WO2019047393A1 - 一种曲面零件自动装配的方法及系统 - Google Patents

一种曲面零件自动装配的方法及系统 Download PDF

Info

Publication number
WO2019047393A1
WO2019047393A1 PCT/CN2017/114445 CN2017114445W WO2019047393A1 WO 2019047393 A1 WO2019047393 A1 WO 2019047393A1 CN 2017114445 W CN2017114445 W CN 2017114445W WO 2019047393 A1 WO2019047393 A1 WO 2019047393A1
Authority
WO
WIPO (PCT)
Prior art keywords
sensor
normal vector
coordinates
point
measurement point
Prior art date
Application number
PCT/CN2017/114445
Other languages
English (en)
French (fr)
Inventor
张开富
程毅
程晖
骆彬
李原
Original Assignee
西北工业大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 西北工业大学 filed Critical 西北工业大学
Priority to US16/096,088 priority Critical patent/US11052497B2/en
Priority to GB1811831.5A priority patent/GB2580282B/en
Publication of WO2019047393A1 publication Critical patent/WO2019047393A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P19/00Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes
    • B23P19/10Aligning parts to be fitted together
    • B23P19/102Aligning parts to be fitted together using remote centre compliance devices
    • B23P19/105Aligning parts to be fitted together using remote centre compliance devices using sensing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P19/00Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes
    • B23P19/04Machines for simply fitting together or separating metal parts or objects, or metal and non-metal parts, whether or not involving some deformation; Tools or devices therefor so far as not provided for in other classes for assembling or disassembling parts
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J11/00Manipulators not otherwise provided for
    • B25J11/005Manipulators for mechanical processing tasks
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/0084Programme-controlled manipulators comprising a plurality of manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1682Dual arm manipulator; Coordination of several manipulators
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1684Tracking a line or surface by means of sensors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1679Programme controls characterised by the tasks executed
    • B25J9/1687Assembly, peg and hole, palletising, straight line, weaving pattern movement
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01BMEASURING LENGTH, THICKNESS OR SIMILAR LINEAR DIMENSIONS; MEASURING ANGLES; MEASURING AREAS; MEASURING IRREGULARITIES OF SURFACES OR CONTOURS
    • G01B7/00Measuring arrangements characterised by the use of electric or magnetic techniques
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J15/00Gripping heads and other end effectors
    • B25J15/0019End effectors other than grippers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • B25J19/021Optical sensing devices
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J19/00Accessories fitted to manipulators, e.g. for monitoring, for viewing; Safety devices combined with or specially adapted for use in connection with manipulators
    • B25J19/02Sensing devices
    • B25J19/021Optical sensing devices
    • B25J19/022Optical sensing devices using lasers
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25JMANIPULATORS; CHAMBERS PROVIDED WITH MANIPULATION DEVICES
    • B25J9/00Programme-controlled manipulators
    • B25J9/16Programme controls
    • B25J9/1694Programme controls characterised by use of sensors other than normal servo-feedback from position, speed or acceleration sensors, perception control, multi-sensor controlled systems, sensor fusion
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49764Method of mechanical manufacture with testing or indicating
    • Y10T29/49769Using optical instrument [excludes mere human eyeballing]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49764Method of mechanical manufacture with testing or indicating
    • Y10T29/49771Quantitative measuring or gauging
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T29/00Metal working
    • Y10T29/49Method of mechanical manufacture
    • Y10T29/49764Method of mechanical manufacture with testing or indicating
    • Y10T29/49778Method of mechanical manufacture with testing or indicating with aligning, guiding, or instruction
    • Y10T29/4978Assisting assembly or disassembly

Definitions

  • the invention relates to the field of digital assembly technology, and in particular to a method and a system for automatically assembling a curved surface part.
  • the end effector In the automatic assembly process of curved parts, the end effector needs to perform holes, patches and pins in the normal direction of the curved parts. Therefore, the end effector needs to adjust the end effector posture before assembling the curved parts, so that the end The normal of the actuator coincides with the normal of the assembly point of the curved part, and the accuracy of the normal alignment of the end effector with the surface of the curved part assembly has a great influence on the assembly quality of the curved part and the assembly connection life.
  • most of the methods and procedures for adjusting the end effector attitude generally use four sensors to adjust the normal of the end effector. Once one of the four sensors does not read, causing the program to report an error, the end effector will not be able to continue working.
  • the object of the present invention is to provide a method and system for automatically assembling curved parts, which can improve the quality of automatic assembly of curved parts.
  • the present invention provides the following solutions:
  • a method for automatically assembling a curved surface part comprising:
  • an origin of the space coordinate system is the center point
  • an XY plane of the space coordinate system is the sensor plane
  • the axis is a line perpendicular to the XY plane and intersecting the first unit normal vector of the origin
  • the end effector is adjusted according to the rotation angle such that the adjusted third unit normal vector of the end effector and the second unit normal vector are coincident.
  • the acquiring coordinates of three measurement points of the surface of the curved surface part in the space coordinate system includes:
  • the first right-angled triangle is a sensor plane formed by three vertices for three sensors; the center point is located in the oblique side of the first right-angled triangle Point, the three sensors are a first sensor, a second sensor and a third sensor;
  • coordinates of the fourth sensing point according to coordinates of the first sensor, the second sensor, and the third sensor; coordinates of the fourth sensing point are The fourth sensing point is located at a right angle vertex of the second right triangle; the second right triangle has the same shape as the first right triangle and the oblique side coincides, the second right triangle and the first right triangle Combining a rectangle;
  • the measurement point includes a first measurement point, a second measurement point, and a third measurement point;
  • the distance from the first sensor to the first measurement point is 1 a ;
  • the distance from the second sensor to the second measurement point is l b ;
  • the distance from the third sensor to the third measurement point is l c ;
  • the acquiring coordinates of three measurement points of the surface of the curved surface part in the space coordinate system further includes:
  • the rectangle is a sensor plane formed by four of the four vertices; the four sensors are a first sensor, a second sensor, a third sensor, and a fourth a sensor; the fourth sensing point is configured to be the fourth sensor;
  • the measurement point includes a first measurement point, a second measurement point, and a third measurement point;
  • the distance from the first sensor to the first measurement point is 1 a ;
  • the distance from the second sensor to the second measurement point is l b ;
  • the distance from the third sensor to the third measurement point is l c ;
  • the determining, according to the coordinates of the measurement point, a surface expression of the surface of the curved part in the space coordinate system specifically:
  • the fourth measuring point is the corresponding to the fourth sensing point a measuring point on the surface of the curved part;
  • the calculating, according to the first unit normal vector and the second unit normal vector, the rotation angle of the end effector specifically includes:
  • represents a first rotation angle
  • represents a second rotation angle
  • the determining, by the third unit normal vector and the second unit normal vector that are parallel to each other, determining a relationship between the third unit normal vector and the second unit normal vector specifically:
  • the acquiring the coordinates of the third unit normal vector includes:
  • the invention also provides a system for automatic assembly of curved parts, the system comprising:
  • a central point acquisition module for obtaining a center point of an end face of the end effector
  • a sensor plane acquisition module configured to acquire a sensor plane of at least three sensors distributed at the end effector
  • a spatial coordinate system establishing module configured to establish a spatial coordinate system according to the central point and the sensor plane; an origin of the spatial coordinate system is the central point, and an XY plane of the spatial coordinate system is the sensor plane
  • the Z axis of the spatial coordinate system is a straight line perpendicular to the XY plane and intersecting the first unit normal vector of the origin;
  • a measuring point acquiring module configured to acquire coordinates of three measuring points of a surface of the curved part in the space coordinate system; the measuring point is a surface of the curved part when the sensor collects information along the Z-axis direction Intersection point
  • a surface expression determining module configured to determine a surface expression of the surface of the curved part in the space coordinate system according to coordinates of the measuring point;
  • a second unit normal vector calculation module configured to calculate a second unit normal vector of the surface of the curved part according to the surface expression
  • a rotation angle calculation module configured to calculate a rotation angle of the end effector according to the first unit normal vector and the second unit normal vector
  • an adjustment module configured to adjust the end effector according to the rotation angle, so that the adjusted third unit normal vector of the end effector and the second unit normal vector are coincident.
  • the measuring point acquiring module includes:
  • a right angle edge acquiring unit for acquiring right angle sides L 1 , L 2 of the first right triangle;
  • the first right angle triangle is a sensor plane formed by three vertices for the three sensors;
  • the center point is located at the a midpoint of a hypotenuse of the triangular triangle, the three sensors being a first sensor, a second sensor, and a third sensor;
  • a sensor coordinate acquiring unit that acquires coordinates of the sensor according to the space coordinate system; wherein coordinates of the first sensor are The coordinates of the second sensor are The coordinates of the third sensor are
  • a fourth sensing point coordinate acquiring unit configured to acquire coordinates of the fourth sensing point according to coordinates of the first sensor, the second sensor, and the third sensor; coordinates of the fourth sensing point for The fourth sensing point is located at a right angle vertex of the second right triangle; the second right triangle has the same shape as the first right triangle and the oblique side coincides, the second right triangle and the first right triangle Combining a rectangle;
  • the sensor is sent to the measuring point distance acquiring unit, and is configured to acquire a distance from the first sensor, the second sensor, and the third sensor to the measuring point, wherein the measuring point includes a first measuring point, a second measurement point and a third measurement point; a distance from the first sensor to the first measurement point is 1 a ; a distance from the second sensor to the second measurement point is 1 b ; The distance from the sensor to the third measuring point is l c ;
  • a measurement point coordinate calculation unit configured to calculate coordinates of the first measurement point, the second measurement point, and the third measurement point according to the space coordinate system and the distances l a , l b , l c Wherein the coordinates of the first measurement point, the second measurement point, and the third measurement point are respectively as well as
  • the surface expression determining module specifically includes:
  • a fourth sensing point to a fourth measuring point distance calculating unit configured to calculate a distance l d from the fourth sensing point to the fourth measuring point according to the distances l a , l b , l c ;
  • the four measurement points are measurement points on the surface of the curved part corresponding to the fourth sensing point;
  • a fourth measurement point coordinate calculation unit configured to calculate coordinates of the fourth measurement point according to the space coordinate system and the distance l d ;
  • a surface expression determining unit configured to determine, according to coordinates of the first measurement point, the second measurement point, the third measurement point, and the fourth measurement point, the surface of the curved part in the space coordinate
  • the surface expression in the system; the surface expression is:
  • the present invention provides a method and system for automatically assembling a curved surface part, first obtaining a center point of an end surface of an end effector and at least three sensors in the a sensor plane distributed by the end effector, and establishing a spatial coordinate system according to the center point and the sensor plane; an origin of the spatial coordinate system is the center point, and an XY plane of the space coordinate system is the sensor a plane in which the Z axis of the spatial coordinate system is a line perpendicular to the XY plane and intersecting the first unit normal vector of the origin; secondly, three measurement points of the surface of the curved part in the space coordinate system are acquired The measurement point is an intersection with the surface of the curved part when the sensor collects information along the Z-axis direction; and determining the surface of the curved part in the spatial coordinate system according to coordinates of the measurement point a curved surface expression; further determining a second unit normal vector of the surface of the surface of the
  • FIG. 1 is a schematic flow chart of a method for automatically assembling a curved surface part according to an embodiment of the present invention
  • FIG. 2 is a schematic view of a conventional hole making application
  • FIG. 3 is a schematic diagram of measurement of an end effector according to an embodiment of the present invention.
  • FIG. 4 is a schematic diagram of a laser displacement sensor system and a space coordinate system according to an embodiment of the present invention
  • FIG. 5 is a schematic view showing the working principle of a laser displacement sensor according to an embodiment of the present invention.
  • FIG. 6 is a schematic plan view of an end effector ZOX according to an embodiment of the present invention.
  • FIG. 7 is a schematic plan view of an end effector ZOY according to an embodiment of the present invention.
  • FIG. 8 is a schematic structural view of an automatic assembly system for curved parts according to an embodiment of the present invention.
  • the object of the present invention is to provide a method and system for automatically assembling curved parts, which can improve the quality of automatic assembly of curved parts.
  • the end effector In the automatic machining and assembly process of the surface of the curved part, the end effector needs to perform the operations such as hole making, patching and pinning in the normal direction of the surface of the curved part. Therefore, the end effector posture needs to be adjusted before the surface of the curved part is automatically machined, so that the machining direction of the end effector coincides with the assembly point in the surface of the curved part.
  • the accuracy of the machining direction and the normal coincidence of the assembly point has a great influence on the machining quality and the assembly connection life. Therefore, by improving the accuracy of the machining direction and the normal coincidence of the assembly points, the quality and efficiency of the automatic machining of the curved parts can be improved.
  • the surface normal measurement of existing curved parts is mainly based on sensor measurement and then based on The spatial geometry algorithm performs normal leveling.
  • the following problems generally exist: the angular deviations ⁇ and ⁇ respectively correspond to the rotation axes of X and Y in one measurement process.
  • the two axes in the coordinate system have changed.
  • the ⁇ angle at the second adjustment corresponds to the Y' axis, but the existing method still adjusts the ⁇ angle according to the Y axis, so that there is a deviation in the adjustment of the end effector posture, resulting in the end effector machining direction and the curved part Assembly points cannot overlap, reducing the quality and efficiency of automatic assembly of curved parts; and the complexity of the surface structure of the surface parts (holes, bosses, grooves, etc.) causes one of the four sensors in the end effector to be absent The readings, in turn, make it impossible for the automation equipment to continue working.
  • the present invention provides a method for automatically adjusting the machining direction of the end effector before the robot is automatically assembled, and the sensor is used to measure the distance of the end effector from the four measurement points on the curved surface of the curved part, and based on any three The point measurement point distance adjusts the machining direction of the end effector, so that the machining direction of the end effector and the assembly point in the surface of the curved part are normalized to ensure assembly efficiency and quality.
  • FIG. 1 is a schematic flow chart of a method for automatically assembling a curved surface part according to an embodiment of the present invention. As shown in FIG. 1 , the automatic assembly method for a curved surface part provided by the present invention specifically includes the following steps:
  • Step 101 Acquire a center point of the end face of the end effector.
  • Step 102 Acquire a sensor plane of at least three sensors distributed at the end effector.
  • Step 103 Establish a spatial coordinate system according to the center point and the sensor plane.
  • the origin of the space coordinate system is the center point
  • the XY plane of the space coordinate system is the sensor plane
  • the Z axis of the space coordinate system is perpendicular to the XY plane and intersects at the origin A line in which a unit normal vector is located.
  • Step 104 Acquire coordinates of three measurement points of the surface of the curved surface part in the space coordinate system; the measurement point is an intersection with the surface of the curved surface part when the sensor collects information along the Z-axis direction.
  • Step 105 Determine a surface expression of the surface of the curved part in the space coordinate system according to coordinates of the measurement point.
  • Step 106 Calculate a second unit normal vector of the surface of the curved part according to the surface expression.
  • Step 107 Calculate according to the first unit normal vector and the second unit normal vector The angle of rotation of the end effector.
  • Step 108 Adjust the end effector according to the rotation angle, so that the adjusted third unit normal vector of the end effector and the second unit normal vector are coincident.
  • step 104 includes:
  • the first right-angled triangle is a sensor plane formed by three vertices for three sensors; the center point is located in the oblique side of the first right-angled triangle Point, the three sensors are a first sensor, a second sensor and a third sensor;
  • coordinates of the fourth sensing point according to coordinates of the first sensor, the second sensor, and the third sensor; coordinates of the fourth sensing point in the space coordinate system are The fourth sensing point is located at a right angle vertex of the second right triangle; the second right triangle has the same shape as the first right triangle and the oblique side coincides, the second right triangle and the first right triangle Combine a rectangle.
  • the measurement point includes a first measurement point, a second measurement point, and a third measurement point;
  • the distance from the first sensor to the first measurement point is 1 a ;
  • the distance from the second sensor to the second measurement point is l b ;
  • the distance from the third sensor to the third measurement point is l c .
  • Step 104 further includes:
  • the rectangle is a sensor plane formed by four of the four vertices; the four sensors are a first sensor, a second sensor, a third sensor, and a fourth a sensor; the fourth sensing point is configured to be the fourth sensor.
  • the measurement point includes a first measurement point, a second measurement point, and a third measurement point;
  • the distance from the first sensor to the first measurement point is 1 a ;
  • the distance from the second sensor to the second measurement point is l b ;
  • the distance from the third sensor to the third measurement point is l c .
  • Step 105 specifically includes:
  • the fourth measuring point is the corresponding to the fourth sensing point The measurement point on the surface of the curved part.
  • Step 107 specifically includes:
  • Step 1071 Determine, according to the third unit normal vector and the second unit normal vector, that the third unit normal vector is parallel to the second unit normal vector.
  • Step 1072 Determine a relational expression between the third unit normal vector and the second unit normal vector according to the third unit normal vector and the second unit normal vector that are parallel to each other. The relationship is:
  • represents a first rotation angle
  • represents a second rotation angle
  • the first rotation angle and the second rotation angle are calculated according to the relationship.
  • the first rotation angle and the second rotation angle are respectively:
  • step 1072 specifically includes:
  • the second unit normal vector is:
  • Obtaining the coordinates of the third unit normal vector Specifically include:
  • FIG. 2 is a schematic view of a conventional hole making application.
  • the robot automatic hole making system is shown in FIG. 2 and includes a robot 201, an end effector 202, and a curved part 203.
  • the end effector 202 is mounted with four laser displacement sensors A, B, C, and D to form a laser displacement sensor system.
  • FIG. 3 is a schematic diagram of measurement of an end effector according to an embodiment of the present invention.
  • the end effector 202 reaches a pre-set spatial position driven by the robot 201.
  • the laser displacement sensor is turned on to measure the end effector and the curved part.
  • the distance between the surfaces of the 203 calculates the spatial coordinate system ⁇ of the surface of the end effector 202 and its normal vector p, and the plane of the surface working point of the curved surface part 203 relative to the space
  • the normal vector n of the coordinate system calculates the normal vector n of the coordinate system , and then the normalization algorithm based on the space vector.
  • the rotation becomes p′′ by two rotations in the space coordinate system ,, when p′′ When n is parallel, the end effector processing direction leveling work is completed.
  • the first step laser displacement sensor system calibration and space coordinate system ⁇ establishment.
  • the measurement centers of the four laser displacement sensors form a rectangular plane.
  • the laser interferometer accurately measures the center distance of the laser displacement sensor, calibrates the rectangular length and width, and establishes a space coordinate system and a laser displacement sensor at the center of the laser displacement sensor system.
  • the normal vector p that makes up the plane.
  • the second step collecting data.
  • the laser displacement sensor is turned on, and the distance data between the laser displacement sensor and the surface wall of the curved part is collected at a certain pulse frequency.
  • the voltage signal collected by the laser displacement sensor is transmitted to the control system through the PLC, and the control system converts the voltage value into a displacement value, thereby obtaining the distance between the four laser displacement sensors and the surface wall of the curved part l a , l b , l c , l d .
  • the third step is to calculate the analytical equation of the plane ⁇ in the surface coordinate system of the surface part of the surface part and its normal vector n.
  • the area consisting of three illumination points on the surface of the curved part of the laser displacement sensor system approximates a local plane, which is recorded as the plane ⁇ of the surface working point of the surface part.
  • the plane of the surface working point of the surface part is calculated in the space coordinate system. Parse the expression and the normal vector n of the plane ⁇ where the surface part of the surface part is working.
  • the fourth step the spatial rotation angle ⁇ and ⁇ are determined.
  • the vector p is rotated around the first axis (X-axis) of the tool coordinate system (the spatial coordinate system ⁇ ), and then the obtained vector is wound around the tool coordinate system at this time (the spatial coordinate system ⁇ ).
  • the second axis (Y' axis) is rotated by ⁇ such that the vector p is rotated to the p" position, and finally p" is parallel to n, and the equations are solved to obtain angles ⁇ and ⁇ .
  • Step 5 Robot attitude adjustment.
  • the robot is adjusted according to the angle obtained above so that the machining direction of the end effector coincides with the normal surface of the curved part.
  • the invention is used for the hole making process of a part with a large radius of curvature surface, and the machining direction of the end effector and the surface of the curved part are normalized by the cooperation of the laser displacement sensor, the robot and the control system.
  • the embodiments of the present invention are further described in detail below with reference to FIG. 4-7, the implementation method, and the implementation examples.
  • This method is used before the automatic hole making in the assembly process of the aircraft siding.
  • the specific implementation steps are as follows:
  • FIG. 4 is a schematic diagram of a laser displacement sensor system and a space coordinate system according to an embodiment of the present invention.
  • the center of the laser displacement sensor on the end effector is distributed at four corners of the rectangle, and the rectangle is accurately measured by a laser interferometer.
  • the length and width, the calibration value is recorded as the length L 1 , the width L 2 , the center of the rectangle is taken as the coordinate origin, and the space coordinate system is established by taking the plane of the rectangle as the XY plane, and the plane of the rectangle is obtained and the coordinate system is obtained.
  • the laser displacement sensor is turned on, and the distance data between the laser displacement sensor and the wall plate is acquired at a certain pulse frequency.
  • the laser displacement sensor A is out of range due to the existence of holes in the wall plate, and the laser displacement sensors B, C, and D acquire four voltage values U Bx1 , U Cx1 , U Dx1 , and the voltage collected by the laser displacement sensor through the control system.
  • the values are converted to corresponding displacement values l b , l c and l d .
  • FIG. 5 is a schematic diagram of the working principle of the laser displacement sensor according to the embodiment of the present invention.
  • the unit vectors k and m are translated to the same starting point as the auxiliary vector r such that r ⁇ k and r are the same as the end point of m, thus changing the m-k rotation to the rotation of r-k; then, r is wrapped around k Rotate ⁇ to get r', and r and r' are parallelograms of adjacent two sides (shaded part in the figure).
  • the area is
  • 2 ⁇ sin ⁇ , which is multiplied by vector fork: r ⁇ r′
  • steps 1)-4) the normal vector of the wall surface is n, and the plane normal vector of the end effector is p. It is assumed that the vector p is rotated around the first axis of the tool coordinate system (space coordinate system ⁇ ) and then wound. After the second axis rotates ⁇ , p′′ is obtained. If p′′
  • FIG. 6 is a schematic plan view of an end effector ZOX according to an embodiment of the present invention.
  • FIG. 7 is a schematic plan view of an end effector ZOY according to an embodiment of the present invention.
  • the surface normal measurement and precise adjustment algorithm of the large curvature part based on the three-point measurement eliminates the model error caused by the inaccuracy of the mathematical model in the original algorithm, at least in the case where the three sensors work normally, through the analytic geometry
  • the method finds the angle of the end effector relative to the surface of the part, as well as the leveling steps and angles to achieve a theoretical absolute vertical.
  • FIG. 8 is a schematic structural diagram of a decryption system according to an embodiment of the present invention. As shown in Figure 8, the system includes:
  • the central point acquisition module 801 is configured to acquire a center point of the end face of the end effector.
  • the sensor plane acquisition module 802 is configured to acquire sensor planes of at least three sensors distributed at the end effector.
  • a space coordinate system establishing module 803 configured to establish a space coordinate system according to the center point and the sensor plane; an origin of the space coordinate system is the center point, and an XY plane of the space coordinate system is the sensor In the plane, the Z-axis of the spatial coordinate system is a straight line perpendicular to the XY plane and intersecting the first unit normal vector of the origin.
  • a measurement point acquisition module 804 configured to acquire coordinates of three measurement points of a surface of the curved surface part in the space coordinate system; the measurement point is a surface of the curved surface part when the sensor collects information along the Z-axis direction The intersection.
  • the surface expression determining module 805 is configured to determine a surface expression of the curved part surface in the space coordinate system according to coordinates of the measurement point.
  • the second unit normal vector calculation module 806 is configured to calculate a second unit normal vector of the surface of the curved part according to the surface expression.
  • the rotation angle calculation module 807 is configured to calculate a rotation angle of the end effector according to the first unit normal vector and the second unit normal vector.
  • the adjusting module 808 is configured to adjust the end effector according to the rotation angle, so that the adjusted third unit normal vector of the end effector and the second unit normal vector are coincident.
  • the measurement point acquisition module 804 includes:
  • a right angle edge acquiring unit for acquiring right angle sides L 1 , L 2 of the first right triangle;
  • the first right angle triangle is a sensor plane formed by three vertices for the three sensors;
  • the center point is located at the At the midpoint of the hypotenuse of the triangular triangle, the three sensors are the first sensor, the second sensor, and the third sensor, respectively.
  • a sensor coordinate acquiring unit that acquires coordinates of the sensor according to the space coordinate system; wherein coordinates of the first sensor are The coordinates of the second sensor are The coordinates of the third sensor are
  • a fourth sensing point coordinate acquiring unit configured to acquire coordinates of the fourth sensing point according to coordinates of the first sensor, the second sensor, and the third sensor;
  • the coordinates in the spatial coordinate system are
  • the fourth sensing point is located at a right angle vertex of the second right triangle;
  • the second right triangle has the same shape as the first right triangle and the oblique side coincides, the second right triangle and the first right triangle Combine a rectangle.
  • the sensor is sent to the measuring point distance acquiring unit, and is configured to acquire a distance from the first sensor, the second sensor, and the third sensor to the measuring point, wherein the measuring point includes a first measuring point, a second measurement point and a third measurement point; a distance from the first sensor to the first measurement point is 1 a ; a distance from the second sensor to the second measurement point is 1 b ; The distance from the sensor to the third measurement point is l c .
  • a measurement point coordinate calculation unit configured to calculate coordinates of the first measurement point, the second measurement point, and the third measurement point according to the space coordinate system and the distances l a , l b , l c Wherein the coordinates of the first measurement point, the second measurement point, and the third measurement point are respectively as well as
  • the measurement point acquisition module 804 further includes:
  • a rectangular length and width acquisition unit for acquiring a length L 1 and a width L 2 of the rectangle;
  • the rectangle is a sensor plane formed by four of the four vertices;
  • the four sensors are respectively a first sensor and a second a sensor, a third sensor, and a fourth sensor;
  • the fourth sensing point is configured to be the fourth sensor.
  • a sensor coordinate acquiring unit configured to acquire coordinates of the sensor according to the space coordinate system; wherein coordinates of the first sensor are The coordinates of the second sensor are The coordinates of the third sensor are The coordinates of the fourth sensing point are
  • the sensor is sent to the measuring point distance acquiring unit, and is configured to acquire a distance from the first sensor, the second sensor, and the third sensor to the measuring point, wherein the measuring point includes a first measuring point, a second measurement point and a third measurement point; a distance from the first sensor to the first measurement point is 1 a ; a distance from the second sensor to the second measurement point is 1 b ; The distance from the sensor to the third measurement point is l c .
  • a measurement point coordinate calculation unit configured to calculate coordinates of the first measurement point, the second measurement point, and the third measurement point according to the space coordinate system and the distances l a , l b , l c Wherein the coordinates of the first measurement point, the second measurement point, and the third measurement point are respectively as well as
  • the surface expression determining module 805 specifically includes:
  • a fourth sensing point to a fourth measuring point distance calculating unit configured to calculate a distance l d from the fourth sensing point to the fourth measuring point according to the distances l a , l b , l c ;
  • the four measurement points are measurement points on the surface of the curved part corresponding to the fourth sensing point.
  • a fourth measurement point coordinate calculation unit configured to calculate coordinates of the fourth measurement point according to the space coordinate system and the distance l d ; the coordinates of the fourth measurement point are
  • a surface expression determining unit configured to determine, according to coordinates of the first measurement point, the second measurement point, the third measurement point, and the fourth measurement point, the surface of the curved part in the space coordinate
  • the surface expression in the system; the surface expression is:
  • the rotation angle calculation module 807 specifically includes:
  • a parallel relationship determining unit configured to determine, according to the third unit normal vector and the second unit normal vector, that the third unit normal vector is parallel to the second unit normal vector.
  • a relation determining unit configured to determine a relationship between the third unit normal vector and the second unit normal vector according to the third unit normal vector and the second unit normal vector that are parallel to each other;
  • represents the first rotation angle
  • represents the second rotation angle
  • the relationship determining unit specifically includes:
  • the normal vector p′ is rotated around the unit vector Y′ by a normal vector p′′; the normal vector p " is the third unit normal vector; the coordinate of the normal vector p" in the spatial coordinate system is
  • Determining the third unit according to coordinates of the second unit normal vector, coordinates of the third unit normal vector, and the third unit normal vector and the second unit normal vector that are parallel to each other The relationship between the normal vector and the second unit normal vector.
  • a rotation angle calculation unit configured to calculate the first rotation angle and the second rotation angle according to the relationship; the first rotation angle and the second rotation angle are:
  • the system provided by the present invention only the coordinates of the three measuring points on the surface of the curved surface part in the space coordinate system can be obtained, and the posture adjustment of the end effector can be completed, which solves four problems that must be used in the prior art.
  • the sensor can complete the defect of the end effector posture adjustment work and improve the quality of the automatic assembly of the curved part.

Abstract

一种曲面零件(203)自动装配的方法及系统,首先建立空间坐标系(ξ)和确定空间坐标系(ξ)的第一单位法向量(p)(103);其次获取空间坐标系(ξ)中曲面零件(203)表面的三个测量点坐标(104),并根据测量点坐标,确定曲面零件(203)表面的曲面表达式和曲面零件(203)表面的第二单位法向量(n)(106);再根据第一单位法向量(p)和第二单位法向量(n)计算末端执行器(202)的旋转角度(107),并根据旋转角度调整末端执行器(202),使调整后末端执行器(202)的第三单位法向量(p")和第二单位法向量(n)重合(108)。因此,只需获取空间坐标系(ξ)中的曲面零件(203)表面的三个测量点的坐标,就能完成末端执行器(202)姿态的调整,解决了现有技术中必须使用四个传感器才能完成末端执行器(202)姿态调整工作的缺陷,提高了曲面零件(203)自动装配的质量。

Description

一种曲面零件自动装配的方法及系统
本申请要求于2017年09月05日提交中国专利局、申请号为201710791969.9、发明名称为“一种曲面零件自动装配的方法及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及数字化装配技术领域,特别是涉及一种曲面零件自动装配的方法及系统。
背景技术
在曲面零件自动装配过程中,末端执行器需要在曲面零件的法向上进行制孔、贴片和插钉等操作,因此,末端执行器在对曲面零件装配前需要调整末端执行器姿态,使得末端执行器的法向与曲面零件装配点的法向重合,且末端执行器法向与曲面零件装配点法向重合的精准度,对曲面零件装配质量和装配连接寿命有很大的影响。目前,大多数调整末端执行器姿态方法和流程普遍采用四个传感器来调整末端执行器的法向,一旦四个传感器中有一个没有读数,导致程序报错,就会使得末端执行器没有办法继续工作,进而在某些零件表面上无法完成末端执行器姿态的调整,降低曲面零件自动装配的质量。综上,如何提高曲面零件自动装配的质量,是数字化装配技术领域急需要解决的问题。
发明内容
本发明的目的是提供一种曲面零件自动装配的方法及系统,能够提高曲面零件自动装配的质量。
为实现上述目的,本发明提供了如下方案:
一种曲面零件自动装配的方法,所述方法包括:
获取末端执行器执行端面的中心点;
获取至少三个传感器在所述末端执行器分布的传感器平面;
根据所述中心点和所述传感器平面,建立空间坐标系;所述空间坐标系的原点为所述中心点,所述空间坐标系的XY平面为所述传感器平面,所述空间坐标系的Z轴为垂直于所述XY平面且相交于所述原点的第一单位法向量所在的直线;
获取所述空间坐标系中的曲面零件表面的三个测量点的坐标;所述测 量点为所述传感器沿所述Z轴方向采集信息时与所述曲面零件表面的交点;
根据所述测量点的坐标,确定所述曲线零件表面在所述空间坐标系中的曲面表达式;
根据所述曲面表达式,计算所述曲线零件表面的第二单位法向量;
根据所述第一单位法向量和所述第二单位法向量,计算所述末端执行器的旋转角度;
根据所述旋转角度,调整所述末端执行器,使调整后所述末端执行器的第三单位法向量和所述第二单位法向量重合。
可选的,所述获取所述空间坐标系中的曲面零件表面的三个测量点的坐标,包括:
获取第一直角三角形的直角边L1、L2;所述第一直角三角形为三个顶点为三个所述传感器构成的传感器平面;所述中心点位于所述第一直角三角形斜边的中点,三个所述传感器分别为第一传感器、第二传感器以及第三传感器;
根据所述空间坐标系,获取所述传感器的坐标;其中,所述第一传感器的坐标为
Figure PCTCN2017114445-appb-000001
所述第二传感器的坐标为
Figure PCTCN2017114445-appb-000002
所述第三传感器的坐标为
Figure PCTCN2017114445-appb-000003
根据所述第一传感器、所述第二传感器以及所述第三传感器的坐标,获取第四传感点的坐标;所述第四传感点的坐标为
Figure PCTCN2017114445-appb-000004
所述第四传感点位于第二直角三角形的直角顶点;所述第二直角三角形与所述第一直角三角形的形状相同且斜边重合,所述第二直角三角形与所述第一直角三角形组合成一长方形;
获取所述第一传感器、所述第二传感器、所述第三传感器分别到所述测量点的距离;其中,所述测量点包括第一测量点、第二测量点以及第三测量点;所述第一传感器到所述第一测量点的距离为la;所述第二传感器 到所述第二测量点的距离为lb;所述第三传感器到所述第三测量点的距离为lc
根据所述空间坐标系和所述距离la、lb、lc,计算所述第一测量点、所述第二测量点、所述第三测量点的坐标;其中,所述第一测量点、所述第二测量点、所述第三测量点的坐标分别为
Figure PCTCN2017114445-appb-000005
以及
Figure PCTCN2017114445-appb-000006
可选的,所述获取所述空间坐标系中的曲面零件表面的三个测量点的坐标,进一步包括:
获取长方形的长L1和宽L2;所述长方形为四个顶点为四个所述传感器构成的传感器平面;四个所述传感器分别为第一传感器、第二传感器、第三传感器以及第四传感器;所述第四传感点设置所述第四传感器;
根据所述空间坐标系,获取所述传感器的坐标;其中,所述第一传感器的坐标为
Figure PCTCN2017114445-appb-000007
所述第二传感器的坐标为
Figure PCTCN2017114445-appb-000008
所述第三传感器的坐标为
Figure PCTCN2017114445-appb-000009
所述第四传感点的坐标为
Figure PCTCN2017114445-appb-000010
获取所述第一传感器、所述第二传感器、所述第三传感器分别到所述测量点的距离;其中,所述测量点包括第一测量点、第二测量点以及第三测量点;所述第一传感器到所述第一测量点的距离为la;所述第二传感器到所述第二测量点的距离为lb;所述第三传感器到所述第三测量点的距离为lc
根据所述空间坐标系和所述距离la、lb、lc,计算所述第一测量点、所述第二测量点、所述第三测量点的坐标;其中,所述第一测量点、所述第二测量点、所述第三测量点的坐标分别为
Figure PCTCN2017114445-appb-000011
以及
Figure PCTCN2017114445-appb-000012
可选的,所述根据所述测量点的坐标,确定所述曲线零件表面在所述空间坐标系中的曲面表达式,具体包括:
根据所述距离la、lb、lc,计算所述第四传感点到第四测量点的距离ld;所述第四测量点为与所述第四传感点对应的所述所述曲线零件表面上的测量点;
根据所述空间坐标系和所述距离ld,计算所述第四测量点的坐标;所述第四测量点的坐标为
Figure PCTCN2017114445-appb-000013
根据所述第一测量点、所述第二测量点、所述第三测量点以及所述第四测量点的坐标,确定所述曲线零件表面在所述空间坐标系中的曲面表达式;所述曲面表达式为:
Figure PCTCN2017114445-appb-000014
可选的,所述根据所述第一单位法向量和所述第二单位法向量,计算所述末端执行器的旋转角度,具体包括:
根据所述第三单位法向量和所述第二单位法向量重合,确定所述第三单位法向量平行于所述第二单位法向量;
根据相互平行的所述第三单位法向量和所述第二单位法向量,确定所述第三单位法向量和所述第二单位法向量的关系式;所述关系式为:
Figure PCTCN2017114445-appb-000015
其中,θ表示第一旋转角度;φ表示第二旋转角度;
根据所述关系式,计算所述第一旋转角度和所述第二旋转角度;所述第一旋转角度和第二旋转角度分别为:
Figure PCTCN2017114445-appb-000016
可选的,所述根据相互平行的所述第三单位法向量和所述第二单位法向量,确定所述第三单位法向量和所述第二单位法向量的关系式,具体包括:
根据所述第二单位法向量,确定所述第二单位法向量的坐标;其中,所述第二单位法向量为:
Figure PCTCN2017114445-appb-000017
获取所述第三单位法向量的坐标;
根据所述第二单位法向量的坐标、所述第三单位法向量的坐标以及相互平行的所述第三单位法向量和所述第二单位法向量,确定所述第三单位法向量和所述第二单位法向量的关系式。
可选的,所述获取所述第三单位法向量的坐标,具体包括:
根据p×p′=|p|2·sinθ·X(5),计算所述第一单位法向量绕着所述空间坐标系中X轴旋转θ角度后得到的法向量p′;所述法向量p′为p′=(0,-sinθ,cosθ);其中,所述第一单位法向量为p=(0,0,1);所述X为在X轴上的单位向量X=(1,0,0);
根据所述法向量p′,计算垂直于所述法向量p′的单位向量Y′;所述单位向量Y′为Y′=(0,cosθ,sinθ);
根据p′×p″=|p″|2·sinφ·Y′(6),计算所述法向量p′绕着所述单位向量Y′ 旋转φ角度后法的向量p″;所述法向量p″为所述所述第三单位法向量;所述法向量p″在所述空间坐标系中的坐标为
Figure PCTCN2017114445-appb-000018
本发明还提供了一种曲面零件自动装配的系统,所述系统包括:
中心点获取模块,用于获取末端执行器执行端面的中心点;
传感器平面获取模块,用于获取至少三个传感器在所述末端执行器分布的传感器平面;
空间坐标系建立模块,用于根据所述中心点和所述传感器平面,建立空间坐标系;所述空间坐标系的原点为所述中心点,所述空间坐标系的XY平面为所述传感器平面,所述空间坐标系的Z轴为垂直于所述XY平面且相交于所述原点的第一单位法向量所在的直线;
测量点获取模块,用于获取所述空间坐标系中的曲面零件表面的三个测量点的坐标;所述测量点为所述传感器沿所述Z轴方向采集信息时与所述曲面零件表面的交点;
曲面表达式确定模块,用于根据所述测量点的坐标,确定所述曲线零件表面在所述空间坐标系中的曲面表达式;
第二单位法向量计算模块,用于根据所述曲面表达式,计算所述曲线零件表面的第二单位法向量;
旋转角度计算模块,用于根据所述第一单位法向量和所述第二单位法向量,计算所述末端执行器的旋转角度;
调整模块,用于根据所述旋转角度,调整所述末端执行器,使调整后所述末端执行器的第三单位法向量和所述第二单位法向量重合。
可选的,所述测量点获取模块,包括:
直角边获取单元,用于获取第一直角三角形的直角边L1、L2;所述第一直角三角形为三个顶点为三个所述传感器构成的传感器平面;所述中心点位于所述第一直角三角形斜边的中点,三个所述传感器分别为第一传感器、第二传感器以及第三传感器;
传感器坐标获取单元,拥有根据所述空间坐标系,获取所述传感器的坐标;其中,所述第一传感器的坐标为
Figure PCTCN2017114445-appb-000019
所述第二传感器的坐标为
Figure PCTCN2017114445-appb-000020
所述第三传感器的坐标为
Figure PCTCN2017114445-appb-000021
第四传感点坐标获取单元,用于根据所述第一传感器、所述第二传感器以及所述第三传感器的坐标,获取第四传感点的坐标;所述第四传感点的坐标为
Figure PCTCN2017114445-appb-000022
所述第四传感点位于第二直角三角形的直角顶点;所述第二直角三角形与所述第一直角三角形的形状相同且斜边重合,所述第二直角三角形与所述第一直角三角形组合成一长方形;
传感器发到测量点距离获取单元,用于获取所述第一传感器、所述第二传感器、所述第三传感器分别到所述测量点的距离;其中,所述测量点包括第一测量点、第二测量点以及第三测量点;所述第一传感器到所述第一测量点的距离为la;所述第二传感器到所述第二测量点的距离为lb;所述第三传感器到所述第三测量点的距离为lc
测量点坐标计算单元,用于根据所述空间坐标系和所述距离la、lb、lc,计算所述第一测量点、所述第二测量点、所述第三测量点的坐标;其中,所述第一测量点、所述第二测量点、所述第三测量点的坐标分别为
Figure PCTCN2017114445-appb-000023
以及
Figure PCTCN2017114445-appb-000024
可选的,所述曲面表达式确定模块,具体包括:
第四传感点到第四测量点距离计算单元,用于根据所述距离la、lb、lc,计算所述第四传感点到第四测量点的距离ld;所述第四测量点为与所述第四传感点对应的所述所述曲线零件表面上的测量点;
第四测量点坐标计算单元,用于根据所述空间坐标系和所述距离ld, 计算所述第四测量点的坐标;所述第四测量点的坐标为
Figure PCTCN2017114445-appb-000025
曲面表达式确定单元,用于根据所述第一测量点、所述第二测量点、所述第三测量点以及所述第四测量点的坐标,确定所述曲线零件表面在所述空间坐标系中的曲面表达式;所述曲面表达式为:
Figure PCTCN2017114445-appb-000026
根据本发明提供的具体实施例,本发明公开了以下技术效果:本发明提供了一种曲面零件自动装配的方法及系统,首先获取末端执行器执行端面的中心点以及至少三个传感器在所述末端执行器分布的传感器平面,并根据所述中心点和所述传感器平面,建立空间坐标系;所述空间坐标系的原点为所述中心点,所述空间坐标系的XY平面为所述传感器平面,所述空间坐标系的Z轴为垂直于所述XY平面且相交于所述原点的第一单位法向量所在的直线;其次获取所述空间坐标系中的曲面零件表面的三个测量点的坐标;所述测量点为所述传感器沿所述Z轴方向采集信息时与所述曲面零件表面的交点;并根据所述测量点的坐标,确定所述曲线零件表面在所述空间坐标系中的曲面表达式;进而确定所述曲线零件表面的第二单位法向量;再根据所述第一单位法向量和所述第二单位法向量,计算所述末端执行器的旋转角度;并根据所述旋转角度,调整所述末端执行器,使调整后所述末端执行器的第三单位法向量和所述第二单位法向量重合。可见,采用本发明提供的方法或者系统,只需获取所述空间坐标系中的曲面零件表面的三个测量点的坐标,就能完成末端执行器姿态的调整,解决了现有技术中必须使用四个传感器才能完成末端执行器姿态调整工作的缺陷,提高了曲面零件自动装配的质量及装配效率。
另外,在计算所述末端执行器的旋转角度时,充分考虑了在第一次调整得到的末端执行器法向量p′旋转时,是按照垂直于所述法向量p′的单位向量Y′进行的旋转,避免了由于末端执行器在第二次调整时仍然按照原空间Y轴进行调整,使得末端执行器在第二次调整过程中产生了偏差, 导致末端执行器法向量与曲面零件装配点法向量无法重合的问题,也提高了曲面零件自动装配的质量及装配效率。
说明书附图
下面结合附图对本发明作进一步说明:
图1为本发明实施例曲面零件自动装配方法的流程示意图;
图2为现有的制孔应用示意图;
图3为本发明实施例末端执行器测量示意图;
图4为本发明实施例激光位移传感器系统及空间坐标系示意图;
图5为本发明实施例激光位移传感器工作原理示意图;
图6为本发明实施例末端执行器ZOX平面示意图;
图7为本发明实施例末端执行器ZOY平面示意图;
图8为本发明实施例曲面零件自动装配系统的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本发明的目的是提供一种曲面零件自动装配的方法及系统,能够提高曲面零件自动装配的质量。
为使本发明的上述目的、特征和优点能够更加明显易懂,下面结合附图和具体实施方式对本发明作进一步详细的说明。
在曲面零件表面的自动加工和装配过程中,末端执行器需要在曲面零件表面的法向上进行制孔、贴片和插钉等操作。因此在对曲面零件表面自动加工前需要调整末端执行器姿态,使得末端执行器的加工方向与曲面零件表面中的装配点法向重合。加工方向与装配点法向重合的精度对加工质量和装配连接寿命有很大的影响。因此,通过提高加工方向与装配点法向重合的精度,可以提高曲面零件自动加工的质量和效率。
现有曲面零件表面法向的测量主要采用传感器测量法,然后通过基于 空间几何的算法进行法向调平。但是普遍存在以下问题:在一次测量过程中得到角度偏差α和β分别对应的转轴为X和Y,然而在第一次绕X轴调整α角度后,其坐标系中的两个轴已经发生变化,即第二次调整时的β角对应的是Y’轴,但是现有方法仍然按照Y轴调整β角度,使得在调整末端执行器姿态过程中存在偏差,导致末端执行器加工方向与曲面零件装配点法向无法重合,降低曲面零件自动装配的质量和效率;还有曲面零件表面结构的复杂性(孔、凸台、凹槽等)导致末端执行器中的四个传感器中会有一个没有读数,进而使得自动化设备没有办法继续工作。
基于以上问题,本发明提供了一种在采用机器人自动装配前,对末端执行器加工方向自动调整的方法,采用传感器测量末端执行器距离曲面零件曲面上四个测量点的距离,并基于任意三点测量点距离对末端执行器加工方向进行调整,实现末端执行器的加工方向与曲面零件表面中的装配点法向重合,保证装配效率和质量。
图1为本发明实施例曲面零件自动装配方法的流程示意图,如图1所示,本发明提供的曲面零件自动装配方法具体包括以下步骤:
步骤101:获取末端执行器执行端面的中心点。
步骤102:获取至少三个传感器在所述末端执行器分布的传感器平面。
步骤103:根据所述中心点和所述传感器平面,建立空间坐标系。所述空间坐标系的原点为所述中心点,所述空间坐标系的XY平面为所述传感器平面,所述空间坐标系的Z轴为垂直于所述XY平面且相交于所述原点的第一单位法向量所在的直线。
步骤104:获取所述空间坐标系中的曲面零件表面的三个测量点的坐标;所述测量点为所述传感器沿所述Z轴方向采集信息时与所述曲面零件表面的交点。
步骤105:根据所述测量点的坐标,确定所述曲线零件表面在所述空间坐标系中的曲面表达式。
步骤106:根据所述曲面表达式,计算所述曲线零件表面的第二单位法向量。
步骤107:根据所述第一单位法向量和所述第二单位法向量,计算所 述末端执行器的旋转角度。
步骤108:根据所述旋转角度,调整所述末端执行器,使调整后所述末端执行器的第三单位法向量和所述第二单位法向量重合。
其中,步骤104包括:
获取第一直角三角形的直角边L1、L2;所述第一直角三角形为三个顶点为三个所述传感器构成的传感器平面;所述中心点位于所述第一直角三角形斜边的中点,三个所述传感器分别为第一传感器、第二传感器以及第三传感器;
根据所述空间坐标系,获取所述传感器的坐标;其中,所述第一传感器的坐标为
Figure PCTCN2017114445-appb-000027
所述第二传感器的坐标为
Figure PCTCN2017114445-appb-000028
所述第三传感器的坐标为
Figure PCTCN2017114445-appb-000029
根据所述第一传感器、所述第二传感器以及所述第三传感器的坐标,获取第四传感点的坐标;所述第四传感点在所述空间坐标系中的坐标为
Figure PCTCN2017114445-appb-000030
所述第四传感点位于第二直角三角形的直角顶点;所述第二直角三角形与所述第一直角三角形的形状相同且斜边重合,所述第二直角三角形与所述第一直角三角形组合成一长方形。
获取所述第一传感器、所述第二传感器、所述第三传感器分别到所述测量点的距离;其中,所述测量点包括第一测量点、第二测量点以及第三测量点;所述第一传感器到所述第一测量点的距离为la;所述第二传感器到所述第二测量点的距离为lb;所述第三传感器到所述第三测量点的距离为lc
根据所述空间坐标系和所述距离la、lb、lc,计算所述第一测量点、所述第二测量点、所述第三测量点的坐标;其中,所述第一测量点、所述第 二测量点、所述第三测量点的坐标分别为
Figure PCTCN2017114445-appb-000031
以及
Figure PCTCN2017114445-appb-000032
步骤104进一步包括:
获取长方形的长L1和宽L2;所述长方形为四个顶点为四个所述传感器构成的传感器平面;四个所述传感器分别为第一传感器、第二传感器、第三传感器以及第四传感器;所述第四传感点设置所述第四传感器。
根据所述空间坐标系,获取所述传感器的坐标;其中,所述第一传感器的坐标为
Figure PCTCN2017114445-appb-000033
所述第二传感器的坐标为
Figure PCTCN2017114445-appb-000034
所述第三传感器的坐标为
Figure PCTCN2017114445-appb-000035
所述第四传感点的坐标为
Figure PCTCN2017114445-appb-000036
获取所述第一传感器、所述第二传感器、所述第三传感器分别到所述测量点的距离;其中,所述测量点包括第一测量点、第二测量点以及第三测量点;所述第一传感器到所述第一测量点的距离为la;所述第二传感器到所述第二测量点的距离为lb;所述第三传感器到所述第三测量点的距离为lc
根据所述空间坐标系和所述距离la、lb、lc,计算所述第一测量点、所述第二测量点、所述第三测量点在所述空间坐标系中的坐标;其中,所述第一测量点、所述第二测量点、所述第三测量点在所述空间坐标系中的坐标分别为
Figure PCTCN2017114445-appb-000037
以及
Figure PCTCN2017114445-appb-000038
步骤105具体包括:
根据所述距离la、lb、lc,计算所述第四传感点到第四测量点的距离ld;所述第四测量点为与所述第四传感点对应的所述所述曲线零件表面上的测量点。
根据所述空间坐标系和所述距离ld,计算所述第四测量点的坐标;所述第四测量点的坐标为
Figure PCTCN2017114445-appb-000039
根据所述第一测量点、所述第二测量点、所述第三测量点以及所述第四测量点的坐标,确定所述曲线零件表面在所述空间坐标系中的曲面表达式;所述曲面表达式为:
Figure PCTCN2017114445-appb-000040
步骤107具体包括:
步骤1071:根据所述第三单位法向量和所述第二单位法向量重合,确定所述第三单位法向量平行于所述第二单位法向量。
步骤1072:根据相互平行的所述第三单位法向量和所述第二单位法向量,确定所述第三单位法向量和所述第二单位法向量的关系式。所述关系式为:
Figure PCTCN2017114445-appb-000041
其中,θ表示第一旋转角度;φ表示第二旋转角度;
根据所述关系式,计算所述第一旋转角度和所述第二旋转角度。所述第一旋转角度和第二旋转角度分别为:
Figure PCTCN2017114445-appb-000042
其中,步骤1072具体包括:
根据所述第二单位法向量,确定所述第二单位法向量的坐标。其中, 所述第二单位法向量为:
Figure PCTCN2017114445-appb-000043
获取所述第三单位法向量的坐标。具体包括:
根据p×p′=|p|2·sinθ·X(5),计算所述第一单位法向量绕着所述空间坐标系中X轴旋转θ角度后得到的法向量p′;所述法向量p′为p′=(0,-sinθ,cosθ);其中,所述第一单位法向量为p=(0,0,1);所述X为在X轴上的单位向量X=(1,0,0);
根据所述法向量p′,计算垂直于所述法向量p′的单位向量Y′;所述单位向量Y′为Y′=(0,cosθ,sinθ);
根据p′×p″=|p″|2·sinφ·Y′(6),计算所述法向量p′绕着所述单位向量Y′旋转φ角度后的法向量p″;所述法向量p″为所述所述第三单位法向量;所述法向量p″在所述空间坐标系中的坐标为
Figure PCTCN2017114445-appb-000044
根据所述第二单位法向量的坐标、所述第三单位法向量的坐标以及相互平行的所述第三单位法向量和所述第二单位法向量,确定所述第三单位法向量和所述第二单位法向量的关系式。
可见,采用本发明实施例提供的方法,只需获取所述空间坐标系中的曲面零件表面的三个测量点的坐标,就能完成末端执行器姿态的调整,解决了现有技术中必须使用四个传感器才能完成末端执行器姿态调整工作的缺陷,提高了曲面零件自动装配的质量及装配效率。
另外,在计算所述末端执行器的旋转角度时,充分考虑了在第一次调整得到的末端执行器法向量p′旋转时,是按照垂直与所述法向量p′的单位向量Y′进行的旋转,避免了由于末端执行器在第二次调整时仍然按照原 空间Y轴进行调整,使得末端执行器在第二次调整过程中产生了偏差,导致末端执行器法向量与曲面零件装配点法向量无法重合的问题,也提高了曲面零件自动装配的质量及装配效率。
实施例二
下面提供了一个具体实施例来说明本发明技术方案。
图2为现有的制孔应用示意图。机器人自动制孔系统如图2所示,包括机器人201、末端执行器202以及曲线零件203。末端执行器202上安装有A、B、C、D四个激光位移传感器,组成激光位移传感器系统。
图3为本发明实施例末端执行器测量示意图,如图3所示,末端执行器202在机器人201的带动下到达预设定的空间位置,此时开启激光位移传感器测量末端执行器与曲线零件203表面间的距离,根据其中任意三个激光位移传感器采集到的距离信息,计算末端执行器202表面所在空间坐标系ξ及其法向量p,以及曲面零件203表面工作点所在平面Π相对于空间坐标系ξ的法向量n,然后基于空间向量的法向调平算法,以该法向调平算法为基础,在空间坐标系ξ内通过两次旋转使得p变为p″,当p″与n平行时,末端执行器加工方向调平工作完成。包括:
第一步:激光位移传感器系统标定及空间坐标系ξ建立。
由于激光位移传感器坐标系统相对于曲面零件表面的角度偏差计算涉及激光位移传感器系统的结构尺寸及激光位移传感器安装精度误差,需要进行相关尺寸标定。四个激光位移传感器的测量中心组成一个矩形平面,通过激光干涉仪精确测量激光位移传感器中心间距,标定矩形长、宽尺寸,在激光位移传感器系统中心建立空间坐标系ξ以及激光位移传感器 组成平面的法向量p。
第二步:采集数据。
将机器人按照离线程序驱动工具坐标系(空间坐标系ξ)至目标位置后,开启激光位移传感器,以一定的脉冲频率采集激光位移传感器与曲线零件表面壁板间距离数据。通过PLC把激光位移传感器采集的电压信号传输给控制系统,控制系统将电压值转换为位移值,从而得到四个激光位移传感器与曲线零件表面壁板的距离la,lb,lc,ld
第三步:计算曲面零件表面工作点所在平面Π在空间坐标系ξ中的解析方程及其法向量n。
选取其中三个测量结果,激光位移传感器系统在曲面零件表面的三个照射点组成的区域近似于一个局部平面,记作曲面零件表面工作点所在平面Π。通过第二步中测得的任意三个距离la,lb,lc,ld,以及激光传感器所组成的矩形尺寸,计算得到曲面零件表面工作点所在平面Π在空间坐标系ξ中的解析表达式以及曲面零件表面工作点所在平面Π的法向量n。
第四步:空间旋转角度θ和Φ确定。
基于空间向量叉乘运算,将向量p绕工具坐标系(空间坐标系ξ)的第一轴(X轴)旋转θ,然后再将所得到的向量绕此时的工具坐标系(空间坐标系ξ)第二轴(Y′轴)旋转Φ,使得向量p旋转至p″位置,最后令p″与n平行,解方程组得到角度θ和Φ。
第五步:机器人姿态调整。
按照上述获取的角度调整机器人,使得末端执行器的加工方向与曲线零件表面法向重合。
本发明用于具有大曲率半径曲面的零件制孔过程中,通过激光位移传感器、机器人和控制系统的配合,实现末端执行器的加工方向与曲线零件表面法向重合。下面结合附图4-7和实施方法、实施实例,进一步对本发明实施例进行详细描述。
将此方法用于飞机壁板装配过程中自动制孔前。具体实施步骤如下:
1)传感器系统标定及空间坐标系ξ建立。
图4为本发明实施例激光位移传感器系统及空间坐标系示意图,如图4所示,末端执行器上的激光位移传感器测量头中心分布于长方形的四个角上,通过激光干涉仪精确测量长方形的长和宽,标定值记作长度L1,宽度L2,以上述长方形的中心为坐标原点,以长方形所在平面为XY平面建立空间坐标系ξ,同时能够得到长方形所在平面相对与该坐标系的法向量p,且令p为单位向量,因此p=(0,0,1)。
2)采集数据。
将机器人按照离线程序驱动工具坐标系(空间坐标系ξ)至目标位置后,开启激光位移传感器,以一定的脉冲频率采集激光位移传感器与壁板间距离数据。假设在测量过程中激光位移传感器A由于壁板存在孔洞而超出量程,激光位移传感器B、C、D获取四个电压值UBx1、UCx1、UDx1,通过控制系统将激光位移传感器采集的电压值转换为相应的位移值lb,lc和ld
3)壁板表面Π的空间位置及法向量。
在空间坐标系ξ中,壁板表面三个点的坐标分别为
Figure PCTCN2017114445-appb-000045
Figure PCTCN2017114445-appb-000046
同时激光位移传感器A在平面B′C′D′上的投 影为
Figure PCTCN2017114445-appb-000047
如图4所示,易知:
AA′+CC′=BB′+DD′(7);
即:
Figure PCTCN2017114445-appb-000048
假设壁板表面A′B′C′D′在空间中的解析式:
Ax+By+Cz=1  (9);
解得:
Figure PCTCN2017114445-appb-000049
则解析式为:
Figure PCTCN2017114445-appb-000050
该壁板表面的单位法向量记为n,则
Figure PCTCN2017114445-appb-000051
4)基于空间向量的旋转算法。
当一个向量绕过空间某一点的向量旋转,该运动可以分解为两部分:平动+转动。由于只有转动过程中向量的角度发生变化,因此在基于空间向量的旋转算法中仅考虑转动。
图5为本发明实施例激光位移传感器工作原理示意图,如图5所示,假设在三维空间中有两个单位向量k和m,向量m绕向量k旋转角度Ψ后变为向量m′。首先,将单位向量k和m平移至同一起点,作辅助向量r,使得r⊥k且r与m终点相同,这样就把m绕k旋转变为了r绕k的旋转;然后,将r绕k旋转Ψ得到r′,以r和r′为相邻两边的平行四边形(图中阴影部分)面积为|r|2·sinψ,由向量叉乘知:r×r′=|r|2·sinψ·k  (10)。
因此,将三维空间旋转问题转化为向量叉乘,r=(rx,ry,rz), r′=(r'x,r'y,r'z),可以通过下式求得:
Figure PCTCN2017114445-appb-000052
5)末端执行器旋转角度计算。
由步骤1)-4)知,壁板表面法向量为n,末端执行器所在平面法向量为p,假设先将向量p绕工具坐标系(空间坐标系ξ)第一轴旋转θ,然后绕第二轴旋转Φ后得到p″,若p″||n则末端执行器加工方向调平完成。
图6为本发明实施例末端执行器ZOX平面示意图,如图6所示,按照4)中的方法,将向量p=(0,0,1)绕工具坐标系(空间坐标系ξ)第一轴X=(1,0,0)旋转θ角,得到p′=(x1,y1,z1)。由于p⊥X,所以p的辅助向量仍为
p,即p×p′=|p|2·sinθ·X(5);
Figure PCTCN2017114445-appb-000053
解得:
Figure PCTCN2017114445-appb-000054
由于旋转角度小于90°,故z1=cosθ。
图7为本发明实施例末端执行器ZOY平面示意图,如图7所示,按照4)中的方法,将向量p′=(0,-sinθ,cosθ)绕工具坐标第二轴Y′=(0,cosθ,sinθ)旋转Φ,得到p″=(x2,y2,z2)。由于p′⊥Y′,所以p′的辅助向量仍为p′,即
p′×p″=|p″|2·sinφ·Y′  (6);
Figure PCTCN2017114445-appb-000055
解得:x2=sinφ;
Figure PCTCN2017114445-appb-000056
求解旋转角θ和Φ。当n||p″时得到使调整后末端执行器的加工方向和壁板法向量重合,又n和p″都为单位向量,所以
Figure PCTCN2017114445-appb-000057
解得:
Figure PCTCN2017114445-appb-000058
6)调整机器人姿态。将当前状态下,将末端执行器绕工具坐标系的第一轴旋转角度θ,然后绕第二轴旋转角度Φ,此时工具坐标系的Z轴方向即为曲面的测量区域的法向。
7)完成末端执行器姿态调整,进行下一步制孔工作。
通过本发明实施例基于三点测量的大曲率零件表面法向测量与精确调整算法消除原来算法中由于数学模型不准确而产生的模型误差,最少在三个传感器正常工作的情况下,通过解析几何的方法上找到末端执行器相对于零件表面的夹角,以及调平步骤和角度,达到理论上的绝对垂直。
实施例三
为达到上述目的,本发明还提供了一种曲面零件自动装配的系统图8为本发明实施例解密系统的结构示意图。如图8所示,所述系统包括:
中心点获取模块801,用于获取末端执行器执行端面的中心点。
传感器平面获取模块802,用于获取至少三个传感器在所述末端执行器分布的传感器平面。
空间坐标系建立模块803,用于根据所述中心点和所述传感器平面,建立空间坐标系;所述空间坐标系的原点为所述中心点,所述空间坐标系的XY平面为所述传感器平面,所述空间坐标系的Z轴为垂直于所述XY平面且相交于所述原点的第一单位法向量所在的直线。
测量点获取模块804,用于获取所述空间坐标系中的曲面零件表面的三个测量点的坐标;所述测量点为所述传感器沿所述Z轴方向采集信息时与所述曲面零件表面的交点。
曲面表达式确定模块805,用于根据所述测量点的坐标,确定所述曲线零件表面在所述空间坐标系中的曲面表达式。
第二单位法向量计算模块806,用于根据所述曲面表达式,计算所述曲线零件表面的第二单位法向量。
旋转角度计算模块807,用于根据所述第一单位法向量和所述第二单位法向量,计算所述末端执行器的旋转角度。
调整模块808,用于根据所述旋转角度,调整所述末端执行器,使调整后所述末端执行器的第三单位法向量和所述第二单位法向量重合。
其中,所述测量点获取模块804包括:
直角边获取单元,用于获取第一直角三角形的直角边L1、L2;所述第一直角三角形为三个顶点为三个所述传感器构成的传感器平面;所述中心点位于所述第一直角三角形斜边的中点,三个所述传感器分别为第一传感器、第二传感器以及第三传感器。
传感器坐标获取单元,拥有根据所述空间坐标系,获取所述传感器的坐标;其中,所述第一传感器的坐标为
Figure PCTCN2017114445-appb-000059
所述第二传感器的坐标为
Figure PCTCN2017114445-appb-000060
所述第三传感器的坐标为
Figure PCTCN2017114445-appb-000061
第四传感点坐标获取单元,用于根据所述第一传感器、所述第二传感器以及所述第三传感器的坐标,获取第四传感点的坐标;所述第四传感点在所述空间坐标系中的坐标为
Figure PCTCN2017114445-appb-000062
所述第四传感点位于第二直角 三角形的直角顶点;所述第二直角三角形与所述第一直角三角形的形状相同且斜边重合,所述第二直角三角形与所述第一直角三角形组合成一长方形。
传感器发到测量点距离获取单元,用于获取所述第一传感器、所述第二传感器、所述第三传感器分别到所述测量点的距离;其中,所述测量点包括第一测量点、第二测量点以及第三测量点;所述第一传感器到所述第一测量点的距离为la;所述第二传感器到所述第二测量点的距离为lb;所述第三传感器到所述第三测量点的距离为lc
测量点坐标计算单元,用于根据所述空间坐标系和所述距离la、lb、lc,计算所述第一测量点、所述第二测量点、所述第三测量点的坐标;其中,所述第一测量点、所述第二测量点、所述第三测量点的坐标分别为
Figure PCTCN2017114445-appb-000063
以及
Figure PCTCN2017114445-appb-000064
所述测量点获取模块804进一步包括:
长方形长宽获取单元,用于获取长方形的长L1和宽L2;所述长方形为四个顶点为四个所述传感器构成的传感器平面;四个所述传感器分别为第一传感器、第二传感器、第三传感器以及第四传感器;所述第四传感点设置所述第四传感器。
传感器坐标获取单元,用于根据所述空间坐标系,获取所述传感器的坐标;其中,所述第一传感器的坐标为
Figure PCTCN2017114445-appb-000065
所述第二传感器的坐标为
Figure PCTCN2017114445-appb-000066
所述第三传感器的坐标为
Figure PCTCN2017114445-appb-000067
所述第四传感点的坐标为
Figure PCTCN2017114445-appb-000068
传感器发到测量点距离获取单元,用于获取所述第一传感器、所述第 二传感器、所述第三传感器分别到所述测量点的距离;其中,所述测量点包括第一测量点、第二测量点以及第三测量点;所述第一传感器到所述第一测量点的距离为la;所述第二传感器到所述第二测量点的距离为lb;所述第三传感器到所述第三测量点的距离为lc
测量点坐标计算单元,用于根据所述空间坐标系和所述距离la、lb、lc,计算所述第一测量点、所述第二测量点、所述第三测量点的坐标;其中,所述第一测量点、所述第二测量点、所述第三测量点的坐标分别为
Figure PCTCN2017114445-appb-000069
以及
Figure PCTCN2017114445-appb-000070
所述曲面表达式确定模块805具体包括:
第四传感点到第四测量点距离计算单元,用于根据所述距离la、lb、lc,计算所述第四传感点到第四测量点的距离ld;所述第四测量点为与所述第四传感点对应的所述所述曲线零件表面上的测量点。
第四测量点坐标计算单元,用于根据所述空间坐标系和所述距离ld,计算所述第四测量点的坐标;所述第四测量点的坐标为
Figure PCTCN2017114445-appb-000071
曲面表达式确定单元,用于根据所述第一测量点、所述第二测量点、所述第三测量点以及所述第四测量点的坐标,确定所述曲线零件表面在所述空间坐标系中的曲面表达式;所述曲面表达式为:
Figure PCTCN2017114445-appb-000072
所述旋转角度计算模块807具体包括:
平行关系确定单元,用于根据所述第三单位法向量和所述第二单位法向量重合,确定所述第三单位法向量平行于所述第二单位法向量。
关系式确定单元,用于根据相互平行的所述第三单位法向量和所述第二单位法向量,确定所述第三单位法向量和所述第二单位法向量的关系式;所述关系式为:
Figure PCTCN2017114445-appb-000073
其中,θ表示第一旋转角度;φ表示第二旋转角度。
所述关系式确定单元,具体包括:
根据所述第二单位法向量,确定所述第二单位法向量的坐标。其中,所述第二单位法向量为
Figure PCTCN2017114445-appb-000074
获取所述第三单位法向量的坐标;具体包括:
根据p×p′=|p|2·sinθ·X(5),计算所述第一单位法向量绕着所述空间坐标系中X轴旋转θ角度后得到的法向量p′;所述法向量p′为p′=(0,-sinθ,cosθ);其中,所述第一单位法向量为p=(0,0,1);所述X为在X轴上的单位向量X=(1,0,0)。
根据所述法向量p′,计算垂直于所述法向量p′的单位向量Y′;所述单位向量Y′为Y′=(0,cosθ,sinθ)。
根据p′×p″=|p″|2·sinφ·Y′(6),计算所述法向量p′绕着所述单位向量Y′旋转φ角度后法向量p″;所述法向量p″为所述所述第三单位法向量;所述法向量p″在所述空间坐标系中的坐标为
Figure PCTCN2017114445-appb-000075
根据所述第二单位法向量的坐标、所述第三单位法向量的坐标以及相互平行的所述第三单位法向量和所述第二单位法向量,确定所述第三单位 法向量和所述第二单位法向量的关系式。
旋转角度计算单元,用于根据所述关系式,计算所述第一旋转角度和所述第二旋转角度;所述第一旋转角度和第二旋转角度为:
Figure PCTCN2017114445-appb-000076
可见,采用本发明提供的系统,只需获取所述空间坐标系中的曲面零件表面的三个测量点的坐标,就能完成末端执行器姿态的调整,解决了现有技术中必须使用四个传感器才能完成末端执行器姿态调整工作的缺陷,提高了曲面零件自动装配的质量。
另外,在计算所述末端执行器的旋转角度时,充分考虑了在第一次调整得到的末端执行器法向量p′旋转时,是按照垂直与所述法向量p′的单位向量Y′进行的旋转,避免了由于末端执行器在第二次调整时仍然按照原空间Y轴进行调整,使得末端执行器在第二次调整过程中产生了偏差,导致末端执行器法向量与曲面零件装配点法向量无法重合的问题,提高了曲面零件自动装配的质量。
本说明书中各个实施例采用递进的方式描述,每个实施例重点说明的都是与其他实施例的不同之处,各个实施例之间相同相似部分互相参见即可。对于实施例公开的系统而言,由于其与实施例公开的方法相对应,所以描述的比较简单,相关之处参见方法部分说明即可。
本文中应用了具体个例对本发明的原理及实施方式进行了阐述,以上实施例的说明只是用于帮助理解本发明的方法及其核心思想;同时,对于本领域的一般技术人员,依据本发明的思想,在具体实施方式及应用范围上均会有改变之处。综上所述,本说明书内容不应理解为对本发明的限制。

Claims (10)

  1. 一种曲面零件自动装配的方法,其特征在于,所述方法包括:
    获取末端执行器执行端面的中心点;
    获取至少三个传感器在所述末端执行器分布的传感器平面;
    根据所述中心点和所述传感器平面,建立空间坐标系;所述空间坐标系的原点为所述中心点,所述空间坐标系的XY平面为所述传感器平面,所述空间坐标系的Z轴为垂直于所述XY平面且相交于所述原点的第一单位法向量所在的直线;
    获取所述空间坐标系中的曲面零件表面的三个测量点的坐标;所述测量点为所述传感器沿所述Z轴方向采集信息时与所述曲面零件表面的交点;
    根据所述测量点的坐标,确定所述曲线零件表面在所述空间坐标系中的曲面表达式;
    根据所述曲面表达式,计算所述曲线零件表面的第二单位法向量;
    根据所述第一单位法向量和所述第二单位法向量,计算所述末端执行器的旋转角度;
    根据所述旋转角度,调整所述末端执行器,使调整后所述末端执行器的第三单位法向量和所述第二单位法向量重合。
  2. 根据权利要求1所述的方法,其特征在于,所述获取所述空间坐标系中的曲面零件表面的三个测量点的坐标,包括:
    获取第一直角三角形的直角边L1、L2;所述第一直角三角形为三个顶点为三个所述传感器构成的传感器平面;所述中心点位于所述第一直角三角形斜边的中点,三个所述传感器分别为第一传感器、第二传感器以及 第三传感器;
    根据所述空间坐标系,获取所述传感器的坐标;其中,所述第一传感器的坐标为
    Figure PCTCN2017114445-appb-100001
    所述第二传感器的坐标为
    Figure PCTCN2017114445-appb-100002
    所述第三传感器的坐标为
    Figure PCTCN2017114445-appb-100003
    根据所述第一传感器、所述第二传感器以及所述第三传感器的坐标,获取第四传感点的坐标;所述第四传感点的坐标为
    Figure PCTCN2017114445-appb-100004
    所述第四传感点位于第二直角三角形的直角顶点;所述第二直角三角形与所述第一直角三角形的形状相同且斜边重合,所述第二直角三角形与所述第一直角三角形组合成一长方形;
    获取所述第一传感器、所述第二传感器、所述第三传感器分别到所述测量点的距离;其中,所述测量点包括第一测量点、第二测量点以及第三测量点;所述第一传感器到所述第一测量点的距离为la;所述第二传感器到所述第二测量点的距离为lb;所述第三传感器到所述第三测量点的距离为lc
    根据所述空间坐标系和所述距离la、lb、lc,计算所述第一测量点、所述第二测量点、所述第三测量点的坐标;其中,所述第一测量点、所述第二测量点、所述第三测量点的坐标分别为
    Figure PCTCN2017114445-appb-100005
    以及
    Figure PCTCN2017114445-appb-100006
  3. 根据权利要求2所述的方法,其特征在于,所述获取所述空间坐标系中的曲面零件表面的三个测量点的坐标,进一步包括:
    获取长方形的长L1和宽L2;所述长方形为四个顶点为四个所述传感器构成的传感器平面;四个所述传感器分别为第一传感器、第二传感器、 第三传感器以及第四传感器;所述第四传感点设置所述第四传感器;
    根据所述空间坐标系,获取所述传感器的坐标;其中,所述第一传感器的坐标为
    Figure PCTCN2017114445-appb-100007
    所述第二传感器的坐标为
    Figure PCTCN2017114445-appb-100008
    所述第三传感器的坐标为
    Figure PCTCN2017114445-appb-100009
    所述第四传感点的坐标为
    Figure PCTCN2017114445-appb-100010
    获取所述第一传感器、所述第二传感器、所述第三传感器分别到所述测量点的距离;其中,所述测量点包括第一测量点、第二测量点以及第三测量点;所述第一传感器到所述第一测量点的距离为la;所述第二传感器到所述第二测量点的距离为lb;所述第三传感器到所述第三测量点的距离为lc
    根据所述空间坐标系和所述距离la、lb、lc,计算所述第一测量点、所述第二测量点、所述第三测量点的坐标;其中,所述第一测量点、所述第二测量点、所述第三测量点的坐标分别为
    Figure PCTCN2017114445-appb-100011
    以及
    Figure PCTCN2017114445-appb-100012
  4. 根据权利要求3所述的方法,其特征在于,所述根据所述测量点的坐标,确定所述曲线零件表面在所述空间坐标系中的曲面表达式,具体包括:
    根据所述距离la、lb、lc,计算所述第四传感点到第四测量点的距离ld;所述第四测量点为与所述第四传感点对应的所述所述曲线零件表面上的测量点;
    根据所述空间坐标系和所述距离ld,计算所述第四测量点的坐标;所述第四测量点的坐标为
    Figure PCTCN2017114445-appb-100013
    根据所述第一测量点、所述第二测量点、所述第三测量点以及所述第 四测量点的坐标,确定所述曲线零件表面在所述空间坐标系中的曲面表达式;所述曲面表达式为:
    Figure PCTCN2017114445-appb-100014
  5. 根据权利要求4所述的方法,其特征在于,所述根据所述第一单位法向量和所述第二单位法向量,计算所述末端执行器的旋转角度,具体包括:
    根据所述第三单位法向量和所述第二单位法向量重合,确定所述第三单位法向量平行于所述第二单位法向量;
    根据相互平行的所述第三单位法向量和所述第二单位法向量,确定所述第三单位法向量和所述第二单位法向量的关系式;所述关系式为:
    Figure PCTCN2017114445-appb-100015
    其中,θ表示第一旋转角度;φ表示第二旋转角度;
    根据所述关系式,计算所述第一旋转角度和所述第二旋转角度;所述第一旋转角度和第二旋转角度分别为:
    Figure PCTCN2017114445-appb-100016
  6. 根据权利要求5所述的方法,其特征在于,所述根据相互平行的所述第三单位法向量和所述第二单位法向量,确定所述第三单位法向量和 所述第二单位法向量的关系式,具体包括:
    根据所述第二单位法向量,确定所述第二单位法向量的坐标;其中,所述第二单位法向量为:
    Figure PCTCN2017114445-appb-100017
    获取所述第三单位法向量的坐标;
    根据所述第二单位法向量的坐标、所述第三单位法向量的坐标以及相互平行的所述第三单位法向量和所述第二单位法向量,确定所述第三单位法向量和所述第二单位法向量的关系式。
  7. 根据权利要求6所述的方法,其特征在于,所述获取所述第三单位法向量的坐标,具体包括:
    根据p×p′=|p|2·sinθ·X (5),计算所述第一单位法向量绕着所述空间坐标系中X轴旋转θ角度后得到的法向量p′;所述法向量p′为p′=(0,-sinθ,cosθ);其中,所述第一单位法向量为p=(0,0,1);所述X为在X轴上的单位向量X=(1,0,0);
    根据所述法向量p′,计算垂直于所述法向量p′的单位向量Y′;所述单位向量Y′为Y′=(0,cosθ,sinθ);
    根据p′×p″=|p″|2·sinφ·Y′ (6),计算所述法向量p′绕着所述单位向量Y′旋转φ角度后的法向量p″;所述法向量p″为所述所述第三单位法向量;所述法向量p″在所述空间坐标系中的坐标为
    Figure PCTCN2017114445-appb-100018
  8. 一种曲面零件自动装配的系统,其特征在于,所述系统包括:
    中心点获取模块,用于获取末端执行器执行端面的中心点;
    传感器平面获取模块,用于获取至少三个传感器在所述末端执行器分布的传感器平面;
    空间坐标系建立模块,用于根据所述中心点和所述传感器平面,建立空间坐标系;所述空间坐标系的原点为所述中心点,所述空间坐标系的XY平面为所述传感器平面,所述空间坐标系的Z轴为垂直于所述XY平面且相交于所述原点的第一单位法向量所在的直线;
    测量点获取模块,用于获取所述空间坐标系中的曲面零件表面的三个测量点的坐标;所述测量点为所述传感器沿所述Z轴方向采集信息时与所述曲面零件表面的交点;
    曲面表达式确定模块,用于根据所述测量点的坐标,确定所述曲线零件表面在所述空间坐标系中的曲面表达式;
    第二单位法向量计算模块,用于根据所述曲面表达式,计算所述曲线零件表面的第二单位法向量;
    旋转角度计算模块,用于根据所述第一单位法向量和所述第二单位法向量,计算所述末端执行器的旋转角度;
    调整模块,用于根据所述旋转角度,调整所述末端执行器,使调整后所述末端执行器的第三单位法向量和所述第二单位法向量重合。
  9. 根据权利要求8所述的系统,其特征在于,所述测量点获取模块,包括:
    直角边获取单元,用于获取第一直角三角形的直角边L1、L2;所述第一直角三角形为三个顶点为三个所述传感器构成的传感器平面;所述中 心点位于所述第一直角三角形斜边的中点,三个所述传感器分别为第一传感器、第二传感器以及第三传感器;
    传感器坐标获取单元,拥有根据所述空间坐标系,获取所述传感器的坐标;其中,所述第一传感器的坐标为
    Figure PCTCN2017114445-appb-100019
    所述第二传感器的坐标为
    Figure PCTCN2017114445-appb-100020
    所述第三传感器的坐标为
    Figure PCTCN2017114445-appb-100021
    第四传感点坐标获取单元,用于根据所述第一传感器、所述第二传感器以及所述第三传感器的坐标,获取第四传感点的坐标;所述第四传感点的坐标为
    Figure PCTCN2017114445-appb-100022
    所述第四传感点位于第二直角三角形的直角顶点;所述第二直角三角形与所述第一直角三角形的形状相同且斜边重合,所述第二直角三角形与所述第一直角三角形组合成一长方形;
    传感器发到测量点距离获取单元,用于获取所述第一传感器、所述第二传感器、所述第三传感器分别到所述测量点的距离;其中,所述测量点包括第一测量点、第二测量点以及第三测量点;所述第一传感器到所述第一测量点的距离为la;所述第二传感器到所述第二测量点的距离为lb;所述第三传感器到所述第三测量点的距离为lc
    测量点坐标计算单元,用于根据所述空间坐标系和所述距离la、lb、lc,计算所述第一测量点、所述第二测量点、所述第三测量点的坐标;其中,所述第一测量点、所述第二测量点、所述第三测量点的坐标分别为
    Figure PCTCN2017114445-appb-100023
    以及
    Figure PCTCN2017114445-appb-100024
  10. 根据权利要求9所述的系统,其特征在于,所述曲面表达式确定模块,具体包括:
    第四传感点到第四测量点距离计算单元,用于根据所述距离 la、lb、lc,计算所述第四传感点到第四测量点的距离ld;所述第四测量点为与所述第四传感点对应的所述所述曲线零件表面上的测量点;
    第四测量点坐标计算单元,用于根据所述空间坐标系和所述距离ld,计算所述第四测量点的坐标;所述第四测量点的坐标为
    Figure PCTCN2017114445-appb-100025
    曲面表达式确定单元,用于根据所述第一测量点、所述第二测量点、所述第三测量点以及所述第四测量点的坐标,确定所述曲线零件表面在所述空间坐标系中的曲面表达式;所述曲面表达式为:
    Figure PCTCN2017114445-appb-100026
PCT/CN2017/114445 2017-09-05 2017-12-04 一种曲面零件自动装配的方法及系统 WO2019047393A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/096,088 US11052497B2 (en) 2017-09-05 2017-12-04 Method and system for automatic assembly of curved surface part
GB1811831.5A GB2580282B (en) 2017-09-05 2017-12-04 Method and system for automatic assembly of curved surface part

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710791969.9 2017-09-05
CN201710791969.9A CN107570983B (zh) 2017-09-05 2017-09-05 一种曲面零件自动装配的方法及系统

Publications (1)

Publication Number Publication Date
WO2019047393A1 true WO2019047393A1 (zh) 2019-03-14

Family

ID=61029834

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/114445 WO2019047393A1 (zh) 2017-09-05 2017-12-04 一种曲面零件自动装配的方法及系统

Country Status (3)

Country Link
US (1) US11052497B2 (zh)
CN (1) CN107570983B (zh)
WO (1) WO2019047393A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111795668A (zh) * 2020-06-24 2020-10-20 西安法士特汽车传动有限公司 一种变速器选换挡角度检测方法及装置
CN112157409A (zh) * 2020-08-13 2021-01-01 盐城工学院 基于abb120的自动装配线程序设计方法
CN113370213A (zh) * 2021-06-25 2021-09-10 成都飞机工业(集团)有限责任公司 一种机器人末端执行器的姿态计算方法
CN113352302A (zh) * 2021-07-02 2021-09-07 长治市山隧工程机械有限公司 一种拱形钢架安装机械臂
CN113914880B (zh) * 2021-09-01 2024-02-23 中铁九局集团电务工程有限公司 基于激光测距的倾角可修正隧道打孔方法及打孔机器人
CN115235376B (zh) * 2022-09-23 2023-01-17 国网天津市电力公司电力科学研究院 一种非接触式电缆敷设质量检测方法及检测装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011159042A (ja) * 2010-01-29 2011-08-18 Ihi Corp 物体認識方法及び物体認識装置
CN102430779A (zh) * 2011-09-22 2012-05-02 西北工业大学 一种测量自由曲面任意点处法向矢量的装置及其测量方法
CN102768006A (zh) * 2012-08-02 2012-11-07 西北工业大学 一种用于大曲率曲面零件法向自动测量和调整的方法
CN104759945A (zh) * 2015-03-25 2015-07-08 西北工业大学 基于高精度工业相机的移动制孔机器人基准找正方法
CN104816307A (zh) * 2015-03-25 2015-08-05 西北工业大学 工业机器人精准制孔的四点法向调平方法
CN105222712A (zh) * 2015-11-02 2016-01-06 西北工业大学 一种改进的大曲率半径曲面零件法向测量与调整方法

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10264060A (ja) * 1997-03-27 1998-10-06 Trinity Ind Corp 塗装ロボットのティーチング装置
US7251580B2 (en) * 2003-10-20 2007-07-31 Mitutoyo Corporation Method for measuring curved surface of workpiece, program and medium thereof
CN101382409A (zh) * 2008-10-24 2009-03-11 红塔烟草(集团)有限责任公司 利用重心坐标精密测量空间曲面上点和空间曲面的方法
CN102091799B (zh) * 2010-12-17 2012-08-22 东南大学 一种曲面自动制孔末端执行器
CN102248450B (zh) * 2011-04-20 2013-03-20 上海交通大学 用于大曲率半径曲面法向矢量快速检测方法
CN105559809B (zh) * 2014-11-09 2020-08-28 刁心玺 一种扫描方法及装置
CN105643399B (zh) * 2015-12-29 2018-06-26 沈阳理工大学 基于柔顺控制的机器人复杂曲面自动研抛系统及加工方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011159042A (ja) * 2010-01-29 2011-08-18 Ihi Corp 物体認識方法及び物体認識装置
CN102430779A (zh) * 2011-09-22 2012-05-02 西北工业大学 一种测量自由曲面任意点处法向矢量的装置及其测量方法
CN102768006A (zh) * 2012-08-02 2012-11-07 西北工业大学 一种用于大曲率曲面零件法向自动测量和调整的方法
CN104759945A (zh) * 2015-03-25 2015-07-08 西北工业大学 基于高精度工业相机的移动制孔机器人基准找正方法
CN104816307A (zh) * 2015-03-25 2015-08-05 西北工业大学 工业机器人精准制孔的四点法向调平方法
CN105222712A (zh) * 2015-11-02 2016-01-06 西北工业大学 一种改进的大曲率半径曲面零件法向测量与调整方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
YING GAOMING ET AL.: "Study on Normal Vector Measurement Method in Auto-drilling & Riveting of aircraft Panel", MACHINE TOOL AND HYDRAULICS, vol. 23, no. 38, 31 December 2010 (2010-12-31), pages 1 - 8, XP055581919, ISSN: 1001-3881 *

Also Published As

Publication number Publication date
US11052497B2 (en) 2021-07-06
CN107570983B (zh) 2019-06-14
CN107570983A (zh) 2018-01-12
US20200368859A1 (en) 2020-11-26

Similar Documents

Publication Publication Date Title
WO2019047393A1 (zh) 一种曲面零件自动装配的方法及系统
CN108127483B (zh) 曲面零件数控加工定位方法
CN109870111B (zh) 基于机器视觉的渐开线圆柱齿轮齿距累积误差测量方法
WO2020238346A1 (zh) 一种用于机器人钻孔中优化钻头位姿的方法
CN105806309B (zh) 基于激光三角测距的机器人零位标定系统与方法
CN111982019B (zh) 基于线结构光传感器的叶片截面轮廓高精度检测方法
CN112781496B (zh) 一种非接触测量系统的测头位姿标定方法
CN102430779B (zh) 一种测量自由曲面任意点处法向矢量的装置及其测量方法
CN103659806A (zh) 一种工业机器人零位标定方法
CN110161965B (zh) 一种大型航天机匣斜孔的在机测量方法
CN110757504A (zh) 高精度可移动机器人的定位误差补偿方法
CN105806220B (zh) 一种激光跟踪测量系统结构误差补偿方法
WO2023138119A1 (zh) 一种非接触式照相测孔标定装置及方法
CN112325773B (zh) 一种激光位移传感器的光束方向矢量和原点位置标定方法
CN103009194B (zh) 一种用于大型工件的非接触式内平行平面间距测量法
CN102445171A (zh) 一种确定自由曲面上任意点处法向矢量的方法
CN114253217A (zh) 带有自修正功能的五轴机床rtcp自动标定方法
CN110211175A (zh) 准直激光器光束空间位姿标定方法
CN110640546B (zh) 用于大型齿轮在机旁置测量的被测齿轮回转轴线测定方法
Wang et al. Base detection research of drilling robot system by using visual inspection
Yang et al. A fast calibration of laser vision robotic welding systems using automatic path planning
JPS638904A (ja) ロボツト校正装置
CN109443326B (zh) 一种工程机械定位方法及系统
Gao et al. Integrated calibration of a 3D attitude sensor in large-scale metrology
TW201509615A (zh) 機械手臂旋轉軸量測系統及應用彼之量測方法

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 201811831

Country of ref document: GB

Kind code of ref document: A

Free format text: PCT FILING DATE = 20171204

WWE Wipo information: entry into national phase

Ref document number: 1811831.5

Country of ref document: GB

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17924625

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 24/06/20)

122 Ep: pct application non-entry in european phase

Ref document number: 17924625

Country of ref document: EP

Kind code of ref document: A1