WO2019052028A1 - 一种波长转换装置及其制备方法 - Google Patents

一种波长转换装置及其制备方法 Download PDF

Info

Publication number
WO2019052028A1
WO2019052028A1 PCT/CN2017/114744 CN2017114744W WO2019052028A1 WO 2019052028 A1 WO2019052028 A1 WO 2019052028A1 CN 2017114744 W CN2017114744 W CN 2017114744W WO 2019052028 A1 WO2019052028 A1 WO 2019052028A1
Authority
WO
WIPO (PCT)
Prior art keywords
wavelength conversion
casting
grid
film
conversion device
Prior art date
Application number
PCT/CN2017/114744
Other languages
English (en)
French (fr)
Inventor
徐梦梦
胡飞
许颜正
Original Assignee
深圳光峰科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳光峰科技股份有限公司 filed Critical 深圳光峰科技股份有限公司
Publication of WO2019052028A1 publication Critical patent/WO2019052028A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C04CEMENTS; CONCRETE; ARTIFICIAL STONE; CERAMICS; REFRACTORIES
    • C04BLIME, MAGNESIA; SLAG; CEMENTS; COMPOSITIONS THEREOF, e.g. MORTARS, CONCRETE OR LIKE BUILDING MATERIALS; ARTIFICIAL STONE; CERAMICS; REFRACTORIES; TREATMENT OF NATURAL STONE
    • C04B35/00Shaped ceramic products characterised by their composition; Ceramics compositions; Processing powders of inorganic compounds preparatory to the manufacturing of ceramic products
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L33/00Semiconductor devices having potential barriers specially adapted for light emission; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof

Definitions

  • the present application relates to the field of display, and in particular, to a wavelength conversion device and a method for fabricating the same.
  • the display method mainly uses DMD or LCD as a light modulator to modulate illumination light to obtain image light.
  • DMD or LCD as a light modulator to modulate illumination light to obtain image light.
  • display devices based on DMD or LCD technology have drawbacks in terms of efficiency.
  • a structure of a wavelength conversion device suitable for a pixelated light-emitting device and a method of fabricating the same are proposed in the patent documents CN105684171A and CN106030836A.
  • a schematic of the pixelated wavelength conversion device proposed in these patents is shown in Figure 1, where 11 is a wavelength converting material and 12 is a grid material.
  • the wavelength converting material 11 is spaced apart from each other by the grating material 12 to form an array of pixel points, which can convert incident light into light of another wavelength distribution; the grating material does not transmit ultraviolet or/and visible light to prevent optical crosstalk between different pixels .
  • the wavelength conversion device preferably uses an inorganic material such as ceramic.
  • the method for preparing the pixelated wavelength conversion device commonly used in the patent is to prepare a green layer of the grid material first, and then A pattern of pits or via holes is formed on the barrier layer by laser etching, slicing, stamping, molding, sawing, cutting, etc., and then the luminescent material blank is filled in the pit or the array of the openings, and then the whole is performed. Sintering results in a wavelength conversion device. Or first preparing a luminescent material green layer, processing thereon to obtain a pit or a via array, and then filling the grid material blank into the pit or the via array, and sintering the obtained green body to obtain a wavelength conversion device .
  • the present invention provides a wavelength conversion device and a preparation method thereof, which are convenient for obtaining pixels.
  • a small-sized wavelength conversion device is also advantageous for large-scale industrial production.
  • a wavelength conversion device comprising: at least one type of grid material, the grid material forming a grid having a plurality of cornices, wherein the cornice is filled with at least one wavelength conversion material;
  • the impurity element concentration in the wavelength conversion material has a gradient distribution in a direction perpendicular to an interface between the wavelength conversion material and the grid material.
  • the cornice penetrates or partially penetrates the grating material.
  • the grid material does not transmit and/or reflect ultraviolet light and/or visible light.
  • the grid material is further provided with holes or scattering particles having different refractive indexes from the grid material.
  • the scattering particles are A1 2 0 3 , ZnO, BaS0 4 , MgO, TaO, Y 2 0 3 , SiO 2
  • the wavelength converting material is at least one of the following materials:
  • the wavelength conversion device further includes a sintering aid.
  • the present invention also provides a method for preparing a wavelength conversion device, comprising the following steps:
  • At least two primary casting films are stacked and pressurized in a predetermined order; sheared into a film in a direction perpendicular to the plane of the casting film to obtain at least one secondary casting film; And then stacking and pressing at least one primary and/or secondary casting film in a predetermined order; cutting in a predetermined direction to obtain a pixelated casting film with a preset pixel distribution; [0025] S3, sintering of the cast film:
  • the pixelized cast film is subjected to debinding and high temperature sintering to obtain a wavelength conversion device.
  • the additive is mixed with the raw material powder sequentially and in stages.
  • a process of drying the cast film is also included.
  • the isostatic pressing process is further included after the debinding.
  • different materials in the secondary casting film are distributed in a strip shape.
  • an annealing process is further included after sintering.
  • the additive is at least one of a solvent, a dispersant, a binder or a plasticizer.
  • the raw material powder is a miscellaneous ceramic material and/or a miscellaneous ceramic material.
  • the raw material powder has a particle diameter ranging from 20 to 500 nm.
  • the raw material powder further includes a sintering aid.
  • the beneficial effects of the present invention are as follows:
  • the present invention directly prepares a pixelized wavelength conversion device by using a cast film preparation method, and the invention can prepare a wavelength conversion device with a smaller pixel size, and the preparation process is simple, and the device is simple.
  • the requirements are low, high-precision machining is not required, and large-scale industrial preparation is also facilitated.
  • the grid material and the wavelength conversion material are sintered from the cast film state during the preparation process, the impurity elements in the wavelength conversion material are easily diffused into the grid material during the sintering process, thereby converting in wavelength
  • the interface between the material and the grid material forms a gradient concentration distribution.
  • FIG. 1 is a schematic view of a process of Embodiment 1;
  • FIG. 3 is a schematic view of a process of Embodiment 6;
  • FIG. 5 is a schematic diagram showing the concentration distribution of interface impurity elements in FIG. 1J.
  • a wavelength conversion device 14 see FIG. 1J, comprising at least one grid material 141, the grid material forming a grid having a plurality of openings, the mouth is filled with at least one wavelength conversion material 142;
  • the concentration of the impurity element in the wavelength converting material has a gradient distribution in the direction perpendicular to the interface of the wavelength converting material and the grating material.
  • the gradient concentration distribution in the vertical direction of the interface means that there is a concentration gradient in a certain range near the vertical direction of the interface.
  • the grid material 141 starts to rise near the wavelength conversion material 142.
  • the trend is shown by curve 51 in the figure. The reason is that, in the preparation process adopted by the present invention, the grid material and the wavelength conversion material are co-sintered by the casting film, and in the process of sintering, the high concentration of the impurity elements in the wavelength conversion device is extremely easy.
  • the diffusion is limited to the vicinity of the vertical direction of the interface, so that a certain gradient concentration distribution can be formed only in the vicinity of the vertical direction of the interface.
  • the direction parallel to the interface is almost the same as that of the same kind of grid material and/or wavelength conversion material in the direction parallel to the interface.
  • the concentration gradient distribution of the interfaces at different locations may also differ due to the location of the interface. And since the grid material and the wavelength conversion material are sintered together, the interface is also seamless, and the two are closely connected.
  • the cornice penetrates or partially penetrates the grid material. It should be noted that, as shown in FIG. 1J, the cornice penetrates the grid material 141, and the wavelength conversion material 142 filled in the pupil penetrates the grid material 141. As shown in Figures 2D and 2E, the cornice portion extends through the grid material, i.e., the wavelength converting material 242 does not extend through the wavelength converting material 241.
  • the grid material does not transmit and/or reflect ultraviolet light and/or visible light.
  • the grid material is further provided with holes or scattering particles having a different refractive index from the grid material.
  • the scattering particles are A1 2 0 3 , ZnO, BaS0 4 , MgO, TaO, Y 2 0 3 , SiO 2
  • At least one of Ti0 2 and Zr0 2 At least one of Ti0 2 and Zr0 2 .
  • the wavelength converting material is at least one of the following materials:
  • YAG Ce, LuAG: Ce, LuYAG: Ce;
  • the wavelength conversion device further includes a sintering aid.
  • the method for preparing a wavelength conversion device comprises the following steps:
  • the at least two raw material powders are separately mixed with an additive to obtain a casting slurry; and the casting slurry is cast-cast to obtain at least two different primary casting films.
  • At least two primary casting films are stacked and pressurized in a predetermined order; sheared into a film in a direction perpendicular to the plane of the casting film to obtain a secondary casting film; and the secondary casting film is at least A primary and/or secondary cast film is stacked in a predetermined order, pressurized, and cut in a predetermined direction to obtain a pixelated cast film of a predetermined pixel distribution.
  • the preset direction is determined according to a preset pixel distribution setting.
  • the pixelized cast film is subjected to debinding and high temperature sintering to obtain a wavelength conversion device.
  • the raw material powder may be a first raw material powder as a wavelength conversion material; or the raw material powder may be a second raw material powder as a grid material, the second raw material powder It may be composed of at least one non-doped ceramic material.
  • step S2 further comprises overlaying the pixelated cast film with at least one of the same or different types of cast film.
  • step S2 at least one or more cast films obtained may be in a predetermined order.
  • the layers are stacked and then sheared to obtain a new type of cast film or pixelated cast film.
  • the pixelated cast film can directly enter the S3 step, or be stacked and/or sheared again to obtain another pixelated cast film.
  • the above steps can be repeated multiple times individually or in combination with other steps.
  • the steps of stacking and/or shearing can be performed as many times as desired until the desired pixelated cast film is obtained.
  • the first raw material powder is mainly a wavelength conversion material powder or a raw material powder prepared therefrom;
  • the wavelength conversion material mainly includes various rare earth miscellaneous materials; specifically, the rare earth garnet and the rare earth may be exotic At least one of a mixed alkaline earth metal sulfide, a rare earth miscible aluminate, a rare earth silicate, a rare earth chlorosilicate, a rare earth oxynitride, and a rare earth.
  • the wavelength conversion material may be selected from a rare earth doped ceramic material or a raw material thereof.
  • the cumbersome element may be at least one of ⁇ , ⁇ , ⁇ , ⁇ , Mn, ⁇ , ⁇ , ⁇ .
  • the wavelength converting material is at least one of YAG:Ce, LuAG: Ce or LuYAG:Ce.
  • the raw material powder is at least one of YAG:Ce powder, LuAG:C powder or LuYAG:Ce powder; or any one of raw material powders for preparing the above powder material. More specifically, the raw material powder for preparing the powder material corresponding to the YAG:Ce powder is a mixed powder of Y 2 O 3 and Al 2 0 3 fPCeO 2 .
  • the second raw material powder is at least one selected from the group consisting of YAG, LuAG, A1 2 0 3 , A1N, Y 2 O 3 , TiO 2 , MgO, Zr0 2 , and CaO.
  • the raw material powder further includes scattering particles.
  • the scattering particles are at least one selected from the group consisting of A1 2 0 3 , ZnO, BaS0 4 , MgO, TaO, Y 2 0 3 , SiO 2 , Ti0 2 , and Zr0 2 .
  • the raw material powder may further include a sintering aid.
  • a sintering aid selected TE0S, Si0 2 or MgO.
  • the additive is at least one of a solvent, a dispersant, a binder, or a plasticizer.
  • the additive is mixed in stages in step S1.
  • step S1 includes the following steps:
  • Sl l preparation of slurry: mixing raw material powder, solvent and dispersing agent to obtain primary slurry; primary slurry and then adding binder and plasticizer to obtain a casting slurry.
  • S12 Tape Casting: The cast slurry was cast-cast to prepare a primary cast film.
  • step S12 further includes step S13: drying the primary casting film.
  • the drying temperature is 20 to 40 °C.
  • the drying time is 10 to 30 hours; more preferably, the drying time is 18 to 24 hours.
  • the raw material powder has a particle diameter ranging from 20 to 500 nm; preferably from 50 to 500 nm.
  • the manner in which a body having a certain density is obtained in tape casting is unique in that it is filled with density due to gravity and shrinkage of organic matter during drying of the green strip.
  • this unique densification process requires control of the size, distribution and morphology of the powder, as well as its purity and agglomeration.
  • the actually prepared powder is basically an agglomerate formed of primary particles.
  • Powder particle size distribution can be appropriately controlled by relevant processes, such as wet chemical synthesis of powder, or grinding, ultrasonication, etc. to destroy aggregates, improve the structure and morphology of the powder.
  • the solvent is at least one selected from the group consisting of water, methanol, ethanol, toluene, xylene, acetone, methyl ethyl ketone, trichloroethane or methyl ethyl ketone.
  • tape casting is a "liquid phase” molding method.
  • the powder In order to make the powder into a two-dimensional structure, the powder needs to be treated into a fluid, that is, the powder is suspended in the liquid phase, and has a certain viscosity suitable for casting.
  • This liquid phase is called a "solvent”.
  • the dispersion and dissolution of the ceramic powder by the solvent are achieved by the ionic bond, the dipole/dipole force, the hydrogen bond, and the intermolecular force between the solvent molecule and the powder.
  • the action of the solvent also includes dispersing various components such as a dispersant, a binder, a plasticizer, etc. to obtain a homogeneous mixture.
  • the mixed solvent is selected from a mixed solvent of anhydrous ethanol and xylene.
  • the surface tension of the organic solvent is small, and the wettability with the powder is better, and the surface tension value of the mixed solvent is lower than any of the components, and better wettability can be obtained.
  • the dispersing agent is at least one selected from the group consisting of salmon oil, ammonium citrate, polyacrylic acid, and polymethacrylic acid.
  • the addition of the dispersant can control the degree of agglomeration of the powder particles and the strength of the agglomerates.
  • Its dispersion mechanism mainly includes electrostatic repulsion and steric hindrance.
  • the surface of the ceramic particles carries a charge that can hold the particles
  • the repulsive electrostatic forces of the particles are generated by the interaction between particles with the same electrical charge, so the electrostatic repulsion mechanism is mainly present in polar solvents, especially in water.
  • Dispersants suitable for polar solvents include ammonium citrate, polyacrylic acid, polymethacrylic acid, and the like.
  • the dispersant uses a polymer molecule having a long-chain structure, which is easily adsorbed on the surface of the powder particles, and the other end of the molecule extends toward the liquid medium. This combination allows the particles to be flexibly epitaxially grown, increasing the distance between the particles and preventing the particles from approaching each other. Salmon oil is currently the best dispersant in non-water based casting slurries.
  • the dispersant is added in an amount of from 1 to 5 wt% of the total amount of the raw material powder.
  • binder is selected from the group consisting of vinyl polymers, polyacrylates, and cellulose.
  • the vinyl polymer is at least one of PVA, PVB or PVC.
  • the binder required to prepare the ceramic enamel is the most important additive in the process, and it has an important influence on the strength, elasticity, plasticity, lamination processability, durability, toughness, and the like of the cast film.
  • the molecular weight of the binder is generally from 30,000 to 80,000. By encapsulating the powder particles, they solidify themselves to form a three-dimensional interconnected strong network structure.
  • the binder should have a thermoplastic behavior that provides high particle mobility at the appropriate temperature during lamination production. Moreover, the minimum amount required should be maintained and it is easily eliminated in the debinding process.
  • the binder is added in an amount of from 1 to 5 wt% based on the total amount of the raw material powder.
  • the plasticizer is selected from any one or combination of butyl.benzyl phthalate (BBP) or polyvinyl alcohol (PEG ⁇ 400).
  • BBP butyl.benzyl phthalate
  • PEG ⁇ 400 polyvinyl alcohol
  • the role of the plasticizer is mainly to impart suitable toughness to the cast film and to improve the processability of the cast film.
  • plasticizers are classified into Class I plasticizers and Class ⁇ plasticizers.
  • the first type of plasticizer lowers the glass transition temperature Tg of the binder, making the cast film flexible at a certain temperature, and the same layer contributes to the lamination.
  • an excessive amount of the type I plasticizer causes the film to be difficult to separate from the substrate.
  • Dioxin plasticizer can make the binder polymer chain have fluidity, reduce the yield stress of the billet, and improve the strain at break.
  • the same lubrication helps the separation of the cast film from the substrate carrier.
  • Simply using the ⁇ -type plasticizer will break at a lower strain because the polymer that has not been softened is still very rigid.
  • BBP is a type I plasticizer, which can soften the polymer chain of the binder, reduce the glass transition temperature of the polymer, and can stretch or bend under the action of stress; and PEG ⁇ 400 is used as the third class.
  • the plasticizer not only makes the binder polymer chain have better fluidity, but also produces a cross-linking effect between the chains, so that the resulting film obtained by the final drying has better flexibility.
  • the plasticizer is added in an amount of 1 to 5 wt% of the total amount of the raw material powder.
  • step S2 is an important step of the present invention, which can realize the preparation of the pixelated cast film.
  • the step S2 is pressurized after being stacked.
  • the pressurizing pressure is 30 to 60 MPa.
  • the stacking crucible is kept at a stacking temperature; the stacking temperature is 60 to 90 ° C; if the temperature is too high, the binder melts, and more binder is released during pressing (pressurization). The mold release will stick the mold and destroy the blank; if the temperature is too low, the bonding strength of the film will be too small to be pressed into the blank.
  • the daytime is too short, the organic matter is not sufficiently vitrified, the membranes cannot be firmly bonded, and the prepared body is of poor quality.
  • the effect of the stacked turns on the quality of the blank is also large.
  • the laminate turns are too long, although it is possible to prepare a qualified blank, but wastes the day.
  • the stacked turns are between 3 and 60 minutes.
  • the film thickness is set according to a predetermined design requirement. In general, the film will have a certain amount of shrinkage during the sintering process and should be considered.
  • the secondary casting film and the at least one primary and/or secondary casting film are stacked in a predetermined order, and are stacked in a preset order, wherein the preset order refers to the design according to the design. It is necessary to facilitate the pixilation in an order. It may be a preset interval sequence, a preset gradient concentration distribution order, a preset lattice or grid order of the same kind of pixels, and the like. The actual process is not limited to the above sequence.
  • step S3 is an important step to obtain a high quality wavelength conversion device. Since the organic matter between the cast sheets is excluded, voids are left at these locations, reducing the bonding strength between the sheets. Therefore, the heating rate of the debinding should be controlled, and the excessive heating rate tends to separate the diaphragm.
  • the debinding temperature is 400 to 1100 ° C; more preferably, the debinding temperature is 800 to 1100 ° C.
  • the drainage time is 5 ⁇ 10h.
  • the step S3 includes an isostatic pressing process after the debinding.
  • the isostatic pressing treatment is carried out to realize the rearrangement and compaction of the powder in the green body to obtain a high-density ceramic green body.
  • the isostatic pressure is from 180 to 300 MPa; more preferably, the isostatic pressure is from 220 to 270 MPa.
  • the isostatic pressing pressure is 0.5 ⁇ 5min.
  • the sintering is sintered or vacuum sintered under a protective atmosphere. It is preferably vacuum sintered.
  • the sintering temperature is slightly different depending on the raw materials.
  • the sintering temperature is 1200 to 1800 ° C; more preferably, the sintering temperature is 1500 to 1800 ° C.
  • the sintered crucible is 8 to 30 h; more preferably, the sintered crucible is 18 to 25 h.
  • the step S3 further includes an annealing process after sintering.
  • the annealing temperature is
  • the annealing time is 4 ⁇ 8h.
  • the sintering aid is TEOS and/or MgO; preferably, the sintering aid is added in an amount of from 0 to 1 wt ⁇ 3 ⁇ 4 of the amount of the raw material powder added.
  • This example prepares a wavelength conversion device 14 as shown in FIG. 1J, which includes a grid material 141 and a wavelength converting material 142; a grid material 141 constitutes a grid, and a wavelength converting material 142 is filled in the cornice of the grid.
  • the wavelength conversion material 142 has no gap with the grid material 141; the impurity element in the wavelength conversion material has a concentration gradient distribution perpendicular to the interface between the wavelength conversion material and the grid material. Its distribution is shown in Figure 5.
  • YAG:Ce nano powder is selected as the raw material powder of the wavelength conversion material; the powder size is selected as 50 ⁇ 50 Onm; the grid material is selected as the diffuse reflection material, and the embodiment selects A1 2 0 3 , the raw material Al 2 0 3
  • the powder size is 20 to 500 nm.
  • TEOS was used as a sintering aid, and the amount of the sintering aid added was 0.8 wt% of the mass of the YAG:Ce nanopowder.
  • anhydrous ethanol is used as the solvent, and the mass ratio of the anhydrous ethanol to the raw material powder is 1:1-1:3, and this embodiment is preferably 1:2.
  • the dispersing agent is selected from the group consisting of squid oil, and the amount of addition is 1% to 5% by weight based on the total amount of the raw material powder; this embodiment is preferably 3%.
  • PVB is used as the binder, and the amount of PVB is preferably from 1% to 5% by weight based on the total amount of the raw material powder, and is preferably 3% in the present embodiment.
  • Use equal amounts of butyl*benzyl phthalate (BB P) and polyvinyl alcohol (BB P) are used as the binder, and the amount of PVB is preferably from 1% to 5% by weight based on the total amount of the raw material powder, and is preferably 3% in the present embodiment.
  • BB P butyl*benzyl phthalate
  • polyvinyl alcohol polyvinyl alcohol
  • PEG-400 is a plasticizer, and the total amount of the plasticizer is 5% by weight of the raw material powder.
  • the casting slurry obtained above was cast on a casting machine, and then dried to obtain a primary casting film.
  • the distance between the scraper and the bottom plate is 200 ⁇ 400 ⁇
  • the casting speed is selected from l ⁇ 2cm/ s .
  • the drying temperature is room temperature, that is, the drying temperature is 20 to 40 ° C, and the drying time is 24 hours.
  • the dried primary cast film has a thickness in the range of 80 to 120 ⁇ m.
  • the primary casting film 112 of the wavelength converting material and the primary casting film 111 of the grating material are stacked in the order of intervals.
  • the number of primary casting film stacking layers of the wavelength converting material is 5 layers
  • the number of primary casting film stacking layers of the grating material is 6 layers.
  • a ceramic body having the structure shown in Fig. 1B is obtained, in which the wavelength converting material and the grid material are arranged in a layered manner.
  • a film is cut in a direction perpendicular to the plane of the casting film to obtain at least one secondary casting film.
  • the secondary casting film 12 is obtained by shearing in the direction perpendicular to the plane of the casting film.
  • the secondary casting film 12 is composed of a casting film strip 122 of a wavelength converting material and a casting film strip 121 of a grid material; in the secondary casting film, the wavelength converting material and the grating material are distributed in a strip shape.
  • the thickness of the diaphragm is determined according to the size of the illuminating pixel in the pixelated wavelength conversion device, taking into account the size of the sintering process and the machining allowance, and several secondary casting films as shown in Fig. 1D are obtained.
  • the secondary casting film 12 is overlapped with the primary casting film 111 of the grid material.
  • 30 to 60 MPa is pressed for 10 to 60 minutes to obtain a structural body as shown in Fig. 1G.
  • the shearing direction is perpendicular to the plane of the strip extending direction in the secondary casting film, that is, as shown in FIG. 1H. Cutting direction.
  • the thickness of the cut is 80-120 ⁇ , that is, the thickness of the pixelated cast film 13 in this example is 80 to 120 ⁇ m.
  • the thickness may be different. According to the size of the illuminating pixel points in the pixelized wavelength conversion device and the size of the corresponding grid material, the thickness shrinkage and the machining allowance during sintering are comprehensively determined to determine the thickness.
  • the pixelated casting film 13 having the structure shown in FIG. II is discharged at 800 to 1100 ° C for 8 hours, and then cold isostatic pressing at 250 MPa, and the obtained body is sintered at 1600 to 1800 ° C for 5 to 20 hours.
  • a wavelength conversion device as shown in FIG. 1 J is obtained.
  • a wavelength conversion device as shown in FIG. 1J is prepared by a casting method, and high-precision machining is not performed, that is, there is no high requirement for precision of a stamping or cutting die, so that high precision is not required. Mold and molding equipment. Therefore, the processing method of the invention is simple, low in cost, and is suitable for large-scale industrial production.
  • a wavelength conversion device having the same structure as that of the first embodiment was prepared, and its structure is as shown in Fig. 1J.
  • the difference from the first embodiment is that in the casting film preparation process of the wavelength conversion material, the raw material powder is not YAG nano powder, but Y 2 0 3 , ⁇ 1 2 0 3 and CeO ⁇ mixed powder are selected.
  • the amount of each powder was calculated as 0 ⁇ ) 1 5 0 12 .
  • the specific value is determined by theoretical calculation and experimental analysis according to the intensity of the incident light source, the size of the illuminating concentrator, the color temperature and color coordinates of the product. .
  • This example is based on the first embodiment, and the difference between this example and the first embodiment is that the wavelength conversion material is partially added with additional scattering particles in this example; specifically, the scattering particles in this example are A1 2 0 3 .
  • the molar ratio of A1 20 3 in the raw material to the molar amount of YAG:Ce nanopowder is 1:5 to 1:1, and specifically 1:1 in this example.
  • YAG:Ce nanopowder and Al 2 0 3 powder are selected as the raw material powder, and the YAG:Ce nano powder preferably has a size of 50 to 500 nm; and the Al 2 0 3 powder preferably has a size of 50 to 200 nm. The rest is the same as in the first embodiment.
  • This example is based on the first embodiment.
  • the portion of the grid material in the fourth embodiment is a multiphase ceramic that functions as a diffuse reflection, such as YAG&A1 2 0 3
  • the phase ceramic differs from the first embodiment in the preparation of the primary cast film of the grid material in the step S1.
  • Preparation of Primary Cast Film of Grid Material In this embodiment, ⁇ 2 0 3 and ⁇ 2 0 3 are selected.
  • the powder size of the A1 2 0 3 and Y 2 0 3 in the raw material is preferably 20 to 500 nm, and TEOS and MgO are selected as the sintering aid ij, and the ratio of TEOS and MgO is 1:1.
  • the addition amount of the sintering aid is 1 wt% of the amount of the raw material powder added.
  • anhydrous ethanol is used as the solvent, and the mass ratio of the anhydrous ethanol to the raw material powder is 1:1 to 1:3, and this embodiment is preferably 1:2.
  • the dispersing agent is selected from the group consisting of salmon oil, and the amount thereof is from 1% to 5% by weight based on the total amount of the raw material powder, and is preferably 3% in the present embodiment.
  • PVB is used as the binder, and the amount of PVB is preferably from 1 to 5 wt% of the total amount of the raw material powder, and is preferably 3% in the present embodiment. 4.
  • BBP butyl * benzyl phthalate
  • PEG - 400 polyvinyl alcohol
  • the total amount of plasticizer is 5wt% of the raw material powder.
  • the wavelength conversion material penetrates the entire wavelength conversion device and has a transmissive structure.
  • This example illustrates the preparation of a wavelength conversion device as shown in Figures 2D and 2E; wherein, as shown in Figures 2D and 2E, the wavelength converting material partially penetrates the wavelength conversion device. 2E is a cross-sectional view of FIG. 2D.
  • steps S1 and S2 refer to the first embodiment; the primary casting film and the pixelated casting film are obtained by the above steps.
  • Step S22 The pixelated cast film of the preset pixel distribution obtained in performing the step S2 is superposed on the primary cast film of the grid material.
  • the number of layers stacked was one layer, and another pixelated cast film was produced by pressing.
  • the pixelized casting film 23 and the primary casting film 211 of the grid material are pressed at 60 to 90° C. for 30 to 60 minutes, and the structure shown in FIG. 2C is obtained.
  • Another pixelized casting film 25 is pixilated.
  • another pixelated casting film 25 includes a casting film 251 having a grid material and a casting film 252 of a wavelength converting material; and a part of the casting film 251 of the grid material is from a pixelated casting.
  • the casting film 23 1 of the grid material in the film is the other from the casting film 211 of the grid material in the primary casting film.
  • Step S3 the cast film prepared above was prepared in the same manner as in Example 1 to obtain a wavelength conversion device as shown in the drawing.
  • the cast film in this example is another pixelated cast film 25.
  • the resulting wavelength conversion device 24 includes a grid material 241 and a wavelength converting material 242 filled in the grid; and as shown in Fig. 2E, the wavelength converting material 242 does not penetrate the grid material 241.
  • the reflective substrate casting film and the grating material casting film may be one material or different materials, in this case, the same material.
  • Other material compositions may also be used in other embodiments.
  • This example prepares a wavelength conversion device 34 as shown in FIG. 3J, which includes a grid material 341, a first wavelength converting material 342, and a second wavelength converting material 353. Moreover, in this example, the same wavelength converting material is adjacent to the same wavelength converting material in one direction and adjacent to another wavelength converting material in the other direction; in this example, the first wavelength converting material 342 is horizontally aligned with The second wavelength converting material 353 is adjacent; the first wavelength converting material 342 is adjacent to the first wavelength converting material 342 in the vertical direction. It is obvious that other embodiments may not be limited to this.
  • the first wavelength converting material is a yellow phosphor
  • the second wavelength converting material is a green phosphor.
  • Other embodiments may not be limited to this.
  • YAG:Ce powder is selected, in this example, YAG:Ce is a yellow phosphor, as a raw material powder of the first wavelength conversion material; the powder size is selected from 50 to 500 nm; and the green phosphor is selected as the second
  • the raw material powder of the wavelength conversion material has a powder size of 50 to 500 nm; the grid material is selected as a diffuse reflection material, and Al 2 0 3 is selected in the embodiment, and the powder size of the raw material Al 2 0 3 is preferably 20 to 500 nm.
  • TEOS was used as a sintering aid, and the amount of the sintering aid added was 0.8% by weight of the mass of the wavelength converting material powder.
  • a mixed solvent of anhydrous ethanol and xylene is used as a solvent, and the mass ratio of anhydrous ethanol to the raw material powder is 1:1 to 1:3, and this embodiment is preferably 1:2.
  • the dispersing agent is selected from the group consisting of salmon oil in an amount of from 1% to 5 wt ⁇ 3 ⁇ 4 of the total amount of the raw material powder ; preferably 3% in the present embodiment.
  • PVB is used as the binder, and the amount of PVB is preferably from 1% to 5% by weight based on the total amount of the raw material powder, and is preferably 3% in the present embodiment.
  • BBP butyl*benzyl phthalate
  • PEG ⁇ 400 polyvinyl alcohol
  • the primary casting film of the first wavelength converting material, the primary casting film of the second wavelength converting material, and the primary casting film of the grid material are stacked in a predetermined order.
  • the stacking sequence in this example is a primary casting film of the first wavelength converting material, a primary casting film of the grating material, a primary casting film of the second wavelength converting material, and a primary casting film of the grating material, and thus circulating Stacked.
  • the primary casting film of the first wavelength converting material 313 and the primary casting film 312 of the second wavelength converting material are stacked in layers of 3 and 2 layers, respectively.
  • the number of layers of the film 311 is six.
  • a ceramic body having the structure shown in Fig. 3B is obtained, in which the wavelength converting material and the grid material are arranged in a layered phase.
  • the blank is cut into a plurality of diaphragms in a direction perpendicular to the plane of extension of the laminate in the blank, and the thickness of the diaphragm is determined according to the size of the pixels of the pixel in the pixelized wavelength conversion device, taking into account the sintering process. Dimensional surgery and machining allowance were determined to obtain several secondary cast films as shown. As shown in Fig. 3D, the wavelength conversion material and the grid material in the secondary casting film are distributed in a strip shape.
  • the secondary casting film 32 includes a grid material 321 having a strip-like distribution, a second wavelength converting material 322, and a first wavelength converting material 3231.
  • the secondary casting film 32 is overlapped with the primary casting film 311 of the grid material.
  • the pixel points of the secondary casting films of different layers need to correspond one-to-one according to the design requirements.
  • the corresponding relationship in this example is that the pixel points of the closest distance around the same wavelength conversion material are different kinds of wavelength conversion materials, specifically, the pixels around the yellow light fluorescent material are green fluorescent materials; the structure is shown in FIG. 3F Shown.
  • 30 to 60 MPa was pressed at 10 to 60 ⁇ n to obtain a structure as shown in Fig. 3G.
  • the shearing direction is a plane perpendicular to the strip extending direction of the secondary casting film, that is, as shown in FIG. 3H. direction.
  • the thickness of the cut is 80 ⁇ 12. ⁇ ⁇ , that is, the thickness of the pixelated cast film in this example is 80 ⁇ 120 ⁇ .
  • the thickness may be different. According to the size of the illuminating pixel points and the size of the corresponding grid material in the designed pixelated wavelength conversion device, the thickness is determined by comprehensively considering the dimensional shrinkage and the machining allowance during the sintering process.
  • the pixelated casting film 33 having the structure shown in FIG. 31 is degreased at 800 to 1100 ° C for 8 hours, and then cold isostatically pressed at 250 MPa, and the obtained body is sintered at 1600 to 1800 ° C for 5 to 20 hours.
  • the pixelated casting film 33 shown in FIG. 31 includes a pixelized first wavelength converting material 333 and a second wavelength converting material 332, which are filled in a grid formed by the grid material 331. In the grid.
  • a pixelated wavelength conversion device including two wavelength conversion materials was prepared by a casting method.
  • the processing method of the invention is simple and the precision is controllable.
  • the wavelength conversion device shown in FIG. 4J is prepared, which includes a grid material 441, a second wavelength conversion material 442, and a first wavelength conversion material 443; and, the second wavelength
  • the conversion material 442 and the first wavelength converting material 443 are filled in the grid formed by the grid material 441 at intervals in both the horizontal and vertical directions. That is, the pixel points of the closest distance around the same wavelength converting material are different kinds of wavelength converting materials.
  • the first wavelength converting material is a yellow phosphor
  • the second wavelength converting material is a green phosphor.
  • Other embodiments may not be limited to this.
  • step S2 In step S2,
  • the secondary casting film is overlapped with the primary casting film of the grid material.
  • the corresponding relationship in this example is that the pixel points of the closest distance around the same wavelength converting material are different kinds of wavelength converting materials, specifically, the pixels of the green fluorescent material and the yellow fluorescent material are surrounded by the yellow fluorescent material; Its structure is shown in Figure 4F ⁇ I.
  • 30 to 60 MPa is pressed for 10 to 60 minutes to obtain a structure as shown in Fig. 4G.
  • Embodiments 6 and 7 are merely illustrative of some overlapping processing methods in the case where at least two luminescent materials are present. In the case of other various light materials, their corresponding overlapping manners can be employed. Among them, a plurality of different secondary casting films can be stacked with a plurality of different kinds of primary and/or secondary casting films; a plurality of wavelength conversion devices in which a plurality of different fluorescent material pixels are arranged in a specific distribution have been obtained.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Ceramic Engineering (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Materials Engineering (AREA)
  • Structural Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Optical Filters (AREA)

Abstract

一种波长转换装置,包括至少一种格栅材料(141),其形成具有多个开口的格栅。开口中至少填充一种波长转换材料(142)。波长转换材料(142)与格栅材料(141)之间无缝隙。波长转换材料(142)中的掺杂元素在波长转换材料(142)与格栅材料(141)的界面垂直方向具有浓度梯度分布。还提供一种波长转换装置的制备方法,该方法通过制备一次流延膜、二次流延膜得到预设像素分布的像素化流延膜,并经排胶、高温烧结获得波长转换装置,具有工艺简单,设备要求低,适用于工业化生产的特点。

Description

一种波长转换装置及其制备方法 技术领域
[0001] 本申请涉及显示领域, 特别涉及一种波长转换装置及其制备方法。
背景技术
[0002] 目前的显示领域中, 特别是投影显示领域, 显示方法主要利用 DMD或 LCD作 为光调制器, 对照明光进行调制从而得到图像光。 但是, 以 DMD或 LCD为技术 基础的显示设备, 存在其效率方面的缺陷。
技术问题
[0003] 针对上述问题, 专利文献 CN105684171A、 CN106030836A中提出了一种适用于 像素化的发光装置的波长转换装置的结构及其制备方法。 这些专利中提出的像 素化波长转换装置的示意图如图 1所示, 其中 11为波长转换材料, 12为格栅材料 。 波长转换材料 11被格栅材料 12彼此间隔幵, 形成像素点阵列, 可以将入射光 转换为另一波长分布的光; 格栅材料不透射紫外或 /和可见光, 以防止不同像素 间的光串扰。 为得到具有较好的热学性能的波长转换装置, 波长转换装置优选 使用无机材料如陶瓷, 目前专利中常用的制备该像素化波长转换装置的方法是 先制备格栅材料的素坯层, 然后在其上通过激光刻蚀、 切片、 冲压、 模压、 锯 切、 切割等方式在阻隔层上形成凹坑或通孔阵列, 之后在凹坑或通口阵列中填 入发光材料素坯, 之后整体进行烧结得到波长转换装置。 或者先制备发光材料 素坯层, 在其上进行加工得到凹坑或通孔阵列, 之后将格栅材料素坯填入凹坑 或通孔阵列中, 将得到的整个素坯烧结得到波长转换装置。
[0004] 这些方法需要进行机械加工, 对冲压或切割模具要求较高, 不利于得到像素尺 寸小的波长转换装置, 也不利于大规模产业化制备。
[0005]
问题的解决方案
技术解决方案
[0006] 针对以上问题, 本发明提出了一种波长转换装置及其制备方法, 便于得到像素 尺寸小的波长转换装置, 也有利于大规模产业化生产。
[0007] 一种波长转换装置, 其特征在于: 包括至少一种格栅材料, 所述格栅材料形成 具有多个幵口的格栅, 所述幵口中至少填充一种波长转换材料;
[0008] 所述波长转换材料与所述格栅材料之间无缝隙; 所述波长转换材料中的惨杂元 素浓度在所述波长转换材料与格栅材料的界面垂直方向具有梯度分布。
[0009] 优选地, 所述幵口贯穿或部分贯穿所述格栅材料。
[0010] 优选地, 所述格栅材料不透射和 /或反射紫外光和 /或可见光。
[0011] 优选地, 所述格栅材料中还设置有与所述格栅材料折射率不同的孔或散射颗粒
[0012] 优选地, 所述散射颗粒为 A1 20 3、 ZnO、 BaS0 4、 MgO、 TaO、 Y 20 3、 SiO 2
、 Ti0 2、 ∑]"0 2中的至少一种。
[0013] 优选地, 所述波长转换材料为下列材料中的至少一种:
[0014] YAG:Ce、 LuAG:Ce、 LuYAG:Ce;
[0015] (AE) SiON、 (AE) AlSiN 3、 (AE) 2Si 3N 8、 (AE) SiAlON, 其中 AE为 碱金属;
[0016] 硫化物;
[0017] 正硅酸盐。
[0018] 优选地, 所述波长转换装置中还包括有烧结助剂。
[0019]
[0020] 本发明还提供一种波长转换装置的制备方法, 包括以下步骤:
[0021] Sl, 一次流延膜的制备:
[0022] 将至少两种原料粉体分别和添加剂混合制得到流延浆料; 流延浆料流延成型制 得至少两种不同的一次流延膜;
[0023] S2, 像素化流延膜的制备:
[0024] 将至少两种一次流延膜按预设顺序叠置、 加压; 沿流延膜平面垂直的方向剪切 成薄膜, 得到至少一种二次流延膜; 将二次流延膜再同至少一种一次和 /或二次 流延膜按预设顺序叠置、 加压; 沿预设方向剪切, 得到预设像素分布的像素化 流延膜; [0025] S3, 流延膜的烧结:
[0026] 将像素化流延膜经过排胶、 高温烧结制得波长转换装置。
[0027] 优选地, 还包括将将像素化流延膜再和至少一种同种或不同种流延膜叠置、 加 压, 获得另一像素化流延膜。
[0028] 优选地, 所述添加剂依序、 分次与原料粉体混合。
[0029] 优选地, 还包括干燥流延膜的工艺。
[0030] 优选地, 排胶之后还包括等静压工艺。
[0031] 优选地, 所述二次流延膜中不同种材料之间呈间隔条状分布。
[0032] 优选地, 烧结之后还包括退火工艺。
[0033] 优选地, 所述添加剂为溶剂、 分散剂、 粘结剂或塑化剂中的至少一种。
[0034] 优选地, 所述原料粉体为惨杂陶瓷材料和 /或无惨杂陶瓷材料。
[0035] 优选地, 所述原料粉体的粒径范围为 20~500nm。
[0036] 优选地, 所述原料粉体中还包括有烧结助剂。
发明的有益效果
有益效果
[0037] 本发明的有益效果在于: 本发明直接采用流延膜制备的方式, 制备了像素化的 波长转换装置, 本发明能够制备像素尺寸更小的波长转换装置, 同吋制备工艺 简单, 设备要求低, 不需要采用高精度的机械加工, 也有利于大规模产业化制 备。 由于在制备过程中格栅材料和波长转换材料同吋从流延膜状态烧结成型, 烧结过程中波长转换材料中的参杂元素会极易通过扩散进入到格栅材料中, 由 此在波长转换材料与格栅材料的界面形成一定梯度浓度分布。
对附图的简要说明
附图说明
[0038] 图 1为实施例一的工艺示意图;
[0039] 图 2为实施例五的工艺示意图;
[0040] 图 3为实施例六的工艺示意图;
[0041] 图 4为实施例七的工艺示意图;
[0042] 图 5为图 1J中界面惨杂元素浓度分布示意图。 本发明的实施方式
[0043] 为了便于理解本发明, 下面结合具体实施方式及附图对本发明进行详细的描述 。 本发明可以有许多种不同的具体实施方式, 并不限于本文所描述的实施方式 。 本文中所述"一次"、 "二次"、 "第一"、 "第二 "和"第三"等仅为了表述及理解方 便进行的定义, 并不对本发明构成限定。 各部分内容侧重点不同, 省略部分参 见其他部分即可。
[0044] 一种波长转换装置 14, 请参见图 1J, 包括至少一种格栅材料 141, 格栅材料形 成具有多个幵口的格栅, 幵口中至少填充一种波长转换材料 142;
[0045] 波长转换材料 142与格栅材料 141之间无缝隙; 波长转换材料中的惨杂元素浓度 在波长转换材料与格栅材料的界面垂直方向具有梯度分布。
[0046] 需要说明的是, 界面垂直方向具有梯度浓度分布是指在界面垂直方向附近一定 范围内具有浓度梯度, 如图 5所示, 格栅材料 141靠近波长转换材料 142吋浓度幵 始上升, 其变化趋势如图中的曲线 51所示。 其原因在于, 由于本发明采用的制 备工艺中, 格栅材料和波长转换材料同吋由流延膜共同烧结而成, 在烧结的过 程中, 波长转换装置中的高浓度的惨杂元素极易通过扩散进入到格栅材料中; 但是由于元素的扩散能力有限, 扩散仅限于在界面垂直方向附近, 因此只能在 其界面垂直方向附近形成一定的梯度浓度分布。 与此同吋, 与界面平行的方向 上由于由同种格栅材料和 /或波长转换材料构成, 界面平行方向的惨杂元素浓度 几乎相同。 应该注意的是, 由于界面位置的不同, 各个不同位置界面的浓度梯 度分布也可能不同。 并且由于格栅材料和波长转换材料同吋烧结而成, 其界面 也无缝隙, 二者紧密连接为一体。
[0047] 优选地, 幵口贯穿或部分贯穿格栅材料。 需要说明的是, 如图 1J所示, 幵口贯 穿格栅材料 141, 在幵孔中填充的波长转换材料 142也即贯穿格栅材料 141。 如图 2D和 2E所示, 幵口部分贯穿格栅材料, 即波长转换材料 242没有贯穿波长转换材 料 241。
[0048] 优选地, 格栅材料不透射和 /或反射紫外光和 /或可见光。
[0049] 优选地, 格栅材料中还设置有与格栅材料折射率不同的孔或散射颗粒。 [0050] 优选地, 所述散射颗粒为 A1 20 3、 ZnO、 BaS0 4、 MgO、 TaO、 Y 20 3、 SiO 2
、 Ti0 2、 Zr0 2的至少一种。
[0051] 优选地, 所述波长转换材料为下列材料中的至少一种:
[0052] YAG:Ce、 LuAG:Ce、 LuYAG:Ce;
[0053] (AE) SiON、 (AE) AlSiN 3、 (AE) 2Si 3N 8、 (AE) SiAlON, 其中 AE为 碱金属;
[0054] 硫化物;
[0055] 正硅酸盐。
[0056] 优选地, 所述波长转换装置中还包括有烧结助剂。
[0057] 本发明提供的一种波长转换装置的制备方法, 包括以下步骤:
[0058] Sl, 一次流延膜的制备:
[0059] 将至少两种原料粉体分别和添加剂混合制得到流延浆料; 流延浆料流延成型制 得至少两种不同的一次流延膜。
[0060] 其中, 根据原料粉体的不同所制得的流延膜种类不同。
[0061] S2, 像素化流延膜的制备:
[0062] 将至少两种一次流延膜按预设顺序叠置、 加压; 沿流延膜平面垂直的方向剪切 成薄膜, 得到二次流延膜; 将二次流延膜再同至少一种一次和 /或二次流延膜按 预设顺序叠置、 加压, 沿预设方向剪切, 得到预设像素分布的像素化流延膜。
[0063] 其中, 所述预设方向根据预设的像素分布设置确定。
[0064] S3, 流延膜的烧结:
[0065] 将像素化流延膜经过排胶、 高温烧结制得波长转换装置。
[0066] 其中, 所述原料粉体根据所述波长转换装置的不同而不同。
[0067] 其中, 所述原料粉体可以为作为波长转换材料的第一原料粉体; 或, 所述原料 粉体可以为作为格栅材料的第二原料粉体, 所述第二原料粉体可以由至少一种 无参杂陶瓷材料组成。
[0068] 优选地, 步骤 S2还包括将像素化流延膜再和至少一种同种或不同种流延膜叠置
、 加压, 获得另一像素化流延膜。
[0069] 需要说明的是, 步骤 S2中可以将所获得至少一种或多种流延膜按照预定的顺序 叠置, 然后剪切获得新一种的流延膜或像素化流延膜。 其中, 像素化流延膜可 以直接进入 S3步骤, 或者再次进行叠置和 /或剪切获得另一种的像素化流延膜。 显然, 该上述步骤可以单独重复多次, 或者与其他步骤联用重复多次。 并且, 叠置和 /或剪切的工序可以进行任意多次, 直到获得所需要的像素化流延膜为止
[0070] 优选地, 第一原料粉体主要为波长转换材料粉体或制备其的原料粉体; 波长转 换材料主要包括各种稀土惨杂材料; 具体可以为稀土惨杂的石榴石、 稀土惨杂 的碱土金属硫化物、 稀土惨杂的铝酸盐、 稀土惨杂的硅酸盐、 稀土惨杂的氯硅 酸盐、 稀土惨杂的氮氧化物、 稀土惨杂的中的至少一种。
[0071] 优选地实施方式中, 波长转换材料可以选用稀土参杂的陶瓷材料或其原料。 其 中惨杂元素可以为: 铈、 铕、 钕、 铒、 锰、 镨、 铽、 钐中的至少一种。
[0072] 具体地, 波长转换材料为 YAG:Ce、 LuAG: Ce或 LuYAG:Ce中的至少一种。 其 中, 所述原料粉体为 YAG:Ce粉体、 LuAG: Ce粉体或 LuYAG:Ce粉体中的至少一 种; 或, 制备上述粉体材料的原料粉体中的任一种。 更为具体地, YAG:Ce粉体 对应的制备其粉体材料的原料粉体为 Y 20 3、 Al 20 3fPCeO 2的混合粉体。
[0073] 优选地, 所述第二原料粉体选自 YAG、 LuAG、 A1 20 3、 A1N、 Y 20 3、 TiO 2 、 MgO、 Zr0 2、 CaO中的至少一种。
[0074] 优选地, 所述原料粉体中还包括有散射颗粒。 其中, 散射颗粒选自 A1 20 3 、 ZnO、 BaS0 4、 MgO、 TaO、 Y 20 3、 SiO 2、 Ti0 2、 Zr0 2中的至少一种。
[0075] 优选地, 所述原料粉体中还可以包括有烧结助剂。 其中, 烧结助剂选自 TE0S 、 Si0 2或MgO中的至少一种。
[0076] 其中, 所述添加剂为溶剂、 分散剂、 粘结剂或塑化剂中的至少一种。
[0077] 作为优选地实施方式, 步骤 S1中添加剂分次混合。
[0078] 具体地, 步骤 S1包括如下步骤:
[0079] Sl l, 浆料的制备: 将原料粉体、 溶剂和分散剂混合制得一次浆料; 一次浆料 再加入粘接剂和塑化剂混合制得流延浆料。
[0080] S12: 流延成型: 将流延浆料流延成型制得一次流延膜。
[0081] 其中, 混合方式优选为球磨。 [0082] 作为优选地实施方式, 步骤 S12中还包括步骤 S13: 将一次流延膜干燥。 优选地 , 干燥温度为 20~40°C。 优选地, 干燥吋间为 10~30h;更为优选地, 干燥吋间为 18 ~24h。
[0083] 优选地, 原料粉体的粒径范围为 20~500nm; 优选为 50~500nm。
[0084] 需要说明的是流延成型中获得具有一定致密度坯体的方式很独特, 它是在坯带 干燥过程中因重力和有机物收缩而产生填充密度的。 为了获得性能优越的流延 膜和尽可能高的素坯致密度, 这一独特的致密化过程需要控制粉体的尺寸、 分 布与形貌, 以及其纯度、 团聚状况等。 一般而言, 希望使用亚微米级的颗粒, 同吋要求粉体具有高的堆积密度, 接近球形颗粒的均匀排列, 窄的颗粒尺寸分 布, 以获得致密的坯体结构。 然而, 实际制备的粉体基本上是由一次颗粒形成 的团聚体。 由于团聚体具有稳定、 不规则形状的大颗粒的许多特征, 难以形成 稳定的分散, 对坯带的堆积密度和均匀性非常有害。 可通过相关工艺适当控制 粉体颗粒尺寸分布, 如湿化学法合成粉体, 或采用研磨、 超声等方法破坏团聚 体, 改善粉体的结构和形貌。
[0085] 优选地, 溶剂选自水、 甲醇、 乙醇、 甲苯、 二甲苯、 丙酮、 丁酮、 三氯乙烷或 甲基乙基酮中的至少一种。
[0086] 需要说明的是, 流延成型是一种"液相"成型方法。 为了将粉体制成二维结构, 粉体需处理成流体状, 即将粉体悬浮在液相中, 并具备一定的粘度适合流延, 这种液相被称为"溶剂"。 溶剂分子与粉体之间通过离子键、 偶极子 /偶极子力、 氢键和分子间力等实现溶剂对陶瓷粉体的分散溶解。 溶剂的作用还包括分散各 种组分, 如分散剂、 粘结剂、 塑化剂等, 得到均匀的混合体。
[0087] 在实际应用中为了提高溶解性以及有效控制干燥速率、 浆料性质、 成本和安全 性。 通常选择两种及以上溶剂作为混合溶剂。 优选地, 溶剂选择无水乙醇与二 甲苯的混合溶剂。 相比于水, 有机溶剂的表面张力较小, 与粉体的润湿性更好 , 而混合溶剂的表面张力值低于其中任一组分, 可获得更好的润湿性能。
[0088] 其中, 分散剂选自鲱鱼油、 柠檬酸铵、 聚丙烯酸、 聚甲基丙烯酸中的至少一种 。 需要说明的是, 分散剂的加入可控制粉体颗粒团聚程度和团聚体的强度。 其 分散机理主要包括静电排斥和空间位阻。 陶瓷颗粒表面载有电荷, 能够保持颗 粒分散的排斥性的静电力产生于带相同电性电荷的颗粒间的相互作用, 故静电 排斥机理主要存在于极性溶剂, 特别是水中。 适用于极性溶剂的分散剂包括柠 檬酸铵、 聚丙烯酸、 聚甲基丙烯酸等。 对于非极性溶剂, 分散剂采用具有长链 结构的聚合物分子, 容易吸附在粉体颗粒的表面, 分子的另一端伸向液体介质 。 这种结合使颗粒的尺寸发生柔性外延, 增加了颗粒之间的距离, 阻止了颗粒 之间的相互接近。 鲱鱼油是目前非水基流延浆料中最好的分散剂。
[0089] 优选地, 所述分散剂的添加量为原料粉体总量的 l~5wt%。
[0090] 其中, 粘结剂选自乙烯基聚合物、 聚丙烯酸酯以及纤维素中的人一种或组合。
优选地, 乙烯基聚合物为 PVA、 PVB或 PVC中的至少一种。 可以理解, 制备陶 瓷素坯吋所需的粘结剂是该工艺中最重要的添加剂, 它对流延膜的强度、 弹性 、 塑性、 叠层加工性、 耐用性、 韧性等具有重要影响。 粘结剂的分子量一般为 30000〜80000, 通过包裹粉体颗粒, 其自身固化形成三维相互连接的强的网络 结构。 粘结剂应该具有热塑性行为, 在叠层生产吋可在合适的温度提供高的颗 粒迁移性。 而且应该保持所需的最低量, 容易在排胶工艺中被彻底地排除。
[0091] 优选地, 所述粘接剂的添加量为原料粉体总量的 l~5wt%。
[0092] 其中, 塑化剂选自丁基.苄基邻苯二甲酸酯 (BBP) 或聚乙烯醇 (PEG~400) 中的任一种或组合。 塑化剂的作用主要在于赋予流延膜合适的韧性, 提高流延 膜的可加工性。 根据作用机制的不同, 塑化剂分为第 I类塑化剂与第 π类塑化剂 。 第 I类塑化剂可降低粘结剂的玻璃化转变温度 Tg, 使得流延膜在一定温度下具 有柔韧性, 同吋有助于叠层。 但过量的第 I类塑化剂会导致膜与基板难分离。 第 Π类塑化剂可使粘结剂高分子链具有流动性, 降低坯带屈服应力, 提高断裂应变
, 避免坯带干燥过程中出现裂纹; 同吋其润滑作用有助于流延膜与基板载带的 分离。 单纯使用第 π类塑化剂, 在较低的应变下就会断裂, 因为没有经过软化的 聚合物刚性依然很大。 其中, BBP为第 I类增塑剂, 可软化粘结剂的高分子链, 降低聚合物玻璃化转变温度, 使其在应力的作用下可以伸展或弯曲; 而 PEG~400 作为第 Π类增塑剂, 不仅使粘结剂高分子链具有更好的流动性, 也在链之间产生 交联效应, 使最后干燥所得膜片具有更好的柔韧性。
[0093] 优选地, 所述塑化剂的添加量为原料粉体总量的 l~5wt%。 [0094] 需要说明的是, 步骤 S2是本发明的重要一步, 其能实现像素化流延膜的制备。
[0095] 优选地, 步骤 S2中叠置之后加压。 加压压力为 30~60MPa。 优选地, 步骤 S2中 叠置吋保持叠置温度; 叠置温度为 60~90°C; 温度太高, 粘结剂熔化, 会在压制 (加压) 吋逸出较多的粘结剂, 脱模吋会粘模具, 破坏坯体; 温度太低, 导致 膜的结合强度太小, 不能压成坯体。 吋间太短, 有机物未能充分玻璃化, 膜片 之间无法牢固地结合, 所制备的坯体质量不好。
[0096] 另外, 叠置的吋间对坯体质量的影响也较大。 叠层吋间过长, 尽管可以制备合 格的坯体, 但是浪费吋间。 优选地, 叠置吋间为 3~ 60min。
[0097] 显然, 在上述条件下能保证流延膜像素化制备过程中的不产生剥离现象。
[0098] 需要说明的是, 步骤 S2的剪切成薄膜过程中, 薄膜厚度根据预先的设计要求设 定。 一般而言, 薄膜在烧结过程中会有一定的收缩量, 应该将其考虑在其中。
[0099] 将二次流延膜再和至少一种一次和 /或二次流延膜按预设顺序叠置过程中, 需 要按照按预设顺序叠置, 这里的预设顺序是指根据设计需要以方便像素化为宜 的顺序。 可以为预设间隔顺序、 预设梯度浓度分布顺序、 预设的同种像素点的 对格或错格顺序等。 实际过程中并不局限于上述顺序。
[0100] 需要说明的是, 步骤 S3是获得高质量波长转换装置的重要一步。 由于流延膜片 之间的有机物被排除, 在这些位置留下空隙, 降低了膜片之间的结合强度。 因 此, 应控制好排胶加热速率, 过快的升温速率容易使膜片分离。
[0101] 优选地, 排胶温度为 400~1100°C; 更为优选地, 排胶温度为 800~1100°C。
[0102] 优选地, 排胶吋间为 5~10h。
[0103] 作为优选地实施方式, 步骤 S3排胶之后包括等静压工艺。 显然, 在排胶工艺之 后由于坯体中存在空隙, 进行等静压处理实现素坯中粉体的重排和压实, 得到 高致密度的陶瓷素坯。 优选地, 等静压压力为 180~300 MPa; 更为优选地, 等静 压压力为 220~270 MPa。 等静压保压吋间为 0.5~5min。
[0104] 优选地, 烧结在保护气氛下烧结或真空烧结。 优选为真空烧结。
[0105] 烧结温度根据原料的不同而略有不同。 优选地, 烧结温度 1200~1800°C; 更为 优选地, 烧结温度为 1500~1800°C。
[0106] 优选地, 烧结吋间为 8~30h; 更为优选地, 烧结吋间为 18~25h。 [0107] 作为优选地实施方式, 步骤 S3烧结之后还包括退火工艺。 优选地, 退火温度为
1200~1500°C。 退火吋间为 4~8h。
[0108] 优选地, 烧结助剂为 TEOS和 /或 MgO; 优选地, 烧结助剂的添加量为原料粉体 添加量的 0~lwt<¾。
[0109] 下面结合实施例对本发明进行说明。
[0110]
[0111] 实施例一
[0112] 本例制备如图 1J所示的波长转换装置 14, 其中包括格栅材料 141和波长转换材 料 142; 格栅材料 141组成格栅, 波长转换材料 142填充于格栅的幵口中。 波长转 换材料 142与格栅材料 141之间无缝隙; 波长转换材料中的惨杂元素在波长转换 材料与格栅材料的界面垂直方向具有浓度梯度分布。 其分布情况如图 5所示。
[0113] 制备过程请参见图 1。
[0114] 选用 YAG:Ce纳米粉体, 作为波长转换材料的原料粉体; 选用粉体尺寸为 50~50 Onm; 格栅材料选为漫反射材料, 本实施例选用 A1 20 3, 原料 Al 20 3
粉体尺寸为 20~500nm。
[0115] 在本实施例中使用 TEOS作为烧结助剂, 烧结助剂添加量为 YAG:Ce纳米粉体质 量的 0.8wt%。 本实施例选用无水乙醇为溶剂, 无水乙醇与原料粉体的质量比为 1: 1-1:3 , 本实施例优选为 1:2。 分散剂选用鲱鱼油, 添加量为原料粉体总量的 1%~ 5wt%; 本实施例优选为 3%。 选用 PVB作为粘结剂, PVB的用量优选为原料粉体 总量的 l%~5wt%,本实施例优选为 3%。 选用等量的丁基*苄基邻苯二甲酸酯 (BB P) 和聚乙烯醇 (
PEG-400) 为塑化剂, 塑化剂的总用量占原料粉体用量的 5wt%。
[0116] SI , 一次流延膜的制备:
[0117] 具体过程如下:
[0118] Sl l, 浆料的制备: 将原料粉体与溶剂、 分散剂球磨 12h混和均匀后, 得到一次 浆料; 加入粘结剂和塑化剂进行二次球磨混料, 球磨 12h后得到流延浆料。
[0119] S12: 将上述得到的流延浆料置于流延机上流延成型, 然后干燥, 得到一次流 延膜。 具体的, 本例刮刀与底板间距为 200~400μηι, 流延速度选取 l~2cm/S, 干 燥温度为室温, 即干燥温度为 20~40°C, 干燥吋间为 24h。
[0120] 本例中, 干燥的一次流延膜厚度在 80~120μηι范围内。
[0121] 选用对应的不同原料粉体, 采用上述的工艺流程分别同吋得到波长转换材料的 一次流延膜和格栅材料的一次流延膜。
[0122] S2, 像素化流延膜的制备:
[0123] 如图 1 A所示, 将波长转换材料的一次流延膜 112和格栅材料的一次流延膜 111按 照间隔的顺序叠置。 本例中波长转换材料的一次流延膜叠置层数为 5层, 格栅材 料的一次流延膜叠置层数为 6层。 在 60~90°C下, 30~60MPa压制 10~60min, 得到 如图 1B中所示结构的陶瓷坯体, 在该结构中波长转换材料和格栅材料为层状相 间排列。
[0124] 然后, 沿流延膜平面垂直的方向剪切成薄膜, 得到至少一种二次流延膜。 本例 中, 如图 1C和图 1D所示, 沿流延膜平面垂直的方向剪切后得到二次流延膜 12。 其中, 二次流延膜 12由波长转换材料的流延膜条 122和格栅材料的流延膜条 121 构成; 二次流延膜中波长转换材料与格栅材料呈间隔条状分布。 膜片厚度根据 像素化波长转换装置中发光像素点的尺寸, 综合考虑烧结过程中的尺寸手术及 加工余量确定, 得到如图 1D所示的若干二次流延膜。
[0125] 本例中, 如图 1E和 1F所示, 将二次流延膜 12同格栅材料的一次流延膜 111间隔 叠置。 在 60~90°C下, 30~60MPa压制 10~60min, 得到如图 1G中所示结构坯体。
[0126] 最后, 再沿预设方向剪切, 得到预设像素分布的像素化流延膜。 本例中, 为得 到如图 II所示的像素化的分布的像素化流延膜 13, 剪切方向为垂直于二次流延膜 中条状延伸方向的所在平面, 即如图 1H中的剪切方向。 本例中, 剪切的厚度为 8 0-120 μηι, 即本例中的像素化流延膜 13的厚度为 80~120μηι。 当然, 在其他实施 方式中厚度可以不同, 根据设计的像素化波长转换装置中发光像素点的尺寸和 对应的格栅材料的尺寸, 综合考虑烧结过程中的尺寸收缩及加工余量来确定厚 度。
[0127] S3, 像素化流延膜的烧结:
[0128] 将结构如图 II所示的像素化流延膜 13在 800~1100°C排胶 8h, 之后在 250MPa冷等 静压, 得到的坯体在 1600~1800°C烧结 5~20h, 得到如图 1 J所示的波长转换装置。 [0129] 本例通过流延法制备了如图 1J所示的波长转换装置, 没有进行高精度的机械加 工, 也即没有对冲压或切割模具精度的较高要求, 因此不需要采用高精度的模 具和成型设备。 因此, 本发明的加工工艺简单, 成本低, 适用于大规模工业化 生产。
[0130]
[0131] 实施例二
[0132] 本例在实施例一的基础上进行进一步说明。 制备与实施例一结构相同的波长转 换装置, 其结构如图 1J所示。 与实施例一的不同之处在于, 本例中波长转换材料 的流延膜制备过程中原料粉体不是 YAG纳米粉体, 而是选用 Y 20 3、 Α1 20 3 和 CeO ^混合粉体作为原料, 各粉体的用量按0^ ^) 1 50 12计算。 一般而 言, X即为惨杂量, 其中 x=0.001~0.1, 具体的值根据光源入射光的强度、 发光聚 集器的尺寸、 对产品色温及色坐标的要求, 通过理论计算和实验分析确定。 本 例中按惨杂量 x=0.01进行配比。 其余过程按实施例一进行。
[0133]
[0134] 实施例三
[0135] 本例在实施例一的基础上, 本例与实施例一的不同之处在于, 本例中波长转换 材料部分添加额外的散射颗粒; 具体地, 本例中的散射颗粒为 A1 20 3。 原料中 A1 20 3的摩尔量与 YAG:Ce纳米粉体的摩尔量比例为 1:5~1:1, 本例中具体为 1:1。 本 例中, 选用 YAG:Ce纳米粉体和 Al 20 3粉体作为原料粉体, YAG:Ce纳米粉体尺寸 优选为 50~500nm; Al 20 3粉体尺寸优选为 50~200nm。 其余部分与实施例一相同
[0136] 本例中, 由于波长转换材料中加入了 A1 20 3散射颗粒, 因此其发光的均匀性相 对较好。
[0137]
[0138] 实施例四
[0139] 本例在实施例一的基础上, 本例与实施例一的不同之处在于, 实施例四中格栅 材料部分为起到漫反射作用的复相陶瓷, 如 YAG&A1 20 3复相陶瓷, 该实施例与 实施例一的区别之处在于 S1步骤中格栅材料的一次流延膜的制备。 [0140] 格栅材料的一次流延膜的制备: 本实施例选用^ 20 3和¥ 20 3
作为原料粉体, 八1 20 3和¥ 20 3的摩尔比大于5: 3; 本例中具体为 7: 3。 需要说 明的是, 后续烧结过程中, 一部分 A1 20 3与 Y 20 3反应生成 YAG相, 另一部分 A1 20 3残留在陶瓷中, 得到 YAG&A1 20 3复相陶瓷。
[0141] 原料中 A1 20 3和 Y 20 3粉体尺寸优选为 20~500nm, 选用 TEOS和 MgO作为烧结助 齐 ij, TEOS和 MgO比例为 1:1。 烧结助剂的添加量为原料粉体添加量的 lwt%。 本 实施例选用无水乙醇为溶剂, 无水乙醇与原料粉体的质量比为 1:1~1:3,本实施例 优选为 1:2。 分散剂选用鲱鱼油, 其添加量为原料粉体总量的 l%~5wt%, 本实施 例优选为 3%。 选用 PVB作为粘结剂, PVB的用量优选为原料粉体总量的 l~5wt%, 本实施例优选为 3%。 选用等量的丁基*苄基邻苯二甲酸酯 (BBP) 和聚乙烯醇 ( PEG-400) 为塑化剂, 塑化剂的总用量占原料粉体用量的 5wt%.
[0142] 其余部分与实施例一相同。
[0143]
[0144] 实施例五
[0145] 实施例一所制得的发光装置中波长转换材料贯穿整个波长转换装置, 为透射式 结构。 本例阐述制备如图 2D和 2E所示的波长转换装置的制备方法; 其中, 如图 2 D和 2E所示, 波长转换材料部分贯穿波长转换装置。 其中, 图 2E为图 2D的剖视 图。
[0146] 具体过程如下:
[0147] 其中, 步骤 S1和 S2, 请参见实施例一; 由上述步骤制得一次流延膜和像素化流 延膜。
[0148] 步骤 S22: 将在实施一种步骤 S2中制得的预设像素分布的像素化流延膜与格栅 材料的一次流延膜叠置。 叠置的层数均为 1层, 并压制制得另一像素化流延膜。
[0149] 本例中, 像素化流延膜 23和格栅材料的一次流延膜 211,在 60~90°C下, 30~60MP a压制 10~60min, 得到如图 2C中所示结构的另一像素化流延膜 25。 如图 2C中, 另 一像素化流延膜 25包括有格栅材料的流延膜 251和波长转换材料的流延膜 252; 并且格栅材料的流延膜 251中一部分为来自像素化流延膜中格栅材料的流延膜 23 1, 另一部来自一次流延膜中格栅材料流延膜 211。 [0150] 步骤 S3, 将上述制得的流延膜采用同实施例一相同的工艺制备, 获得如图所示 的波长转换装置。
[0151] 本例中的流延膜为另一像素化流延膜 25。 如图 2D所示, 制得的波长转换装置 24 包括格栅材料 241和填充在格栅中的波长转换材料 242; 并且如图 2E所示, 波长 转换材料 242未贯穿格栅材料 241。
[0152] 显然, 其中反射衬底流延膜可以与格栅材料流延膜可以是一种材料, 也可以为 不同材料, 本例中为同一种材料。 在其他实施方式中也可以是其他材料组成。
[0153]
[0154] 实施例六
[0155] 本例制备如图 3J所示的波长转换装置 34, 其包括格栅材料 341、 第一波长转换 材料 342、 第二波长转换材料 353。 并且, 本例中, 同一种波长转换材料在一个 方向上与同种波长转换材料相邻, 另一方向上与另一种波长转换材料相邻; 本 例中第一波长转换材料 342水平方向上与第二波长转换材料 353相邻; 第一波长 转换材料 342竖直方向上与第一波长转换材料 342相邻。 显然其他实施例中可以 不限于此。
[0156] 本例中第一波长转换材料为黄光荧光粉, 第二波长转换材料为绿光荧光粉。 其 他实施例中可以不限于此。
[0157] 选用 YAG:Ce粉体, 本例中 YAG:Ce为黄光荧光粉, 作为第一波长转换材料的原 料粉体; 选用粉体尺寸为 50~500nm; 选用绿色荧光粉, 作为第二波长转换材料 的原料粉体用粉体尺寸为 50~500nm; 格栅材料选为漫反射材料, 本实施例选用 Al 20 3, 原料 Al 20 3粉体尺寸优选为 20~500nm。
[0158] 在本实施例中使用 TEOS作为烧结助剂, 烧结助剂添加量为波长转换材料粉体 质量的 0.8wt%。 本实施例选无水乙醇与二甲苯的混合溶剂为溶剂, 无水乙醇与 原料粉体的质量比为 1:1~1:3, 本实施例优选为 1:2。 分散剂选用鲱鱼油, 添加量 为原料粉体总量的 l%~5wt<¾; 本实施例优选为 3%。 选用 PVB作为粘结剂, PVB 的用量优选为原料粉体总量的 l%~5wt%,本实施例优选为 3%。 选用等量的丁基* 苄基邻苯二甲酸酯 (BBP) 和聚乙烯醇 (PEG~400) 为塑化剂, 塑化剂的总用 [0159] SI , 一次流延膜的制备:
[0160] 相关工艺流程和参数请参见实施例一。
[0161] 不同之处在于, 采用上述的工艺流程同吋得到第一波长转换材料的一次流延膜
、 第二波长转换材料的一次流延膜和格栅材料的一次流延膜。
[0162] S2, 像素化流延膜的制备:
[0163] 将第一波长转换材料的一次流延膜、 第二波长转换材料的一次流延膜和格栅材 料的一次流延膜按预设顺序叠置。 本例中的叠置顺序为第一波长转换材料的一 次流延膜、 格栅材料的一次流延膜、 第二波长转换材料的一次流延膜和格栅材 料的一次流延膜, 如此循环叠置。 如图 3A所示, 本例中第一波长转换材料 313的 一次流延膜和第二波长转换材料的一次流延膜 312叠置层数分别为 3和 2层, 格栅 材料的一次流延膜 311叠置层数为 6层。 在 60~90°C下, 30~60MPa压制 10~60min , 得到如图 3 B所示结构的陶瓷坯体, 在该结构中波长转换材料和格栅材料为层 状相间排列。
[0164] 然后, 沿坯体中与叠层的延伸平面垂直的方向将坯体切成多个膜片, 膜片厚度 根据像素化波长转换装置中发光像素点的尺寸, 综合考虑烧结过程中的尺寸手 术及加工余量确定, 得到所示的若干二次流延膜。 如图 3D所示, 二次流延膜中 波长转换材料与格栅材料呈间隔条状分布。 其中, 二次流延膜 32包括间隔条状 分布的格栅材料 321、 第二波长转换材料 322和第一波长转换材料 3231。
[0165] 将二次流延膜 32同格栅材料的一次流延膜 311间隔叠置。 需要注意的是, 本例 中由于存在不同种的波长转换材料, 因此不同层的二次流延膜的像素点需要按 照设计需求一一对应。 本例中的对应关系为, 同一波长转换材料周围最近距离 的像素点为不同种的波长转换材料, 具体的, 即黄光荧光材料周围均为绿光荧 光材料的像素点; 其结构如图 3F所示。 在操作过程中则需要按照上述要求对二 次流延膜同格栅材料的一次流延膜叠置。 在 60~90°C下, 30~60MPa压制 10~60mi n, 得到如图 3G中所示的结构。
[0166] 最后, 再沿预设方向剪切, 得到预设像素分布的像素化流延膜。 本例中, 为得 到如图 31所示的像素化的分布的像素化流延膜 33, 剪切方向为垂直于二次流延膜 中条状延伸方向的所在平面, 即如图 3H中的方向。 本例中, 剪切的厚度为 80~12 Ο μηι, 即本例中的像素化流延膜的厚度为 80~120 μηι。 当然, 在其他实施方式中 厚度可以不同, 根据设计的像素化波长转换装置中发光像素点的尺寸和对应的 格栅材料的尺寸, 综合考虑烧结过程中的尺寸收缩及加工余量来确定厚度。
[0167] S3, 像素化流延膜的烧结:
[0168] 将结构如图 31所示的像素化流延膜 33在 800~1100°C排胶 8h, 之后在 250MPa冷等 静压, 得到的坯体在 1600~1800°C烧结 5~20h, 如图 3 J所示的波长转换装置。
[0169] 本例中, 如图 31所示的像素化流延膜 33包括了像素化的第一波长转换材料 333 和第二波长转换材料 332, 二者填充于格栅材料 331所构成的格栅中。
[0170] 本例通过流延法制备了包括有两种波长转换材料的像素化的波长转换装置。 本 发明的加工工艺简单, 精度可控。
[0171]
[0172] 实施例七
[0173] 本例在实施例六的基础上, 制备如图 4J所示的波长转换装置, 其中包括格栅材 料 441、 第二波长转换材料 442和第一波长转换材料 443; 并且, 第二波长转换材 料 442和第一波长转换材料 443在水平和竖直方向上均间隔填充于格栅材料 441所 构成的格栅中。 也即同一波长转换材料周围最近距离的像素点为不同种的波长 转换材料。
[0174] 本例中第一波长转换材料为黄光荧光粉, 第二波长转换材料为绿光荧光粉。 其 他实施例中可以不限于此。
[0175] 制备过程在实施例六的基础上, 区别在于:
[0176] 步骤 S2中,
[0177] 将二次流延膜同格栅材料的一次流延膜间隔叠置过程中。 本例中的对应关系为 , 同一波长转换材料周围最近距离的像素点为不同种的波长转换材料, 具体的 , 即黄光荧光材料周围均为绿光荧光材料和黄光荧光材料的像素点; 其结构如 图 4F~I所示。 在操作过程中则需要按照上述要求对二次流延膜同格栅材料的一次 流延膜叠置。 在 60~90°C下, 30~60MPa压制 10~60min, 得到如图 4G中所示的结 构。
[0178] 然后, 参照实施例六中的相关步骤, 制得所述波长转换装置。 [0179] 需要说明的是, 实施例六和七仅为示例性的说明了存在至少两种发光材料的情 况下的一些叠置处理方式。 在其他多种光材料的情况下, 可以采用其对应的叠 置方式。 其中, 可以用多种不同的二次流延膜同多种不同的种一次和 /或二次流 延膜叠置; 已获得多种不同荧光材料像素点按特定分布组成的波长转换装置。
[0180] 以上实施方式的各技术特征可以进行任意组合, 为使得表述简洁, 未对所有组 合进行详细描述, 然而, 只要这些技术特征的组合没有矛盾, 都应当认为是本 说明书记载的范围。
[0181]
[0182] 以上内容是结合具体的实施方式对本申请所作的进一步详细说明, 不能认定本 申请的具体实施只局限于这些说明。 对于本申请所属技术领域的普通技术人员 来说, 在不脱离本申请构思的前提下, 还可以做出若干简单推演或替换, 都应 当视为属于本申请的保护范围。

Claims

权利要求书
1、 一种波长转换装置, 其特征在于: 包括至少一种格栅材料, 所述 格栅材料形成具有多个幵口的格栅, 所述幵口中至少填充一种波长转 换材料;
所述波长转换材料与所述格栅材料之间无缝隙; 所述波长转换材料中 的惨杂元素浓度在所述波长转换材料与格栅材料的界面垂直方向具有 梯度分布。
2、 根据权利要求 1所述的波长转换装置, 其特征在于: 所述幵口贯穿 或部分贯穿所述格栅材料。
3、 根据权利要求 1所述的波长转换装置, 其特征在于: 所述格栅材料 不透射和 /或反射紫外光和 /或可见光。
4、 根据权利要求 1所述的波长转换装置, 其特征在于: 所述格栅材料 中还设置有与所述格栅材料折射率不同的孔或散射颗粒。
5、 根据权利要求 4所述的波长转换装置, 其特征在于: 所述散射颗粒 为 A1 20 3、 ZnO、 BaS0 4、 MgO、 TaO、 Y 20 3、 SiO 2、 Ti0 2、 ZrO 2 中的至少一种。
6、 根据权利要求 1所述的波长转换装置, 其特征在于: 所述波长转换 K夂 材料为下列材料中的至少一种:
YAG:Ce、 LuAG:Ce、 LuYAG:Ce;
(AE) SiON、 (AE) AlSiN 3、 (AE) 2Si 3N 8、 (AE) SiAlON, 其中 AE为碱金属;
硫化物;
正硅酸盐。
7、 一种波长转换装置的制备方法, 包括以下步骤:
将至少两种原料粉体分别和添加剂混合制得到流延浆料; 所述流延 料流延成型制得至少两种不同的一次流延膜;
将至少两种所述一次流延膜按预设顺序叠置、 加压; 沿流延膜平面垂 直的方向剪切成薄膜, 得到至少一种二次流延膜; 将所述二次流延膜 再同至少一种所述一次和 /或二次流延膜按预设顺序叠置、 加压; 沿 预设方向剪切, 得到预设像素分布的像素化流延膜;
将所述像素化流延膜经过排胶、 高温烧结制得波长转换装置。
[权利要求 8] 8、 根据权利要求 1所述的制备方法, 其特征在于: 还包括将所述像素 化流延膜再和至少一种同种或不同种流延膜叠置、 加压, 获得另一像 素化流延膜。
[权利要求 9] 9、 根据权利要求 1所述的制备方法, 其特征在于: 所述添加剂依序、 分次与原料粉体混合。
[权利要求 10] 10、 根据权利要求 1所述的制备方法, 其特征在于: 排胶之后还包括 等静压工艺。
PCT/CN2017/114744 2017-09-13 2017-12-06 一种波长转换装置及其制备方法 WO2019052028A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710822858.X 2017-09-13
CN201710822858.XA CN109838763B (zh) 2017-09-13 2017-09-13 一种波长转换装置及其制备方法

Publications (1)

Publication Number Publication Date
WO2019052028A1 true WO2019052028A1 (zh) 2019-03-21

Family

ID=65723189

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114744 WO2019052028A1 (zh) 2017-09-13 2017-12-06 一种波长转换装置及其制备方法

Country Status (2)

Country Link
CN (1) CN109838763B (zh)
WO (1) WO2019052028A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114236955A (zh) * 2020-09-09 2022-03-25 深圳市绎立锐光科技开发有限公司 透射式波长转换装置及其发光装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103964834A (zh) * 2014-02-18 2014-08-06 张红卫 一种用于白光led的石榴石型结构的复合荧光透明陶瓷体
CN105304796A (zh) * 2014-06-06 2016-02-03 深圳市绎立锐光科技开发有限公司 制备光波长转换片的方法以及光波长转换片和光源
CN105503188A (zh) * 2015-12-08 2016-04-20 中国科学院上海硅酸盐研究所 一种led用荧光透明陶瓷薄片的制备方法
CN106030836A (zh) * 2014-03-10 2016-10-12 欧司朗光电半导体有限公司 波长转换元件、包括波长转换元件的发光半导体部件、用于制造波长转换元件的方法和用于制造包括波长转换元件的发光半导体部件的方法
CN106233475A (zh) * 2014-04-23 2016-12-14 日东电工株式会社 波长转换构件及其制造方法
CN106684216A (zh) * 2017-01-12 2017-05-17 中国科学院宁波材料技术与工程研究所 一种用于白光led的复合透明荧光陶瓷片及其制备方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009136351A1 (en) * 2008-05-07 2009-11-12 Koninklijke Philips Electronics N.V. Illumination device with led with a self-supporting grid containing luminescent material and method of making the self-supporting grid
DE112014004933T5 (de) * 2013-10-29 2016-07-21 Osram Opto Semiconductors Gmbh Wellenlängenumwandlungselement, Verfahren zur Herstellung und Licht emittierender Halbleiterbauteil, welcher dasselbe aufweist
CN105278225B (zh) * 2014-07-21 2018-05-15 深圳市光峰光电技术有限公司 波长转换装置及其制备方法、相关发光装置和投影装置
CN106190124A (zh) * 2016-07-13 2016-12-07 张伯文 一种led芯片发光灯条基板材料及led球泡灯

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103964834A (zh) * 2014-02-18 2014-08-06 张红卫 一种用于白光led的石榴石型结构的复合荧光透明陶瓷体
CN106030836A (zh) * 2014-03-10 2016-10-12 欧司朗光电半导体有限公司 波长转换元件、包括波长转换元件的发光半导体部件、用于制造波长转换元件的方法和用于制造包括波长转换元件的发光半导体部件的方法
CN106233475A (zh) * 2014-04-23 2016-12-14 日东电工株式会社 波长转换构件及其制造方法
CN105304796A (zh) * 2014-06-06 2016-02-03 深圳市绎立锐光科技开发有限公司 制备光波长转换片的方法以及光波长转换片和光源
CN105503188A (zh) * 2015-12-08 2016-04-20 中国科学院上海硅酸盐研究所 一种led用荧光透明陶瓷薄片的制备方法
CN106684216A (zh) * 2017-01-12 2017-05-17 中国科学院宁波材料技术与工程研究所 一种用于白光led的复合透明荧光陶瓷片及其制备方法

Also Published As

Publication number Publication date
CN109838763A (zh) 2019-06-04
CN109838763B (zh) 2021-04-30

Similar Documents

Publication Publication Date Title
US9287106B1 (en) Translucent alumina filaments and tape cast methods for making
TWI576411B (zh) 發光元件用陶瓷體,陶瓷體製作方法,以及照明設備
CN104066814B (zh) 用于发光应用的模制纳米粒子磷光体
CN104725052B (zh) 一种多层复合结构透明陶瓷的制备方法
CN101224992B (zh) 形成陶瓷-陶瓷接缝的方法
JP2013543525A (ja) 光放射性セラミック積層体およびその製造方法
CN106947480B (zh) 具有融合光学元件的陶瓷磷光体叠层体、其制造方法和包含其的制品
JP2022511421A (ja) セラミック波長変換体アセンブリおよびその製造方法
CN105503188A (zh) 一种led用荧光透明陶瓷薄片的制备方法
CN1977393A (zh) 用于发光器件的发光陶瓷
KR20100052504A (ko) 광결정 및 발광 세라믹을 포함하는 발광 장치
Sun et al. Gelcasting and reactive sintering of sheet-like YAG transparent ceramics
WO2019052028A1 (zh) 一种波长转换装置及其制备方法
TW200949308A (en) Color filter for a light emitting device
CN104844224A (zh) 一种制备层状复合透明陶瓷的非水基流延成型方法
US20150298424A1 (en) Layer composite, method for the production thereof as well as uses thereof
CN103819091A (zh) 一种氮化物荧光粉/玻璃复合发光片层的制备方法
CN109970450B (zh) 一种用于3d打印的光敏陶瓷液及其陶瓷件
CN102683576A (zh) 压电驱动器制作方法及压电驱动器
CN115335221B (zh) 用于生产具有至少两个不同组成区域的透明陶瓷体的基于光刻的方法以及由此获得的透明陶瓷体
TWI614918B (zh) 複合氮氧化物陶瓷轉換器及具有該轉換器的光源
TW201242455A (en) Method for manufacturing substrate for light emitting element and substrate for light emitting element
US20220131050A1 (en) Two component glass body for tape casting phosphor in glass led converters
CN105084760A (zh) 一种超薄发光玻璃的制备方法及相关发光装置
CN106032309A (zh) 石英玻璃基超材料及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17925059

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17925059

Country of ref document: EP

Kind code of ref document: A1