WO2019052216A1 - 一种减少侧光反射的电容触摸屏 - Google Patents

一种减少侧光反射的电容触摸屏 Download PDF

Info

Publication number
WO2019052216A1
WO2019052216A1 PCT/CN2018/087949 CN2018087949W WO2019052216A1 WO 2019052216 A1 WO2019052216 A1 WO 2019052216A1 CN 2018087949 W CN2018087949 W CN 2018087949W WO 2019052216 A1 WO2019052216 A1 WO 2019052216A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
occlusion
touch screen
capacitive touch
block
Prior art date
Application number
PCT/CN2018/087949
Other languages
English (en)
French (fr)
Inventor
林敏�
吴锡淳
沈奕
孙楹煌
林铿
吕岳敏
陈远明
林德志
高嘉桐
黄勇彬
王焰
陈定基
Original Assignee
汕头超声显示器技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 汕头超声显示器技术有限公司 filed Critical 汕头超声显示器技术有限公司
Priority to US16/643,589 priority Critical patent/US11016621B1/en
Publication of WO2019052216A1 publication Critical patent/WO2019052216A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0443Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a single layer of sensing electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/0416Control or interface arrangements specially adapted for digitisers
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F3/00Input arrangements for transferring data to be processed into a form capable of being handled by the computer; Output arrangements for transferring data from processing unit to output unit, e.g. interface arrangements
    • G06F3/01Input arrangements or combined input and output arrangements for interaction between user and computer
    • G06F3/03Arrangements for converting the position or the displacement of a member into a coded form
    • G06F3/041Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means
    • G06F3/044Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means
    • G06F3/0446Digitisers, e.g. for touch screens or touch pads, characterised by the transducing means by capacitive means using a grid-like structure of electrodes in at least two directions, e.g. using row and column electrodes
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2203/00Indexing scheme relating to G06F3/00 - G06F3/048
    • G06F2203/041Indexing scheme relating to G06F3/041 - G06F3/045
    • G06F2203/04111Cross over in capacitive digitiser, i.e. details of structures for connecting electrodes of the sensing pattern where the connections cross each other, e.g. bridge structures comprising an insulating layer, or vias through substrate

Definitions

  • the utility model relates to a capacitive touch screen, in particular to a capacitive touch screen for reducing side light reflection.
  • the capacitive touch screen generally has a transparent touch area that can be disposed in front of the display screen to form a touch display screen.
  • the touch function of the capacitive touch screen 100 is generally implemented by the touch circuit layer 20 disposed on the inner side of the transparent substrate 10 .
  • the transparent touch area A is The touch circuit layer 20 includes a plurality of first electrodes 21 and second electrodes 22, and the first electrodes 21 and the second electrodes 22 intersect each other to form an inductive array, and the intersections of the first electrodes 21 and the respective second electrodes 22 are respectively divided.
  • first electrode blocks 211 and second electrode blocks 221 a plurality of first electrode blocks 211 and second electrode blocks 221; the intersections are provided with a jumper portion 23, and the jumper portion 23 generally includes a first connection portion 231, a second connection portion 232, and an insulating spacer 233, wherein A connecting portion 231 and the first and second electrode blocks 211 and 221 are formed by a transparent conductive layer, and the first connecting portion 231 is used for connecting the adjacent first electrode blocks 211 to form a conductive continuous corresponding first electrode. 21, the second connecting portion 232 is patterned by another conductive layer for connecting the adjacent second electrode blocks 221 to form a conductive continuous corresponding second electrode 22.
  • the insulating spacer 233 is interposed between the first and second connecting portions 231, 232, and the size thereof needs to be larger than the overlapping area of the first and second connecting portions 231, 232 (the general width is 200 ⁇ m).
  • the edge of the insulating spacer 233 There is a certain slope to allow the first connection portion 231 or the second connection portion 232 to better climb over its edge.
  • the surface of the insulating pad 233 generally has an interface reflection on the incident light. Therefore, when the capacitive touch screen is used in a strong light environment, the lateral incident ambient light a may be edged by the edge of the insulating pad 233. Reflected from the forward direction to form reflected light a', this reflection has a large incident angle (or reflection angle), and its intensity is also large according to the Fresnel formula. Thus, when the user views the screen in a strong light environment, the side light reflection that occurs on the slope of the edge of the insulating block is very easy to enter the user's eyes and cause interference with viewing the display screen of the display screen.
  • the technical solutions adopted are as follows:
  • a capacitive touch screen for reducing side light reflection comprising at least one transparent touch area, comprising a first transparent substrate and a touch circuit layer disposed on an inner side of the first transparent substrate, at least in the transparent touch area
  • the touch circuit layer includes a plurality of first electrodes and second electrodes, and the first electrodes and the second electrodes cross each other to form an inductive array, and the intersections of the first electrodes and the respective second electrodes are respectively divided into a plurality of first electrodes a block and a second electrode block;
  • the intersection is provided with a jumper portion, the jumper portion includes a first connection portion, a second connection portion, and an insulating layer, wherein the first connection portion and the first and second electrode blocks are transparent
  • the first conductive layer is patterned
  • the first connecting portion is used for connecting the adjacent first electrode blocks to form a conductive continuous corresponding first electrode
  • the second connecting portion is formed by patterning a second conductive layer. Connecting adjacent second electrode blocks to form a conductive continuous corresponding second electrode, characterized by:
  • the insulating layer is a transparent insulating pad layer, which is continuously disposed throughout the transparent touch area, and the insulating layer is provided with a through hole at the jumper portion to make the second electrode block and the second connecting portion Forming an electrical connection through the through hole;
  • the occlusion layer is further disposed between the first transparent substrate and the touch circuit layer, and includes a plurality of occlusion blocks, the occlusion block corresponding to the through hole, and the outline thereof is The contour of the hole is expanded.
  • the touch circuit layer may be directly formed on the inner side surface of the first transparent substrate, or may be formed on the outer side surface of the second transparent substrate, and then the first transparent substrate is attached on the outer side surface of the second transparent substrate. Therefore, the touch circuit layer is also located on the inner side surface of the first transparent substrate.
  • the first and second transparent substrates may be transparent glass or plastic substrates having a thickness of 0.2 to 6 mm, and the substrate for directly providing the touch circuit layer is a glass substrate with higher temperature resistance, so as to facilitate processing of the touch circuit layer.
  • the outer side means that the first or second transparent substrate is closer to one surface of the touch object (such as a human finger), and the inner side is the other surface farther away from the touch object.
  • the first conductive layer is a transparent conductive layer, and specifically, it may be a transparent conductive oxide film such as indium tin oxide (ITO) or aluminum zinc oxide (AZO), and the second conductive layer may be a transparent conductive layer or a non-transparent conductive layer. Specifically, it may be a metal film or another layer of the above transparent conductive oxide film, and the metal film may be a single layer or a plurality of metal films or alloy films, especially "molybdenum-aluminum-molybdenum-bismuth"
  • the three-layer alloy film, the conductive layer is generally patterned by photolithography or the like to form the first and second electrode blocks and the first and second connecting portions.
  • the touch circuit layer generally further includes a peripheral lead disposed on the non-transparent touch area, an external end, and an external connection (such as an FPC external connection), and the peripheral lead and the external end may also be made of the transparent conductive film, the metal film or another
  • the conductive film layer is patterned and patterned.
  • the insulating layer may be formed by a process technology such as development of a transparent photosensitive resin coating (ie, exposure by a pattern mask and development), and generally, the thickness may be set in a range of 0.5 to 10 ⁇ m. To ensure a better graphical effect.
  • the insulating layer is continuously disposed throughout the transparent touch area. Generally, in the transparent touch area, the insulating layer is a continuous and complete coating except for small holes such as through holes.
  • the through hole is a hole formed on the coated surface of the insulating layer by a patterning process, and the through hole generally only needs to be disposed in an overlapping area of the second electrode block and the second connecting portion, so that the second electrode block can be formed.
  • the electrical connection with the second connecting portion; the through hole may be a hole of a plurality of shapes such as a circular hole or a square hole, and the diameter or size thereof may preferably be 10 to 200 ⁇ m (specifically, the width of the end portion of the second connecting portion, the insulating layer).
  • the thickness, the graphical process precision, and the conductive requirements of the vias are determined.
  • the edges of the vias are also generally designed as slopes so that the second electrode block or the second connection can better climb over its edges.
  • the touch circuit layer may be a “top jumper” structure in which the second connection portion is at the top of the jumper portion, and the main manufacturing steps include: 1) forming a first conductive layer and patterning the first connection portion, An electrode block and a second electrode block; 2) an insulating layer is formed and patterned to form the through hole; 3) a second conductive layer is formed and patterned into the second connecting portion.
  • the touch circuit layer may also be a “bottom jumper” structure in which the second connection portion is at the bottom of the jumper portion, and the main manufacturing steps thereof include: 1) fabricating a second conductive layer and patterning the second connection 2) forming an insulating layer and patterning to form the through hole; 3) forming a first conductive layer and patterning the first connecting portion, the first electrode block, and the second electrode block.
  • the thickness of the shielding layer is generally 0.5 to 10 ⁇ m.
  • the shielding layer may be a dark material coating, in particular, it may be a coating containing a dark component such as a dark dye (such as blue, purple, black or red green blue mixed dye), carbon particles, charcoal, etc.; preferably
  • the occlusion layer is a dark photosensitive resin coating, that is, a photosensitive resin coating mixed with a dark component such as a dark dye or carbon particles, whereby it can also be patterned into the occlusion block by a development process;
  • the occlusion layer may also be carbonized and blackened at a high temperature by a transparent photosensitive resin coating patterned as a occlusion block.
  • the visible light transmittance of the shielding layer is less than 60% (ie, 0 to 60%) by the setting of the dark component ratio or the setting of the carbonization condition.
  • the shielding block corresponds to the through hole, and the contour thereof is expanded by the contour of the through hole, and the size of the expansion is generally determined by the shielding layer and the insulating layer pattern fitting precision; preferably, the shielding layer and the insulating layer
  • the graphic fitting precision value is A
  • the ratio B/A of the occlusion block contour relative to the outer diameter of the through hole contour B and A is between 1 and 1.5, thereby not only ensuring the occlusion effect of the occlusion block, but also
  • the occlusion block can be prevented from being too large to affect the transparency of the transparent touch area; or preferably, according to the manufacturing process level of the existing capacitive touch screen, the outline of the occlusion block can be expanded by 3 to 30 ⁇ m from the outline of the through hole.
  • the through hole and the occlusion block each have a circular contour.
  • the through hole and the occlusion block are designed to be circular, and the graphic precision is high, thereby minimizing the size of the occlusion block. To reduce its impact on the transparency of the transparent touch area.
  • the shielding block may be formed on the inner side surface of the first transparent substrate before the touch circuit layer, thereby allowing the shielding block to be disposed on the touch circuit layer. bottom.
  • the shielding block can be further developed after the touch circuit layer is completed. The fabrication is performed on the touch circuit layer, thereby covering the top of the touch circuit layer with the occlusion block.
  • the touch circuit layer and the blocking block may be respectively formed on the outer side surface of the second transparent substrate and the inner side surface of the first transparent substrate.
  • the second conductive layer is also a transparent conductive layer, such that the second connecting portion is transparent, and in the at least some jumper portions, the through holes are two disposed at two ends of the second connecting portion The through holes are the two isolated blocks corresponding to the through holes. This design minimizes the area of the occlusion block to reduce its effect on the transparency of the transparent touch area.
  • the second conductive layer is a metal layer, such that the second connecting portion is a metal wire, and in the at least some jumper portions, the through hole is two disposed at two ends of the second connecting portion a through hole, wherein the occlusion block is two blocks corresponding to the through hole, and an occlusion line belonging to the occlusion layer is disposed between the two occlusion blocks, and the occlusion line is used for shielding the second connection portion.
  • the metal layer for forming the second conductive layer can simultaneously form the low-resistance peripheral leads of the touch circuit layer, eliminating the need for another fabrication process, and although the second connection portion is an opaque metal connection, Since the resistivity of the metal layer is very low, the width of the second connecting portion and the width of the occlusion line can be made small, and thus the influence on the transparency of the transparent touch region is relatively small.
  • the occlusion block and the occlusion line generally form a "dumbbell" shape with thick and thin ends at both ends.
  • the shielding layer further comprises a peripheral shielding frame, wherein the peripheral shielding frame is used for shielding peripheral leads of the touch circuit layer, and the peripheral shielding frame can be formed simultaneously when the shielding block is formed, thereby not increasing the process of the touch screen. It can also make the touch screen more beautiful.
  • the capacitive touch screen provided by the utility model has the following advantages:
  • the insulating layer of the touch circuit layer is a transparent insulating pad layer continuously disposed in the entire transparent touch area, and the through hole is only used at the position of the jumper portion to realize the jumper connection between the second electrode block and the second conductive portion, and The through hole is shielded by the blocking block. Therefore, when the touch screen is used in a strong light environment, the lateral incident light can be reduced or prevented from being irradiated onto the edge slope surface of the through hole, thereby effectively reducing the side light reflection and the pair thereof. The interference shown.
  • the jumper portion is connected by a through hole for jumper connection, the through hole generally only needs to be disposed at an overlapping area of the second electrode block and the second connection portion compared to the prior art insulating spacer. Within this area, the area is very small, and the corresponding block for shielding the through hole can also be made very small, avoiding its influence on the transparency of the transparent touch area.
  • FIG. 1 is a schematic view showing the appearance of a capacitive touch screen using a jumper design in the prior art (the inner side faces upward);
  • FIG. 2 is a schematic view showing the structure of the jumper portion of the touch screen of FIG. 1 and its side light reflection;
  • FIG 3 is a schematic external view of the capacitive touch screen of the first embodiment (the inner side faces upward);
  • FIG. 4 is a schematic plan view showing a jumper portion of the capacitive touch screen of the first embodiment
  • FIG. 5 is a cross-sectional view showing a jumper portion of a capacitive touch screen according to Embodiment 1;
  • FIG. 6 is a cross-sectional view showing a jumper portion of another capacitive touch screen according to Embodiment 1;
  • Figure 7 is a schematic view showing the stacking of the capacitive touch screen of the second embodiment (the outer side faces upward);
  • FIG. 8 is a cross-sectional view showing a jumper portion of a capacitive touch screen according to Embodiment 2;
  • FIG. 9 is a cross-sectional view showing a jumper portion of another capacitive touch screen of Embodiment 2;
  • FIG. 10 is a plan view showing a jumper portion of a capacitive touch screen according to Embodiment 3;
  • 11-14 are schematic cross-sectional views of the jumper portion of the capacitive touch screen of the third embodiment along the extending direction of the occlusion line.
  • the capacitive touch panel 100 includes a 0.6 mm (0.2 to 6 mm) thick glass substrate 10 as a first transparent substrate, and the touch circuit layer 20 is directly formed in the glass substrate 10. side.
  • the touch circuit layer 20 includes a plurality of first electrodes 21 and second electrodes 22, and the first electrodes 21 and the second electrodes 22 cross each other to form an inductive array, and the intersections of the first electrodes 21 And each of the second electrodes 22 is divided into a plurality of first electrode blocks 211 and second electrode blocks 221; the intersection is provided with a jumper portion 23, and the jumper portion 23 includes a first connection portion 231, a second connection portion 232, and a corresponding portion.
  • first connecting portion 231 and the first and second electrode blocks 211, 221 are formed by photolithography of a first indium tin oxide film as a first conductive layer, and the first connecting portion 231 is used for connecting phases
  • the adjacent first electrode block 211 is formed to form a conductive continuous corresponding first electrode 21
  • the second connection portion 232 is formed by photolithography of a second indium tin oxide film as a second conductive layer for connecting adjacent second electrodes
  • the electrode block 221 is formed to form a conductive continuous corresponding second electrode 22.
  • the insulating layer 233 is a 0.5 ⁇ m (0.5-10 ⁇ m) thick transparent photosensitive resin coating disposed on the entire transparent touch area A, and is formed into a plurality of circular through holes 234 having a diameter of 40 ⁇ m by development, and the through holes 234 are in the In the overlapping region of the second connecting portion 232 and the second electrode block 221, the second electrode block 221 and the second connecting portion 232 are connected by the through holes 234 to form a jumper connection, that is, each of the jumper portions 23 corresponds to the two through holes.
  • the shielding layer 30 is disposed on the bottom of the touch circuit layer 20, which is a dark photosensitive resin coating of 1 ⁇ m (0.5 to 10 ⁇ m) thick (the coating is mixed with carbon nanoparticles or a dark dye to keep the dark color).
  • the visible light transmittance is between 2% and 20% (less than 60%).
  • the shielding layer 30 is patterned into a peripheral shielding frame 31 and a shielding block 32 corresponding to each of the through holes 234 by a developing method.
  • the contour of the shielding block 32 is formed by expanding the outline of the through hole 234 by 15 ⁇ m (the external expansion size can also be according to different manufacturers.
  • the graphic fitting precision value is set, for example, about 1.2 times of the graphic fitting precision value, which is generally set between 3 and 30 ⁇ m according to the process conditions of different manufacturers, and in each jumper part, the occlusion block 32 is two isolated circular blocks with a diameter of only 70 ⁇ m. Due to the occlusion function of the occlusion block 32, when the touch screen 100 is used in a strong light environment, ambient light does not illuminate the edge slope of the through hole 234, thereby causing side light reflection without affecting the display.
  • the shielding layer 30 can be formed on the glass substrate 10, and then the touch circuit layer 20 is formed.
  • the manufacturing steps of the touch circuit layer 20 are as follows:
  • the manufacturing steps of the touch circuit layer 20 may also be:
  • the cross-sectional structure of the jumper portion shown in FIG. 6 can be formed by the touch panel.
  • the shielding layer 30 can also be carbonized and blackened by a transparent photosensitive resin coating patterned as the shielding block 32; the outer side of the glass substrate 10 can also be attached. Other transparent substrates protect the glass substrate 10.
  • the touch circuit layer 20 is disposed on the outer side surface of the glass substrate 40 as the second transparent substrate, and the shielding layer 30 is placed on the touch.
  • the second transparent substrate 10 is bonded to the outer side of the glass substrate 40 through the transparent adhesive layer 50 at the top of the control circuit layer 20, thereby constituting the second embodiment of the present invention.
  • the touch circuit layer 20 is sandwiched between the first and second transparent substrates 40 and 10, thereby having better durability.
  • the touch circuit layer 20 is formed on the outer surface of the second transparent substrate 40, and the patterned shielding layer 30 is formed on the touch circuit layer 20, and then the FPC external wiring is installed. 24, finally, the first transparent substrate 10 is attached to the outer side of the second transparent substrate 40.
  • the jumper portion of the touch screen 100 generally has the cross-sectional structure of FIG. 8 or FIG. 9, and the first transparent substrate 40 may be a glass substrate or a plastic substrate. .
  • the second conductive layer is changed to a metal layer, so that the second connecting portion 232 is a metal wire, and two occlusion blocks of each jumper portion 23 are provided.
  • 32 is connected by a occlusion line 33 of the same occlusion layer 30 to form a "dumbbell" shaped occlusion block having thick and thin ends at both ends, which constitutes the third embodiment of the present invention.
  • the width of the metal wiring 232 is 15 ⁇ m, and the width of the shielding wire 33 is 45 ⁇ m.
  • the jumper portion 23 generally has a cross-sectional structure as shown in FIG. 11, FIG. 12, FIG. 13, or FIG.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Theoretical Computer Science (AREA)
  • Human Computer Interaction (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Position Input By Displaying (AREA)

Abstract

一种电容触摸屏,包括设有触控电路层的第一透明基板,触控电路层设有第一、二电极和跳线部,触摸屏还设有绝缘层,绝缘层连续地设置在整个触摸屏的透明触控区,其在跳线部处设有通孔以构成第二电极的跳线连接。以及,还包括遮挡层,遮挡层夹设在第一透明基板与触控电路层之间,其包括多个遮挡块,遮挡块与通孔相对应,且其轮廓由所述通孔的轮廓外扩而成,这种电容触摸屏能够有效地减少绝缘层边缘坡面的侧光反射以避免对显示造成干扰。

Description

一种减少侧光反射的电容触摸屏 技术领域
本实用新型涉及一种电容触摸屏,尤其是一种减少侧光反射的电容触摸屏。
背景技术
电容触摸屏一般设有透明触控区,其可设置在显示屏的前方以构成触控显示屏。如图1、2所示,电容触摸屏100的触控功能一般由其设置在透明基板10内侧面的触控电路层20来实现,在一般的现有设计中,透明触控区A之内的触控电路层20包括多个第一电极21和第二电极22,第一电极21与第二电极22相互交叉构成感应阵列,其交叉点将各个第一电极21和各个第二电极22分别分为多个第一电极块211和第二电极块221;交叉点设有跳线部23,跳线部23一般包括第一连接部231、第二连接部232以及绝缘垫块233,其中,第一连接部231与上述第一、二电极块211、221由一透明导电层图形化而成,第一连接部231用于连接相邻的第一电极块211以形成导电连续的对应第一电极21,第二连接部232由另一导电层图形化而成,其用于连接相邻的第二电极块221以形成导电连续的对应第二电极22。
在每个跳线部23中,绝缘垫块233夹设在第一、二连接部231、232之间,其尺寸需要大于第一、二连接部231、232的交叠区(一般宽度为200μm左右)以保证第一、二连接部231、232的绝缘,而为了避免绝缘垫块233影响到透明触控区A的透明度,其一般需采用透明光敏树脂制作而成;绝缘垫块233的边缘存在着一定的坡度,以允许第一连接部231或第二连接部232更好地爬过其 边缘。
如图2所示,绝缘垫块233表面对入射的光线一般存在着界面反射,由此,电容触摸屏在强光环境下使用时,侧向入射的环境光a可由绝缘垫块233的边缘坡面从正向反射出来形成反射光a',这种反射由于存在着较大的入射角(或反射角),根据菲涅尔公式,其强度也较大。由此,使用者在强光环境下观看屏幕时,这种发生在绝缘垫块边缘坡面的侧光反射非常容易进入使用者的眼睛而造成对观看显示屏显示画面的干扰。
发明内容
本实用新型的目的为提供一种减少侧光反射的电容触摸屏,其能够有效地减少触摸屏的侧光反射,由此可减少侧光反射所造成的显示干扰。所采用的技术方案如下:
一种减少侧光反射的电容触摸屏,至少设有一透明触控区,其包括第一透明基板以及设置在第一透明基板内侧面的触控电路层,至少在所述透明触控区中,所述触控电路层包括多个第一电极和第二电极,第一电极与第二电极相互交叉构成感应阵列,其交叉点将各个第一电极和各个第二电极分别分为多个第一电极块和第二电极块;
所述交叉点设有跳线部,所述跳线部包括第一连接部、第二连接部以及绝缘层,其中,所述第一连接部与所述第一、二电极块由一透明的第一导电层图形化而成,第一连接部用于连接相邻的第一电极块以形成导电连续的对应第一电极,第二连接部由一第二导电层图形化而成,其用于连接相邻的第二电极块以形成导电连续的对应第二电极,其特征为:
所述绝缘层为一透明绝缘的垫层,其连续地设置在整个所述透明触控区, 所述绝缘层在跳线部处设有通孔,以使第二电极块与第二连接部通过通孔形成电连接;以及,
还包括遮挡层,所述遮挡层夹设在第一透明基板与触控电路层之间,其包括多个遮挡块,所述遮挡块与所述通孔相对应,且其轮廓由所述通孔的轮廓外扩而成。
具体来说,上述触控电路层可以直接制作在第一透明基板的内侧面,也可以制作在一第二透明基板的外侧面,再将第一透明基板贴覆在第二透明基板的外侧面,由此使得上述触控电路层也处于第一透明基板的内侧面。上述第一、二透明基板可以为厚度0.2~6mm的透明玻璃或塑料基板,并优选用于直接设置触控电路层的基板为较耐高温的玻璃基板,以便于触控电路层的加工。上述外侧面指触摸屏在使用时,第一或第二透明基板较为靠近触控物(如人的手指)的一个表面,而内侧面则是指其较为远离触控物的另一个表面。
上述第一导电层为透明导电层,具体地,其可以为氧化铟锡(ITO)、氧化锌铝(AZO)等透明导电氧化物薄膜,第二导电层可以为透明导电层或非透明导电层,具体地,其可以为金属薄膜或是另一层上述透明导电氧化物薄膜,所述金属薄膜可以为单层或多层的金属膜或合金膜,尤其是“钼铌-铝钕-钼铌”的三层合金膜,上述导电层一般可采用光刻等方式进行图形化,以形成所述第一、二电极块和第一、二连接部。所述触控电路层一般还包括设置在非透明触控区的周边引线、外接端以及外接线(如FPC外接线),所述周边引线和外接端同样可由上述透明导电膜、金属薄膜或者另外设置的导电膜层图形化而成。
所述绝缘层可以由透明光敏树脂涂层经显影(即利用图形掩膜板曝光再进行显影)等工艺技术图形化而成,一般来说,其厚度可设定在0.5~10μm的范围内,以保证较好的图形化效果。绝缘层连续地设置在整个所述透明触控区,一 般可认为在透明触控区中,除了通孔等小面积孔洞之外,绝缘层为一连续、完整的涂层。所述通孔即由图形化工艺在绝缘层的涂层面上形成的孔洞,通孔一般仅需设置在第二电极块与第二连接部的交叠区域内,则可形成第二电极块与第二连接部的电连接;通孔可以为圆孔、方孔等多种形状的孔,其直径或尺寸可优选为10~200μm(具体由第二连接部的端部宽度、绝缘层的厚度、图形化的工艺精度以及通孔的导电要求决定),通孔的边缘一般也设计为坡面,以便于第二电极块或第二连接部更好地爬过其边缘。
上述触控电路层可以为第二连接部处于跳线部顶部的“顶部跳线”结构,其主要制作步骤包括:1)、制作第一导电层并图形化为所述第一连接部、第一电极块和第二电极块;2)、制作绝缘层并图形化以形成所述通孔;3)、制作第二导电层并图形化为所述第二连接部。或者,上述触控电路层也可以为第二连接部处于跳线部底部的“底部跳线”结构,其主要制作步骤包括:1)、制作第二导电层并图形化为所述第二连接部;2)、制作绝缘层并图形化以形成所述通孔;3)、制作第一导电层并图形化为所述第一连接部、第一电极块和第二电极块。
所述遮挡层的厚度一般为0.5~10μm。遮挡层可以为深色材料涂层,具体地,其可以为包含深色染料(如蓝色、紫色、黑色或红绿蓝混合染料)、碳颗粒、炭化物等深色成分的涂层;优选地,所述遮挡层为深色光敏树脂涂层,即混有深色染料、碳颗粒等深色成分的光敏树脂涂层,由此其也可通过显影工艺图形化为所述遮挡块;除此之外,所述遮挡层还可由图形化为遮挡块的透明光敏树脂涂层在高温下炭化变黑而成。优选地,可通过上述深色成分比例的设定,或者炭化条件的设定,使得遮挡层的可见光透过率小于60%(即0~60%)。遮挡块与所述通孔相对应,且其轮廓由通孔的轮廓外扩而成,其外扩的尺寸一般由遮挡 层与绝缘层图形套合精度决定;优选地,在遮挡层与绝缘层图形套合精度值为A的情况下,遮挡块轮廓相对于通孔轮廓的外扩尺寸B与A的比例B/A为1~1.5之间,由此不仅可保证遮挡块的遮挡效果,还能够避免遮挡块过大而影响到透明触控区的透明度;或者优选地,按照现有电容触摸屏的制造工艺水平,所述遮挡块的轮廓可由所述通孔的轮廓外扩3~30μm而成。优选地,所述通孔和遮挡块均具有圆形的轮廓,一般来说,通孔和遮挡块设计为圆形,其图形化精度较高,由此可最大限度地减少遮挡块的尺寸,以减少其对透明触控区透明度的影响。
当触控电路层直接制作在第一透明基板的内侧面时,上述遮挡块可以先于触控电路层制作在第一透明基板的内侧面,由此使遮挡块垫设在触控电路层的底部。而当上述触控电路层制作在一第二透明基板的外侧面,再将第一透明基板贴附在第二透明基板的外侧时,上述遮挡块可以在触控电路层制作完成之后,再进一步在触控电路层之上进行制作,由此使遮挡块覆盖在触控电路层的顶部。除此之外,也可将触控电路层和遮挡块分别制作在第二透明基板的外侧面和第一透明基板的内侧面。
优选地,所述第二导电层也为透明导电层,使得所述第二连接部透明,并且,在所述至少一些跳线部中,所述通孔为设置在第二连接部两端的两个通孔,而所述遮挡块为对应所述通孔的两个相互孤立块。这种设计,可以使遮挡块的面积最小,以减少其对透明触控区透明度的影响。
优选地,所述第二导电层为金属层,使得所述第二连接部为金属连线,在所述至少一些跳线部中,所述通孔为设置在第二连接部两端的两个通孔,而所述遮挡块为对应所述通孔的两个块,两个遮挡块之间设有同属所述遮挡层的遮挡线,所述遮挡线用于遮挡所述第二连接部。在这种设计中,用于形成第二导 电层的金属层可以同时形成触控电路层的低电阻周边引线,省去了另外制作工序,而虽然第二连接部为不透明的金属连线,但由于金属层的电阻率非常低,第二连接部的宽度及遮挡线的宽度都可以做得较小,由此其对透明触控区透明度的影响也比较小。典型地,遮挡块与遮挡线一般构成两端粗而中间细的“哑铃”形状。
优选地,所述遮挡层还包括周边遮挡框,所述周边遮挡框用于遮挡触控电路层的周边引线,周边遮挡框可以在制作遮挡块时同时形成,由此不会增加触摸屏的工序,还可使得触摸屏更加美观。
与现有技术相比,本实用新型所提供的电容触摸屏具有以下优点:
触控电路层的绝缘层为连续地设置在整个透明触控区的透明绝缘垫层,其仅在跳线部位置采用通孔来实现第二电极块与第二导电部的跳线连接,而通孔采用遮挡块进行遮挡,由此,触摸屏在强光环境下使用时,可减少或避免侧向入射光照射到通孔的边缘坡面上,从而可有效地减少其侧光反射及其对显示的干扰。除此之外,由于跳线部采用通孔进行跳线连接,相比于现有技术的绝缘垫块来说,通孔一般仅需设置在第二电极块与第二连接部的交叠区域之内,其面积非常小,相应地用于遮挡通孔的遮挡块也可以做得非常小,避免了其对透明触控区的透明度的影响。
以下通过附图与具体实施例来对本实用新型的技术方案做更详细的说明。
附图说明
图1为现有技术采用跳线设计的电容触摸屏的外形示意图(内侧面朝上);
图2为图1触摸屏的跳线部结构及其侧光反射的示意图;
图3为实施例一的电容触摸屏的外形示意图(内侧面朝上);
图4为实施例一的电容触摸屏的跳线部平面示意图;
图5为实施例一的一电容触摸屏的跳线部剖面示意图;
图6为实施例一的另一电容触摸屏的跳线部剖面示意图;
图7为实施例二的电容触摸屏的叠层示意图(外侧面朝上);
图8为实施例二的一电容触摸屏的跳线部剖面示意图;
图9为实施例二的另一电容触摸屏的跳线部剖面示意图;
图10为实施例三的一电容触摸屏的跳线部平面示意图;
图11—14均为实施例三的电容触摸屏的跳线部,其沿着遮挡线延伸方向的剖面示意图。
具体实施方式
实施例一
如图3、图4、图5所示,电容触摸屏100,包括作为第一透明基板的0.6mm(0.2~6mm均可)厚玻璃基板10,触控电路层20直接制作在玻璃基板10的内侧面。在透明触控区A内,触控电路层20包括多个第一电极21和第二电极22,第一电极21与第二电极22相互交叉构成感应阵列,其交叉点将各个第一电极21和各个第二电极22分别分为多个第一电极块211和第二电极块221;交叉点设有跳线部23,跳线部23包括第一连接部231、第二连接部232以及对应的部分绝缘层233,其中,第一连接部231与第一、二电极块211、221由作为第一导电层的第一氧化铟锡薄膜光刻而成,第一连接部231用于连接相邻的第一电极块211以形成导电连续的对应第一电极21,第二连接部232由作为第二导电层的第二氧化铟锡薄膜光刻而成,其用于连接相邻的第二电极块221以形成导电连续的对应第二电极22。
绝缘层233为设置在整个透明触控区A的0.5μm(0.5~10μm均可)厚透明光敏树脂涂层,其通过显影方式形成多个直径40μm的圆形通孔234,通孔234处于第二连接部232与第二电极块221的交叠区域内,使得第二电极块221与第二连接部232由通孔234形成跳线连接,即每个跳线部23对应两个通孔。
遮挡层30垫设在触控电路层20的底部,其为1μm(0.5~10μm均可)厚的深色光敏树脂涂层(涂层混有碳纳米颗粒或深色染料以保持深色),其可见光透过率在2%~20%之间(小于60%均可)。遮挡层30通过显影方式图形化为周边遮挡框31和对应各个通孔234的遮挡块32,遮挡块32的轮廓由通孔234的轮廓外扩15μm而成(外扩尺寸也可根据不同厂家的图形套合精度值进行设定,如取图形套合精度值的1.2倍左右,按照不同厂家的工艺条件,其一般设定在3~30μm之间),在每个跳线部中,遮挡块32为两个相互孤立的圆形块,其直径仅为70μm。由于遮挡块32的遮挡作用,触摸屏100在强光环境下使用时,环境光不会照射到通孔234的边缘坡面上,由此不会产生侧光反射而对显示造成影响。
在制作电容触摸屏100时,可先在玻璃基板10上制作遮挡层30,然后再制作触控电路层20,触控电路层20的制作步骤主要为:
(1).沉积第二氧化铟锡薄膜并图形化为第二连接部232;
(2).涂布绝缘层233并图形化以形成通孔234;
(3).沉积第一氧化铟锡薄膜并图形化为所述第一连接部231、第一电极块211和第二电极块221。
在本实施例的其他具体方案中,触控电路层20的制作步骤也可为:
(1).沉积第一氧化铟锡薄膜并图形化为所述第一连接部231、第一电极块211和第二电极块221;
(2).涂布绝缘层233并图形化以形成所述通孔234;
(3).沉积第二氧化铟锡薄膜并图形化为所述第二连接部232。
由此触摸屏的可形成图6所示的跳线部剖面结构。
在本实施例的其他具体方案中,所述遮挡层30还可以由图形化为遮挡块32的透明光敏树脂涂层在高温下炭化变黑而成;玻璃基板10的外侧面,还可贴附其他透明基板,以对玻璃基板10进行保护。
实施例二
如图7、图8、图9所示,在实施例一的基础上,将触控电路层20改为设置在作为第二透明基板的玻璃基板40的外侧面,将遮挡层30设置在触控电路层20的顶部,再将第一透明基板10通过透明胶层50粘合在玻璃基板40的外侧,则构成本实用新型的实施例二。在实施例二中,触控电路层20夹合在第一、二透明基板40、10之间,因而具有更好的耐用性。
在制作实施例二的电容触摸屏时,可先在第二透明基板40的外侧面上制作触控电路层20,再在触控电路层20上制作图形化的遮挡层30,然后安装FPC外接线24,最后再将第一透明基板10贴附到第二透明基板40的外侧,触摸屏100的跳线部一般具有图8或图9的剖面结构,第一透明基板40可以为玻璃基板或塑料基板。
实施例三
如图10所示,在实施例一或二的基础上,将第二导电层改为金属层,使得第二连接部232为金属连线,并将每个跳线部23的两个遮挡块32通过一同属遮挡层30的遮挡线33连接起来,以形成两端粗而中间细的“哑铃”形状遮挡块,则构成本实用新型的实施例三。其中,金属连线232的宽度为15μm,而遮挡线33的宽度为45μm。实施例三的触摸屏,其跳线部23一般具有图11、图12、图13、或图14所示的一种剖面结构。
此外,需要说明的是,本说明书中所描述的具体实施例,其各部分名称等可以不同,凡依本实用新型专利构思所述的构造、特征及原理所做的等效或简单变化,均包括于本实用新型专利的保护范围内。本实用新型所属技术领域的技术人员可以对所描述的具体实施例做各种各样的修改或补充或采用类似的方式替代,只要不偏离本实用新型的结构或者超越本权利要求书所定义的范围,均应属于本实用新型的保护范围。

Claims (17)

  1. 一种减少侧光反射的电容触摸屏,至少设有一透明触控区,其包括第一透明基板以及设置在第一透明基板内侧面的触控电路层,至少在所述透明触控区中,所述触控电路层包括多个第一电极和第二电极,第一电极与第二电极相互交叉构成感应阵列,其交叉点将各个第一电极和各个第二电极分别分为多个第一电极块和第二电极块;
    所述交叉点设有跳线部,所述跳线部包括第一连接部、第二连接部以及绝缘层,其中,所述第一连接部与所述第一、二电极块由一透明的第一导电层图形化而成,第一连接部用于连接相邻的第一电极块以形成导电连续的对应第一电极,第二连接部由一第二导电层图形化而成,其用于连接相邻的第二电极块以形成导电连续的对应第二电极,其特征为:
    所述绝缘层为一透明绝缘的垫层,其连续地设置在整个所述透明触控区,所述绝缘层在跳线部处设有通孔,以使第二电极块与第二连接部通过通孔形成电连接;以及,
    还包括遮挡层,所述遮挡层夹设在第一透明基板与触控电路层之间,其包括多个遮挡块,所述遮挡块与所述通孔相对应,且其轮廓由所述通孔的轮廓外扩而成。
  2. 如权利要求1所述的电容触摸屏,其特征为:所述触控电路层直接制作在第一透明基板的内侧面,所述遮挡块垫设在触控电路层的底部。
  3. 如权利要求1所述的电容触摸屏,其特征为:所述触控电路层制作在一第二透明基板的外侧面,所述第一透明基板贴覆在第二透明基板的外侧面,所述遮挡块 覆盖在所述触控电路层的顶部。
  4. 如权利要求1所述的电容触摸屏,其特征为:所述通孔仅设置在第二电极块与第二连接部的交叠区域内。
  5. 如权利要求1所述的电容触摸屏,其特征为:所述通孔的直径或尺寸为10~200μm。
  6. 如权利要求1所述的电容触摸屏,其特征为:所述遮挡层的厚度为0.5~10μm。
  7. 如权利要求1所述的电容触摸屏,其特征为:所述遮挡层为深色材料涂层。
  8. 如权利要求1所述的电容触摸屏,其特征为:所述遮挡层为深色的光敏树脂涂层。
  9. 如权利要求1所述的电容触摸屏,其特征为:所述遮挡层为图形化为遮挡块的透明光敏树脂涂层在高温下炭化变黑而成。
  10. 如权利要求1所述的电容触摸屏,其特征为:所述遮挡层的可见光透过率小 于60%。
  11. 如权利要求1所述的电容触摸屏,其特征为:所述遮挡层与绝缘层图形套合精度值为A,所述遮挡块轮廓相对于通孔轮廓的外扩尺寸为B,B与A的比例B/A为1~1.5。
  12. 如权利要求1所述的电容触摸屏,其特征为:所述遮挡块的轮廓由所述通孔的轮廓外扩3~30μm而成。
  13. 如权利要求1所述的电容触摸屏,其特征为:所述通孔和遮挡块均具有圆形的轮廓。
  14. 如权利要求1所述的电容触摸屏,其特征为:所述第二导电层也为透明导电层,使得所述第二连接部透明,并且,在所述至少一些跳线部中,所述通孔为设置在第二连接部两端的两个通孔,而所述遮挡块为对应所述通孔的两个相互孤立块。
  15. 如权利要求1所述的电容触摸屏,其特征为:所述第二导电层为金属层,使得所述第二连接部为金属连线,在所述至少一些跳线部中,所述通孔为设置在第二连接部两端的两个通孔,而所述遮挡块为对应所述通孔的两个块,两个遮挡块之间设有同属所述遮挡层的遮挡线,所述遮挡线用于遮挡所述第二连接部。
  16. 如权利要求15所述的电容触摸屏,其特征为:所述遮挡块与遮挡线构成两端而中间细的“哑铃”形状。
  17. 如权利要求1所述的电容触摸屏,其特征为:所述遮挡层还包括周边遮挡框,所述周边遮挡框用于遮挡触控电路层的周边引线。
PCT/CN2018/087949 2017-08-18 2018-05-23 一种减少侧光反射的电容触摸屏 WO2019052216A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/643,589 US11016621B1 (en) 2017-08-18 2018-05-23 Capacitive touch screen capable of reducing side light reflection

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201721194375.1 2017-09-18
CN201721194375.1U CN207182255U (zh) 2017-09-18 2017-09-18 一种减少侧光反射的电容触摸屏

Publications (1)

Publication Number Publication Date
WO2019052216A1 true WO2019052216A1 (zh) 2019-03-21

Family

ID=61747656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/087949 WO2019052216A1 (zh) 2017-08-18 2018-05-23 一种减少侧光反射的电容触摸屏

Country Status (3)

Country Link
US (1) US11016621B1 (zh)
CN (1) CN207182255U (zh)
WO (1) WO2019052216A1 (zh)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207182255U (zh) * 2017-09-18 2018-04-03 汕头超声显示器有限公司 一种减少侧光反射的电容触摸屏
CN113785265A (zh) * 2020-02-27 2021-12-10 京东方科技集团股份有限公司 一种显示面板及显示装置
WO2022160122A1 (zh) * 2021-01-27 2022-08-04 京东方科技集团股份有限公司 显示装置的显示面板和显示装置
CN113296361B (zh) * 2021-05-31 2024-04-12 汕头超声显示器技术有限公司 图形化光敏树脂涂层及其制作方法、电路结构和电容触摸屏

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101630215A (zh) * 2009-06-29 2010-01-20 深圳莱宝高科技股份有限公司 一种电容式触摸屏及其制造方法
CN102736777A (zh) * 2011-04-12 2012-10-17 乐金显示有限公司 触摸面板及其制造方法
CN203260017U (zh) * 2012-12-28 2013-10-30 和鑫光电股份有限公司 触控面板
CN104657022A (zh) * 2015-03-06 2015-05-27 京东方科技集团股份有限公司 一种显示面板及显示装置
CN207182255U (zh) * 2017-09-18 2018-04-03 汕头超声显示器有限公司 一种减少侧光反射的电容触摸屏

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI389020B (zh) * 2008-03-25 2013-03-11 Elan Microelectronics 觸控面板裝置
CN102112950B (zh) * 2008-09-12 2015-01-28 奥博特瑞克斯株式会社 电容型触摸面板、显示装置及电容型触摸面板的制造方法
GB2472614B (en) * 2009-08-11 2014-11-19 M Solv Ltd Capacitive touch panels
TWI434208B (zh) * 2010-12-30 2014-04-11 Au Optronics Corp 電容式觸控顯示面板
CN102929454A (zh) * 2011-08-12 2013-02-13 宸鸿科技(厦门)有限公司 电容式触控面板及降低其金属导体可见度的方法
TWI520025B (zh) * 2013-12-17 2016-02-01 友達光電股份有限公司 電容式觸控顯示面板、電容式觸控面板及其製造方法
TWI540484B (zh) * 2014-07-29 2016-07-01 群創光電股份有限公司 觸控面板

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101630215A (zh) * 2009-06-29 2010-01-20 深圳莱宝高科技股份有限公司 一种电容式触摸屏及其制造方法
CN102736777A (zh) * 2011-04-12 2012-10-17 乐金显示有限公司 触摸面板及其制造方法
CN203260017U (zh) * 2012-12-28 2013-10-30 和鑫光电股份有限公司 触控面板
CN104657022A (zh) * 2015-03-06 2015-05-27 京东方科技集团股份有限公司 一种显示面板及显示装置
CN207182255U (zh) * 2017-09-18 2018-04-03 汕头超声显示器有限公司 一种减少侧光反射的电容触摸屏

Also Published As

Publication number Publication date
CN207182255U (zh) 2018-04-03
US20210157445A1 (en) 2021-05-27
US11016621B1 (en) 2021-05-25

Similar Documents

Publication Publication Date Title
WO2019052216A1 (zh) 一种减少侧光反射的电容触摸屏
CN106095172B (zh) 触控传感器、触控传感器的制备方法、触摸屏和电子产品
CN103885578B (zh) 触控面板及其制造方法
JP6186995B2 (ja) 表示装置用前面保護板及び表示装置
JP5884763B2 (ja) タッチパネル用電極基板、及びタッチパネル、ならびに画像表示装置
TWI479398B (zh) 觸控顯示裝置及其形成方法
TW201342444A (zh) 包括導電圖案之觸控面板
TWI471771B (zh) 觸控面板
JP2013008272A (ja) 加飾透明保護基板一体型タッチパネルおよびその製造方法
CN107608562A (zh) 触控面板、触控面板制造方法及使用触控面板的电子设备
CN104700721A (zh) 一种显示面板及其制造方法、显示装置
TWM470323U (zh) 以導電線連接感應電極之內嵌式觸控顯示面板結構
TWM510491U (zh) 觸控面板
TWI498948B (zh) Input device and manufacturing method thereof
WO2016161858A1 (zh) 触摸基板及其制作方法、触摸显示面板
TWI530840B (zh) 觸控面板
US10429976B2 (en) Panel and manufacturing method thereof
TWI579747B (zh) 觸控面板及其製造方法
TWI614651B (zh) 觸控面板及其製造方法
JP2014186687A (ja) タッチパネル用電極基板、及びタッチパネル、ならびに画像表示装置
JP6108094B2 (ja) 電極付き表示装置用前面保護板及び表示装置
CN106648211B (zh) 彩膜基板及其制作方法、触控显示面板
TW201528080A (zh) 電子裝置
JP6232856B2 (ja) 表示装置用前面保護板及び表示装置
TWI530835B (zh) 觸控面板、觸控顯示裝置及觸控面板之製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18856754

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18856754

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 23.09.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18856754

Country of ref document: EP

Kind code of ref document: A1