WO2019049747A1 - Method of installing semiconductor manufacturing device, storage media, and semiconductor manufacturing device installation system - Google Patents

Method of installing semiconductor manufacturing device, storage media, and semiconductor manufacturing device installation system Download PDF

Info

Publication number
WO2019049747A1
WO2019049747A1 PCT/JP2018/031940 JP2018031940W WO2019049747A1 WO 2019049747 A1 WO2019049747 A1 WO 2019049747A1 JP 2018031940 W JP2018031940 W JP 2018031940W WO 2019049747 A1 WO2019049747 A1 WO 2019049747A1
Authority
WO
WIPO (PCT)
Prior art keywords
block
moving
predetermined
information
semiconductor manufacturing
Prior art date
Application number
PCT/JP2018/031940
Other languages
French (fr)
Japanese (ja)
Inventor
光 赤田
Original Assignee
東京エレクトロン株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東京エレクトロン株式会社 filed Critical 東京エレクトロン株式会社
Priority to JP2019540911A priority Critical patent/JPWO2019049747A1/en
Priority to KR1020207009634A priority patent/KR102484275B1/en
Priority to CN201880055143.9A priority patent/CN111052305B/en
Publication of WO2019049747A1 publication Critical patent/WO2019049747A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67161Apparatus for manufacturing or treating in a plurality of work-stations characterized by the layout of the process chambers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/027Making masks on semiconductor bodies for further photolithographic processing not provided for in group H01L21/18 or H01L21/34
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67011Apparatus for manufacture or treatment
    • H01L21/67155Apparatus for manufacturing or treating in a plurality of work-stations
    • H01L21/67207Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process
    • H01L21/67225Apparatus for manufacturing or treating in a plurality of work-stations comprising a chamber adapted to a particular process comprising at least one lithography chamber
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/67005Apparatus not specifically provided for elsewhere
    • H01L21/67242Apparatus for monitoring, sorting or marking
    • H01L21/67259Position monitoring, e.g. misposition detection or presence detection
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/67Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere
    • H01L21/677Apparatus specially adapted for handling semiconductor or electric solid state devices during manufacture or treatment thereof; Apparatus specially adapted for handling wafers during manufacture or treatment of semiconductor or electric solid state devices or components ; Apparatus not specifically provided for elsewhere for conveying, e.g. between different workstations

Definitions

  • the present invention relates to a method of installing a semiconductor manufacturing apparatus, a storage medium, and an installation system of a semiconductor manufacturing apparatus, and in particular, a plurality of blocks are arranged on a floor of a clean room to perform predetermined processing on a processing substrate.
  • the present invention relates to a method of installing a semiconductor manufacturing apparatus, a storage medium, and an installation system of a semiconductor manufacturing apparatus.
  • the coating and developing processing system supplies a coating solution onto a semiconductor wafer (hereinafter referred to as "wafer") to form a resist film or the like, and a developing processing for developing a resist film exposed to a predetermined pattern. Then, a predetermined resist pattern is formed on the wafer, and various processing apparatuses for processing the wafer, a transport mechanism for transporting the wafer, and the like are mounted.
  • a semiconductor manufacturing apparatus such as such a coating and developing treatment system is installed in a clean room with little dust.
  • the semiconductor manufacturing apparatus is composed of a plurality of blocks.
  • the coating and developing processing system comprises: a cassette station block for carrying a wafer into and out of the system in cassette units; a processing station block for performing a predetermined processing such as the coating processing; and an exposure apparatus adjacent to the processing station block.
  • An interface station block is provided to transfer wafers between them (see Patent Document 1).
  • the semiconductor manufacturing apparatus is configured by arranging the plurality of blocks on the floor surface of the clean room.
  • the semiconductor manufacturing apparatus as described above is carried into the clean room in a state in which the blocks are not connected to each other because of the general road transportation and the like.
  • the installation of the semiconductor manufacturing apparatus in a clean room has conventionally been performed, for example, as follows. First, one block is transported to a predetermined position, and the inclination of the one block is adjusted. This completes installation of the one block. Next, convey the other block close to the one block, and then move the other block so that the distance between the other block and the one block is appropriate (for example, 5 mm). Adjust the position of the other block. Since the adjustment of the position of the other block can not bring a heavy machine such as a forklift into the clean room, the operator manually slides or lifts the other block on the floor surface.
  • each block of the semiconductor manufacturing apparatus is very heavy with several tons. Therefore, many workers, such as six people, are needed for adjustment of the position of a block. Further, as described above, since each block is very heavy, it is difficult to adjust the position of the block by millimeter manually, and it takes time for adjustment. As described above, since it is difficult to adjust the position, the blocks collide with each other during the readjustment, and the position and the inclination of the block whose position and inclination have already been adjusted become inappropriate. It may be necessary. That is, in the conventional method, it may take a very long time to adjust the position and inclination of the block of the semiconductor manufacturing apparatus.
  • the distance between blocks is not made appropriate by adjusting the position of the blocks.
  • a transfer error may occur such that the transfer device collides with another part, or the pressure state in the semiconductor manufacturing apparatus may be made desired.
  • particles can not be discharged, and the inside of the apparatus can not be kept clean.
  • the distance between blocks is larger than the appropriate value, the amount of gas required to make the positive pressure increases as described above. It is not preferable from the viewpoint of energy saving.
  • Patent Document 1 does not disclose the above-mentioned points.
  • the present invention has been made in view of the above circumstances, and a plurality of blocks are arranged on a floor surface of a clean room, and a semiconductor manufacturing apparatus for performing a predetermined process on a substrate to be processed is small and short. It can be installed in time.
  • One aspect of the present invention for solving the above-mentioned problems is a method of installing a semiconductor manufacturing apparatus, which is configured by arranging a plurality of blocks on a floor surface and performs a predetermined process on a substrate to be processed.
  • a moving device attaching step of attaching a plurality of moving devices capable of moving the supporting portion in the height direction perpendicular to the floor surface to the predetermined location, and the second to the target position in the predetermined plane Information of block position And adjusting the position of the second block in the predetermined plane by moving the supports of the plurality of moving devices in synchronization with each other, and the target applied in the height direction.
  • the height adjustment for adjusting the position of the second block in the height direction by synchronously moving the support portions of the plurality of moving devices based on the information of the position of the second block with respect to the position And a tilt adjusting step of separately moving the support portions of the plurality of moving devices and adjusting the tilt of the second block based on information on the step and the tilt of the second block.
  • adjustment of the position of the second block with respect to the first block and adjustment of the inclination of the second block are performed using the moving device.
  • the semiconductor manufacturing apparatus can be installed in a small number of people and in a short time.
  • a readable computer storage storing a program operating on a computer of a control unit that controls the installation system to cause the installation system to execute the installation method of the semiconductor manufacturing apparatus. It is a medium.
  • An aspect of the present invention is an installation system of a semiconductor manufacturing apparatus configured by arranging a plurality of blocks on a floor surface, wherein a first block in a predetermined plane parallel to the floor surface is referred to
  • a level measuring device for acquiring information on the inclination of the second block, and a support portion for supporting a predetermined portion of the second block, and moving the support portion in the predetermined plane
  • a plurality of moving devices attached to the predetermined portion, and the first block are disposed at predetermined positions on the floor surface; and the target can be moved in the height direction.
  • the second block is moved in the predetermined plane.
  • the supports of the plurality of moving devices are moved in synchronization, and in-plane adjusting the position of the second block in the predetermined plane.
  • the supporting portions of the plurality of moving devices are moved in synchronization based on the adjustment step and the information on the position of the second block with respect to the target position in the height direction, and the movement in the height direction is performed.
  • the supports of the plurality of moving devices are separately moved based on the height adjustment step of adjusting the position of the second block, and the information of the inclination of the second block, and the second block
  • the position information acquisition unit so that the tilt adjustment process, is performed for adjusting the can, the level measuring instrument, and, and a control unit for controlling the plurality of mobile devices.
  • a small number of people can be installed in a short time and a semiconductor manufacturing apparatus that is configured by arranging a plurality of blocks on the floor surface of a clean room and performing predetermined processing on a target substrate. it can.
  • FIG. 1 is an explanatory view showing an outline of an internal configuration of a coating and developing treatment system 1 which is an example of a semiconductor manufacturing apparatus.
  • 2 and 3 are a front view and a rear view showing an outline of the internal configuration of the coating and developing treatment system 1, respectively.
  • the coating and developing processing system 1 has, for example, a cassette station block (hereinafter referred to as "CS block") 2 to which a cassette C is carried in and out from the outside, and predetermined processing such as resist coating processing and PEB.
  • An interface station block hereinafter referred to as “the station station block (hereinafter referred to as“ the PS block ”) for delivering the wafer W between the processing station block 3 (hereinafter referred to as“ PS block ”) 5 are arranged on the floor surface of the clean room (see symbol F in FIG. 5) and integrally connected.
  • the direction in which the above-described blocks of the coating and developing treatment system 1 are continuous is referred to as the front-back direction or the Y direction
  • the direction orthogonal to the front-back direction in the predetermined plane parallel to the floor of the clean room is the left-right direction. It is called the X direction
  • the direction perpendicular to the predetermined plane is called the height direction or the Z direction.
  • the predetermined surface parallel to the said floor surface is a horizontal surface, for example, below. It is described that the predetermined surface is a horizontal surface.
  • the coating and developing treatment system 1 includes a control unit 6 that controls the coating and developing treatment system 1.
  • the CS block 2 is divided into, for example, a cassette carrying in / out unit 10 and a wafer transfer unit 11.
  • the cassette loading / unloading unit 10 is provided at the end of the coating and developing treatment system 1 on the Y direction negative side (left side in FIG. 1).
  • the cassette loading / unloading unit 10 is provided with a cassette mounting table 12.
  • a plurality of, for example, four mounting plates 13 are provided on the cassette mounting table 12.
  • the placement plates 13 are arranged in a line in the X direction (vertical direction in FIG. 1). When loading and unloading the cassette C from the outside of the coating and developing treatment system 1, the cassette C can be placed on the placement plate 13.
  • the wafer transfer unit 11 is provided with a wafer transfer device 21 movable on the transfer path 20 extending in the X direction as shown in FIG.
  • the wafer transfer device 21 is also movable in the height direction and around the vertical axis ( ⁇ direction), and between the cassette C on each mounting plate 13 and the delivery device of the block G3 of the PS block 3 described later.
  • the wafer W can be transported.
  • the PS block 3 is provided with a plurality of, for example, four blocks G1, G2, G3 and G4 provided with various devices.
  • the block G1 is provided on the front side (the X direction negative side in FIG. 1) of the PS block 3 and the block G2 is provided on the rear side (the X direction positive side in FIG. 1) of the PS block 3 .
  • a block G3 is provided on the CS block 2 side (the Y direction negative side in FIG. 1) of the PS block 3, and a block G4 is provided on the IF block 5 side (the Y direction positive side in FIG. Is provided.
  • a plurality of liquid processing apparatuses for example, a development processing apparatus 30 for developing the wafer W, and a resist coating apparatus 31 for applying a resist solution to the wafer W to form a resist film are shown from below. They are arranged in this order.
  • three development processing units 30 and three resist coating units 31 are arranged in the horizontal direction.
  • the number and arrangement of the development processing unit 30 and the resist coating unit 31 can be arbitrarily selected.
  • spin coating is performed to apply a predetermined processing solution on the wafer W.
  • the processing liquid is discharged from the coating nozzle onto the wafer W, and the wafer W is rotated to diffuse the processing liquid onto the surface of the wafer W.
  • a heat treatment apparatus 40 for performing heat treatment such as heating and cooling of the wafer W and a peripheral exposure apparatus 41 for exposing the outer peripheral portion of the wafer W are provided side by side in the vertical direction and in the horizontal direction in the block G2. There is.
  • the number and arrangement of the heat treatment apparatus 40 and the peripheral exposure apparatus 41 can be arbitrarily selected.
  • the block G3 is provided with a plurality of delivery devices 50. Further, in the block G4, a plurality of delivery devices 60 are provided, and a defect inspection device 61 is provided thereon.
  • a wafer transfer area D is formed in an area surrounded by blocks G1 to G4.
  • a wafer transfer apparatus 70 is disposed in the wafer transfer area D.
  • the wafer transfer apparatus 70 has a transfer arm 70a movable in, for example, the Y direction, the front-rear direction, the ⁇ direction, and the up-down direction.
  • the wafer transfer apparatus 70 can move in the wafer transfer area D and transfer the wafer W to predetermined devices in the surrounding blocks G1, G2, G3 and G4.
  • a plurality of wafer transfer apparatuses 70 are vertically arranged, and can transfer the wafer W to a predetermined apparatus having the same height of each of the blocks G1 to G4, for example.
  • a shuttle transfer apparatus 71 for transferring the wafer W linearly between the block G3 and the block G4 is provided.
  • the shuttle transfer device 71 is, for example, linearly movable in the Y direction of FIG.
  • the shuttle transfer device 71 moves in the Y direction while supporting the wafer W, and can transfer the wafer W between the delivery device 50 of the block G3 of the same height and the delivery device 60 of the block G4.
  • a wafer transfer apparatus 72 is provided on the positive side in the X direction of the block G3.
  • the wafer transfer device 72 has a transfer arm 72a movable in, for example, the front-rear direction, the ⁇ direction, and the up-down direction.
  • the wafer transfer device 72 can move up and down while supporting the wafer W to transfer the wafer W to each delivery device 50 in the block G3.
  • a wafer transfer apparatus 73 and a delivery apparatus 74 are provided in the IF block 5.
  • the wafer transfer device 73 has a transfer arm 73a movable in, for example, the Y direction, the ⁇ direction, and the up and down direction.
  • the wafer transfer device 73 can transfer the wafer W between the delivery devices 60, the delivery device 74, and the exposure device 4 in the block G4, for example, by supporting the wafer W on the transfer arm 73a.
  • a leg 80 for supporting each block on the floor of the clean room It is provided.
  • the leg 80 is a so-called adjuster foot, and its height is configured to be adjustable.
  • the control unit 6 is, for example, a computer and has a program storage unit (not shown).
  • the program storage unit stores a program for controlling the processing of the wafer W in the coating and developing treatment system 1 by controlling the operation of the driving system such as the above-described various processing apparatuses and transport apparatuses.
  • the program is recorded in a computer readable storage medium H such as a computer readable hard disk (HD), a flexible disk (FD), a compact disk (CD), a magnet optical desk (MO), and a memory card. And may be installed in the control unit 6 from the storage medium H.
  • the wafer W is taken out of the cassette C on the cassette mounting table 12 by the wafer transfer device 21 and transferred to the delivery device 50 of the PS block 3.
  • the wafer W is transferred by the wafer transfer apparatus 70 to the heat treatment apparatus 40 of the block G2 and subjected to temperature adjustment processing. Thereafter, the wafer W is transferred to the resist coating unit 31 of the block G1, and a resist film is formed on the wafer W. Thereafter, the wafer W is transferred to the heat treatment apparatus 40 and subjected to a pre-baking process (PAB: Pre-Applied Bake). The same heat treatment is performed in the pre-baking process, the PEB process in the latter stage, and the post-baking process. However, the heat processing apparatus 40 provided for each heat processing is mutually different.
  • PAB Pre-Applied Bake
  • the wafer W is transferred to the peripheral exposure device 41 and subjected to peripheral exposure processing.
  • the wafer W is transferred to the exposure device 4 and exposed in a predetermined pattern.
  • the wafer W is transferred to the heat treatment apparatus 40 and subjected to PEB processing. Thereafter, wafer W is transferred, for example, to development processing device 30 and developed. After the development processing, the wafer W is transferred to the heat treatment apparatus 40 and subjected to post-baking processing. Then, the wafer W is transferred to the defect inspection apparatus 61 and defect inspection of the wafer W is performed. In the defect inspection, it is inspected whether or not there is a scratch or foreign matter attached. Thereafter, the wafer W is transferred to the cassette C of the mounting plate 13 to complete a series of photolithography steps.
  • FIG. 4 is an explanatory view showing an outline of the configuration of the installation system 100 according to the first embodiment.
  • the installation system 100 is used for the installation method of the coating and developing treatment system 1 and, for example, a target position based on the CS block 2 as a “first block” according to the present invention installed at a predetermined position.
  • the PS block 3 it is possible to install the PS block 3 as a "second block”.
  • the installation system 100 includes an imaging device 200, a distance measuring device 210, a plurality of level measuring devices 220, a plurality of moving devices 300, and a control device 400.
  • the imaging device 200 images a target mark (not shown) formed on the surface of the CS block 2 on the PS block 3 side, that is, the back surface 2a, and for example, a camera for image processing using a complementary metal oxide semiconductor (CMOS) sensor. And attached to a predetermined position of the PS block 3.
  • the imaging result of the imaging device 200 is used to acquire information on the position of the PS block 3 with respect to the target position in the X and Z directions.
  • the imaging device 200 is a device for acquiring X-direction position information, which is a device for acquiring information on the X-direction position of the PS block 3 with respect to the target position, and It is an apparatus for Z direction position information acquisition which is an apparatus for acquiring information.
  • the target mark imaged by the imaging device 200 is, for example, a perfect circle, and is formed at a position where the optical axis of the imaging device 200 coincides with the center of the target mark when the PS block 3 is disposed at the target position. It is done.
  • the distance measuring device 210 measures the distance from the PS block 3 to the CS block 2, specifically, the distance from the surface of the PS block 3 on the CS block 2 side, ie, the front surface 3a to the back surface 2a of the CS block 2.
  • it comprises a triangular distance measuring sensor and is attached to a predetermined position of the PS block 3.
  • the measurement result by the distance measuring device 210 is used to obtain information of the Y direction position of the PS block 3 with respect to the target position.
  • the distance measuring device 210 is a device for acquiring Y direction position information which is a device for acquiring information of the Y direction position of the PS block 3 with respect to the target position.
  • the distance measuring device 210 may be attached to the CS block 2 or a plurality of distance measuring devices 210 may be provided to use the average value of the distance measurement results.
  • the level measuring instrument 220 measures the level of the predetermined measurement position P1A to P1D of the PS block 3, that is, an inclination sensor, and is attached to the measurement position P1A to P1D in a predetermined direction.
  • the measurement position P1A is a position on the X direction positive side and the Y direction negative side of the PS block 3
  • the measurement position P1B is a position on the X direction positive side and the Y direction positive side of the PS block 3
  • the measurement position P1C is
  • the measurement position P1D is a position on the X direction negative side and the Y direction positive side of the PS block 3 at the X direction negative side and the Y direction negative side of the PS block 3.
  • the level measuring devices 220 placed at the measurement positions P1A to P1D will be referred to as level measuring devices 220A to 220D, respectively.
  • the moving device 300 is for moving the PS block 3 and is attached to the predetermined attachment positions P2A to P2D of the PS block 3 in a predetermined direction.
  • the mounting position P2A is a position on the X direction positive side end of the PS block 3 and the Y direction negative side
  • the mounting position P2B is a position on the X direction positive side end and the Y direction positive side of the PS block 3
  • P2C is a position at the X direction negative side end and PS direction negative side of the PS block 3
  • the mounting position P2D is a position at the X direction negative side end and Y direction positive side of the PS block 3.
  • the moving devices 300 placed at the attachment positions P2A to P2D will be referred to as moving devices 300A to 300D, respectively.
  • the number of moving devices 300 and the number of level measuring instruments 220 is not limited to four, and may be three depending on the mounting position. Also, the number of mobile devices 300 and the number of level meters 220 may be different from each other.
  • FIG. 5 is a side view showing an outline of the configuration of the moving device 300A.
  • the moving device 300 ⁇ / b> A has a support portion 310 that abuts on the bottom surface of the PS block 3 and supports the PS block 3.
  • the moving device 300A has an XYZ stage 320 that moves the support portion 310 in the X direction, the Y direction, and the Z direction.
  • the XYZ stage 320 supports, for example, a Z direction drive device 321 for supporting the support portion 310 and moving the support portion 310 in the Z direction, and a support portion by supporting the Z direction drive device 321 and moving in the X direction and Y direction. And an XY stage 322 for moving the lens 310 in the X and Y directions.
  • the XY stage 322 can be moved in the X direction and the Y direction by an XY direction driving device (not shown).
  • the drive method of the Z direction drive device 321 and the XY direction drive device is a method using an electric linear actuator including a ball screw, but a method using a hydraulic cylinder, etc. Other methods may be used.
  • the XY stage 322 supports the Z direction drive device 321 which supports the support part 310, it is comprised so that the XY stage 322 may support the support part 310, This XY stage 322 is Z It may be supported by the directional drive device 321.
  • the transfer apparatus 300A further has a base 330 for supporting the XYZ stage 320 on the floor F of the clean room. Furthermore, the moving device 300A has a gripping portion 340 that holds the moving device 300A when the operator moves it, and a wheel (not shown) for facilitating the movement of the moving device 300A by the worker.
  • the mobile devices 300B to 300D are configured similarly to the mobile device 300A.
  • the moving device 300A, 300B has the gripping portion 340 at the position on the positive side in the X direction in a state where it is attached to the predetermined position P2A, P2B of the PS block 3 in the predetermined direction
  • the moving device 300C, 300D A grip portion 340 is provided at a position on the negative side in the X direction in a state where the PS block 3 is attached to a predetermined position P2C, P2D in a predetermined direction.
  • the control device 400 controls the imaging device 200, the distance measuring device 210, the level measuring devices 220A to 220D, and the moving devices 300A to 300D, and the imaging device 200, the distance measuring device 210, the level measuring devices 220A to 220D, and the movement.
  • the devices 300A to 300D are communicably connected.
  • a known wireless communication technology such as wireless LAN or Bluetooth (registered trademark) communication is used.
  • the control device 400 is configured of, for example, a personal computer, and includes a control unit 410, a display unit 420, and an operation unit 430.
  • the control unit 410 is configured by a CPU (Central Processing Unit) or the like, and controls the entire control device 400.
  • the display unit 420 is configured of, for example, a flat panel image display panel such as a liquid crystal display or an organic EL display.
  • the display unit 420 may be provided with a touch panel.
  • the operation unit 430 is configured of a button, a direction key, a touch panel provided on the display unit 420, or a combination thereof.
  • FIG. 6 is a flowchart showing an example of main steps of the installation method.
  • FIGS. 8, 10 and 12 are diagrams showing an example of a screen displayed on the display unit 420 when the coating and developing processing system 1 is installed according to the installation method.
  • FIGS. 7, 9 and 11 are flowcharts showing examples of the in-plane position adjustment process, height adjustment process, and inclination adjustment process described later in the installation method.
  • the CS block 2 is installed at a predetermined position on the floor surface F of the clean room in a predetermined direction, and the inclination of the CS block 2 is adjusted (step S1).
  • the PS block 3 is manually transported by a plurality of workers to a predetermined area on the floor F within a predetermined distance from a target position based on the CS block 2 installed at a predetermined position.
  • the predetermined distance is a distance that can be moved by the XY stage 322 of the moving devices 300A to 300D, and is, for example, 10 to 30 mm.
  • the subsequent processing can be performed by one worker even if the work by the worker is necessary.
  • step S2 the worker mounts the imaging device 200 and the distance measuring device 210 at predetermined positions (step S3).
  • the worker attaches the plurality of moving devices 300 to the PS block 3 (step S4). Specifically, the worker attaches the moving devices 300A to 300D to the predetermined positions P2A to P2D of the PS block 3, respectively.
  • the moving devices 300A to 300D are moved with the support portion 310 of the moving devices 300A to 300D lowered most, and the support portion 310 is inserted under the PS block 3.
  • the worker raises the support portion 310 and supports the PS block 3 by the moving devices 300A to 300D.
  • the raising of the support portion 310 can be performed, for example, via the operation portion 430 of the control device 400.
  • the operator reduces the height of the leg 80 so that the leg 80 does not interfere with the floor surface F when adjusting the position and inclination of the PS block 3.
  • step S5 the worker attaches the plurality of level measuring instruments 220 to the PS block 3 (step S5). Specifically, the worker attaches the level measuring instruments 220A to 220D to the predetermined measurement positions P1A to P1D of the PS block 3 (step S5).
  • the order of performing the process of step S3, the process of step S4, and the process of step S5 is arbitrary.
  • the control device 400 calculates information on the position of the PS block 3 in the horizontal plane with respect to the target position.
  • the supports 310 of the plurality of moving devices 300A to 300D are moved in synchronization, and the position of the PS block 3 in the horizontal plane is adjusted (step S6).
  • the control device 400 determines positional information of the PS block 3 in the horizontal plane with respect to the target position, ie, the X direction position of the PS block 3 with respect to the target position Information on the Y direction position is acquired (step S61).
  • the Y direction position of the PS block 3 with respect to the target position can be calculated based on the distance measurement result of the distance measuring device 210. Specifically, the distance measurement result and the Y coordinate value of the target position (for example, 5 mm) And can be calculated.
  • the X-direction position of the PS block 3 with respect to the target position can be calculated based on the distance measurement result of the distance measuring device 210 and the imaging result of the imaging device 200. Specifically, with the above distance measurement result It can be calculated based on the amount of displacement of the target mark in the captured image obtained by the imaging device 200 from the center of the captured image in the X direction.
  • the control device 400 causes the display unit 420 to display, for example, a screen I1 as shown in FIG. 8 based on the information on the position of the PS block 3 in the horizontal plane with respect to the target position (step S62).
  • the screen I1 indicates the current position of the PS block 3 in the horizontal plane with respect to the target position, that is, the X direction current position of the PS block 3 with respect to the target position, and the Y direction current position of the PS block 3 with respect to the target position. .
  • the operator moves the PS block 3 in the direction toward the Y direction positive side, that is, the direction approaching the CS block 2 We know that we need to move block 3.
  • the operator determines whether the PS block 3 is located at the target position in the horizontal plane based on the screen I1 (step S63).
  • the operator adjusts the position in the horizontal plane, for example, by pressing the end button (not shown).
  • the operator selects PS block 3 among the X direction negative direction, the X direction positive direction, the Y direction negative direction and the Y direction positive direction based on the screen I1.
  • the direction to move is selected, and the corresponding button is pressed (step S64).
  • the control device 400 synchronizes and moves the support portions 310 of the moving devices 300A to 300D by the XY stage 322, and moves the PS block 3 in the selected direction by a predetermined distance (step S65).
  • the distance to be moved according to the pressing operation of the button once, that is, the predetermined distance is stored in advance in a storage unit (not shown).
  • step S61 the steps after step S61 are performed again.
  • step S63 the horizontal plane position adjustment process is completed.
  • the control device 400 uses the imaging result of the imaging device 200 and the distance measurement result of the distance measuring device 210 to determine the height direction of the PS block 3 with respect to the target position (vertical direction in this example)
  • the information on the position of) is calculated, and based on the information, the support portions 310 of the plurality of moving devices 300A to 300D are moved synchronously and the position of the PS block 3 is adjusted in the height direction (step S7) .
  • step S7 information of the position of the PS block 3 in the height direction with respect to the target position, ie, information of the Z direction position of the PS block 3 with respect to the target position S71).
  • the Z direction position of the PS block 3 with respect to the target position can be calculated based on the distance measurement result of the distance measuring device 210 and the imaging result of the imaging device 200. Specifically, the above distance measurement result and imaging It can be calculated based on the amount of deviation of the target mark in the captured image obtained by the device 200 from the center of the captured image in the Z direction.
  • the control device 400 causes the display unit 420 to display a screen I2 as shown in FIG. 10, for example, based on the information of the Z direction position of the PS block 3 with respect to the target position (step S72).
  • This screen I2 shows the Z position current position or current height of the PS block 3 with respect to the target position or target height. The operator can know from the screen I2 of this example that it is necessary to move the PS block 3 to the positive side in the Z direction in order to position the PS block 3 at the target position in the height direction.
  • the operator determines whether the PS block 3 is located at the target position in the height direction based on the screen I2 (step S73).
  • the height adjustment process is ended by the operator pressing the end button (not shown) or the like.
  • the operator selects the direction to move the PS block 3 out of the negative Z direction and the positive Z direction based on the screen I2 and selects the corresponding button A pressing operation is performed (step S74).
  • the control device 400 causes the Z-direction drive mechanism to synchronously move the support portions 310 of the moving devices 300A to 300D, and moves the PS block 3 in the selected direction by a predetermined distance (step S75). ).
  • the distance to be moved according to the pressing operation of the button once, that is, the predetermined distance is stored in advance in a storage unit (not shown).
  • step S71 the steps after step S71 are executed again.
  • step S73 the height adjustment process is completed.
  • control device 400 moves the support portions 310 of the moving devices 300A to 300D individually based on the measurement results of the level measuring instruments 220A to 220D, and adjusts the inclination of the PS block 3 (Step S8).
  • step S8 In the inclination adjustment step of step S8, as shown in FIG. 11, information on the inclination at each measurement position P1A to P1D of the PS block 3 is acquired from the level measuring instruments 220A to 220D attached to each measurement position P1A to P1D. (Step S81).
  • the control device 400 causes the display unit 420 to display a screen I3 as shown in FIG. 12 (step S82).
  • This screen I3 indicates the degree of inclination at each measurement position P1A to P1D by color, and for example, indicates the measurement position whose inclination is within the allowable range in blue (white in the figure), and the inclination is outside the allowable range
  • the measurement position which is within a predetermined range is indicated by yellow (light gray in the figure), and the measurement position whose inclination is outside the allowable range and outside the predetermined range is indicated by red (dark gray in the figure).
  • the operator can know from the screen I3 of this example that it is necessary to adjust the inclination of the measurement positions P1A and P1B.
  • the operator determines whether the inclinations of all the measurement positions P1A to P1D fall within the allowable range based on the screen I3 (step S83). If all are within the allowable range (in the case of YES), the operator adjusts the tilt adjustment process by pressing the end button (not shown) or the like. On the other hand, if there is one that does not fall within the allowable range (in the case of NO), the operator selects which of the measurement positions P1A to P1D should be adjusted based on the screen I3 and presses the corresponding button The operation is performed (step S84).
  • the movement device 300 required to adjust the inclination of the measurement position P1 selected by the operator according to the pressing operation, and the inclination of the selected measurement position P1 within the allowable range is displayed on the display unit 420 in association with each other (step S85).
  • the amount of movement in the Z direction is indicated by, for example, the number of times the button for moving the support portion 310 in the Z direction is pressed.
  • the method of determining the moving device 300 necessary to adjust the inclination of the measurement position P1 selected by the operator, and the method of determining the amount of movement of the support portion 310 in the Z direction necessary to keep the inclination within the allowable range For example, those described in JP-A-2017-73538 can be used.
  • the operator performs an operation on the operation unit 430 based on the display result on the display unit 420, for example, presses the corresponding button for the number of times of depression displayed on the display screen (step S86). Then, in response to the pressing operation, the control device 400 moves the support portion 310 of the corresponding moving device 300 in the positive or negative direction in the Z direction to adjust the inclination of the PS block 3 (step S87).
  • the movement distance of the support portion 310 in the Z direction is a distance corresponding to the number of depressions, and a distance corresponding to one depression is stored in advance in a storage unit (not shown).
  • step S81 the steps after step S81 are executed again.
  • step S83 it is determined in step S83 that the inclinations of all the measurement positions P1A to P1D are within the allowable range, the inclination adjustment process ends.
  • the operator extends the leg 80 of the PS block 3 to the floor F of the clean room, and then lowers the support 310 of the moving devices 300A to 300D, and the leg 80 moves the PS block 3 to the floor F of the cleanroom. Support. Then, the moving devices 300A to 300D are removed (step S9). Thereafter, the CS block 2 and the PS block 3 are fixed by using a bolt, a nut or the like to complete the installation of the PS block 3.
  • step S10 the installation processing of the coating and developing processing system of the present embodiment is completed.
  • the adjustment of the position of the PS block 3 in the X direction, the Y direction, and the Z direction, and the adjustment of the inclination of the PS block 3 Since the moving device 300 capable of moving in the Z direction is used, the coating and developing treatment system 1 can be installed in a small number of people in a short time.
  • the moving device 300 is detachably attached to the PS block 3 and therefore, can be used also when installing another coating and developing treatment system.
  • the imaging device 200, the distance measuring device 210, and the level measuring instrument 220 detachable these can also be used when installing other coating and developing treatment systems.
  • the target mark imaged by the imaging device 200 the target mark can also be used when installing another coating and developing treatment system.
  • each measurement position P1A to P1D of the PS block 3 since the degree of inclination of each measurement position P1A to P1D of the PS block 3 is indicated by color, the operator fits all the inclinations of the measurement positions P1A to P1D within the allowable range. It is possible to intuitively determine whether or not the measurement position P1A to P1D for which the inclination should be adjusted.
  • the adjustment of the position in the horizontal plane, the adjustment of the height, and the adjustment of the inclination are performed according to the operation of the operator. That is, the adjustment is performed manually. Make these adjustments automatically.
  • the operator can use the “AUTO” button displayed on the display unit 420
  • the control device 400 automatically performs the position adjustment in the horizontal surface of the PS block 3, the height adjustment, and the inclination adjustment.
  • the control device 400 displays, for example, a message “FINISH” indicating that the adjustment has been completed on the display unit 420 in order to notify the operator of the fact.
  • the installation method according to the present embodiment differs from the installation method according to the first embodiment only in the position adjustment step in the horizontal plane in step S6, the height adjustment step in step S7, and the inclination adjustment step in step S8. Only explain. 13 to 15 are flowcharts showing examples of the in-plane position adjustment step, the height adjustment step, and the tilt adjustment step according to the present embodiment.
  • step S101 information of the position of the PS block 3 in the horizontal surface with respect to the target position, that is, the X direction position and Y direction position of the PS block 3 with respect to the target position. Information is acquired (step S101).
  • the control device 400 determines whether the PS block 3 is located at the target position in the horizontal plane based on the acquired information on the acquired position in the horizontal plane (step S102). If it is located at the target position (in the case of YES), the control device 400 ends the horizontal position adjustment process. On the other hand, when not located at the target position (in the case of NO), the controller 400 determines the X direction negative direction, the X direction positive direction, the Y direction negative based on the information of the position of the PS block 3 in the horizontal plane with respect to the target position. The direction in which the support portion 310 is moved is selected among the direction and the Y direction positive direction (step S103). When the PS block 3 deviates from the target position both in the X direction and in the Y direction, for example, the direction in which the deviation from the target position is the largest is selected as the direction in which the support portion 310 is moved.
  • control device 400 determines the amount of deviation of the PS block 3 from the target position in the selected direction, that is, the amount of movement of the support 310 necessary to position the PS block 3 in the selected direction at the target position. It calculates (step S104).
  • control device 400 moves the support portions 310 of all the moving devices 300A to 300D in the horizontal plane based on the movement direction of the selected support portion 310 and the calculated movement amount, that is, all movement
  • the support portion 310 of the devices 300A to 300D is moved in the selected movement direction by the calculated movement amount (step S105).
  • step S101 the steps after step S101 are executed again.
  • the control device 400 ends the horizontal plane position adjustment process.
  • the control device 400 is information on the position of the PS block 3 in the height direction with respect to the target position, ie, the Z direction position of the PS block 3 with respect to the target position. Information is acquired (step S111).
  • the control device 400 determines whether the PS block 3 is positioned at the target position in the height direction based on the information of the Z direction position of the PS block 3 with respect to the target position (step S112). If it is located at the target position (in the case of YES), the control device 400 ends the height adjustment process. On the other hand, when not positioned at the target position (in the case of NO), the control device 400 supports the support portion 310 among the Z direction negative direction and the Z direction positive direction based on the information of the Z direction position of the PS block 3 with respect to the target position. The direction to move is selected (step S113).
  • control device 400 calculates the shift amount of the PS block 3 from the target position in the Z direction, that is, the movement amount of the support portion 310 necessary for positioning the PS block 3 in the Z direction at the target position S114).
  • control device 400 moves the support portions 310 of all the moving devices 300A to 300D in the height direction based on the movement direction of the selected support portion 310 and the calculated movement amount, that is, all The supporting unit 310 of the moving devices 300A to 300D is moved in the selected moving direction by the calculated moving amount (step S115).
  • step S111 Thereafter, the steps after step S111 are executed again.
  • the control device 400 ends the height adjustment process.
  • the calculated movement amount of the support portion 310 may not coincide with the actual movement amount of the PS block 3.
  • the support 310 is moved little by little, the correspondence between the calculated movement of the support 310 and the actual movement of the PS block 3 is calculated, and the calculation result of the correspondence is fed back. That is, it is preferable to correct the movement amount of the support portion 310 based on the calculated correspondence relationship.
  • the control device 400 measures the tilt information at each measurement position P1A to P1D of the PS block 3 at the measurement position P1A to P1D. Are obtained from the devices 220A to 220D (step S121).
  • the control device 400 determines whether the inclinations of all the measurement positions P1A to P1D fall within the allowable range based on the information of the inclinations at the respective measurement positions P1A to P1D of the PS block 3 (step S122). If all are within the allowable range (in the case of YES), the control device 400 ends the inclination adjustment process. On the other hand, when there is one that does not fall within the allowable range (in the case of NO), the control device 400 selects one of the measurement positions P1A to P1D based on the information of the inclination at each measurement position P1A to P1D of the PS block 3 An inclination adjustment target is selected (step S123). For example, the control device 400 selects a measurement position whose inclination is most out of the allowable range as an inclination adjustment target.
  • control device 400 determines the moving device 300 necessary to adjust the inclination of the selected measurement position P1 (step S124). For the support portion 310 of the moving device 300 determined in the step S124, the movement direction and the movement amount necessary to keep the inclination of the selected measurement position P1 within the allowable range are determined (step S125).
  • control device 400 moves the support portion 310 of the moving device 300 determined in step S124 based on the movement direction and the amount of movement of the support portion 310 determined in step S125, that is, determined in step S124.
  • the supporting unit 310 of the moving apparatus 300 is moved in the moving direction of the supporting unit 310 determined in step S125 by the moving amount determined in step S125 (step S126).
  • step S121 the steps after step S121 are executed again. Then, if it is determined in step S122 that the inclinations of all the measurement positions P1A to P1D are within the allowable range, the control device 400 ends the inclination adjustment process.
  • the coating and developing treatment system 1 can be installed in a shorter time than a small number of people and the first embodiment.
  • FIG. 16 is an explanatory view of another example of the transfer process of the PS block 3.
  • the PS block 3 in the transport process of the PS block 3, the PS block 3 is transported manually by a plurality of workers.
  • the transport method of the PS block 3 is not limited to this method, and as shown in FIG. 16, transport may be performed using a plurality of transport devices 500.
  • the transfer device 500 supports the PS block 3 on the upper surface 500a, and has a traveling mechanism (not shown) including wheels and the like.
  • the transfer device 500 is configured to be able to move on the floor of the clean room in a state where the PS block 3 is mounted by the traveling mechanism under the control of the control device 400 (see FIG. 4).
  • the PS block 3 is first mounted on the plurality of transport devices 500 in the transport process of the PS block 3 described above. After mounting, the operator operates the control device 400, whereby the PS block 3 is transported to a predetermined position.
  • the conveyance time of the PS block 3 can be shortened, the time required for installation of the coating and developing treatment system 1 can be further shortened. In addition, the number of workers at the time of the transfer process can be reduced.
  • the conveying apparatus 500 has a raising and lowering mechanism which raises and lowers the upper surface 500a. This is because the installation of the PS block 3 on the transfer device 500 is possible even with a small number of people. Further, the transfer device 500 and the moving device 300 may be integrated.
  • the height adjustment and the inclination adjustment are performed once each, but may be performed alternately several times.
  • the position adjustment in the horizontal plane is performed before the height adjustment and the inclination adjustment, but may be performed after the height adjustment and the inclination adjustment.
  • the horizontal position adjustment and height adjustment were performed after the installation of the level measuring device, but if the level measuring device is installed before the tilt adjustment, the horizontal position adjustment and height adjustment It may be done after the adjustment.
  • the distance measuring device 210 is used for acquiring the position information of the PS block 3.
  • the distance measuring device 210 is provided at the corner of the PS block 3 before the transport step of the PS block 3, and when the measurement result by the distance measuring device 210 becomes less than a predetermined value during transportation. You may make it alert
  • the PS block 3 collides at the time of transport since the visibility of the worker is limited.
  • by adopting the configuration as described above it is possible to prevent the PS block 3 from colliding with a wall or the like even when transporting it alone.
  • the installation method according to the present embodiment may be applied to the installation and inclination adjustment of the CS block 2 and the IF block 5.
  • the CS block 2 is divided into the cassette loading / unloading unit 10 and the wafer transfer unit 11 as described above, the installation method according to the present embodiment for the installation and inclination adjustment of the cassette loading / unloading unit 10 and the wafer transfer unit 11 May apply.
  • the semiconductor manufacturing apparatus has been described as the coating and developing processing system in the above embodiment, the semiconductor manufacturing apparatus to which the present invention is applied is not limited to the coating and developing processing system.
  • Coating and developing processing system Cassette station block (CS block) 3 Processing station block (PS block) 4 Exposure apparatus 5 Interface station block (IF block) Reference Signs List 6 control unit 80 leg unit 100 installation system 200 imaging device 210 distance measuring device 220 (220A to 220D) level measuring device 300 (300A to 300D) moving device 310 supporting unit 320 XYZ stage 321 Z direction drive device 322 XY stage 330 base 340 Grasping part 400 Control device 410 Control part 420 Display part 430 Operation part 500 Transport device

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

A method of installing a semiconductor manufacturing device (100) including a plurality of blocks arranged on a floor comprises: a transfer step of transferring a second block (3) to a region which is predetermined with reference to a first block (2); a moving device attaching step of attaching a plurality of moving devices (300) to a predetermined portion of the second block (3); an in-plane adjustment step of moving, on the basis of information about the position of the second block (3) with respect to the target position in a predetermined plane, support portions of the plurality of moving devices (300) in a synchronized manner, and thereby adjusting the position of the second block (3) in the predetermined plane; a height adjustment step of moving, on the basis of the information about the position of the second block (3) with respect to the target position in a height direction, the support portions of the plurality of moving devices (300) in a synchronized manner, and thereby adjusting the height of the second block (3); and an inclination adjustment step of moving, on the basis of information about an inclination of the second block (3), the support portions of the plurality of moving devices (300) separately, and thereby adjusting the inclination of the second block (3).

Description

半導体製造装置の設置方法、記憶媒体及び半導体製造装置の設置システムInstallation method of semiconductor manufacturing apparatus, storage medium, and installation system of semiconductor manufacturing apparatus
(関連出願の相互参照)
 本願は、2017年9月6日に日本国に出願された特願2017-171284号に基づき、優先権を主張し、その内容をここに援用する。
(Cross-reference to related applications)
Priority is claimed on Japanese Patent Application No. 2017-171284, filed on Sep. 6, 2017, the content of which is incorporated herein by reference.
 本発明は、半導体製造装置の設置方法、記憶媒体及び半導体製造装置の設置システムに関し、特に、複数のブロックがクリーンルームの床面に並べられて構成され、被処理基板に対して所定の処理を行う半導体製造装置の設置方法、記憶媒体及び半導体製造装置の設置システムに関する。 The present invention relates to a method of installing a semiconductor manufacturing apparatus, a storage medium, and an installation system of a semiconductor manufacturing apparatus, and in particular, a plurality of blocks are arranged on a floor of a clean room to perform predetermined processing on a processing substrate. The present invention relates to a method of installing a semiconductor manufacturing apparatus, a storage medium, and an installation system of a semiconductor manufacturing apparatus.
 半導体製造装置の1つとして塗布現像処理システムがある。塗布現像処理システムは、半導体ウェハ(以下、「ウェハ」という。)上に塗布液を供給してレジスト膜等を形成する塗布処理や所定のパターンに露光されたレジスト膜を現像する現像処理などを行い、ウェハ上に所定のレジストパターンを形成するものであり、ウェハを処理する各種処理装置やウェハを搬送する搬送機構等を搭載している。 There is a coating and developing system as one of semiconductor manufacturing apparatuses. The coating and developing processing system supplies a coating solution onto a semiconductor wafer (hereinafter referred to as "wafer") to form a resist film or the like, and a developing processing for developing a resist film exposed to a predetermined pattern. Then, a predetermined resist pattern is formed on the wafer, and various processing apparatuses for processing the wafer, a transport mechanism for transporting the wafer, and the like are mounted.
 このような塗布現像処理システムなどの半導体製造装置は、塵埃の少ないクリーンルーム内に設置される。また、半導体製造装置は複数のブロックから構成される。例えば、上記塗布現像処理システムは、ウェハをカセット単位で当該システムに搬入出するカセットステーションブロックと、上記塗布処理等の所定の処理を行う処理ステーションブロックと、処理ステーションブロックに隣接する露光装置との間でウェハの受け渡しを行うインターフェイスステーションブロックを有する(特許文献1参照)。そして、半導体製造装置は、これら複数のブロックをクリーンルームの床面に並べて構成される。 A semiconductor manufacturing apparatus such as such a coating and developing treatment system is installed in a clean room with little dust. In addition, the semiconductor manufacturing apparatus is composed of a plurality of blocks. For example, the coating and developing processing system comprises: a cassette station block for carrying a wafer into and out of the system in cassette units; a processing station block for performing a predetermined processing such as the coating processing; and an exposure apparatus adjacent to the processing station block. An interface station block is provided to transfer wafers between them (see Patent Document 1). The semiconductor manufacturing apparatus is configured by arranging the plurality of blocks on the floor surface of the clean room.
 上述のような半導体製造装置は、一般の道路を搬送する関係などから、各ブロックは互いに接続されていない状態で、クリーンルーム内へ搬入される。
 そして、半導体製造装置のクリーンルーム内への設置は、従来、例えば以下のようにして行われていた。
 まず、1のブロックを所定の位置に搬送し、当該1のブロックの傾きを調整する。これにより当該1のブロックの設置が完了する。次いで、他のブロックを、上記1のブロックの近くまで搬送し、その後、上記他のブロックと上記1のブロックとの距離が適正なもの(例えば5mm)となるよう、上記他のブロックを動かして当該他のブロックの位置を調整する。上記他のブロックの位置の調整は、クリーンルーム内にフォークリフト等の重機を持ち込むことができないため、作業者が手作業で当該他のブロックを床面上で摺動させたり持ち上げて移動させたりすることで行われる。次いで、上記他のブロックの傾きも調整する。そして、必要に応じて、上述のような位置の調整及び傾きの調整を繰り返す。これにより、上記他のブロックの設置が完了する。上述と同様の処理を残りの全てのブロックについて行うことで、半導体製造装置全体の設置が完了する。
The semiconductor manufacturing apparatus as described above is carried into the clean room in a state in which the blocks are not connected to each other because of the general road transportation and the like.
The installation of the semiconductor manufacturing apparatus in a clean room has conventionally been performed, for example, as follows.
First, one block is transported to a predetermined position, and the inclination of the one block is adjusted. This completes installation of the one block. Next, convey the other block close to the one block, and then move the other block so that the distance between the other block and the one block is appropriate (for example, 5 mm). Adjust the position of the other block. Since the adjustment of the position of the other block can not bring a heavy machine such as a forklift into the clean room, the operator manually slides or lifts the other block on the floor surface. It takes place in Then, the inclination of the other block is also adjusted. Then, the adjustment of the position and the adjustment of the inclination as described above are repeated as necessary. This completes the installation of the other block. By performing the same processing as described above for all the remaining blocks, installation of the entire semiconductor manufacturing apparatus is completed.
日本国2012-33886号公報Japan 2012-33886 gazette
 ところで、半導体製造装置の各ブロックは数トンと非常に重い。そのため、ブロックの位置の調整には、例えば6人等の多くの作業者が必要である。また、上述のように各ブロックは非常に重いため、手作業によるミリ単位のブロックの位置の調整は難しく、調整に時間がかかる。上述のように位置の調整が難しいため、再調整中にブロック同士が衝突し、既に位置や傾きが調整済みのブロックの位置や傾きが不適切なものとなり、該調整済みのブロックの再調整が必要となることがある。つまり、従来の方法では、半導体製造装置のブロックの位置や傾きの調整に非常に時間がかかる場合がある。 By the way, each block of the semiconductor manufacturing apparatus is very heavy with several tons. Therefore, many workers, such as six people, are needed for adjustment of the position of a block. Further, as described above, since each block is very heavy, it is difficult to adjust the position of the block by millimeter manually, and it takes time for adjustment. As described above, since it is difficult to adjust the position, the blocks collide with each other during the readjustment, and the position and the inclination of the block whose position and inclination have already been adjusted become inappropriate. It may be necessary. That is, in the conventional method, it may take a very long time to adjust the position and inclination of the block of the semiconductor manufacturing apparatus.
 また、上記ブロックの位置の調整により、ブロック間の距離を適正なものにしない場合、種々の問題がある。例えば、半導体製造装置内で搬送装置によりウェハを搬送するときに上記搬送装置が他の部分に衝突する等の搬送エラーが生じたり、半導体製造装置内の圧力の状態を所望のものとすることができない結果、パーティクルを排出することができず当該装置内の清浄度を保てなくなったりする。また、半導体製造装置内を装置外部に対して陽圧にする必要があるところ、ブロック間の距離が適正値より大きいと、上述のように陽圧にするために必要なガス量が多くなり、省エネルギーの観点で好ましくない。 In addition, there are various problems if the distance between blocks is not made appropriate by adjusting the position of the blocks. For example, when transferring a wafer by a transfer device in a semiconductor manufacturing apparatus, a transfer error may occur such that the transfer device collides with another part, or the pressure state in the semiconductor manufacturing apparatus may be made desired. As a result, particles can not be discharged, and the inside of the apparatus can not be kept clean. In addition, although it is necessary to make the inside of the semiconductor manufacturing apparatus have a positive pressure with respect to the outside of the apparatus, if the distance between blocks is larger than the appropriate value, the amount of gas required to make the positive pressure increases as described above. It is not preferable from the viewpoint of energy saving.
 特許文献1は、上述の点に関し、開示するものではない。 Patent Document 1 does not disclose the above-mentioned points.
 本発明は、上記事情に鑑みてなされたものであり、複数のブロックがクリーンルームの床面に並べられて構成され、被処理基板に対して所定の処理を行う半導体製造装置を、少人数且つ短時間で設置可能とする。 The present invention has been made in view of the above circumstances, and a plurality of blocks are arranged on a floor surface of a clean room, and a semiconductor manufacturing apparatus for performing a predetermined process on a substrate to be processed is small and short. It can be installed in time.
 上記課題を解決する本発明の一態様は、複数のブロックを床面に並べて構成され、被処理基板に対して所定の処理を行う半導体製造装置の設置方法であって、第1のブロックを前記床面上の所定の位置に設置する設置工程と、前記所定の位置に設置された前記第1のブロックを基準とした目標位置から所定の距離内に位置する、前記床面上の所定の領域に、第2のブロックを搬送する搬送工程と、前記第2のブロックの所定箇所を支持する支持部を有し、前記床面と平行な所定の面内で前記支持部を移動させると共に、前記床面と垂直な高さ方向に前記支持部を移動させることが可能な複数の移動装置をそれぞれ前記所定箇所に取り付ける移動装置取付工程と、前記所定の面内における前記目標位置に対する前記第2のブロックの位置の情報に基づいて、前記複数の移動装置の前記支持部を同期させて移動させ、前記所定の面内における前記第2のブロックの位置を調整する面内調整工程と、前記高さ方向にかかる前記目標位置に対する前記第2のブロックの位置の情報に基づいて、前記複数の移動装置の前記支持部を同期させて移動させ、前記高さ方向にかかる前記第2のブロックの位置を調整する高さ調整工程と、前記第2のブロックの傾きの情報に基づいて、前記複数の移動装置の前記支持部を別々に移動させ、前記第2のブロックの傾きを調整する傾き調整工程と、を含む。 One aspect of the present invention for solving the above-mentioned problems is a method of installing a semiconductor manufacturing apparatus, which is configured by arranging a plurality of blocks on a floor surface and performs a predetermined process on a substrate to be processed. An installation step of installing at a predetermined position on the floor, and a predetermined area on the floor located within a predetermined distance from a target position based on the first block installed at the predetermined position And a supporting portion for supporting a predetermined portion of the second block, and moving the supporting portion in a predetermined plane parallel to the floor surface, and A moving device attaching step of attaching a plurality of moving devices capable of moving the supporting portion in the height direction perpendicular to the floor surface to the predetermined location, and the second to the target position in the predetermined plane Information of block position And adjusting the position of the second block in the predetermined plane by moving the supports of the plurality of moving devices in synchronization with each other, and the target applied in the height direction. The height adjustment for adjusting the position of the second block in the height direction by synchronously moving the support portions of the plurality of moving devices based on the information of the position of the second block with respect to the position And a tilt adjusting step of separately moving the support portions of the plurality of moving devices and adjusting the tilt of the second block based on information on the step and the tilt of the second block.
 本発明の一態様の半導体製造装置の設置方法では、上記移動装置を用いて、第1のブロックを基準とした第2のブロックの位置の調整や第2のブロックの傾きの調整を行うため、少人数且つ短時間で半導体製造装置を設置することができる。 In the method of installing a semiconductor manufacturing apparatus according to one aspect of the present invention, adjustment of the position of the second block with respect to the first block and adjustment of the inclination of the second block are performed using the moving device. The semiconductor manufacturing apparatus can be installed in a small number of people and in a short time.
 別な観点による本発明の一態様は、前記半導体製造装置の設置方法を設置システムによって実行させるように、当該設置システムを制御する制御部のコンピュータ上で動作するプログラムを格納した読み取り可能なコンピュータ記憶媒体である。 According to another aspect of the present invention, there is provided a readable computer storage storing a program operating on a computer of a control unit that controls the installation system to cause the installation system to execute the installation method of the semiconductor manufacturing apparatus. It is a medium.
 別な観点による本発明の一態様は、複数のブロックを床面に並べて構成される半導体製造装置の設置システムであって、前記床面と平行な所定の面内における、第1のブロックを基準とした目標位置に対する第2のブロックの位置の情報、前記所定の面と垂直な高さ方向にかかる前記目標位置に対する前記第2のブロックの位置の情報を取得するための位置情報取得用装置と、前記第2のブロックの傾きの情報を取得するための水準計測器と、前記第2のブロックの所定箇所を支持する支持部を有し、前記所定の面内で前記支持部を移動させると共に、前記高さ方向に前記支持部を移動させることが可能であり、前記所定箇所に取り付けられる複数の移動装置と、前記第1のブロックが前記床面上の所定の位置に設置され、前記目標位置から所定の距離内に位置する、前記床面上の所定の領域に、前記第2のブロックが搬送され、前記複数の移動装置がそれぞれ前記所定箇所に取り付けられた後に、前記所定の面内における前記目標位置に対する前記第2のブロックの位置の情報に基づいて、前記複数の移動装置の前記支持部を同期させて移動させ、前記所定の面内における前記第2のブロックの位置を調整する面内調整工程と、前記高さ方向にかかる前記目標位置に対する前記第2のブロックの位置の情報に基づいて、前記複数の移動装置の前記支持部を同期させて移動させ、前記高さ方向にかかる前記第2のブロックの位置を調整する高さ調整工程と、前記第2のブロックの傾きの情報に基づいて、前記複数の移動装置の前記支持部を別々に移動させ、前記第2のブロックの傾きを調整する傾き調整工程と、が実行されるように前記位置情報取得用装置、前記水準計測器、及び、前記複数の移動装置を制御する制御装置と、を備える。 An aspect of the present invention according to another aspect is an installation system of a semiconductor manufacturing apparatus configured by arranging a plurality of blocks on a floor surface, wherein a first block in a predetermined plane parallel to the floor surface is referred to A device for acquiring position information for acquiring information of the position of the second block with respect to the target position, and information of the position of the second block with respect to the target position in the height direction perpendicular to the predetermined plane; A level measuring device for acquiring information on the inclination of the second block, and a support portion for supporting a predetermined portion of the second block, and moving the support portion in the predetermined plane A plurality of moving devices attached to the predetermined portion, and the first block are disposed at predetermined positions on the floor surface; and the target can be moved in the height direction. Position After the second block is transported to a predetermined area on the floor surface located within a predetermined distance, and the plurality of moving devices are respectively attached to the predetermined location, the second block is moved in the predetermined plane. Based on the information of the position of the second block with respect to the target position, the supports of the plurality of moving devices are moved in synchronization, and in-plane adjusting the position of the second block in the predetermined plane The supporting portions of the plurality of moving devices are moved in synchronization based on the adjustment step and the information on the position of the second block with respect to the target position in the height direction, and the movement in the height direction is performed. The supports of the plurality of moving devices are separately moved based on the height adjustment step of adjusting the position of the second block, and the information of the inclination of the second block, and the second block The position information acquisition unit so that the tilt adjustment process, is performed for adjusting the can, the level measuring instrument, and, and a control unit for controlling the plurality of mobile devices.
 本発明の一態様によれば、複数のブロックがクリーンルームの床面に並べられて構成され、被処理基板に対して所定の処理を行う半導体製造装置を、少人数且つ短時間で設置することができる。 According to one aspect of the present invention, a small number of people can be installed in a short time and a semiconductor manufacturing apparatus that is configured by arranging a plurality of blocks on the floor surface of a clean room and performing predetermined processing on a target substrate. it can.
本実施の形態にかかる塗布現像処理システムの構成の概略を示す平面図である。It is a top view which shows the outline of a structure of the coating development process system concerning this Embodiment. 本実施の形態にかかる塗布現像処理システムの構成の概略を示す正面図である。It is a front view showing an outline of composition of a coating development processing system concerning this embodiment. 本実施の形態にかかる塗布現像処理システムの構成の概略を示す背面図である。It is a rear view which shows the outline of a structure of the application development processing system concerning this Embodiment. 第1実施形態にかかる塗布現像処理システムの設置方法に用いられる設置システムの構成の概略を示す説明図である。It is an explanatory view showing an outline of composition of an installation system used for an installation method of a coating development processing system concerning a 1st embodiment. 移動装置の構成の概略を示す側面図である。It is a side view which shows the outline of a structure of a movement apparatus. 第1実施形態にかかる塗布現像処理システムの設置方法の主な工程の例を示すフローチャートである。It is a flowchart which shows the example of the main processes of the installation method of the coating development process system concerning 1st Embodiment. 面内位置調整工程の例を示すフローチャートである。It is a flowchart which shows the example of an in-plane position adjustment process. 第1実施形態にかかる塗布現像処理システムの設置方法による設置の際に表示される画面の一例を示す図である。It is a figure which shows an example of the screen displayed in the case of installation by the installation method of the coating development process system concerning 1st Embodiment. 高さ調整工程の例を示すフローチャートである。It is a flowchart which shows the example of a height adjustment process. 第1実施形態にかかる塗布現像処理システムの設置方法による設置の際に表示される画面の他の例を示す図である。It is a figure which shows the other example of the screen displayed at the time of installation by the installation method of the coating development process system concerning 1st Embodiment. 傾き調整工程の例を示すフローチャートである。It is a flowchart which shows the example of an inclination adjustment process. 第1実施形態にかかる塗布現像処理システムの設置方法による設置の際に表示される画面の別の例を示す図である。It is a figure which shows another example of the screen displayed in the case of installation by the installation method of the coating development process system concerning 1st Embodiment. 面内位置調整工程の他の例を示すフローチャートである。It is a flowchart which shows the other example of an in-plane position adjustment process. 高さ調整工程の他の例を示すフローチャートである。It is a flowchart which shows the other example of a height adjustment process. 傾き調整工程の他の例を示すフローチャートである。It is a flowchart which shows the other example of an inclination adjustment process. 第1及び第2実施形態の変形例の説明図である。It is explanatory drawing of the modification of 1st and 2nd embodiment.
 以下、本発明の実施形態について、図面を参照しながら説明する。なお、本明細書および図面において、実質的に同一の機能構成を有する要素においては、同一の符号を付することにより重複説明を省略する。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In the present specification and the drawings, elements having substantially the same functional configuration will be assigned the same reference numerals and redundant description will be omitted.
 まず、本発明にかかる設置方法により設置される、ウェハに所定の処理を行う半導体製造装置について説明する。
 図1は、半導体製造装置の一例である塗布現像処理システム1の内部構成の概略を示す説明図である。図2及び図3は、各々塗布現像処理システム1の内部構成の概略を示す、正面図と背面図である。
First, a semiconductor manufacturing apparatus for performing predetermined processing on a wafer, which is installed by the installation method according to the present invention, will be described.
FIG. 1 is an explanatory view showing an outline of an internal configuration of a coating and developing treatment system 1 which is an example of a semiconductor manufacturing apparatus. 2 and 3 are a front view and a rear view showing an outline of the internal configuration of the coating and developing treatment system 1, respectively.
 塗布現像処理システム1は、図1に示すように例えば外部との間でカセットCが搬入出されるカセットステーションブロック(以下、「CSブロック」という)2と、レジスト塗布処理やPEB等の所定の処理を施す複数の各種処理装置を備えた処理ステーションブロック(以下、「PSブロック」という)3と、PSブロック3に隣接する露光装置4との間でウェハWの受け渡しを行うインターフェイスステーションブロック(以下、「IFブロック」という)5とが、クリーンルームの床面(図5の符号F参照)に並べられ、一体に接続されて構成される。なお、以下では、塗布現像処理システム1の上述の各ブロックが連なる方向を前後方向やY方向といい、クリーンルームの床面と平行な所定の面内において上記前後方向と直交する方向を左右方向やX方向といい、上記所定の面と垂直な方向を高さ方向やZ方向という。また、上記床面と平行な所定の面とは、例えば水平面であるため、以下では。上記所定の面は水平面であるものとして説明する。
 さらに、塗布現像処理システム1は、当該塗布現像処理システム1の制御を行う制御部6を有している。
As shown in FIG. 1, the coating and developing processing system 1 has, for example, a cassette station block (hereinafter referred to as "CS block") 2 to which a cassette C is carried in and out from the outside, and predetermined processing such as resist coating processing and PEB. An interface station block (hereinafter referred to as “the station station block (hereinafter referred to as“ the PS block ”) for delivering the wafer W between the processing station block 3 (hereinafter referred to as“ PS block ”) 5) are arranged on the floor surface of the clean room (see symbol F in FIG. 5) and integrally connected. Hereinafter, the direction in which the above-described blocks of the coating and developing treatment system 1 are continuous is referred to as the front-back direction or the Y direction, and the direction orthogonal to the front-back direction in the predetermined plane parallel to the floor of the clean room is the left-right direction. It is called the X direction, and the direction perpendicular to the predetermined plane is called the height direction or the Z direction. Moreover, since the predetermined surface parallel to the said floor surface is a horizontal surface, for example, below. It is described that the predetermined surface is a horizontal surface.
Furthermore, the coating and developing treatment system 1 includes a control unit 6 that controls the coating and developing treatment system 1.
 CSブロック2は、例えばカセット搬入出部10とウェハ搬送部11に分かれている。例えばカセット搬入出部10は、塗布現像処理システム1のY方向負側(図1の左側)の端部に設けられている。カセット搬入出部10には、カセット載置台12が設けられている。カセット載置台12上には、複数、例えば4つの載置板13が設けられている。載置板13は、X方向(図1の上下方向)に一列に並べて設けられている。これらの載置板13には、塗布現像処理システム1の外部に対してカセットCを搬入出する際に、カセットCを載置することができる。 The CS block 2 is divided into, for example, a cassette carrying in / out unit 10 and a wafer transfer unit 11. For example, the cassette loading / unloading unit 10 is provided at the end of the coating and developing treatment system 1 on the Y direction negative side (left side in FIG. 1). The cassette loading / unloading unit 10 is provided with a cassette mounting table 12. A plurality of, for example, four mounting plates 13 are provided on the cassette mounting table 12. The placement plates 13 are arranged in a line in the X direction (vertical direction in FIG. 1). When loading and unloading the cassette C from the outside of the coating and developing treatment system 1, the cassette C can be placed on the placement plate 13.
 ウェハ搬送部11には、図1に示すようにX方向に延びる搬送路20上を移動自在なウェハ搬送装置21が設けられている。ウェハ搬送装置21は、高さ方向及び鉛直軸周り(θ方向)にも移動自在であり、各載置板13上のカセットCと、後述するPSブロック3のブロックG3の受け渡し装置との間でウェハWを搬送できる。 The wafer transfer unit 11 is provided with a wafer transfer device 21 movable on the transfer path 20 extending in the X direction as shown in FIG. The wafer transfer device 21 is also movable in the height direction and around the vertical axis (θ direction), and between the cassette C on each mounting plate 13 and the delivery device of the block G3 of the PS block 3 described later. The wafer W can be transported.
 PSブロック3には、各種装置を備えた複数、例えば4つのブロックG1、G2、G3、G4が設けられている。例えばPSブロック3の正面側(図1のX方向負側)には、ブロックG1が設けられ、PSブロック3の背面側(図1のX方向正側)には、ブロックG2が設けられている。また、PSブロック3のCSブロック2側(図1のY方向負側)には、ブロックG3が設けられ、PSブロック3のIFブロック5側(図1のY方向正側)には、ブロックG4が設けられている。 The PS block 3 is provided with a plurality of, for example, four blocks G1, G2, G3 and G4 provided with various devices. For example, the block G1 is provided on the front side (the X direction negative side in FIG. 1) of the PS block 3 and the block G2 is provided on the rear side (the X direction positive side in FIG. 1) of the PS block 3 . A block G3 is provided on the CS block 2 side (the Y direction negative side in FIG. 1) of the PS block 3, and a block G4 is provided on the IF block 5 side (the Y direction positive side in FIG. Is provided.
 ブロックG1には、図2に示すように複数の液処理装置、例えばウェハWを現像処理する現像処理装置30、ウェハWにレジスト液を塗布してレジスト膜を形成するレジスト塗布装置31が下からこの順に配置されている。 In block G1, as shown in FIG. 2, a plurality of liquid processing apparatuses, for example, a development processing apparatus 30 for developing the wafer W, and a resist coating apparatus 31 for applying a resist solution to the wafer W to form a resist film are shown from below. They are arranged in this order.
 例えば現像処理装置30、レジスト塗布装置31は、それぞれ水平方向に3つ並べて配置されている。なお、これら現像処理装置30、レジスト塗布装置31の数や配置は、任意に選択できる。 For example, three development processing units 30 and three resist coating units 31 are arranged in the horizontal direction. The number and arrangement of the development processing unit 30 and the resist coating unit 31 can be arbitrarily selected.
 これら現像処理装置30、レジスト塗布装置31では、例えばウェハW上に所定の処理液を塗布するスピンコーティングが行われる。スピンコーティングでは、例えば塗布ノズルからウェハW上に処理液を吐出すると共に、ウェハWを回転させて、処理液をウェハWの表面に拡散させる。 In the development processing unit 30 and the resist coating unit 31, for example, spin coating is performed to apply a predetermined processing solution on the wafer W. In spin coating, for example, the processing liquid is discharged from the coating nozzle onto the wafer W, and the wafer W is rotated to diffuse the processing liquid onto the surface of the wafer W.
 例えばブロックG2には、図3に示すようにウェハWの加熱や冷却といった熱処理を行う熱処理装置40や、ウェハWの外周部を露光する周辺露光装置41が上下方向と水平方向に並べて設けられている。これら熱処理装置40、周辺露光装置41の数や配置についても、任意に選択できる。 For example, as shown in FIG. 3, a heat treatment apparatus 40 for performing heat treatment such as heating and cooling of the wafer W and a peripheral exposure apparatus 41 for exposing the outer peripheral portion of the wafer W are provided side by side in the vertical direction and in the horizontal direction in the block G2. There is. The number and arrangement of the heat treatment apparatus 40 and the peripheral exposure apparatus 41 can be arbitrarily selected.
 ブロックG3には、複数の受け渡し装置50が設けられている。また、ブロックG4には、複数の受け渡し装置60が設けられ、その上に欠陥検査装置61が設けられている。 The block G3 is provided with a plurality of delivery devices 50. Further, in the block G4, a plurality of delivery devices 60 are provided, and a defect inspection device 61 is provided thereon.
 図1に示すようにブロックG1~ブロックG4に囲まれた領域には、ウェハ搬送領域Dが形成されている。ウェハ搬送領域Dには、例えばウェハ搬送装置70が配置されている。 As shown in FIG. 1, a wafer transfer area D is formed in an area surrounded by blocks G1 to G4. For example, a wafer transfer apparatus 70 is disposed in the wafer transfer area D.
 ウェハ搬送装置70は、例えばY方向、前後方向、θ方向及び上下方向に移動自在な搬送アーム70aを有している。ウェハ搬送装置70は、ウェハ搬送領域D内を移動し、周囲のブロックG1、ブロックG2、ブロックG3及びブロックG4内の所定の装置にウェハWを搬送できる。ウェハ搬送装置70は、例えば図3に示すように上下に複数台配置され、例えば各ブロックG1~G4の同程度の高さの所定の装置にウェハWを搬送できる。 The wafer transfer apparatus 70 has a transfer arm 70a movable in, for example, the Y direction, the front-rear direction, the θ direction, and the up-down direction. The wafer transfer apparatus 70 can move in the wafer transfer area D and transfer the wafer W to predetermined devices in the surrounding blocks G1, G2, G3 and G4. For example, as shown in FIG. 3, a plurality of wafer transfer apparatuses 70 are vertically arranged, and can transfer the wafer W to a predetermined apparatus having the same height of each of the blocks G1 to G4, for example.
 また、ウェハ搬送領域Dには、ブロックG3とブロックG4との間で直線的にウェハWを搬送するシャトル搬送装置71が設けられている。 Further, in the wafer transfer area D, a shuttle transfer apparatus 71 for transferring the wafer W linearly between the block G3 and the block G4 is provided.
 シャトル搬送装置71は、例えば図3のY方向に直線的に移動自在になっている。シャトル搬送装置71は、ウェハWを支持した状態でY方向に移動し、同程度の高さのブロックG3の受け渡し装置50とブロックG4の受け渡し装置60との間でウェハWを搬送できる。 The shuttle transfer device 71 is, for example, linearly movable in the Y direction of FIG. The shuttle transfer device 71 moves in the Y direction while supporting the wafer W, and can transfer the wafer W between the delivery device 50 of the block G3 of the same height and the delivery device 60 of the block G4.
 図1に示すようにブロックG3のX方向正側には、ウェハ搬送装置72が設けられている。ウェハ搬送装置72は、例えば前後方向、θ方向及び上下方向に移動自在な搬送アーム72aを有している。ウェハ搬送装置72は、ウェハWを支持した状態で上下に移動して、ブロックG3内の各受け渡し装置50にウェハWを搬送できる。 As shown in FIG. 1, a wafer transfer apparatus 72 is provided on the positive side in the X direction of the block G3. The wafer transfer device 72 has a transfer arm 72a movable in, for example, the front-rear direction, the θ direction, and the up-down direction. The wafer transfer device 72 can move up and down while supporting the wafer W to transfer the wafer W to each delivery device 50 in the block G3.
 IFブロック5には、ウェハ搬送装置73と受け渡し装置74が設けられている。ウェハ搬送装置73は、例えばY方向、θ方向及び上下方向に移動自在な搬送アーム73aを有している。ウェハ搬送装置73は、例えば搬送アーム73aにウェハWを支持して、ブロックG4内の各受け渡し装置60、受け渡し装置74及び露光装置4との間でウェハWを搬送できる。 A wafer transfer apparatus 73 and a delivery apparatus 74 are provided in the IF block 5. The wafer transfer device 73 has a transfer arm 73a movable in, for example, the Y direction, the θ direction, and the up and down direction. The wafer transfer device 73 can transfer the wafer W between the delivery devices 60, the delivery device 74, and the exposure device 4 in the block G4, for example, by supporting the wafer W on the transfer arm 73a.
 さらに、塗布現像処理システム1のCSブロック2、PSブロック3及びIFブロック5のそれぞれの下面には、図2及び図3に示すように、各ブロックをクリーンルームの床面に支持する脚部80が設けられている。脚部80は、いわゆるアジャスタフットであり、その高さが調整自在に構成されている。 Further, on the lower surface of each of the CS block 2, PS block 3 and IF block 5 of the coating and developing treatment system 1, as shown in FIGS. 2 and 3, a leg 80 for supporting each block on the floor of the clean room It is provided. The leg 80 is a so-called adjuster foot, and its height is configured to be adjustable.
 制御部6は、例えばコンピュータであり、プログラム格納部(図示せず)を有している。プログラム格納部には、上述の各種処理装置や搬送装置などの駆動系の動作を制御して、塗布現像処理システム1におけるウェハWの処理を制御するプログラムが格納されている。なお、前記プログラムは、例えばコンピュータ読み取り可能なハードディスク(HD)、フレキシブルディスク(FD)、コンパクトディスク(CD)、マグネットオプティカルデスク(MO)、メモリーカードなどのコンピュータに読み取り可能な記憶媒体Hに記録されていたものであって、その記憶媒体Hから制御部6にインストールされたものであってもよい。 The control unit 6 is, for example, a computer and has a program storage unit (not shown). The program storage unit stores a program for controlling the processing of the wafer W in the coating and developing treatment system 1 by controlling the operation of the driving system such as the above-described various processing apparatuses and transport apparatuses. The program is recorded in a computer readable storage medium H such as a computer readable hard disk (HD), a flexible disk (FD), a compact disk (CD), a magnet optical desk (MO), and a memory card. And may be installed in the control unit 6 from the storage medium H.
 次に、塗布現像処理システム1を用いたウェハ処理について説明する。 Next, wafer processing using the coating and developing treatment system 1 will be described.
 塗布現像処理システム1を用いたウェハ処理では、先ず、ウェハ搬送装置21によって、カセット載置台12上のカセットCからウェハWが取り出され、PSブロック3の受け渡し装置50に搬送される。 In the wafer processing using the coating and developing processing system 1, first, the wafer W is taken out of the cassette C on the cassette mounting table 12 by the wafer transfer device 21 and transferred to the delivery device 50 of the PS block 3.
 次にウェハWは、ウェハ搬送装置70によってブロックG2の熱処理装置40に搬送され温度調節処理される。その後、ウェハWは、ブロックG1のレジスト塗布装置31に搬送され、ウェハW上にレジスト膜が形成される。その後ウェハWは、熱処理装置40に搬送され、プリベーク処理(PAB:Pre-Applied Bake)される。なお、プリベーク処理や後段のPEB処理、ポストベーク処理では、同様な熱処理が行われる。ただし、各熱処理に供される熱処理装置40は互いに異なる。 Next, the wafer W is transferred by the wafer transfer apparatus 70 to the heat treatment apparatus 40 of the block G2 and subjected to temperature adjustment processing. Thereafter, the wafer W is transferred to the resist coating unit 31 of the block G1, and a resist film is formed on the wafer W. Thereafter, the wafer W is transferred to the heat treatment apparatus 40 and subjected to a pre-baking process (PAB: Pre-Applied Bake). The same heat treatment is performed in the pre-baking process, the PEB process in the latter stage, and the post-baking process. However, the heat processing apparatus 40 provided for each heat processing is mutually different.
 その後、ウェハWは、周辺露光装置41に搬送され、周辺露光処理される。
 次にウェハWは、露光装置4に搬送され、所定のパターンで露光処理される。
Thereafter, the wafer W is transferred to the peripheral exposure device 41 and subjected to peripheral exposure processing.
Next, the wafer W is transferred to the exposure device 4 and exposed in a predetermined pattern.
 次にウェハWは、熱処理装置40に搬送され、PEB処理される。その後ウェハWは、たとえば現像処理装置30に搬送されて現像処理される。現像処理終了後、ウェハWは、熱処理装置40に搬送され、ポストベーク処理される。そして、ウェハWは、欠陥検査装置61に搬送され、ウェハWの欠陥検査が行われる。欠陥検査では、傷、異物の付着があるかどうか等の検査が行われる。その後、ウェハWは載置板13のカセットCに搬送され、一連のフォトリソグラフィー工程が完了する。 Next, the wafer W is transferred to the heat treatment apparatus 40 and subjected to PEB processing. Thereafter, wafer W is transferred, for example, to development processing device 30 and developed. After the development processing, the wafer W is transferred to the heat treatment apparatus 40 and subjected to post-baking processing. Then, the wafer W is transferred to the defect inspection apparatus 61 and defect inspection of the wafer W is performed. In the defect inspection, it is inspected whether or not there is a scratch or foreign matter attached. Thereafter, the wafer W is transferred to the cassette C of the mounting plate 13 to complete a series of photolithography steps.
(第1実施形態)
 次に、本発明の第1実施形態にかかる設置システムについて説明する。当該設置システムは、塗布現像処理システムの設置方法に用いられるものである。
 図4は、第1実施形態にかかる設置システム100の構成の概略を示す説明図である。
 設置システム100は、塗布現像処理システム1の設置方法に用いられるものであり、例えば、所定の位置に設置された本発明にかかる「第1のブロック」としてのCSブロック2を基準とした目標位置に、「第2のブロック」としてのPSブロック3を設置することができる。この設置システム100は、撮像装置200と、測距装置210と、複数の水準計測器220と、複数の移動装置300と、制御装置400とを備える。
First Embodiment
Next, the installation system according to the first embodiment of the present invention will be described. The installation system is used for an installation method of a coating and developing treatment system.
FIG. 4 is an explanatory view showing an outline of the configuration of the installation system 100 according to the first embodiment.
The installation system 100 is used for the installation method of the coating and developing treatment system 1 and, for example, a target position based on the CS block 2 as a “first block” according to the present invention installed at a predetermined position. In addition, it is possible to install the PS block 3 as a "second block". The installation system 100 includes an imaging device 200, a distance measuring device 210, a plurality of level measuring devices 220, a plurality of moving devices 300, and a control device 400.
 撮像装置200は、CSブロック2のPSブロック3側の面すなわち背面2aに形成された不図示のターゲットマークを撮像するものであり、例えばCMOS(Complementary Metal Oxide Semiconductor)センサを用いた画像処理用カメラから構成され、PSブロック3の所定の位置に取り付けられる。撮像装置200の撮像結果は、X方向及びZ方向にかかる上記目標位置に対するPSブロック3の位置の情報の取得に用いられる。言い換えると、撮像装置200は、目標位置に対するPSブロック3のX方向位置の情報を取得するための装置であるX方向位置情報取得用装置であると共に、目標位置に対するPSブロック3のZ方向位置の情報を取得するための装置であるZ方向位置情報取得用装置である。
 この撮像装置200に撮像されるターゲットマークは例えば、真円であり、PSブロック3が目標位置に配置されている場合に、撮像装置200の光軸と当該ターゲットマークの中心が一致する位置に形成されている。
The imaging device 200 images a target mark (not shown) formed on the surface of the CS block 2 on the PS block 3 side, that is, the back surface 2a, and for example, a camera for image processing using a complementary metal oxide semiconductor (CMOS) sensor. And attached to a predetermined position of the PS block 3. The imaging result of the imaging device 200 is used to acquire information on the position of the PS block 3 with respect to the target position in the X and Z directions. In other words, the imaging device 200 is a device for acquiring X-direction position information, which is a device for acquiring information on the X-direction position of the PS block 3 with respect to the target position, and It is an apparatus for Z direction position information acquisition which is an apparatus for acquiring information.
The target mark imaged by the imaging device 200 is, for example, a perfect circle, and is formed at a position where the optical axis of the imaging device 200 coincides with the center of the target mark when the PS block 3 is disposed at the target position. It is done.
 測距装置210は、PSブロック3からCSブロック2までの距離、具体的には、PSブロック3のCSブロック2側の面すなわち前面3aからCSブロック2の背面2aまでの距離を測定するものであり、例えば三角測距センサから構成され、PSブロック3の所定の位置に取り付けられる。測距装置210による測定結果は、目標位置に対するPSブロック3のY方向位置の情報の取得に用いられる。言い換えると、測距装置210は、目標位置に対するPSブロック3のY方向位置の情報を取得するための装置であるY方向位置情報取得用装置である。なお、測距装置210は、CSブロック2に取り付けられてもよく、また、複数設けられて、測距結果の平均値を利用するようにしてもよい。 The distance measuring device 210 measures the distance from the PS block 3 to the CS block 2, specifically, the distance from the surface of the PS block 3 on the CS block 2 side, ie, the front surface 3a to the back surface 2a of the CS block 2. For example, it comprises a triangular distance measuring sensor and is attached to a predetermined position of the PS block 3. The measurement result by the distance measuring device 210 is used to obtain information of the Y direction position of the PS block 3 with respect to the target position. In other words, the distance measuring device 210 is a device for acquiring Y direction position information which is a device for acquiring information of the Y direction position of the PS block 3 with respect to the target position. Note that the distance measuring device 210 may be attached to the CS block 2 or a plurality of distance measuring devices 210 may be provided to use the average value of the distance measurement results.
 水準計測器220は、PSブロック3の所定の測定位置P1A~P1Dの水準すなわち傾きを測定するものであり、例えば加速度センサにより構成され、上記測定位置P1A~P1Dに所定の向きで取り付けられる。測定位置P1Aは、PSブロック3のX方向正側且つY方向負側の位置であり、測定位置P1Bは、PSブロック3のX方向正側且つY方向正側の位置であり、測定位置P1Cは、PSブロック3のX方向負側且つY方向負側の位置であり、測定位置P1Dは、PSブロック3のX方向負側かつY方向正側の位置である。以下では、測定位置P1A~P1Dに載置される水準計測器220をそれぞれ水準計測器220A~220Dとする。 The level measuring instrument 220 measures the level of the predetermined measurement position P1A to P1D of the PS block 3, that is, an inclination sensor, and is attached to the measurement position P1A to P1D in a predetermined direction. The measurement position P1A is a position on the X direction positive side and the Y direction negative side of the PS block 3, the measurement position P1B is a position on the X direction positive side and the Y direction positive side of the PS block 3, and the measurement position P1C is The measurement position P1D is a position on the X direction negative side and the Y direction positive side of the PS block 3 at the X direction negative side and the Y direction negative side of the PS block 3. Hereinafter, the level measuring devices 220 placed at the measurement positions P1A to P1D will be referred to as level measuring devices 220A to 220D, respectively.
 移動装置300は、PSブロック3を移動させるものであり、PSブロック3の所定の取付位置P2A~P2Dに所定の向きで取り付けられる。取付位置P2Aは、PSブロック3のX方向正側端且つY方向負側の位置であり、取付位置P2Bは、PSブロック3のX方向正側端且つY方向正側の位置であり、取付位置P2Cは、PSブロック3のX方向負側端且つY方向負側の位置であり、取付位置P2Dは、PSブロック3のX方向負側端かつY方向正側の位置である。以下では、取付位置P2A~P2Dに載置される移動装置300をそれぞれ移動装置300A~300Dとする。 The moving device 300 is for moving the PS block 3 and is attached to the predetermined attachment positions P2A to P2D of the PS block 3 in a predetermined direction. The mounting position P2A is a position on the X direction positive side end of the PS block 3 and the Y direction negative side, and the mounting position P2B is a position on the X direction positive side end and the Y direction positive side of the PS block 3 P2C is a position at the X direction negative side end and PS direction negative side of the PS block 3, and the mounting position P2D is a position at the X direction negative side end and Y direction positive side of the PS block 3. Hereinafter, the moving devices 300 placed at the attachment positions P2A to P2D will be referred to as moving devices 300A to 300D, respectively.
 なお、移動装置300及び水準計測器220の数は4つに限られず、取付位置によっては3つであってもよい。また、移動装置300の数と水準計測器220の数は互いに異なってもよい。 The number of moving devices 300 and the number of level measuring instruments 220 is not limited to four, and may be three depending on the mounting position. Also, the number of mobile devices 300 and the number of level meters 220 may be different from each other.
 図5は、移動装置300Aの構成の概略を示す側面図である。
 移動装置300Aは、図5に示すように、PSブロック3の底面に当接し当該PSブロック3を支持する支持部310を有する。また、移動装置300Aは、支持部310をX方向、Y方向及びZ方向に移動させるXYZステージ320を有する。
FIG. 5 is a side view showing an outline of the configuration of the moving device 300A.
As shown in FIG. 5, the moving device 300 </ b> A has a support portion 310 that abuts on the bottom surface of the PS block 3 and supports the PS block 3. In addition, the moving device 300A has an XYZ stage 320 that moves the support portion 310 in the X direction, the Y direction, and the Z direction.
 XYZステージ320は、例えば、支持部310が支持され該支持部310をZ方向に移動させるZ方向駆動装置321と、Z方向駆動装置321を支持しX方向及びY方向に移動することにより支持部310をX方向及びY方向に移動させるXYステージ322と、を有する。XYステージ322は、不図示のXY方向駆動装置によりX方向及びY方向に移動することができる。なお、本例では、Z方向駆動装置321及びXY方向駆動装置の駆動方式は、ボールねじを含む電動式のリニアアクチュエータを用いた方式であるものとするが、油圧シリンダを用いた方式のもの等、他の方式であってもよい。
 また、本例では、XYステージ322が、支持部310を支持するZ方向駆動装置321を支持しているが、XYステージ322が支持部310を支持するように構成し、該XYステージ322をZ方向駆動装置321で支持するようにしてもよい。
The XYZ stage 320 supports, for example, a Z direction drive device 321 for supporting the support portion 310 and moving the support portion 310 in the Z direction, and a support portion by supporting the Z direction drive device 321 and moving in the X direction and Y direction. And an XY stage 322 for moving the lens 310 in the X and Y directions. The XY stage 322 can be moved in the X direction and the Y direction by an XY direction driving device (not shown). In this example, the drive method of the Z direction drive device 321 and the XY direction drive device is a method using an electric linear actuator including a ball screw, but a method using a hydraulic cylinder, etc. Other methods may be used.
Moreover, in this example, although the XY stage 322 supports the Z direction drive device 321 which supports the support part 310, it is comprised so that the XY stage 322 may support the support part 310, This XY stage 322 is Z It may be supported by the directional drive device 321.
 移動装置300AはさらにXYZステージ320をクリーンルームの床面Fに支持するベース330を有する。
 さらにまた、移動装置300Aは、当該移動装置300Aを作業者が移動させるときに把持する把持部340と、作業者による当該移動装置300Aの移動を容易にするための不図示の車輪とを有する。
The transfer apparatus 300A further has a base 330 for supporting the XYZ stage 320 on the floor F of the clean room.
Furthermore, the moving device 300A has a gripping portion 340 that holds the moving device 300A when the operator moves it, and a wheel (not shown) for facilitating the movement of the moving device 300A by the worker.
 移動装置300B~300Dは、移動装置300Aは同様に構成されている。ただし、移動装置300A、300Bは、PSブロック3の所定の位置P2A、P2Bに所定の向きで取り付けられた状態においてX方向正側の位置に把持部340を有するが、移動装置300C、300Dは、PSブロック3の所定の位置P2C、P2Dに所定の向きで取り付けられた状態においてX方向負側の位置に把持部340を有する。 The mobile devices 300B to 300D are configured similarly to the mobile device 300A. However, although the moving device 300A, 300B has the gripping portion 340 at the position on the positive side in the X direction in a state where it is attached to the predetermined position P2A, P2B of the PS block 3 in the predetermined direction, the moving device 300C, 300D A grip portion 340 is provided at a position on the negative side in the X direction in a state where the PS block 3 is attached to a predetermined position P2C, P2D in a predetermined direction.
 図4の説明に戻る。
 制御装置400は、撮像装置200、測距装置210、水準計測器220A~220D及び移動装置300A~300Dを制御するものであり、撮像装置200、測距装置210、水準計測器220A~220D及び移動装置300A~300Dと通信可能に接続されている。該通信には、例えば無線LANやBluetooth(登録商標)通信といった、公知の無線通信技術が用いられる。
It returns to the explanation of FIG.
The control device 400 controls the imaging device 200, the distance measuring device 210, the level measuring devices 220A to 220D, and the moving devices 300A to 300D, and the imaging device 200, the distance measuring device 210, the level measuring devices 220A to 220D, and the movement. The devices 300A to 300D are communicably connected. For the communication, a known wireless communication technology such as wireless LAN or Bluetooth (registered trademark) communication is used.
 制御装置400は、例えばパーソナルコンピュータで構成され、制御部410と表示部420と操作部430とを有する。
 制御部410は、CPU(Central Processing Unit)などで構成され、制御装置400全体を制御する。
 表示部420は、例えば、液晶ディスプレイ、有機ELディスプレイ等の平板型画像表示パネルで構成される。表示部420にはタッチパネルが設けられていてもよい。
 操作部430は、ボタンや、方向キー、表示部420に設けられるタッチパネル、または、これらの組合せにより構成される。
The control device 400 is configured of, for example, a personal computer, and includes a control unit 410, a display unit 420, and an operation unit 430.
The control unit 410 is configured by a CPU (Central Processing Unit) or the like, and controls the entire control device 400.
The display unit 420 is configured of, for example, a flat panel image display panel such as a liquid crystal display or an organic EL display. The display unit 420 may be provided with a touch panel.
The operation unit 430 is configured of a button, a direction key, a touch panel provided on the display unit 420, or a combination thereof.
 次に、設置システム100を用いた塗布現像処理システム1の設置方法について説明する。図6は、かかる設置方法の主な工程の例を示すフローチャートである。図8、図10及び図12は、かかる設置方法による塗布現像処理システム1の設置の際に表示部420に表示される画面の一例を示す図である。図7、図9及び図11はそれぞれ、かかる設置方法における後述の面内位置調整工程、高さ調整工程、傾き調整工程の例を示すフローチャートである。 Next, the installation method of the coating and developing treatment system 1 using the installation system 100 will be described. FIG. 6 is a flowchart showing an example of main steps of the installation method. FIGS. 8, 10 and 12 are diagrams showing an example of a screen displayed on the display unit 420 when the coating and developing processing system 1 is installed according to the installation method. FIGS. 7, 9 and 11 are flowcharts showing examples of the in-plane position adjustment process, height adjustment process, and inclination adjustment process described later in the installation method.
 まず、CSブロック2をクリーンルームの床面F上の所定の位置に所定の向きで設置すると共にCSブロック2の傾きを調整する(ステップS1)。 First, the CS block 2 is installed at a predetermined position on the floor surface F of the clean room in a predetermined direction, and the inclination of the CS block 2 is adjusted (step S1).
 次に、所定の位置に設置されたCSブロック2を基準とした目標位置から所定の距離内にある、床面F上の所定の領域に、複数の作業者によって手作業でPSブロック3を搬送する(ステップS2)。上記所定の距離とは、移動装置300A~300DのXYステージ322により移動可能な距離であり、例えば10~30mmである。なお、以降の処理は作業者による作業が必要であっても一人の作業者で行うことができる。 Next, the PS block 3 is manually transported by a plurality of workers to a predetermined area on the floor F within a predetermined distance from a target position based on the CS block 2 installed at a predetermined position. (Step S2). The predetermined distance is a distance that can be moved by the XY stage 322 of the moving devices 300A to 300D, and is, for example, 10 to 30 mm. The subsequent processing can be performed by one worker even if the work by the worker is necessary.
 ステップS2の後、作業者が撮像装置200及び測距装置210を所定の位置に取り付ける(ステップS3)。 After step S2, the worker mounts the imaging device 200 and the distance measuring device 210 at predetermined positions (step S3).
 次に、作業者が、PSブロック3に複数の移動装置300を取り付ける(ステップS4)。具体的には、作業者が、PSブロック3の所定の位置P2A~P2Dにそれぞれ、移動装置300A~300Dを取り付ける。取り付けの際は、例えば、移動装置300A~300Dの支持部310を最も下げた状態で移動装置300A~300Dを移動させ、当該支持部310をPSブロック3の下に差し込む。次いで、作業者が、支持部310を上昇させ、移動装置300A~300DでPSブロック3を支持する。支持部310の上昇は、例えば、制御装置400の操作部430を介して行うことができる。その後、作業者が、脚部80の高さを縮め、PSブロック3の位置及び傾きの調整時に、該脚部80が床面Fと干渉しないようにする。 Next, the worker attaches the plurality of moving devices 300 to the PS block 3 (step S4). Specifically, the worker attaches the moving devices 300A to 300D to the predetermined positions P2A to P2D of the PS block 3, respectively. At the time of attachment, for example, the moving devices 300A to 300D are moved with the support portion 310 of the moving devices 300A to 300D lowered most, and the support portion 310 is inserted under the PS block 3. Next, the worker raises the support portion 310 and supports the PS block 3 by the moving devices 300A to 300D. The raising of the support portion 310 can be performed, for example, via the operation portion 430 of the control device 400. Thereafter, the operator reduces the height of the leg 80 so that the leg 80 does not interfere with the floor surface F when adjusting the position and inclination of the PS block 3.
 ステップS4後、作業者が、PSブロック3に複数の水準計測器220を取り付ける(ステップS5)。具体的には、作業者が、PSブロック3の所定の測定位置P1A~P1Dにそれぞれ、水準計測器220A~220Dを取り付ける(ステップS5)。
 ステップS3の工程、ステップS4の工程及びステップS5の工程を行う順番は任意である。
After step S4, the worker attaches the plurality of level measuring instruments 220 to the PS block 3 (step S5). Specifically, the worker attaches the level measuring instruments 220A to 220D to the predetermined measurement positions P1A to P1D of the PS block 3 (step S5).
The order of performing the process of step S3, the process of step S4, and the process of step S5 is arbitrary.
 そして、制御装置400が、撮像装置200の撮像結果及び測距装置210の測距結果を用いて、目標位置に対するPSブロック3の水平面内での位置の情報を算出し、当該情報に基づいて、複数の移動装置300A~300Dの支持部310を同期させて移動させ、水平面内におけるPSブロック3の位置を調整する(ステップS6)。 Then, using the imaging result of the imaging device 200 and the distance measurement result of the distance measuring device 210, the control device 400 calculates information on the position of the PS block 3 in the horizontal plane with respect to the target position. The supports 310 of the plurality of moving devices 300A to 300D are moved in synchronization, and the position of the PS block 3 in the horizontal plane is adjusted (step S6).
 ステップS6の水平面内位置調整工程では、図7に示すように、制御装置400が、目標位置に対するPSブロック3の水平面内での位置の情報、すなわち、目標位置に対するPSブロック3のX方向位置及びY方向位置の情報を取得する(ステップS61)。目標位置に対するPSブロック3のY方向位置は、測距装置210の測距結果に基づいて算出することができ、具体的には、上記測距結果と、上記目標位置のY座標値(例えば5mm)とから、算出することができる。また、目標位置に対するPSブロック3のX方向位置は、測距装置210の測距結果と、撮像装置200の撮像結果とに基づいて算出することができ、具体的には、上記測距結果と、撮像装置200により得られた撮像画像におけるターゲットマークの当該撮像画像の中心からのX方向にかかるズレ量と、に基づいて算出することができる。 In the in-horizontal-plane position adjustment process of step S6, as shown in FIG. 7, the control device 400 determines positional information of the PS block 3 in the horizontal plane with respect to the target position, ie, the X direction position of the PS block 3 with respect to the target position Information on the Y direction position is acquired (step S61). The Y direction position of the PS block 3 with respect to the target position can be calculated based on the distance measurement result of the distance measuring device 210. Specifically, the distance measurement result and the Y coordinate value of the target position (for example, 5 mm) And can be calculated. Further, the X-direction position of the PS block 3 with respect to the target position can be calculated based on the distance measurement result of the distance measuring device 210 and the imaging result of the imaging device 200. Specifically, with the above distance measurement result It can be calculated based on the amount of displacement of the target mark in the captured image obtained by the imaging device 200 from the center of the captured image in the X direction.
 次に、制御装置400が、目標位置に対するPSブロック3の水平面内での位置の情報に基づいて、例えば、図8に示すような画面I1を表示部420に表示させる(ステップS62)。この画面I1は、目標位置に対するPSブロック3の水平面内での現在位置、すなわち、目標位置に対するPSブロック3のX方向現在位置、及び、目標位置に対するPSブロック3のY方向現在位置を示している。作業者は、本例の画面I1から、水平面内においてPSブロック3を目標位置に位置させるには、Y方向正側すなわちCSブロック2に近づく方向にPSブロック3を動かし、X方向正側にPSブロック3を動かす必要があることを知ることができる。 Next, the control device 400 causes the display unit 420 to display, for example, a screen I1 as shown in FIG. 8 based on the information on the position of the PS block 3 in the horizontal plane with respect to the target position (step S62). The screen I1 indicates the current position of the PS block 3 in the horizontal plane with respect to the target position, that is, the X direction current position of the PS block 3 with respect to the target position, and the Y direction current position of the PS block 3 with respect to the target position. . In order to position the PS block 3 at the target position in the horizontal plane from the screen I1 of this example, the operator moves the PS block 3 in the direction toward the Y direction positive side, that is, the direction approaching the CS block 2 We know that we need to move block 3.
 作業者は、画面I1に基づいて、水平面内においてPSブロック3が目標位置に位置するか判断する(ステップS63)。目標位置に位置する場合(YESの場合)、作業者が不図示の終了ボタンを押下操作すること等により、水平面内位置調整工程が終了する。一方、目標位置に位置しない場合(NOの場合)、作業者は、画面I1に基づいて、X方向負方向、X方向正方向、Y方向負方向及びY方向正方向のうち、PSブロック3を移動させる方向を選択し、対応するボタンを押下操作する(ステップS64)。次いで、制御装置400が、押下操作に応じて、XYステージ322により移動装置300A~300Dの支持部310を同期させて移動させ、選択された方向にPSブロック3を所定距離移動させる(ステップS65)。1回のボタンの押下操作に応じて移動させる距離すなわち上記所定距離は予め不図示の記憶部に記憶されている。 The operator determines whether the PS block 3 is located at the target position in the horizontal plane based on the screen I1 (step S63). When the operator is positioned at the target position (in the case of YES), the operator adjusts the position in the horizontal plane, for example, by pressing the end button (not shown). On the other hand, when not positioned at the target position (in the case of NO), the operator selects PS block 3 among the X direction negative direction, the X direction positive direction, the Y direction negative direction and the Y direction positive direction based on the screen I1. The direction to move is selected, and the corresponding button is pressed (step S64). Next, in response to the pressing operation, the control device 400 synchronizes and moves the support portions 310 of the moving devices 300A to 300D by the XY stage 322, and moves the PS block 3 in the selected direction by a predetermined distance (step S65). . The distance to be moved according to the pressing operation of the button once, that is, the predetermined distance is stored in advance in a storage unit (not shown).
 その後、再度ステップS61以降のステップが実行される。そして、ステップS63で、水平面内においてPSブロック3が目標位置に位置すると判断されると、水平面内位置調整工程が終了する。 Thereafter, the steps after step S61 are performed again. When it is determined in step S63 that the PS block 3 is positioned at the target position in the horizontal plane, the horizontal plane position adjustment process is completed.
 ステップS6の水平面内位置調整工程後、制御装置400が、撮像装置200の撮像結果及び測距装置210の測距結果を用いて、目標位置に対するPSブロック3の高さ方向(本例では鉛直方向)の位置の情報を算出し、当該情報に基づいて、複数の移動装置300A~300Dの支持部310を同期させて移動させ、高さ方向にかかるPSブロック3の位置を調整する(ステップS7)。 After the horizontal position adjustment step in step S6, the control device 400 uses the imaging result of the imaging device 200 and the distance measurement result of the distance measuring device 210 to determine the height direction of the PS block 3 with respect to the target position (vertical direction in this example) The information on the position of) is calculated, and based on the information, the support portions 310 of the plurality of moving devices 300A to 300D are moved synchronously and the position of the PS block 3 is adjusted in the height direction (step S7) .
 ステップS7の高さ調整工程では、図9に示すように、目標位置に対するPSブロック3の高さ方向の位置の情報、すなわち、目標位置に対するPSブロック3のZ方向位置の情報を取得する(ステップS71)。目標位置に対するPSブロック3のZ方向位置は、測距装置210の測距結果と、撮像装置200の撮像結果とに基づいて算出することができ、具体的には、上記測距結果と、撮像装置200により得られた撮像画像におけるターゲットマークの当該撮像画像の中心からのZ方向にかかるズレ量とに基づいて算出することができる。 In the height adjustment step of step S7, as shown in FIG. 9, information of the position of the PS block 3 in the height direction with respect to the target position, ie, information of the Z direction position of the PS block 3 with respect to the target position S71). The Z direction position of the PS block 3 with respect to the target position can be calculated based on the distance measurement result of the distance measuring device 210 and the imaging result of the imaging device 200. Specifically, the above distance measurement result and imaging It can be calculated based on the amount of deviation of the target mark in the captured image obtained by the device 200 from the center of the captured image in the Z direction.
 次に、制御装置400が、目標位置に対するPSブロック3のZ方向位置の情報に基づいて、例えば、図10に示すような画面I2を表示部420に表示させる(ステップS72)。この画面I2は、目標位置すなわち目標高さに対するPSブロック3のZ方向現在位置すなわち現在高さを示している。作業者は、本例の画面I2から、高さ方向においてPSブロック3を目標位置に位置させるには、Z方向正側にPSブロック3を動かす必要があることを知ることができる。 Next, the control device 400 causes the display unit 420 to display a screen I2 as shown in FIG. 10, for example, based on the information of the Z direction position of the PS block 3 with respect to the target position (step S72). This screen I2 shows the Z position current position or current height of the PS block 3 with respect to the target position or target height. The operator can know from the screen I2 of this example that it is necessary to move the PS block 3 to the positive side in the Z direction in order to position the PS block 3 at the target position in the height direction.
 作業者は、画面I2に基づいて、高さ方向においてPSブロック3が目標位置に位置するか判断する(ステップS73)。目標位置に位置する場合(YESの場合)、作業者が不図示の終了ボタンを押下操作すること等により、高さ調整工程が終了する。一方、目標位置に位置しない場合(NOの場合)、作業者は、画面I2に基づいて、Z方向負方向及びZ方向正方向のうち、PSブロック3を動かす方向を選択し、対応するボタンを押下操作する(ステップS74)。次いで、制御装置400が、押下操作に応じて、Z方向駆動機構により移動装置300A~300Dの支持部310を同期させて移動させ、選択された方向にPSブロック3を所定距離移動させる(ステップS75)。1回のボタンの押下操作に応じて移動させる距離すなわち上記所定距離は予め不図示の記憶部に記憶されている。 The operator determines whether the PS block 3 is located at the target position in the height direction based on the screen I2 (step S73). When the operator is positioned at the target position (in the case of YES), the height adjustment process is ended by the operator pressing the end button (not shown) or the like. On the other hand, when not positioned at the target position (in the case of NO), the operator selects the direction to move the PS block 3 out of the negative Z direction and the positive Z direction based on the screen I2 and selects the corresponding button A pressing operation is performed (step S74). Next, in response to the pressing operation, the control device 400 causes the Z-direction drive mechanism to synchronously move the support portions 310 of the moving devices 300A to 300D, and moves the PS block 3 in the selected direction by a predetermined distance (step S75). ). The distance to be moved according to the pressing operation of the button once, that is, the predetermined distance is stored in advance in a storage unit (not shown).
 その後、再度ステップS71以降のステップが実行される。そして、ステップS73で、高さ方向においてPSブロック3が目標位置に位置すると判断されると、高さ調整工程が終了する。 Thereafter, the steps after step S71 are executed again. When it is determined in step S73 that the PS block 3 is located at the target position in the height direction, the height adjustment process is completed.
 ステップS7の高さ調整工程後、制御装置400が、水準計測器220A~220Dでの計測結果に基づいて、移動装置300A~300Dの支持部310を個別に移動させ、PSブロック3の傾きを調整する(ステップS8)。 After the height adjustment step of step S7, the control device 400 moves the support portions 310 of the moving devices 300A to 300D individually based on the measurement results of the level measuring instruments 220A to 220D, and adjusts the inclination of the PS block 3 (Step S8).
 ステップS8の傾き調整工程では、図11に示すように、PSブロック3の各測定位置P1A~P1Dにおける傾きの情報を、各測定位置P1A~P1Dに取り付けられた水準計測器220A~220Dから取得する(ステップS81)。 In the inclination adjustment step of step S8, as shown in FIG. 11, information on the inclination at each measurement position P1A to P1D of the PS block 3 is acquired from the level measuring instruments 220A to 220D attached to each measurement position P1A to P1D. (Step S81).
 次に、制御装置400が、PSブロック3の各測定位置P1A~P1Dにおける傾きの情報に基づいて、例えば、図12に示すような画面I3を表示部420に表示させる(ステップS82)。この画面I3は、各測定位置P1A~P1Dにおける傾きの度合いを色で示すものであり、例えば、傾きが許容範囲内である測定位置を青色(図では白色)で示し、傾きが許容範囲外であるが所定の範囲内である測定位置を黄色(図では淡い灰色)で示し、傾きが許容囲外であり且つ所定の範囲外である測定位置を赤色(図では濃い灰色)で示す。作業者は、本例の画面I3から、測定位置P1A及びP1Bについて傾きを調整する必要があることを知ることができる。 Next, based on the information on the inclination at each measurement position P1A to P1D of the PS block 3, for example, the control device 400 causes the display unit 420 to display a screen I3 as shown in FIG. 12 (step S82). This screen I3 indicates the degree of inclination at each measurement position P1A to P1D by color, and for example, indicates the measurement position whose inclination is within the allowable range in blue (white in the figure), and the inclination is outside the allowable range The measurement position which is within a predetermined range is indicated by yellow (light gray in the figure), and the measurement position whose inclination is outside the allowable range and outside the predetermined range is indicated by red (dark gray in the figure). The operator can know from the screen I3 of this example that it is necessary to adjust the inclination of the measurement positions P1A and P1B.
 作業者は、画面I3に基づいて、全ての測定位置P1A~P1Dの傾きが許容範囲内に収まっているか判断する(ステップS83)。全て許容範囲内に収まっている場合(YESの場合)、作業者が不図示の終了ボタンを押下操作すること等により、傾き調整工程が終了する。一方、許容範囲内に収まっていないものがある場合(NOの場合)、作業者は、画面I3に基づいて、いずれの測定位置P1A~P1Dについて傾きを調整するか選択し、対応するボタンを押下操作する(ステップS84)。 The operator determines whether the inclinations of all the measurement positions P1A to P1D fall within the allowable range based on the screen I3 (step S83). If all are within the allowable range (in the case of YES), the operator adjusts the tilt adjustment process by pressing the end button (not shown) or the like. On the other hand, if there is one that does not fall within the allowable range (in the case of NO), the operator selects which of the measurement positions P1A to P1D should be adjusted based on the screen I3 and presses the corresponding button The operation is performed (step S84).
 次いで、制御装置400が、上記押下操作に応じて、作業者により選択された測定位置P1の傾きを調整するのに必要な移動装置300と、上記選択された測定位置P1の傾きを許容範囲内に収めるために必要な支持部310のZ方向移動量とを対応付けて、表示部420に表示する(ステップS85)。Z方向移動量については、例えば支持部310をZ方向に移動させるためのボタンの押下回数で示される。
 作業者に選択された測定位置P1の傾きの調整に必要な移動装置300の決定方法や、上記傾きを許容範囲内に収めるために必要な支持部310のZ方向移動量の決定方法には、例えば、特開2017-73538号公報に記載のものを用いることができる。
Next, the movement device 300 required to adjust the inclination of the measurement position P1 selected by the operator according to the pressing operation, and the inclination of the selected measurement position P1 within the allowable range. The amount of movement in the Z direction of the support portion 310 required to fit in the space is displayed on the display unit 420 in association with each other (step S85). The amount of movement in the Z direction is indicated by, for example, the number of times the button for moving the support portion 310 in the Z direction is pressed.
The method of determining the moving device 300 necessary to adjust the inclination of the measurement position P1 selected by the operator, and the method of determining the amount of movement of the support portion 310 in the Z direction necessary to keep the inclination within the allowable range For example, those described in JP-A-2017-73538 can be used.
 作業者は、表示部420での表示結果に基づいて、操作部430に対する操作を行い、例えば、表示画面に表示された押し下げ回数分、該当するボタンを押下操作する(ステップS86)。そして、制御装置400は、上記押下操作に応じて、該当する移動装置300の支持部310を、Z方向正方向または負方向に移動させ、PSブロック3の傾きを調整する(ステップS87)。なお、支持部310のZ方向への移動距離は、上記押し下げ回数に対応する距離であり、また、1回の当該押し下げに対応する距離は予め不図示の記憶部に記憶されている。 The operator performs an operation on the operation unit 430 based on the display result on the display unit 420, for example, presses the corresponding button for the number of times of depression displayed on the display screen (step S86). Then, in response to the pressing operation, the control device 400 moves the support portion 310 of the corresponding moving device 300 in the positive or negative direction in the Z direction to adjust the inclination of the PS block 3 (step S87). The movement distance of the support portion 310 in the Z direction is a distance corresponding to the number of depressions, and a distance corresponding to one depression is stored in advance in a storage unit (not shown).
 その後、再度ステップS81以降のステップが実行される。そして、ステップS83で、全ての測定位置P1A~P1Dの傾きが許容範囲内に収まっていると判断されると、傾き調整工程が終了する。 Thereafter, the steps after step S81 are executed again. When it is determined in step S83 that the inclinations of all the measurement positions P1A to P1D are within the allowable range, the inclination adjustment process ends.
 次いで、作業者は、PSブロック3の脚部80をクリーンルームの床面Fまで延ばした後、移動装置300A~300Dの支持部310を下げ、脚部80でPSブロック3をクリーンルームの床面Fに支持させる。そして、移動装置300A~300Dを取り外す(ステップS9)。その後、CSブロック2とPSブロック3とを、ボルトとナット等を用いて固定することにより、PSブロック3の設置が完了する。 Next, the operator extends the leg 80 of the PS block 3 to the floor F of the clean room, and then lowers the support 310 of the moving devices 300A to 300D, and the leg 80 moves the PS block 3 to the floor F of the cleanroom. Support. Then, the moving devices 300A to 300D are removed (step S9). Thereafter, the CS block 2 and the PS block 3 are fixed by using a bolt, a nut or the like to complete the installation of the PS block 3.
 そして、IFブロック5を設置すると共にIFブロック5の傾きを調整する(ステップS10)。こうして、本実施形態の塗布現像処理システムの設置処理が終了する。 Then, the IF block 5 is installed and the inclination of the IF block 5 is adjusted (step S10). Thus, the installation processing of the coating and developing processing system of the present embodiment is completed.
 本実施形態によれば、X方向、Y方向、Z方向にかかるPSブロック3の位置の調整や、PSブロック3の傾きの調整を、PSブロック3を支持する支持部をX方向、Y方向及びZ方向に移動させることが可能な移動装置300を用いて行っているため、塗布現像処理システム1を少人数且つ短時間で設置することができる。 According to the present embodiment, the adjustment of the position of the PS block 3 in the X direction, the Y direction, and the Z direction, and the adjustment of the inclination of the PS block 3 Since the moving device 300 capable of moving in the Z direction is used, the coating and developing treatment system 1 can be installed in a small number of people in a short time.
 また、本実施形態によれば、移動装置300は、着脱自在にPSブロック3に取り付けられるため、他の塗布現像処理システムの設置の際にも用いることができる。
 撮像装置200や測距装置210、水準計測器220についても着脱自在としておくことにより、これらも他の塗布現像処理システムの設置の際にも用いることができる。
 撮像装置200により撮像されるターゲットマークについても着脱自在に形成することにより、他の塗布現像処理システムの設置の際にも用いることができる。
Further, according to the present embodiment, the moving device 300 is detachably attached to the PS block 3 and therefore, can be used also when installing another coating and developing treatment system.
By making the imaging device 200, the distance measuring device 210, and the level measuring instrument 220 detachable, these can also be used when installing other coating and developing treatment systems.
By detachably forming the target mark imaged by the imaging device 200, the target mark can also be used when installing another coating and developing treatment system.
 さらに、本実施形態によれば、PSブロック3の各測定位置P1A~P1Dの傾き度合いを色で示しているため、作業者が、全ての測定位置P1A~P1Dの傾きが許容範囲内に収まっているか否かや、傾きを調整すべき測定位置P1A~P1Dを、直感的に判断することができる。 Furthermore, according to the present embodiment, since the degree of inclination of each measurement position P1A to P1D of the PS block 3 is indicated by color, the operator fits all the inclinations of the measurement positions P1A to P1D within the allowable range. It is possible to intuitively determine whether or not the measurement position P1A to P1D for which the inclination should be adjusted.
(第2実施形態)
 第1実施形態では、水平面内における位置の調整、高さの調整、及び、傾きの調整を、作業者の操作に応じて行っていたが、すなわち、手動で行っていたが、本実施形態ではこれらの調整を自動で行う。
Second Embodiment
In the first embodiment, the adjustment of the position in the horizontal plane, the adjustment of the height, and the adjustment of the inclination are performed according to the operation of the operator. That is, the adjustment is performed manually. Make these adjustments automatically.
 本実施形態にかかる塗布現像処理システム1の設置方法では、例えば、第1の実施形態の設置方法におけるステップS1~S5を行った後、表示部420に表示されている「AUTO」ボタンを作業者が押下操作すると、制御装置400が、PSブロック3の水平面内位置調整や、高さ調整、傾き調整を自動で行う。これらの調整が終了すると、制御装置400は、その旨を作業者に報知するため、例えば、終了したことを示す「FINISH」というメッセージを表示部420に表示する。 In the installation method of the coating and developing treatment system 1 according to the present embodiment, for example, after performing steps S1 to S5 in the installation method of the first embodiment, the operator can use the “AUTO” button displayed on the display unit 420 When the pressing operation is performed, the control device 400 automatically performs the position adjustment in the horizontal surface of the PS block 3, the height adjustment, and the inclination adjustment. When the adjustment is completed, the control device 400 displays, for example, a message “FINISH” indicating that the adjustment has been completed on the display unit 420 in order to notify the operator of the fact.
 本実施形態にかかる設置方法と第1実施形態にかかる設置方法とでは、ステップS6の水平面内位置調整工程、ステップS7の高さ調整工程、ステップS8の傾き調整工程のみが異なるため、これらの工程のみ説明する。図13~図15はそれぞれ、本実施形態にかかる面内位置調整工程、高さ調整工程及び傾き調整工程の例を示すフローチャートである。 The installation method according to the present embodiment differs from the installation method according to the first embodiment only in the position adjustment step in the horizontal plane in step S6, the height adjustment step in step S7, and the inclination adjustment step in step S8. Only explain. 13 to 15 are flowcharts showing examples of the in-plane position adjustment step, the height adjustment step, and the tilt adjustment step according to the present embodiment.
 本実施形態にかかる水平面内位置調整工程では、図13に示すように、目標位置に対するPSブロック3の水平面内での位置の情報、すなわち、目標位置に対するPSブロック3のX方向位置及びY方向位置の情報を取得する(ステップS101)。 In the horizontal position adjustment step according to the present embodiment, as shown in FIG. 13, information of the position of the PS block 3 in the horizontal surface with respect to the target position, that is, the X direction position and Y direction position of the PS block 3 with respect to the target position. Information is acquired (step S101).
 次に、制御装置400は、取得した上記水平面内での位置の情報に基づいて、水平面内においてPSブロック3が目標位置に位置するか判定する(ステップS102)。目標位置に位置する場合(YESの場合)、制御装置400は、水平面内位置調整工程を終了する。一方、目標位置に位置しない場合(NOの場合)、制御装置400は、目標位置に対するPSブロック3の水平面内での位置の情報に基づいて、X方向負方向、X方向正方向、Y方向負方向及びY方向正方向のうち、支持部310を移動させる方向を選択する(ステップS103)。なお、PSブロック3がX方向についてもY方向についても目標位置からずれていた場合は、例えば、目標位置からのずれが最も大きい方向を、支持部310を移動させる方向として選択する。 Next, the control device 400 determines whether the PS block 3 is located at the target position in the horizontal plane based on the acquired information on the acquired position in the horizontal plane (step S102). If it is located at the target position (in the case of YES), the control device 400 ends the horizontal position adjustment process. On the other hand, when not located at the target position (in the case of NO), the controller 400 determines the X direction negative direction, the X direction positive direction, the Y direction negative based on the information of the position of the PS block 3 in the horizontal plane with respect to the target position. The direction in which the support portion 310 is moved is selected among the direction and the Y direction positive direction (step S103). When the PS block 3 deviates from the target position both in the X direction and in the Y direction, for example, the direction in which the deviation from the target position is the largest is selected as the direction in which the support portion 310 is moved.
 そして、制御装置400は、選択された方向におけるPSブロック3の目標位置からのずれ量、すなわち、選択された方向におけるPSブロック3を目標位置に位置させるために必要な支持部310の移動量を算出する(ステップS104)。 Then, the control device 400 determines the amount of deviation of the PS block 3 from the target position in the selected direction, that is, the amount of movement of the support 310 necessary to position the PS block 3 in the selected direction at the target position. It calculates (step S104).
 次に、制御装置400は、選択された支持部310の移動方向及び算出された移動量に基づいて、全ての移動装置300A~300Dの支持部310を水平面内で移動させ、つまり、全ての移動装置300A~300Dの支持部310を、選択された移動方向に、算出された移動量分、移動させる(ステップS105)。 Next, the control device 400 moves the support portions 310 of all the moving devices 300A to 300D in the horizontal plane based on the movement direction of the selected support portion 310 and the calculated movement amount, that is, all movement The support portion 310 of the devices 300A to 300D is moved in the selected movement direction by the calculated movement amount (step S105).
 その後、再度ステップS101以降のステップが実行される。そして、ステップS102で、水平面内においてPSブロック3が目標位置に位置すると判定されると、制御装置400は、水平面内位置調整工程を終了する。 Thereafter, the steps after step S101 are executed again. When it is determined in step S102 that the PS block 3 is positioned at the target position in the horizontal plane, the control device 400 ends the horizontal plane position adjustment process.
 本実施形態にかかる高さ調整工程では、図14に示すように、制御装置400が、目標位置に対するPSブロック3の高さ方向の位置の情報、すなわち、目標位置に対するPSブロック3のZ方向位置の情報を取得する(ステップS111)。 In the height adjustment step according to the present embodiment, as shown in FIG. 14, the control device 400 is information on the position of the PS block 3 in the height direction with respect to the target position, ie, the Z direction position of the PS block 3 with respect to the target position. Information is acquired (step S111).
 次に、制御装置400は、目標位置に対するPSブロック3のZ方向位置の情報に基づいて、高さ方向においてPSブロック3が目標位置に位置するか判定する(ステップS112)。目標位置に位置する場合(YESの場合)、制御装置400は、高さ調整工程を終了する。一方、目標位置に位置しない場合(NOの場合)、制御装置400は、目標位置に対するPSブロック3のZ方向位置の情報に基づいて、Z方向負方向及びZ方向正方向のうち、支持部310を移動させる方向を選択する(ステップS113)。 Next, the control device 400 determines whether the PS block 3 is positioned at the target position in the height direction based on the information of the Z direction position of the PS block 3 with respect to the target position (step S112). If it is located at the target position (in the case of YES), the control device 400 ends the height adjustment process. On the other hand, when not positioned at the target position (in the case of NO), the control device 400 supports the support portion 310 among the Z direction negative direction and the Z direction positive direction based on the information of the Z direction position of the PS block 3 with respect to the target position. The direction to move is selected (step S113).
 そして、制御装置400は、Z方向におけるPSブロック3の目標位置からのずれ量、すなわち、Z方向におけるPSブロック3を目標位置に位置させるために必要な支持部310の移動量を算出する(ステップS114)。 Then, the control device 400 calculates the shift amount of the PS block 3 from the target position in the Z direction, that is, the movement amount of the support portion 310 necessary for positioning the PS block 3 in the Z direction at the target position S114).
 次に、制御装置400は、選択された支持部310の移動方向及び算出された移動量に基づいて、全ての移動装置300A~300Dの支持部310を高さ方向に移動させ、つまり、全ての移動装置300A~300Dの支持部310を、選択された移動方向に、算出された移動量分、移動させる(ステップS115)。 Next, the control device 400 moves the support portions 310 of all the moving devices 300A to 300D in the height direction based on the movement direction of the selected support portion 310 and the calculated movement amount, that is, all The supporting unit 310 of the moving devices 300A to 300D is moved in the selected moving direction by the calculated moving amount (step S115).
 その後、再度ステップS111以降のステップが実行される。そして、ステップS112で、高さ方向においてPSブロック3が目標位置に位置すると判定されると、制御装置400は、高さ調整工程を終了する。 Thereafter, the steps after step S111 are executed again. When it is determined in step S112 that the PS block 3 is located at the target position in the height direction, the control device 400 ends the height adjustment process.
 なお、本実施形態にかかる水平面内位置調整工程及び高さ調整工程において、算出された支持部310の移動量と、実際のPSブロック3の移動量が一致しない場合もある。この場合は、少量ずつ支持部310を移動させ、算出された支持部310の移動量と実際のPSブロック3の移動量との対応関係を算出し、該対応関係の算出結果をフィードバックすること、すなわち、算出された対応関係に基づいて、支持部310の移動量を補正することが好ましい。 In the horizontal position adjustment step and the height adjustment step according to the present embodiment, the calculated movement amount of the support portion 310 may not coincide with the actual movement amount of the PS block 3. In this case, the support 310 is moved little by little, the correspondence between the calculated movement of the support 310 and the actual movement of the PS block 3 is calculated, and the calculation result of the correspondence is fed back. That is, it is preferable to correct the movement amount of the support portion 310 based on the calculated correspondence relationship.
 本実施形態にかかる傾き調整工程では、図15に示すように、制御装置400が、PSブロック3の各測定位置P1A~P1Dにおける傾きの情報を、各測定位置P1A~P1Dに取り付けられた水準計測器220A~220Dから取得する(ステップS121)。 In the tilt adjustment step according to the present embodiment, as shown in FIG. 15, the control device 400 measures the tilt information at each measurement position P1A to P1D of the PS block 3 at the measurement position P1A to P1D. Are obtained from the devices 220A to 220D (step S121).
 次に、制御装置400が、PSブロック3の各測定位置P1A~P1Dにおける傾きの情報に基づいて、全ての測定位置P1A~P1Dの傾きが許容範囲内に収まっているか判断する(ステップS122)。全て許容範囲内に収まっている場合(YESの場合)、制御装置400は、傾き調整工程を終了する。一方、許容範囲内に収まっていないものがある場合(NOの場合)、制御装置400は、PSブロック3の各測定位置P1A~P1Dにおける傾きの情報に基づいて、測定位置P1A~P1Dの中から傾き調整対象を選択する(ステップS123)。例えば、制御装置400は、その傾きが最も許容範囲から外れている測定位置を、傾き調整対象として選択する。 Next, the control device 400 determines whether the inclinations of all the measurement positions P1A to P1D fall within the allowable range based on the information of the inclinations at the respective measurement positions P1A to P1D of the PS block 3 (step S122). If all are within the allowable range (in the case of YES), the control device 400 ends the inclination adjustment process. On the other hand, when there is one that does not fall within the allowable range (in the case of NO), the control device 400 selects one of the measurement positions P1A to P1D based on the information of the inclination at each measurement position P1A to P1D of the PS block 3 An inclination adjustment target is selected (step S123). For example, the control device 400 selects a measurement position whose inclination is most out of the allowable range as an inclination adjustment target.
 次いで、制御装置400は、選択された測定位置P1の傾きを調整するのに必要な移動装置300を決定する(ステップS124)。当該ステップS124で決定された移動装置300の支持部310について、上記選択された測定位置P1の傾きを許容範囲内に収めるために必要な、移動方向及び移動量を決定する(ステップS125)。 Next, the control device 400 determines the moving device 300 necessary to adjust the inclination of the selected measurement position P1 (step S124). For the support portion 310 of the moving device 300 determined in the step S124, the movement direction and the movement amount necessary to keep the inclination of the selected measurement position P1 within the allowable range are determined (step S125).
 次に、制御装置400は、ステップS125で決定された支持部310の移動方向及び移動量に基づいて、ステップS124で決定された移動装置300の支持部310を移動させ、つまり、ステップS124で決定された移動装置300の支持部310を、ステップS125で決定された支持部310の移動方向に、ステップS125で決定された移動量分、移動させる(ステップS126)。 Next, the control device 400 moves the support portion 310 of the moving device 300 determined in step S124 based on the movement direction and the amount of movement of the support portion 310 determined in step S125, that is, determined in step S124. The supporting unit 310 of the moving apparatus 300 is moved in the moving direction of the supporting unit 310 determined in step S125 by the moving amount determined in step S125 (step S126).
 その後、再度ステップS121以降のステップが実行される。そして、ステップS122で、全ての測定位置P1A~P1Dの傾きが許容範囲内に収まっていると判定されると、制御装置400は、傾き調整工程を終了する。 Thereafter, the steps after step S121 are executed again. Then, if it is determined in step S122 that the inclinations of all the measurement positions P1A to P1D are within the allowable range, the control device 400 ends the inclination adjustment process.
 本実施形態によれば、X方向、Y方向、Z方向にかかるPSブロック3の位置の調整や、PSブロック3の傾きの調整を、PSブロック3を支持する支持部をX方向、Y方向及びZ方向に移動させることが可能な移動装置300を用いて自動で行っているため、塗布現像処理システム1を少人数且つ第1実施形態よりもさらに短時間で設置することができる。 According to the present embodiment, the adjustment of the position of the PS block 3 in the X direction, the Y direction, and the Z direction, and the adjustment of the inclination of the PS block 3 Since the process is automatically performed using the moving apparatus 300 capable of moving in the Z direction, the coating and developing treatment system 1 can be installed in a shorter time than a small number of people and the first embodiment.
(第1及び第2実施形態の変形例)
 図16は、PSブロック3の搬送工程の他の例の説明図である。
 前述の例では、PSブロック3の搬送工程では、複数の作業者によって手作業でPSブロック3を搬送していた。しかし、PSブロック3の搬送方法は、この方法に限られず、図16に示すように、複数の搬送装置500を用いて搬送するようにしてもよい。搬送装置500は、上面500aでPSブロック3を支持するものであり、車輪などから成る走行機構(不図示)を有する。搬送装置500は、制御装置400(図4参照)の制御の下、上記走行機構により、PSブロック3が搭載された状態でクリーンルームの床上を移動することが可能なように構成されている。
(Modification of the first and second embodiments)
FIG. 16 is an explanatory view of another example of the transfer process of the PS block 3.
In the above-described example, in the transport process of the PS block 3, the PS block 3 is transported manually by a plurality of workers. However, the transport method of the PS block 3 is not limited to this method, and as shown in FIG. 16, transport may be performed using a plurality of transport devices 500. The transfer device 500 supports the PS block 3 on the upper surface 500a, and has a traveling mechanism (not shown) including wheels and the like. The transfer device 500 is configured to be able to move on the floor of the clean room in a state where the PS block 3 is mounted by the traveling mechanism under the control of the control device 400 (see FIG. 4).
 この搬送装置500を用いる場合、上述のPSブロック3の搬送工程では、まず、複数の搬送装置500上にPSブロック3を搭載する。搭載後、作業者が、制御装置400に対し操作を行い、これにより、PSブロック3が所定の位置に搬送される。 When the transport device 500 is used, the PS block 3 is first mounted on the plurality of transport devices 500 in the transport process of the PS block 3 described above. After mounting, the operator operates the control device 400, whereby the PS block 3 is transported to a predetermined position.
 本例によれば、PSブロック3の搬送時間を短縮することができるため、塗布現像処理システム1の設置に要する時間をさらに短縮することができる。また、搬送工程時の作業者の数を減らすことができる。 According to this example, since the conveyance time of the PS block 3 can be shortened, the time required for installation of the coating and developing treatment system 1 can be further shortened. In addition, the number of workers at the time of the transfer process can be reduced.
 なお、搬送装置500は、その上面500aを昇降させる昇降機構を有することが好ましい。搬送装置500上へのPSブロック3の搭載が少人数でも可能となるからである。
 また、搬送装置500と移動装置300とを一体としてもよい。
In addition, it is preferable that the conveying apparatus 500 has a raising and lowering mechanism which raises and lowers the upper surface 500a. This is because the installation of the PS block 3 on the transfer device 500 is possible even with a small number of people.
Further, the transfer device 500 and the moving device 300 may be integrated.
 以上の説明では、高さ調整と傾き調整とをそれぞれ1回ずつ行っていたが、交互に複数回おこなってもよい。
 また、以上の説明では、水平面内位置調整は、高さ調整と傾き調整の前に行っていたが、高さ調整と傾き調整の後に行ってもよい。
 さらに、以上の説明では、水準計測器の設置の後に、水平面内位置調整や高さ調整を行っていたが、水準計測器の設置は、傾き調整の前であれば、水平面内位置調整や高さ調整の後に行ってもよい。
In the above description, the height adjustment and the inclination adjustment are performed once each, but may be performed alternately several times.
In the above description, the position adjustment in the horizontal plane is performed before the height adjustment and the inclination adjustment, but may be performed after the height adjustment and the inclination adjustment.
Furthermore, in the above description, the horizontal position adjustment and height adjustment were performed after the installation of the level measuring device, but if the level measuring device is installed before the tilt adjustment, the horizontal position adjustment and height adjustment It may be done after the adjustment.
 さらにまた、以上の説明では、測距装置210をPSブロック3の位置情報を取得のために用いていた。しかし、PSブロック3の搬送工程前に、測距装置210を当該PSブロック3の角部に設けておき、搬送時に、測距装置210での測定結果が所定値以下となった時に音などにより報知するようにしてもよい。これにより、PSブロック3の搬送時に当該PSブロック3が壁などに衝突するのを防ぐことができる。特に、一人の作業者が、搬送装置500を用いてPSブロック3を搬送する場合、該作業者の視界は限られているため、搬送時にPSブロック3が衝突することが考えられる。しかし、上述のような構成を採用することにより、一人で搬送する場合でもPSブロック3が壁等に衝突するのを防ぐことができる。 Furthermore, in the above description, the distance measuring device 210 is used for acquiring the position information of the PS block 3. However, the distance measuring device 210 is provided at the corner of the PS block 3 before the transport step of the PS block 3, and when the measurement result by the distance measuring device 210 becomes less than a predetermined value during transportation. You may make it alert | report. As a result, it is possible to prevent the PS block 3 from colliding with a wall or the like when the PS block 3 is transported. In particular, when one worker transports the PS block 3 using the transport device 500, it is conceivable that the PS block 3 collides at the time of transport since the visibility of the worker is limited. However, by adopting the configuration as described above, it is possible to prevent the PS block 3 from colliding with a wall or the like even when transporting it alone.
 なお、CSブロック2やIFブロック5の設置や傾き調整に、本実施形態にかかる設置方法を適用してもよい。
 また、CSブロック2は、前述のようにカセット搬入出部10とウェハ搬送部11に分かれているので、カセット搬入出部10やウェハ搬送部11の設置や傾き調整に本実施形態にかかる設置方法を適用してもよい。
Note that the installation method according to the present embodiment may be applied to the installation and inclination adjustment of the CS block 2 and the IF block 5.
In addition, since the CS block 2 is divided into the cassette loading / unloading unit 10 and the wafer transfer unit 11 as described above, the installation method according to the present embodiment for the installation and inclination adjustment of the cassette loading / unloading unit 10 and the wafer transfer unit 11 May apply.
 以上、本発明の実施形態について説明したが、本発明はかかる例に限定されない。当業者であれば、請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到しうることは明らかであり、それらについても当然に本発明の技術的範囲に属するものと了解される。 As mentioned above, although embodiment of this invention was described, this invention is not limited to this example. It is apparent that those skilled in the art can conceive of various modifications or alterations within the scope of the technical idea described in the claims, and they are naturally also within the technical scope of the present invention. It is understood that it belongs.
 例えば、上記実施の形態では、半導体製造装置を塗布現像処理システムとして説明したが、本発明が適用される半導体製造装置は塗布現像処理システムに限られない。 For example, although the semiconductor manufacturing apparatus has been described as the coating and developing processing system in the above embodiment, the semiconductor manufacturing apparatus to which the present invention is applied is not limited to the coating and developing processing system.
1 塗布現像処理システム
2 カセットステーションブロック(CSブロック)
3 処理ステーションブロック(PSブロック)
4 露光装置
5 インターフェイスステーションブロック(IFブロック)
6 制御部
80 脚部
100 設置システム
200 撮像装置
210 測距装置
220(220A~220D) 水準計測器
300(300A~300D) 移動装置
310 支持部
320 XYZステージ
321 Z方向駆動装置
322 XYステージ
330 ベース
340 把持部
400 制御装置
410 制御部
420 表示部
430 操作部
500 搬送装置
1 Coating and developing processing system 2 Cassette station block (CS block)
3 Processing station block (PS block)
4 Exposure apparatus 5 Interface station block (IF block)
Reference Signs List 6 control unit 80 leg unit 100 installation system 200 imaging device 210 distance measuring device 220 (220A to 220D) level measuring device 300 (300A to 300D) moving device 310 supporting unit 320 XYZ stage 321 Z direction drive device 322 XY stage 330 base 340 Grasping part 400 Control device 410 Control part 420 Display part 430 Operation part 500 Transport device

Claims (13)

  1.  複数のブロックを床面に並べて構成され、被処理基板に対して所定の処理を行う半導体製造装置の設置方法であって、
     第1のブロックを前記床面上の所定の位置に設置する設置工程と、
     前記所定の位置に設置された前記第1のブロックを基準とした目標位置から所定の距離内に位置する、前記床面上の所定の領域に、第2のブロックを搬送する搬送工程と、
     前記第2のブロックの所定箇所を支持する支持部を有し、前記床面と平行な所定の面内で前記支持部を移動させると共に、前記床面と垂直な高さ方向に前記支持部を移動させることが可能な複数の移動装置をそれぞれ前記所定箇所に取り付ける移動装置取付工程と、
     前記所定の面内における前記目標位置に対する前記第2のブロックの位置の情報に基づいて、前記複数の移動装置の前記支持部を同期させて移動させ、前記所定の面内における前記第2のブロックの位置を調整する面内調整工程と、
     前記高さ方向にかかる前記目標位置に対する前記第2のブロックの位置の情報に基づいて、前記複数の移動装置の前記支持部を同期させて移動させ、前記高さ方向にかかる前記第2のブロックの位置を調整する高さ調整工程と、
     前記第2のブロックの傾きの情報に基づいて、前記複数の移動装置の前記支持部を別々に移動させ、前記第2のブロックの傾きを調整する傾き調整工程と、を含む。
    A method of installing a semiconductor manufacturing apparatus, comprising a plurality of blocks arranged in a floor surface and performing predetermined processing on a substrate to be processed, comprising:
    Setting the first block at a predetermined position on the floor surface;
    A conveying step of conveying a second block to a predetermined area on the floor surface located within a predetermined distance from a target position based on the first block disposed at the predetermined position;
    A support portion supporting a predetermined portion of the second block is provided, and the support portion is moved in a predetermined plane parallel to the floor surface, and the support portion is moved in a height direction perpendicular to the floor surface. A moving device attaching step of attaching a plurality of moving devices that can be moved to the predetermined location;
    The supports of the plurality of moving devices are moved in synchronization based on the information of the position of the second block with respect to the target position in the predetermined plane, and the second block in the predetermined plane is moved. In-plane adjustment process to adjust the position of
    Based on the information on the position of the second block with respect to the target position applied in the height direction, the support portions of the plurality of moving devices are moved in synchronization, and the second block applied in the height direction Height adjustment process to adjust the position of the
    Adjusting the inclination of the second block by moving the support portions of the plurality of moving devices separately based on the information of the inclination of the second block.
  2.  請求項1に記載の半導体製造装置の設置方法において、
     前記面内調整工程は、
     前記所定の面内における前記目標位置に対する前記第2のブロックの位置の情報に基づいて、当該位置を表示部に表示させる工程と、
     操作部に対する操作に応じて、全ての前記移動装置の前記支持部を前記所定の面内で移動させる工程と、を含む。
    In the method of installing a semiconductor manufacturing apparatus according to claim 1,
    The in-plane adjustment process is
    Displaying the position on a display unit based on the information of the position of the second block with respect to the target position in the predetermined plane;
    Moving the support portions of all the moving devices in the predetermined plane in response to an operation on the operation portion.
  3.  請求項1に記載の半導体製造装置の設置方法において、
     前記面内調整工程は、
     前記所定の面内における前記目標位置に対する前記第2のブロックの位置の情報に基づいて、前記所定の面内における前記支持部の移動方向及び移動量を決定する工程と、
     前記決定された前記支持部の移動方向及び前記移動量に基づいて、全ての前記移動装置の前記支持部を前記所定の面内で移動させる工程を含む。
    In the method of installing a semiconductor manufacturing apparatus according to claim 1,
    The in-plane adjustment process is
    Determining the movement direction and movement amount of the support in the predetermined plane based on the information of the position of the second block with respect to the target position in the predetermined plane;
    And moving the supports of all the moving devices in the predetermined plane based on the determined moving direction of the supports and the amount of movement.
  4.  請求項1に記載の半導体製造装置の設置方法において、
     前記高さ調整工程は、
     前記高さ方向にかかる前記目標位置に対する前記第2のブロックの位置の情報に基づいて、当該位置を表示部に表示する工程と、
     操作部に対する操作に応じて、全ての前記移動装置の前記支持部を高さ方向に移動させる工程と、を含む。
    In the method of installing a semiconductor manufacturing apparatus according to claim 1,
    The height adjustment process is
    Displaying the position on a display unit based on the information of the position of the second block with respect to the target position in the height direction;
    Moving the support portions of all the moving devices in the height direction in response to an operation on the operation portion.
  5.  請求項1に記載の半導体製造装置の設置方法において、
     前記高さ調整工程は、
     前記高さ方向にかかる前記目標位置に対する前記第2のブロックの位置の情報に基づいて、前記高さ方向における前記支持部の移動方向及び移動量を決定する工程と、
     前記決定された前記支持部の移動方向及び前記移動量に基づいて、全ての前記移動装置の前記支持部を前記高さ方向に移動させる工程と、を含む。
    In the method of installing a semiconductor manufacturing apparatus according to claim 1,
    The height adjustment process is
    Determining the moving direction and moving amount of the support in the height direction based on the information of the position of the second block with respect to the target position in the height direction;
    Moving the supporting portions of all the moving devices in the height direction based on the determined moving direction of the supporting portions and the amount of movement.
  6.  請求項1に記載の半導体製造装置の設置方法において、
     前記傾き調整工程は、前記第2のブロックの傾きの情報に基づいて、当該傾きに関する情報を表示部に表示する傾き表示工程と、
     操作部に対する操作に応じて、前記複数の移動装置の一部の前記支持部を高さ方向に移動させる工程と、を含む。
    In the method of installing a semiconductor manufacturing apparatus according to claim 1,
    The tilt adjustment step is a tilt display step of displaying information on the tilt on a display unit based on the tilt information of the second block;
    Moving the supporting portion of a part of the plurality of moving devices in the height direction in accordance with an operation on the operating portion.
  7.  請求項6に記載の半導体製造装置の設置方法において、
     前記傾き表示工程は、前記傾きの度合いを色で示す、ことを特徴とする請求項6に記載の半導体製造装置の設置方法。
    In the method of installing a semiconductor manufacturing apparatus according to claim 6,
    The method for installing a semiconductor manufacturing apparatus according to claim 6, wherein in the tilt display step, the degree of the tilt is indicated by a color.
  8.  請求項1に記載の半導体製造装置の設置方法において、
     前記傾き調整工程は、
     前記傾きの情報に基づいて、前記支持部を高さ方向に移動すべき前記移動装置を決定し、該決定された前記移動装置の支持部の移動方向及び移動量を決定する工程と、
     前記決定された前記支持部の移動方向及び前記移動量に基づいて、前記決定された前記移動装置の支持部を移動させる工程と、を含む。
    In the method of installing a semiconductor manufacturing apparatus according to claim 1,
    The inclination adjustment step is
    Determining the moving device to move the support in the height direction based on the information of the tilt, and determining the determined moving direction and moving amount of the support of the moving device;
    Moving the support of the moving device determined based on the determined movement direction of the support and the amount of movement.
  9.  請求項1に記載の半導体製造装置の設置方法において、
     前記搬送工程は、前記床面上を移動する搬送装置に搭載して、前記第2のブロックを搬送する。
    In the method of installing a semiconductor manufacturing apparatus according to claim 1,
    In the transporting step, the second block is transported by being mounted on a transporting device moving on the floor surface.
  10.  請求項1に記載の半導体製造装置の設置方法において、
     前記所定の面内における、前記目標位置に対する前記第2のブロックの位置の情報、及び、前記高さ方向にかかる前記目標位置に対する前記第2のブロックの位置の情報を取得するための装置を取り付ける工程を含む。
    In the method of installing a semiconductor manufacturing apparatus according to claim 1,
    Attaching a device for acquiring information of the position of the second block with respect to the target position in the predetermined plane and information of the position of the second block with respect to the target position in the height direction Including the steps.
  11.  請求項1に記載の半導体製造装置の設置方法において、
     前記第2のブロックの傾きの情報を取得するための装置を取り付ける工程を含む。
    In the method of installing a semiconductor manufacturing apparatus according to claim 1,
    Attaching a device for obtaining information of the inclination of the second block.
  12.  複数のブロックを床面に並べて構成され、被処理基板に対して所定の処理を行う半導体製造装置の設置方法を半導体製造装置の設置システムによって実行させるように、当該設置システムを制御する制御部のコンピュータ上で動作するプログラムを格納した読み取り可能なコンピュータ記憶媒体であって、
     前記設置方法は、
     第1のブロックを前記床面上の所定の位置に設置する設置工程と、
     前記所定の位置に設置された前記第1のブロックを基準とした目標位置から所定の距離内に位置する、前記床面上の所定の領域に、第2のブロックを搬送する搬送工程と、
     前記第2のブロックの所定箇所を支持する支持部を有し、前記床面と平行な所定の面内で前記支持部を移動させると共に、前記床面と垂直な高さ方向に前記支持部を移動させることが可能な複数の移動装置をそれぞれ前記所定箇所に取り付ける移動装置取付工程と、
     前記所定の面内における前記目標位置に対する前記第2のブロックの位置の情報に基づいて、前記複数の移動装置の前記支持部を同期させて移動させ、前記所定の面内における前記第2のブロックの位置を調整する面内調整工程と、
     前記高さ方向にかかる前記目標位置に対する前記第2のブロックの位置の情報に基づいて、前記複数の移動装置の前記支持部を同期させて移動させ、前記高さ方向にかかる前記第2のブロックの位置を調整する高さ調整工程と、
     前記第2のブロックの傾きの情報に基づいて、前記複数の移動装置の前記支持部を別々に移動させ、前記第2のブロックの傾きを調整する傾き調整工程と、を含む。
    A control unit that controls the installation system such that a plurality of blocks are arranged on a floor surface and the installation system of the semiconductor manufacturing apparatus executes the installation method of the semiconductor manufacturing apparatus that performs predetermined processing on the processing target substrate. A readable computer storage medium storing a program operating on a computer, comprising:
    The installation method is
    Setting the first block at a predetermined position on the floor surface;
    A conveying step of conveying a second block to a predetermined area on the floor surface located within a predetermined distance from a target position based on the first block disposed at the predetermined position;
    A support portion supporting a predetermined portion of the second block is provided, and the support portion is moved in a predetermined plane parallel to the floor surface, and the support portion is moved in a height direction perpendicular to the floor surface. A moving device attaching step of attaching a plurality of moving devices that can be moved to the predetermined location;
    The supports of the plurality of moving devices are moved in synchronization based on the information of the position of the second block with respect to the target position in the predetermined plane, and the second block in the predetermined plane is moved. In-plane adjustment process to adjust the position of
    Based on the information on the position of the second block with respect to the target position applied in the height direction, the support portions of the plurality of moving devices are moved in synchronization, and the second block applied in the height direction Height adjustment process to adjust the position of the
    Adjusting the inclination of the second block by moving the support portions of the plurality of moving devices separately based on the information of the inclination of the second block.
  13.  複数のブロックを床面に並べて構成される半導体製造装置の設置システムであって、
     前記床面と平行な所定の面内における、第1のブロックを基準とした目標位置に対する第2のブロックの位置の情報、前記所定の面と垂直な高さ方向にかかる前記目標位置に対する前記第2のブロックの位置の情報を取得するための位置情報取得用装置と、
     前記第2のブロックの傾きの情報を取得するための水準計測器と、
     前記第2のブロックの所定箇所を支持する支持部を有し、前記所定の面内で前記支持部を移動させると共に、前記高さ方向に前記支持部を移動させることが可能であり、前記所定箇所に取り付けられる複数の移動装置と、
     前記第1のブロックが前記床面上の所定の位置に設置され、前記目標位置から所定の距離内に位置する、前記床面上の所定の領域に、前記第2のブロックが搬送され、前記複数の移動装置がそれぞれ前記所定箇所に取り付けられた後に、前記所定の面内における前記目標位置に対する前記第2のブロックの位置の情報に基づいて、前記複数の移動装置の前記支持部を同期させて移動させ、前記所定の面内における前記第2のブロックの位置を調整する面内調整工程と、前記高さ方向にかかる前記目標位置に対する前記第2のブロックの位置の情報に基づいて、前記複数の移動装置の前記支持部を同期させて移動させ、前記高さ方向にかかる前記第2のブロックの位置を調整する高さ調整工程と、前記第2のブロックの傾きの情報に基づいて、前記複数の移動装置の前記支持部を別々に移動させ、前記第2のブロックの傾きを調整する傾き調整工程と、が実行されるように前記位置情報取得用装置、前記水準計測器、及び、前記複数の移動装置を制御する制御装置と、を備える。
    An installation system of a semiconductor manufacturing apparatus configured by arranging a plurality of blocks on a floor surface,
    Information of a position of a second block with respect to a target position with respect to a first block in a predetermined plane parallel to the floor surface; information of the target position relative to the target position in a height direction perpendicular to the predetermined plane A device for acquiring position information for acquiring information of positions of two blocks;
    A level measuring instrument for obtaining information on the inclination of the second block;
    It is possible to have a support portion for supporting a predetermined portion of the second block, move the support portion in the predetermined plane, and move the support portion in the height direction, A plurality of mobile devices attached to the location;
    The second block is transported to a predetermined area on the floor surface, wherein the first block is disposed at a predetermined position on the floor surface and located within a predetermined distance from the target position. After the plurality of moving devices are respectively attached to the predetermined place, the supports of the plurality of moving devices are synchronized based on the information of the position of the second block with respect to the target position in the predetermined plane. And adjusting the position of the second block in the predetermined plane, and the information of the position of the second block relative to the target position in the height direction. Based on information on the height adjustment step of moving the support portions of a plurality of moving devices in synchronization and adjusting the position of the second block in the height direction, and information on the inclination of the second block, The device for acquiring position information, the level measuring instrument, and the inclination adjustment step of separately moving the support portions of the plurality of movement devices and adjusting the inclination of the second block; And a controller for controlling the plurality of mobile devices.
PCT/JP2018/031940 2017-09-06 2018-08-29 Method of installing semiconductor manufacturing device, storage media, and semiconductor manufacturing device installation system WO2019049747A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2019540911A JPWO2019049747A1 (en) 2017-09-06 2018-08-29 Installation method of semiconductor manufacturing equipment, storage medium and installation system of semiconductor manufacturing equipment
KR1020207009634A KR102484275B1 (en) 2017-09-06 2018-08-29 Installation method of semiconductor manufacturing equipment, storage medium, and installation system of semiconductor manufacturing equipment
CN201880055143.9A CN111052305B (en) 2017-09-06 2018-08-29 Method and system for setting semiconductor manufacturing apparatus, and storage medium

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017-171284 2017-09-06
JP2017171284 2017-09-06

Publications (1)

Publication Number Publication Date
WO2019049747A1 true WO2019049747A1 (en) 2019-03-14

Family

ID=65634829

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031940 WO2019049747A1 (en) 2017-09-06 2018-08-29 Method of installing semiconductor manufacturing device, storage media, and semiconductor manufacturing device installation system

Country Status (5)

Country Link
JP (2) JPWO2019049747A1 (en)
KR (1) KR102484275B1 (en)
CN (1) CN111052305B (en)
TW (1) TWI750408B (en)
WO (1) WO2019049747A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60239813A (en) * 1984-05-14 1985-11-28 Hitachi Zosen Corp Adjusting device of position
JPH10261662A (en) * 1997-03-19 1998-09-29 Apic Yamada Kk Demounting mechanism for semiconductor production system
JP2009093002A (en) * 2007-10-10 2009-04-30 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and method for installing stage that constitutes substrate processing apparatus
JP2016100570A (en) * 2014-11-26 2016-05-30 株式会社日立ハイテクノロジーズ Processing apparatus and installation method thereof
JP2017073538A (en) * 2015-10-08 2017-04-13 東京エレクトロン株式会社 Horizontal installation apparatus, and horizontal installation method for object to be installed

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11340299A (en) * 1998-05-27 1999-12-10 Nikon Corp Substrate processor
JP2002329654A (en) * 2001-04-27 2002-11-15 Nikon Corp Adjustment method of illuminant device and illuminant device, exposure method and aligner and device manufacturing method
WO2005015613A2 (en) 2003-08-07 2005-02-17 Sundew Technologies, Llc Perimeter partition-valve with protected seals
JP4642787B2 (en) * 2006-05-09 2011-03-02 東京エレクトロン株式会社 Substrate transfer device and vertical heat treatment device
JP5635452B2 (en) 2010-07-02 2014-12-03 東京エレクトロン株式会社 Substrate processing system
US9076644B2 (en) * 2011-01-18 2015-07-07 Hitachi Kokusai Electric Inc. Substrate processing apparatus, substrate supporter and method of manufacturing semiconductor device
JP2014167996A (en) * 2013-02-28 2014-09-11 Ebara Corp Polishing device and polishing method
JP2015061049A (en) * 2013-09-20 2015-03-30 日本電産リード株式会社 Processing object conveyance system, and substrate inspection system
JP6430870B2 (en) * 2015-03-20 2018-11-28 東京エレクトロン株式会社 Clamp device, substrate carry-in / out device using the same, and substrate processing apparatus
US10014196B2 (en) * 2015-10-20 2018-07-03 Lam Research Corporation Wafer transport assembly with integrated buffers

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60239813A (en) * 1984-05-14 1985-11-28 Hitachi Zosen Corp Adjusting device of position
JPH10261662A (en) * 1997-03-19 1998-09-29 Apic Yamada Kk Demounting mechanism for semiconductor production system
JP2009093002A (en) * 2007-10-10 2009-04-30 Dainippon Screen Mfg Co Ltd Substrate processing apparatus and method for installing stage that constitutes substrate processing apparatus
JP2016100570A (en) * 2014-11-26 2016-05-30 株式会社日立ハイテクノロジーズ Processing apparatus and installation method thereof
JP2017073538A (en) * 2015-10-08 2017-04-13 東京エレクトロン株式会社 Horizontal installation apparatus, and horizontal installation method for object to be installed

Also Published As

Publication number Publication date
KR102484275B1 (en) 2023-01-03
JP7229307B2 (en) 2023-02-27
TW201921435A (en) 2019-06-01
JP2021182631A (en) 2021-11-25
KR20200044953A (en) 2020-04-29
TWI750408B (en) 2021-12-21
CN111052305A (en) 2020-04-21
JPWO2019049747A1 (en) 2020-10-22
CN111052305B (en) 2024-02-02

Similar Documents

Publication Publication Date Title
JP6741736B2 (en) Exposure equipment
US7916277B2 (en) Exposing apparatus having substrate chuck of good flatness
JP2016063219A (en) Imprint device, imprint system, and product manufacturing method
KR102560788B1 (en) Peripheral exposure apparatus, peripheral exposure method, program, computer storage medium
KR20090089820A (en) Exposure apparatus and device manufacturing method
JP2011018860A (en) Method of conveying substrate, device for conveying substrate, exposure apparatus using the same, and method of manufacturing device
JP7229307B2 (en) Installation system, installation method, and storage medium for semiconductor manufacturing equipment
JP7144523B2 (en) mounting line
JP2004281983A (en) Positioning apparatus and method, coating equipment and method
JP7212528B2 (en) Lithographic apparatus, metrology methods, and methods of manufacturing articles
JP4674467B2 (en) Substrate transport method, substrate transport apparatus, exposure method, exposure apparatus, and microdevice manufacturing method
JP5537380B2 (en) Exposure apparatus and device manufacturing method
JP2009302154A (en) Exposure apparatus and method for manufacturing device
JP2006294954A (en) Exposure system, exposure method, and method for manufacturing microdevice
JP6353487B2 (en) Projection exposure apparatus and projection exposure method
US9760025B2 (en) Reticle shape regulation device and method, and exposure apparatus using same
US20230341782A1 (en) Lithography information processing apparatus, lithography system, storage medium, lithography information processing method, and article manufacturing method
JP2012114219A (en) Alignment method and alignment device, and exposure device using it and method of manufacturing device
JP2009014805A (en) Exposure device and exposure method
JP5537063B2 (en) Proximity exposure apparatus, gap control method for proximity exposure apparatus, and method for manufacturing display panel substrate
JP2010176081A (en) Exposure device, substrate carrying method of same, production method of panel substrate for display
JP2011009552A (en) Drawing system, and pattern formation system
JP2015079812A (en) Substrate holding device and exposure device
JP5392945B2 (en) Proximity exposure apparatus and top plate transfer method for negative pressure chamber of proximity exposure apparatus
JP2003076029A (en) Exposure device

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18854101

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019540911

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207009634

Country of ref document: KR

Kind code of ref document: A

122 Ep: pct application non-entry in european phase

Ref document number: 18854101

Country of ref document: EP

Kind code of ref document: A1