WO2019047349A1 - 气体回收充气装置和六氟化硫气体回收充气装置 - Google Patents

气体回收充气装置和六氟化硫气体回收充气装置 Download PDF

Info

Publication number
WO2019047349A1
WO2019047349A1 PCT/CN2017/108580 CN2017108580W WO2019047349A1 WO 2019047349 A1 WO2019047349 A1 WO 2019047349A1 CN 2017108580 W CN2017108580 W CN 2017108580W WO 2019047349 A1 WO2019047349 A1 WO 2019047349A1
Authority
WO
WIPO (PCT)
Prior art keywords
branch
recovery
gas
valve
inflator
Prior art date
Application number
PCT/CN2017/108580
Other languages
English (en)
French (fr)
Inventor
张建飞
邹高鹏
靳国豪
刘朋亮
王玉春
孟凡青
方煜瑛
Original Assignee
河南平高电气股份有限公司
平高集团有限公司
国家电网公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 河南平高电气股份有限公司, 平高集团有限公司, 国家电网公司 filed Critical 河南平高电气股份有限公司
Publication of WO2019047349A1 publication Critical patent/WO2019047349A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D1/00Pipe-line systems
    • F17D1/02Pipe-line systems for gases or vapours
    • F17D1/04Pipe-line systems for gases or vapours for distribution of gas
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F17STORING OR DISTRIBUTING GASES OR LIQUIDS
    • F17DPIPE-LINE SYSTEMS; PIPE-LINES
    • F17D3/00Arrangements for supervising or controlling working operations
    • F17D3/01Arrangements for supervising or controlling working operations for controlling, signalling, or supervising the conveyance of a product
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/53Cases; Reservoirs, tanks, piping or valves, for arc-extinguishing fluid; Accessories therefor, e.g. safety arrangements, pressure relief devices
    • H01H33/57Recuperation of liquid or gas
    • CCHEMISTRY; METALLURGY
    • C01INORGANIC CHEMISTRY
    • C01BNON-METALLIC ELEMENTS; COMPOUNDS THEREOF; METALLOIDS OR COMPOUNDS THEREOF NOT COVERED BY SUBCLASS C01C
    • C01B17/00Sulfur; Compounds thereof
    • C01B17/45Compounds containing sulfur and halogen, with or without oxygen

Definitions

  • the present invention relates to a gas recovery inflator and a sulfur hexafluoride gas recovery inflator.
  • sulfur hexafluoride gas is widely used in various high-voltage switchgear for gas insulation of high-voltage switchgear.
  • sulfur hexafluoride gas because of the huge greenhouse effect of sulfur hexafluoride gas, how to realize the recycling of sulfur hexafluoride gas It is especially important.
  • a first object of the present invention is to provide a gas recovery inflator capable of efficiently recovering a gas, particularly sulfur hexafluoride gas, and having a diversified function of the gas recovery inflator.
  • a second object of the present invention is to provide a sulfur hexafluoride gas recovery inflator.
  • the present invention provides a gas recovery inflator, comprising: an evacuation branch, a recovery branch, and an inflating branch, the evacuation branch being capable of interacting with the recovery branch and
  • the inflating branch is gated or connected, the downstream end of the inflating branch is connected to an upstream end of the recovery branch, and the recovery branch is provided with a gas liquefaction device and a recovery branch control valve, the inflating An inflatable branch control valve is provided on the branch road.
  • the gas recovery inflator includes a gas storage container, and a downstream end of the recovery branch and an upstream end of the inflating branch are respectively connected to the gas storage container through a gas storage valve.
  • the gas recovery inflator comprises a joint device connected to the vacuum branch, the recovery branch and the inflated branch and capable of causing the vacuum branch to
  • the recovery branch and the inflatable branch can be connected or connected.
  • the gas storage container is connected to an end of the recovery branch away from the joint device.
  • the recovery branch control valve is located downstream of the gas liquefaction device, and a first cylinder interface is disposed between the gas liquefaction device and the recovery branch control valve.
  • the inflatable branch is provided with a second cylinder interface.
  • the inflating branch and/or the recovery branch are provided with filtering means.
  • the inflator branch is provided with a heater downstream of the second cylinder interface.
  • a first pressure reducing valve is disposed between the heater and the joint device.
  • the gas liquefaction device comprises a booster compressor and a main compressor which are sequentially connected in series, and the recovery branch is provided with a short-circuit gas path capable of shorting the booster compressor upstream of the main compressor, which is short An on-off valve is provided on the air connection.
  • the gas liquefaction device comprises a booster compressor and a main compressor which are sequentially connected in series, and the recovery branch is provided with a short-circuit gas path capable of shorting the booster compressor upstream of the main compressor, which is short
  • An on-off valve is provided on the air passage, and a second pressure reducing valve is disposed downstream of the on-off valve on the short-circuited air passage.
  • the recovery branch is provided with a first pressure controller upstream of the booster compressor and the on-off valve, the first pressure controller for monitoring the pressure of the short-circuited gas line to control the on-off valve Opening and closing.
  • the recovery branch is provided with a dust filter at a position close to the upstream end of the recovery branch.
  • the gas recovery inflator is a sulfur hexafluoride gas recovery inflator.
  • a technical solution 1 for a sulfur hexafluoride gas recovery inflator of the present invention is: a sulfur hexafluoride gas recovery inflator comprising a joint device, the joint device being connected with an evacuation branch, The recovery branch road and the inflatable branch road are connected or connected to the vacuum bypass branch, the recovery branch road and the inflatable branch road, and the vacuum pump is provided with a vacuum pump, and the recovery branch road is away from the joint
  • a gas storage tank is connected to one end of the gas storage tank, and a gas storage valve is arranged at the inlet of the gas storage tank.
  • the upstream end of the gas-filled branch is connected to the recovery branch upstream of the gas storage tank, and the downstream end is connected with the upstream end of the recovery branch.
  • a gas liquefaction device is arranged on the recovery branch, and an inflatable branch control valve is arranged on the inflatable branch road.
  • the sulphur hexafluoride gas recovery inflator of the invention is provided with an evacuation branch to evacuate the equipment air chamber, a recovery branch is provided for recovering sulphur hexafluoride gas in the equipment air chamber, and an inflatable branch is provided for Inflating into the air chamber of the equipment, in addition, through the joint device strobing or connecting the vacuum pumping branch with the recovery branch and the inflatable branch, the equipment itself can be connected when the vacuum bypass branch is connected with the recovery branch and the inflatable branch Perform a vacuuming operation.
  • the technical proposal 2 of the sulphur hexafluoride gas recovery inflator of the present invention is further improved on the basis of the technical solution 1: the recovery branch road is provided with a recovery branch control valve downstream of the gas liquefaction device, and the gas liquefaction device A first cylinder interface is provided between the recovery branch control valve and the recovery branch.
  • the technical solution 3 of the sulphur hexafluoride gas recovery inflator of the present invention is further improved on the basis of the technical solution 1: the second cylinder interface is provided on the inflatable branch.
  • the technical solution 4 of the sulphur hexafluoride gas recovery inflator of the present invention is further improved on the basis of the technical solution 3: a filtering device is arranged on the inflation circuit upstream of the second cylinder interface. The sulphur hexafluoride passing through the pipe section is filtered to make the sulphur hexafluoride more clean.
  • the technical solution 5 of the sulphur hexafluoride gas recovery inflator of the present invention is further improved on the basis of the third aspect: the inflator branch is provided with a heater downstream of the second cylinder interface.
  • the technical solution 6 of the sulphur hexafluoride gas recovery inflator of the present invention is further improved on the basis of the technical solution 5: a first pressure reducing valve is disposed between the heater and the joint device.
  • the technical solution 7 of the sulphur hexafluoride gas recovery inflator of the present invention is further improved on the basis of any one of the technical solutions 1-6:
  • the gas liquefaction device comprises a booster compressor and a main in series In the compressor, the recovery branch is provided with a short-circuit gas path capable of short-circuiting the power-assisted compressor on the upstream of the main compressor, and an on-off valve is provided on the short-circuited gas path.
  • the technical solution 8 of the sulphur hexafluoride gas recovery inflating device of the present invention is in the technical solution 7 Further improvement on the basis of the following: a short pressure circuit is provided with a second pressure reducing valve downstream of the switching valve.
  • the technical solution 9 of the sulphur hexafluoride gas recovery inflator of the present invention is further improved on the basis of the technical solution 7:
  • the recovery pressure branch is provided with a first pressure controller upstream of the booster compressor and the on-off valve,
  • the first pressure controller is used to monitor the pressure on the short-circuit branch to control the opening and closing of the on-off valve, thereby controlling the injection and input of the booster compressor.
  • the technical solution 10 of the sulphur hexafluoride gas recovery inflator of the present invention is further improved on the basis of the seventh aspect: a dust removal filter is disposed upstream of the recovery branch. The dust extracted from the gas chamber of the equipment is dedusted to make the gas entering the device cleaner.
  • the technical solution 11 of the sulphur hexafluoride gas recovery inflator of the present invention is further improved on the basis of the technical solution 7: the gas liquefaction device further comprises a cooling liquefaction device, and the cooling liquefaction device is located downstream of the main compressor.
  • the technical solution 12 of the sulphur hexafluoride gas recovery inflator of the present invention is further improved on the basis of the technical solution 11 in which a radiator is disposed between the main compressor and the cooling liquefaction device.
  • the technical solution 13 of the sulphur hexafluoride gas recovery inflator of the present invention is further improved on the basis of the seventh aspect: the outlet pipe of the main compressor is provided with a discharge pressure for detecting the main compressor and is arranged in the row The second pressure controller that controls the SF6 gas recovery inflator to stop operating when the gas pressure is greater than the set value.
  • the exhaust pressure overpressure protection of the main compressor is achieved by setting the second pressure controller.
  • the technical solution 14 of the sulphur hexafluoride gas recovery inflating device of the present invention is further improved on the basis of any one of the technical solutions 1-6:
  • the joint device comprises a first joint and a second joint, and the vacuum is evacuated
  • the branch is connected to the first joint
  • the recovery branch and the inflatable branch are connected to the second joint
  • a communication valve is arranged between the first and second joints to control the on and off between the two.
  • the technical solution 15 of the sulphur hexafluoride gas recovery inflator of the present invention is further improved on the basis of the technical solution 14: the first joint is further connected with a vacuuming interface for connecting with the device to be evacuated; the second joint is further A recovery inflation port for connection to the corresponding device is connected.
  • the technical solution 16 of the sulphur hexafluoride gas recovery inflating device of the present invention is further improved on the basis of any one of the technical solutions 1-6: a vacuum gauge is disposed on the vacuuming branch.
  • the technical solution 17 of the sulphur hexafluoride gas recovery inflator of the present invention is further improved on the basis of the technical solution 16: the vacuum bypass is provided downstream of the vacuum gauge, and the first vacuum valve is disposed at the inlet of the vacuum pump.
  • the technical solution 18 of the sulphur hexafluoride gas recovery inflator of the present invention is further improved on the basis of the technical solution 16: the second vacuum valve is disposed at the inlet of the vacuum gauge, and the vacuuming branch is further disposed. There is a third pressure controller for detecting the gas pressure on the vacuum bypass and controlling the first vacuum valve and the second vacuum valve to be closed when the gas pressure is greater than the set value.
  • FIG. 1 is a structural view of a sulfur hexafluoride gas recovery and inflator in a specific embodiment 1 of the present invention
  • FIG. 2 is a gas flow diagram of a high pressure sulphur hexafluoride gas in a gas chamber of a device when it is recovered into a gas storage tank according to Embodiment 1 of the present invention
  • FIG. 3 is a gas flow diagram when a low-pressure sulfur hexafluoride gas in a gas chamber of a device is recovered into a gas storage tank according to Embodiment 1 of the present invention
  • FIG. 4 is a gas flow diagram of the high-pressure sulfur hexafluoride gas in the gas chamber of the apparatus when it is recycled into an external cylinder according to Embodiment 1 of the present invention
  • FIG. 5 is a gas flow diagram of a low-pressure sulfur hexafluoride gas in a gas chamber of a device when it is recycled into an external cylinder according to Embodiment 1 of the present invention
  • FIG. 6 is a gas flow diagram when a gas in a gas storage tank is charged into a gas chamber of a device according to Embodiment 1 of the present invention
  • Figure 7 is a gas flow diagram when the gas in the gas storage tank is filled into the external cylinder in the first embodiment of the present invention
  • Figure 8 is a structural view of a sulfur hexafluoride gas recovery and inflator device according to a second embodiment of the present invention.
  • a specific embodiment 1 of a gas recovery inflator or a sulfur hexafluoride gas recovery inflator of the present invention includes an evacuation branch, a recovery branch, and an inflated branch, and evacuates
  • the first joint A is disposed on the branch road
  • the upstream end of the recovery branch and the downstream end of the inflatable branch are connected through the second joint B
  • the first joint A and the second joint B are connected through the connecting pipe
  • the connecting pipe is arranged on the connecting pipe.
  • the vacuum bypass branch is also connected to the vacuum port 7 via the first joint A
  • the recovery branch and the inflatable branch are also connected to the recovery inflation port 8 via the second joint B.
  • the gas recovery and aeration device of the present invention is not limited to recycling only sulfur hexafluoride gas, and may also be used for recycling gas having the same and similar properties as sulfur hexafluoride gas.
  • the recovery branch is provided with a dust filter 9, a first pressure controller 29, a bypass valve 28, a booster compressor 27, a check valve 26, a main compressor 25, and the like from the upstream to the downstream.
  • the gas storage tank 19 can be used as a separate accessory alone, and does not have to be or be attached as a necessary component of the sulfur hexafluoride gas recovery inflator itself.
  • the recovery branch is also connected with a short-circuiting gas passage between the upstream of the bypass valve 28 and the downstream of the check valve 26, and the switching valve 10 and the second pressure reducing valve 12 are sequentially disposed on the short-circuited air passage.
  • the first pressure controller 29 is used for monitoring
  • the pressure on the air passage is short-circuited to control the opening and closing of the on-off valve 10, thereby controlling the injection and input of the booster compressor 27. For example, when the gas pressure exceeds a set value (about 0.02 MPa), the bypass valve 28 is closed, and the on-off valve 10 is opened to perform a sulfur hexafluoride gas recovery operation when the measured value of the first pressure controller 29 is lower than the set pressure.
  • the second pressure controller 24 is configured to detect the exhaust pressure of the main compressor 25 and control the sulphur hexafluoride gas recovery inflator to stop operation when the exhaust pressure is greater than a set value (the maximum allowable exhaust pressure of the compressor), and protect the main The compressor 25 is not damaged, and the main compressor 25 exhaust overpressure protection function is realized.
  • the cooling liquefaction device includes a cooling tank 22 that communicates with the recovery branch and a refrigeration unit 21 that cools the cooling tank.
  • a first cylinder interface 17 is also connected between the cooling liquefaction device and the recovery branch control valve 20.
  • the upstream end of the inflating branch is connected to the recovery branch upstream of the gas storage tank 19, and the filtering device 16 is disposed in order from the upstream to the downstream of the inflating branch road, the inflating branch control valve 14, the heater 13, and the first pressure reducing valve 11 .
  • a second cylinder interface 15 is connected between the filter device 16 and the inflating branch control valve 14.
  • a vacuum controller 5 is provided with a third pressure controller 5, a first vacuum valve 2, a vacuum pump 1 from the upstream to the downstream, and a vacuum gauge 4 is connected between the third pressure controller 5 and the first vacuum valve 2 through a vacuum pipe.
  • a second vacuum valve 3 is disposed at the inlet of the vacuum gauge, wherein the third pressure controller 5 is configured to detect the gas pressure on the vacuum bypass branch and control the first vacuum valve when the gas pressure is greater than a set value (about 0.02 MPa) 2.
  • the second vacuum valve 3 is closed to prevent overpressure damage of the vacuum pump 1 and the vacuum gauge 4, and to achieve overpressure protection at the vacuum end.
  • the sulphur hexafluoride gas recovery aeration device of the present invention is in actual use:
  • Vacuuming the equipment air chamber connecting the equipment air chamber to the vacuuming port 7, starting the vacuum chamber of the equipment chamber, the vacuum pump 1 is started, the first vacuum valve 2 is opened, the vacuum is started, and the second vacuum valve 3 is opened.
  • the degree of vacuum can be read by the vacuum gauge 4. In this process, if the first vacuum valve 2 is closed, the static vacuum in the equipment air chamber can be read.
  • the sulphur hexafluoride gas recovery inflator itself is evacuated: when the sulphur hexafluoride gas recovery inflator is used for the first time or after being repaired, the sulphur hexafluoride gas recovery inflator itself needs to be evacuated.
  • the vacuum pump 1 is activated, the first vacuum valve 2, the second vacuum valve 3, the communication valve 6, the recovery branch control valve 20, and the gas storage valve 18 are opened, and the residual gas inside the device is extracted.
  • the sulfur hexafluoride gas in the equipment air chamber is recovered into the gas storage tank 19: the equipment air chamber is connected to the recovery air inlet port 8 (may also be connected to the vacuuming port 7, opening the communication valve 6), and the gas storage valve 18 is opened.
  • the recovery function is started.
  • the air flow flow process is as shown by the arrow in FIG.
  • the main compressor 25, the refrigeration unit 21 is started, the on-off valve 10, and the recovery branch control
  • the valve 20 is opened, and the sulfur hexafluoride gas in the equipment gas chamber is filtered from the dust removing filter 9, and then enters the main compressor 25 through the switching valve 10 and the second pressure reducing valve 12, and the main compressor 25 is pressurized and passed through the radiator.
  • the refrigerant enters the cooling tank 22, is liquefied by the refrigeration unit 21, and is liquefied (low temperature liquefaction storage function), and flows into the gas storage tank 19 through the recovery branch control valve 20 and the gas storage valve 18.
  • the pressure in the equipment air chamber gradually decreases.
  • the on-off valve 10 is closed, the bypass valve 28 and the booster compressor 27 are opened, and the switch is switched to negative.
  • the flow of the gas at this time is as shown by the arrow in FIG. 3, and the sulfur hexafluoride gas in the equipment gas chamber is filtered from the dust filter 9 and then enters through the bypass valve 28, the booster compressor 27, and the check valve 26.
  • the main compressor 25 After the main compressor 25 is pressurized, it is initially cooled by the radiator 23, enters the cooling tank 22, is cooled by the refrigeration unit 21, and then liquefied (low-temperature liquefaction storage function), through the recovery branch control valve 20, The gas storage valve 18 then flows into the gas storage tank 19. Until the pressure in the switching chamber drops to the set pressure (generally the absolute pressure is below 1330Pa).
  • the sulphur hexafluoride gas in the equipment air chamber is recovered into the external steel cylinder: at this time, the gas flow process is as shown by the arrow in FIG. 4, and the equipment air chamber is connected to the recovery air inlet port 8 (can also be connected to the vacuum pumping interface) 7. Open the communication valve 6), connect the external cylinder to the second cylinder interface 15, keep the gas storage valve 18 closed, start the recovery function, start the main compressor 25, the refrigeration unit 21, and open and close the valve. 10.
  • the recovery branch control valve 20 is opened, and the sulfur hexafluoride gas in the equipment gas chamber is filtered in the dust removal filter 9, and then enters the main compressor 25 through the on-off valve 10 and the second pressure reducing valve 12, and the main compressor After the pressure is 25, it is initially cooled by the radiator 23, enters the cooling tank 22, is cooled by the refrigeration unit 21, and then liquefied (low-temperature liquefaction storage function), and is returned to the external cylinder through the recovery branch control valve 20 and the filter device 16.
  • the on-off valve 10 is closed, the bypass valve 28 is opened, and the negative pressure recovery state is switched to recover.
  • the gas flow process is as shown in FIG. 5.
  • the middle arrow is shown.
  • the gas in the gas storage tank 19 is filled into the equipment air chamber: the equipment air chamber is connected to the recovery air inlet port 8 (may also be connected to the vacuuming port 7, opening the communication valve 6), the gas storage valve 18 is opened, and the charging function is activated.
  • the inflating branch control valve 14 is opened, the heater 13 starts heating, and the gas is withdrawn from the gas storage tank 19, and after passing through the gas storage valve 18, the filtering device 16, and the inflating branch control valve 14, it is heated into the heater 13, and the first After the pressure reducing valve 11 is depressurized, it is charged to the equipment air chamber, and the filtering device 16 can filter the moisture, decomposition products, particulate matter, etc. in the gas to ensure the quality of the gas (purification function).
  • the gas flow process As shown by the arrow in Figure 6.
  • the gas in the gas storage tank 19 is filled into the external cylinder: the external cylinder is connected at the first cylinder interface 17, the gas storage valve 18 is opened, the gas filling function in the storage tank is activated, the pneumatic branch control valve 14, the on-off valve 10 is turned on, the heater 13 starts heating, the main compressor 25, the refrigeration unit 21 is started, the gas is withdrawn from the gas storage tank 19, and after entering the heater 13 through the gas storage valve 18, the filtering device 16, and the inflating branch control valve 14.
  • the medium is heated, and is depressurized by the first pressure reducing valve 11 and filtered by the dust removing filter 9, and then enters the main compressor 25 through the switching valve 10 and the second pressure reducing valve 12, and after the main compressor 25 is pressurized, passes through the radiator 23.
  • After preliminary cooling it enters the cooling tank 22, is cooled by the refrigeration unit 21, and then liquefied, and then flows into the external cylinder through the second cylinder interface 15. At this time, the flow of the gas is as shown by the arrow in FIG.
  • the recovery inflation port 8, the first cylinder interface 17, and the second cylinder interface 15 can achieve self-sealing when not connected to an external device.
  • the communication valve 6 and the gas storage valve 18 are all ball valves, the first vacuum valve 2, the second vacuum valve 3, the bypass valve 28, the on-off valve 10, and the recovery branch
  • the road control valve 20 and the inflating branch control valve 14 are both solenoid valves.
  • the specific embodiment 2 of the sulphur hexafluoride gas recovery inflator of the present invention is different from the specific embodiment 1 in that, as shown in FIG. 8, the vacuum bypass branch and the recovery branch and the inflatable branch may also be used. It is not connected by the joint device composed of the first joint and the second joint, but is connected by the joint device C. At this time, the vacuum bypass branch is directly connected to the recovery branch and the inflating branch, and the vacuum bypass branch is recovered by inflating. The interface is connected to the equipment air chamber to evacuate the equipment.
  • the specific embodiment 3 of the sulphur hexafluoride gas recovery inflator of the present invention is different from the specific embodiment 1 in that the gas liquefaction device for liquefying the gas on the recovery branch can use only the main compressor instead of Set the cooling liquefaction unit.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Filling Or Discharging Of Gas Storage Vessels (AREA)
  • Treating Waste Gases (AREA)

Abstract

一种六氟化硫气体回收充气装置,包括接头装置,接头装置连接有抽真空支路、回收支路以及充气支路并可选通或连通抽真空支路与回收支路和充气支路,回收支路远离接头装置的一端连接有储气罐(19),充气支路的上游端在储气罐(19)上游与回收支路连接,下游端与回收支路的上游端连接,回收支路上设置有气体液化装置。

Description

气体回收充气装置和六氟化硫气体回收充气装置 技术领域
本发明涉及一种气体回收充气装置和六氟化硫气体回收充气装置。
背景技术
目前,六氟化硫气体被广泛应用于各种高压开关设备中用于实现高压开关设备的气体绝缘,但是,因为六氟化硫气体的温室效应巨大,如何实现六氟化硫气体的回收利用显得尤其重要。
发明内容
本发明的第一个目的在于提供一种气体回收充气装置,该气体回收充气装置能够有效地回收气体、尤其是六氟化硫气体,并且该气体回收充气装置的功能多样化。
本发明的第二个目的在于提供一种六氟化硫气体回收充气装置。
为实现上述第一个目的,本发明提供一种气体回收充气装置,其中:包括抽真空支路、回收支路以及充气支路,所述抽真空支路能够与所述回收支路和充气支路选通或连通,所述充气支路的下游端与所述回收支路的上游端连接,所述回收支路上设置有气体液化装置和回收支路控制阀,所述充气支路上设置有充气支路控制阀。
优选地,所述气体回收充气装置包括储气容器,所述回收支路的下游端和充气支路的上游端分别通过储气阀与所述储气容器连接。
优选地,所述气体回收充气装置包括接头装置,所述接头装置与所述抽真空支路、回收支路以及充气支路连接并能够使所述抽真空支路与所述 回收支路和充气支路可选通或连通。
优选地,所述储气容器连接在所述回收支路远离所述接头装置的一端。
优选地,所述回收支路控制阀位于所述气体液化装置的下游处,所述气体液化装置与所述回收支路控制阀之间设置有第一气瓶接口。
优选地,所述充气支路上设有第二气瓶接口。
优选地,所述充气支路和/或所述回收支路上设有过滤装置。
优选地,所述充气支路上于所述第二气瓶接口的下游设置有加热器。
优选地,所述加热器与所述接头装置之间设置有第一减压阀。
优选地,所述气体液化装置包括依次串接的助力压缩机和主压缩机,所述回收支路上于所述主压缩机上游配套有能够将助力压缩机短接的短接气路,短接气路上设有开关阀。
优选地,所述气体液化装置包括依次串接的助力压缩机和主压缩机,所述回收支路上于所述主压缩机上游配套有能够将助力压缩机短接的短接气路,短接气路上设有开关阀,所述短接气路上在所述开关阀的下游设置有第二减压阀。
优选地,所述回收支路上于所述助力压缩机和开关阀的上游处设有第一压力控制器,所述第一压力控制器用于监控短接气路上的压力以控制所述开关阀的启闭。
优选地,所述回收支路于靠近所述回收支路的上游端的位置设置有除尘过滤器。
优选地,所述气体回收充气装置为六氟化硫气体回收充气装置。
为实现上述第二个目的,本发明一种六氟化硫气体回收充气装置的技术方案1是:一种六氟化硫气体回收充气装置,包括接头装置,接头装置连接有抽真空支路、回收支路以及充气支路并可选通或连通抽真空支路与回收支路和充气支路,抽真空支路上设置有真空泵,回收支路远离接头装 置的一端连接有储气罐,储气罐的进口处设置有储气阀,充气支路的上游端在储气罐上游与回收支路连接,下游端与回收支路的上游端连接,回收支路上设置有气体液化装置,充气支路上设置有充气支路控制阀。
本发明的六氟化硫气体回收充气装置,设置抽真空支路对设备气室进行抽真空,设置回收支路用于回收设备气室中的六氟化硫气体,设置充气支路用于向设备气室中充气,此外,通过接头装置选通或联通抽真空支路与回收支路和充气支路,可以在抽真空支路与回收支路和充气支路联通时对设备自身进行抽真空操作。
本发明一种六氟化硫气体回收充气装置的技术方案2是在技术方案1的基础上做进一步改进:回收支路上于气体液化装置下游处设置有回收支路控制阀,气体液化装置与回收支路控制阀之间设置有第一气瓶接口。
本发明一种六氟化硫气体回收充气装置的技术方案3是在技术方案1的基础上做进一步改进:充气支路上设有第二气瓶接口。
本发明一种六氟化硫气体回收充气装置的技术方案4是在技术方案3的基础上做进一步改进:充气回路上于第二气瓶接口上游处设有过滤装置。将经过该管段的六氟化硫进行过滤,使六氟化硫更加的洁净。
本发明一种六氟化硫气体回收充气装置的技术方案5是在技术方案3的基础上做进一步改进:充气支路上于第二气瓶接口的下游设置有加热器。
本发明一种六氟化硫气体回收充气装置的技术方案6是在技术方案5的基础上做进一步改进:加热器与接头装置之间设置有第一减压阀。
本发明一种六氟化硫气体回收充气装置的技术方案7是在技术方案1-6中任一技术方案的基础上做进一步改进:所述气体液化装置包括依次串接的助力压缩机和主压缩机,所述回收支路上于所述主压缩机上游配套有能够将助力压缩机短接的短接气路,短接气路上设有开关阀。
本发明一种六氟化硫气体回收充气装置的技术方案8是在技术方案7 的基础上做进一步改进:短接气路上在开关阀的下游设置有第二减压阀。
本发明一种六氟化硫气体回收充气装置的技术方案9是在技术方案7的基础上做进一步改进:回收支路上于助力压缩机和开关阀的上游处设有第一压力控制器,第一压力控制器用于监控短接支路上的压力以控制开关阀的启闭,进而控制助力压缩机的投出和投入。
本发明一种六氟化硫气体回收充气装置的技术方案10是在技术方案7的基础上做进一步改进:所述回收支路的上游处设置有除尘过滤器。对从设备气室中抽出的气体进行除尘处理,使进入装置中的气体更加洁净。
本发明一种六氟化硫气体回收充气装置的技术方案11是在技术方案7的基础上做进一步改进:气体液化装置还包括冷却液化装置,冷却液化装置位于主压缩机下游。
本发明一种六氟化硫气体回收充气装置的技术方案12是在技术方案11的基础上做进一步改进:所述主压缩机与冷却液化装置之间设置有散热器。
本发明一种六氟化硫气体回收充气装置的技术方案13是在技术方案7的基础上做进一步改进:所述主压缩机的出口管道上设置有用于检测主压缩机排气压力并在排气压力大于设定值时控制六氟化硫气体回收充气装置停止运行的第二压力控制器。通过设置第二压力控制器,实现主压缩机的排气超压保护。
本发明一种六氟化硫气体回收充气装置的技术方案14是在技术方案1-6中任一技术方案的基础上做进一步改进:所述接头装置包括第一接头和第二接头,抽真空支路与第一接头连接,回收支路和充气支路与第二接头连接,第一、第二接头之间设有连通阀以控制二者之间的通断。
本发明一种六氟化硫气体回收充气装置的技术方案15是在技术方案14的基础上做进一步改进:第一接头还连接有用于与待抽气设备连接的抽真空接口;第二接头还连接有用于与相应设备连接的回收充气接口。
本发明一种六氟化硫气体回收充气装置的技术方案16是在技术方案1-6中任一技术方案的基础上做进一步改进:所述抽真空支路上设置有真空计。
本发明一种六氟化硫气体回收充气装置的技术方案17是在技术方案16的基础上做进一步改进:抽真空支路上于真空计的下游、真空泵的入口处设置有第一真空阀。
本发明一种六氟化硫气体回收充气装置的技术方案18是在技术方案16的基础上做进一步改进:所述真空计的入口处设置有第二真空阀,所述抽真空支路上还设置有用于检测抽真空支路上气体压力并在气体压力大于设定值时控制第一真空阀、第二真空阀关闭的第三压力控制器。
附图说明
图1为本发明具体实施例1中六氟化硫气体回收充气装置的结构图;
图2为本发明具体实施例1中将设备气室中高压的六氟化硫气体回收至储气罐中时的气体流动图;
图3为本发明具体实施例1中将设备气室中低压的六氟化硫气体回收至储气罐中时的气体流动图;
图4为本发明具体实施例1中将设备气室中高压的六氟化硫气体回收至外接钢瓶中时的气体流动图;
图5为本发明具体实施例1中将设备气室中低压的六氟化硫气体回收至外接钢瓶中时的气体流动图;
图6为本发明具体实施例1中将储气罐中的气体充入设备气室中时的气体流动图;
图7为本发明具体实施例1中将储气罐中的气体充入外接钢瓶中时的气体流动图;
图8为本发明具体实施例2中六氟化硫气体回收充气装置的结构图;
图中:1、真空泵;2、第一真空阀;3、第二真空阀;4、真空计;5、第三压力控制器;6、连通阀;7、抽真空接口;8、回收充气接口;9、除尘过滤器;10、开关阀;11、第一减压阀;12、第二减压阀;13、加热器;14、充气支路控制阀;15、第二气瓶接口;16、过滤装置;17、第一气瓶接口;18、储气阀;19、储气罐;20、回收支路控制阀;21、制冷机组;22、冷却罐;23、散热器;24、第二压力控制器;25、主压缩机;26、单向阀;27、助力压缩机;28、支路阀;29、第一压力控制器。
具体实施方式
下面结合附图对本发明的实施方式作进一步说明。
本发明的一种气体回收充气装置或六氟化硫气体回收充气装置的具体实施例1,如图1至图7所示,包括抽真空支路、回收支路以及充气支路,抽真空支路上设置有第一接头A,回收支路的上游端和充气支路的下游端通过第二接头B联通,第一接头A和第二接头B之间通过联通管道联通,联通管道上设置有连通阀6。其中,抽真空支路还通过第一接头A连接有抽真空接口7,回收支路和充气支路还通过第二接头B连接有回收充气接口8。其中,本发明的气体回收充气装置并不限于仅对六氟化硫气体进行回收利用,还可以对具有与六氟化硫气体性质相同和相似的气体进行回收利用。
在以上支路中,回收支路自上游至下游依次设置有除尘过滤器9、第一压力控制器29、支路阀28、助力压缩机27、单向阀26、主压缩机25、第二压力控制器24、散热器23、冷却液化装置、回收支路控制阀20、储气阀18、储气罐19。当然,储气罐19可以作为独立的配件单独使用,而不必作为或依附为六氟化硫气体回收充气装置的本身必须的部件。回收支路还在支路阀28的上游和单向阀26的下游之间连接有短接气路,短接气路上依次设置有开关阀10、第二减压阀12。其中,第一压力控制器29用于监控 短接气路上的压力以控制开关阀10的启闭,进而控制助力压缩机27的投出和投入。例如,在气体压力超过设定值(约0.02MPa)时,关闭支路阀28,开启开关阀10进行六氟化硫气体回收作业,当第一压力控制器29的测量值低于设定压力(约0.02MPa)时,此时关闭开关阀10,开启支路阀28,同时助力压缩机27开启,开始负压回收功能。第二压力控制器24用于检测主压缩机25排气压力并在排气压力大于设定值(压气机的最高允许排气压力)时控制六氟化硫气体回收充气装置停止运行,保护主压缩机25不被损坏,实现主压缩机25排气超压保护功能。冷却液化装置包括与回收支路联通的冷却罐22以及用于对冷却罐进行冷却的制冷机组21。此外,冷却液化装置与回收支路控制阀20之间还连接有第一气瓶接口17。
充气支路的上游端在储气罐19上游与回收支路连接,充气支路上自上游至下游依次设置有过滤装置16、充气支路控制阀14、加热器13、第一减压阀11。其中,过滤装置16与充气支路控制阀14之间连接有第二气瓶接口15。
抽真空支路上自上游至下游依次设置有第三压力控制器5、第一真空阀2、真空泵1,第三压力控制器5与第一真空阀2之间通过真空管道连接有真空计4,真空计的入口处设置有第二真空阀3,其中,第三压力控制器5用于检测抽真空支路上气体压力并在气体压力大于设定值(约为0.02MPa)时控制第一真空阀2、第二真空阀3关闭,防止真空泵1和真空计4超压损坏,实现真空度端超压保护。
本发明的六氟化硫气体回收充气装置在实际使用过程中:
对设备气室进行抽真空:将设备气室连接在抽真空接口7,启动设备气室抽真空功能,真空泵1启动,第一真空阀2打开,开始抽真空,同时第二真空阀3打开,通过真空计4可读取真空度。该过程中,如果关闭第一真空阀2,可读取设备气室中静态真空度。
对六氟化硫气体回收充气装置本身进行抽真空:当六氟化硫气体回收充气装置初次使用或检修后重新使用时,需对六氟化硫气体回收充气装置自身抽真空。开启装置自身抽真空功能,真空泵1启动,第一真空阀2、第二真空阀3、连通阀6、回收支路控制阀20、储气阀18打开,装置内部残存气体被抽出。
将设备气室中的六氟化硫气体回收至储气罐19中:将设备气室连接在回收充气接口8(也可以连接在抽真空接口7,打开连通阀6),打开储气阀18,启动回收功能,当设备气室中的气体压力在设定值以上时,气流流动过程如图2中箭头所示,主压缩机25、制冷机组21启动,开关阀10、回收支路控制阀20打开,设备气室内的六氟化硫气体从除尘过滤器9过滤后,经开关阀10、第二减压阀12进入主压缩机25中,主压缩机25加压后,经散热器23初步冷却,进入冷却罐22中,被制冷机组21降温后液化(低温液化储存功能),经回收支路控制阀20、储气阀18后流入储气罐19中。
随着抽吸过程的进行,设备气室中的压力逐渐减低,当设备气室中的压力低于设定值时,开关阀10关闭,支路阀28和助力压缩机27打开,切换至负压回收状态,此时气流流动过程如图3中箭头所示,设备气室内的六氟化硫气体从除尘过滤器9过滤后,经支路阀28、助力压缩机27、单向阀26进入主压缩机25中,主压缩机25加压后,经散热器23初步冷却,进入冷却罐22中,被制冷机组21降温后液化(低温液化储存功能),经回收支路控制阀20、储气阀18后流入储气罐19中。直至开关气室中的压力降低至设定压力(一般为绝对压力1330Pa以下)。
将设备气室中的六氟化硫气体回收至外接钢瓶中:此时,气体的流动过程如图4中箭头所示,将设备气室连接在回收充气接口8(也可以连接在抽真空接口7,打开连通阀6),外接钢瓶连接在第二气瓶接口15处,保持储气阀18关闭,启动回收功能,主压缩机25、制冷机组21启动,开关阀 10、回收支路控制阀20打开,设备气室内的六氟化硫气体在除尘过滤器9中过滤后,经开关阀10、第二减压阀12进入主压缩机25中,主压缩机25加压后,经散热器23初步冷却,进入冷却罐22中,被制冷机组21降温后液化(低温液化储存功能),经回收支路控制阀20、过滤装置16,流入外接钢瓶中。在该过程中,当设备气室中的气体压力低于设定值时,开关阀10关闭,打开支路阀28,切换至负压回收状态进行回收,此时,气体的流动过程如图5中箭头所示。
将储气罐19中的气体充入设备气室中:将设备气室连接在回收充气接口8(也可以连接在抽真空接口7,打开连通阀6),打开储气阀18,启动充气功能,充气支路控制阀14打开,加热器13开始加热,气体从储气罐19抽出,经储气阀18、过滤装置16、充气支路控制阀14后,进入加热器13中加热,经第一减压阀11减压后,充至设备气室,过滤装置16可以将气体中的水分、分解产物、颗粒物等过滤,保证充出气体的品质(净化功能),此时,气体的流动过程如图6中箭头所示。
将储气罐19中的气体充入外接钢瓶中:外接钢瓶连接在第一气瓶接口17处,打开储气阀18,启动储罐内气体灌瓶功能,充气支路控制阀14、开关阀10打开,加热器13开始加热,主压缩机25、制冷机组21启动,气体从储气罐19中抽出,经储气阀18、过滤装置16、充气支路控制阀14后,进入加热器13中加热,经第一减压阀11减压、除尘过滤器9过滤后,经开关阀10、第二减压阀12进入主压缩机25中,主压缩机25加压后,经散热器23初步冷却,进入冷却罐22中,被制冷机组21降温后液化后,通过第二气瓶接口15流入外接钢瓶。此时,气体的流动过程如图7中箭头所示。
在本实施例中,所述回收充气接口8、第一气瓶接口17、第二气瓶接口15在不与外接设备连接时,可以实现自密封。所述连通阀6、储气阀18均为球阀,第一真空阀2、第二真空阀3、支路阀28、开关阀10、回收支 路控制阀20以及充气支路控制阀14均为电磁阀。
本发明的一种六氟化硫气体回收充气装置的具体实施例2与具体实施例1的区别在于:如图8所示,抽真空支路与回收支路和充气支路之间也可以不通过由第一接头和第二接头构成的接头装置连接,而是通过接头装置C连接,此时,抽真空支路与回收支路和充气支路直接联通,抽真空支路通过回收充气接口与设备气室连接进而对设备进行抽真空操作。
本发明的一种六氟化硫气体回收充气装置的具体实施例3与具体实施例1的区别在于:回收支路上用于对气体进行液化的气体液化装置可以只采用主压缩机,而不设置冷却液化装置。
以上所述仅为本发明的具体实施方式,并不用以限制本发明,凡在本发明的主旨和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。
此外,本发明的各种不同的实施方式之间也可以进行任意组合,只要其不违背本发明的思想,其同样应当视为本发明所公开的内容。

Claims (24)

  1. 一种气体回收充气装置,其特征在于:包括抽真空支路、回收支路以及充气支路,所述抽真空支路能够与所述回收支路和充气支路选通或连通,所述充气支路的下游端与所述回收支路的上游端连接,所述回收支路上设置有气体液化装置和回收支路控制阀,所述充气支路上设置有充气支路控制阀。
  2. 根据权利要求1所述的气体回收充气装置,其特征在于:所述气体回收充气装置包括储气容器,所述回收支路的下游端和充气支路的上游端分别通过储气阀与所述储气容器连接。
  3. 根据权利要求2所述的气体回收充气装置,其特征在于:所述气体回收充气装置包括接头装置,所述接头装置与所述抽真空支路、回收支路以及充气支路连接并能够使所述抽真空支路与所述回收支路和充气支路可选通或连通。
  4. 根据权利要求3所述的气体回收充的气装置,其特征在于:所述储气容器连接在所述回收支路远离所述接头装置的一端。
  5. 根据权利要求2所述的气体回收充气装置,其特征在于:所述回收支路控制阀位于所述气体液化装置的下游处,所述气体液化装置与所述回收支路控制阀之间设置有第一气瓶接口。
  6. 根据权利要求5所述的气体回收充气装置,其特征在于:所述充气支路上设有第二气瓶接口。
  7. 根据权利要求1所述的气体回收充气装置,其特征在于:所述充气支路和/或所述回收支路上设有过滤装置。
  8. 根据权利要求6所述的气体回收充气装置,其特征在于:所述充气支路上于所述第二气瓶接口的下游设置有加热器。
  9. 根据权利要求8所述的气体回收充气装置,其特征在于:所述加热器与 所述接头装置之间设置有第一减压阀。
  10. 根据权利要求1-9中任一权利要求所述的气体回收充气装置,其特征在于:所述气体液化装置包括依次串接的助力压缩机和主压缩机,所述回收支路上于所述主压缩机上游配套有能够将助力压缩机短接的短接气路,短接气路上设有开关阀。
  11. 根据权利要求9所述的气体回收充气装置,其特征在于:所述气体液化装置包括依次串接的助力压缩机和主压缩机,所述回收支路上于所述主压缩机上游配套有能够将助力压缩机短接的短接气路,短接气路上设有开关阀,所述短接气路上在所述开关阀的下游设置有第二减压阀。
  12. 根据权利要求10所述的气体回收充气装置,其特征在于:所述回收支路上于所述助力压缩机和开关阀的上游处设有第一压力控制器,所述第一压力控制器用于监控短接气路上的压力以控制所述开关阀的启闭。
  13. 根据权利要求10所述的气体回收充气装置,其特征在于:所述回收支路于靠近所述回收支路的上游端的位置设置有除尘过滤器。
  14. 根据权利要求1-9中任一权利要求所述的气体回收充气装置,其特征在于:所述气体回收充气装置为六氟化硫气体回收充气装置。
  15. 一种六氟化硫气体回收充气装置,其特征在于:包括接头装置,接头装置连接有抽真空支路、回收支路以及充气支路并可选通或连通抽真空支路与回收支路和充气支路,抽真空支路上设置有真空泵,回收支路远离接头装置的一端连接有储气罐,储气罐的进口处设置有储气阀,充气支路的上游端在储气罐上游与回收支路连接,下游端与回收支路的上游端连接,回收支路上设置有气体液化装置,充气支路上设置有充气支路控制阀。
  16. 根据权利要求15所述的六氟化硫气体回收充气装置,其特征在于:回收支路上于气体液化装置下游处设置有回收支路控制阀,气体液化装置与回收支路控制阀之间设置有第一气瓶接口。
  17. 根据权利要求15所述的六氟化硫气体回收充气装置,其特征在于:充气支路上设有第二气瓶接口。
  18. 根据权利要求17所述的六氟化硫气体回收充气装置,其特征在于:充气支路上于第二气瓶接口上游处设有过滤装置。
  19. 根据权利要求17所述的六氟化硫气体回收充气装置,其特征在于:充气支路上于第二气瓶接口的下游设置有加热器。
  20. 根据权利要求19所述的六氟化硫气体回收充气装置,其特征在于:加热器与接头装置之间设置有第一减压阀。
  21. 根据权利要求15-20中任一权利要求所述的六氟化硫气体回收充气装置,其特征在于:所述气体液化装置包括依次串接的助力压缩机和主压缩机,所述回收支路上于所述主压缩机上游配套有能够将助力压缩机短接的短接气路,短接气路上设有开关阀。
  22. 根据权利要求21所述的六氟化硫气体回收充气装置,其特征在于:短接气路上在开关阀的下游设置有第二减压阀。
  23. 根据权利要求21所述的六氟化硫气体回收充气装置,其特征在于:回收支路上于助力压缩机和开关阀的上游处设有第一压力控制器,第一压力控制器用于监控短接支路上的压力以控制开关阀的启闭,进而控制助力压缩机的投出和投入。
  24. 根据权利要求21所述的六氟化硫气体回收充气装置,其特征在于:所述回收支路的上游处设置有除尘过滤器。
PCT/CN2017/108580 2017-09-08 2017-10-31 气体回收充气装置和六氟化硫气体回收充气装置 WO2019047349A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710807683.5A CN107588325B (zh) 2017-09-08 2017-09-08 一种六氟化硫气体回收充气装置
CN201710807683.5 2017-09-08

Publications (1)

Publication Number Publication Date
WO2019047349A1 true WO2019047349A1 (zh) 2019-03-14

Family

ID=61051009

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/108580 WO2019047349A1 (zh) 2017-09-08 2017-10-31 气体回收充气装置和六氟化硫气体回收充气装置

Country Status (2)

Country Link
CN (1) CN107588325B (zh)
WO (1) WO2019047349A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112050084A (zh) * 2020-08-14 2020-12-08 广东冠电科技股份有限公司 一种气体收集采样装置

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108194827B (zh) * 2018-02-12 2023-09-15 国家电网公司 一种绝缘气体处理装置及其控制方法
CN108386713B (zh) * 2018-02-12 2023-12-01 国家电网公司 一种绝缘气体处理装置及其控制方法
CN110542018B (zh) * 2019-09-04 2024-05-07 北京国科环宇科技股份有限公司 一种加压实验系统及实现方法
CN111365608B (zh) * 2020-04-23 2021-03-26 蓝箭航天空间科技股份有限公司 一种用于高压气体充装及回收的方法
CN112483884B (zh) * 2020-12-21 2022-05-20 南通虹登机械设备有限公司 提高sf6气站充气纯度的液态储气装置
CN114151731A (zh) * 2022-01-11 2022-03-08 国家电网有限公司特高压建设分公司 大容量快速回收六氟化硫设备
CN114719461B (zh) * 2022-04-19 2024-01-23 安徽新力电业科技咨询有限责任公司 用于sf6气体回收回充装置的热交换系统及其两级温控方法
CN114797462B (zh) * 2022-05-25 2024-02-23 武汉大学 添加氢气的六氟化硫热催化循环降解装置
CN116221620A (zh) * 2022-12-28 2023-06-06 江苏省送变电有限公司 一种六氟化硫快速气化系统及其控制方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2200229Y (zh) * 1994-05-10 1995-06-07 陈俊 Sf6气体回收充入再生装置
EP1091182A2 (en) * 1999-10-01 2001-04-11 Kabushiki Kaisha Toshiba Gas reclaiming equipment
CN2938373Y (zh) * 2006-08-22 2007-08-22 上海雷格仪器有限公司 Sf6充气及回收装置
CN101125643A (zh) * 2007-08-08 2008-02-20 安徽省电力科学研究院 六氟化硫回收回充装置
CN201369283Y (zh) * 2009-02-27 2009-12-23 平高集团有限公司 六氟化硫气体回收回充装置
CN103560041A (zh) * 2013-11-15 2014-02-05 国家电网公司 大功率六氟化硫回收回充装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2050924U (zh) * 1989-04-15 1990-01-10 陆剑飞 气体的充放及回收装置
CN2138242Y (zh) * 1992-07-21 1993-07-14 陆剑飞 Sf6气体充放、回收及净化装置
CN201162939Y (zh) * 2008-01-30 2008-12-10 金万林 全自动六氟化硫多功能充气、回收装置
CN201647993U (zh) * 2010-03-11 2010-11-24 辽宁省电力有限公司鞍山超高压分公司 一种六氟化硫气体回收净化装置
KR20120039771A (ko) * 2010-08-26 2012-04-26 한국전력공사 육불화유황 가스계량기를 갖춘 전력설비의 가스회수 및 공급시스템
CN204824165U (zh) * 2015-07-30 2015-12-02 上海欧秒电力监测设备有限公司 一种六氟化硫气体高速回收再利用装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN2200229Y (zh) * 1994-05-10 1995-06-07 陈俊 Sf6气体回收充入再生装置
EP1091182A2 (en) * 1999-10-01 2001-04-11 Kabushiki Kaisha Toshiba Gas reclaiming equipment
CN2938373Y (zh) * 2006-08-22 2007-08-22 上海雷格仪器有限公司 Sf6充气及回收装置
CN101125643A (zh) * 2007-08-08 2008-02-20 安徽省电力科学研究院 六氟化硫回收回充装置
CN201369283Y (zh) * 2009-02-27 2009-12-23 平高集团有限公司 六氟化硫气体回收回充装置
CN103560041A (zh) * 2013-11-15 2014-02-05 国家电网公司 大功率六氟化硫回收回充装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112050084A (zh) * 2020-08-14 2020-12-08 广东冠电科技股份有限公司 一种气体收集采样装置
CN112050084B (zh) * 2020-08-14 2023-09-01 广东冠电科技股份有限公司 一种气体收集采样装置

Also Published As

Publication number Publication date
CN107588325A (zh) 2018-01-16
CN107588325B (zh) 2019-09-13

Similar Documents

Publication Publication Date Title
WO2019047349A1 (zh) 气体回收充气装置和六氟化硫气体回收充气装置
AU2012245083B2 (en) A plant and method for recovering sulphur hexafluoride for reuse
CN204824165U (zh) 一种六氟化硫气体高速回收再利用装置
CN107421059A (zh) 防止可燃性冷媒在空调器关机时进入室内侧的控制方法
US5715692A (en) Refrigerant charging manifold valve
CN204534124U (zh) 一种飞机产品充气保护装置
CN113375943B (zh) 一种姿轨控发动机高模试后快速吹除方法
CN205102475U (zh) 一种压缩机制冷剂回收装置
CN207394372U (zh) Bog压缩机的氮气反吹扫装置
CN217001789U (zh) 一种天然气模块化试采装置
CN110559746B (zh) 一种废气回收实验系统及实现方法
JP2000074557A (ja) 六弗化硫黄ガス回収装置
CN211979497U (zh) 聚烯烃发泡树脂生产中的超临界二氧化碳增压系统装置
CN110542018B (zh) 一种加压实验系统及实现方法
CN109578804B (zh) 安全型电动空气灌充装置
US10315473B2 (en) Tire deflation apparatus and method
JP3720675B2 (ja) ガス回収方法及びガス回収装置
JP4927225B1 (ja) Sf6ガス回収装置及びsf6ガス回収方法
CN205448432U (zh) 一种制冷空调多功能维修小车制冷剂回收系统
CN213337113U (zh) 一种高低压自由组合的气压试验装置
CN203488991U (zh) 一种六氟化硫电气设备的手动充气抽真空装置
CN205383822U (zh) 制冷空调多功能维修小车
CN205383821U (zh) 一种制冷空调多功能维修小车抽真空系统
CN114017670B (zh) 一种缓冲结构、气体回收装置及充气设备检测系统
CN215722494U (zh) 一种氦气处理系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17924712

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17924712

Country of ref document: EP

Kind code of ref document: A1