzugsweise getrockneten, gepressten Steine in einem keramischen Brennofen, z.B. einem Tunnelofen, keramisch gebrannt, vorzugsweise zwischen 1200 und 1800 °C, insbesondere zwischen 1400 und 1700 °C. Vorzugsweise wird oxidierend gebrannt, abhängig von der Materialzusammensetzung kann aber auch ein reduzierender Brand vorteilhaft sein.
Die Wärmeleitfähigkeit nach dem Heißdraht-(parallel-)verfahren gemäß DIN 993-15:2005-14 der erfindungsgemäßen gebrannten, geformten Erzeugnisse, insbesondere der Steine liegt vorzugsweise bei 300 °C bei 4,0 bis 6,0 W/mK, bevorzugt bei 4,5 bis 5,8 W/mK, bei 700 °C bei 3,0 bis 5,0 W/mK, bevorzugt bei 3,0 bis 4,8 W/mK, und bei 1000 °C bei 2,0 bis 3,5 W/mK, bevorzugt bei 2,0 bis 3,2 W/mK.
Die gebrannten, geformten Erzeugnisse, insbesondere die Steine, weisen vor- zugsweise eine hohe offene Porosität von 22 bis 45 Vol.-%, bevorzugt 23 bis 35 Vol.-%, bestimmt gemäß DIN EN 993-1 :1995-04 auf.
Des Weiteren weisen sie vorzugsweise einen Mittelwert dso der Porengrößen- verteilung (Durchmesser), bestimmt gemäß DIN 66133:1993-06 von 0,5 bis 10 μιτι, bevorzugt von 2 bis 8 μιτι, auf. Zudem weisen die gebrannten, geformten Erzeugnisse, insbesondere die Steine, vorzugsweise eine geringe Rohdichte von 1 ,9 bis 2,9 g/cm3, insbesondere von 2,0 bis 2,8 g/cm3, bestimmt gemäß DIN 993-1 :1995-04 auf.
Die Kaltdruckfestigkeit gemäß DIN EN 993-5:1998-12 der erfindungsgemäßen gebrannten, geformten Erzeugnisse, insbesondere der Steine, liegt vorzugs- weise bei 30 und 100 MPa, insbesondere bei 45 und 90 MPa. Die Kaltbiegefestigkeit nach DIN EN 993-6:1995-04 der erfindungsgemäßen gebrannten, geformten Erzeugnisse, insbesondere der Steine, liegt vorzugsweise bei 2 bis 18 MPa, insbesondere bei 3 bis 10 MPa.
Die Gasdurchlässigkeit nach DIN EN 993-4:1995-04 der erfindungsgemäßen gebrannten, geformten Erzeugnisse, insbesondere der Steine, liegt vorzugsweise bei 0,2 bis 8 nPm, insbesondere bei 0,5 bis 6 nPm. Die Temperaturwechselbeständigkeit bestimmt nach DIN EN 993-1 1 :2008-03 an Luft bei einer erhöhten Prüftemperatur von 1 100 °C der erfindungsgemäßen gebrannten, geformten Erzeugnisse, insbesondere der Steine, liegt vorzugsweise bei > 20 Abschreckzyklen, insbesondere bei > 30 Abschreckzyklen. Für die Herstellung von ungeformten Erzeugnissen, insbesondere Massen, bevorzugt Spritzmassen oder Vibrationsmassen oder Gießmassen oder Stochermassen, wird ebenfalls eine Mischung aus dem erfindungsgemäßen Trocken- stoffgemisch mit zumindest einem trockenen und/oder flüssigen Bindemittel und/oder Wasser hergestellt. Wenn der Versatz ein flüssiges Bindemittel ent- hält, ist die Zugabe von Wasser nicht notwendig, aber möglich.
Zusammenfassend stellt die Erfindung hoch poröse, aber bezüglich Wärmeleitfähigkeit und Porengröße und damit der Gasdurchlässigkeit als Arbeitsfutter und auch als Hintermauerung hervorragend geeignete, feuerfeste Erzeugnisse zur Verfügung. Besonders vorteilhaft ist der geringe mittlere Porendurchmesser dso der erfindungsgemäßen Sintermagnesia, der bevorzugt bei 2-8 μιτι liegt und der auch im hergestellten Erzeugnis, neben dem mittleren Porendurchmesser dso der Matrix von ca. 4 μιτι, noch vorliegt (siehe Figur 2).
Die erfindungsgemäßen geformten, insbesondere gepressten, oder ungeformten grobkeramischen feuerfesten Erzeugnisse sind trotz hoher Porosität als Ar- beitsfutter in einem befeuerten Industrieofenaggregat verwendbar, weil sie die erforderlichen mechanischen, thermomechanischen und thermochemischen Arbeitsfuttereigenschaften aufweisen.
Die Verwendung von feinteiligem Material, etwa 50-90 Gew.-% mit d9o < 100 μιτι, ist dabei nicht notwendig, sondern es kann mit in der Feuerfest- technologie üblichen Körnungen bis 8 mm gearbeitet werden. Dadurch wird der Produktionsaufwand zur Bereitstellung der Körnung verringert, insbesondere die Mahlzerkleinerungsenergie. Zusätzlich werden durch die niedrigere Brenntemperatur der erfindungsgemäßen Sintermagnesia die Emissionen von CO2 gesenkt. Auf den Zusatz von Aus- brennstoffen, der sehr aufwändig ist, um diese homogen in den Versatz einzubringen, und der auch die Umweltbelastung durch CO2 Emissionen steigert, kann erfindungsgemäß verzichtet werden.
Zusätzlich ist die Material- und Gewichtseinsparung für ein zuzustellendes Volumen positiv zu bewerten.
Bisher wurde die Verringerung der Wärmeleitfähigkeit von feuerfesten Zustellungen meist durch mehrschichtige Futteranordnungen aus Arbeits- und Isolier- schichten verwirklicht. Besonders in bewegten Aggregaten wie z.B. Zementdrehrohröfen sind Mehrschichtfutter mechanisch sehr empfindlich bzw. bruchanfällig. Außerdem ist der Einbau aufwendig. Um die durch sogenannte Zwischenschichtfutter gegebenen Unsicherheiten im Betrieb zu vermeiden, ist daher der Einbau von Arbeitsfutter ohne Isolierschicht nicht unüblich. Damit ver- bunden sind aber höhere, das Material eines Aggregatmantels belastende Temperaturen und höhere Wärmeverluste. Ein erfindungsgemäßes Arbeitsfutter kann insbesondere aufgrund seiner geringen Wärmeleitfähigkeit hervorragend auch ohne Zwischenschichtfutter verwendet werden.
Anhand der nachfolgenden Beispiele wird insbesondere die Überlegenheit er- findungsgemäßer grobkeramischer Erzeugnisse gegenüber Erzeugnissen nach dem nächstliegenden Stand der Technik gemäß DE 10 2013 020 732 A1 und gegenüber bekannten dichten Erzeugnissen verdeutlicht.
Herstellung der erfindunqsqemäßen Sintermaqnesia für die Beispiele 1 bis 3: Die Herstellung der Körnung aus der porösen Sintermagnesia fand wie folgt statt:
Ein aus einer Mg(OH)2 Suspension mittels Vakuumpresse gewonnener Filterkuchen mit einem Feststoffanteil >50 % wurde in einem Ofen getrocknet und schließlich bei 1 100 °C calciniert und zerkleinert, so dass aus dem Mg(OH)2 eine kaustische Magnesia entstand, deren typische Partikelgrößenverteilung dso = 10 m betrug.
Mit einer Pelletierpresse wurde die kaustische Magnesia zu mandelförmigen Pellets mit Abmessungen von 13x20x30 mm3 verpresst. Diese grünen Pellets hatten eine Kornrohdichte von 2,0 g/cm3.
Diese Pellets wurden in einem Hochtemperatur-Laborofen mit einem Temperaturprofil gesintert, bei dem die Temperatur mit 2 K/min auf 800 °C erhöht wurde. Nach einer Haltezeit von 6 h wurde die Temperatur mit 2 K/min weiter auf 1450 °C angehoben. Die Verweilzeit bei dieser Temperatur betrug 5 h. Die Abkühlung erfolgte kontinuierlich durch Wärmeabgabe des Hochtemperatur-Laborofens an die Umgebung.
Anschließend wurde die poröse Sintermagnesia gebrochen und durch Sieben klassiert. Die erfindungsgemäße Körnung aus der porösen Sintermagnesia hatte eine Kornrohdichte von 2,59 g/cm3. Die entsprechende offene Porosität betrug 25,8 Vol. -% (DIN EN 993-18: 2002-1 1 ; DIN EN 993-1 : 1 195-04).
Beispiel 1 :
Im Rahmen des Beispiels 1 wurden Steine auf Basis gleicher Werkstoffe und gleicher mineralogischer Zusammensetzung (84 Gew.-% Magnesia, 16 Gew.- % Sinterspinell, Magnesiamehl aus dichter Sintermagnesia), hergestellt: Tabelle 3: Zusammensetzung der Versätze für Beispiel 1
Figure imgf000023_0001
Die verwendeten Rohstoffe wiesen folgende Eigenschaften auf:
Tabelle 4: Eigenschaften der erfindungsgemäßen Sintermagnesia
Figure imgf000023_0002
Tabelle 5: Eigenschaften der dichten Sintermagnesia für die Steine b) und c)
Figure imgf000023_0003
Tabelle 6: Eigenschaften des Sinterspinells für die Steine a), b) und c)
Figure imgf000023_0004
Die Herstellung der Steine a)-c) erfolgte jeweils wie folgt:
Die entsprechenden Rohstoffe nach Tabelle 3 mit einer Korngrößenverteilung nach Füller wurden in einem Mischer trocken 3 min gemischt, mit dem flüssigen Bindemittel versehen, und 5 min weiter gemischt. Das Gemisch wurde auf eine hydraulische Presse gebracht und in einem B-Format für Drehofensteine mit einem Pressdruck nach Tabelle 3 verpresst. Die Steine wurden in einem Trockner bei ca. 130 °C getrocknet und anschließend bei 1600 °C in einem Tunnelofen 50 Stunden oxidierend gebrannt. Die Haltezeit bei Maximaltemperatur war 5 h. Es wurden die Brennschwindung durch Abmessen, die Fertigrohdichte durch Abmessen und Wiegen, die offene Porosität nach DIN EN 993-1 :1995- 04, die Kaltdruckfestigkeit nach DIN EN 993-5:1998-12, die Kaltbiegefestigkeit nach DIN EN 993-6:1995-04, die Gasdurchlässigkeit nach DIN EN 993-4:1995- 04 und die Wärmeleitfähigkeit nach dem Heißdraht-(parallel-)verfahren DIN 993-15:2005-14 bestimmt. Die Temperaturwechselbeständigkeit wurde nach DIN EN 993-1 1 :2008-03 an Luft bei einer erhöhten Prüftemperatur von 1 100 °C bestimmt:
Tabelle 7: Eigenschaften der gebrannten Steine des Beispiels 1
Figure imgf000024_0001
Die Steineigenschaften im Vergleich zu den konventionellen dichten Steinen nach b) verändern sich im Falle von a) und auch c), die eine deutlich erhöhte Porosität und eine signifikant verringerte Rohdichte aufweisen, ohne dabei einen negativen Einfluss auf die anderen Steineigenschaften auszuüben. Insbesondere die Gasdurchlässigkeit und der Porendurchmesser sind bei den Steinen nach der vorliegenden Erfindung verringert.
Im erfindungsgemäßen Fall von a), in dem die Körnung aus erfindungsgemäßer poröser Magnesia besteht, ist die Verringerung der Rohdichte und die Erhöhung der offenen Porosität gegenüber b) deutlich. Zusätzlich ist der mittlere Porendurchmesser dso gegenüber b) und c) dramatisch verringert, so dass eine verringerte Infiltrationsneigung gegenüber Alkalien und Klinkerschmelzen besteht. Gegenüber b) bleiben die Kaltdruckfestigkeit und die Kaltbiegefestigkeit weiterhin sicher im für dichte Steine typischen Be- reich. Die Temperaturwechselbeständigkeit ist mit > 30 Abschreckzyklen ohne Bruch für alle Steinsorten auf dem gleichen notwendig hohen Niveau.
Die Ergebnisse zeigen zudem für die erfindungsgemäßen Steine nach a) deutlich verringerte Wärmeleitfähigkeitswerte gegenüber den dichten Magnesiaspinellsteinen b). Beispiel 2:
Für Beispiel 2, Steine d) wurde anstelle des Sinterspinells gemäß Beispiel 1 ein poröser Spinell verwendet:
Tabelle 8: Zusammensetzung der Versätze für Beispiel 2
Figure imgf000025_0001
Die Eigenschaften der erfindungsgemäßen Magnesia für d) entsprechen denjenigen des Beispiels 1. Tabelle 9: Eigenschaften des porösen Sinterspinells für Stei
Figure imgf000026_0001
Die Steine d) wurden analog Bespiel 1 hergestellt und geprüft:
Tabelle 10: Eigenschaften der gebrannten Steine des Beispiels 2
Figure imgf000026_0002
Die Steineigenschaften im Vergleich zu den Steinen nach Beispiel 1 verändern sich durch die Verwendung von poröser Magnesia und porösem Spinell nur geringfügig, zu beobachten ist jedoch eine weiter verringerte Wärmeleitfähigkeit. Alle anderen positiven mechanischen und thermischen Eigenschaften bleiben erhalten. Beispiel 3:
In den ersten Beispielen 1 und 2 wurden die Vorteile der erfindungsgemäßen porösen Sintermagnesia für Magnesiaspinellsteine erläutert. Zum Nachweis der Wirksamkeit der Erfindung bei Produkten aus anderen feuerfesten Werkstoffen wurden im Rahmen des Beispiels 3 Steine auf Basis von Sintermagnesia in Kombination mit Schmelzpleonast (pleonastischem Schmelzspinell) untersucht. Steine e) waren auf Basis von erfindungsgemäßer Sintermagnesia, Steine f) zum Vergleich mit dichter Sintermagnesia. Die Herstellung erfolgte entsprechend Beispiel 1 , mit einer Brenntemperatur von 1450 °C:
Tabelle 11 : Zusammensetzung der Versätze für Beispiel 3
Figure imgf000027_0001
Tabelle 12: Eigenschaften des Schmelzpleonastes für die Steine e) und f)
Figure imgf000027_0002
Die nachfolgende Tabelle zeigt die Ergebnisse des Beispiels 3:
Tabelle 13: Eigenschaften der gebrannten Steine des Beispiels 3
Figure imgf000027_0003
Tabelle 4 zeigt, dass die erfindungsgemäße poröse Sintermagnesia auch bei Magnesiapleonaststeinen angewendet werden kann, die Porosität erhöht sich durch die Verwendung der erfindungsgemäßen Sintermagnesia signifikant, alle positiven mechanischen und thermischen Eigenschaften bleiben erhalten.

Claims

1 Ansprüche
1. Verfahren zur Herstellung einer Körnung aus Sintermagnesia,
dadurch gekennzeichnet, dass
die Sintermagnesia durch Sintern von Presslingen, insbesondere Pellets, aus MgO-Mehl, vorzugsweise aus MgO-Kaustermehl, und anschließendes mechanisches Zerkleinern der Presslinge hergestellt wird, wobei derart gesintert wird, dass die Körnung eine Kornporosität (Gesamtporosität) gemäß DIN EN 993-1 :1 195-04 und DIN EN 993-18:1999- 01 von 15 bis 38 Vol.-%, vorzugsweise von 20 bis 38 Vol.-% aufweist.
2. Verfahren nach Anspruch 1 ,
dadurch gekennzeichnet, dass
bei einer maximalen Temperatur zwischen 1 100-1600 °C, vorzugsweise zwischen 1200-1600 °C, bevorzugt zwischen 1200-1550 °C, besonders bevorzugt zwischen 1200-1500 °C, gesintert wird.
3. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
bei einer maximalen Temperatur < 1600 °C, vorzugsweise < 1550 °C, bevorzugt < 1500 °C, besonders bevorzugt < 1400 °C, gesintert wird.
4. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
derart gesintert wird, dass die Körnung eine Kornrohdichte gemäß DIN EN 993-1 : 1 195-04 und DIN EN 993-18:1999-01 von 2,20 bis 2,85 g/cm3, vorzugsweise von 2,20 bis 2,75 g/cm3, aufweist.
5. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass 2
Presslinge, insbesondere Pellets, mit einer Rohdichte gemäß DIN 66133:1993-06 von 1 ,
8 bis 2,3 g/cm3, bevorzugt von 1 ,
9 bis 2,2 g/cm3, verwendet werden.
Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
Presslinge mit einer Porosität gemäß DIN 66133:1993-06 von
52 Vol.-%, bevorzugt von 35 bis 45 Vol.-%, verwendet werden.
Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
das verwendete MgO-Mehl, vorzugsweise das verwendete MgO- Kaustermehl, mindestens 88 Gew.-%, bevorzugt mindestens 95 Gew.- %, besonders bevorzugt mindestens 97 Gew.-% MgO, bestimmt mittels Röntgenfluoreszenzanalyse gemäß DIN 12677:2013-02, aufweist.
Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
das verwendete MgO-Mehl, vorzugsweise das verwendete MgO- Kaustermehl, eine Partikelgrößenverteilung mit folgenden Werten aufweist, bestimmt mittels Lasergranulometrie gemäß DIN ISO 13320:2009:
dgo zwischen 80 und 100 μιη und/oder dso zwischen 5 und 15 μιη und/oder di o zwischen 1 und 3 μιτι.
Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
Presslinge verwendet werden, die, bezogen auf Ihre Trockenmasse, zu mindestens 96 Gew.-%, vorzugsweise zu 100 Gew.-%, aus MgO-Mehl, bevorzugt aus MgO-Kaustermehl, bestehen und/oder kein Magnesitmehl enthalten. 3
10. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
die Körnung aus Sintermagnesia ohne Verwendung von Ausbrennstoffen hergestellt wird.
1 1. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
derart gesintert wird, dass die Körnung aus Sintermagnesia einen mittleren Porendurchmesser dso von 0.1 bis 10 μιτι, bevorzugt von 2 bis 8 μιτι, bestimmt gemäß DIN 66133:1993-06 aufweist.
12. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
derart gesintert wird, dass die Körnung aus Sintermagnesia eine Korndruckfestigkeit in Anlehnung an DIN 13055-2016-1 1 (10 mm statt 20 mm), von 10 bis 30 MPa, bevorzugt von 1 1 bis 25 MPa, aufweist.
13. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass
derart gesintert wird, dass die Körnung aus Sintermagnesia folgende Wärmeleitfähigkeiten gemäß DIN EN 821 -2:1997-08 aufweist:
Figure imgf000030_0001
14. Verfahren nach einem der vorhergehenden Ansprüche,
dadurch gekennzeichnet, dass 4 das Temperaturregime der Sinterung derart eingestellt wird, dass die Körnung die gewünschten Eigenschaften aufweist.
15. Versatz zur Herstellung eines grobkeramischen, feuerfesten, geformten oder ungeformten Erzeugnisses, insbesondere eines Erzeugnisses für ein Arbeitsfutter oder eine Hintermauerung eines Industrieofens, vorzugsweise einer Zementofenanlage, eines Kalkschacht- oder Kalkdrehrohrofens, eines Magnesit- oder Dolomitofens, oder eines Wärmeofen oder eines Ofen zur Energieerzeugung oder eines Ofens der Stahlerzeugung oder eines Ofens der Nichteisenmetallindustrie,
aufweisend mindestens eine Körnung aus Sintermagnesia,
dadurch gekennzeichnet, dass
die Körnung aus Sintermagnesia gemäß dem Verfahren nach einem der vorhergehenden Ansprüche hergestellt ist.
16. Versatz nach Anspruch 15,
aufweisend ein Trockenstoffgemisch mit oder bestehend aus folgenden Bestandteilen: a) zumindest eine grobe Körnung aus der erfindungsgemäßen Sintermagnesia mit einer Korngröße > 200 μιτι, vorzugsweise in einer Gesamtmenge an erfindungsgemäßer Sintermagnesia von 10 bis 90 Gew.-%, bevorzugt von 20 bis 80 Gew.-%, b) zumindest eine Mehlkörnung aus Magnesia, z.B. aus der erfindungsgemäßen Sintermagnesia, mit einer Korngröße < 200 μητι, vorzugsweise in einer Menge von 90 bis 10 Gew.-%, bevorzugt von 80 bis 20 Gew.-%, 5 c) vorzugsweise zumindest eine weitere Körnung aus einem feuerfesten Werkstoff, vorzugsweise in einer Gesamtmenge an weiterer Körnung von 0,5 bis 40 Gew.-%, bevorzugt von 3 bis 30 Gew.-%, d) gegebenenfalls zumindest einen Zusatzstoff für feuerfeste Werkstoffe, vorzugsweise in einer Gesamtmenge an Zusatzstoff < 5 Gew.-% e) gegebenenfalls zumindest ein Zusatzmittel für feuerfeste Werkstoffe, vorzugsweise in einer Gesamtmenge von < 5 Gew.-%, sowie additiv zu dem Trockenstoffgemisch zumindest ein flüssiges oder festes Bindemittel für feuerfeste Werkstoffe, vorzugsweise in einer Gesamtmenge von 1 bis 9 Gew.-%, bevorzugt von 2.5 bis 6 Gew.-%, bezogen auf die gesamte Trockenmasse des Trockenstoffgemisches.
17. Versatz nach Anspruch 15 oder 16,
dadurch gekennzeichnet, dass
der Versatz zu mindestens 90 Gew.-%, bevorzugt zu mindestens 99 Gew.-%, besonders bevorzugt zu 100 Gew.-%, aus Bindemittel und dem Trockenstoffgemisch, bezogen auf die Gesamtmasse des Versatzes, besteht.
18. Versatz nach Anspruch 15 bis 17,
dadurch gekennzeichnet, dass
das Trockenstoffgemisch > 50 Gew.-%, bevorzugt > 60 Gew.-%, besonders bevorzugt > 70 Gew.-% der groben Körnung aus erfindungsgemäßer Sintermagnesia aufweist.
19. Versatz nach einem der Ansprüche 15 bis 18,
dadurch gekennzeichnet, dass 6 die grobe Körnung aus poröser Sintermagnesia eine maximale Korngröße < 8 mm, bevorzugt < 6 mm, besonders bevorzugt < 4 mm, aufweist.
20. Versatz nach einem der Ansprüche 15 bis 19,
dadurch gekennzeichnet, dass
die Kornverteilung der groben Körnung aus Sintermagnesia stetig ist.
21. Versatz nach einem der Ansprüche 16 bis 20,
dadurch gekennzeichnet, dass
die weitere Körnung aus einem Rohstoff aus der folgenden Gruppe besteht:
Magnesiumaluminat-Spinell, Bauxit, Tonerde, Hercynit, Pleonast, Chromerz, pleonastischem Spinell, Zirkonoxid, Olivin und/oder Forsterit.
22. Versatz nach einem der Ansprüche 16 bis 21 ,
dadurch gekennzeichnet, dass
die weitere Körnung eine minimale Korngröße > 0 mm und/oder eine maximale Korngröße < 8 mm, bevorzugt < 6 mm, besonders bevorzugt < 4 mm aufweist.
23. Versatz nach einem der Ansprüche 16 bis 22,
dadurch gekennzeichnet, dass
die Kornverteilung der weiteren Körnung stetig ist.
24. Versatz nach einem der Ansprüche 16 bis 23,
dadurch gekennzeichnet, dass
es sich bei dem flüssigen Bindemittel um ein Bindemittel aus der folgenden Gruppe handelt: 7
Wärmehärtendes Kunstharzbindemittel, insbesondere Phenol- Formaldehydharz oder Melasse oder Ligninsulfonat, oder ein schwefelfreies Bindemittel, insbesondere um ein Bindemittel auf Basis Dextrose, eine organische Säure, einen A Os-Binder, Phosphorsäure, einen Phosphatbinder, Wasserglas, Ethylsilicat, oder ein Sulfat, z. B. Magnesiumsulfat oder Aluminiumsulfat, oder ein Sol-Gel-System.
25. Grobkeramisches, feuerfestes, geformtes oder ungeformtes Erzeugnis, insbesondere für ein Arbeitsfutter eines Industrieofens, vorzugsweise einer Zementofenanlage, eines Kalkschacht- oder Kalkdrehrohrofens, eines Magnesit- oder Dolomitofens, oder eines Wärmeofen oder eines Ofen zur Energieerzeugung oder eines Ofen der Stahlerzeugung oder eines Ofen der Nichteisenmetallindustrie, wobei das Erzeugnis mindestens eine Körnung aus Sintermagnesia aufweist,
dadurch gekennzeichnet, dass
die Körnung aus Sintermagnesia gemäß dem Verfahren gemäß einem der Ansprüche 1 bis 14 hergestellt ist.
26. Grobkeramisches, feuerfestes, geformtes oder ungeformtes Erzeugnis, insbesondere für ein Arbeitsfutter eines Industrieofens, vorzugsweise einer Zementofenanlage, eines Kalkschacht- oder Kalkdrehrohrofens, eines Wärmeofen oder eines Ofen zur Energieerzeugung, vorzugsweise Erzeugnis nach Anspruch 25,
dadurch gekennzeichnet, dass
das Erzeugnis hergestellt ist aus einem Versatz gemäß einem der Ansprüche 15 bis 24.
27. Erzeugnis nach Anspruch 25 oder 26,
dadurch gekennzeichnet, dass
das geformte Erzeugnis ein grüner, insbesondere gepresster, Formkörper, bevorzugt ein Stein, ist. 8
28. Erzeugnis nach Anspruch 25 oder 26,
dadurch gekennzeichnet, dass
das geformte Erzeugnis ein getemperter Formkörper, bevorzugt ein Stein, ist.
29. Erzeugnis nach Anspruch 25 oder 26,
dadurch gekennzeichnet, dass
das geformte Erzeugnis ein gebrannter Formkörper, bevorzugt ein Stein, ist.
30. Erzeugnis nach Anspruch 29,
dadurch gekennzeichnet, dass
der gebrannte Formkörper eine Wärmeleitfähigkeit nach dem Heißdraht- (parallel-)verfahren gemäß DIN 993-15:2005-14 bei 300 °C von 4,0 bis 6,0 W/mK, bevorzugt von 4,5 bis 5,8 W/mK, bei 700 °C von 3,0 bis 5,0 W/mK, bevorzugt von 3,0 bis 4,8 W/mK, und bei 1000 °C von 2,0 bis 3,5 W/mK, bevorzugt von 2,0 bis 3,2 W/mK aufweist.
31. Erzeugnis nach Anspruch 29 oder 30,
dadurch gekennzeichnet, dass
der gebrannte Formkörper eine offene Porosität von 22 bis 45 Vol.-%, bevorzugt 23 bis 35 Vol.-%, bestimmt gemäß DIN 993-1 :1995-4 aufweist.
32. Erzeugnis nach einem der Ansprüche 29 bis 31 ,
dadurch gekennzeichnet, dass
der gebrannte Formkörper einen Mittelwert der Porendurchmesserver- teilung dso, bestimmt gemäß DIN 66133:1993-06, von 0,5 bis 10 μητι, bevorzugt von 2 bis 10 μιτι, aufweist. 9
33. Erzeugnis nach einem der Ansprüche 29 bis 32,
dadurch gekennzeichnet, dass
der gebrannte Formkörper eine Rohdichte von 1 ,9 bis 2,9 g/cm3, insbesondere von 2,0 bis 2,8 g/cm3, bestimmt gemäß DIN 993-1 : 1995-04 aufweist.
34. Erzeugnis nach einem der Ansprüche 29 bis 33,
dadurch gekennzeichnet, dass
der gebrannte Formkörper eine Kaltdruckfestigkeit gemäß DIN EN 993- 5:1998-12 von 30 bis 100 MPa, insbesondere von 45 bis 90 MPa, aufweist.
35. Erzeugnis nach einem der Ansprüche 29 bis 34,
dadurch gekennzeichnet, dass
der gebrannte Formkörper eine Kaltbiegefestigkeit gemäß DIN EN 993- 6:1995-04 von 2 bis 18 MPa, insbesondere von 3 bis 10 MPa, aufweist.
36. Erzeugnis nach einem der Ansprüche 29 bis 35,
dadurch gekennzeichnet, dass
der gebrannte Formkörper eine Gasdurchlässigkeit nach DIN EN 993- 4:1995-04 von 0,2 bis 8 nPm, insbesondere von 0,5 bis 6 nPm, aufweist.
37. Erzeugnis nach einem der Ansprüche 29 bis 36,
dadurch gekennzeichnet, dass
der gebrannte Formkörper eine Temperaturwechselbeständigkeit bestimmt nach DIN EN 993-1 1 :2008-03 an Luft bei einer Prüftemperatur von 1 100 °C der erfindungsgemäßen gebrannten, geformten Erzeugnisse, von > 20 Abschreckzyklen, insbesondere > 30 Abschreckzyklen, aufweist. 10
Verfahren zur Herstellung eines feuerfesten geformten Erzeugnisses nach einem der Ansprüche 25 bis 37 aus einem Versatz gemäß einem der Ansprüche 15 bis 24,
gekennzeichnet durch
folgende Verfahrensschritte:
a) Mischen des Trockenstoffgemisches mit Bindemittel und/oder Wasser zu einer bildsamen Masse,
b) Formen, insbesondere Pressen, der Masse zu einem grünen Formkörper,
c) Vorzugsweise Trocknen des grünen Formkörpers,
d) Vorzugsweise Tempern oder Brennen des grünen Formkörpers.
Verfahren nach Anspruch 38,
dadurch gekennzeichnet, dass
der Formkörper bei einer Temperatur von 1200 bis 1800 °C, vorzugsweise von 1400 bis 1700 °C, gebrannt wird.
Verwendung eines Versatzes nach einem der Ansprüche 15 bis 24 zur Herstellung eines Erzeugnisses gemäß einem der Ansprüche 25 bis 37.
Zustellung eines großvolumigen Industrieofens, vorzugsweise eines Brennofens der Nichtmetallindustrie, bevorzugt einer Zementofenanlage, eines Kalkschacht- oder Kalkdrehrohrofens, eines Magnesit- oder Dolomitofens, oder eines Wärmeofens oder eines Ofens zur Energieerzeugung oder eines Ofens der Stahlerzeugung oder eines Ofens der Nichteisenmetallindustrie,
dadurch gekennzeichnet, dass
die Zustellung zumindest ein Erzeugnis gemäß einem der Ansprüche 25 bis 37 und/oder hergestellt gemäß Anspruch 38 oder 39 aufweist.
Zustellung nach Anspruch 41 , 11 dadurch gekennzeichnet, dass
die Zustellung ein Arbeitsfutter aufweist, welches das zumindest eine feuerfeste Erzeugnis aufweist. 43. Zustellung nach Anspruch 42,
dadurch gekennzeichnet, dass
das Arbeitsfutter in einem Ein- oder Mehrschichtmauerwerk eingebaut ist.
Zustellung nach einem der Ansprüche 41 bis 43,
dadurch gekennzeichnet, dass
die Zustellung eine isolierende Hintermauerung aufweist, welche das zumindest eine feuerfeste Erzeugnis aufweist.
Großvolumiger Industrieofen, vorzugsweise Brennofen der Nichtmetall- industrie, bevorzugt Zementofenanlage, Kalkschacht- oder Kalkdrehrohrofen, Magnesit- oder Dolomitofen, oder Wärmeofen oder Ofen zur Energieerzeugung oder Ofen der Stahlerzeugung oder Ofen der Nichteisenmetallindustrie,
dadurch gekennzeichnet, dass
der Industrieofen eine Zustellung gemäß einem der Ansprüche 41 bis 44 aufweist.
PCT/EP2018/074817 2017-09-15 2018-09-13 Verfahren zur herstellung einer porösen sintermagnesia, versatz zur herstellung eines grobkeramischen feuerfesten erzeugnisses mit einer körnung aus der sintermagnesia, derartiges erzeugnis sowie verfahren zu seiner herstellung, zustellung eines industrieofens und industrieofen WO2019053167A1 (de)

Priority Applications (14)

Application Number Priority Date Filing Date Title
EP18769685.1A EP3523264B1 (de) 2017-09-15 2018-09-13 Verfahren zur herstellung einer porösen sintermagnesia, versatz zur herstellung eines grobkeramischen feuerfesten erzeugnisses mit einer körnung aus der sintermagnesia, derartiges erzeugnis sowie verfahren zu seiner herstellung, zustellung eines industrieofens und industrieofen
JP2019542172A JP7299157B2 (ja) 2017-09-15 2018-09-13 多孔質焼結マグネシアを製造する方法、焼結マグネシアからなる造粒物(Koernung)を有する粗セラミックの(grobkeramisch)耐火性生産物を製造するためのバッチ、このような生産物、および生産物を製造する方法、工業炉の裏張り(Zustellung)、ならびに工業炉
RU2020100219A RU2752414C2 (ru) 2017-09-15 2018-09-13 Способ получения пористой спеченной магнезии, шихты для получения грубокерамического огнеупорного изделия с зернистым материалом из спеченной магнезии, изделия такого рода, а также способы их получения, футеровки промышленной печи и промышленная печь
MX2020002853A MX2020002853A (es) 2017-09-15 2018-09-13 Procedimiento para la produccion de una magnesia sinterizada porosa, mezcla para la produccion de un producto ceramico grueso refractario con una granulacion de magnesia sinterizada, producto de este tipo asi como procedimiento para su produccion, revestimiento interior con mamposteria de un horno industrial y horno industrial.
AU2018334019A AU2018334019B2 (en) 2017-09-15 2018-09-13 Method for producing a porous sintered magnesia, batch for producing a coarse ceramic refractory product having a granular material made of the sintered magnesia, such a product and method for its production, lining of an industrial furnace, and industrial furnace
PL18769685.1T PL3523264T3 (pl) 2017-09-15 2018-09-13 Sposób wytwarzania porowatej magnezji spiekanej, zestaw do wytwarzania wyrobu ogniotrwałego z ceramiki technicznej z materiałem ziarnistym z magnezji spiekanej, taki wyrób oraz sposób jego wytwarzania, wyłożenie pieca przemysłowego i piec przemysłowy
RS20230947A RS64721B1 (sr) 2017-09-15 2018-09-13 Postupak za izradu porozne sinterovane magnezije, šarža za izradu grubog keramičkog vatrostalnog proizvoda sa frakcijom zrna iz sinterovane magnezije, proizvod ove vrste kao i postupak za njegovu izradu, obloga industrijskih peći i industrijska peć
CN201880011985.4A CN110325487B (zh) 2017-09-15 2018-09-13 多孔烧结氧化镁的制备方法、回填料、这种类型的产品及制备方法、工业炉内衬和工业炉
KR1020197027533A KR102399226B1 (ko) 2017-09-15 2018-09-13 다공성 소결 마그네시아의 제조 방법, 소결 마그네시아 과립을 포함하는 중점토 세라믹 내화성 제품의 제조를 위한 뒤채움재, 그 제품 및 그의 제조 방법, 공업로의 라이닝, 및 공업로
ES18769685T ES2956739T3 (es) 2017-09-15 2018-09-13 Procedimiento para la producción de una magnesia sinterizada porosa, combinación para la producción de un producto refractario cerámico ordinario con una granulación de la magnesia sinterizada, producto de este tipo así como procedimiento para su producción, revestimiento interior con mampostería de un horno industrial y horno industrial
CA3070785A CA3070785C (en) 2017-09-15 2018-09-13 Method for producing a porous sintered magnesia, batch for producing a coarse ceramic refractory product having a granular material made of the sintered magnesia, such a product and method for its production, lining of an industrial furnace, and industrial furnace
JOP/2020/0061A JOP20200061A1 (ar) 2017-09-15 2018-09-13 طريقة لإنتاج ماغنسيا ملبدة مسامية، دفعة لإنتاج منتج خزفي خشن مقاوم للحرارة به مادة حبيبية مصنوعة من الماغنسيا الملبدة، وهذا المنتج وطريقة لإنتاجه، تبطين فرن صناعي، وفرن صناعي
US16/646,409 US11440847B2 (en) 2017-09-15 2018-09-13 Method for producing a porous sintered magnesia, backfill for producing a heavy-clay refractory product with a granulation from the sintered magnesia, product of this type, and method for the production thereof, lining of an industrial furnace and industrial furnace
BR112020005054-7A BR112020005054A2 (pt) 2017-09-15 2018-09-13 processo para a produção de um óxido de magnésio sinterizado poroso, mistura para a produção de um produto cerâmico bruto resistente ao fogo com uma granulação do óxido de magnésio sinterizado, tal produto, assim como processo para sua produção, revestimento de um forno industrial e forno industrial

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102017121452.6A DE102017121452B9 (de) 2017-09-15 2017-09-15 Verfahren zur Herstellung einer porösen Sintermagnesia, Versatz zur Herstellung eines grobkeramischen feuerfesten Erzeugnisses mit einer Körnung aus der Sintermagnesia, Verwendung des Versatzes zur Herstellung des Erzeugnisses sowie Verfahren zur Herstellung des Erzeugnisses
DE102017121452.6 2017-09-15

Publications (1)

Publication Number Publication Date
WO2019053167A1 true WO2019053167A1 (de) 2019-03-21

Family

ID=63586726

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2018/074817 WO2019053167A1 (de) 2017-09-15 2018-09-13 Verfahren zur herstellung einer porösen sintermagnesia, versatz zur herstellung eines grobkeramischen feuerfesten erzeugnisses mit einer körnung aus der sintermagnesia, derartiges erzeugnis sowie verfahren zu seiner herstellung, zustellung eines industrieofens und industrieofen

Country Status (16)

Country Link
US (1) US11440847B2 (de)
EP (1) EP3523264B1 (de)
JP (1) JP7299157B2 (de)
KR (1) KR102399226B1 (de)
CN (1) CN110325487B (de)
AU (1) AU2018334019B2 (de)
BR (1) BR112020005054A2 (de)
CA (1) CA3070785C (de)
DE (1) DE102017121452B9 (de)
ES (1) ES2956739T3 (de)
JO (1) JOP20200061A1 (de)
MX (1) MX2020002853A (de)
PL (1) PL3523264T3 (de)
RS (1) RS64721B1 (de)
RU (1) RU2752414C2 (de)
WO (1) WO2019053167A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10759697B1 (en) 2019-06-11 2020-09-01 MSB Global, Inc. Curable formulations for structural and non-structural applications
WO2021123363A1 (de) * 2019-12-18 2021-06-24 Refratechnik Holding Gmbh Versatz zur herstellung eines grobkeramischen feuerfesten basischen erzeugnisses, derartiges erzeugnis sowie verfahren zu seiner herstellung, zustellung eines industrieofens und industrieofen

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110407546B (zh) * 2019-06-19 2021-11-23 中盐安徽红四方新型建材科技有限公司 多孔蒸压砂砖
KR102344655B1 (ko) * 2019-12-20 2021-12-29 (주)포스코케미칼 시멘트 클린커 코팅성 및 알카리 침투 저항성이 우수한 소성 마그네시아 스피넬질 내화 조성물
CN114105653B (zh) * 2020-08-25 2022-10-28 中国科学院理化技术研究所 一种强化镁质耐火材料性能的方法
KR20220058012A (ko) 2020-10-30 2022-05-09 김인우 고온용 미네랄 울 내화 채움재
CN112573935B (zh) * 2021-01-08 2022-06-21 郑州大学 一种镁橄榄石-镁铝尖晶石质隔热耐火材料的制备方法
KR102511616B1 (ko) * 2021-01-11 2023-03-21 전남대학교산학협력단 산화마그네슘함유 성토재조성물, 그 제조방법 및 산화마그네슘함유 산업부산물처리방법
KR102544159B1 (ko) * 2021-02-19 2023-06-16 전남대학교산학협력단 지중열교환기용 뒷채움재조성물, 그 제조방법 및 이를 포함하는 지중열교환기
CN115353399B (zh) * 2022-09-20 2023-03-17 宜兴市隆昌耐火材料有限公司 石膏制硫酸用回转窑抗结圈的环保型耐火砖的生产方法

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0081794A1 (de) * 1981-12-11 1983-06-22 Veitscher Magnesitwerke-Actien-Gesellschaft Verfahren zur Herstellung von gebrannten, feuerfesten, porösen Gasspülsteinen
US4927611A (en) 1987-06-15 1990-05-22 UBE Chemical Industries, LTD. Lightweight magnesia clinker and process for the preparation of the same
WO2000032536A1 (de) * 1998-11-30 2000-06-08 Veitsch-Radex Gmbh Feuerfeste keramische masse und deren verwendung
WO2004065323A1 (de) * 2003-01-17 2004-08-05 Refractory Intellectual Property Gmbh & Co. Kg Versatz zur herstellung eines feuerfesten keramischen formkörpers, daraus gebildeter formkörper und eine verwendung
DE102006040269A1 (de) 2006-08-28 2008-03-20 Refractory Intellectual Property Gmbh & Co. Kg Gebranntes feuerfestes keramisches Produkt
DE202007018373U1 (de) * 2007-03-07 2008-08-21 Refratechnik Holding Gmbh Feuerfester kohlenstoffgebundener Magnesiastein
DE102008019529A1 (de) * 2008-04-18 2009-10-22 Refractory Intellectual Property Gmbh & Co. Kg Feuerfestes keramisches Erzeugnis und zugehöriges Formteil
EP2674407A1 (de) * 2012-06-15 2013-12-18 Refractory Intellectual Property GmbH & Co. KG Feuerfester keramischer Versatz und daraus gebildeter Stein
EP2813481A1 (de) * 2013-06-10 2014-12-17 Refractory Intellectual Property GmbH & Co. KG Versatz zur Herstellung eines ungeformten feuerfesten keramischen Erzeugnisses, Verfahren zur Herstellung eines gebrannten feuerfesten keramischen Erzeugnisses, ein gebranntes feuerfestes keramisches Erzeugnis sowie die Verwendung eines ungeformten feuerfesten keramischen Erzeugnisses
DE102013010854A1 (de) * 2013-06-28 2014-12-31 Refratechnik Holding Gmbh Feuerfester Versatz und seine Verwendung
DE102013020732A1 (de) 2013-12-10 2015-06-11 Refratechnik Holding Gmbh Grobkeramisches feuerfestes Erzeugnis und Verfahren zu seiner Herstellung sowie seine Verwendung
CN106747594A (zh) 2016-11-24 2017-05-31 通达耐火技术股份有限公司 一种轻质微孔镁质原料的制备方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AT317755B (de) * 1972-05-25 1974-09-10 Oesterr Amerikan Magnesit Verfahren zur Herstellung von Sintermagnesia
JPS59190256A (ja) * 1983-04-14 1984-10-29 太平洋セメント株式会社 多孔質マグネシアクリンカの製造方法
SU1337368A1 (ru) * 1986-04-21 1987-09-15 Комбинат "Магнезит" Способ получени плотного периклазового клинкера
JPH04338178A (ja) * 1991-05-13 1992-11-25 Mitsubishi Materials Corp 多孔質マグネシア焼結体及びその製造方法
JP3980569B2 (ja) * 2004-04-19 2007-09-26 宇部マテリアルズ株式会社 酸化マグネシウム
CN100503516C (zh) * 2007-06-14 2009-06-24 武汉科技大学 一种含轻质多孔骨料的铝镁质耐火砖及其制备方法
JP5231823B2 (ja) 2008-01-28 2013-07-10 日本タングステン株式会社 多結晶MgO焼結体及びその製造方法、並びにスパッタリング用MgOターゲット
CN102765950B (zh) * 2012-08-02 2014-03-12 武汉科技大学 一种堇青石轻质耐火砖及其制备方法
CN102850044B (zh) * 2012-09-24 2014-02-26 武汉科技大学 一种堇青石-尖晶石轻质浇注料及其制备方法
DE102016109254B4 (de) * 2016-05-19 2018-08-09 Refratechnik Holding Gmbh Zur Elastifizierung von grobkeramischen Feuerfesterzeugnissen geeignetes feuerfestes Spinellgranulat, Verfahren zu dessen Herstellung, Feuerfesterzeugnis mit dem Spinellgranulat, Verwendung des Feuerfesterzeugnisses, Auskleidung eines Industrieofens mit dem Feuerfesterzeugnis

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0081794A1 (de) * 1981-12-11 1983-06-22 Veitscher Magnesitwerke-Actien-Gesellschaft Verfahren zur Herstellung von gebrannten, feuerfesten, porösen Gasspülsteinen
US4927611A (en) 1987-06-15 1990-05-22 UBE Chemical Industries, LTD. Lightweight magnesia clinker and process for the preparation of the same
WO2000032536A1 (de) * 1998-11-30 2000-06-08 Veitsch-Radex Gmbh Feuerfeste keramische masse und deren verwendung
WO2004065323A1 (de) * 2003-01-17 2004-08-05 Refractory Intellectual Property Gmbh & Co. Kg Versatz zur herstellung eines feuerfesten keramischen formkörpers, daraus gebildeter formkörper und eine verwendung
DE102006040269A1 (de) 2006-08-28 2008-03-20 Refractory Intellectual Property Gmbh & Co. Kg Gebranntes feuerfestes keramisches Produkt
DE202007018373U1 (de) * 2007-03-07 2008-08-21 Refratechnik Holding Gmbh Feuerfester kohlenstoffgebundener Magnesiastein
DE102008019529A1 (de) * 2008-04-18 2009-10-22 Refractory Intellectual Property Gmbh & Co. Kg Feuerfestes keramisches Erzeugnis und zugehöriges Formteil
EP2674407A1 (de) * 2012-06-15 2013-12-18 Refractory Intellectual Property GmbH & Co. KG Feuerfester keramischer Versatz und daraus gebildeter Stein
EP2813481A1 (de) * 2013-06-10 2014-12-17 Refractory Intellectual Property GmbH & Co. KG Versatz zur Herstellung eines ungeformten feuerfesten keramischen Erzeugnisses, Verfahren zur Herstellung eines gebrannten feuerfesten keramischen Erzeugnisses, ein gebranntes feuerfestes keramisches Erzeugnis sowie die Verwendung eines ungeformten feuerfesten keramischen Erzeugnisses
DE102013010854A1 (de) * 2013-06-28 2014-12-31 Refratechnik Holding Gmbh Feuerfester Versatz und seine Verwendung
DE102013020732A1 (de) 2013-12-10 2015-06-11 Refratechnik Holding Gmbh Grobkeramisches feuerfestes Erzeugnis und Verfahren zu seiner Herstellung sowie seine Verwendung
EP2883853A1 (de) * 2013-12-10 2015-06-17 Refratechnik Holding GmbH Grobkeramisches feuerfestes Erzeugnis und Verfahren zu seiner Herstellung sowie seine Verwendung
DE202013012201U1 (de) * 2013-12-10 2015-08-03 Refratechnik Holding Gmbh Grobkeramisches feuerfestes Erzeugnis
CN106747594A (zh) 2016-11-24 2017-05-31 通达耐火技术股份有限公司 一种轻质微孔镁质原料的制备方法

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
WEN YAN ET AL.: "Effect of Spinel Content of lightweight aggregates on the reaction characteristics of periclase-spinel refractories with cement clinker", PROC. 128, UNITECR, 2015
WEN YAN ET AL.: "Effect of Spinel Content on the Reaction of Porous Periclase-Spinel Ceramics and Cement Clinker", KEY ENGINEERING MATERIALS, vol. 697, pages 581 - 585
WEN YAN ET AL.: "Preparation and characterization of porous MgO-ALOε refractory aggregates using an in-situ decomposition pore-forming technique", CERAM. INT., January 2015 (2015-01-01), pages 515 - 520

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10759697B1 (en) 2019-06-11 2020-09-01 MSB Global, Inc. Curable formulations for structural and non-structural applications
US11008252B2 (en) 2019-06-11 2021-05-18 MSB Global, Inc. Curable formulations for structural and non-structural applications
US11655187B2 (en) 2019-06-11 2023-05-23 Partanna Global, Inc. Curable formulations for structural and non-structural applications
WO2021123363A1 (de) * 2019-12-18 2021-06-24 Refratechnik Holding Gmbh Versatz zur herstellung eines grobkeramischen feuerfesten basischen erzeugnisses, derartiges erzeugnis sowie verfahren zu seiner herstellung, zustellung eines industrieofens und industrieofen
CN114761370A (zh) * 2019-12-18 2022-07-15 耐火材料控股有限公司 用于制造碱性粗陶瓷耐火制品的配合料、这种制品及其制造方法、工业炉的衬里以及工业炉
CN114761370B (zh) * 2019-12-18 2023-07-28 耐火材料控股有限公司 用于制造碱性粗陶瓷耐火制品的配合料、这种制品及其制造方法、工业炉的衬里以及工业炉

Also Published As

Publication number Publication date
PL3523264T3 (pl) 2024-02-19
CA3070785C (en) 2024-05-14
EP3523264A1 (de) 2019-08-14
CN110325487A (zh) 2019-10-11
DE102017121452B9 (de) 2024-04-04
RU2020100219A (ru) 2021-06-30
DE102017121452A9 (de) 2019-10-10
RU2752414C2 (ru) 2021-07-27
RS64721B1 (sr) 2023-11-30
AU2018334019B2 (en) 2023-10-05
ES2956739T3 (es) 2023-12-27
US11440847B2 (en) 2022-09-13
JP2021502941A (ja) 2021-02-04
JOP20200061A1 (ar) 2020-03-15
US20200277231A1 (en) 2020-09-03
DE102017121452A1 (de) 2019-03-21
DE102017121452B4 (de) 2024-01-25
BR112020005054A2 (pt) 2020-09-15
KR102399226B1 (ko) 2022-05-19
KR20190122728A (ko) 2019-10-30
RU2020100219A3 (de) 2021-06-30
AU2018334019A1 (en) 2020-02-20
EP3523264B1 (de) 2023-08-16
CN110325487B (zh) 2022-10-11
JP7299157B2 (ja) 2023-06-27
MX2020002853A (es) 2020-07-22
CA3070785A1 (en) 2019-03-21

Similar Documents

Publication Publication Date Title
EP3523264B1 (de) Verfahren zur herstellung einer porösen sintermagnesia, versatz zur herstellung eines grobkeramischen feuerfesten erzeugnisses mit einer körnung aus der sintermagnesia, derartiges erzeugnis sowie verfahren zu seiner herstellung, zustellung eines industrieofens und industrieofen
EP2883853B1 (de) Grobkeramisches feuerfestes Erzeugnis und Verfahren zu seiner Herstellung sowie seine Verwendung
EP2766322B1 (de) Verwendung von ungebrannten feuerfesten erzeugnissen als zustellung von grossvolumigen industrieöfen sowie industrieofen ausgekleidet mit den ungebrannten feuerfesten erzeugnissen
EP3371129B1 (de) Gesinterter feuerfester zirkonmullit-verbundstoff, verfahren zu seiner herstellung und seine verwendung
EP2813481B1 (de) Versatz zur Herstellung eines ungeformten feuerfesten keramischen Erzeugnisses, Verfahren zur Herstellung eines gebrannten feuerfesten keramischen Erzeugnisses, ein gebranntes feuerfestes keramisches Erzeugnis sowie die Verwendung eines ungeformten feuerfesten keramischen Erzeugnisses
DE202017007171U1 (de) Poröse Sintermagnesia, Versatz zur Herstellung eines grobkeramischen feuerfesten Erzeugnisses mit einer Körnung aus der Sintermagnesia, derartiges Erzeugnis sowie Zustellung eines Industrieofens und Industrieofen
EP3717439A1 (de) Syntheseverfahren zur herstellung eines calciumzirkonathaltigen werkstoffes sowie versatz und grobkeramisches feuerfestes erzeugnis mit einer vorsynthetisierten calciumzirkonathaltigen körnung
WO2011063791A1 (de) Alkaliresistenter erdalkali-aluminium-wärmedämmstoff, verfahren zu seiner herstellung und seine verwendung
EP2119684A1 (de) Verfahren zur Herstellung feuerfester Formkörper sowie feuerfester Formkörper
EP4077239B9 (de) Versatz zur herstellung eines grobkeramischen feuerfesten basischen erzeugnisses, derartiges erzeugnis sowie verfahren zu seiner herstellung, zustellung eines industrieofens und industrieofen
EP3919461B1 (de) Trockener versatz und versatzfrischmasse zur herstellung eines grobkeramischen, gebrannten feuerfesten erzeugnisses, insbesondere einer rohrschutzplatte, aus nitridgebundenem siliciumcarbid, derartiges erzeugnis sowie verfahren zu seiner herstellung und müllverbrennungsanlage, rauchgasentschwefelungsanlage und schmelzwanne mit einem derartigen erzeugnis
WO2022207350A1 (de) Versatz zur herstellung eines feuerfesten, ungebrannten formkörpers, derartige formkörper, verfahren zu dessen herstellung, sowie zustellung eines ofens und ofen

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18769685

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018769685

Country of ref document: EP

Effective date: 20190506

ENP Entry into the national phase

Ref document number: 2019542172

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197027533

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 3070785

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2018334019

Country of ref document: AU

Date of ref document: 20180913

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020005054

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020005054

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200313

WWE Wipo information: entry into national phase

Ref document number: P-2023/0947

Country of ref document: RS