WO2019047011A1 - 一种机器人 - Google Patents

一种机器人 Download PDF

Info

Publication number
WO2019047011A1
WO2019047011A1 PCT/CN2017/100505 CN2017100505W WO2019047011A1 WO 2019047011 A1 WO2019047011 A1 WO 2019047011A1 CN 2017100505 W CN2017100505 W CN 2017100505W WO 2019047011 A1 WO2019047011 A1 WO 2019047011A1
Authority
WO
WIPO (PCT)
Prior art keywords
telescopic
stud
force
robot
induction
Prior art date
Application number
PCT/CN2017/100505
Other languages
English (en)
French (fr)
Inventor
刘哲
Original Assignee
刘哲
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 刘哲 filed Critical 刘哲
Priority to PCT/CN2017/100505 priority Critical patent/WO2019047011A1/zh
Publication of WO2019047011A1 publication Critical patent/WO2019047011A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60BVEHICLE WHEELS; CASTORS; AXLES FOR WHEELS OR CASTORS; INCREASING WHEEL ADHESION
    • B60B9/00Wheels of high resiliency, e.g. with conical interacting pressure-surfaces
    • B60B9/26Wheels of high resiliency, e.g. with conical interacting pressure-surfaces comprising resilient spokes
    • B60B9/28Wheels of high resiliency, e.g. with conical interacting pressure-surfaces comprising resilient spokes with telescopic action
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/032Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members with alternately or sequentially lifted supporting base and legs; with alternately or sequentially lifted feet or skid

Definitions

  • the invention relates to the technical field of robot components, in particular to a robot that can be flexibly moved.
  • the present invention provides a technical solution including a robot foot including a U-shaped slider, a sliding abutting block, a sliding abutting groove, a pressure-receiving rectangular plate, and a supporting round seat.
  • movable thread column movable thread column
  • force cylinder movable bolt
  • telescopic tire drive
  • curved support plate fixed stud
  • shock absorbing spring fixed rubber seat
  • telescopic support rod rotating gear
  • rotating wheel rotating wheel
  • induction telescopic drive gear groove
  • hydraulic lifter telescopic stud
  • power rod threaded port
  • sliding guide rail sliding guide rail
  • the fixed stud is welded on both sides of the upper end of the U-shaped slider
  • the U-shaped slider is located Above the pressing rectangular plate
  • the sliding abutting groove is embedded inside the upper inner wall of the pressure-receiving rectangular plate
  • the sliding abutting block is welded to the lower end of the U-shaped slider
  • the damping spring is located on the rectangular rectangular plate
  • an intermediate position of the supporting round seat the supporting round seat is fixed under the shock absorbing spring
  • the movable threaded column is screwed to the lower bottom surface of the supporting round seat
  • the force receiving cylinder is fixedly connected to
  • the outer sides of the support round are inwardly recessed, and are in the shape of "work".
  • the intermediate positions of the stressed cylinders are all outwardly convex and have an "elliptical" shape.
  • the rotating gear is connected to the gear slot, and the telescopic support rod is evenly distributed outside the induction telescopic drive.
  • the sliding abutting block coincides with the sliding abutting groove.
  • the pressure-bearing rectangular plate and the support round seat are fixedly connected by a damper spring, and the damper spring is provided with two.
  • the invention has the beneficial effects that the robot can adapt to a complicated environment, and the robot foot is provided with a support round seat, and the outer side of the support round seat is recessed inwardly, and is in the shape of "work".
  • the design of the font type firstly increases the contact area at the upper end of the supporting round seat when the force is applied. When the force is decomposed, the lower end of the supporting round seat can evenly decompose the force, thereby improving the pressure bearing capacity and setting.
  • a force-bearing cylinder With a force-bearing cylinder, the middle position of the stressed cylinder is convex outward, in the shape of an "ellipse", ellipse
  • the design draws on the principle of the force of the arch bridge, and all adopt the curved force.
  • the rotating gear is connected with the gear slot of the gear slot, and the telescopic support rod is evenly distributed on the outer side of the induction telescopic drive.
  • the rotation of the drive drives the rotating gear. Because the rotating gear is connected with the gear slot of the gear slot, the amplitude of the sway during the rotation process can be effectively reduced and the rotation can be improved.
  • the stability is provided with a sliding abutting block and a sliding abutting groove, and the sliding abutting block is matched with the sliding abutting groove, and the U-shaped slider can automatically realize the rectangular rectangular plate by the function of matching the two.
  • the upper and lower sides operate to increase the flexibility.
  • the telescopic support rod and the induction telescopic drive are provided.
  • the force is transmitted to the induction telescopic drive through the telescopic support rod, and the induction telescopic drive can transmit signals to the hydraulic lifter.
  • the hydraulic lifter drives the telescopic studs and the power rod to move up and down. This design can be effective when the stairs are uneven. Overcome this difficulty.
  • FIG. 1 is a schematic view showing the overall structure of a robot foot according to the present invention.
  • FIG. 2 is a schematic structural view of a telescopic tire of the present invention
  • FIG. 3 is a schematic structural view of an induction telescopic drive of the present invention.
  • Figure 4 is a schematic view showing the structure of the hydraulic lifter of the present invention.
  • the present invention provides a technical solution: a robot that can adapt to a complex environment, and the robot foot includes a U-shaped slider 1, a sliding abutting block 2, a sliding abutting groove 3, and a pressure-receiving rectangular plate. 4.
  • the damper spring 13 is located in the middle of the bearing rectangular plate 4 and the supporting round seat 5
  • the support round seat 5 is fixed below the shock absorbing spring 13, and the outer side of the support round seat 5 is recessed inwardly, and is in the shape of "work”.
  • the design of the "work” type first supports the round seat 5 when subjected to force.
  • the upper end can increase the contact area, and when the force is decomposed, the lower end of the support round seat 5 can evenly decompose the force, thereby improving the pressure bearing capacity, and the movable threaded post 6 is screwed to the lower bottom surface of the support round seat 5,
  • the force-bearing cylinder 7 is fixedly connected to the lower end of the movable threaded column 6, and the intermediate position of the force-carrying cylinder 7 is outwardly convex, and has an "elliptical" shape.
  • the design of the ellipse draws on the principle of the force of the arch bridge, and all adopts the curved force. There are a myriad of stress points, which can effectively increase the force and improve the stability and service life.
  • the movable bolt 8 is welded to the lower side of the stressed cylinder 7, and the outer side of the front end of the movable bolt 8 is connected with a curved shape.
  • the support plate 11 is fixed to the underside of the force receiving cylinder 7, and the telescopic tire 9 is movably connected to one inner wall of the drive 10.
  • the rotating gear 16 is located at the center of the rotating wheel 17, and the gear 16 and the gear are rotated.
  • the slot 1801 is slot-connected, and the telescopic support bar 15 is evenly distributed on the outer side of the inductive telescopic drive 18.
  • the drive 10 rotates to drive the rotary gear 16.
  • the rotary gear 16 is coupled to the gear slot 1801 to effectively reduce the shaking during the rotation.
  • the amplitude is increased, and the slot of the induction telescopic drive 18 is connected to the outer ring of the rotating gear 16, the rotating wheel 17 is located at the outermost ring of the telescopic tire 9, the telescopic support rod 15 passes through the rotating wheel 17, and the fixed rubber seat 14 is fixed.
  • Soldered to the end of the telescopic support rod 15, when the fixed rubber seat 14 is stressed the force is transmitted to the induction telescopic drive 18 through the telescopic support rod 15, and the induction telescopic drive 18 can transmit a signal to the hydraulic lifter 1802, and the hydraulic lifter 1802 drives
  • the telescopic stud 1803 and the power rod 1804 are driven to move up and down. This design can effectively overcome the difficulty when the uneven stair is up.
  • the inside of the inductive telescopic drive 18 is welded with a gear slot 1801, and the hydraulic lifter 1802 is fixed to the induction.
  • One side inner wall of the telescopic drive 18, the telescopic stud 1803 is connected above the hydraulic telescopic lift 1802, and the power rod 1804 is embedded in the telescopic stud 1803
  • the inner wall, the threaded port 1805 is welded to the upper end of the power rod 1804, and the sliding rail 1806 is welded to the outer surface of the telescopic stud 1803.
  • the robot foot is connected to the robot component by fixing the stud 12, and the movable thread column 6 is screwed into the force cylinder 7 and the support round seat 5 to play a fastening function.
  • the shock absorbing spring 13 is provided to buffer the force, and then the force is transmitted to the support round seat 5.
  • the outer side of the support round seat 5 is recessed inwardly, and is in the shape of "work” and "work”.
  • the design firstly supports the upper end of the round seat 5 to increase the contact area when the force is applied.
  • the lower end of the support round seat 5 can evenly decompose the force, thereby improving the pressure bearing capacity, and then the force.
  • the intermediate position of the stressed cylinder 7 is outwardly convex and has an "elliptical" shape.
  • the design of the ellipse draws on the principle of the force of the arch bridge, and all adopts the curved force. There are a myriad of stress points, which can effectively increase the force and improve the stability and service life.
  • the curved support plate 11 can be used as a supporting function.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Manipulator (AREA)

Abstract

一种机器人,包括机器人足部,所述机器人足部包括U型滑块(1)、滑动抵紧块(2)、滑动抵紧槽(3)、承压矩形板(4)、支撑圆座(5)、活动螺纹柱(6)、受力圆柱(7)、活动螺栓(8)、伸缩轮胎(9)、驱动器(10)、弧形支撑板(11)、固定螺柱(12)、减震弹簧(13)、固定胶座(14)、伸缩支撑杆(15)、转动齿轮(16)、转动轮(17)、感应伸缩驱动器(18)、齿轮槽(1801)、液压升降器(1802)、伸缩螺柱(1803)、动力杆(1804)、螺纹口(1805),当固定胶座(14)受力时,力通过伸缩支撑杆(15)传递至感应伸缩驱动器(18),感应伸缩驱动器(18)能够发射信号至液压升降器(1802),液压升降器(1802)驱动带动伸缩螺柱(1803)和动力杆(1804)进行上下运动,在上凹凸不平的楼梯时,该设计能够有效地克服该种困难,具有良好的发展前景。

Description

一种机器人 技术领域
本发明涉及机器人部件技术领域,具体为一种可灵活移动的机器人。
背景技术
据不完全统计,全世界在役的工业机器人中大约有将近一半的工业机器人用于各种形式的生产加工领域。我们所说的生产机器人其实就是在生产领域代替人工从事生产任务的工业机器人。这些生产机器人中有的是为某种生产方式专门设计的,而大多数的生产机器人其实就是通用的工业机器人装上某种生产工具而构成的。在多任务环境中,一台机器人甚至可以完成包括生产在内的抓物、搬运、安装、生产、卸料等多种任务,因此,从某种意义上来说,工业机器人的发展历史就是生产机器人的发展历史。
现有的机器人,足部受力不够均匀,容易发生损坏,在上楼梯时,机器人无法快速的移动,容易摔倒,灵活性和功能性较差。
发明内容
本发明的目的在于提供一种机器人,以解决上述背景技术中提出受力不够均匀,在上楼梯时,机器人无法快速的移动,容易摔倒,灵活性和功能性较差的问题。
为实现上述目的,本发明提供如下技术方案,一种机器人,包括机器人足部,所述机器人足部包括U型滑块、滑动抵紧块、滑动抵紧槽、承压矩形板、支撑圆座、活动螺纹柱、受力圆柱、活动螺栓、伸缩轮胎、驱动器、弧形支撑板、固定螺柱、减震弹簧、固定胶座、伸缩支撑杆、转动齿轮、转动轮、感应伸缩驱动器、齿轮槽、液压升降器、伸缩螺柱、动力杆、螺纹口、滑动导轨,所述固定螺柱焊接于U型滑块的上端两侧,所述U型滑块位于承 压矩形板的上方,所述滑动抵紧槽嵌入设置于承压矩形板的上方内壁的内部,所述滑动抵紧块焊接于U型滑块的下端,所述减震弹簧位于承压矩形板和支撑圆座的中间位置,所述支撑圆座固定于减震弹簧的下方,所述活动螺纹柱螺纹连接于支撑圆座的下底面,所述受力圆柱固定连接于活动螺纹柱的下端,所述活动螺栓焊接于受力圆柱的下侧,所述活动螺栓的前端外侧活动连接有弧形支撑板,所述驱动器固定于受力圆柱的正下方,且伸缩轮胎活动连接于驱动器的一侧内壁,所述转动齿轮位于转动轮的正中心位置,所述感应伸缩驱动器卡槽连接于转动齿轮的外圈,所述转动轮位于伸缩轮胎的最外圈,所述伸缩支撑杆穿过转动轮,且固定胶座焊接于伸缩支撑杆的端头,所述感应伸缩驱动器的内部焊接有齿轮槽,所述液压升降器固定于感应伸缩驱动器的一侧内壁,所述伸缩螺柱连接于液压伸缩升降的上方,所述动力杆嵌入于伸缩螺柱的内壁,所述螺纹口焊接于动力杆的上端,所述滑动导轨焊接于伸缩螺柱的外表面。
优选的,所述支撑圆座的外侧均向内凹陷,呈“工”字型。
优选的,所述受力圆柱的中间位置均向外凸出,呈“椭圆”形状。
优选的,所述转动齿轮与齿轮槽卡槽连接,且伸缩支撑杆均匀分布于感应伸缩驱动器的外侧。
优选的,所述滑动抵紧块与滑动抵紧槽相吻合。
优选的,所述承压矩形板与支撑圆座通过减震弹簧固定连接,且减震弹簧设置有两个。
与现有技术相比,本发明的有益效果是:该种机器人可适应复杂环境,机器人足部设置有支撑圆座,支撑圆座的外侧均向内凹陷,呈“工”字型,“工”字型的设计首先在受力时,支撑圆座的上端能够增大接触面积,在受力分解时,支撑圆座的下端又能够均匀的将力进行分解,提高了其承压能力,设置有受力圆柱,受力圆柱的中间位置均向外凸出,呈“椭圆”形状,椭圆 的设计借鉴了拱桥受力的原理,均采用弧形受力,其受力点有无数个,能够有效的增大受力力度,提高其稳定性和使用寿命,设置有转动齿轮和齿轮槽,转动齿轮与齿轮槽卡槽连接,且伸缩支撑杆均匀分布于感应伸缩驱动器的外侧,驱动器转动带动转动齿轮,因转动齿轮与齿轮槽卡槽连接,能够有效的减少转动过程中的晃动幅度,提高了其稳定性,设置有滑动抵紧块和滑动抵紧槽,滑动抵紧块与滑动抵紧槽相吻合,通过两者相吻合的功能,能够实现U型滑块自动的在承压矩形板上左右运作,提高了其灵活性,设置有伸缩支撑杆和感应伸缩驱动器,当固定胶座受力时,力通过伸缩支撑杆传递至感应伸缩驱动器,感应伸缩驱动器能够发射信号至液压升降器,液压升降器驱动带动伸缩螺柱和动力杆进行上下运动,在上凹凸不平的楼梯时,该设计能够有效的克服该种困难。
附图说明
图1为本发明机器人足部整体结构示意图;
图2为本发明伸缩轮胎结构示意图;
图3为本发明感应伸缩驱动器结构示意图;
图4为本发明液压升降器结构示意图。
图中:1、U型滑块,2、滑动抵紧块,3、滑动抵紧槽,4、承压矩形板,5、支撑圆座,6、活动螺纹柱,7、受力圆柱,8、活动螺栓,9、伸缩轮胎,10、驱动器,11、弧形支撑板,12、固定螺柱,13、减震弹簧,14、固定胶座,15、伸缩支撑杆,16、转动齿轮,17、转动轮,18、感应伸缩驱动器,1801、齿轮槽,1802、液压升降器,1803、伸缩螺柱,1804、动力杆,1805、螺纹口,1806、滑动导轨。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1-4,本发明提供一种技术方案:一种可适应复杂环境的机器人,机器人足部包括U型滑块1、滑动抵紧块2、滑动抵紧槽3、承压矩形板4、支撑圆座5、活动螺纹柱6、受力圆柱7、活动螺栓8、伸缩轮胎9、驱动器10、弧形支撑板11、固定螺柱12、减震弹簧13、固定胶座14、伸缩支撑杆15、转动齿轮16、转动轮17、感应伸缩驱动器18、齿轮槽1801,液压升降器1802,伸缩螺柱1803,动力杆1804,螺纹口1805,滑动导轨1806,固定螺柱12焊接于U型滑块1的上端两侧,U型滑块1位于承压矩形板4的上方,滑动抵紧槽3嵌入设置于承压矩形板4的上方内壁的内部,滑动抵紧块2与滑动抵紧槽3相吻合,通过两者相吻合的功能,能够实现U型滑块1自动的在承压矩形板4上左右运作,提高了其灵活性,滑动抵紧块2焊接于U型滑块1的下端,减震弹簧13位于承压矩形板4和支撑圆座5的中间位置,支撑圆座5固定于减震弹簧13的下方,支撑圆座5的外侧均向内凹陷,呈“工”字型,“工”字型的设计首先在受力时,支撑圆座5的上端能够增大接触面积,在受力分解时,支撑圆座5的下端又能够均匀的将力进行分解,提高了其承压能力,活动螺纹柱6螺纹连接于支撑圆座5的下底面,受力圆柱7固定连接于活动螺纹柱6的下端,受力圆柱7的中间位置均向外凸出,呈“椭圆”形状,椭圆的设计借鉴了拱桥受力的原理,均采用弧形受力,其受力点有无数个,能够有效的增大受力力度,提高其稳定性和使用寿命,活动螺栓8焊接于受力圆柱7的下侧,活动螺栓8的前端外侧活动连接有弧形支撑板11,驱动器10固定于受力圆柱7的正下方,且伸缩轮胎9活动连接于驱动器10的一侧内壁,转动齿轮16位于转动轮17的正中心位置,转动齿轮16与齿轮 槽1801卡槽连接,且伸缩支撑杆15均匀分布于感应伸缩驱动器18的外侧,驱动器10转动带动转动齿轮16,因转动齿轮16与齿轮槽1801卡槽连接,能够有效的减少转动过程中的晃动幅度,提高了其稳定性,感应伸缩驱动器18卡槽连接于转动齿轮16的外圈,转动轮17位于伸缩轮胎9的最外圈,伸缩支撑杆15穿过转动轮17,且固定胶座14焊接于伸缩支撑杆15的端头,当固定胶座14受力时,力通过伸缩支撑杆15传递至感应伸缩驱动器18,感应伸缩驱动器18能够发射信号至液压升降器1802,液压升降器1802驱动带动伸缩螺柱1803和动力杆1804进行上下运动,在上凹凸不平的楼梯时,该设计能够有效的克服该种困难,感应伸缩驱动器18的内部焊接有齿轮槽1801,液压升降器1802固定于感应伸缩驱动器18的一侧内壁,伸缩螺柱1803连接于液压伸缩升降1802的上方,动力杆1804嵌入于伸缩螺柱1803的内壁,螺纹口1805焊接于动力杆1804的上端,滑动导轨1806焊接于伸缩螺柱1803的外表面。
工作原理:首先,通过固定螺柱12将机器人足部接入机器人部件,将活动螺纹柱6旋进受力圆柱7以及支撑圆座5内,起到紧固作用,当装置受力时,第一步,设置有的减震弹簧13能够将力进行缓冲,接着力传递至支撑圆座5,所述支撑圆座5的外侧均向内凹陷,呈“工”字型,“工”字型的设计首先在受力时,支撑圆座5的上端能够增大接触面积,在受力分解时,支撑圆座5的下端又能够均匀的将力进行分解,提高了其承压能力,接着力通过活动螺纹柱6传递至受力圆柱7,所述受力圆柱7的中间位置均向外凸出,呈“椭圆”形状,椭圆的设计借鉴了拱桥受力的原理,均采用弧形受力,其受力点有无数个,能够有效的增大受力力度,提高其稳定性和使用寿命,设置有的弧形支撑板11能够起到支撑作用,当机器人遇到凹凸不平的楼梯时,首先,当固定胶座14受力时,力通过伸缩支撑杆15传递至感应伸缩驱动器18,感应伸缩驱动器18能够发射信号至液压升降器1802,液压升降器1802驱动 带动伸缩螺柱1803和动力杆1804进行上下运动,实现固定胶座14不断地交替伸缩,在上凹凸不平的楼梯时,该设计能够有效的克服该种困难,这就是该可适应复杂环境的机器人足部的工作原理。
尽管已经示出和描述了本发明的实施例,对于本领域的普通技术人员而言,可以理解在不脱离本发明的原理和精神的情况下可以对这些实施例进行多种变化、修改、替换和变型,本发明的范围由所附权利要求及其等同物限定。

Claims (8)

  1. 一种机器人,其特征在于:包括机器人足部,所述机器人足部包括U型滑块(1)、滑动抵紧块(2)、滑动抵紧槽(3)、承压矩形板(4)、支撑圆座(5)、活动螺纹柱(6)、受力圆柱(7)、活动螺栓(8)、伸缩轮胎(9)、驱动器(10)、弧形支撑板(11)、固定螺柱(12)、减震弹簧(13)、固定胶座(14)、伸缩支撑杆(15)、转动齿轮(16)、转动轮(17)、感应伸缩驱动器(18)、齿轮槽(1801)、液压升降器(1802)、伸缩螺柱(1803)、动力杆(1804),螺纹口(1805)、以及滑动导轨(1806),所述固定螺柱(12)焊接于U型滑块(1)的上端两侧,所述U型滑块(1)位于承压矩形板(4)的上方,所述滑动抵紧槽(3)嵌入设置于承压矩形板(4)的上方内壁的内部,所述滑动抵紧块(2)焊接于U型滑块(1)的下端,所述减震弹簧(13)位于承压矩形板(4)和支撑圆座(5)的中间位置,所述支撑圆座(5)固定于减震弹簧(13)的下方,所述活动螺纹柱(6)螺纹连接于支撑圆座(5)的下底面,所述受力圆柱(7)固定连接于活动螺纹柱(6)的下端,所述活动螺栓(8)焊接于受力圆柱(7)的下侧,所述活动螺栓(8)的前端外侧活动连接有弧形支撑板(11),所述驱动器(10)固定于受力圆柱(7)的正下方,且伸缩轮胎(9)活动连接于驱动器(10)的一侧内壁,所述转动齿轮(16)位于转动轮(17)的正中心位置,所述感应伸缩驱动器(18)卡槽连接于转动齿轮(16)的外圈,所述转动轮(17)位于伸缩轮胎(9)的最外圈,所述伸缩支撑杆(15)穿过转动轮(17),且固定胶座(14)焊接于伸缩支撑杆(15)的端头,所述感应伸缩驱动器(18)的内部焊接有齿轮槽(1801),所述液压升降器(1802)固定于感应伸缩驱动器(18)的一侧内壁,所述伸缩螺柱(1803)连接于液压伸缩升降(1802)的上方,所述动力杆(1804)嵌入于伸缩螺柱(1803)的内壁,所述螺纹口(1805)焊接于动力杆(1804)的上端,所述滑动导轨(1806)焊接于伸缩螺柱(1803)的外表面。
  2. 根据权利要求1所述的一种机器人,其特征在于:所述支撑圆座(5)的外侧均向内凹陷,呈“工”字型。
  3. 根据权利要求1所述的一种机器人,其特征在于:所述受力圆柱(7)的中间位置均向外凸出,呈“椭圆”形状。
  4. 根据权利要求1所述的一种机器人,其特征在于:所述转动齿轮(16)与齿轮槽(1801)卡槽连接。
  5. 根据权利要求1所述的一种机器人,其特征在于:所述伸缩支撑杆(15)均匀分布于感应伸缩驱动器(18)的外侧。
  6. 根据权利要求1所述的一种机器人,其特征在于:所述滑动抵紧块(2)与滑动抵紧槽(3)相吻合。
  7. 根据权利要求1所述的一种机器人,其特征在于:所述承压矩形板(4)与支撑圆座(5)通过减震弹簧(13)固定连接。
  8. 根据权利要求1所述的一种机器人,其特征在于:所述减震弹簧(13)设置有两个。
PCT/CN2017/100505 2017-09-05 2017-09-05 一种机器人 WO2019047011A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/100505 WO2019047011A1 (zh) 2017-09-05 2017-09-05 一种机器人

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/100505 WO2019047011A1 (zh) 2017-09-05 2017-09-05 一种机器人

Publications (1)

Publication Number Publication Date
WO2019047011A1 true WO2019047011A1 (zh) 2019-03-14

Family

ID=65633417

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/100505 WO2019047011A1 (zh) 2017-09-05 2017-09-05 一种机器人

Country Status (1)

Country Link
WO (1) WO2019047011A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111483279A (zh) * 2020-06-28 2020-08-04 之江实验室 一种具有双向缓冲功能的悬挂-转向联合机构
CN111942493A (zh) * 2020-08-21 2020-11-17 常州大学 一种主被动复合模式的四足越障机器人

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110297461A1 (en) * 2010-06-04 2011-12-08 Honda Motor Co., Ltd. Legged mobile robot
CN102310710A (zh) * 2011-06-03 2012-01-11 北京航空航天大学 一种适用于可变直径半步行轮的四连杆轮架
CN106041899A (zh) * 2016-08-22 2016-10-26 中国人民解放军63908部队 一种下肢助力外骨骼机器人
CN107472390A (zh) * 2017-09-05 2017-12-15 刘哲 一种可适应复杂环境的机器人足部
CN107498533A (zh) * 2017-09-05 2017-12-22 刘哲 一种智能移动机器人
CN107571934A (zh) * 2017-09-05 2018-01-12 刘哲 一种机器人

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20110297461A1 (en) * 2010-06-04 2011-12-08 Honda Motor Co., Ltd. Legged mobile robot
CN102310710A (zh) * 2011-06-03 2012-01-11 北京航空航天大学 一种适用于可变直径半步行轮的四连杆轮架
CN106041899A (zh) * 2016-08-22 2016-10-26 中国人民解放军63908部队 一种下肢助力外骨骼机器人
CN107472390A (zh) * 2017-09-05 2017-12-15 刘哲 一种可适应复杂环境的机器人足部
CN107498533A (zh) * 2017-09-05 2017-12-22 刘哲 一种智能移动机器人
CN107571934A (zh) * 2017-09-05 2018-01-12 刘哲 一种机器人

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111483279A (zh) * 2020-06-28 2020-08-04 之江实验室 一种具有双向缓冲功能的悬挂-转向联合机构
CN111942493A (zh) * 2020-08-21 2020-11-17 常州大学 一种主被动复合模式的四足越障机器人

Similar Documents

Publication Publication Date Title
CN209007583U (zh) 一种防松动的机械手夹持装置
CN110254564B (zh) 一种agv小车用车轮悬空组件
CN202805182U (zh) 重载轮胎机械手
WO2019047011A1 (zh) 一种机器人
CN103978850B (zh) 自适应轮胎防爆支撑系统
CN105397455A (zh) 一种托压索轮的轮衬压装设备及其压装方法
CN107472390A (zh) 一种可适应复杂环境的机器人足部
CN104668948B (zh) 一种径向螺栓拧紧装置
CN205438399U (zh) 盘式制动器活塞拆卸工具
CN113894530B (zh) 一种钢瓶阀及阀门装配装置
WO2019047012A1 (zh) 一种可适应复杂环境的机器人足部
CN206188330U (zh) 升降设备及其链条防脱组件
CN106115466A (zh) 一种水平吊具
CN204868046U (zh) 一种减震支柱单元与制动角单元的装配线
CN210338116U (zh) 一种agv小车用车轮悬空组件
CN104924886B (zh) 一种抗扭拉杆及汽车
CN208164661U (zh) 一种三轴变位汽车车轮拧紧设备
CN109531114A (zh) 液压油缸用立式装缸机
CN210189061U (zh) 一种零点定位夹具
CN209319200U (zh) 液压油缸用立式装缸机
CN109946486B (zh) 一种汽车电子产品的功能测试治具
CN209831504U (zh) 大吨位自卸车装配用任意向自动伸缩支撑工装
CN209831505U (zh) 一种大吨位自卸车装配用任意向自动伸缩支撑工装
CN211032524U (zh) 一种无人驾驶汽车用升降式车体
CN206318654U (zh) 便捷千斤顶

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17924360

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17924360

Country of ref document: EP

Kind code of ref document: A1