WO2019052237A1 - 一种电路结构件的装配方法、设备及电路结构件 - Google Patents

一种电路结构件的装配方法、设备及电路结构件 Download PDF

Info

Publication number
WO2019052237A1
WO2019052237A1 PCT/CN2018/090368 CN2018090368W WO2019052237A1 WO 2019052237 A1 WO2019052237 A1 WO 2019052237A1 CN 2018090368 W CN2018090368 W CN 2018090368W WO 2019052237 A1 WO2019052237 A1 WO 2019052237A1
Authority
WO
WIPO (PCT)
Prior art keywords
pcb
chip
heat
reinforcing material
support frame
Prior art date
Application number
PCT/CN2018/090368
Other languages
English (en)
French (fr)
Inventor
黄竹邻
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to US16/646,609 priority Critical patent/US11172567B2/en
Publication of WO2019052237A1 publication Critical patent/WO2019052237A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/367Cooling facilitated by shape of device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/36Selection of materials, or shaping, to facilitate cooling or heating, e.g. heatsinks
    • H01L23/373Cooling facilitated by selection of materials for the device or materials for thermal expansion adaptation, e.g. carbon
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L23/00Details of semiconductor or other solid state devices
    • H01L23/34Arrangements for cooling, heating, ventilating or temperature compensation ; Temperature sensing arrangements
    • H01L23/42Fillings or auxiliary members in containers or encapsulations selected or arranged to facilitate heating or cooling
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/0005Apparatus or processes for manufacturing printed circuits for designing circuits by computer
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K3/00Apparatus or processes for manufacturing printed circuits
    • H05K3/30Assembling printed circuits with electric components, e.g. with resistor
    • H05K3/303Surface mounted components, e.g. affixing before soldering, aligning means, spacing means
    • H05K3/305Affixing by adhesive
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05KPRINTED CIRCUITS; CASINGS OR CONSTRUCTIONAL DETAILS OF ELECTRIC APPARATUS; MANUFACTURE OF ASSEMBLAGES OF ELECTRICAL COMPONENTS
    • H05K1/00Printed circuits
    • H05K1/02Details
    • H05K1/0201Thermal arrangements, e.g. for cooling, heating or preventing overheating
    • H05K1/0203Cooling of mounted components
    • H05K1/0204Cooling of mounted components using means for thermal conduction connection in the thickness direction of the substrate

Definitions

  • the present disclosure relates to the field of heat dissipation technologies, and in particular, to a method, an apparatus, and a circuit structure for assembling a circuit structural member.
  • the core core of the main processor of the electronic device has increased from 1 to 2 to 8, and even up to 10. These increased circuit elements can lead to non-linear growth in power consumption, as well as the heat generation of electronic devices.
  • Electronic equipment usually adopts a passive heat dissipation method, that is, natural convection by means of a heat dissipating material and a heat dissipating structure, and heat exchange is performed to remove heat.
  • the heat dissipation processing of the CPU chip on the electronic device is representatively as follows: 1) applying the heat-dissipating silicone on the surface of the chip to contact the external heat-dissipating middle frame; 2) installing a heat-dissipating copper tube on the surface area of the CPU chip, and dissipating heat The copper tube is embedded in the heat dissipation middle frame for heat exchange. These methods all add heat-dissipating material on the front surface of the CPU chip.
  • the heat dissipation of the electronic device is mainly realized by adding a heat dissipation structure on the CPU chip and the printed circuit board (PCB). Adding more heat dissipation structures will inevitably take up more PCB layout area. However, the layout area of the PCB on electronic devices is very limited. If you use more PCB layout area to add heat dissipation structure, you need to occupy the space used by the chip on the PCB. This inevitably leads to an increase in the manufacturing cost of electronic equipment. Therefore, how to improve the heat dissipation performance of electronic devices without occupying more PCB layout area is an urgent technical problem to be solved.
  • the present disclosure provides a method, an apparatus, and a circuit structure for assembling a circuit structural member.
  • a method of assembling a circuit structural member comprising the steps of: measuring a depth and a path of a channel between at least one chip and a PCB, the at least one chip being disposed on a printed circuit board PCB Determining a thickness and a path of the heat dissipation reinforcement material according to a depth and a path of the channel between the at least one chip and the PCB, and a predetermined heat dissipation parameter, to configure a dispensing parameter and a path; according to the dispensing parameter and path Coating the heat dissipating reinforcing material in a channel between the at least one chip and the PCB; and heating the heat dissipating reinforcing material to a first predetermined temperature such that the heat dissipating reinforcing material penetrates into the chip and the PCB.
  • a mounting apparatus for a circuit structural member comprising: a measuring device, a computing device, a dispensing device, and a heating device, wherein the measuring device is connected to the computing device through a data transmission channel, The computing device is connected to the dispensing device through a data transmission channel; the measuring device is configured to measure a depth and a path of a channel between the at least one chip and the PCB, the at least one chip being disposed on the printed circuit board PCB; a computing device configured to determine a thickness and a path of the heat dissipation reinforcement material according to a depth and a path of the channel between the at least one chip and the PCB, and a predetermined heat dissipation parameter to configure a dispensing parameter and a path; a dispensing device, Configuring the heat dissipating reinforcement material to be coated within the channel between the at least one chip and the PCB in accordance with the dispensing parameters and path; and heating the device configured to heat
  • a circuit structural member comprising: at least one chip, a printed circuit board PCB, a support frame, and a heat dissipation reinforcement material, wherein the at least one chip is mounted on the PCB, the at least The heat dissipation reinforcement material is coated in a channel between a chip and the PCB, the heat dissipation reinforcement material penetrates into the chip and the PCB; and the PCB is mounted on the support frame, the PCB and the PCB At least one contact surface of the support frame is coated with the heat dissipation reinforcement material, and the heat dissipation reinforcement material penetrates into the PCB and the support frame.
  • FIG. 1 is a flow chart of a method of assembling a circuit structural member in accordance with an embodiment of the present disclosure
  • FIG. 2 is a schematic structural view of a mounting device of a circuit structural member according to an embodiment of the present disclosure
  • FIG. 3 is a schematic structural view of a circuit structural member according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic diagram of a chip channel reserved on a mobile device (eg, a mobile phone);
  • FIG. 5 is a schematic view showing an arrangement structure of a thermally conductive gel molecule and a chip surface molecule at a normal temperature
  • FIG. 6 is a schematic structural view of a thermally conductive gel penetrating into a surface of a chip
  • FIG. 7 is a schematic diagram of heat conduction of a PCB and a CPU chip
  • Figure 8 is a schematic view of the channel on the PCB and its side coated with a thermally conductive gel
  • Figure 9 is a schematic view of the thermally conductive gel in an easily tearable state at a low temperature.
  • the present disclosure provides a method for assembling a circuit structural member, including:
  • Step 101 Measure a depth and a path of a channel between at least one chip and a PCB, where the at least one chip is disposed on a PCB;
  • Step 102 Determine a thickness and a path of the heat dissipation reinforcement material according to a depth and a path of the channel between the at least one chip and the PCB, and a predetermined heat dissipation parameter, to configure a dispensing parameter and a path;
  • Step 103 coating the heat dissipation reinforcement material in a channel between the at least one chip and the PCB according to the dispensing parameter and path;
  • Step 104 The heat-dissipating reinforcing material is heated to a first predetermined temperature, so that the heat-dissipating reinforcing material penetrates into the chip and the PCB.
  • a channel for reinforcement is provided around the chip, which is generally used to coat the positioning glue.
  • the heat-dissipating reinforcing material is coated by a channel provided around the chip on the PCB.
  • the chip can be fixed, and on the other hand, the heat dissipation area of the chip can be increased.
  • the heat generated by the chip is derived by the heat-dissipating reinforcing material, thereby improving the heat dissipation performance without occupying the PCB layout area.
  • the method of the present disclosure has strong operability, and can achieve the purpose of fixing the chip and improving the heat dissipation performance at the same time.
  • the circuit structure assembly of an electronic device (for example, a mobile phone) can be used without additionally increasing the complexity of the hardware layout and structural design of the PCB.
  • the dispensing parameters of the computing device configuration may include, but are not limited to, the dispensing thickness of the PCB board, the dispensing area, the thermal conductivity of the material, the dispensing time per unit time of the dispenser, and the dispensing path controlled by the robot arm. , heating temperature, etc.
  • the method may further include the steps of: coating the heat dissipation reinforcement material on at least one contact surface of the PCB and the support frame; assembling the PCB on the support frame; and The heat dissipating reinforcing material coated on the contact surface of the support frame is added to the first predetermined temperature such that the heat dissipating reinforcing material penetrates into the PCB and the support frame.
  • the embodiment by applying a heat dissipating reinforcing material on the contact surface between the PCB board and the support frame, and injecting a heat dissipating reinforcing material on the channel of at least one chip on the PCB board, not only the chip and the PCB can be fixed, but also the magnet and the PCB can be fixed.
  • the heat dissipation area of the large PCB so as to achieve better heat dissipation.
  • the dispenser itself has a gas valve and provides a glued device (similar to a syringe piston).
  • a gas valve Similar to a syringe piston
  • the glue In order for the glue to flow smoothly, it is necessary to heat the glue to a certain temperature to make it a fluid state.
  • the thickness of the dispense can be determined empirically.
  • At least one contact surface of the PCB and the support frame is a side of the PCB. That is, the heat-dissipating reinforcing material may be coated on at least one side of the PCB.
  • the PCB can be fixed on the support frame by the heat-dissipating reinforcing material.
  • the heat of the PCB can be transmitted to the support frame through the heat-dissipating reinforcing material, thereby achieving the purpose of dissipating heat on the PCB.
  • the heat-dissipating reinforcement material may be coated on all four sides of the PCB, or three heat-dissipating reinforcement materials may be arbitrarily selected on the four sides of the PCB, and two side coatings may be arbitrarily selected on the four sides of the PCB. Cover the heat reinforcement material.
  • the heat-dissipating reinforcing material can be coated according to the actual heat-dissipating demand, which is not limited herein.
  • one or more chips may be selected on the PCB, and a heat-dissipating reinforcing material is coated in the channel between the selected chip and the PCB.
  • the chip can be fixed, and on the other hand, the heat generated by the chip can be conducted to the PCB through the heat-dissipating reinforcing material.
  • the heat is transmitted to the outside of the PCB through the heat dissipation structure disposed on the PCB or the heat dissipation material on the side of the PCB, thereby improving the heat dissipation performance of the PCB without occupying more layout area of the PCB.
  • the at least one chip may include a CPU chip, a radio frequency chip, and a power management chip. That is to say, the heat dissipation reinforcing material can be coated in the channel of one, any two or three of the CPU chip, the radio frequency chip, and the power management chip.
  • these chips can be fixed on the PCB, and on the other hand, the heat generated by these chips can be transferred to the PCB, and then the heat is radiated through the heat dissipation structure or the heat dissipation material on the PCB.
  • the heat dissipating reinforcing material may be a material capable of simultaneously acting as a fixing and dissipating heat.
  • the heat-dissipating reinforcing material may be a thermally conductive gel or other similar material.
  • the thermally conductive gel having a property of hardness variation with temperature is a nano molecular material.
  • the thermal conductivity gel has a lower hardness and a smaller internal molecular size. Therefore, the heat-conductive gel easily forms the outer contour of the heat-dissipating object, thereby penetrating into the fine groove of the material of the surface of the object to be heat-dissipated, in full contact with it, and can be arbitrarily shaped.
  • the molecular size of the heated surface layer gradually becomes larger, and is in close contact with the material molecules of the surface of the chip, while the inner layer molecules still maintain the softness of thermal conductivity. Heat can diffuse through this molecular structure. At the same time, this molecular property can act as a fixed chip.
  • the above assembling method of the present disclosure may further include: cooling the heat-dissipating reinforcing material to a second predetermined temperature, so that the connection of the heat-dissipating reinforcing material to the chip and the PCB is weakened to failure; and the chip is to be Removed from the PCB.
  • the molecular structure of the heat dissipating reinforcing material rapidly shrinks at the second predetermined temperature, so that the rigid connection between the molecules of the heat dissipating reinforcing material and the chip and the PCB is weakened to failure. This makes it very easy to remove the chip from the PCB.
  • the above assembling method of the present disclosure may further include: cooling the heat dissipation reinforcing material on the contact surface of the PCB and the support frame to a second predetermined temperature, so that the heat dissipation reinforcement material and the PCB and the support frame The connection is weakened to failure; and the PCB is detached from the support frame.
  • the molecular structure of the heat dissipating reinforcing material rapidly shrinks at the second predetermined temperature, so that the rigid connection between the molecules of the heat dissipating reinforcing material and the PCB and the support frame is weakened to failure. This makes it very easy to remove the PCB from the support frame.
  • the present disclosure also provides an assembly device for a circuit structural member, as shown in FIG. 2, which may include: a measuring device 21, a computing device 22, a dispensing device 23, and a heating device 24, wherein the measuring device 21 and the calculation The device 22 is connected through a data transmission channel, and the computing device 22 is connected to the dispensing device 23 through a data transmission channel;
  • Measuring device 21 configured to measure a depth and a path of a channel between at least one chip and a PCB, the at least one chip being disposed on a printed circuit board PCB;
  • the computing device 22 is configured to determine a thickness and a path of the heat dissipation reinforcement material according to a depth and a path of the channel between the at least one chip and the PCB, and a predetermined heat dissipation parameter to configure the dispensing parameter and the path;
  • a dispensing device 23 configured to apply the heat dissipating reinforcing material within a channel between the at least one chip and the PCB in accordance with the dispensing parameter and path;
  • the heating device 24 is configured to heat the heat-dissipating reinforcing material to a first predetermined temperature such that the heat-dissipating reinforcing material penetrates into the chip and the PCB.
  • the assembling device of the above circuit structural member may further include: a robot 25 .
  • the dispensing device 23 may be further configured to apply the heat dissipating reinforcing material on at least one contact surface of the PCB and the support frame; the robot 25 may be configured to assemble the PCB in the And the heating device 24 is further configured to add the heat-dissipating reinforcing material coated on the contact surface of the PCB and the support frame to a first predetermined temperature, so that the heat-dissipating reinforcing material penetrates into the PCB and Support frame.
  • a channel for reinforcement is provided around the chip, which is generally used to coat the positioning glue.
  • the heat dissipating reinforcing material can be coated by a channel provided around the chip on the PCB.
  • the chip can be fixed, on the other hand, the circuit structure with a larger heat dissipation area can be assembled, and the heat dissipation performance can be improved without occupying the PCB layout area.
  • the circuit structure assembly device of the present disclosure can automatically operate to complete the assembly of the circuit structural member.
  • the circuit structural component assembly of an electronic device (for example, a mobile phone) can be used in the case where the heat dissipation performance of the circuit structural member is improved without additionally increasing the hardware layout and structural design complexity of the PCB.
  • At least one contact surface of the PCB and the support frame is a side of the PCB. That is, the dispensing device 23 can apply a heat dissipating reinforcing material on at least one side of the PCB.
  • the PCB can be fixed on the support frame by the heat-dissipating reinforcing material.
  • the heat of the PCB can be transmitted to the support frame through the heat-dissipating reinforcing material, thereby achieving the purpose of dissipating heat on the PCB.
  • the dispensing device 23 can be coated with heat-dissipating reinforcing materials on all four sides of the PCB, or three heat-dissipating reinforcing materials can be arbitrarily selected on the four sides of the PCB, and can be arbitrarily selected on the four sides of the PCB. Both sides are coated with a heat-dissipating reinforcement material
  • the heat-dissipating reinforcing material can be coated according to the actual heat-dissipating demand, which is not limited herein.
  • the measuring device 21 can select one or more chips on the PCB, measure the channel depth and path between the selected chip and the PCB, so that the dispensing device 23 applies heat dissipation in the channel of the selected chip. Reinforcement material.
  • the chip can be fixed, and on the other hand, the heat generated by the chip can be conducted to the PCB through the heat-dissipating reinforcing material. The heat is radiated to the outside of the PCB through the heat dissipation structure disposed on the PCB or the heat dissipation material on the side of the PCB, so as to improve the heat dissipation performance of the PCB without occupying more layout area of the PCB.
  • the at least one chip may include at least one of a CPU chip, a radio frequency chip, and a power management chip, or a combination thereof. That is to say, the heat dissipation reinforcing material can be coated in the channel of one, any two or three of the CPU chip, the radio frequency chip, and the power management chip.
  • these chips can be fixed on the PCB, and on the other hand, the heat generated by these chips can be transferred to the PCB, and then the heat is radiated through the heat dissipation structure or the heat dissipation material on the PCB.
  • the heat dissipating reinforcing material may be a material capable of simultaneously acting as a fixing and dissipating heat.
  • the heat-dissipating reinforcing material may be a thermally conductive gel or other similar material.
  • the heating device 24 may be further configured to: cool the heat-dissipating reinforcing material to a second predetermined temperature, such that the connection of the heat-dissipating reinforcing material to the chip and the PCB is weakened to failure; And the robot 25 can also be configured to detach the chip from the PCB.
  • the molecular structure of the heat dissipating reinforcing material shrinks rapidly at the second predetermined temperature, so that the rigid connection between the molecules of the heat dissipating reinforcing material and the chip and the PCB is weakened to failure. This makes it very easy to remove the chip from the PCB. After the repair is completed, it is also possible to reassemble by applying a heat-dissipating reinforcing material in the channel. In this way, not only the chip disassembly operation is easy, but also the device is not damaged during maintenance.
  • the heating device 24 may be further configured to: cool the heat-dissipating reinforcing material on the contact surface of the PCB and the support frame to a second predetermined temperature, so that the heat-dissipating reinforcing material and the The connection of the PCB and the support frame is weakened to failure; and the robot 25 can also be configured to detach the PCB from the support frame.
  • the molecular structure of the heat dissipating reinforcing material shrinks rapidly at the second predetermined temperature, so that the rigid structure of the heat dissipating reinforcing material and the rigid connection between the PCB and the support frame are weakened to failure. This makes it very easy to remove the PCB from the support frame.
  • the heating device 24 may be a wind gun or the like.
  • the present disclosure further provides a circuit structural member, including: at least one chip 31, a PCB 32, a support frame (not shown), and a heat dissipation reinforcement material 33, wherein the at least one chip 31 is assembled.
  • the heat dissipation reinforcing material 33 is coated in a channel between the at least one chip 31 and the PCB 32, and the heat dissipation reinforcing material 33 penetrates into the chip 31 and the PCB 32;
  • the PCB 32 is mounted on the support frame, and the at least one contact surface of the PCB 32 and the support frame is coated with the heat dissipation reinforcement material 33, and the heat dissipation reinforcement material 33 penetrates into the PCB 32 and the support frame.
  • At least one contact surface of the PCB 32 and the support frame may be a side of the PCB 32.
  • it may be four sides of the PCB 32, or any three of the four sides of the PCB 32, and may be any two of the four sides of the PCB 32.
  • it can also be any one of the four sides of the PCB 32.
  • the heat-dissipating reinforcing material can be coated according to the actual heat-dissipating demand, which is not limited herein.
  • the at least one chip 31 may include at least one of a CPU chip, a radio frequency chip, and a power management chip, or a combination thereof.
  • the heat dissipation reinforcing material 33 may be a material that can simultaneously serve a fixing action and a heat dissipation effect.
  • the heat sinking reinforcement material can be a thermally conductive gel or any other suitable material.
  • the above circuit structure can be applied to various types of electronic devices, such as mobile phones, wearable devices, tablet computers, and the like.
  • a channel is reserved for the CPU chip on the PCB of the mobile phone.
  • this reserved channel borrowing the CPU chip is injected into the conductive gel.
  • it can function as a heat-conductive gel that fixes the function of the CPU chip and improves the heat dissipation effect.
  • the circuit structure of the mobile phone may include a support frame (not shown in FIG. 4), a PCB 41, a CPU chip 42, and a thermal conductive gel.
  • the four sides of the PCB 41 are coated with a thermally conductive gel, and the channel 44 around the CPU chip is also filled with a thermally conductive gel.
  • the circuit structural component assembly process of the mobile phone may include the following steps:
  • Step 1 The measuring device measures the depth and path of the channel 44 around the CPU chip 42, and the CPU chip 42 is soldered on the PCB 41;
  • Step 2 The computing device determines the thickness and path of the thermally conductive gel according to the depth and path of the channel 44 around the CPU chip 42 and the predetermined heat dissipation parameters;
  • the computing device determines the thickness of the thermally conductive gel injected into the channel 44 according to the thickness formula of the thickness of the thermally conductive gel and the heat dissipation efficiency, combined with the depth and path of the channel 44, and then calculates the amount of the thermal conductive gel according to the thickness. To set the dispensing parameters and path of the dispensing device.
  • the thickness of the thermally conductive gel injected within the channel 44 can be adjusted based on the amount of void provided by the structure.
  • the void width may be within 0.3 mm while a margin allowance of about 0.05-0.1 mm may be reserved.
  • the glue fills the void and injects a thermally conductive gel into the channel 44.
  • Step 3 The dispensing device performs a dispensing operation on the channel 44 around the CPU chip 42 in accordance with the dispensing parameters and paths. Since the thickness of the dispensing is previously configured, the thermal gel injected into the channel 44 by the dispensing device can meet the desired requirements. At normal temperature, the thermally conductive gel is in a soft state, in which the thermal gel has a small molecular size and adheres to the outer surface of the chip.
  • Fig. 5 is a view showing the arrangement of thermally conductive gel molecules and chip surface molecules at normal temperature.
  • Step 4 The heating device performs a short-time heat treatment on the heat-conductive gel in the channel 44, and is heated to a first predetermined temperature, so that the heat-conductive gel penetrates into the CPU chip 42 and the PCB 41 to connect and fix the two;
  • the value of the first predetermined temperature is previously configured in the heating device.
  • the heating device automatically stops the heating when the heating device heats the thermally conductive gel to the first predetermined temperature during the heat treatment.
  • the value of the first predetermined temperature is a first temperature threshold in which the form of the thermally conductive gel changes. After the thermally conductive gel is heated to this temperature threshold, the surface layer of the thermally conductive gel becomes larger in size, so that the thermally conductive gel molecules penetrate into the molecular structure on the surface of the chip and fuse together. Thus, the thermally conductive gel gradually becomes a rigid structure, but the molecules of the inner layer maintain good thermal conductivity.
  • Figure 6 shows a schematic diagram of the thermal gel penetration into the surface structure of the chip after heating to a first temperature threshold.
  • Fig. 7 is a view showing the heat conduction of the PCB and the CPU chip after this step. Due to the mutual penetration of molecules in the microstructure, the heat of the package surface of the CPU chip 42 is conducted through the inner layer molecules of the thermally conductive gel 43 to the PCB 41 having a large amount of copper material inside. In this way, the heat dissipation effect of the CPU chip 42 is enhanced.
  • the main heating devices on the PCB 41 such as a radio frequency chip (not shown in FIG. 4), a power management chip (not shown in FIG. 4), etc., can be injected on the channel in the manner of steps 1 to 3.
  • Thermal gel On the one hand, the corresponding device can be fixed, and on the other hand, the heat dissipation effect of the corresponding device can be enhanced.
  • a large-area heat-dissipating surface can be formed on the PCB 41 to further enhance the heat dissipation performance of the PCB 41.
  • Step 5 The dispensing device applies a layer of thermal conductive gel on the contact surface between the peripheral edge of the PCB 41 and the support frame;
  • Step 6 The robot mounts the PCB 41 on the support frame
  • Step 7 The heating device performs a short-time heat treatment on the edge-coated thermal conductive gel of the PCB 41, and heats to a first predetermined temperature, so that the thermal conductive gel 43 penetrates into the support frame and the PCB 41 to connect and fix the two;
  • the PCB 41 can be fixed on the support frame by the thermal conductive gel, and on the other hand, the heat dissipation surface of the PCB can be increased, and another heat dissipation channel besides the heat dissipation path of the conventional chip top can be established. Therefore, the speed of heat dissipation of the whole machine can be accelerated, thereby improving the heat treatment efficiency of the mobile phone.
  • the oblique line area of the edge of the PCB 41 is the area where the thermally conductive gel 43 is coated on the PCB and the support frame.
  • Step 8 When the CPU chip 42 needs to be repaired, the heating device cools the thermally conductive gel injected therein along the trajectory of the channel 44 to cool the thermal conductive gel to a second predetermined temperature.
  • the thermally conductive gel exits from the surface molecular array of the CPU chip 42 to form a state that is easily torn.
  • the robot removes the CPU chip 42 from the PCB 41 to detach the CPU chip 42 from the PCB 41.
  • Figure 9 shows a schematic view of the thermally conductive gel in a tearable state at low temperatures.
  • the second predetermined temperature is a second temperature threshold in which the thermal gel morphology changes.
  • the temperature of the thermally conductive gel is below the second temperature threshold, the molecular structure of the thermally conductive gel shrinks rapidly and the rigid connection with other molecules weakens to failure.
  • the CPU chip 42 after disassembly can be reassembled by the above operation.
  • the circuit structure of the mobile phone can be formed.
  • the heat-generating gel is formed in the channel of the heat-generating chip on the PCB of the circuit structure, and the side of the PCB is also coated with a heat-conductive gel.
  • the heat dissipation surface on the PCB in the circuit structure component is increased without occupying the PCB layout area, thereby improving the heat dissipation performance of the circuit structure component, and further enhancing the heat dissipation performance of the mobile phone.
  • a program to instruct related hardware e.g., a processor
  • a computer readable storage medium such as a read only memory, disk or optical disk. Wait.
  • all or part of the steps of the above embodiments may also be implemented using one or more integrated circuits.
  • each module/unit in the foregoing embodiment may be implemented in the form of hardware, for example, by implementing an integrated circuit to implement its corresponding function, or may be implemented in the form of a software function module, for example, executing a program stored in the memory by a processor. / instruction to achieve its corresponding function.
  • the present disclosure is not limited to any specific form of combination of hardware and software.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Computer Hardware Design (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Cooling Or The Like Of Electrical Apparatus (AREA)
  • Cooling Or The Like Of Semiconductors Or Solid State Devices (AREA)

Abstract

本公开提供了一种电路结构件的装配方法、设备及电路结构件。该方法包括:测量至少一个芯片与PCB之间沟道的深度和路径,所述至少一个芯片设置在印刷电路板PCB上;根据所述至少一个芯片与PCB之间沟道的深度和路径、以及预定的散热参数,确定散热加固材料的厚度和路径,以配置点胶参数和路径;按照所述点胶参数和路径在所述至少一个芯片与PCB之间的沟道内涂覆所述散热加固材料;以及将所述散热加固材料加热至第一预定温度,使得所述散热加固材料渗入所述芯片和PCB。

Description

一种电路结构件的装配方法、设备及电路结构件 技术领域
本公开涉及散热技术领域,具体涉及一种电路结构件的装配方法、设备及电路结构件。
背景技术
随着现在用户对电子设备处理芯片较高性能的要求与日俱增,电子设备的主处理器的内核core从1至2个增加到8个,甚至还有高达10个。这些增加的电路单元会带来功耗的非线性增长,同样也使得电子设备的发热更严重。
电子设备通常采用被动散热方式,即借助散热材料和散热结构自然对流,进行热交换来带走热量。
对电子设备上的CPU芯片的散热处理具有代表性的是如下方式:1)将散热硅胶涂在芯片表面与外部的散热中框接触;2)在CPU芯片的表面区域安装散热铜管,通过散热铜管嵌入散热中框进行热交换。这些方法都是在CPU芯片的正表面上增设散热材料。
可以看出,电子设备的散热主要借助于在CPU芯片和印刷电路板(PCB,Printed Circuit Board)上增设散热结构来实现。增设更多的散热结构必然会占用更多的PCB布局面积。但是电子设备上PCB的布局面积是非常有限的。如果使用更多的PCB布局面积来增设散热结构,则需要占用PCB上的芯片所使用的空间。这必然造成电子设备的制造成本增加。因此,在不占用更多PCB布局面积的前提下如何提升电子设备的散热性能,是急需解决的技术问题。
发明内容
本公开提供了一种电路结构件的装配方法、设备及电路结构件。
根据本公开的一个实施例,提供了一种电路结构件的装配方法,包括以下步骤:测量至少一个芯片与PCB之间沟道的深度和路径,所述至少一个芯片设置在印刷电路板PCB上;根据所述至少一个芯片与 PCB之间沟道的深度和路径、以及预定的散热参数,确定散热加固材料的厚度和路径,以配置点胶参数和路径;按照所述点胶参数和路径在所述至少一个芯片与PCB之间的沟道内涂覆所述散热加固材料;以及将所述散热加固材料加热至第一预定温度,使得所述散热加固材料渗入所述芯片和PCB。
根据本公开的一个实施例,提供一种电路结构件的装配装置,包括:测量设备、计算设备、点胶设备和加热设备,其中,所述测量设备与所述计算设备通过数据传输通道连接,所述计算设备与所述点胶设备通过数据传输通道连接;测量设备,被配置成测量至少一个芯片与PCB之间沟道的深度和路径,所述至少一个芯片设置在印刷电路板PCB上;计算设备,被配置成根据所述至少一个芯片与PCB之间沟道的深度和路径、以及预定的散热参数,确定散热加固材料的厚度和路径,以配置点胶参数和路径;点胶设备,被配置成按照所述点胶参数和路径在所述至少一个芯片与PCB之间的沟道内涂覆所述散热加固材料;并且加热设备,被配置成将所述散热加固材料加热至第一预定温度,使得所述散热加固材料渗入所述芯片和PCB。
根据本公开的一个实施例,提供一种电路结构件,包括:至少一个芯片、印刷电路板PCB、支撑架和散热加固材料,其中,所述至少一个芯片装配在所述PCB上,所述至少一个芯片与所述PCB之间的沟道内涂覆有所述散热加固材料,所述散热加固材料渗入所述芯片和PCB;并且所述PCB装配在所述支撑架上,所述PCB与所述支撑架的至少一个接触面上涂覆有所述散热加固材料,所述散热加固材料渗入所述PCB和支撑架。
附图说明
附图用来提供对本公开技术方案的进一步理解,并且构成说明书的一部分,与本公开的实施例一起用于解释本公开的技术方案,并不构成对本公开技术方案的限制。
图1为根据本公开实施例的电路结构件的装配方法的流程图;
图2为根据本公开实施例的电路结构件的装配装置的结构示意 图;
图3为根据本公开实施例的电路结构件的结构示意图;
图4为移动装置(例如,手机)上预留的芯片沟道的示意图;
图5为在常温下导热凝胶分子和芯片表面分子的排列结构示意图;
图6为导热凝胶渗入芯片表面分子的结构示意图;
图7为PCB及CPU芯片热传导的示意图;
图8为PCB上的沟道及其侧面涂覆导热凝胶的示意图;以及
图9为在低温下导热凝胶处于易撕落状态的示意图。
具体实施方式
为使本公开的目的、技术方案和优点更加清楚明白,下文中将结合附图对本公开的实施例进行详细说明。需要说明的是,在不冲突的情况下,本公开中的实施例及实施例中的特征可以相互任意组合。
在流程图中示出的步骤可以在诸如一组计算机可执行指令的计算机系统中执行。并且,虽然在流程图中示出了逻辑顺序,但是在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤。
如图1所示,本公开提供一种电路结构件的装配方法,包括:
步骤101,测量至少一个芯片与PCB之间沟道的深度和路径,所述至少一个芯片设置在PCB上;
步骤102,根据所述至少一个芯片与PCB之间沟道的深度和路径、以及预定的散热参数,确定散热加固材料的厚度和路径,以配置点胶参数和路径;
步骤103,按照所述点胶参数和路径在所述至少一个芯片与PCB之间的沟道内涂覆所述散热加固材料;以及
步骤104,将所述散热加固材料加热至第一预定温度,使得所述散热加固材料渗入所述芯片和PCB。
在通常情况下,芯片周围设置有用于加固的沟道,该沟道一般用来涂覆定位胶。在本公开中,借助在PCB上的芯片周围设置的沟道涂覆散热加固材料。一方面,可以使芯片固定,另一方面,可以增加芯 片的散热面积。通过散热加固材料将芯片产生的热量导出,从而在不占用PCB布局面积的前提下提升了散热性能。本公开的方法具有较强的可操作性,能同时达到固定芯片和提升散热效能的目的。在没有额外增加PCB的硬件布局和结构设计的复杂度的情况下,可以用于电子设备(例如,手机)的电路结构件装配。
在本公开中,计算设备配置的点胶参数可以包括但不限于PCB板的点胶厚度、点胶面积、材料的导热率、点胶机的单位时间点胶质量、机械臂控制的点胶路径、加热的温度等。
在步骤104之后,所述方法还可以包括如下步骤:在PCB与支撑架的至少一个接触面涂覆所述散热加固材料;将所述PCB装配在所述支撑架上;以及将所述PCB与支撑架的接触面上涂覆的散热加固材料加入至第一预定温度,使得所述散热加固材料渗入所述PCB和支撑架。如此,根据本实施例,通过在PCB板与支撑架之间的接触面上涂覆散热加固材料、PCB板上至少一个芯片的沟道上注入散热加固材料,不仅能够固定芯片和PCB,而且可以增大PCB的散热面积,从而达到更佳的散热效果。
在实际应用中,点胶机本身带有气阀并且提供装胶的装置(类似注射器活塞)。为了胶能顺畅流出,需要将胶加热到一定的温度使其成为流态。点胶的厚度可以是根据经验确定。
在实际应用中,所述PCB与支撑架的至少一个接触面为所述PCB的侧面。也就是说,可以在PCB的至少一个侧面上涂覆散热加固材料。一方面,可以通过散热加固材料将PCB固定在支撑架上,另一方面,可以通过该散热加固材料将PCB的热量传导至支撑架上,进而达到散去PCB上热量的目的。
例如,可以在PCB的四个侧面都涂覆散热加固材料,也可以在PCB的四个侧面上任意选取三个涂覆散热加固材料,还可以在PCB的四个侧面上任意选取两个侧面涂覆散热加固材料。当然,也可以在PCB的四个侧面上任意选取一个侧面涂覆散热加固材料。对此,可以根据实际的散热需求来涂覆散热加固材料,本文不作限制。
在实际应用中,可以在PCB上选取一个或多个芯片,在所选取的 芯片与PCB之间的沟道内涂覆散热加固材料。这样,一方面可以固定芯片,另一方面还可以通过散热加固材料将芯片产生的热量传导至PCB。通过PCB上设置的散热结构或PCB侧面的散热加固材料将该热量传导至PCB之外,从而在不占用PCB更多布局面积的前提下提升PCB的散热性能。
在实际应用中,可以选取需要散热的部分芯片,在其周围的沟道内涂覆散热加固材料。例如,所述至少一个芯片可以包括:CPU芯片、射频芯片以及电源管理芯片。也就是说,可以在CPU芯片、射频芯片、电源管理芯片中之一、任意两个或三者的沟道内涂覆散热加固材料。一方面,可以将这些芯片固定在PCB上,另一方面,还可以将这些芯片产生的热量传递至PCB,进而通过PCB上的散热结构或散热材料进行散热。
在实际应用中,所述散热加固材料可以为能够同时起到固定作用和散热作用的材料。例如,所述散热加固材料可以为导热凝胶或其他类似的材料。这里,具有硬度随温度变化特性的导热凝胶是纳米分子材料。在常温下,导热凝胶的硬度较低,内部分子的尺寸较小。因此,导热凝胶容易形成散热物体外部轮廓,从而渗入到待散热物体表面材料的细小凹槽内,与其充分接触,而且可以任意塑形。当对导热凝胶被加热,达到导热凝胶的形态变化阈值时,受热表层分子尺寸逐渐变大,与芯片表面材料分子紧密接触,而内层分子仍然保持导热性较好的柔软性。热可以通过这种分子结构进行扩散。同时,这种分子特性能够起到了固定芯片的作用。
在维修时,本公开的上述装配方法还可以包括:将所述散热加固材料降温至第二预定温度,使得所述散热加固材料与所述芯片、PCB的连接减弱至失效;以及将所述芯片从PCB上拆卸下来。其中,在该第二预定温度下所述散热加固材料的分子结构会迅速收缩,使得散热加固材料的分子与所述芯片、PCB之间的刚性连接减弱至失效。这样,就非常容易将芯片从PCB上拆卸下来。在维修完成后,还可以重新通过在沟道内涂覆散热加固材料来进行装配。这样,在维修时不仅芯片拆卸操作简易,而且不会对器件造成损坏。
在需要维修时,本公开的上述装配方法还可以包括:将所述PCB与支撑架的接触面上的散热加固材料降温至第二预定温度,使得所述散热加固材料与所述PCB、支撑架的连接减弱至失效;以及将所述PCB从支撑架上拆卸下来。其中,在该第二预定温度下所述散热加固材料的分子结构会迅速收缩,使得所述散热加固材料的分子与所述PCB、支撑架之间的刚性连接减弱到失效。这样,就非常容易将PCB从支撑架上拆卸下来。在维修完成后,还可以重新通过在PCB与支撑架的接触面涂覆散热加固材料来进行装配。这样,在维修时不仅拆卸操作简易,而且不会对器件造成损坏。
本公开还提供一种电路结构件的装配装置,如图2所示,可以包括:测量设备21、计算设备22、点胶设备23和加热设备24,其中,所述测量设备21与所述计算设备22通过数据传输通道连接,所述计算设备22与所述点胶设备23通过数据传输通道连接;
测量设备21,被配置成测量至少一个芯片与PCB之间沟道的深度和路径,所述至少一个芯片设置在印刷电路板PCB上;
计算设备22,被配置成根据所述至少一个芯片与PCB之间沟道的深度和路径、以及预定的散热参数,确定散热加固材料的厚度和路径,以配置点胶参数和路径;
点胶设备23,被配置成按照所述点胶参数和路径在所述至少一个芯片与PCB之间的沟道内涂覆所述散热加固材料;并且
加热设备24,被配置成将所述散热加固材料加热至第一预定温度,使得所述散热加固材料渗入所述芯片和PCB。
在一个示例性实施例中,上述电路结构件的装配装置还可以包括:机械手25。在一个示例性实施例中,点胶设备23,还可以被配置成在PCB与支撑架的至少一个接触面涂覆所述散热加固材料;机械手25,可以被配置成将所述PCB装配在所述支撑架上;并且加热设备24,还可以被配置成将所述PCB与支撑架的接触面上涂覆的散热加固材料加入至第一预定温度,使得所述散热加固材料渗入所述PCB和支撑架。
在通常情况下,芯片周围设置有用于加固的沟道,该沟道一般用来涂覆定位胶。通过本公开的电路结构件装配装置,可以借助在PCB 上的芯片周围设置的沟道涂覆散热加固材料。一方面,可以使芯片固定,另一方面,能够装配出散热面积更大的电路结构件,在不占用PCB布局面积的前提下提升其散热性能。本公开的电路结构件装配装置可以自动操作完成电路结构件的装配。在没有额外增加PCB的硬件布局和结构设计的复杂度的前提下提升了该电路结构件的散热性能的情况下,可以用于电子设备(例如,手机)的电路结构件装配。
在实际应用中,所述PCB与支撑架的至少一个接触面为所述PCB的侧面。也就是说,点胶设备23可以在PCB的至少一个侧面上涂覆散热加固材料。一方面,可以通过散热加固材料将PCB固定在支撑架上,另一方面,可以通过该散热加固材料将PCB的热量传导至支撑架上,进而达到散去PCB上热量的目的。例如,点胶设备23可以在PCB的四个侧面都涂覆散热加固材料,也可以在PCB的四个侧面上任意选取三个涂覆散热加固材料,还可以在PCB的四个侧面上任意选取两个侧面涂覆散热加固材料。当然,也可以在PCB的四个侧面上任意选取一个侧面涂覆散热加固材料。对此,可以根据实际的散热需求来涂覆散热加固材料,本文不作限制。
在实际应用中,测量设备21可以在PCB上选取一个或多个芯片,测量所选取的芯片与PCB之间的沟道深度和路径,使得点胶设备23在所选取芯片的沟道内涂覆散热加固材料。这样,一方面,可以固定芯片,另一方面,还可以通过散热加固材料将芯片产生的热量传导至PCB。通过PCB上设置的散热结构或PCB侧面的散热加固材料将该热量传导至PCB之外,从而达到不占用PCB更多布局面积的前提下提升PCB散热性能的目的。
在实际应用中,可以选取需要散热的部分芯片,在其周围的沟道内涂覆散热加固材料。例如,所述至少一个芯片可以包括:CPU芯片、射频芯片以及电源管理芯片中的至少一者或其组合。也就是说,可以在CPU芯片、射频芯片、电源管理芯片中之一、任意两个或三者的沟道内涂覆散热加固材料。一方面,可以将这些芯片固定在PCB上,另一方面,还可以将这些芯片产生的热量传递至PCB,进而通过PCB上的散热结构或散热材料进行散热。
在实际应用中,所述散热加固材料可以为能够同时起到固定作用和散热作用的材料。例如,所述散热加固材料可以为导热凝胶或其他类似的材料。
在一个示例性实施例中,所述加热设备24还可以被配置成:将所述散热加固材料降温至第二预定温度,使得所述散热加固材料与所述芯片、PCB的连接减弱至失效;并且机械手25,还可以被配置成将所述芯片从PCB上拆卸下来。其中,在该第二预定温度下所述散热加固材料的分子结构会迅速收缩,使得散热加固材料的分子与芯片、PCB之间的刚性连接减弱至失效。这样,就非常容易将芯片从PCB上拆卸下来。在维修完成后,还可以重新通过在沟道内涂覆散热加固材料来进行装配。这样,在维修时不仅芯片拆卸操作简易,而且不会对器件造成损坏。
在一个示例性实施例中,所述加热设备24还可以被配置成:将所述PCB与支撑架的接触面上的散热加固材料降温至第二预定温度,使得所述散热加固材料与所述PCB、支撑架的连接减弱至失效;并且机械手25,还可以被配置成将所述PCB从支撑架上拆卸下来。其中,在该第二预定温度下所述散热加固材料的分子结构会迅速收缩,使得所述散热加固材料的分子结构与PCB、支撑架之间的刚性连接减弱到失效。这样,就非常容易将PCB从支撑架上拆卸下来。在维修完成后,还可以重新通过在PCB与支撑架的接触面涂覆散热加固材料来进行装配。这样,在维修时不仅拆卸操作简易,而且不会对器件造成损坏。
在实际应用中,加热设备24可以是风枪等。
如图3所示,本公开还提供了一种电路结构件,包括:至少一个芯片31、PCB 32、支撑架(图中未示)和散热加固材料33,其中,所述至少一个芯片31装配在所述PCB 32上,所述至少一个芯片31与所述PCB 32之间的沟道内涂覆有所述散热加固材料33,所述散热加固材料33渗入所述芯片31和PCB 32;所述PCB 32装配在所述支撑架上,所述PCB 32与所述支撑架的至少一个接触面上涂覆有所述散热加固材料33,所述散热加固材料33渗入所述PCB 32和支撑架。
在一个示例性实施例中,所述PCB 32与支撑架的至少一个接触面 可以为所述PCB 32的侧面。例如,可以是PCB 32的四个侧面,也可以是PCB 32四个侧面中的任意三个,还可以在PCB 32四个侧面中的任意两个。当然,也可以是PCB 32四个侧面中的任意一个。对此,可以根据实际的散热需求来涂覆散热加固材料,本文不作限制。
在一个示例性实施例中,所述至少一个芯片31可以包括CPU芯片、射频芯片以及电源管理芯片中的至少一者或其组合。
在一个示例性实施例中,所述散热加固材料33可以为能够同时起到固定作用和散热作用的材料。例如,所述散热加固材料可以为导热凝胶或任何其他适当材料。
在实际应用中,上述电路结构件可以应用于多种类型的电子设备中,例如手机、可穿戴设备、平板电脑等。
下面以手机为例详细说明本公开电路结构件及其装配过程。
手机的PCB上对CPU芯片预留有沟道。在本实施例中,将借用CPU芯片的这个预留沟道注入导电凝胶。在这种情况下,既能起到固定CPU芯片的作用,又能提升散热效果的导热凝胶。如图4所示,手机的电路结构件可以包括:支撑架(图4中未示出)、PCB 41、CPU芯片42和导热凝胶。在本实施例中,PCB 41的四个侧面涂覆有导热凝胶,CPU芯片周围的沟道44上也注有导热凝胶。
在本实施例中,手机的电路结构件装配过程可以包括如下步骤:
步骤一:测量设备测量CPU芯片42周围的沟道44的深度和路径,所述CPU芯片42焊接在PCB 41上;
步骤二:计算设备根据所述CPU芯片42周围的沟道44的深度和路径、以及预定的散热参数,确定导热凝胶的厚度和路径;
这里,计算设备根据导热凝胶的厚度与散热能效的换算公式,结合沟道44的深度和路径,确定沟道44内注入的导热凝胶的厚度,再根据该厚度计算导热凝胶的用量,以设置点胶设备的点胶参数和路径。
在实际应用中,可以基于结构提供的空隙余量来调整在沟道44内注入的导热凝胶的厚度。比如,在一个示例性实施例中,空隙宽度可以在0.3mm之内,同时可以预留0.05-0.1mm左右的空隙余量。在结构应力作用,胶会将该空隙填充,进而在沟道44内注入的导热凝胶。
步骤三:点胶设备按照所述点胶参数和路径在CPU芯片42周围的沟道44上进行点胶操作。由于事先配置了点胶的厚度,所以此时点胶设备在沟道44上注入的导热凝胶可以满足预期要求的。在常温下,导热凝胶呈较软状态,在该状态下,导热凝胶的分子尺寸较小,会附着在芯片的外表面。图5示出了在常温下导热凝胶分子和芯片表面分子的排列结构示意图。
步骤四:加热设备对着沟道44里导热凝胶进行短时间加热处理,加热至第一预定温度,使得导热凝胶渗入CPU芯片42和PCB 41,以将两者连接并固定;
这里,加热设备中预先配置有第一预定温度的值。在加热处理时加热设备将导热凝胶加热至该第一预定温度则自动停止加热。这里,第一预定温度的值为导热凝胶形态变化的第一温度阈值。在导热凝胶被加热到该温度阈值之后,导热凝胶表层分子尺寸变大,从而导热凝胶分子渗入到芯片表面的分子结构里,融合到一起。这样,导热凝胶逐渐变成刚性结构,但是内层的分子却保持较好导热特性。图6示出了在加热到第一温度阈值后导热凝胶渗入芯片表面分子结构的示意图。这样融合在一起的结构,状态非常稳定,较硬的连接,能够起到固定CPU芯片42的作用。图7示出了在本步骤后的PCB与CPU芯片的热传导的示意图。由于微观结构中分子之间相互渗透,CPU芯片42封装表面的热量通过导热凝胶43的内层分子传导到内部有大量铜材料的PCB 41上。这样,增强了CPU芯片42的散热效果。
在实际应用中,PCB 41上主要的发热器件,如射频芯片(图4中未示出)、电源管理芯片(图4中未示出)等都可以按照步骤一至步骤三的方式在沟道上注入导热凝胶。一方面,可以固定相应器件,另一方面,还可增强相应器件的散热效果。此外,通过将多个发热器件的沟道注入导热凝胶,可以在PCB 41上形成较大面积的散热面,进一步增强PCB 41的散热效能。
步骤五:点胶设备在PCB 41四周边缘和支撑架之间的接触面涂覆一层导热凝胶;
步骤六:机械手将PCB 41装配置在支撑架上;
步骤七:加热设备对着PCB 41边缘涂覆的导热凝胶进行短时间加热处理,加热至第一预定温度,使得导热凝胶43渗入支撑架和PCB 41,以将两者连接并固定;
这样,一方面,可以通过导热凝胶将PCB 41固定在支撑架上,另一方面,可以增大PCB的散热面,建立除传统芯片顶部散热途径外的另外一条散热渠道。因此,可以加快整机散热的速度,从而提升手机的热处理效能。如图8所示,PCB 41边缘的斜线区域为在PCB和支撑架上涂覆导热凝胶43的区域。
步骤八:在需要维修CPU芯片42时,加热设备沿着沟道44的轨迹对其中注入的导热凝胶进行降温处理,将导热凝胶降温至第二预定温度。导热凝胶从CPU芯片42的表面分子阵列中退出,形成容易撕裂的状态。机械手将CPU芯片42从PCB 41上撕开,即可将CPU芯片42从PCB 41上拆卸。图9示出了在低温下导热凝胶处于易撕落状态的示意图。
在实际应用中,该第二预定温度为导热凝胶形态变化的第二温度阈值。在导热凝胶的温度低于该第二温度阈值时,导热凝胶的分子结构会迅速收缩,与其他分子的刚性连接减弱到失效。
在实际应用中,在完成上述步骤之后,拆卸之后的CPU芯片42可以通过上述操作重新装配。
通过上述装配过程可以形成手机的电路结构件,该电路结构件的PCB上发热芯片的沟道内有导热凝胶且PCB侧面也涂覆有导热凝胶。这样,在不占用PCB布局面积的情况下,增加了电路结构件中PCB上的散热面,从而改善了电路结构件的散热效能,进一步增强了手机的散热性能。
本领域普通技术人员可以理解上述方法中的全部或部分步骤可通过程序来指令相关硬件(例如处理器)完成,所述程序可以存储于计算机可读存储介质中,如只读存储器、磁盘或光盘等。可选地,上述实施例的全部或部分步骤也可以使用一个或多个集成电路来实现。相应地,上述实施例中的各模块/单元可以采用硬件的形式实现,例如通过集成电路来实现其相应功能,也可以采用软件功能模块的形式实现, 例如通过处理器执行存储于存储器中的程序/指令来实现其相应功能。本公开不限制于任何特定形式的硬件和软件的结合。
以上显示和描述了本公开的基本原理和主要特征和本公开的优点。本公开不受上述实施例的限制,上述实施例和说明书中描述的只是说明本公开的原理,在不脱离本公开精神和范围的前提下,本公开还会有各种变化和改进,这些变化和改进都落入要求保护的本公开范围内。

Claims (14)

  1. 一种电路结构件的装配方法,包括以下步骤:
    测量至少一个芯片与PCB之间沟道的深度和路径,所述至少一个芯片设置在印刷电路板PCB上;
    根据所述至少一个芯片与PCB之间沟道的深度和路径、以及预定的散热参数,确定散热加固材料的厚度和路径,以配置点胶参数和路径;
    按照所述点胶参数和路径在所述至少一个芯片与PCB之间的沟道内涂覆所述散热加固材料;以及
    将所述散热加固材料加热至第一预定温度,使得所述散热加固材料渗入所述芯片和PCB。
  2. 根据权利要求1所述的装配方法,还包括:
    在PCB与支撑架的至少一个接触面涂覆所述散热加固材料;
    将所述PCB装配在所述支撑架上;以及
    将所述PCB与支撑架的接触面上涂覆的散热加固材料加入至第一预定温度,使得所述散热加固材料渗入所述PCB和支撑架。
  3. 根据权利要求2所述的装配方法,其中,所述PCB与支撑架的至少一个接触面为所述PCB的侧面。
  4. 根据权利要求1所述的装配方法,其中,所述至少一个芯片包括CPU芯片、射频芯片以及电源管理芯片中的至少一者或其组合。
  5. 根据权利要求1或2所述的装配方法,其中,所述散热加固材料为导热凝胶。
  6. 一种电路结构件的装配装置,包括:测量设备、计算设备、点胶设备和加热设备,其中,所述测量设备与所述计算设备通过数据传 输通道连接,所述计算设备与所述点胶设备通过数据传输通道连接;
    测量设备,被配置成测量至少一个芯片与PCB之间沟道的深度和路径,所述至少一个芯片设置在印刷电路板PCB上;
    计算设备,被配置成根据所述至少一个芯片与PCB之间沟道的深度和路径、以及预定的散热参数,确定散热加固材料的厚度和路径,以配置点胶参数和路径;
    点胶设备,被配置成按照所述点胶参数和路径在所述至少一个芯片与PCB之间的沟道内涂覆所述散热加固材料;并且
    加热设备,被配置成将所述散热加固材料加热至第一预定温度,使得所述散热加固材料渗入所述芯片和PCB。
  7. 根据权利要求6所述的装配装置,还包括机械手;
    点胶设备,还被配置成在PCB与支撑架的至少一个接触面涂覆所述散热加固材料;
    机械手,被配置成将所述PCB装配在所述支撑架上;并且
    加热设备,还被配置成将所述PCB与支撑架的接触面上涂覆的散热加固材料加入至第一预定温度,使得所述散热加固材料渗入所述PCB和支撑架。
  8. 根据权利要求7所述的装配装置,其中,所述PCB与支撑架的至少一个接触面为所述PCB的侧面。
  9. 根据权利要求6所述的装配装置,其中,所述至少一个芯片包括:CPU芯片、射频芯片以及电源管理芯片中的至少一者或其组合。
  10. 根据权利要求1或2所述的装配装置,其中,所述散热加固材料为导热凝胶。
  11. 一种电路结构件,包括:至少一个芯片、印刷电路板PCB、支撑架和散热加固材料,其中,
    所述至少一个芯片装配在所述PCB上,所述至少一个芯片与所述PCB之间的沟道内涂覆有所述散热加固材料,所述散热加固材料渗入所述芯片和PCB;并且
    所述PCB装配在所述支撑架上,所述PCB与所述支撑架的至少一个接触面上涂覆有所述散热加固材料,所述散热加固材料渗入所述PCB和支撑架。
  12. 根据权利要求11所述的电路结构件,其中,所述PCB与支撑架的至少一个接触面为所述PCB的侧面。
  13. 根据权利要求11所述的电路结构件,其中,所述至少一个芯片包括:CPU芯片、射频芯片以及电源管理芯片中的至少一者或其组合。
  14. 根据权利要求11至13任一项所述的电路结构件,其中,所述散热加固材料为导热凝胶。
PCT/CN2018/090368 2017-09-13 2018-06-08 一种电路结构件的装配方法、设备及电路结构件 WO2019052237A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/646,609 US11172567B2 (en) 2017-09-13 2018-06-08 Assembly method and device for circuit structural member and circuit structural member

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710823223.1A CN109496055B (zh) 2017-09-13 2017-09-13 一种电路结构件的装配方法、设备及电路结构件
CN201710823223.1 2017-09-13

Publications (1)

Publication Number Publication Date
WO2019052237A1 true WO2019052237A1 (zh) 2019-03-21

Family

ID=65688888

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090368 WO2019052237A1 (zh) 2017-09-13 2018-06-08 一种电路结构件的装配方法、设备及电路结构件

Country Status (3)

Country Link
US (1) US11172567B2 (zh)
CN (1) CN109496055B (zh)
WO (1) WO2019052237A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5920112A (en) * 1998-04-07 1999-07-06 Micro Networks Corporation Circuit including a corral for containing a protective coating, and method of making same
CN1358411A (zh) * 1999-06-23 2002-07-10 艾利森公司 一种微电子组件的电磁脉冲屏蔽和热控制组合的凝胶结构
CN102169865A (zh) * 2010-02-24 2011-08-31 瑞萨电子株式会社 半导体集成电路以及用于制造半导体集成电路的方法
CN103426835A (zh) * 2012-05-14 2013-12-04 新科金朋有限公司 控制半导体封装中的翘曲的半导体器件和方法
CN104823276A (zh) * 2013-11-21 2015-08-05 东部Hitek株式会社 覆晶薄膜型半导体封装及其制造方法
CN105023886A (zh) * 2014-04-16 2015-11-04 东部Hitek株式会社 半导体封装及制造该半导体封装的方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5778158A (en) * 1980-11-04 1982-05-15 Nippon Telegr & Teleph Corp <Ntt> Semiconductor integrated circuit device
JP2011146547A (ja) * 2010-01-15 2011-07-28 Murata Mfg Co Ltd 回路モジュール
CN103096636B (zh) * 2012-12-27 2015-09-09 华为技术有限公司 一种导热结构件的制作方法和制作装置及导热结构件
US9406583B2 (en) * 2013-11-21 2016-08-02 Dongbu Hitek Co., Ltd. COF type semiconductor package and method of manufacturing the same
US9779199B2 (en) * 2014-07-25 2017-10-03 Toyota Motor Engineering & Manufacturing North America, Inc. Circuit boards with thermal control and methods for their design
CN106733464B (zh) * 2016-12-30 2020-02-28 深圳市卓翼科技股份有限公司 点胶控制方法和点胶装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5920112A (en) * 1998-04-07 1999-07-06 Micro Networks Corporation Circuit including a corral for containing a protective coating, and method of making same
CN1358411A (zh) * 1999-06-23 2002-07-10 艾利森公司 一种微电子组件的电磁脉冲屏蔽和热控制组合的凝胶结构
CN102169865A (zh) * 2010-02-24 2011-08-31 瑞萨电子株式会社 半导体集成电路以及用于制造半导体集成电路的方法
CN103426835A (zh) * 2012-05-14 2013-12-04 新科金朋有限公司 控制半导体封装中的翘曲的半导体器件和方法
CN104823276A (zh) * 2013-11-21 2015-08-05 东部Hitek株式会社 覆晶薄膜型半导体封装及其制造方法
CN105023886A (zh) * 2014-04-16 2015-11-04 东部Hitek株式会社 半导体封装及制造该半导体封装的方法

Also Published As

Publication number Publication date
US20200267829A1 (en) 2020-08-20
US11172567B2 (en) 2021-11-09
CN109496055A (zh) 2019-03-19
CN109496055B (zh) 2023-03-07

Similar Documents

Publication Publication Date Title
EP2902872B1 (en) Handheld device with heat pipe
US9836100B2 (en) Support frame with integrated phase change material for thermal management
TW201834237A (zh) 一種可撓性顯示面板以及可撓性顯示裝置
JP5610284B2 (ja) 発熱素子の放熱構造
WO2016035436A1 (ja) 熱輸送デバイス及び電子機器
JP2006286347A (ja) 面状照明装置
JP2006140456A (ja) 中空回路基板の製造方法
US20220020659A1 (en) Packaged chip and method for manufacturing packaged chip
CN110828530A (zh) 一种显示面板及其制备方法、显示装置
WO2017197846A1 (zh) 终端设备及其散热结构
JP2008098432A (ja) 電子部品の放熱装置
CN110191625B (zh) 散热组件、其制备方法以及电子设备
KR20200123377A (ko) SiO2 코팅을 이용한 스테인레스 재질의 스마트폰 증기챔버
US20130128462A1 (en) Amorphous diamond-like carbon coatings for increasing the thermal conductivity of structural frames in portable electronic devices
WO2019052237A1 (zh) 一种电路结构件的装配方法、设备及电路结构件
CN104134637A (zh) 用于大功率逻辑芯片PoP封装的散热结构
JP2000232284A (ja) 電子機器筐体及びそれに用いる熱伝導パス部材
KR101215451B1 (ko) 열 가압 히트 스프레더 기반의 메탈기판 제조방법
CN208094874U (zh) 具有导热贯孔的柔性线路板结构
KR101402625B1 (ko) 액정표시장치
CN110168469B (zh) 具有安装部件的设备
Bizo Silicon heatwave: the looming change in data center climates
CN105764299B (zh) 散热结构及其制作方法
JP2004179675A (ja) 電子機器筐体及びそれに用いる熱伝導パス部材
JP2017191873A (ja) カード型電子装置及び電子機器

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18857147

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 10/09/2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18857147

Country of ref document: EP

Kind code of ref document: A1