WO2019049255A1 - 空気調和装置 - Google Patents

空気調和装置 Download PDF

Info

Publication number
WO2019049255A1
WO2019049255A1 PCT/JP2017/032238 JP2017032238W WO2019049255A1 WO 2019049255 A1 WO2019049255 A1 WO 2019049255A1 JP 2017032238 W JP2017032238 W JP 2017032238W WO 2019049255 A1 WO2019049255 A1 WO 2019049255A1
Authority
WO
WIPO (PCT)
Prior art keywords
pipe
heat exchanger
flow path
refrigerant
valve
Prior art date
Application number
PCT/JP2017/032238
Other languages
English (en)
French (fr)
Inventor
裕輔 島津
Original Assignee
三菱電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱電機株式会社 filed Critical 三菱電機株式会社
Priority to CN201780094386.9A priority Critical patent/CN111051793B/zh
Priority to ES17923991T priority patent/ES2900352T3/es
Priority to PCT/JP2017/032238 priority patent/WO2019049255A1/ja
Priority to JP2019540196A priority patent/JP6847239B2/ja
Priority to US16/639,651 priority patent/US11112140B2/en
Priority to EP17923991.8A priority patent/EP3680565B1/en
Publication of WO2019049255A1 publication Critical patent/WO2019049255A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/30Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
    • F24F11/49Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring ensuring correct operation, e.g. by trial operation or configuration checks
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/0007Indoor units, e.g. fan coil units
    • F24F1/0059Indoor units, e.g. fan coil units characterised by heat exchangers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F1/00Room units for air-conditioning, e.g. separate or self-contained units or units receiving primary air from a central station
    • F24F1/06Separate outdoor units, e.g. outdoor unit to be linked to a separate room comprising a compressor and a heat exchanger
    • F24F1/26Refrigerant piping
    • F24F1/32Refrigerant piping for connecting the separate outdoor units to indoor units
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/72Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure
    • F24F11/74Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity
    • F24F11/75Control systems characterised by their outputs; Constructional details thereof for controlling the supply of treated air, e.g. its pressure for controlling air flow rate or air velocity for maintaining constant air flow rate or air velocity
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/83Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers
    • F24F11/84Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling the supply of heat-exchange fluids to heat-exchangers using valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F11/00Control or safety arrangements
    • F24F11/70Control systems characterised by their outputs; Constructional details thereof
    • F24F11/80Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air
    • F24F11/86Control systems characterised by their outputs; Constructional details thereof for controlling the temperature of the supplied air by controlling compressors within refrigeration or heat pump circuits
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B13/00Compression machines, plants or systems, with reversible cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/02Subcoolers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B40/00Subcoolers, desuperheaters or superheaters
    • F25B40/06Superheaters
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B49/00Arrangement or mounting of control or safety devices
    • F25B49/02Arrangement or mounting of control or safety devices for compression type machines, plants or systems
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F24HEATING; RANGES; VENTILATING
    • F24FAIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
    • F24F2110/00Control inputs relating to air properties
    • F24F2110/40Pressure, e.g. wind pressure
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/023Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units
    • F25B2313/0233Compression machines, plants or systems with reversible cycle not otherwise provided for using multiple indoor units in parallel arrangements
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2313/00Compression machines, plants or systems with reversible cycle not otherwise provided for
    • F25B2313/027Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means
    • F25B2313/02741Compression machines, plants or systems with reversible cycle not otherwise provided for characterised by the reversing means using one four-way valve
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0409Refrigeration circuit bypassing means for the evaporator
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0417Refrigeration circuit bypassing means for the subcooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/04Refrigeration circuit bypassing means
    • F25B2400/0419Refrigeration circuit bypassing means for the superheater
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/05Compression system with heat exchange between particular parts of the system
    • F25B2400/054Compression system with heat exchange between particular parts of the system between the suction tube of the compressor and another part of the cycle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/13Economisers
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2501Bypass valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2519On-off valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/13Mass flow of refrigerants
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/40Fluid line arrangements
    • F25B41/42Arrangements for diverging or converging flows, e.g. branch lines or junctions

Definitions

  • the present disclosure relates to an air conditioner, and more particularly to an air conditioner provided with a heat exchanger for subcooling a refrigerant upstream of an expansion valve during a cooling operation.
  • an air conditioner in which a plurality of indoor units are connected in parallel to one outdoor unit.
  • an expansion valve is disposed in the indoor unit. It is desirable that only the liquid phase refrigerant flows into the expansion valve.
  • the two-phase refrigerant in which the liquid phase and the gas phase coexist flow into the expansion valve, the liquid phase and the gas phase alternately pass discontinuously, causing pressure fluctuation, and a refrigerant noise is generated from the expansion valve.
  • Patent Document 1 a high-pressure refrigerant flowing from an outdoor heat exchanger to an expansion valve during a cooling operation, and a low-pressure refrigerant flowing from an indoor heat exchanger to a compressor A subcooling heat exchanger is disclosed, which performs heat exchange between them to subcool a high pressure refrigerant.
  • Patent Document 2 JP-A-10-68553 (Patent Document 2), a low pressure bypass flow refrigerant branched from a main circuit between a condenser and an expansion valve and passed through a capillary tube, and a high pressure main flow refrigerant flowing in the main circuit And a subcooling heat exchanger for supercooling the mainstream refrigerant by heat exchange therebetween.
  • JP 2001-317832 A Japanese Patent Application Laid-Open No. 10-68553
  • the expansion valve may generate refrigerant noise.
  • An object of the present disclosure is to provide an air conditioner that can suppress an increase in pressure loss between an indoor heat exchanger and a compressor and can suppress the generation of refrigerant noise in an expansion valve.
  • An air conditioner includes an outdoor unit including a compressor and an outdoor heat exchanger, at least one indoor unit including an expansion valve and an indoor heat exchanger, a compressor, an outdoor heat exchanger, and an expansion valve. And a main circuit for circulating the refrigerant to the indoor heat exchanger.
  • the main circuit includes a first flow path between the outdoor heat exchanger and the expansion valve.
  • the air conditioning apparatus further includes a subcooling heat exchanger for subcooling the refrigerant flowing in the first flow path.
  • the main circuit includes, as a flow passage between the indoor heat exchanger and the compressor, a second flow passage not passing through the subcooling heat exchanger, and a third flow passage passing through the subcooling heat exchanger.
  • the air conditioning apparatus further includes a flow path switching valve, a bypass circuit, a bypass adjustment valve, and a control device.
  • the flow path switching valve switches the flow path between the indoor heat exchanger and the compressor to either the second flow path or the third flow path.
  • the bypass circuit branches from the first flow path and joins the main circuit through the subcooling heat exchanger.
  • the bypass control valve is provided in the bypass circuit. The control device controls the flow path switching valve and the bypass adjustment valve.
  • the control device determines that the flow path between the indoor heat exchanger and the compressor is the second flow path Control the flow path switching valve so as to switch to and open the bypass adjusting valve.
  • the control device causes the flow path switching valve to switch the flow path between the indoor heat exchanger and the compressor to the third flow path when the parameter indicates that the refrigerant flow rate is smaller than the reference value in the cooling operation. Control and close the bypass regulator valve.
  • the bypass adjustment valve in the case of low load where the parameter indicates that the refrigerant flow rate is smaller than the reference value, the bypass adjustment valve is closed, so the heat absorption amount of refrigerant between the supercooling heat exchanger and the expansion valve Can be suppressed, and the refrigerant noise generated from the expansion valve can be suppressed.
  • the load is not low, which indicates that the parameter flow rate is higher than the reference value
  • the flow passage between the indoor heat exchanger and the compressor is switched to the third flow passage that does not pass through the subcooling heat exchanger Be This can suppress an increase in pressure loss in the flow passage between the indoor heat exchanger and the compressor.
  • the air harmony device which can control generating of a refrigerant sound in an expansion valve can be provided.
  • FIG. 1 is a view showing an air conditioner 1 according to the embodiment.
  • the air conditioner 1 includes an outdoor unit 2 including a compressor 20 and an outdoor heat exchanger 22, and a plurality of indoor units 3 including an expansion valve 32 and an indoor heat exchanger 31.
  • the compressor 20 is formed with a suction port 20a for sucking the refrigerant and a discharge port 20b for discharging the refrigerant.
  • the air conditioner 1 further includes a main circuit 4 that circulates the refrigerant through the compressor 20, the outdoor heat exchanger 22, the expansion valve 32, and the indoor heat exchanger 31.
  • the air conditioner 1 further branches from the accumulator 21, the subcooling heat exchanger 23, the four-way valve 24, the flow path switching valve 25, the bypass adjustment valve 26, and the main circuit 4 and returns to the main circuit 4. And a bypass circuit 5.
  • the accumulator 21, the subcooling heat exchanger 23, the four-way valve 24, the flow path switching valve 25, the bypass adjusting valve 26 and the bypass circuit 5 are disposed in the outdoor unit 2. .
  • a part of these configurations may be disposed outside the outdoor unit 2.
  • Four ports E to H are formed in the four-way valve 24.
  • the flow path switching valve 25 is a three-way valve, and three ports E to G are formed in the flow path switching valve 25.
  • the main circuit 4 includes pipes 41 to 48 disposed in the outdoor unit 2 and a gas pipe 40 and a liquid pipe 49 connecting the outdoor unit 2 and the plurality of indoor units 3.
  • the main circuit 4 is changed according to the operation mode.
  • the bypass circuit 5 includes tubes 48 and 50.
  • the pipe 48 constitutes the main circuit 4 in a part of the operation mode, and constitutes the bypass circuit 5 in the other operation mode.
  • the pipe (first pipe) 41 connects the gas pipe 40 and the port E of the flow path switching valve 25.
  • the pipe (second pipe) 42 connects the port F of the flow path switching valve 25 and the port E of the four-way valve 24.
  • the pipe 43 connects the port F of the four-way valve 24 and the discharge port 20 b of the compressor 20.
  • the pipe 44 connects the port G of the four-way valve 24 and the port P1 of the outdoor heat exchanger 22.
  • the pipe 45 connects the port H of the four-way valve 24 to the refrigerant inlet of the accumulator 21.
  • the pipe 46 connects the refrigerant outlet of the accumulator 21 and the suction port 20 a of the compressor 20.
  • the pipe 47 connects the port P 2 of the outdoor heat exchanger 22 and the liquid pipe 49, and passes through the subcooling heat exchanger 23.
  • the pipe 48 connects the port G of the flow path switching valve 25 to the branch point of the pipe 45 and passes through the subcooling heat exchanger 23.
  • the pipe 50 is a branch point between the subcooling heat exchanger 23 and the liquid pipe 49 in the pipe 47, and a branch point between the port G of the flow path switching valve 25 in the pipe 48 and the subcooling heat exchanger 23.
  • the gas pipe 40 has a gas main pipe 40a having one end connected to the pipe 41 of the outdoor unit 2, and a plurality of gas branch pipes 40b branched from the other end of the gas main pipe 40a.
  • the number of gas branch pipes 40 b corresponds to the number of indoor units 3.
  • the gas branch pipe 40 b connects the gas main pipe 40 a and the corresponding indoor unit 3.
  • the inner diameter of the gas main pipe 40a is larger than the inner diameter of the gas branch pipe 40b.
  • the liquid pipe 49 has a liquid main pipe 49a having one end connected to the pipe 47 of the outdoor unit 2, and a plurality of liquid branch pipes 49b branched from the other end of the liquid main pipe 49a.
  • the number of liquid branch pipes 49 b corresponds to the number of indoor units 3.
  • the liquid branch pipe 49 b connects the liquid main pipe 49 a and the corresponding indoor unit 3.
  • the inner diameter of the liquid main pipe 49a is larger than the inner diameter of the liquid branch pipe 49b.
  • Each of the plurality of indoor units 3 includes an indoor heat exchanger 31 and an expansion valve 32.
  • the port P3 of the indoor heat exchanger 31 is connected to the corresponding gas branch pipe 40b.
  • the port P4 of the indoor heat exchanger 31 is connected to the corresponding liquid branch pipe 49b via the expansion valve 32.
  • the expansion valve 32 may be provided in the liquid branch pipe 49b.
  • the air conditioning apparatus 1 further includes a pressure sensor (not shown), a temperature sensor (not shown), and a control device 60.
  • control device 60 is disposed in outdoor unit 2. However, the control device 60 may be disposed outside the outdoor unit 2.
  • the control device 60 includes a central processing unit (CPU), a storage device, an input / output buffer and the like (all are not shown).
  • the control device 60 determines whether the cooling load is lower than the reference in the cooling operation. Specifically, the control device 60 compares the parameter correlating to the refrigerant flow rate of the main circuit 4 with the reference value, and determines that the load is low when the parameter indicates that the refrigerant flow rate is smaller than the reference value. If the parameter indicates that the refrigerant flow rate is higher than the reference value, it is determined that the load is not low.
  • control device 60 uses the number of indoor units 3 in operation among the plurality of indoor units 3 as the parameter. The control device 60 determines that the load is low when the number of indoor units 3 in operation is smaller than the reference value, and the load is not low when the number of indoor units 3 in operation is larger than the reference value. judge.
  • the controller 60 controls the compressor 20, the four-way valve 24, the expansion valve 32, the flow path switching valve 25, and the bypass according to the above determination result, the operation command signal given by the user, and the outputs of various sensors. Control with the control valve 26 is performed. Note that this control is not limited to the processing by software, but may be processed by dedicated hardware (electronic circuit).
  • the accumulator 21 separates the liquid-phase refrigerant from the refrigerant flowing through the pipe 45.
  • the compressor 20 sucks and compresses the gas-phase refrigerant having passed through the accumulator 21 from the suction port 20a, and discharges the compressed refrigerant from the discharge port 20b.
  • the compressor 20 is configured to change the operating frequency according to a control signal received from the controller 60. By changing the operating frequency of the compressor 20, the output of the compressor 20 is adjusted. Specifically, the compressor 20 is controlled to increase the operating frequency as the air conditioning load (cooling load or heating load) increases. An increase in the air conditioning load means that the flow rate of the refrigerant in the main circuit 4 increases.
  • the compressor 20 can adopt various types, for example, rotary type, reciprocating type, scroll type, screw type and the like.
  • the outdoor heat exchanger 22 exchanges heat between the refrigerant and the outdoor air.
  • the outdoor heat exchanger 22 functions as a condenser in the cooling operation and functions as an evaporator in the heating operation.
  • the subcooling heat exchanger 23 supercools the refrigerant flowing in the first flow passage between the outdoor heat exchanger 22 and the expansion valve 32 in the main circuit 4. Specifically, the supercooling heat exchanger 23 performs heat exchange between the high pressure refrigerant flowing in the pipe 47 constituting the first flow path and the low pressure refrigerant flowing in the pipe 48, and the refrigerant flowing in the pipe 47 is Overcool.
  • the indoor heat exchanger 31 exchanges heat between the refrigerant and the indoor air.
  • the indoor heat exchanger 31 functions as an evaporator in the cooling operation, and functions as a condenser in the heating operation.
  • the four-way valve 24 is controlled by the control signal received from the control device 60 to be in either the cooling operation state or the heating operation state.
  • the port E and the port H are in communication
  • the port F and the port G are in communication.
  • the port E and the port F communicate with each other
  • the port H and the port G communicate with each other.
  • the four-way valve 24 causes the pipe 42 to communicate with the suction port 20 a of the compressor 20 via the pipe 45, the accumulator 21 and the pipe 46, and the outdoor heat via the pipes 44 and 43.
  • the port P1 of the exchanger 22 is communicated with the discharge port 20b of the compressor 20.
  • the four-way valve 24 causes the pipe 42 to communicate with the discharge port 20 b of the compressor 20 through the pipes 44 and 43 during heating operation, and the outdoor heat exchanger 22 through the pipe 45, the accumulator 21 and the pipe 46.
  • Port P1 is communicated with the suction port 20a of the compressor 20.
  • the degree of opening of expansion valve 32 is controlled by a control signal received from control device 60.
  • the degree of opening of the expansion valve 32 is controlled such that the degree of superheat of the refrigerant at the port P3 of the indoor heat exchanger 31 falls within an appropriate range.
  • the flow path switching valve 25 is a flow path between the indoor heat exchanger 31 and the compressor 20 based on a control signal received from the control device 60, and a second flow path not passing through the supercooling heat exchanger 23. It switches to any of the 3rd flow paths which pass through the subcooling heat exchanger 23.
  • the flow path switching valve 25 is controlled to be in either the first state or the second state according to the control signal. In the first state, the port E and the port F communicate with each other, and the port G is closed. In the second state, the port E and the port G communicate with each other, and the port F is closed.
  • the flow path switching valve 25 is configured to place the pipe 41 in communication with either the pipe 42 or the pipe 48 and close the other of the pipe 42 or the pipe 48.
  • the bypass control valve 26 is provided in the pipe 50 that constitutes the bypass circuit 5.
  • the bypass control valve 26 is disposed upstream of the subcooling heat exchanger 23.
  • the bypass control valve 26 is controlled to either the open state or the closed state by a control signal received from the controller 60.
  • the bypass adjusting valve 26 is set to an opening degree other than full opening when controlled to an open state.
  • FIG. 2 is a diagram showing the relationship between the operation mode of the air conditioner 1 and the states of the four-way valve 24, the flow path switching valve 25 and the bypass adjusting valve 26.
  • the operation modes include a first cooling operation mode which is a cooling operation mode when the load is not low, a second cooling operation mode which is a cooling operation mode when the load is low, and a heating operation mode.
  • the four-way valve 24 is controlled to the cooling operation state in the first cooling operation mode and the second cooling operation mode, and is controlled to the heating operation state in the heating operation mode.
  • the flow path switching valve 25 is controlled to the first state
  • the bypass adjusting valve 26 is controlled to the open state.
  • the flow path switching valve 25 is controlled to the second state, and the bypass adjusting valve 26 is controlled to the closed state.
  • the flow path switching valve 25 is controlled to the first state, and the bypass adjusting valve 26 is controlled to the closed state.
  • FIG. 3 is a diagram showing the main circuit 4 and the bypass circuit 5 in the first cooling operation mode (the cooling operation mode when the load is not low).
  • main circuit 4 in the first cooling operation mode includes compressor 20, pipe 43, pipe 44, outdoor heat exchanger 22, pipe 47 (passing through supercooling heat exchanger 23 halfway), liquid
  • the pipe 49, the expansion valve 32, the indoor heat exchanger 31, the gas pipe 40, the pipe 41, the pipe 42, the pipe 42, the pipe 45, the accumulator 21, and the pipe 46 circulate in this order.
  • the flow path switching valve 25 switches the flow path between the indoor heat exchanger 31 and the compressor 20 to a second flow path not passing through the subcooling heat exchanger 23.
  • the second flow path in the first cooling operation mode is a flow path passing through the gas pipe 40, the pipe 41, the pipe 42, the pipe 45, the pipe 45, the accumulator 21 and the pipe 46.
  • the pipe 50 and the pipe 48 constitute the bypass circuit 5. That is, in the first cooling operation mode, the pipe 48 constitutes the bypass circuit 5. Thereby, a part of the refrigerant flowing through the pipe 47 is branched from the pipe 47, and performs heat exchange with the refrigerant flowing through the supercooling heat exchanger 23 and the pipe 47, and the pipe 45 constituting the main circuit 4 Join the
  • the compressor 20 sucks in the refrigerant from the pipe 46 and compresses it.
  • the compressed refrigerant flows to the pipe 44 via the pipe 43 and the four-way valve 24.
  • the outdoor heat exchanger 22 condenses the refrigerant flowing through the pipe 44.
  • the outdoor heat exchanger 22 is configured such that the high temperature and high pressure superheated vapor (refrigerant) discharged from the compressor 20 exchanges heat (radiates heat) with the outdoor air. By this heat exchange, the refrigerant is condensed and liquefied.
  • the condensed refrigerant flows through the pipe 47 and exchanges heat with the refrigerant flowing through the pipe 48 in the subcooling heat exchanger 23 to be subcooled.
  • the refrigerant flowing through the pipe 50 is depressurized by the bypass control valve 26.
  • the depressurized refrigerant flows through the pipe 48 and passes through the subcooling heat exchanger 23.
  • the refrigerant flowing through the pipe 48 draws heat from the refrigerant flowing through the pipe 47 because the refrigerant flowing through the pipe 47 has a lower pressure and a lower temperature than the refrigerant flowing through the pipe 47.
  • the refrigerant flowing through the pipe 47 is subcooled.
  • the refrigerant flowing from the pipe 47 into the liquid main pipe 49a branches into a plurality of liquid branch pipes 49b and flows.
  • the inner diameter and the surface area of the liquid main pipe 49a are large.
  • the liquid main pipe 49a and the liquid branch pipe 49b become long. Therefore, the refrigerant flowing through the liquid pipe 49 absorbs some heat from the outside air through the liquid pipe 49.
  • the heat absorption amount when the refrigerant flows through the liquid pipe 49 is related to the flow rate of the refrigerant in the liquid pipe 49. As the flow rate of the refrigerant increases, the time for passing through the liquid pipe 49 becomes shorter, and the amount of heat absorption decreases.
  • the expansion valve 32 depressurizes the refrigerant flowing through the liquid branch pipe 49b.
  • the indoor heat exchanger 31 evaporates the refrigerant that has passed through the expansion valve 32.
  • the indoor heat exchanger 31 is configured such that the refrigerant decompressed by the expansion valve 32 exchanges heat with the indoor air (heat absorption) and evaporates.
  • the evaporated refrigerant flows into the outdoor unit 2 via the gas pipe 40.
  • the refrigerant flowing into the outdoor unit 2 reaches the compressor 20 via the pipe 41, the flow path switching valve 25, the pipe 42, the four-way valve 24, the pipe 45, the accumulator 21 and the pipe 46.
  • the supercooling heat exchanger 23 performs heat exchange between the refrigerant flowing in the pipe 47 and the refrigerant flowing in the bypass circuit 5 branched from the pipe 47, and flows in the pipe 47. Subcool the refrigerant. Since the load is not low, the flow rate of the refrigerant in the liquid pipe 49 is secured to a certain extent, and the heat absorption amount of the refrigerant flowing in the liquid pipe 49 can be reduced. Therefore, the amount of gas phase in the refrigerant at the inlet of the expansion valve 32 is reduced, and the refrigerant noise generated from the expansion valve 32 can be suppressed.
  • FIG. 4 is a diagram showing the main circuit 4 in the second cooling operation mode (the cooling operation mode at low load).
  • main circuit 4 in the second cooling operation mode includes compressor 20, pipe 43, pipe 44, outdoor heat exchanger 22, pipe 47 (passing through supercooling heat exchanger 23 halfway), liquid
  • the pipe 49, the expansion valve 32, the indoor heat exchanger 31, the gas pipe 40, the pipe 41, the pipe 48, the pipe 45, the pipe 45, the accumulator 21, and the pipe 46 circulate in this order.
  • the flow path switching valve 25 exchanges heat with the pipe 47 through the subcooling heat exchanger 23 through the flow path between the indoor heat exchanger 31 and the compressor 20.
  • the third flow path in the second cooling operation mode is a flow path passing through the gas pipe 40, the pipe 41, the pipe 48, the pipe 45, the pipe 45, the accumulator 21, and the pipe 46.
  • the pipe 48 constitutes the main circuit 4.
  • the flow path from the compressor 20 to the pipe 47 in the second cooling operation mode is the same as the flow path from the compressor 20 to the pipe 47 in the first refrigerant operation mode shown in FIG. Therefore, the detailed description of the flow path from the compressor 20 to the pipe 47 is omitted.
  • the bypass control valve 26 is controlled to be closed, the entire amount of refrigerant subcooled by the subcooling heat exchanger 23 flows into the liquid main pipe 49a.
  • the expansion valve 32 of the indoor unit 3 being stopped is closed, the refrigerant flowing through the liquid main pipe 49a passes through the liquid branch pipe 49b corresponding to the indoor unit 3 being operated, and is decompressed by the expansion valve 32.
  • the indoor heat exchanger 31 evaporates the refrigerant that has passed through the expansion valve 32.
  • the evaporated refrigerant flows into the outdoor unit 2 via the gas pipe 40.
  • the refrigerant having flowed into the outdoor unit 2 flows to the accumulator via the pipe 41, the flow path switching valve 25, the pipe 48 and the pipe 45.
  • the subcooling heat exchanger 23 performs heat exchange between the high-temperature and high-pressure refrigerant flowing through the pipe 47 and the low-temperature and low-pressure refrigerant flowing through the pipe 48 to supercool the refrigerant flowing through the pipe 47.
  • the refrigerant flow rate in the main circuit 4 is small because the load is low. Therefore, the increase in pressure loss in the flow path between the indoor heat exchanger 31 and the compressor 20 is suppressed.
  • bypass control valve 26 Since the bypass control valve 26 is controlled to be closed, the entire amount of refrigerant flowing through the pipe 47 flows through the liquid pipe 49. Therefore, it can be avoided that the flow rate of the refrigerant in the liquid pipe 49 becomes extremely small, and an increase in heat absorption of the refrigerant passing through the liquid pipe 49 can be suppressed. As a result, the amount of gas phase in the refrigerant at the inlet of the expansion valve 32 is reduced, and the refrigerant noise generated from the expansion valve 32 can be suppressed.
  • the refrigerant that has passed through the gas pipe 40 absorbs heat in the subcooling heat exchanger 23.
  • the refrigerant flowing downstream of the subcooling heat exchanger 23 in the pipe 48 can be brought into the gas phase.
  • the temperature distribution unevenness of the indoor heat exchanger 31 can be reduced. As a result, it is possible to suppress the dew scattering caused by the temperature distribution unevenness of the indoor heat exchanger 31.
  • FIG. 5 is a graph showing the enthalpy of the refrigerant immediately after passing through the subcooling heat exchanger 23 in the pipe 47 constituting the first flow passage in the cooling operation.
  • the horizontal axis represents the ratio of the flow rate of the refrigerant passing through the bypass adjustment valve 26 to the total flow rate of the refrigerant in the main circuit 4 (hereinafter referred to as the bypass ratio).
  • the enthalpy of the refrigerant immediately after passing the cooling heat exchanger 23 is shown.
  • FIG. 6 is a graph showing the heat absorption amount when the refrigerant flows through the liquid pipe 49 in the cooling operation.
  • the horizontal axis indicates the bypass ratio
  • the vertical axis indicates the amount of heat absorption when the refrigerant flows through the liquid pipe 49.
  • FIG. 7 is a graph showing the enthalpy of the refrigerant at the inlet of the expansion valve 32 during the cooling operation.
  • the horizontal axis represents the bypass ratio
  • the vertical axis represents the enthalpy of the refrigerant at the inlet of the expansion valve 32.
  • lines A and B indicate changes in enthalpy with respect to the bypass ratio when the flow path switching valve 25 is in the first state and the bypass adjustment valve 26 is in the open state.
  • Line A shows the change in enthalpy at low loads and line B shows the change in enthalpy at non-low loads.
  • Circles C and D indicate the enthalpy when the flow path switching valve 25 is in the second state and the bypass control valve 26 is in the closing state.
  • the circle C shows the enthalpy at low load
  • the circle D shows the enthalpy at low load.
  • lines A and B show changes in heat absorption relative to the bypass ratio when the flow path switching valve 25 is in the first state and the bypass adjustment valve 26 is in the open state.
  • Line A shows the change of heat absorption at low load
  • line B shows the change of heat absorption at low load.
  • Circles C and D indicate heat absorption when the flow path switching valve 25 is in the second state and the bypass control valve 26 is in the closed state.
  • a circle C indicates the heat absorption at low load
  • a circle D indicates the heat absorption at low load.
  • the enthalpy (line B and circle D) of the refrigerant immediately after passing through the subcooling heat exchanger 23 in the pipe 47 when the load is not low is just after passing through the subcooling heat exchanger 23 in the pipe 47 when the load is low.
  • the slope of the line B is smaller than the slope of the line A.
  • the slopes of the lines A and B indicate the slope of the amount of increase in heat absorption relative to the amount of increase in the bypass ratio.
  • the heat absorption amounts of the circles C and D in FIG. 6 respectively correspond to the heat absorption amounts when the refrigerant flows through the liquid pipe 49 when the bypass ratio is 0 in the lines A and B.
  • the enthalpy of the refrigerant at the inlet of the expansion valve 32 correlates to the sum of the enthalpy of the refrigerant immediately after passing through the subcooling heat exchanger 23 in the pipe 47 and the heat absorption when the refrigerant flows through the liquid pipe 49.
  • a point a in the line A where the bypass ratio is 0 indicates a value in the case where the refrigerant does not flow in the pipe 48 passing through the subcooling heat exchanger 23. That is, the refrigerant condensed by the outdoor heat exchanger 22 reaches the expansion valve 32 without being subcooled by the subcooling heat exchanger 23. At low load, even if the refrigerant immediately after passing through the subcooling heat exchanger 23 in the pipe 47 is in the liquid phase, the refrigerant at the inlet of the expansion valve 32 has a large amount of heat absorption when flowing through the liquid pipe 49. , And a two-phase state in which a gas phase and a liquid phase coexist (see point a in FIG. 7).
  • the enthalpy of circle C in FIG. 7 is smaller than the enthalpy of line A, indicating that it is a liquid phase.
  • the heat absorption amount of the circle C of FIG. 6 is the same as the heat absorption amount of the point a
  • the entropy of the circle C of FIG. 5 is smaller than the enthalpy of the point a of FIG. Therefore, in the case of a low load, in order to reduce the mixing of the gas phase at the inlet of the expansion valve 32 and to suppress the refrigerant noise generated from the expansion valve 32, the flow path switching valve 25 is set to the second state. It is preferable to control 26 in the closed state.
  • line B shows an enthalpy smaller than that of line A and circle C at any bypass ratio.
  • the heat absorption amount (line B) when the refrigerant flows through the liquid pipe 49 when the load is not low and the heat absorption when the refrigerant flows through the liquid pipe 49 when the load is low This is because it is smaller than (line A).
  • the absolute value of the slope of line B in FIG. 5 is larger than the absolute value of the slope of line B in FIG. Therefore, when the load is not low, as shown by line B in FIG. 7, the enthalpy of the refrigerant at the inlet of the expansion valve 32 decreases as the bypass ratio increases. Further, the enthalpy of circle D in FIG.
  • FIG. 8 is a graph showing a reduction amount of pressure loss in the flow passage between the indoor heat exchanger 31 and the compressor 20 in the cooling operation when the load is not low.
  • the horizontal axis indicates the bypass ratio
  • the vertical axis indicates the amount of reduction in pressure loss from the reference.
  • the reference of the reduction amount of the pressure loss is the indoor heat exchanger 31 and the compressor when the flow path switching valve 25 is controlled to the second state and the bypass regulating valve 26 is closed when the load is not low load.
  • the line B shows the change in the amount of reduction of the pressure loss relative to the bypass ratio when the flow path switching valve 25 is controlled to the first state and the bypass regulating valve 26 is controlled to the open state when the load is not low.
  • the flow passage switching valve 25 is set to the first state, and the bypass adjusting valve It is preferable to control 26 in the open state.
  • the bypass ratio is set such that the enthalpy (see line B in FIG. 7) at the inlet of the expansion valve 32 and the amount of reduction in pressure loss (see line B in FIG. 8) fall within appropriate ranges.
  • the indoor heat exchanger is controlled between the case where the flow path switching valve 25 is controlled to the first state and the case where it is controlled to the second state. There is no significant difference in the pressure drop in the flow path between 31 and the compressor 20.
  • the flow passage switching valve 25 may be controlled to the first state. preferable.
  • the bypass control valve 26 in order to subcool the refrigerant in the pipe 47 in the subcooling heat exchanger 23, it is necessary to control the bypass control valve 26 in an open state. Therefore, when the load is not low, switching is made to the main circuit 4 and the bypass circuit 5 shown in FIG.
  • FIG. 9 is a diagram showing the main circuit 4 and the bypass circuit 5 in the heating operation mode.
  • main circuit 4 in the heating operation mode includes compressor 20, pipe 43, pipe 42, pipe 41, gas pipe 40, indoor heat exchanger 31, expansion valve 32, liquid pipe 49, pipe 47, It is a circuit which circulates the outdoor heat exchanger 22, the pipe 44, the pipe 45, the accumulator 21, and the pipe 46 in this order.
  • the flow path switching valve 25 switches the flow path between the indoor heat exchanger 31 and the compressor 20 to a second flow path not passing through the subcooling heat exchanger 23.
  • the second flow path in the heating operation mode is a flow path passing through the pipe 43, the pipe 42, the pipe 41 and the gas pipe 40.
  • the bypass adjustment valve 26 is controlled to be in the closed state as in the first cooling operation mode. In the heating operation mode, heat exchange is not performed in the subcooling heat exchanger 23.
  • the compressor 20 sucks in the refrigerant from the pipe 46 and compresses it.
  • the compressed refrigerant flows to the pipe 42 via the pipe 43 and the four-way valve 24. Since the flow path switching valve 25 is controlled to the first state, the refrigerant flowing through the pipe 42 reaches the indoor heat exchanger 31 (condenser) via the flow path switching valve 25, the pipe 41 and the gas pipe 40. .
  • the indoor heat exchanger 31 condenses the refrigerant.
  • the refrigerant condensed by the indoor heat exchanger 31 is depressurized by the expansion valve 32 and flows into the pipe 47 of the outdoor unit 2 via the liquid pipe 49.
  • the flow rate of the refrigerant in the main circuit 4 is smaller than that in the refrigerant operation, and surplus refrigerant is accumulated in the accumulator 21. Therefore, regardless of the size of the heating load, it is possible to suppress an increase in pressure loss in the flow path from the compressor 20 to the indoor heat exchanger 31.
  • the indoor heat exchanger 31 functions as a condenser. Since the distance from the outlet (in this case, port P4) of the indoor heat exchanger 31 to the expansion valve 32 is short, the heat absorption of the refrigerant passing through the distance can be ignored. Therefore, mixing of the gas phase at the inlet of the expansion valve 32 can be reduced by exchanging heat in the indoor heat exchanger 31 so that the refrigerant satisfies a certain degree of subcooling at the port P4 of the indoor heat exchanger 31. As a result, the refrigerant noise generated from the expansion valve 32 can be suppressed.
  • control device 60 determines whether the load is low based on whether the number of indoor units 3 in operation among the plurality of indoor units 3 is larger than the reference value.
  • control device 60 may use another parameter that correlates with the refrigerant flow rate of the main circuit 4 to determine whether the cooling load is lower than the reference. For example, control device 60 compares the operating frequency of compressor 20 with a reference value and determines that the load is low when the operating frequency is smaller than the reference value, and is low when the operating frequency is larger than the reference value. It may be determined that the load is not present.
  • the differential pressure drive four-way valve includes a main body in which a valve chamber is formed, a pair of pistons sliding in the valve chamber, and a valve body fixed between the pair of pistons.
  • the refrigerant flow path is switched by moving the pair of pistons in accordance with the differential pressure between the suction port 20a and the discharge port 20b of the compressor 20.
  • the valve body does not move completely but the pressure does not move completely if the differential pressure between the suction port 20a and the discharge port 20b is not sufficient when switching from the cooling operation to the heating operation. Sometimes it stops. Therefore, when switching from the cooling operation to the heating operation, the control device 60 controls the flow path switching valve 25 so as to be in the first state after being in the second state. In other words, the controller 60 controls the flow path switching valve 25 so that the pipe 41 communicates with the pipe 42 after the pipe 41 communicates with the pipe 48. When the flow path switching valve 25 is in the second state, the refrigerant from which the compressor 20 is discharged remains in the pipe 43 and the pipe 42.
  • the differential pressure between the suction port 20a and the discharge port 20b of the compressor 20 becomes large, and the differential pressure drive type four-way valve can be normally switched to the heating operation state.
  • the control device 60 may control the expansion valve 32 and the bypass adjustment valve 26 in the closed state while controlling the flow path switching valve 25 in the second state. As a result, the pressure at the suction port 20a of the compressor 20 is reduced, and the differential pressure between the suction port 20a and the discharge port 20b of the compressor 20 can be further increased.
  • the flow path switching valve 25 may be configured by two on-off valves. In this case, one on-off valve is disposed between the pipe 41 and the pipe 42, and the other on-off valve is disposed between the pipe 41 and the pipe 48. Thereby, cost can be held down compared with a case where flow passage switching valve 25 is constituted by a three-way valve.
  • the flow of the refrigerant from the pipe 41 to the pipe 48 is limited to the low load cooling operation. Therefore, the on-off valve disposed between the pipe 41 and the pipe 48 can apply a smaller diameter valve than the on-off valve disposed between the pipe 41 and the pipe 42. As a result, the cost required for the flow path switching valve 25 can be further suppressed.
  • the branch point of the pipe 47 to which the pipe 50 is connected is between the supercooling heat exchanger 23 and the liquid pipe 49.
  • the branch point of the pipe 47 to which the pipe 50 is connected may be between the outdoor heat exchanger 22 and the subcooling heat exchanger 23.
  • the number of indoor units 3 is not limited.
  • the number of indoor units may be one to three, or five or more.
  • the air conditioner 1 includes an outdoor unit 2 including a compressor 20 and an outdoor heat exchanger 22, and at least one indoor unit 3 including an expansion valve 32 and an indoor heat exchanger 31. And a main circuit 4 for circulating the refrigerant to the compressor 20, the outdoor heat exchanger 22, the expansion valve 32, and the indoor heat exchanger 31.
  • Main circuit 4 includes a first flow path between outdoor heat exchanger 22 and expansion valve 32.
  • the air conditioner 1 further includes a subcooling heat exchanger 23 for subcooling the refrigerant flowing in the first flow path.
  • the main circuit 4 is a flow path between the indoor heat exchanger 31 and the compressor 20, a second flow path not passing through the subcooling heat exchanger 23, and a third flow path passing through the subcooling heat exchanger 23. including.
  • the air conditioning apparatus 1 further includes a flow path switching valve 25, a bypass circuit 5, a bypass adjusting valve 26, and a control device 60.
  • the passage switching valve 25 switches the passage between the indoor heat exchanger 31 and the compressor 20 to either the second passage or the third passage.
  • the bypass circuit 5 branches from the first flow path, and joins the main circuit 4 through the subcooling heat exchanger 23.
  • the bypass control valve 26 is provided in the bypass circuit 5.
  • the control device controls the flow path switching valve 25 and the bypass adjustment valve 26.
  • the control device 60 sets the flow path between the indoor heat exchanger 31 and the compressor 20 in the cooling operation.
  • the flow control valve 25 is controlled to switch to the second flow path, and the bypass control valve 26 is opened.
  • the control device 60 causes the flow passage between the indoor heat exchanger 31 and the compressor 20 to switch to the third flow passage when the parameter indicates that the refrigerant flow rate is smaller than the reference value in the cooling operation.
  • the path switching valve 25 is controlled and the bypass adjusting valve 26 is closed.
  • the flow passage between the indoor heat exchanger 31 and the compressor 20 is switched to a third flow passage that does not pass through the subcooling heat exchanger 23.
  • the increase in the pressure loss in the flow path between the indoor heat exchanger 31 and the compressor 20 can be suppressed.
  • the efficiency of the air conditioner 1 is improved.
  • an air conditioner capable of suppressing an increase in pressure loss between the indoor heat exchanger and the compressor and suppressing the generation of refrigerant noise in the expansion valve. Furthermore, such effects are exhibited by simple parts such as the flow path switching valve 25, the bypass adjusting valve 26, and the pipe, and an increase in the manufacturing cost of the air conditioner 1 can also be suppressed.
  • the parameter may be the operating frequency of the compressor 20.
  • the air conditioner 1 may include a plurality of indoor units 3, and the parameter may be the number of indoor units 3 in operation among the plurality of indoor units 3.
  • the compressor 20 is formed with a suction port 20a for sucking the refrigerant and a discharge port 20b for discharging the refrigerant.
  • the main circuit 4 includes a pipe (first pipe) 41 configured to communicate with the indoor heat exchanger 31, and a pipe (second pipe) 42 configured not to pass through the subcooling heat exchanger 23. And a pipe (third pipe) 48 configured to pass through the subcooling heat exchanger 23 and to be in communication with the suction port 20a.
  • the outdoor unit 2 communicates the pipe 42 with the suction port 20a and communicates the outdoor heat exchanger 22 with the discharge port 20b in the cooling operation, and communicates the pipe 42 with the discharge port 20b in the heating operation.
  • the control device 60 controls the flow path switching valve 25 so that the pipe 41 is in communication with the pipe 42 after the pipe 41 is in communication with the pipe 48.
  • the pipe 41 when switching from the cooling operation to the heating operation, the pipe 41 is once communicated with the pipe 48. At this time, the pipe 42 is closed. Therefore, the refrigerant compressed by the compressor 20 remains in the pipe 42. As a result, the differential pressure between the suction port 20a and the discharge port 20b of the compressor 20 increases, and the four-way valve 24 can be operated normally.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Fluid Mechanics (AREA)
  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)

Abstract

空気調和装置(1)は、室外熱交換器(22)と膨張弁(32)との間の第1流路を流れる冷媒を過冷却するための過冷却熱交換器(23)と、室内熱交換器(31)と圧縮機(20)との間の流路を、過冷却熱交換器(23)を通らない第2流路と過冷却熱交換器(23)を通る第3流路とのいずれかに切り換える流路切換弁(25)と、第1流路から分岐し、過冷却熱交換器(23)を通って主回路(4)に合流するバイパス回路(5)と、バイパス回路(5)に設けられるバイパス調整弁(26)と、制御装置(60)とを備える。制御装置(60)は、冷房運転において、低負荷ではないときに、第2流路を選択するとともに、バイパス調整弁(26)を開き、低負荷のときに、第3流路を選択するとともに、バイパス調整弁(26)を閉じる。

Description

空気調和装置
 本開示は、空気調和装置に関し、特に冷房運転のときに膨張弁の上流側の冷媒を過冷却するための熱交換器を備えた空気調和装置に関する。
 従来、1台の室外ユニットに対し複数台の室内ユニットが互いに並列に接続された空気調和装置が知られている。このような空気調和装置では、室内ユニットに膨張弁が配置される。膨張弁には液相冷媒のみが流入することが望ましい。液相と気相が共存する二相冷媒が膨張弁に流入すると、液相と気相とが交互に不連続に通過するため圧力変動が生じ、膨張弁から冷媒音が発生する。このような冷媒音の発生を抑制するために、膨張弁の上流側の冷媒を過冷却するための熱交換器を設ける技術が開発されている。
 たとえば、特開2001-317832号公報(特許文献1)には、冷房運転のときに、室外熱交換器から膨張弁に流れる高圧の冷媒と、室内熱交換器から圧縮機に流れる低圧の冷媒との間で熱交換させて、高圧の冷媒を過冷却させる過冷却熱交換器が開示されている。
 特開平10-68553号公報(特許文献2)には、凝縮器と膨張弁との間において主回路から分岐し、キャピラリチューブを通過した低圧のバイパス流冷媒と、主回路を流れる高圧の主流冷媒との間で熱交換させて、主流冷媒を過冷却させる過冷却熱交換器が開示されている。
特開2001-317832号公報 特開平10-68553号公報
 特開2001-317832号公報に記載の技術では、室内熱交換器から圧縮機までの流路が過冷却熱交換器を通るため、冷房負荷が大きくなると、当該流路における圧力損失が増大する。当該圧力損失を抑制するには、過冷却熱交換器を大型化する必要があり、過冷却熱交換器に要するコストが増大する。
 特開平10-68553号公報に記載の技術では、室内熱交換器から圧縮機までの流路が過冷却熱交換器を通らないため、当該流路における圧力損失の増大を抑制できる。しかしながら、循環する主流冷媒の一部がバイパス流冷媒として過冷却熱交換器を通過するため、冷房負荷が小さくなった場合には、過冷却熱交換器から膨張弁までの主流冷媒の流量が少なくなりすぎる。その結果、過冷却熱交換器から膨張弁までの配管を主流冷媒が流れる際に、主流冷媒が当該配管を介して外気から受ける吸熱量が大きくなり、膨張弁の入口において冷媒の一部が気相となり、膨張弁から冷媒音が発生する可能性がある。
 本開示の目的は、室内熱交換器と圧縮機との間の圧力損失の増大を抑制するとともに、膨張弁における冷媒音の発生を抑制することが可能な空気調和装置を提供することである。
 本開示の空気調和装置は、圧縮機と室外熱交換器とを含む室外ユニットと、膨張弁と室内熱交換器とを含む少なくとも1台の室内ユニットと、圧縮機、室外熱交換器、膨張弁および室内熱交換器に冷媒を循環させる主回路とを備える。主回路は、室外熱交換器と膨張弁との間の第1流路を含む。空気調和装置は、第1流路を流れる冷媒を過冷却するための過冷却熱交換器をさらに備える。主回路は、室内熱交換器と圧縮機との間の流路として、過冷却熱交換器を通らない第2流路と、過冷却熱交換器を通る第3流路とを含む。空気調和装置は、流路切換弁と、バイパス回路と、バイパス調整弁と、制御装置とをさらに備える。流路切換弁は、室内熱交換器と圧縮機との間の流路を、第2流路と第3流路とのいずれかに切り換える。バイパス回路は、第1流路から分岐し、過冷却熱交換器を通って主回路に合流する。バイパス調整弁は、バイパス回路に設けられる。制御装置は、流路切換弁とバイパス調整弁とを制御する。制御装置は、冷房運転において、主回路の冷媒流量に相関するパラメータが基準値よりも冷媒流量が多いことを示すときに、室内熱交換器と圧縮機との間の流路を第2流路に切り換えるように流路切換弁を制御するとともに、バイパス調整弁を開く。制御装置は、冷房運転において、パラメータが基準値よりも冷媒流量が少ないことを示すときに、室内熱交換器と圧縮機との間の流路を第3流路に切り換えるように流路切換弁を制御するとともに、バイパス調整弁を閉じる。
 本開示によれば、パラメータが基準値よりも冷媒流量が少ないことを示す低負荷の場合には、バイパス調整弁が閉じられるため、過冷却熱交換器から膨張弁までの間の冷媒の吸熱量を抑えることができ、膨張弁から発生する冷媒音を抑制できる。パラメータが基準値よりも冷媒流量が多いことを示す低負荷ではない場合には、室内熱交換器と圧縮機との間の流路が、過冷却熱交換器を通らない第3流路に切り換えられる。これにより、室内熱交換器と圧縮機との間の流路における圧力損失の増大を抑制できる。以上から、室内熱交換器と圧縮機との間の圧力損失の増大を抑制するとともに、膨張弁における冷媒音の発生を抑制することが可能な空気調和装置を提供することができる。
実施の形態に係る空気調和装置を示す図である。 空気調和装置の運転モードと、四方弁、流路切換弁およびバイパス調整弁の状態との関係を示す図である。 第1冷房運転モードにおける主回路およびバイパス回路を示す図である。 第2冷房運転モードにおける主回路を示す図である。 冷房運転のときの、第1流路における過冷却熱交換器を通過直後の冷媒のエンタルピーを示すグラフである。 冷房運転のときの、冷媒が液管を流れるときの吸熱量を示すグラフである。 冷房運転のときの、膨張弁の入口における冷媒のエンタルピーを示すグラフである。 低負荷ではないときの冷房運転における、室内熱交換器と圧縮機との間の流路における圧力損失の低減量を示すグラフである。 暖房運転モードにおける主回路およびバイパス回路を示す図である。
 以下、本開示の実施の形態について、図面を参照しながら詳細に説明する。以下では、複数の実施の形態について説明するが、各実施の形態で説明された構成を適宜組合わせることは出願当初から予定されている。なお、図中同一又は相当部分には同一符号を付してその説明は繰返さない。
 図1は、実施の形態に係る空気調和装置1を示す図である。図1を参照して、空気調和装置1は、圧縮機20と室外熱交換器22とを含む室外ユニット2と、膨張弁32と室内熱交換器31とを含む複数の室内ユニット3とを備える。圧縮機20には、冷媒を吸入するための吸入口20aと、冷媒を吐出するための吐出口20bとが形成されている。空気調和装置1は、圧縮機20、室外熱交換器22、膨張弁32および室内熱交換器31に冷媒を循環させる主回路4をさらに備える。
 空気調和装置1は、さらに、アキュムレータ21と、過冷却熱交換器23と、四方弁24と、流路切換弁25と、バイパス調整弁26と、主回路4から分岐して主回路4に戻るバイパス回路5とを備える。本実施の形態では、アキュムレータ21と、過冷却熱交換器23と、四方弁24と、流路切換弁25と、バイパス調整弁26と、バイパス回路5とは、室外ユニット2内に配置される。ただし、これらの構成の一部が室外ユニット2の外部に配置されてもよい。四方弁24には、4つのポートE~Hが形成される。流路切換弁25は三方弁であり、流路切換弁25には3つのポートE~Gが形成される。
 主回路4は、室外ユニット2内に配置された管41~48と、室外ユニット2と複数の室内ユニット3とを接続するガス管40および液管49とを含む。主回路4は、運転モードに応じて変更される。バイパス回路5は、管48,50を含む。管48は、一部の運転モードでは主回路4を構成し、他の運転モードではバイパス回路5を構成する。
 管(第1管)41は、ガス管40と流路切換弁25のポートEとを接続する。管(第2管)42は、流路切換弁25のポートFと四方弁24のポートEとを接続する。管43は、四方弁24のポートFと圧縮機20の吐出口20bとを接続する。管44は、四方弁24のポートGと室外熱交換器22のポートP1とを接続する。管45は、四方弁24のポートHとアキュムレータ21の冷媒入口とを接続する。管46は、アキュムレータ21の冷媒出口と圧縮機20の吸入口20aとを接続する。管47は、室外熱交換器22のポートP2と液管49とを接続し、過冷却熱交換器23を通る。
 管48は、流路切換弁25のポートGと管45の分岐点とを接続し、過冷却熱交換器23を通る。
 管50は、管47における過冷却熱交換器23と液管49との間の分岐点と、管48における流路切換弁25のポートGと過冷却熱交換器23との間の分岐点とを接続する。管50と管48の一部とによって構成されるバイパス回路5は、管47から分岐し、過冷却熱交換器23を通って管47との間で熱交換を行ない、主回路4を構成する管45に合流する。
 ガス管40は、一端が室外ユニット2の管41に接続されたガス主管40aと、ガス主管40aの他端から分岐する複数のガス枝管40bとを有する。ガス枝管40bの個数は、室内ユニット3の個数と一致する。ガス枝管40bは、ガス主管40aと、対応する室内ユニット3とを接続する。ガス主管40aの内径は、ガス枝管40bの内径よりも大きい。
 液管49は、一端が室外ユニット2の管47に接続された液主管49aと、液主管49aの他端から分岐する複数の液枝管49bとを有する。液枝管49bの個数は、室内ユニット3の個数と一致する。液枝管49bは、液主管49aと、対応する室内ユニット3とを接続する。液主管49aの内径は、液枝管49bの内径よりも大きい。
 複数の室内ユニット3の各々は、室内熱交換器31と膨張弁32とを含む。室内熱交換器31のポートP3は、対応するガス枝管40bに接続される。室内熱交換器31のポートP4は、膨張弁32を介して、対応する液枝管49bに接続される。なお、膨張弁32は、液枝管49bに設けられてもよい。
 空気調和装置1は、図示しない圧力センサと、図示しない温度センサと、制御装置60とをさらに含む。本実施の形態では、制御装置60は、室外ユニット2内に配置される。ただし、制御装置60は、室外ユニット2の外部に配置されてもよい。
 制御装置60は、CPU(Central Processing Unit)、記憶装置、入出力バッファ等を含む(いずれも図示せず)。制御装置60は、冷房運転の場合に、冷房負荷が基準よりも低いか否かを判定する。具体的には、制御装置60は、主回路4の冷媒流量に相関するパラメータと基準値とを対比し、パラメータが基準値よりも冷媒流量が少ないことを示す場合に低負荷であると判定し、パラメータが基準値よりも冷媒流量が多いことを示す場合に低負荷ではないと判定する。本実施の形態では、制御装置60は、当該パラメータとして、複数の室内ユニット3のうちの運転中の室内ユニット3の台数を用いる。制御装置60は、運転中の室内ユニット3の台数が基準値よりも小さい場合に低負荷であると判定し、運転中の室内ユニット3の台数が基準値よりも大きい場合に低負荷ではないと判定する。
 制御装置60は、上記の判定結果とユーザから与えられる運転指令信号と各種センサの出力とに応じて、圧縮機20と、四方弁24と、膨張弁32と、流路切換弁25と、バイパス調整弁26との制御を行なう。なお、この制御については、ソフトウェアによる処理に限られず、専用のハードウェア(電子回路)で処理することも可能である。
 アキュムレータ21は、管45を流れる冷媒から液相冷媒を分離する。圧縮機20は、アキュムレータ21を通過した気相冷媒を吸入口20aから吸入して圧縮し、圧縮した冷媒を吐出口20bから吐出する。圧縮機20は、制御装置60から受ける制御信号によって運転周波数を変更するように構成される。圧縮機20の運転周波数を変更することにより圧縮機20の出力が調整される。具体的には、圧縮機20は、空調負荷(冷房負荷または暖房負荷)が高くなるほど運転周波数を大きくなるように制御される。空調負荷が高くなることは、主回路4の冷媒流量が多くなることを意味する。圧縮機20には種々のタイプ、たとえば、ロータリータイプ、往復タイプ、スクロールタイプ、スクリュータイプ等のものを採用することができる。
 室外熱交換器22は、冷媒と室外空気とを熱交換させる。室外熱交換器22は、冷房運転の場合に凝縮器として機能し、暖房運転の場合に蒸発器として機能する。
 過冷却熱交換器23は、主回路4のうちの室外熱交換器22と膨張弁32との間の第1流路を流れる冷媒を過冷却する。具体的には、過冷却熱交換器23は、第1流路を構成する管47を流れる高圧の冷媒と、管48を流れる低圧の冷媒との間で熱交換させ、管47を流れる冷媒を過冷却する。
 室内熱交換器31は、冷媒と室内空気とを熱交換させる。室内熱交換器31は、冷房運転の場合に蒸発器として機能し、暖房運転の場合に凝縮器として機能する。
 四方弁24は、制御装置60から受ける制御信号によって冷房運転状態および暖房運転状態のいずれかになるように制御される。冷房運転状態は、ポートEとポートHとが連通し、ポートFとポートGとが連通する状態である。暖房運転状態は、ポートEとポートFとが連通し、ポートHとポートGとが連通する状態である。言い換えると、四方弁24は、冷房運転の場合に、管45、アキュムレータ21および管46を介して、管42を圧縮機20の吸入口20aに連通させ、管44,43を介して、室外熱交換器22のポートP1を圧縮機20の吐出口20bに連通させる。四方弁24は、暖房運転のときに、管44,43を介して、管42を圧縮機20の吐出口20bに連通させ、管45、アキュムレータ21および管46を介して、室外熱交換器22のポートP1を圧縮機20の吸入口20aに連通させる。
 膨張弁32は、制御装置60から受ける制御信号によって開度が制御される。たとえば、冷房運転の場合に、室内熱交換器31のポートP3の冷媒の過熱度が適切な範囲になるように膨張弁32の開度が制御される。
 流路切換弁25は、制御装置60から受ける制御信号に基づいて、室内熱交換器31と圧縮機20との間の流路を、過冷却熱交換器23を通らない第2流路と、過冷却熱交換器23を通る第3流路とのいずれかに切り換える。流路切換弁25は、制御信号に従って、第1状態および第2状態のいずれかになるように制御される。第1状態は、ポートEとポートFとが連通し、ポートGが閉止する状態である。第2状態は、ポートEとポートGとが連通し、ポートFが閉止する状態である。言い換えると、流路切換弁25は、管41を管42と管48とのいずれか一方に連通させ、管42と管48とのいずれか他方を閉止させるように構成される。流路切換弁25が第1状態に制御されることにより、室内熱交換器31と圧縮機20との間の流路が、過冷却熱交換器23を通らない第2流路に切り換えられる。流路切換弁25が第2状態に制御されることにより、室内熱交換器31と圧縮機20との間の流路が、過冷却熱交換器23を通る第3流路に切り換えられる。
 バイパス調整弁26は、バイパス回路5を構成する管50に設けられる。バイパス調整弁26は、過冷却熱交換器23の上流側に配置される。バイパス調整弁26は、制御装置60から受ける制御信号によって、開状態および閉状態のいずれかに制御される。バイパス調整弁26は、開状態に制御される場合、全開を除く開度に設定される。バイパス調整弁26が開状態に制御されることにより、管47から分岐された冷媒は、バイパス調整弁26によって減圧され、過冷却熱交換器23を通過する。バイパス調整弁26が閉状態に制御されると、バイパス回路5が閉止される。
 図2は、空気調和装置1の運転モードと、四方弁24、流路切換弁25およびバイパス調整弁26の状態との関係を示す図である。運転モードには、低負荷ではないときの冷房運転モードである第1冷房運転モード、低負荷のときの冷房運転モードである第2冷房運転モード、および暖房運転モードが含まれる。図2を参照して、四方弁24は、第1冷房運転モードおよび第2冷房運転モードのときに冷房運転状態に制御され、暖房運転モードのときに暖房運転状態に制御される。第1冷房運転モードのときに、流路切換弁25が第1状態に制御され、バイパス調整弁26が開状態に制御される。第2冷房運転モードのときに、流路切換弁25が第2状態に制御され、バイパス調整弁26が閉状態に制御される。暖房運転モードのときに、流路切換弁25が第1状態に制御され、バイパス調整弁26が閉状態に制御される。
 図3は、第1冷房運転モード(低負荷ではないときの冷房運転モード)における主回路4およびバイパス回路5を示す図である。図3を参照して、第1冷房運転モードにおける主回路4は、圧縮機20、管43、管44、室外熱交換器22、管47(途中で過冷却熱交換器23を通る)、液管49、膨張弁32、室内熱交換器31、ガス管40、管41、管42、管45、アキュムレータ21、および管46をこの順に循環する回路である。第1冷房運転モードにおいて、流路切換弁25は、室内熱交換器31と圧縮機20との間の流路を、過冷却熱交換器23を通らない第2流路に切り換える。第1冷房運転モードにおける第2流路は、ガス管40、管41、管42、管45、アキュムレータ21および管46を通る流路である。
 第1冷房運転モードでは、バイパス調整弁26が開状態に制御されるため、管50および管48によってバイパス回路5が構成される。すなわち、第1冷房運転モードでは、管48はバイパス回路5を構成する。これにより、管47を流れる冷媒の一部は、管47から分岐し、過冷却熱交換器23を通って管47を流れる冷媒との間で熱交換を行ない、主回路4を構成する管45に合流する。
 第1冷媒運転モードでは、圧縮機20は、管46から冷媒を吸入し、圧縮する。圧縮された冷媒は、管43および四方弁24を経由して管44へ流れる。室外熱交換器22は、管44を流れる冷媒を凝縮する。室外熱交換器22は、圧縮機20から吐出された高温高圧の過熱蒸気(冷媒)が室外空気と熱交換(放熱)を行なうように構成される。この熱交換により、冷媒は凝縮されて液化する。凝縮された冷媒は、管47を流れ、過冷却熱交換器23において管48を流れる冷媒と熱交換を行ない、過冷却される。管47において過冷却熱交換器23を通過した冷媒の一部は、管50および管48の一部によって構成されたバイパス回路5を通って、管45に合流する。管50を流れる冷媒は、バイパス調整弁26によって減圧される。減圧された冷媒は、管48を流れ、過冷却熱交換器23を通過する。管48を流れる冷媒は、管47を流れる冷媒よりも低圧低温であるため、管47に流れる冷媒から熱を奪う。これにより、管47を流れる冷媒が過冷却される。
 管47から液主管49aに流れ込んだ冷媒は、複数の液枝管49bに分岐して流れる。複数の室内ユニット3を備える空気調和装置1では、液主管49aの内径および表面積が大きい。さらに、室内ユニット3の配置場所によっては、液主管49aおよび液枝管49bが長くなる。そのため、液管49を流れる冷媒は、液管49を介して外気から多少吸熱する。冷媒が液管49を流れる際の吸熱量は、液管49の冷媒流量に関係している。冷媒流量が多いほど、液管49を通過する時間が短くなり、吸熱量が少なくなる。
 膨張弁32は、液枝管49bを流れる冷媒を減圧する。室内熱交換器31は、膨張弁32を通過した冷媒を蒸発させる。室内熱交換器31は、膨張弁32により減圧された冷媒が室内空気と熱交換(吸熱)を行ない蒸発するように構成される。蒸発した冷媒は、ガス管40を経由して室外ユニット2に流入する。
 室外ユニット2に流入した冷媒は、管41、流路切換弁25、管42、四方弁24、管45、アキュムレータ21および管46を経由して、圧縮機20に到達する。
 このように、第1冷房運転モードでは、過冷却熱交換器23は、管47を流れる冷媒と、管47から分岐したバイパス回路5を流れる冷媒との間で熱交換を行ない、管47を流れる冷媒を過冷却する。低負荷ではないため、液管49の冷媒流量がある程度確保され、液管49を流れる冷媒の吸熱量も少なくてすむ。そのため、膨張弁32の入口における冷媒中の気相量が低減し、膨張弁32から発生する冷媒音を抑制できる。
 さらに、室内熱交換器31と圧縮機20との間の流路が、過冷却熱交換器23を通らない第2流路に切り換えられるため、室内熱交換器31と圧縮機20との間の流路における圧力損失の増大を抑制することができる。
 図4は、第2冷房運転モード(低負荷のときの冷房運転モード)における主回路4を示す図である。図4では、複数の室内ユニット3のうち1台のみが運転中である場合が示される。図4を参照して、第2冷房運転モードにおける主回路4は、圧縮機20、管43、管44、室外熱交換器22、管47(途中で過冷却熱交換器23を通る)、液管49、膨張弁32、室内熱交換器31、ガス管40、管41、管48、管45、アキュムレータ21、および管46をこの順に循環する回路である。第2冷房運転モードにおいて、流路切換弁25は、室内熱交換器31と圧縮機20との間の流路を、過冷却熱交換器23を通って管47との間で熱交換を行なう第3流路に切り換える。第2冷房運転モードにおける第3流路は、ガス管40、管41、管48、管45、アキュムレータ21、および管46を通る流路である。第2冷房運転モードでは、管48は主回路4を構成する。
 第2冷房運転モードにおける圧縮機20から管47までの流路は、図3に示す第1冷媒運転モードにおける圧縮機20から管47までの流路と同一である。そのため、圧縮機20から管47までの流路の詳細な説明を省略する。バイパス調整弁26が閉状態に制御されるため、過冷却熱交換器23によって過冷却された冷媒の全量が液主管49aに流れ込む。停止中の室内ユニット3の膨張弁32が閉止されるため、液主管49aを流れる冷媒は、運転中の室内ユニット3に対応する液枝管49bを通り、膨張弁32によって減圧される。室内熱交換器31は、膨張弁32を通過した冷媒を蒸発させる。蒸発した冷媒は、ガス管40を経由して室外ユニット2へ流入する。
 室外ユニット2に流入した冷媒は、管41、流路切換弁25、管48および管45を経由してアキュムレータに流れる。過冷却熱交換器23は、管47を流れる高温高圧の冷媒と、管48を流れる低温低圧の冷媒との間で熱交換を行ない、管47を流れる冷媒を過冷却する。室内熱交換器31を通過した冷媒の全量が過冷却熱交換器23を通過するものの、低負荷であるために主回路4の冷媒流量がそもそも少ない。そのため、室内熱交換器31と圧縮機20との間の流路における圧力損失の増大は抑制される。
 バイパス調整弁26が閉状態に制御されるため、管47に流れる冷媒の全量が液管49を流れる。そのため、液管49の冷媒流量が極端に少なくなることを避けることができ、液管49を通過する冷媒の吸熱量が増大することを抑制できる。その結果、膨張弁32の入口における冷媒中の気相量が低減し、膨張弁32から発生する冷媒音を抑制できる。
 さらに、ガス管40を通過した冷媒は、過冷却熱交換器23において熱吸収を行なう。これにより、ガス管40を流れる冷媒が二相共存状態であったとしても、管48における過冷却熱交換器23の下流側を流れる冷媒を気相状態にすることができる。その結果、圧縮機20に液相冷媒が流入する液バックを抑制できる。また、室内熱交換器31の出口の冷媒を二相共存状態にすることにより、室内熱交換器31の温度分布ムラを低減できる。その結果、室内熱交換器31の温度分布ムラに起因する露飛びを抑制できる。
 図5は、冷房運転のときの、第1流路を構成する管47における過冷却熱交換器23を通過直後の冷媒のエンタルピーを示すグラフである。図5に示すグラフにおいて、横軸は、主回路4における冷媒の全流量のうちバイパス調整弁26を通過する冷媒流量の比(以下、バイパス比という)を示し、縦軸は、管47における過冷却熱交換器23を通過直後の冷媒のエンタルピーを示す。
 図6は、冷房運転のときの、冷媒が液管49を流れるときの吸熱量を示すグラフである。図6に示すグラフにおいて、横軸はバイパス比を示し、縦軸は、冷媒が液管49を流れるときの吸熱量を示す。
 図7は、冷房運転のときの、膨張弁32の入口における冷媒のエンタルピーを示すグラフである。図7に示すグラフにおいて、横軸はバイパス比を示し、縦軸は、膨張弁32の入口における冷媒のエンタルピーを示す。
 図5,7に示すグラフにおいて、線A,Bは、流路切換弁25を第1状態とし、バイパス調整弁26を開状態にしたときの、バイパス比に対するエンタルピーの変化を示す。線Aは、低負荷のときのエンタルピーの変化を示し、線Bは、低負荷ではないのときのエンタルピーの変化を示す。丸C,Dは、流路切換弁25を第2状態とし、バイパス調整弁26を閉状態にしたときのエンタルピーを示す。丸Cは、低負荷のときのエンタルピーを示し、丸Dは、低負荷ではないときのエンタルピーを示す。
 同様に、図6に示すグラフにおいて、線A,Bは、流路切換弁25を第1状態とし、バイパス調整弁26を開状態にしたときの、バイパス比に対する吸熱量の変化を示す。線Aは、低負荷のときの吸熱量の変化を示し、線Bは、低負荷ではないのときの吸熱量の変化を示す。丸C,Dは、流路切換弁25を第2状態とし、バイパス調整弁26を閉状態にしたときの吸熱量を示す。丸Cは、低負荷のときの吸熱量を示し、丸Dは、低負荷ではないときの吸熱量を示す。
 図5の線A,Bに示されるように、バイパス比が大きくなるにつれ、管47における過冷却熱交換器23を通過直後の冷媒のエンタルピーは減少する。これは、バイパス比が大きくなると、管48の冷媒流量が増え、過冷却熱交換器23における熱交換量が増大するためである。
 さらに、低負荷ではないときの管47における過冷却熱交換器23を通過直後の冷媒のエンタルピー(線Bおよび丸D)は、低負荷のときの管47における過冷却熱交換器23を通過直後の冷媒のエンタルピー(線Aおよび丸C)よりも小さい。これは、低負荷ではないときに主回路4における冷媒の全流量が低負荷のときの全流量よりも多いため、低負荷ではないときの管48の冷媒流量が低負荷のときに管48の冷媒流量よりも多くなるためである。
 図6の線Aに示されるように、バイパス比が大きくなるにつれ、冷媒が液管49を流れるときの吸熱量は急激に増大する。これは、低負荷のときには主回路4の冷媒流量がそもそも少ないのに加え、管47から管50に冷媒が分岐して流れるため、液管49の冷媒流量が極端に少なくなるからである。液管49の冷媒流量が極端に少なくなると、冷媒が液管49を通過するのに要する時間が長くなり、吸熱量が急激に多くなる。一方、低負荷ではないときには、主回路4の冷媒流量が多いため、バイパス比が大きくなったとしても、液管49の冷媒流量をある程度確保できる。そのため、線Bの傾きは、線Aの傾きに比べて小さい。線A,Bの傾きは、バイパス比の増加量に対する吸熱量の増大量の傾きを示す。
 図6の丸C,Dの吸熱量は、線A,Bにおいてバイパス比を0としたときの冷媒が液管49を流れるときの吸熱量にぞれぞれ一致する。
 膨張弁32の入口における冷媒のエンタルピーは、管47における過冷却熱交換器23を通過直後の冷媒のエンタルピーと、冷媒が液管49を流れるときの吸熱量との和に相関する。
 図5~7において、線Aにおけるバイパス比が0の点aは、過冷却熱交換器23を通る管48に冷媒が流れない場合の値を示す。すなわち、室外熱交換器22によって凝縮された冷媒が過冷却熱交換器23によって過冷却されずに膨張弁32まで到達する。低負荷では、管47における過冷却熱交換器23を通過直後の冷媒が液相であっても、冷媒が液管49を流れるときの吸熱量が大きいために、膨張弁32の入口における冷媒は、気相と液相とが共存する二相状態となる(図7の点a参照)。さらに、図6の線Aに示されるように、低負荷では、バイパス比が大きくなるにつれ、冷媒が液管49を流れるときの吸熱量は急激に増大する。そのため、図7の線Aに示されるように、低負荷では、バイパス比が大きくなるにつれ、膨張弁32の入口における冷媒のエンタルピーが急激に増大する。
 これに対し、図7の丸Cのエンタルピーは、線Aのエンタルピーよりも小さく、液相であることを示している。これは、図6の丸Cの吸熱量が点aの吸熱量と同じであるものの、図5の丸Cのエントロピーが図5の点aのエンタルピーよりも小さいためである。そのため、低負荷の場合、膨張弁32の入口において気相の混入を低減し、膨張弁32から発生する冷媒音を抑制するためには、流路切換弁25を第2状態とし、バイパス調整弁26を閉状態に制御することが好ましい。
 図7に示されるように、線Bは、いずれのバイパス比においても、線Aおよび丸Cよりも小さいエンタルピーを示す。これは、図6に示されるように、低負荷ではないときに冷媒が液管49を流れるときの吸熱量(線B)が、低負荷のときに冷媒が液管49を流れるときの吸熱量(線A)よりも小さいためである。また、図5の線Bの傾きの絶対値は、図6の線Bの傾きの絶対値よりも大きい。そのため、低負荷ではない場合、図7の線Bに示されるように、バイパス比が大きくなるにつれ、膨張弁32の入口における冷媒のエンタルピーは減少する。また、図7の丸Dのエンタルピーは、線Bのエンタルピーよりも小さくなる。以上から、低負荷ではない場合には、流路切換弁25を第1状態、かつバイパス調整弁26を開状態に制御しても、流路切換弁25を第2状態、かつバイパス調整弁26を閉状態に制御しても、膨張弁32の入口における気相の混入を低減でき、膨張弁から発生する冷媒音を抑制することができる。
 図8は、低負荷ではないときの冷房運転における、室内熱交換器31と圧縮機20との間の流路における圧力損失の低減量を示すグラフである。図8において、横軸はバイパス比を示し、縦軸は基準からの圧力損失の低減量を示す。ここで、圧力損失の低減量の基準は、低負荷ではない場合に、流路切換弁25を第2状態、かつバイパス調整弁26を閉状態に制御したときの室内熱交換器31と圧縮機20との間の流路の圧力損失であり、丸Dで示される。線Bは、低負荷ではない場合に、流路切換弁25を第1状態、かつバイパス調整弁26を開状態に制御したときの、バイパス比に対する圧力損失の低減量の変化を示す。
 図8に示されるように、低負荷ではない場合、バイパス比が0であっても、流路切換弁25を第1状態とすることにより、室内熱交換器31と圧縮機20との間の流路における圧力損失を低減させることができる(点b参照)。これは、当該流路が過冷却熱交換器23を通らないためである。バイパス比を大きくすることにより、室内熱交換器31の冷媒流量が少なくなるため、室内熱交換器31と圧縮機20との間の流路の圧力損失をさらに低減させることができる。
 このように、低負荷ではない場合には、室内熱交換器31と圧縮機20との間の流路の圧力損失を抑制するために、流路切換弁25を第1状態とし、バイパス調整弁26を開状態に制御することが好ましい。バイパス比は、膨張弁32の入口のエンタルピー(図7の線B参照)および圧力損失の低減量(図8の線B参照)が適切な範囲内になるように設定される。本実施の形態では、図7,8に示すバイパス比rに設定される。
 なお、低負荷の場合には、そもそも室内熱交換器31の冷媒流量が少ないため、流路切換弁25を第1状態に制御した場合と第2状態に制御した場合とで、室内熱交換器31と圧縮機20との間の流路の圧力損失に大きな差がない。
 以上のように、低負荷のときの冷房運転では、膨張弁32から発生する冷媒音を抑制するためには、バイパス調整弁26を閉止させることが好ましい。このとき、過冷却熱交換器23において管47の冷媒を過冷却させるためには、流路切換弁25を第2状態にする必要がある。そのため、低負荷のときには、図4に示される主回路4に切り換えられる。
 一方、低負荷ではないとの冷房運転では、室内熱交換器31と圧縮機20との間の流路の圧力損失を抑制するために、流路切換弁25を第1状態に制御することが好ましい。このとき、過冷却熱交換器23において管47の冷媒を過冷却させるためには、バイパス調整弁26を開状態に制御する必要がある。そのため、低負荷ではないときには、図3に示される主回路4およびバイパス回路5に切り換えられる。
 図9は、暖房運転モードのときの主回路4およびバイパス回路5を示す図である。図9を参照して、暖房運転モードにおける主回路4は、圧縮機20、管43、管42、管41、ガス管40、室内熱交換器31、膨張弁32、液管49、管47、室外熱交換器22、管44、管45、アキュムレータ21、および管46をこの順に循環する回路である。暖房運転モードにおいて、流路切換弁25は、室内熱交換器31と圧縮機20との間の流路を、過冷却熱交換器23を通らない第2流路に切り換える。暖房運転モードにおける第2流路は、管43、管42、管41およびガス管40を通る流路である。
 暖房運転モードでは、第1冷房運転モードと同様にバイパス調整弁26が閉状態に制御される。暖房運転モードでは、過冷却熱交換器23において熱交換を行なわない。
 暖房運転モードでは、圧縮機20は、管46から冷媒を吸入し、圧縮する。圧縮された冷媒は、管43および四方弁24を経由して管42へ流れる。流路切換弁25が第1状態に制御されているため、管42を流れる冷媒は、流路切換弁25、管41およびガス管40を経由して室内熱交換器31(凝縮器)に達する。室内熱交換器31は、冷媒を凝縮する。室内熱交換器31により凝縮された冷媒は、膨張弁32により減圧され、液管49を経由して室外ユニット2の管47に流れ込む。
 一般に暖房運転では冷媒運転に比べて主回路4の冷媒流量が少なく、余剰の冷媒はアキュムレータ21に溜まる。そのため、暖房負荷の大きさにかかわらず、圧縮機20から室内熱交換器31までの流路における圧力損失の増大を抑制できる。
 また、暖房運転では室内熱交換器31が凝縮器として機能する。室内熱交換器31の出口(ここではポートP4)から膨張弁32までの距離が短いため、当該距離を通過する冷媒の吸熱量は無視できる。そのため、室内熱交換器31のポートP4において冷媒がある程度の過冷却度を満たすように室内熱交換器31において熱交換させることにより、膨張弁32の入口における気相の混入を低減できる。その結果、膨張弁32から発生する冷媒音を抑制できる。
 変形例.
 上記の説明では、制御装置60は、複数の室内ユニット3のうち運転中の室内ユニット3の台数が基準値よりも大きいか否かに基づいて、低負荷か否かを判定した。しかしながら、制御装置60は、主回路4の冷媒流量と相関する別のパラメータを用いて、冷房負荷が基準よりも低いか否かを判定してもよい。たとえば、制御装置60は、圧縮機20の運転周波数と基準値とを対比し、運転周波数が基準値よりも小さい場合に低負荷であると判定し、運転周波数が基準値よりも大きい場合に低負荷ではないと判定すればよい。
 四方弁24として、圧縮機20の吸入口20aと吐出口20bとの差圧に基づいて、冷房運転状態と暖房運転状態とを切り換える差圧駆動式四方弁を用いることができる。差圧駆動式四方弁は、内部に弁室が形成された本体と、弁室内を摺動する一対のピストンと、一対のピストン間に固定された弁体とを含む。圧縮機20の吸入口20aと吐出口20bとの差圧に応じて一対のピストンを移動させることにより、冷媒の流路が切り換えられる。差圧駆動式四方弁を用いる場合、冷房運転から暖房運転への切り換えの際に、吸入口20aと吐出口20bとの差圧が十分にないと、弁体が完全に移動せずに途中で止まってしまうことがある。そこで、冷房運転から暖房運転に切り換える際に、制御装置60は、第2状態にした後に第1状態にするように流路切換弁25を制御する。言い換えると、制御装置60は、管41を管48に連通させた後に管41を管42に連通させるように流路切換弁25を制御する。流路切換弁25が第2状態であるとき、圧縮機20が吐出された冷媒は、管43および管42に留まる。そのため、圧縮機20の吸入口20aと吐出口20bとの差圧が大きくなり、差圧駆動式四方弁を正常に暖房運転状態に切り換えることができる。さらに、制御装置60は、流路切換弁25を第2状態に制御している間、膨張弁32およびバイパス調整弁26を閉状態に制御してもよい。これにより、圧縮機20の吸入口20aの圧力が低下し、圧縮機20の吸入口20aと吐出口20bとの差圧をさらに大きくすることができる。
 流路切換弁25は、2つの開閉弁により構成されてもよい。この場合、一方の開閉弁は、管41と管42との間に配置され、他方の開閉弁は、管41と管48との間に配置される。これにより、流路切換弁25を三方弁によって構成する場合に比べて、コストを抑えることができる。管41から管48に冷媒を流す場合は、低負荷の冷房運転時に限定される。そのため、管41と管48との間に配置される開閉弁は、管41と管42との間に配置される開閉弁よりも口径の小さい弁を適用することができる。その結果、流路切換弁25に要するコストをさらに抑えることができる。
 上記の説明では、管50が接続される管47の分岐点を、過冷却熱交換器23と液管49との間とした。しかしながら、管50が接続される管47の分岐点は、室外熱交換器22と過冷却熱交換器23との間であってもよい。
 図1には室内ユニット3の台数が4台である形態が示されているが、室内ユニット3の台数は限定されない。室内ユニットの台数は、1~3台であってもよく、5台以上であってもよい。
 最後に、再び図面を参照しつつ本実施の形態について総括する。図1を参照して、空気調和装置1は、圧縮機20と室外熱交換器22とを含む室外ユニット2と、膨張弁32と室内熱交換器31とを含む少なくとも1台の室内ユニット3と、圧縮機20、室外熱交換器22、膨張弁32および室内熱交換器31に冷媒を循環させる主回路4とを備える。主回路4は、室外熱交換器22と膨張弁32との間の第1流路を含む。空気調和装置1は、第1流路を流れる冷媒を過冷却するための過冷却熱交換器23をさらに備える。主回路4は、室内熱交換器31と圧縮機20との間の流路として、過冷却熱交換器23を通らない第2流路と、過冷却熱交換器23を通る第3流路とを含む。
 空気調和装置1は、流路切換弁25と、バイパス回路5と、バイパス調整弁26と、制御装置60とをさらに備える。流路切換弁25は、室内熱交換器31と圧縮機20との間の流路を、第2流路と第3流路とのいずれかに切り換える。バイパス回路5は、第1流路から分岐し、過冷却熱交換器23を通って主回路4に合流する。バイパス調整弁26は、バイパス回路5に設けられる。制御装置は、流路切換弁25とバイパス調整弁26とを制御する。制御装置60は、冷房運転において、主回路4の冷媒流量に相関するパラメータが基準値よりも冷媒流量が多いことを示すときに、室内熱交換器31と圧縮機20との間の流路を第2流路に切り換えるように流路切換弁25を制御するとともに、バイパス調整弁26を開く。制御装置60は、冷房運転において、パラメータが基準値よりも冷媒流量が少ないことを示すときに、室内熱交換器31と圧縮機20との間の流路を第3流路に切り換えるように流路切換弁25を制御するとともに、バイパス調整弁26を閉じる。
 上記の構成によれば、低負荷の場合には、バイパス調整弁26が閉じられるため、第1流路の冷媒流量が少なくなりすぎることを抑制できる。そのため、過冷却熱交換器23から膨張弁32までの間の冷媒の吸熱量を抑えることができ、膨張弁32の入口の気相量を低減できる。その結果、低負荷であっても、膨張弁32から発生する冷媒音を抑制できる。さらに、空気調和装置1の制御が安定する。なお、低負荷の場合には、主回路4における冷媒流量が少ないため、室内熱交換器31と圧縮機20との間の流路における圧力損失の増大を抑制できる。
 さらに、低負荷ではない場合には、室内熱交換器31と圧縮機20との間の流路が、過冷却熱交換器23を通らない第3流路に切り換えられる。これにより、室内熱交換器31と圧縮機20との間の流路における圧力損失の増大を抑制できる。その結果、過冷却熱交換器23を大型化する必要がなく、過冷却熱交換器23に要するコストを低く抑えることができる。さらに、空気調和装置1の効率が改善される。なお、低負荷ではない場合には、バイパス調整弁26が開かれることで、バイパス回路5を流れる冷媒と第1流路を流れる冷媒とが熱交換することにより、第1流路を流れる冷媒を過冷却することができる。これにより、膨張弁32の入口の気相量を低減でき、膨張弁32から発生する冷媒音を抑制できる。
 以上のように、室内熱交換器と圧縮機との間の圧力損失の増大を抑制するとともに、膨張弁における冷媒音の発生を抑制することが可能な空気調和装置を提供することができる。さらに、このような効果を流路切換弁25とバイパス調整弁26と管という簡単な部品で発揮させており、空気調和装置1の製造コストの増大も抑制できる。
 パラメータは圧縮機20の運転周波数であってもよい。もしくは、空気調和装置1が複数の室内ユニット3を備え、パラメータは、複数の室内ユニット3のうち運転中の室内ユニット3の台数であってもよい。
 圧縮機20には、冷媒を吸入するための吸入口20aと、冷媒を吐出するための吐出口20bとが形成されている。主回路4は、室内熱交換器31と連通するように構成された管(第1管)41と、過冷却熱交換器23を通らないように構成された管(第2管)42と、過冷却熱交換器23を通るとともに、吸入口20aに連通するように構成された管(第3管)48とを含む。室外ユニット2は、冷房運転の場合に、管42を吸入口20aに連通させるとともに、室外熱交換器22を吐出口20bに連通させ、暖房運転の場合に、管42を吐出口20bに連通させるとともに、室外熱交換器22を吸入口20aに連通させるように構成された四方弁24をさらに含む。四方弁24は、吸入口20aと吐出口20bとの差圧によって駆動される。流路切換弁25は、管41を管42と管48とのいずれか一方に連通させ、管42と管48とのいずれか他方を閉止させるように構成される。管41が管42と連通することにより第2流路が形成される。管41が管48と連通することにより第3流路が形成される。制御装置60は、冷房運転から暖房運転に切り換えるときに、管41を管48に連通させた後に管41を管42に連通させるように流路切換弁25を制御する。
 上記の構成によれば、冷房運転から暖房運転に切り換えるとき、管41を管48に一旦連通させる。このとき、管42が閉止される。そのため、圧縮機20によって圧縮された冷媒は管42に留まることとなる。これにより、圧縮機20の吸入口20aと吐出口20bとの差圧が大きくなり、四方弁24を正常に動作させることができる。
 今回開示された実施の形態は、すべての点で例示であって制限的なものではないと考えられるべきである。本発明の範囲は、上記した実施の形態の説明ではなくて請求の範囲によって示され、請求の範囲と均等の意味及び範囲内でのすべての変更が含まれることが意図される。
 1 空気調和装置、2 室外ユニット、3 室内ユニット、4 主回路、5 バイパス回路、20 圧縮機、20a 吸入口、20b 吐出口、21 アキュムレータ、22 室外熱交換器、23 過冷却熱交換器、24 四方弁、25 流路切換弁、26 バイパス調整弁、31 室内熱交換器、32 膨張弁、40 ガス管、40a ガス主管、40b ガス枝管、41~48,50 管、49 液管、49a 液主管、49b 液枝管、60 制御装置。

Claims (4)

  1.  圧縮機と室外熱交換器とを含む室外ユニットと、
     膨張弁と室内熱交換器とを含む少なくとも1台の室内ユニットと、
     前記圧縮機、前記室外熱交換器、前記膨張弁および前記室内熱交換器に冷媒を循環させる主回路とを備える空気調和装置であって、
     前記主回路は、前記室外熱交換器と前記膨張弁との間の第1流路を含み、
     前記空気調和装置は、前記第1流路を流れる冷媒を過冷却するための過冷却熱交換器をさらに備え、
     前記主回路は、前記室内熱交換器と前記圧縮機との間の流路として、前記過冷却熱交換器を通らない第2流路と、前記過冷却熱交換器を通る第3流路とを含み、
     前記空気調和装置は、
     前記室内熱交換器と前記圧縮機との間の流路を、前記第2流路と前記第3流路とのいずれかに切り換える流路切換弁と、
     前記第1流路から分岐し、前記過冷却熱交換器を通って前記主回路に合流するバイパス回路と、
     前記バイパス回路に設けられたバイパス調整弁と、
     前記流路切換弁と前記バイパス調整弁とを制御するための制御装置とをさらに備え、
     前記制御装置は、冷房運転において、
      前記主回路の冷媒流量に相関するパラメータが基準値よりも冷媒流量が多いことを示すときに、前記室内熱交換器と前記圧縮機との間の流路を前記第2流路に切り換えるように前記流路切換弁を制御するとともに、前記バイパス調整弁を開き、
      前記パラメータが前記基準値よりも冷媒流量が少ないことを示すときに、前記室内熱交換器と前記圧縮機との間の流路を前記第3流路に切り換えるように前記流路切換弁を制御するとともに、前記バイパス調整弁を閉じる、空気調和装置。
  2.  前記パラメータは前記圧縮機の運転周波数である、請求項1に記載の空気調和装置。
  3.  前記少なくとも1台の室内ユニットは複数の室内ユニットを含み、
     前記パラメータは、前記複数の室内ユニットのうち運転中の室内ユニットの台数である、請求項1に記載の空気調和装置。
  4.  前記圧縮機には、前記冷媒を吸入するための吸入口と、前記冷媒を吐出するための吐出口とが形成され、
     前記主回路は、
     前記室内熱交換器と連通するように構成された第1管と、
     前記過冷却熱交換器を通らないように構成された第2管と、
     前記過冷却熱交換器を通るとともに、前記吸入口に連通するように構成された第3管とを含み、
     前記室外ユニットは、冷房運転において、前記第2管を前記吸入口に連通させるとともに、前記室外熱交換器を前記吐出口に連通させ、暖房運転において、前記第2管を前記吐出口に連通させるとともに、前記室外熱交換器を前記吸入口に連通させるように構成された四方弁をさらに含み、
     前記四方弁は、前記吸入口と前記吐出口との差圧によって駆動され、
     前記流路切換弁は、前記第1管を前記第2管と前記第3管とのいずれか一方に連通させ、前記第2管と前記第3管とのいずれか他方を閉止させるように構成され、
     前記第1管が前記第2管と連通することにより前記第2流路が形成され、
     前記第1管が前記第3管と連通することにより前記第3流路が形成され、
     前記制御装置は、冷房運転から暖房運転に切り換えるときに、前記第1管を前記第3管に連通させた後に前記第1管を前記第2管に連通させるように前記流路切換弁を制御する、請求項1から3のいずれか1項に記載の空気調和装置。
PCT/JP2017/032238 2017-09-07 2017-09-07 空気調和装置 WO2019049255A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
CN201780094386.9A CN111051793B (zh) 2017-09-07 2017-09-07 空气调节装置
ES17923991T ES2900352T3 (es) 2017-09-07 2017-09-07 Dispositivo de acondicionamiento de aire
PCT/JP2017/032238 WO2019049255A1 (ja) 2017-09-07 2017-09-07 空気調和装置
JP2019540196A JP6847239B2 (ja) 2017-09-07 2017-09-07 空気調和装置
US16/639,651 US11112140B2 (en) 2017-09-07 2017-09-07 Air conditioning apparatus
EP17923991.8A EP3680565B1 (en) 2017-09-07 2017-09-07 Air conditioning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2017/032238 WO2019049255A1 (ja) 2017-09-07 2017-09-07 空気調和装置

Publications (1)

Publication Number Publication Date
WO2019049255A1 true WO2019049255A1 (ja) 2019-03-14

Family

ID=65633689

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2017/032238 WO2019049255A1 (ja) 2017-09-07 2017-09-07 空気調和装置

Country Status (6)

Country Link
US (1) US11112140B2 (ja)
EP (1) EP3680565B1 (ja)
JP (1) JP6847239B2 (ja)
CN (1) CN111051793B (ja)
ES (1) ES2900352T3 (ja)
WO (1) WO2019049255A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020153632A (ja) * 2019-03-22 2020-09-24 三菱重工サーマルシステムズ株式会社 チラーユニット
JP2020159585A (ja) * 2019-03-25 2020-10-01 三菱重工サーマルシステムズ株式会社 チラーユニット
US20210285704A1 (en) * 2020-03-10 2021-09-16 Trane International Inc. Refrigeration apparatus

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11267315B2 (en) * 2017-10-02 2022-03-08 Marelli Cabin Comfort Japan Corporation Air-conditioning device
JP7216309B2 (ja) * 2021-05-07 2023-02-01 ダイキン工業株式会社 空気調和装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1068553A (ja) 1996-08-27 1998-03-10 Daikin Ind Ltd 空気調和機
JP2001317832A (ja) 2000-05-10 2001-11-16 Daikin Ind Ltd 空気調和装置
JP2005164103A (ja) * 2003-12-01 2005-06-23 Matsushita Electric Ind Co Ltd 冷凍サイクル装置およびその制御方法
WO2007119372A1 (ja) * 2006-03-29 2007-10-25 Sanyo Electric Co., Ltd. 冷凍装置
WO2009133706A1 (ja) * 2008-05-02 2009-11-05 ダイキン工業株式会社 冷凍装置
US20140033563A1 (en) * 2011-02-18 2014-02-06 Electrolux Home Products Corporation N.V. Heat pump laundry dryer

Family Cites Families (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0833225B2 (ja) 1989-08-28 1996-03-29 三菱電機株式会社 多室用空気調和機
JP2002349979A (ja) * 2001-05-31 2002-12-04 Hitachi Air Conditioning System Co Ltd 二酸化炭素ガス圧縮システム
JP4459776B2 (ja) * 2004-10-18 2010-04-28 三菱電機株式会社 ヒートポンプ装置及びヒートポンプ装置の室外機
US20060096308A1 (en) * 2004-11-09 2006-05-11 Manole Dan M Vapor compression system with defrost system
US7114349B2 (en) * 2004-12-10 2006-10-03 Carrier Corporation Refrigerant system with common economizer and liquid-suction heat exchanger
US7631510B2 (en) * 2005-02-28 2009-12-15 Thermal Analysis Partners, LLC. Multi-stage refrigeration system including sub-cycle control characteristics
JP2006300373A (ja) * 2005-04-18 2006-11-02 Daikin Ind Ltd 空気調和機
JP2007139225A (ja) * 2005-11-15 2007-06-07 Hitachi Ltd 冷凍装置
JP2007155229A (ja) * 2005-12-06 2007-06-21 Sanden Corp 蒸気圧縮式冷凍サイクル
JP4468888B2 (ja) * 2005-12-16 2010-05-26 三星電子株式会社 空気調和装置
JP4799347B2 (ja) * 2006-09-28 2011-10-26 三菱電機株式会社 給湯、冷温水空気調和装置
JP2009180406A (ja) * 2008-01-30 2009-08-13 Calsonic Kansei Corp 超臨界冷凍サイクル
JP5071425B2 (ja) 2009-03-30 2012-11-14 株式会社富士通ゼネラル 分岐ユニット
JP2011133177A (ja) * 2009-12-25 2011-07-07 Fujitsu General Ltd 空気調和機
EP2787305B1 (en) * 2011-11-29 2019-09-04 Mitsubishi Electric Corporation Refrigerating/air-conditioning device
EP2889559B1 (en) * 2012-08-03 2018-05-23 Mitsubishi Electric Corporation Air-conditioning device
JP2014105890A (ja) 2012-11-26 2014-06-09 Panasonic Corp 冷凍サイクル装置及びそれを備えた温水生成装置
CN105042943A (zh) * 2015-09-01 2015-11-11 中国科学院广州能源研究所 一种中低温热源热泵蒸汽系统
GB2563162B (en) * 2016-03-23 2020-10-21 Mitsubishi Electric Corp Air conditioner
CN106196430A (zh) * 2016-06-30 2016-12-07 珠海格力电器股份有限公司 定频空调自动调整制冷量的系统及方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1068553A (ja) 1996-08-27 1998-03-10 Daikin Ind Ltd 空気調和機
JP2001317832A (ja) 2000-05-10 2001-11-16 Daikin Ind Ltd 空気調和装置
JP2005164103A (ja) * 2003-12-01 2005-06-23 Matsushita Electric Ind Co Ltd 冷凍サイクル装置およびその制御方法
WO2007119372A1 (ja) * 2006-03-29 2007-10-25 Sanyo Electric Co., Ltd. 冷凍装置
WO2009133706A1 (ja) * 2008-05-02 2009-11-05 ダイキン工業株式会社 冷凍装置
US20140033563A1 (en) * 2011-02-18 2014-02-06 Electrolux Home Products Corporation N.V. Heat pump laundry dryer

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3680565A4

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020153632A (ja) * 2019-03-22 2020-09-24 三菱重工サーマルシステムズ株式会社 チラーユニット
JP7258616B2 (ja) 2019-03-22 2023-04-17 三菱重工サーマルシステムズ株式会社 チラーユニット
JP2020159585A (ja) * 2019-03-25 2020-10-01 三菱重工サーマルシステムズ株式会社 チラーユニット
JP7258618B2 (ja) 2019-03-25 2023-04-17 三菱重工サーマルシステムズ株式会社 チラーユニット
US20210285704A1 (en) * 2020-03-10 2021-09-16 Trane International Inc. Refrigeration apparatus

Also Published As

Publication number Publication date
EP3680565A1 (en) 2020-07-15
US11112140B2 (en) 2021-09-07
ES2900352T3 (es) 2022-03-16
US20200173682A1 (en) 2020-06-04
JPWO2019049255A1 (ja) 2020-10-01
CN111051793A (zh) 2020-04-21
EP3680565B1 (en) 2021-11-10
CN111051793B (zh) 2022-03-29
JP6847239B2 (ja) 2021-03-24
EP3680565A4 (en) 2020-09-30

Similar Documents

Publication Publication Date Title
JP6847239B2 (ja) 空気調和装置
KR101127356B1 (ko) 공기조화장치
WO2013145006A1 (ja) 空気調和装置
US20090145151A1 (en) Air conditioner
WO2019073621A1 (ja) 空気調和装置
JP6223469B2 (ja) 空気調和装置
WO2017138108A1 (ja) 空気調和装置
JP2011133177A (ja) 空気調和機
JP5235925B2 (ja) 冷凍装置
JP5734205B2 (ja) 空気調和装置
WO2018078810A1 (ja) 空気調和機
JP5855284B2 (ja) 空気調和装置
JP2018091540A (ja) 空気調和機
JP2008267653A (ja) 冷凍装置
WO2016189739A1 (ja) 空気調和装置
JP6539560B2 (ja) 空気調和装置
JP2006090683A (ja) 多室型空気調和機
GB2555063A (en) Air-conditioning apparatus
US11156393B2 (en) Air-conditioning apparatus with pressure control for defrosting and heating
JP6984048B2 (ja) 空気調和機
JPH10176869A (ja) 冷凍サイクル装置
JP6198945B2 (ja) 空気調和装置
JP2014001916A (ja) 冷凍サイクル装置
JP2006125738A (ja) 冷凍装置
JP7423819B2 (ja) 冷凍サイクル装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17923991

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019540196

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017923991

Country of ref document: EP

Effective date: 20200407