WO2019042428A1 - 一种聚氨酯抛光层、含抛光层的抛光垫、抛光层的制备方法及平坦化材料的方法 - Google Patents

一种聚氨酯抛光层、含抛光层的抛光垫、抛光层的制备方法及平坦化材料的方法 Download PDF

Info

Publication number
WO2019042428A1
WO2019042428A1 PCT/CN2018/103619 CN2018103619W WO2019042428A1 WO 2019042428 A1 WO2019042428 A1 WO 2019042428A1 CN 2018103619 W CN2018103619 W CN 2018103619W WO 2019042428 A1 WO2019042428 A1 WO 2019042428A1
Authority
WO
WIPO (PCT)
Prior art keywords
curing agent
polishing layer
polishing
polyurethane
polyurethane polishing
Prior art date
Application number
PCT/CN2018/103619
Other languages
English (en)
French (fr)
Inventor
朱顺全
罗乙杰
刘敏
张季平
车丽媛
Original Assignee
湖北鼎汇微电子材料有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201710769743.9A external-priority patent/CN107553313B/zh
Application filed by 湖北鼎汇微电子材料有限公司 filed Critical 湖北鼎汇微电子材料有限公司
Priority to US16/642,008 priority Critical patent/US11179822B2/en
Priority to KR1020207005721A priority patent/KR102338854B1/ko
Publication of WO2019042428A1 publication Critical patent/WO2019042428A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/70Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the isocyanates or isothiocyanates used
    • C08G18/72Polyisocyanates or polyisothiocyanates
    • C08G18/74Polyisocyanates or polyisothiocyanates cyclic
    • C08G18/76Polyisocyanates or polyisothiocyanates cyclic aromatic
    • C08G18/7614Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring
    • C08G18/7621Polyisocyanates or polyisothiocyanates cyclic aromatic containing only one aromatic ring being toluene diisocyanate including isomer mixtures
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/005Control means for lapping machines or devices
    • B24B37/013Devices or means for detecting lapping completion
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B37/00Lapping machines or devices; Accessories
    • B24B37/11Lapping tools
    • B24B37/20Lapping pads for working plane surfaces
    • B24B37/24Lapping pads for working plane surfaces characterised by the composition or properties of the pad materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D11/00Constructional features of flexible abrasive materials; Special features in the manufacture of such materials
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24DTOOLS FOR GRINDING, BUFFING OR SHARPENING
    • B24D3/00Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents
    • B24D3/02Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent
    • B24D3/20Physical features of abrasive bodies, or sheets, e.g. abrasive surfaces of special nature; Abrasive bodies or sheets characterised by their constituents the constituent being used as bonding agent and being essentially organic
    • B24D3/28Resins or natural or synthetic macromolecular compounds
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/08Processes
    • C08G18/10Prepolymer processes involving reaction of isocyanates or isothiocyanates with compounds having active hydrogen in a first reaction step
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/32Polyhydroxy compounds; Polyamines; Hydroxyamines
    • C08G18/3225Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/30Low-molecular-weight compounds
    • C08G18/38Low-molecular-weight compounds having heteroatoms other than oxygen
    • C08G18/3802Low-molecular-weight compounds having heteroatoms other than oxygen having halogens
    • C08G18/3814Polyamines
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/4854Polyethers containing oxyalkylene groups having four carbon atoms in the alkylene group
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/40High-molecular-weight compounds
    • C08G18/48Polyethers
    • C08G18/50Polyethers having heteroatoms other than oxygen
    • C08G18/5021Polyethers having heteroatoms other than oxygen having nitrogen
    • C08G18/5024Polyethers having heteroatoms other than oxygen having nitrogen containing primary and/or secondary amino groups
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G18/00Polymeric products of isocyanates or isothiocyanates
    • C08G18/06Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen
    • C08G18/28Polymeric products of isocyanates or isothiocyanates with compounds having active hydrogen characterised by the compounds used containing active hydrogen
    • C08G18/65Low-molecular-weight compounds having active hydrogen with high-molecular-weight compounds having active hydrogen
    • C08G18/66Compounds of groups C08G18/42, C08G18/48, or C08G18/52
    • C08G18/6666Compounds of group C08G18/48 or C08G18/52
    • C08G18/667Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38
    • C08G18/6681Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/32 or C08G18/3271 and/or polyamines of C08G18/38
    • C08G18/6685Compounds of group C08G18/48 or C08G18/52 with compounds of group C08G18/32 or polyamines of C08G18/38 with compounds of group C08G18/32 or C08G18/3271 and/or polyamines of C08G18/38 with compounds of group C08G18/3225 or polyamines of C08G18/38
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L75/00Compositions of polyureas or polyurethanes; Compositions of derivatives of such polymers
    • C08L75/04Polyurethanes
    • C08L75/08Polyurethanes from polyethers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09GPOLISHING COMPOSITIONS; SKI WAXES
    • C09G1/00Polishing compositions
    • C09G1/06Other polishing compositions
    • C09G1/14Other polishing compositions based on non-waxy substances
    • C09G1/16Other polishing compositions based on non-waxy substances on natural or synthetic resins
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/04Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer
    • H01L21/18Manufacture or treatment of semiconductor devices or of parts thereof the devices having at least one potential-jump barrier or surface barrier, e.g. PN junction, depletion layer or carrier concentration layer the devices having semiconductor bodies comprising elements of Group IV of the Periodic System or AIIIBV compounds with or without impurities, e.g. doping materials
    • H01L21/30Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26
    • H01L21/302Treatment of semiconductor bodies using processes or apparatus not provided for in groups H01L21/20 - H01L21/26 to change their surface-physical characteristics or shape, e.g. etching, polishing, cutting
    • H01L21/306Chemical or electrical treatment, e.g. electrolytic etching
    • H01L21/30625With simultaneous mechanical treatment, e.g. mechanico-chemical polishing

Definitions

  • the invention relates to the field of polishing technology for chemical mechanical planarization treatment, in particular to a polyurethane polishing layer and a preparation method thereof, a polishing pad comprising the polyurethane polishing layer and a method for planarizing a material using the polishing pad.
  • CMP chemical mechanical polishing
  • the conventional CMP process is as follows: the material to be processed is fixed on the support, and is pressed against the polishing pad fixed on the machine table under a certain pressure to be polished downward, by means of the relative rotation of the material to be processed and the polishing pad. In the presence of the polishing liquid, the mechanical cutting of the abrasive grains and the chemical etching of the oxidant are used to complete the material removal on the surface of the workpiece and obtain a smooth surface.
  • Polyurethane polishing pad is the most widely used polishing pad type in the field of high precision polishing. It can be applied to polished silicon wafers and patterned with good wear resistance, high tear strength and proper acid and alkali corrosion resistance. Wafer, flat panel display and disk storage in the preparation process. It is well known that the use of low-hardness polyurethane can effectively reduce defects such as scratches generated during polishing, but correspondingly reduces the removal rate and achieves an ideal balance between scratch and removal rate. It is an important topic that needs attention in the development of polishing pads.
  • the method of casting polyurethane into a block shape and then cutting into a sheet having a certain thickness has been proven to be an effective production of a polishing pad having stable reproducible polishing properties. Methods.
  • polyurethane polishing layers made using cast dicing can produce some large or small differences in polishing due to the different casting locations of the polishing pads.
  • a polishing pad cut from a bottom portion of a block polyurethane and a polishing pad cut at a top casting position will have different densities and porosities.
  • the bottom pad has a polishing pad density greater than the top and the porosity is opposite. result.
  • the polishing pad in the same polishing pad, from the center to the edge, the polishing pad also shows a different density distribution, the closer to the center position, the lower the density; the closer to the edge, the greater the density.
  • the main object of the present invention is to solve at least one of the above problems.
  • a first object of the present invention is to provide a polyurethane polishing layer having uniform quality, good hardness, elongation at break, hydrolytic stability, and thermal expansion coefficient, and a method for preparing the same, and a polishing layer comprising the polyurethane of the present invention. Polishing pad.
  • a first aspect of the invention provides a polyurethane polishing layer.
  • the polishing layer of the present invention employs a multi-component (e.g., two-component and three-component) curing agent system having a lower melting point and a lower use temperature.
  • the melting point and the low-use multi-component (such as two-component and three-component) curing agents adjust the viscosity and melting point of the curing agent system by the low-melting aliphatic diamine compound, so that the curing reaction can be Lower temperature (such as in the initial reaction below 70 ° C), effectively avoiding the phenomenon that the polyurethane casting block can not be rapidly diffused due to the heat of curing reaction, causing local overheating.
  • the polishing layer obtained by cutting the casting block does not vary with the cutting position. There are quality variations that result in a quality, especially density, uniform polyurethane finish. Therefore, the polyurethane polishing layer of the present invention has a relatively uniform density, so that the edge effect thereof is improved, and the removal rates of the edge portion and the central portion are closer in the polishing operation. Further, a suitable curing agent system is obtained by selecting an appropriate curing agent and its amount, thereby obtaining a polishing layer having better hardness, elongation at break, hydrolytic stability, and coefficient of thermal expansion.
  • the present invention provides a polyurethane polishing layer which is a reaction product of a raw material combination comprising an isocyanate terminated prepolymer, a hollow microsphere polymer and a curing agent composition, characterized in that ,
  • the curing agent composition includes: based on the total weight of the curing agent composition:
  • a polyamine curing agent 0 to 8 wt% of a polyamine curing agent, wherein the polyamine curing agent has at least three primary amino groups or at least three secondary amino groups in a molecular structure, and the number average molecular weight of the polyamine curing agent is 250 ⁇ 6000;
  • the polyurethane polishing layer has a density of 0.6 to 1.1 g/cm 3 , a Shore hardness of 45 to 70, and an elongation at break of 50 to 450%;
  • the polyurethane polishing layer has a coefficient of thermal expansion of 100-200 ppm/° C.
  • the isocyanate-terminated prepolymer contains 8.5 to 9.5 wt% unreacted -NCO groups.
  • the stoichiometric ratio of unreacted -NCO groups in the isocyanate-terminated prepolymer to active hydrogen groups in the curing agent composition is from 1.05 to 1.20.
  • the polyamine curing agent is selected from the group consisting of aliphatic polyamines, aromatic polyamines, and mixtures thereof; wherein the aliphatic polyamine has a number average molecular weight of 2000 to 6000, the fat The group polyamine has a number average molecular weight of from 250 to 2,000.
  • the polyurethane polishing layer has a hydrolysis stability of less than 1.5% after hydrolysis at a pH of 2 to 5 for 80 hours, and a hydrolysis stability of less than a hydrolysis time of 80 hours under a pH of 9 to 12 is less than 1.5%.
  • the polyurethane polishing layer of the present invention is characterized in that the polyurethane polishing layer is a reaction product of a raw material combination comprising: an isocyanate-terminated urethane prepolymer, hollow microspheres Polymer and curing agent compositions, wherein:
  • the curing agent composition includes: based on the total weight of the curing agent composition:
  • the polyurethane polishing layer has an elongation at break of 50 to 200%; and wherein the polyurethane polishing layer has a thermal expansion coefficient of 100 to 140 ppm/° C.
  • the polyurethane forms a bulk network structure, and the weakly interacting hydrogen bond is a chemical bond of strong interaction, thereby reducing the thermal expansion coefficient of the polishing layer.
  • a curing agent having a functionality of 3 or more the polyurethane forms a bulk network structure, and the weakly interacting hydrogen bond is a chemical bond of strong interaction, thereby reducing the thermal expansion coefficient of the polishing layer.
  • the polyurethane polishing layer of the present invention has a hydrolysis stability of less than 0.65% after hydrolysis at a pH of 2 to 5 for 80 hours, and is hydrolyzed at a pH of 9 to 12 for 80 hours.
  • the hydrolytic stability is less than 0.80%.
  • the polishing layer of the present invention further has at least one endpoint detection area
  • the invention also provides a preparation method of the above polyurethane polishing layer.
  • the preparation method adopts a composition having a multi-component and a low melting point as a curing agent, and realizes an initial reaction temperature of 70 ° C or less, thereby effectively avoiding local overheating caused by the heat generation of the casting block which is not easily diffused by the curing reaction, and is remarkable.
  • the uniformity of properties such as density and hardness of each part after solidification of the cast block is improved.
  • the center of the polishing layer obtained by cutting the casting block of the method of the present invention has uniform center and edge quality, and the quality between the respective polishing layers taken from different portions of the casting block is also uniform. Therefore, the polishing layer of uniform quality can be stably produced by the production method of the present invention. .
  • the present invention provides a method for preparing the above-mentioned polyurethane polishing layer, characterized in that the preparation method comprises:
  • the first product is mixed with the curing agent composition at 50 ° C under high speed shear to obtain a second product;
  • the temperature of the second product is controlled, and the curing reaction is carried out under the conditions of an initial reaction temperature of ⁇ 70 ° C and a reaction peak temperature of ⁇ 80 ° C.
  • the present invention further provides a polishing pad based on the above-described polyurethane polishing layer, which employs the above-mentioned polyurethane polishing layer as a functional layer.
  • the polishing pad can achieve a more precise planarization process on the surface of the wafer to obtain a smoother surface.
  • the present invention provides a chemical mechanical polishing pad having the aforementioned polyurethane polishing layer.
  • the present invention also provides a method of planarizing a substrate, the method comprising the steps of:
  • the surface of the substrate is dynamically polished with the chemical mechanical polishing pad.
  • the dynamic polishing treatment is performed by rotating the chemical mechanical polishing pad relative to the substrate under a certain pressure while providing a polishing liquid.
  • the substrate is selected from at least one of a semiconductor substrate, an optical substrate, and a magnetic substrate.
  • the polishing layer is required to have different physical and chemical properties, and the elimination rate and the pressure applied in the polishing are also different, which can be specifically selected by the skilled person according to actual needs.
  • a combination of an aromatic polyamine and an aliphatic polyol is basically used to provide a hard segment and a soft segment of the curing agent, respectively, and the ratio can be adjusted to control the final.
  • the hardness of the polishing pad In such a curing agent composition, there is an inevitable birth defect, that is, the difference in reactivity between the aromatic polyamine and the aliphatic polyol and the free isocyanate, the former is usually tens or even hundreds of times more reactive than the latter.
  • the terminal secondary amino polyether compound has a significantly slower reaction rate relative to the terminal primary amino polyether compound, and can be substantially similar in reactivity with the aromatic amine curing agent, and is avoided from the root cause.
  • the polishing layer is not uniform due to the difference in reactivity, thereby obtaining a polyurethane polishing layer capable of simultaneously improving the removal rate and the defect rate of the substrate to be polished.
  • a second object of the present invention is to provide a polishing pad having a polyurethane polishing layer using a two-component curing agent system of an aliphatic compound and an aromatic compound, wherein the structural modification is Adjusting the reactivity of the aliphatic curing agent, the reactivity of the aliphatic curing agent and the aromatic curing agent is close, and the unevenness of the polishing layer caused by the difference in reactivity is avoided from the root source, thereby obtaining chemical mechanical polishing with improved polishing performance. pad.
  • a chemical mechanical polishing pad comprising a polyurethane polishing layer, wherein the polyurethane polishing layer is a reaction product of a raw material combination, the raw material combination comprising an isocyanate terminated pre- a polymer, a hollow microsphere polymer, and a curing agent composition, wherein
  • the curing agent composition comprises: a terminal secondary amino polyether curing agent and an aromatic difunctional curing agent, and the mass ratio of the terminal secondary amino polyether curing agent to the aromatic difunctional curing agent is 1:4. 4:1; and
  • the isocyanate-terminated prepolymer contains 5.5 to 9.5 wt% of unreacted NCO groups.
  • the terminal secondary amino polyether curing agent has a number average molecular weight of from 250 to 6,000.
  • the number average molecular weight of the terminal secondary amino polyether curing agent can be adjusted within different ranges, for example, 400 to 800, or 1000 to 2000, 3000 to 4000, 5000 to 6000, 1500 to 2200 or 3500 to 5600 or the like, preferably 400 to 800 or 1000 to 2000.
  • the terminal secondary amino polyether curing agent comprises at least one compound selected from the group consisting of the following formula I and formula II:
  • R 1 is a C1 to C8 alkyl group or a fluorine-containing alkyl group
  • R 2 , R 3 , R 4 and R 5 are each independently H or a C1 to C8 alkyl group or a fluorine-containing alkyl group
  • x, y They are 0 or a positive integer, respectively, and the premise is: x+y ⁇ 12.
  • R 1 is a C1 to C8 alkyl group or a fluorine-containing alkyl group
  • R 2 , R 3 , R 4 and R 5 are each independently H or a C1 to C8 alkyl group or a fluorine-containing alkyl group
  • x, y, m, n, o, p are 0 or a positive integer, respectively, provided that x+y+m+n+o+p ⁇ 12.
  • the compound of formula I or II may be a perfluoro-substituted compound.
  • An example is a compound of the formula:
  • the aromatic difunctional curing agent is an aromatic diamine.
  • Preferred examples are, for example, MOCA (4,4'-methylene-di-o-chloroaniline), MCDEA (4,4'-methylene-bis(3-chloro-2,6-diethylaniline)), etc. , but not limited to this. Most preferred is MOCA.
  • the curing agent composition used in the present invention is a two-component curing agent system consisting of the terminal secondary amino polyether curing agent and the aromatic difunctional curing agent.
  • the combination of raw materials further comprises a hollow microsphere polymer.
  • the physical and chemical properties of the polyurethane polishing layer according to the present invention are not particularly limited and can be adjusted according to the specific requirements of the polishing material.
  • the polishing layer has a density of 0.6 to 1.1 g/cm 3 and a Shore hardness of 45 to 75 D.
  • the polishing layer has a density of 0.7 to 1.05 g/cm 3 , more preferably 0.8 to 1.0 g/cm 3 ; preferably, the polishing layer has a Shore hardness of 55 to 70, more preferably 55 to 65.
  • the polishing pad of the present invention further has an endpoint detection window, the absolute value of the difference between the Shore hardness of the endpoint detection window and the Shore hardness of the polyurethane polishing layer ⁇ 5.
  • the endpoint detection window is made of a material having a visible light transmission of ⁇ 40%, preferably ⁇ 60%.
  • the area of the end point detection window accounts for 0.1% to 0.5% of the total area of the polishing pad, and is located at a position of 1/2 to 1/3 of the center to the edge of the polishing pad, but is not limited thereto.
  • the polishing surface of the polishing pad of the present invention also has grooves.
  • the groove is for receiving a polishing liquid.
  • the properties of the grooves may be concentric annular or spiral, grid lines, polygons or tread shapes, etc., but are not limited thereto.
  • the cross section of the groove may be, for example, a straight side wall rectangle, a "V" shape, a "U” shape, and a zigzag shape.
  • the groove has a width of 0.1 to 0.6 cm, and more preferably, the groove has a width of 0.2 to 0.4 cm.
  • the present invention also provides a method of planarizing a substrate, the method comprising the steps of:
  • the surface of the substrate is dynamically polished with the chemical mechanical polishing pad.
  • the dynamic polishing treatment is performed by rotating the chemical mechanical polishing pad relative to the substrate under a certain pressure while providing a polishing liquid.
  • the substrate is selected from at least one of a semiconductor substrate, an optical substrate, and a magnetic substrate.
  • the polishing layer is required to have different physical and chemical properties, and the elimination rate and the pressure applied in the polishing are also different, which can be specifically selected by the skilled person according to actual needs.
  • the polyurethane polishing layer provided by the invention adopts a curing agent system of an aliphatic terminal secondary amino polyether compound and an aromatic compound.
  • the reactivity of a conventional aliphatic curing agent such as a polyether polyol is effectively adjusted by modification in molecular structure.
  • the terminal secondary amino polyether which is more preferably used in the curing agent system of the present invention is a low viscosity liquid at room temperature, which can reduce the freezing point of the curing agent composition after being mixed with the aromatic curing agent, and thus can be further The curing reaction is completed at a low temperature, thereby suppressing the exothermic reaction, effectively reducing the water ripple generated by the excessively rapid heat release or uneven heat generation, and improving the uniformity of the polishing pad.
  • FIG. 1 is a schematic view showing a process of polishing a polishing layer provided by an embodiment of the present invention
  • Example 2 is a comparison diagram of density distributions of polishing layers respectively provided in Example 1 and Comparative Example 1;
  • Figure 3 is a comparison of radial density distributions of the single polishing layers provided in Example 1 and Comparative Example 1, respectively;
  • Figure 4 is a comparison diagram of the service life of the polishing layer provided in Comparative Example 2, Examples 13, 16, and 19;
  • Figure 5 is a graph comparing the removal rate effect of a polishing pad prepared using the polyurethane polishing layer of Example 12 and a commercially available polishing pad during a polishing operation.
  • Figure 6 is a comparison of density distributions of polishing layers taken from different positions of the cured casting block prepared in Example 21 and Comparative Example 3;
  • Figure 7 is a comparison of radial density distributions of monolithic polishing layers taken from the middle of the cured casting block prepared in Example 21 and Comparative Example 3;
  • Figure 8 is a comparison diagram of the effect of the polishing pad prepared by using the polishing layers of Examples 21 to 23 and Comparative Example 3 on the removal rate of the semiconductor wafer;
  • Fig. 9 is a comparison diagram of wafer defect rate evaluation after polishing a semiconductor wafer with polishing pads prepared by polishing layers of Examples 21 to 23 and Comparative Example 3.
  • Icons 1 - material to be polished, 2-polishing pad, 3-polishing machine, 4-bracket, 5-slurry.
  • Polyurethane polishing pad is a polishing device with more applications.
  • existing polyurethane polishing instruments are difficult to meet the needs.
  • polyurethane-based polishing instruments are often prepared by a casting-cutting process.
  • the preparation process comprises the steps of: heating the isocyanate-terminated prepolymer to a certain temperature to have a suitable viscosity, vacuum degassing to remove small molecular compounds in the prepolymer, and then mixing into the hollow microsphere polymer, and vacuum degassing again. Time, then the mixture is mixed with the curing agent composition, cast into a polyurethane block, and a polishing layer sheet is formed by cutting.
  • the isocyanate-terminated urethane prepolymer is a viscous liquid at normal temperature and needs to be raised to a certain temperature to lower its viscosity, which is convenient under vacuum. The gas is discharged.
  • a lower viscosity is also required to facilitate mixing with the curing agent - the viscosity is too high, which makes the mixing of the two uneven and affects the polishing effect of the polishing pad.
  • the temperature of the prepolymer is too high, the viscosity is too low, and the hollow microsphere polymer exhibits a more phase-separating property, resulting in uneven distribution in the prepolymer, so that the resulting polyurethane block is cast from the top and bottom positions.
  • the density of the cut polished layer shows a large difference, that is, the top is low and the bottom is high.
  • the temperature of the prepolymer is too high, it will react too quickly after mixing with the curing agent, releasing a large amount of heat in a short time, causing irreversible expansion of the polyurethane casting block, which is manifested in the same piece of polishing.
  • the center density is low and the edge density is high.
  • the temperature of the isocyanate-terminated prepolymer needs to be controlled within a suitable range and cannot be too high or too low. If the temperature is too high, the prepolymer reacts too fast with the curing agent; if the temperature is too low, the prepolymer and the curing agent are not uniformly mixed due to an increase in the viscosity of the curing agent. Controlling the temperature at 50 ⁇ 1 ° C is an option.
  • the inventors have proposed a multi-component (2, or 3, or more components) curing agent composition having a low use temperature and a melting point.
  • the curing agent composition can react and solidify the prepolymer at a lower initial reaction temperature to obtain a cured product having improved properties (such as a polyurethane casting block). Further, with the aforementioned cured product, a polishing layer excellent in chemical mechanical polishing performance can also be obtained.
  • the aliphatic diamine curing agent is a liquid or viscous liquid at normal temperature.
  • an aromatic curing agent such as 4,4'-diamino-3,3'-dichlorodiphenylmethane (MOCA)
  • MOCA 4,4'-diamino-3,3'-dichlorodiphenylmethane
  • the melting point of the mixture is significantly reduced.
  • the greater the amount of the aliphatic diamine curing agent the lower the melting point of the mixture.
  • the mixture tends to exhibit a lower solidification temperature due to subcooling during the temperature drop.
  • the inventors have surprisingly found that after adding 20 wt% of polyether diamine D2000 to an aromatic curing agent (MOCA), the mixture remains a low viscosity liquid when the temperature is lowered to 70 °C.
  • MOCA aromatic curing agent
  • the above curing agent composition having a use temperature as low as 70 ° C is reacted with the isocyanate-terminated prepolymer, compared with the curing reaction using a MOCA curing agent (one-component curing agent) at a temperature of 116 ° C, the former ( The mixed temperature of the two-component curing agent composition is significantly lower than that of the latter (single-component aromatic curing agent), so that the initial reaction temperature is low.
  • 100 parts of a 50 ° C prepolymer is mixed with 50 parts of MOCA at a temperature of 120 ° C, and the temperature after mixing is 74 ° C, and the temperature after mixing with the curing agent of the present invention at a temperature of 70 ° C is lowered. It is 56 ° C and is nearly 20 ° C lower. Therefore, the violent heat release during the reaction is effectively suppressed, so that the heat can be released slowly and smoothly, thereby obtaining a cured product having a high density and uniformity.
  • the inventors have also found that the addition of an appropriate amount of a polyfunctional curing agent having a functionality of greater than or equal to 3 in the curing agent system can effectively reduce the coefficient of thermal expansion of the polishing pad and improve the hydrolytic stability.
  • the inventors Based on the curing agent composition, the inventors have also proposed a polyurethane polishing layer, and a polishing pad comprising the polyurethane polishing layer.
  • a component is not limited to one substance unless otherwise specified, and may be one type, two or more types.
  • the aliphatic diamine curing agent in the curing agent composition mentioned herein may be a specific aliphatic diamine curing agent or two or more aliphatic diamine curing agents.
  • the aromatic diamine curing agent may be a specific aromatic diamine curing agent or a mixture of two or more aromatic diamine curing agents.
  • the polyamine curing agent is selected from the group consisting of aliphatic polyamine curing, aromatic polyamine curing agent, and mixtures thereof, meaning that the polyamine curing agent may be composed of a specific aliphatic polyamine curing agent, or two types. a mixture of a plurality of aliphatic polyamine curing agents; or, may consist of a specific aromatic polyamine curing agent, or a mixture of two or more aromatic polyamine curing agents; or It may consist of one, two or more specific aliphatic polyamine curing agents and one, two or more specific aromatic polyamine curing agents.
  • the polyurethane polishing layer refers to a polishing layer made of polyurethane.
  • polyurethane is a product derived from a difunctional or polyfunctional isocyanate, such as a mixture or copolymer of two or more of polyether urea, polyisocyanurate, polyurethane, polyurea, polyurethaneurea .
  • the polishing effect of the polished layer can be effectively improved by chemical composition adjustment.
  • the polishing layer is a product prepared by reacting a polyisocyanate with a polyether polyol to obtain an isocyanate-terminated prepolymer which is then reacted with a curing agent mixture.
  • Appropriate modified materials can also be added to the polishing layer for better overall performance improvement.
  • the polyurethane polishing layer is a reaction product formed by reacting a combination of a plurality of components.
  • the combination of materials includes an isocyanate terminated prepolymer, a hollow microsphere polymer, and a curing agent composition.
  • the hollow microsphere polymer is mixed in the isocyanate-terminated prepolymer and may have an initial reaction temperature of less than 70 ° C after mixing with the curing agent composition, preferably, the initial reaction temperature is lower than 60 ° C, and the peak reaction thereof The temperature appeared at 2 to 5 minutes after mixing and the peak reaction temperature was below 80 °C.
  • the polyurethane polishing layer prepared by the raw material of the present invention has the following physical and chemical properties:
  • the polyurethane polishing layer obtained has a density of approximately 0.6 to 1.1 g/cm 3 , preferably a density of 0.7 to 1.05 g/cm 3 , and most preferably a density of 0.8 to 1.0 g/cm 3 .
  • the Shore D hardness is from 35 to 75 D, more preferably from 45 to 70 D, and most preferably from 55 to 65 D.
  • the hardness is more than 75D, the polyurethane polishing layer has a high removal rate, but it brings about problems such as excessive defects such as scratches.
  • the hardness is less than 35D, although the scratch can be effectively reduced, the removal rate is seriously degraded, so in order to maintain the balance of the scratch and the removal rate, a polishing layer having a suitable hardness should be selected.
  • the elongation at break is 50 to 450%, or 50 to 200%. More preferably, the elongation at break is from 60 to 350%. Most preferably, the elongation at break is 70 to 300%.
  • a polishing layer having a Shore D hardness of less than 45 usually has a very high elongation at break (i.e., >500%), and a material having such a high elongation at break produces reversible deformation when mechanically processed. This results in unacceptably poor groove formation and insufficient texture formation during diamond dressing.
  • the prepolymer of the present invention is obtained by reacting a polyfunctional isocyanate with a polyether polyol.
  • the isocyanate-terminated prepolymer contains from 8.5 to 9.5 wt% of unreacted isocyanate groups (-NCO), in particular, the prepolymer is a prepolymer having two -NCO group cappings.
  • the stoichiometric ratio of unreacted -NCO groups to active hydrogen groups (amino or hydroxyl groups) in the curing agent composition in the prepolymer is from 1 to 1.25, more preferably 1.05. ⁇ 1.2.
  • the ratio of the NCO group to the active hydrogen-containing OH may be controlled to be between 1.1 and 5.0, preferably between 1.2 and 2.5. Under the condition that the ratio of the NCO group to the active hydrogen-containing OH group is less than 1.1, the prepolymer tends to be polymerized and cured or gelled during the synthesis. On the other hand, when the ratio of the -NCO group to the active hydrogen-containing -OH group exceeds 5.0, since the unreacted isocyanate remains in a large amount, the reaction rate with the curing agent is too fast, and the molding processability of the polyurethane resin cast body It tends to get worse.
  • the polycyanate-terminated prepolymer is a polyether-based isocyanate-terminated urethane prepolymer.
  • the unreacted -NCO content in the aforementioned urethane prepolymer is between 8.5 and 9.5 wt%, and more preferably the unreacted -NCO content is between 8.6 and 9.25 wt%.
  • the prepolymer used in the present invention may be a commercially available prepolymer based on the reaction of a polyether with TDI and MDI, and may be exemplified by, but not limited to, those produced by Chemtura.
  • the polyfunctional isocyanate includes, but is not limited to, one or both of an aromatic isocyanate and an aliphatic isocyanate. It is preferable to use 90% by mole or more of the aromatic isocyanate, more preferably 95% by mole or more, and particularly preferably 100% by mole.
  • the aromatic isocyanate may be an aromatic diisocyanate.
  • Aromatic diisocyanates include, but are not limited to, 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, 2,2'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, 4 , one of 4'-diphenylmethane diisocyanate, 1,5-naphthalene diisocyanate, p-phenylene diisocyanate, isophthalic diisocyanate, p-xylylene diisocyanate, m-xylylene diisocyanate Or a variety.
  • the aliphatic isocyanate may be an aliphatic diisocyanate.
  • the aliphatic diisocyanates include, but are not limited to, one or more of ethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, and 1,6-hexamethylene diisocyanate.
  • the aliphatic isocyanate may also be an alicyclic diisocyanate.
  • the alicyclic diisocyanates include, but are not limited to, one or more of 1,4-cyclohexane diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, isophorone diisocyanate, norbornane diisocyanate.
  • the polyether polyol may be a polyether-based high molecular weight polyol.
  • polyether polyols include, but are not limited to, polytetramethylene ether glycol (PTMEG), polyethylene glycol (PEG), polypropylene glycol (PPG), and polytetramethylene ether glycol-polyethylene glycol. Any one of polytetramethylene ether glycol-polypropylene glycol and polyethylene glycol-polypropylene glycol, or a copolymer of two or more kinds, or a mixture of two or more kinds.
  • PTMEG polytetramethylene ether glycol
  • PEG polyethylene glycol
  • PPG polypropylene glycol
  • polytetramethylene ether glycol-polyethylene glycol Any one of polytetramethylene ether glycol-polypropylene glycol and polyethylene glycol-polypropylene glycol, or a copolymer of two or more kinds, or a mixture of two or
  • the polyether polyol may have a number average molecular weight of 500 to 5,000, or 500 to 2,000, or 500 to 1,500.
  • the obtained polyurethane resin does not have sufficient elastic properties and is liable to become a brittle polymer.
  • the polishing pad formed of the above-described urethane resin (brittle polymer) becomes too hard, which is liable to cause scratches on the surface of the object to be polished, and is also easily worn, resulting in shortening of the life of the polishing spot.
  • the polishing pad formed of the obtained urethane resin becomes soft, and it is difficult to obtain flatness which is sufficiently satisfactory.
  • the curing agent composition of the present invention is mainly obtained by mixing an aliphatic curing agent and an aromatic curing agent.
  • the curing agent composition can be a two component curing agent.
  • the curing agent composition of the present invention may include an aliphatic diamine curing agent, an aromatic difunctional curing agent, and an optional polyamine curing agent, wherein the polyamine curing agent may be selected from aliphatic polyamines and aromatics. Polyamine.
  • polyamine curing agent as referred to herein, unless otherwise specified, refers to a curing agent containing a ternary or higher amine group.
  • the amount of the curing agent composition includes 5 to 55 wt% of the aliphatic diamine composition, 0 to 8 wt%, based on the total weight of the curing agent composition.
  • a polyamine composition 40 to 90% by weight of an aromatic bifunctional composition.
  • the curing agent composition of the present invention may include 5 to 55 wt% of an aliphatic diamine composition, 0.1 to 8 wt% of a polyamine composition, and 40 to 90 wt%, based on the total weight of the curing agent composition.
  • Aromatic bifunctional composition may include 5 to 55 wt% of an aliphatic diamine composition, 0.1 to 8 wt% of a polyamine composition, and 40 to 90 wt%, based on the total weight of the curing agent composition.
  • the polyamine composition has three primary amino groups or three secondary amino groups in the molecular structure, and the polyamine composition is an aliphatic polyamine, an aromatic polyamine and a mixture thereof, and the aliphatic polyamine has a number average molecular weight of 2,000 to 6,000.
  • the aliphatic polyamine has a number average molecular weight of from 250 to 2,000.
  • the aliphatic diamine curing agent a curing agent which is liquid at normal temperature (usually room temperature, such as 25 to 30 ° C) can be used.
  • the aliphatic diamine composition has a number average molecular weight of from 1,000 to 5,000.
  • the number average molecular weight of the aliphatic diamine is less than 1,000, the prepolymer curing reaction of the foregoing prepolymer is too fast and gels rapidly.
  • the molecular weight of the polyether polyamine is more than 5,000, the formed polishing pad becomes soft, and it is difficult to obtain a flatness which is sufficiently satisfactory.
  • Examples of the number average molecular weight of the aliphatic diamine may be, for example, 2000 to 3000, or 4000 to 5000, or 1050 to 2500, or 3500 to 4600, but are not limited thereto.
  • the amount of the aliphatic diamine curing agent is from 5 to 55 wt% based on the total weight of the composition.
  • the proportion of the aliphatic diamine in the curing agent composition is less than 5% by weight, the effect of lowering the melting point of the curing agent composition is not significant; when the proportion of the aliphatic difunctional polymer curing agent is higher than 55% At this time, the cured polyurethane polishing layer becomes soft and the flattening ability is lowered.
  • the aliphatic diamine curing agent which can be used in the present invention may be any of the existing aliphatic diamine curing agents which are liquid at normal temperature and which satisfy the above molecular weight range.
  • the aliphatic diamine curing agent contained is a polyether diamine.
  • the polyether diamines useful in the present invention may be those suitable for commercial use.
  • polyetheramines include polyetheramines from Huntsman The series are, for example, D230, D400, D2000, D4000, HK511, ED600, ED900, ED2003, SD231, SD401, SD404, SD2001, etc., but are not limited thereto.
  • the aromatic difunctional curing agent of the present invention is included in the curing agent composition as a hard segment structure modifier.
  • aromatic difunctional curing agent of the present invention is not particularly limited and may be any suitable aromatic difunctional curing agent in the art. Those skilled in the art can make appropriate selection according to specific needs.
  • Illustrative aromatic difunctional curing agents include, but are not limited to, diethyl toluenediamine (DETDA), N, N'-dialkyldiaminodiphenylmethane, 3,5-diethyl-2,4 -toluenediamine and its isomers (for example, 3,5-diethyl-2,6-toluenediamine), 3,5-dimethylthio-2,4-toluenediamine and isomers thereof , 4,4'-methylene-bis-(2-chloroaniline) (MOCA), 4,4'-bis-(sec-butylamino)-diphenylmethane, 1,4-bis-(sec-butyl Amino)-benzene, 4,4'-methylene-bis-(2-chloroaniline), 4,4'-m
  • the difunctional curing agent B3 used is selected from the group consisting of 4,4'-methylene-bis-(2-chloroaniline), 4,4'-methylene-bis-(3-chloro-2,6-di One or more of ethyl phenylamine) (MCDEA) and its isomers.
  • the aromatic difunctional curing agent used is selected from the group consisting of 4,4'-methylene-bis-(2-chloroaniline) (MOCA), 4,4'-methylene-bis-(3-chloro- 2,6-Diethylaniline) (MCDEA) and its isomers.
  • MOCA 4,4'-methylene-bis-(2-chloroaniline)
  • MCDEA 4,4'-methylene-bis-(3-chloro- 2,6-Diethylaniline)
  • its isomers isomers.
  • the aromatic difunctional curing agent is MOCA.
  • MOCA's unique chemical structure ensures proper operative time in the preparation of polishing pads, and the resulting polishing pad has good polishing properties.
  • the amount of the aliphatic diamine curing agent is from 40 to 90% by weight based on the total weight of the composition.
  • the polyamine curing agent may not be included in the present invention, and a polyamine curing agent or a mixture of two or more polyamine curing agents may be contained.
  • the polishing process usually involves the use of a polishing fluid.
  • the polishing liquid usually has a certain acidity and alkalinity, and the pH value is between 2 and 12.
  • the polishing liquid forms a continuous corrosive effect on the polishing pad, thereby causing the polishing layer to swell, thereby lowering the hardness of the polishing layer. It exhibits the same polishing layer during grinding, and the removal rate is high in the early stage of polishing, and the removal rate gradually decreases as the polishing time is prolonged.
  • the temperature of the polishing layer gradually rises to rise to near 85 ° C, while the buffer layer temperature is still low, the polishing layer and the buffer layer There is a large temperature difference between the layers, so that in the horizontal direction, the polishing layer is stressed by thermal expansion and the buffer layer, which greatly increases the risk of degumming.
  • controlling the degree of crosslinking of the polyurethane is an effective method of controlling the degumming of the polishing layer and the reduction in hardness.
  • the manner of increasing the degree of crosslinking of the polyurethane body may be, for example, by introducing a molecule having a functionality of 3 or more (provided as a component in the curing agent composition) to convert the linear polyurethane into Body type network structure.
  • the interaction force between the molecular chains is transformed into a strong chemical bond by a weak physical interaction "-hydrogen bond".
  • the chemical bond can effectively reduce the thermal expansion coefficient of the polishing layer, reduce the risk of degumming and improve the hydrolysis resistance, and improve the uniformity of the removal rate during the planarization process.
  • the addition amount of the polyamine curing agent by adjusting the addition amount of the polyamine curing agent, the crosslinking density of the polishing pad can be effectively adjusted to achieve an optimum polishing effect.
  • each polyamine curing agent molecule contains at least 3 primary or secondary amino groups.
  • the polyamine curing agent contains 3 primary or secondary amino groups per molecule.
  • the polyamine curing agent which can be used in the present invention may be an aliphatic polyamine and/or an aromatic polyamine.
  • the number average molecular weight of the polyamine curing agent usable in the present invention may be in the range of from 250 to 6,000.
  • the number average molecular weight of the polyamine curing agent may be 1000 to 2000, or 3000 to 4000, or 5000 to 6000, or 1500 to 2200, or 3500 to 5600, but is not limited thereto.
  • the polyamine composition is an aliphatic polyamine
  • the molecular weight of the aliphatic polyamine can be in the range of from 2,000 to 6,000.
  • the molecular weight is less than 2,000, the reaction of the aliphatic polyamine is too fast during the reaction, which causes the polyurethane to gel rapidly and has extremely poor operability.
  • the molecular weight of the aliphatic polyamine is more than 6000, the crosslinking ability of the system is greatly reduced, and the purpose of effectively improving the crosslinking density of the system, reducing the thermal expansion coefficient of the polishing pad and improving the hydrolytic stability can not be achieved.
  • Polyamine polyether curing agents can be exemplified, such as: Huntsman polyetheramine T3000, T5000, T403, ST404, but are not limited to this.
  • the polyamine curing agent is an aromatic polyamine
  • the molecular weight of the aromatic polyamine is from 250 to 2,000.
  • the molecular weight of the aromatic polyamine is less than 250, the reactivity is too high, so that the polyurethane gels rapidly and the handleability is poor.
  • the molecular weight is higher than 2000, the aromatic polyamine has a too high melting point and is not suitable for preparing a polyurethane casting.
  • the aromatic polyamine curing agent used in the present invention may be selected from the group consisting of 4,4',4"-triamino(triphenylmethane), 4,4',4"-triamino(triphenylethane), N , N'N"-triisopropyl-4,4',4"-triamino(triphenylmethane), N,N'N"-triisopropyl-4,4',4"-triamino (triphenylethane), trimestriamine, trimellitamine, but not limited thereto.
  • the crosslinking density of the polyurethane can be controlled by controlling the content of the polyamine curing agent in the curing agent composition to effectively lower the elongation at break of the obtained polyurethane polishing layer.
  • the content of the polyamine curing agent is from 0 to 8% by weight, preferably from 0.1 to 8% by weight, based on the total weight of the curing agent composition.
  • the polyamine curing agent comprises from 1 to 5% by weight, optimally, from 2.5 to 3.5%.
  • the thermal expansion coefficient of the polyurethane polishing layer can be effectively reduced, and the thermal expansion coefficient can be controlled within 250 ppm/° C.
  • the polishing layer has a coefficient of thermal expansion of 50 to 250 ppm/° C., or 100 to 150 ppm/° C., or 100 to 200 ppm/° C. More preferably, the coefficient of thermal expansion is from 60 to 200 ppm/°C, and most preferably, the coefficient of thermal expansion is from 70 to 160 ppm/°C.
  • an excessively high coefficient of thermal expansion causes a large temperature difference between the polishing layer and the buffer layer in the polishing pad to cause stress, which in turn leads to an increased risk of degumming.
  • the polyurethane polishing layer is also affected by the polishing liquid.
  • the polishing liquid usually has a certain acidity and alkalinity, and its pH is between 2 and 12. When it is continuously operated, it will form a continuous corrosive effect on the polishing pad, causing the polishing layer to swell, so that the hardness thereof gradually decreases. It exhibits the same polishing layer during grinding, and the removal rate is high in the early stage of polishing, and the removal rate gradually decreases as the polishing time is prolonged. During the polishing process (a polishing pad typically lasts 50 to 70 hours), a stable removal rate plays an important role in continuous industrial production.
  • the invention improves the crosslinking density of the polishing layer by adding the polyamine curing agent, can improve the resistance to the polishing liquid, and ensure that it has stable physical and chemical properties within the working life time period.
  • the resistance to the polishing liquid can be expressed by hydrolytic stability.
  • the "80-hour hydrolytic stability" referred to herein is that the polishing layer is immersed in a hydrochloric acid solution having a pH of 2 to 5 or a NaOH solution having a pH of 9 to 12, and the diameter change thereof is measured after 80 hours, and the change value is relatively Expressed as a percentage of the diameter before soaking.
  • the change rate of the diameter of the polishing layer is about small, and the stability of acid and alkali resistance is better.
  • the polishing layer of the present invention has an acid and alkali hydrolysis stability of less than 1.5% for 80 hours.
  • hydrolytic stability of the polishing layer in a hydrochloric acid solution having a pH of 2 to 5 is less than 0.65%; and the hydrolytic stability of the polishing layer in a sodium hydroxide solution having a pH of 9 to 12 is less than 0.80%. .
  • the hollow microsphere polymer is primarily an expanded microsphere. It can be purchased from microspheres or microbeads of AkzoNobel, Matsumoto Oil & Pharmaceutical Co., Ltd. or any company of Sekisui Chemical Industry Co., Ltd., preferably Akzo Nobel Expancel series hollow microspheres or Matsumoto microbeads F series.
  • the hollow microsphere polymer comprises a vesicular structure having an outer wall of a polyacrylonitrile and polyacrylonitrile copolymer.
  • the inventors achieved adjustment of the polishing effect of the polyurethane polishing layer by adjusting the distribution manner (e.g., density) of the hollow microsphere polymer in the polyurethane polishing layer.
  • the distribution manner e.g., density
  • the hollow microsphere polymer is uniformly distributed in the polishing layer so that the polishing layer has 10 to 40% porosity.
  • the polishing performance of the polishing layer can be further adjusted by uniformly dispersing the hollow microsphere polymer in the polishing layer in combination with adjusting the particle size of the hollow microsphere polymer.
  • the hollow microsphere polymer is controlled to have a diameter of less than 120 microns; more preferably, the diameter is less than 60 microns, and most preferably, the diameter is between 10 and 50 microns.
  • the polyurethane polishing layer prepared using the above raw materials is a polishing layer which can be applied to chemical mechanical polishing operations.
  • a suitable modified material may also be added to the polyurethane polishing layer in order to obtain a better overall performance improvement.
  • modified materials include, but are not limited to, antioxidants, abrasion resistant fillers, storage stabilizers, and the like.
  • the structure of the polyurethane polishing layer can be modified to make it more practical based on actual needs.
  • At least one endpoint detection region is formed in the polyurethane polishing layer.
  • the end point detection area of the polyurethane polishing layer enables high-accuracy optical end point detection.
  • the method of detection may be, for example, optical detection.
  • the endpoint detection area made of a suitable material, it has an appropriate light transmission to observe the object being polished (such as a silicon wafer).
  • the material forming the endpoint detection region has a light transmittance of ⁇ 40% over the entire wavelength range of 300 to 800 nm; more preferably, the light transmittance of the high transmittance material is ⁇ 60%.
  • the material of the end point detection area includes, but is not limited to, a thermosetting resin such as a urethane resin, a polyester resin, a phenol resin, a urea resin, a melamine resin, an epoxy resin, and an acrylic resin; a polyurethane resin, a polyester resin, a polyamide resin, Thermoplastics such as cellulose resin, acrylic resin, polycarbonate resin, halogen-containing resin (polyvinyl chloride, polytetrafluoroethylene, polyvinylidene fluoride, etc.), polystyrene and olefin resin (polyethylene, polypropylene, etc.) One or a combination of resins.
  • a thermosetting resin such as a urethane resin, a polyester resin, a phenol resin, a urea resin, a melamine resin, an epoxy resin, and an acrylic resin
  • a polyurethane resin such as cellulose resin, acrylic resin, polycarbonate resin, halogen-containing
  • the end point detection region has a Shore hardness of 40 to 65 D; more preferably 45 to 55 D.
  • Shore hardness of the end point detection area is less than 40D, the area is liable to creep, and it is difficult to perform optical end point detection stably, and when the Shore hardness exceeds 65D, the surface of the material to be polished is liable to be scratched.
  • the back surface of the polyurethane polishing layer is further provided with a cushion which can reduce the impact applied to the polishing pad during polishing.
  • a polyurethane-based chemical mechanical polishing pad can be obtained by forming a buffer layer on a substrate and then fixing the polyurethane polishing layer to the buffer layer by gluing.
  • the present invention also provides a method of preparing the above polishing layer.
  • the preparation method comprises:
  • the temperature of the second product is controlled such that the initial reaction temperature of the first product, the curing agent composition is ⁇ 70 ° C, and the reaction peak temperature is ⁇ 80 ° C.
  • casting composition of the end point detection zone capable of producing the corresponding hardness into the inner cavity of the mold, solidifying, demoulding, surface grinding, and obtaining a cylindrical block;
  • the cured block is sliced, that is, integrally formed, and a polishing layer having an end point detection area may be selected.
  • a groove is formed on the polishing layer.
  • the material to be polished 1 is fixed to the holder 4.
  • the polishing pad 2 is first rotated by the polishing machine. Then, the material 1 to be polished is approached (from top to bottom) in a manner perpendicular to the polishing pad 2 by the bracket 4, the bracket rotates while moving downward, and the rotation direction of the bracket 4 coincides with the rotation direction of the polishing table 3.
  • the polishing liquid 5 is sprayed onto the polishing pad 2.
  • the inventors have surprisingly found that the reactivity of the aliphatic amino curing agent can be effectively reduced by the steric hindrance effect and the electron effect, that is, increasing the steric hindrance of the amino group and lowering the electron cloud density of the amino group.
  • the terminal secondary amino polyether has a significantly reduced activity compared to the terminal primary amino polyether, and is capable of achieving a reactivity comparable to that of an aromatic difunctional curing agent, particularly an aromatic bisamine curing agent, thereby eliminating curing.
  • the present inventors have also found that a larger substituent on the nitrogen atom of the terminal secondary amino polyether can more effectively increase the steric hindrance of the amino group, so that the reactivity thereof is further lowered.
  • the curing agent system having a reaction activity of each curing agent can be obtained by adjusting the structure of the amino substituent, thereby fundamentally solving the problem of poor uniformity of the multi-curing agent system.
  • the present inventors have proposed a curing agent composition in which the reactivity of the aliphatic curing agent is adjusted by structural modification to make the reactivity of the aliphatic curing agent and the aromatic curing agent close, thereby obtaining uniform polishing.
  • Floor a curing agent composition in which the reactivity of the aliphatic curing agent is adjusted by structural modification to make the reactivity of the aliphatic curing agent and the aromatic curing agent close
  • the polyurethane polishing layer reaction preparation process is: heating the isocyanate-terminated prepolymer to a certain temperature to have a suitable viscosity, preferably mixing into the hollow microsphere polymer to adjust the density of the final product, and then mixing the mixture with the curing agent.
  • the casting is formed into a polyurethane casting block, and after curing under certain conditions, a polyurethane material block is formed, and then cut into a film having a certain thickness as a polishing layer of the polishing pad.
  • the polyurethane polishing layer refers to a polishing layer made of polyurethane.
  • polyurethane is a product derived from a difunctional or polyfunctional isocyanate, such as a mixture or copolymer of two or more of polyether urea, polyisocyanurate, polyurethane, polyurea, polyurethaneurea .
  • the polishing effect of the polished layer can be effectively improved by chemical composition adjustment.
  • the polyurethane polishing layer comprises a reaction product formed by the reaction of a plurality of raw materials.
  • the various materials described include the isocyanate-terminated prepolymers, curing agent compositions, and optional hollow microsphere polymers as detailed below.
  • the hollow microsphere polymer is mixed in an isocyanate-terminated prepolymer and the mixture is mixed with the curing agent composition to effect a curing reaction.
  • a polyurethane polishing layer prepared by providing a raw material has the following physical and chemical properties:
  • the obtained polyurethane polishing layer has a density of 0.6 to 1.1 g/cm 3 ; preferably, the density is 0.7 to 1.05 g/cm 3 ; more preferably, the density is 0.8 to 1.0 g/cm 3 .
  • the obtained polyurethane polishing layer has a Shore D hardness of 45 to 75 D, preferably a hardness of 55 to 70 D, and most preferably a hardness of 55 to 65 D.
  • the hardness is more than 75D, the polyurethane polishing layer has a high removal rate, but it is accompanied by a problem of excessive defects such as scratches.
  • the hardness is less than 45D, although the defect rate can be effectively reduced, the removal rate is seriously degraded.
  • the polishing layer of the present invention achieves a good balance of defect rate and removal rate, the removal rate is significantly increased without increasing the defect rate (even with a decrease).
  • the curing agent composition in the present invention is a multi-component curing agent system comprising a mixture of an aliphatic curing agent and an aromatic curing agent.
  • the multi-component curing agent system has the significant advantage that the curing agent of the appropriate structure can be selected as the soft segment structure and the hard segment structure for adjusting the hardness of the final product, respectively.
  • the ratio of the soft segment to the hard segment structure of the curing agent is adjusted to achieve a greater range of polishing pad physical and chemical index parameters, thereby enabling the fabrication of a polishing layer suitable for different polishing materials.
  • the aliphatic curing agent comprises a terminal secondary amino polyether curing agent.
  • Aliphatic amino groups are highly active due to their high electron cloud density and are even more active than aromatic amino groups.
  • the inventors studied the reactivity of the aliphatic amino curing agent. It has been found that the terminal secondary amino polyether compound has a curing reaction rate comparable to that of the difunctional aromatic curing agent, and thus a curing agent composition including a terminal secondary amino polyether curing agent and a difunctional aromatic curing agent can be used to obtain uniformity of quality. Polished layer.
  • the terminal secondary amino polyether of the present invention is a low viscosity liquid at room temperature, which can also lower the freezing point of the curing agent composition after being mixed with the aromatic curing agent, thereby allowing the curing reaction to be completed at a lower temperature, thereby facilitating the curing reaction.
  • the dissipation of the heat of reaction effectively reduces the poor uniformity of the polishing layer caused by excessively rapid exotherm or uneven heat release.
  • the polishing layer to which the hollow microsphere polymer is added which will be described in detail below, since the expansion ratio of the hollow microsphere polymer is related to temperature, the reaction exotherm is not uniform or the heat dissipation is too slow, resulting in uneven expansion of the hollow microspheres. , resulting in uneven density of the polishing pad.
  • the polishing layer of the present invention employs a low-viscosity terminal secondary amino polyether, the local reaction heat is prevented from being excessively high, and thus a polishing layer to which a hollow microsphere polymer is added with more uniform density and porosity can be obtained.
  • the terminal amino polyethers include, but are not limited to, polyether amines from Huntsman Corporation. Series, such as SD231, SD401, SD2001, ST404, HK511, and mixtures thereof, but are not limited thereto.
  • the above-described terminal amino polyether combination includes, but is not limited to, at least one compound selected from the group consisting of the following formula I and formula II:
  • R 1 is a C1 to C8 alkyl group or a fluorine-containing alkyl group
  • R 2 , R 3 , R 4 and R 5 are each independently H or a C1 to C8 alkyl group or a fluorine-containing alkyl group
  • x and y are each 0 or a positive integer, provided that x+y ⁇ 12.
  • R 1 is a C1 to C8 alkyl group or a fluorine-containing alkyl group
  • R 2 , R 3 , R 4 and R 5 are each independently H or a C1 to C8 alkyl group or a fluorine-containing alkyl group
  • x, y, m, n, o, p are respectively 0 or a positive integer, provided that x+y+m+n+o+p ⁇ 12.
  • R 1 is a C1 to C4 alkyl group or a fluorine-containing alkyl group
  • R 2 , R 3 , R 4 and R 5 are each independently H or a C1 to C4 alkyl group or a fluorine-containing group. alkyl.
  • the compound of formula I or II may also be a perfluoro substituted compound.
  • the above terminal amino polyether combination comprises Compound A having the following molecular structure:
  • the polishing pad has a near-perfect appearance and no water ripples
  • the water-corrugated road refers to the nearly white irregular irregular stripes present on the polishing pad (water ripples) It can be described as an irregular stripe with an average width of 0.1-1.5 cm and a length of 10-50 cm.
  • the reason for the current formation is not very clear.
  • the possible reason for the inference is that the internal heat release is uneven, resulting in uneven dispersion of the microspheres. Such a phenomenon may cause unpredictable consequences in the polishing process, and is highly likely to cause uneven polishing, but it is easy to measure this difference macroscopically.
  • the terminal secondary amino polyether curing agent of the present invention is used as a soft segment structure regulator, preferably having a number average molecular weight of from 250 to 6,000.
  • the reaction of the aliphatic terminal amino polyether is too fast during the reaction, which causes the polyurethane to gel rapidly and has extremely poor operability.
  • the molecular weight of the aliphatic terminal amino polyether is more than 6000, the activity of the amino group participating in the reaction is greatly reduced, and the unreacted NCO group in the isocyanate-terminated prepolymer does not react well, which is disadvantageous to the mechanics of the polishing pad. performance.
  • the number average molecular weight of the terminal secondary amino polyether curing agent of the present invention may be, for example, 400 to 800, or 1000 to 2000, or 3000 to 4000, or 5000 to 6000, or 1500 to 2200, or 3500 to 5600, etc., depending on specific needs. Preferably, it is 400 to 800 or 1000 to 2000.
  • the aromatic curing agent as a hard segment structure modifier in the present invention is an aromatic difunctional curing agent.
  • the aromatic difunctional curing agent of the present invention is not particularly limited and may be any suitable aromatic difunctional curing agent in the art. Those skilled in the art can make appropriate selection according to specific needs.
  • aromatic difunctional curing agents which can be used in the present invention are: diethyl toluenediamine (DETDA), N, N'-dialkyldiaminodiphenylmethane, 3,5-diethyl-2, 4-toluenediamine and its isomers (for example, 3,5-diethyl-2,6-toluenediamine), 3,5-dimethylthio-2,4-toluenediamine and their isomers , 4,4'-methylene-bis-(2-chloroaniline) (MOCA), 4,4'-bis-(sec-butylamino)-diphenylmethane, 1,4-bis-(secondary Benzyl)-benzene, 4,4'-methylene-bis-(2-chloroaniline), 4,4'-methylene-bis-(3-chloro-2,6-diethylaniline) (MCDEA , polyoxytetramethylene-di-p-aminobenzoate; p,p'
  • the aromatic difunctional curing agent used is selected from the group consisting of 4,4'-methylene-bis-(2-chloroaniline) (MOCA), 4,4'-methylene-bis-(3-chloro- 2,6-Diethylaniline) (MCDEA) and its isomers.
  • MOCA 4,4'-methylene-bis-(2-chloroaniline)
  • MCDEA 4,4'-methylene-bis-(3-chloro- 2,6-Diethylaniline)
  • its isomers isomers.
  • the aromatic bifunctional composition is MOCA.
  • MOCA's unique chemical structure ensures proper operative time in the preparation of polishing pads, and the resulting polishing pad has good polishing properties.
  • the combination of the aliphatic polyamine curing agent and the aromatic polyamine curing agent is adopted, so that the aliphatic curing agent and the aromatic curing agent have very close reactivity and can be uniformly obtained.
  • a modified polyurethane polishing layer that can be better applied to advanced process semiconductor processes, especially those below 28 nm.
  • the mixed mass ratio of the aliphatic terminal secondary amino polyether curing agent and the aromatic bifunctional composition is from 1:4 to 4:1.
  • the proportion of the terminal secondary amino aliphatic polyether in the curing agent composition is less than 20% by weight, the effect of lowering the melting point of the curing agent composition is not significant; and the proportion of the terminal secondary amino polyether in the curing agent composition is high.
  • the cured polyurethane polishing layer becomes soft and its planarization ability is lowered.
  • the terminal is a secondary amino polyether compound, so that a polishing layer having a wider hardness range can be obtained.
  • the isocyanate-terminated prepolymer is obtained by reacting a polyfunctional isocyanate with a polyether polyol; preferably, the prepolymer has two -NCO group caps; more preferably, the prepolymer is based on Isocyanate-terminated urethane prepolymer of polyether.
  • the polyfunctional isocyanate in the preparation raw material of the isocyanate-terminated prepolymer includes, but is not limited to, one or both of an aromatic isocyanate and an aliphatic isocyanate. It is preferable to use 90% by mole or more of the aromatic isocyanate, more preferably 95% by mole or more, and particularly preferably 100% by mole.
  • aromatic isocyanates include, but are not limited to, aromatic diisocyanates.
  • Aromatic diisocyanates include, but are not limited to, 2,4-toluene diisocyanate, 2,6-toluene diisocyanate, 2,2'-diphenylmethane diisocyanate, 2,4'-diphenylmethane diisocyanate, 4 , one of 4'-diphenylmethane diisocyanate, 1,5-naphthalene diisocyanate, p-phenylene diisocyanate, isophthalic diisocyanate, p-xylylene diisocyanate, m-xylylene diisocyanate Or a variety.
  • the aliphatic isocyanates include, but are not limited to, aliphatic diisocyanates.
  • the aliphatic diisocyanates include, but are not limited to, one or more of ethylene diisocyanate, 2,2,4-trimethylhexamethylene diisocyanate, and 1,6-hexamethylene diisocyanate.
  • the aliphatic isocyanate may also be an alicyclic diisocyanate.
  • the alicyclic diisocyanates include, but are not limited to, one or more of 1,4 to cyclohexane diisocyanate, 4,4'-dicyclohexylmethane diisocyanate, isophorone diisocyanate, norbornane diisocyanate.
  • the polyether polyol may be a polyether-based high molecular weight polyol.
  • the polyether polyols include, but are not limited to, polytetramethylene ether glycol (PTMEG), polyethylene glycol (PEG), polypropylene glycol (PPG), and polytetramethylene ether glycol-polyethylene. Any one of a diol, a polytetramethylene ether glycol-polypropylene glycol, and a polyethylene glycol-polypropylene glycol, or a copolymer of two or more kinds, or a mixture of two or more kinds.
  • PTMEG polytetramethylene ether glycol
  • PEG polyethylene glycol
  • PPG polypropylene glycol
  • polytetramethylene ether glycol-polyethylene Any one of a diol, a polytetramethylene ether glycol-polypropylene glycol, and a polyethylene glycol-polypropylene glycol, or a copolymer of two or more kinds, or a mixture of two or more kinds.
  • the polyether polyol may have a number average molecular weight of 500 to 5,000.
  • it may be 500 to 2,000 or 500 to 1,500 as needed.
  • the obtained polyurethane resin does not have sufficient elastic properties and is liable to become a brittle polymer.
  • the polishing pad formed of the above-described urethane resin (brittle polymer) becomes too hard, which is liable to cause scratches on the surface of the object to be polished, and is also easily worn, resulting in shortening of the life of the polishing spot.
  • the polishing pad formed of the obtained polyurethane resin becomes soft, and it is difficult to obtain satisfactory planarity.
  • the isocyanate-terminated prepolymer may be a commercially available prepolymer obtained by reacting a polyether with TDI and MDI.
  • Isocyanate-terminated prepolymers include, but are not limited to, those produced by Chemtura Series prepolymers LF800A, LF900A, LF910A, LF930A, LF931A, LF939A, LF950A, LF952A, LF600D, LF601D, LF650D, LF667D, LF700D, LF750D, LF751D, LF752D, LF753D, L325, LFG963A, LFG964A, LFG740D.
  • the isocyanate-terminated prepolymer contains 5.5 to 9.5 wt% of unreacted isocyanate groups (-NCO); preferably, the unreacted -NCO content in the prepolymer is controlled to be 5.5 to 9.5 wt%. More preferably, the unreacted -NCO content is between 6.5 and 9.2% by weight.
  • -NCO unreacted isocyanate groups
  • a polyurethane polishing layer prepared using a hollow microsphere polymer is a polishing layer that can be applied to chemical mechanical polishing operations.
  • the prepared polyurethane polishing layer may be a porous structure or a non-porous structure, which is not specifically limited in the present invention.
  • the hollow microsphere polymer is uniformly dispersed in the polishing layer, thereby achieving adjustment of the polishing effect of the polyurethane polishing layer.
  • the term "hollow microsphere polymer” in the present invention means an expandable hollow polymer microsphere which is moderately expanded during the curing process by an increase in temperature caused by the exothermic heat of reaction.
  • the polishing performance of the polishing layer can be further adjusted by adjusting the distribution of the hollow microsphere polymer in the polyurethane polishing layer (e.g., density) in combination with adjusting the particle size of the hollow microsphere polymer.
  • the hollow microsphere polymer is dispersed in the polishing layer so that the polishing layer finally has a porosity of 10 to 40%, a pore diameter of ⁇ 120 ⁇ m, more preferably, a porosity of 15 to 35%, and a pore diameter of ⁇ 50 ⁇ m. .
  • the hollow microsphere polymer includes, but is not limited to, a capsular structure having an outer wall of a polyacrylonitrile and a polyacrylonitrile copolymer, which may be purchased from AkzoNobel, Matsumoto Oil Pharmaceutical Co., Ltd. or Sekisui Chemical Industry Co., Ltd. A company's microspheres or microbeads, preferably Akzo Nobel's Expancel series of hollow microspheres or Matsumoto microbeads F series.
  • a suitable modified material may also be added to the polyurethane polishing layer in order to obtain a better overall performance improvement.
  • modified materials include, but are not limited to, antioxidants, abrasion resistant fillers, storage stabilizers.
  • the structure of the polyurethane polishing layer can be modified to make it more practical based on actual needs.
  • At least one endpoint detection region is formed in the polyurethane polishing layer.
  • the end point detection area of the polyurethane polishing layer enables high-accuracy optical end point detection.
  • the method of detection may be, for example, optical detection.
  • the endpoint detection area made of a suitable material, it has an appropriate light transmission to observe the object being polished (such as a silicon wafer).
  • the material forming the endpoint detection region has a light transmittance of ⁇ 40% over the entire wavelength range of 300 to 800 nm; more preferably, the light transmittance of the high transmittance material is ⁇ 60%.
  • the material of the end point detection area includes, but is not limited to, a thermosetting resin such as a urethane resin, a polyester resin, a phenol resin, a urea resin, a melamine resin, an epoxy resin, and an acrylic resin; a polyurethane resin, a polyester resin, a polyamide resin, Thermoplastics such as cellulose resin, acrylic resin, polycarbonate resin, halogen-containing resin (polyvinyl chloride, polytetrafluoroethylene, polyvinylidene fluoride, etc.), polystyrene and olefin resin (polyethylene, polypropylene, etc.) One or a combination of resins.
  • a thermosetting resin such as a urethane resin, a polyester resin, a phenol resin, a urea resin, a melamine resin, an epoxy resin, and an acrylic resin
  • a polyurethane resin such as cellulose resin, acrylic resin, polycarbonate resin, halogen-containing
  • the Shore Detection Zone has a Shore hardness of 40 to 75 D, more preferably 55 to 70 D, during the grinding operation.
  • the Shore hardness of the end point detection area is less than 40D, the area is liable to creep, and it is difficult to perform optical end point detection stably, and when the Shore hardness exceeds 75D, the surface of the material to be polished is liable to be scratched.
  • the hardness of the end point detection area should be matched with the hardness of the polishing layer, and the absolute value of the hardness difference between the two should be controlled within 5 to have a similar wear rate in the grinding. If the hardness of the end point detection area is higher than that of the polishing pad body, the difference is greater than 5, and the hard end point detection area has higher scratches and the like on the object to be polished than the polishing pad body, so that the polishing pad has a higher defect rate.
  • the hardness of the end point detection area is lower than the polishing pad body, the difference is greater than 5, the lower end point detection area has a faster wear rate, and is prone to depression, that is, the end detection area has a shorter life than the polishing pad body, resulting in polishing.
  • the overall life of the mat is reduced, increasing the cost of use.
  • the hardness of the end point detection area should match the hardness of the polishing layer, and the absolute value of the hardness difference between the two should be controlled within 3.
  • the polyurethane polishing layer may be provided with grooves conventionally used in the art for receiving the polishing liquid during the polishing process.
  • the grooves can be obtained after processing the polishing pad.
  • the arrangement of the grooves ensures smooth discharge and flow of the polishing liquid used in the polishing process.
  • the trenches are concentric trenches (eg, may be annular or spiral trenches), curved trenches, gridline trenches, regular polygonal trenches (eg, hexagons, triangles), and tires One or more of the facial patterns.
  • the grooves are one or more of an annular groove, a spiral groove, an X-Y mesh groove, a hexagonal groove, a triangular groove, and a fractal groove.
  • the cross section of the groove is one or more of a straight side rectangular shape, a "V" shape, a "U” shape, and a zigzag shape.
  • the grooves are annular grooves and/or grid line grooves.
  • the groove has a width of 0.1 to 0.6 cm, and more preferably, the groove has a width of 0.2 to 0.4 cm.
  • the back surface of the polyurethane polishing layer is further provided with a cushion which can reduce the impact applied to the polishing pad during polishing.
  • the present invention also provides a method of preparing the above polishing layer.
  • the preparation method of the polishing layer of the present invention can be a casting curing process conventionally used in the art, and the preparation method comprises the following steps:
  • casting composition of the end point detection zone capable of producing the corresponding hardness into the inner cavity of the mold, solidifying, demoulding, surface grinding, and obtaining a cylindrical block;
  • a groove is formed on the polishing layer.
  • the curing preferably includes the following processes: gelation, temperature rise, solidification, and temperature lowering.
  • the temperature of the gel is preferably 65 to 75 ° C, for example, 70 ° C; the time of the gel is preferably 10 to 20 minutes, for example, 15 minutes; the temperature rise is preferably The temperature is raised to 90 to 110 ° C, for example, 100 ° C; the temperature rise time is preferably 20 to 40 min, for example, 30 min; the curing time is preferably 15 to 17 hours, for example, 16 h.
  • the temperature drop is preferably reduced to 15 to 30 ° C, for example 25 ° C.
  • the curing preferably includes the following processes: gelation, temperature rise, solidification, and temperature lowering.
  • the temperature of the gel is preferably 65 to 75 ° C, for example, 70 ° C; the time of the gel is preferably 10 to 20 minutes, for example, 15 minutes; the temperature rise is preferably The temperature is raised to 90 to 110 ° C, for example, 100 ° C; the temperature rise time is preferably 20 to 40 min, for example, 30 min; the curing time is preferably 15 to 17 hours, for example, 16 h.
  • the temperature drop is preferably reduced to 15 to 30 ° C, for example 25 ° C.
  • the curing preferably includes the following processes: gelation, temperature rise, solidification, and temperature reduction, wherein the temperature of the gel is 70 ° C; the time of the gel is 15 min; The temperature rise was to raise the temperature to 100 ° C; the temperature rise time was 30 min; the cure time was 16 h; and the temperature drop was reduced to 25 ° C.
  • FIG. 1 A schematic diagram of polishing treatment using a chemical mechanical polishing pad having the above polishing layer is still shown in FIG. 1, and details are not described herein again.
  • the curing agent composition, the polyurethane polishing layer and the polishing pad of the present invention are further described in detail below in conjunction with the examples.
  • Shore hardness measured according to ASTM D 2240 method
  • Compression ratio ((T1-T2) / T1) ⁇ 100%, where T1 is the thickness of the sheet when the polishing pad experiences 60s, 30kpa pressure from no load, and T2 is 60s from T1 state. The thickness of the sheet when the pressure is 180kpa.
  • This embodiment provides a polishing layer, which is produced as follows:
  • Step 1 Treatment of an isocyanate-terminated polyurethane prepolymer (or simply a prepolymer).
  • Step 2 Preparation of a curing agent composition.
  • Step 3 Curing the prepolymer containing the hollow microsphere polymer with a curing agent composition.
  • the prepolymer and the curing agent composition were mixed under high speed shearing, and then cast into a cylindrical mold to form a casting block having a thickness of 12 cm, and allowed to gel at 70 ° C for 15 minutes, and then within 30 minutes.
  • the cast body was heated to 100 ° C and cured for 16 hours. After the curing is completed, it is automatically cooled to room temperature in an oven, and then the solidified casting block is sequentially cut into a sheet having a thickness of 2 mm from top to bottom, for a total of 60 sheets, numbered from 1 to 60 from top to bottom.
  • the polishing layer sheet numbered 15 was measured for density, hardness, elongation at break and expansion coefficient, respectively, as described above.
  • This comparative example provides a polishing layer which is produced as follows:
  • Step 1 Treatment of an isocyanate-terminated polyurethane prepolymer (hereinafter referred to as a prepolymer).
  • Step 2 Preparation of curing agent.
  • Step 3 Curing the prepolymer containing the hollow microsphere polymer with a curing agent.
  • the prepolymer and the curing agent were mixed under high speed shearing, then cast into a cylindrical mold to form a casting block having a thickness of 12 cm, and allowed to gel at 70 ° C for 15 minutes, and then cast in 30 minutes.
  • the body was heated to 100 ° C and cured for 16 hours. After the curing is completed, it is automatically cooled to room temperature in an oven, and then the solidified casting block is sequentially cut into a sheet having a thickness of 2 mm from top to bottom, for a total of 60 sheets, numbered sequentially from top to bottom.
  • the polishing layer sheet numbered 15 was measured for density, hardness, elongation at break and expansion coefficient, respectively, as described above.
  • the density uniformity of the polished layer was evaluated.
  • Experimental method 1 The polishing layer sheets obtained by cutting in Example 1 and Comparative Example 1 were respectively referred to as the first group and the second group, and the sheets of the first group and the second group were numbered 1 to 1 from the top to the bottom, respectively. 60. The Shore density of each piece was tested separately, and the results are summarized in FIG.
  • Experimental method 2 Take the first part of Example 1 and Comparative Example 1, that is, the sheet numbered 29, and take a small disc having a diameter of 4 cm from the inner (center) to the outer (edge) in the radial direction, sequentially numbered. No. 1 to No. 10, and its Shore density was tested, and the results are summarized in Figure 3.
  • the density distribution of Comparative Example 1 exhibits a "smile curve" which is low in the middle and high in both ends. This is because during the reaction process after casting, the middle heat is more difficult to release than the two ends, so that the temperature is higher than the both ends, resulting in a certain expansion of the polyurethane body and the hollow microsphere polymer, and thus the density is low.
  • Example 1 since the initial temperature of the curing agent composition is lowered, the heat during the polyurethane reaction can be uniformly and smoothly released, although the intermediate density is still slightly lower than the both ends, the polyurethane body and the hollow microspheres. The expansion of the polymer is effectively suppressed and thus exhibits a more straight curve.
  • Example 1 In the radial density distribution shown in Fig. 3, the density of the sheets in Comparative Example 1 and Example 1 both appeared closer to the center of the circle, and the density was lower and closer to the edge, and the density was higher. However, the density uniformity in Example 1 was much better than that in Comparative Example 1, which was also due to the lower initial reaction temperature.
  • the lower temperature curing agent composition is used to effectively suppress the process of intense exothermic reaction, and a polishing layer having better density uniformity can be obtained.
  • This embodiment provides a polishing layer, which is produced as follows:
  • prepolymer 100 parts by mass of isocyanate-terminated prepolymer obtained by reacting toluene diisocyanate with polytetrahydrofuran (containing unreacted NCO group mass) The percentage is 8.75 to 9.05%), the temperature is raised to 80 ° C, and the gas is degassed under vacuum (-0.095 MPa) for 2 hours to remove the gas and the small molecule compound in the prepolymer; then 0.77 parts by mass of an average diameter of 40 ⁇ m is added. Hollow microsphere polymer, the hollow microsphere polymer is uniformly dispersed in the prepolymer under stirring, degassed again under vacuum (-0.095 MPa) for 2 hours, then cooled to 50 ° C, and used;
  • the prepolymer and the curing agent composition were mixed under high speed shearing, and then cast into a cylindrical mold to form a casting block having a thickness of 12 cm, and allowed to gel at 70 ° C for 15 minutes, and then within 30 minutes.
  • the cast body was heated to 100 ° C and cured for 16 hours. After the curing is completed, it is automatically cooled to room temperature in an oven, and then the solidified casting block is sequentially cut into a sheet having a thickness of 2 mm from top to bottom, for a total of 60 sheets, numbered sequentially from top to bottom.
  • the polishing layer sheet numbered 15 was measured for density, hardness, elongation at break and expansion coefficient, respectively, as described above.
  • This embodiment provides a polishing layer, which is produced as follows:
  • prepolymer Treatment of isocyanate-terminated polyurethane prepolymer (hereinafter referred to as prepolymer):
  • Formulation of Curing Agent Composition 23.46 parts by mass of MOCA was heated to 116 ° C to completely melt it into a clear transparent liquid, to which 4 parts by mass of amino terminated polyoxypropylene ether D2000 and 1 part by mass of trifunctional were added. Polyetheramine T5000, the two are mixed evenly under stirring to form a uniform transparent liquid, and then cooled to 70 ° C, ready for use;
  • the prepolymer and the curing agent composition were mixed under high speed shearing, and then cast into a cylindrical mold to form a casting block having a thickness of 12 cm, and allowed to gel at 70 ° C for 15 minutes, and then within 30 minutes.
  • the cast body was heated to 100 ° C and cured for 16 hours. After the curing is completed, it is automatically cooled to room temperature in an oven, and then the solidified casting block is sequentially cut into a sheet having a thickness of 2 mm from top to bottom, for a total of 60 sheets, numbered sequentially from top to bottom.
  • the polishing layer sheet numbered 15 was measured for density, hardness, elongation at break and expansion coefficient, respectively, as described above.
  • test machine is AMAT Refelxion (Modify 5Zone);
  • the repair disk is Saesol Disk 6045C4, P/C downforce 5lbf, Head&Platen RPM: 93/87;
  • the wafer used was a Patten wafer: Semitech 754, Cu Blanket wafer Pre Thickness 10KA.
  • the number of wafers that can be sliced by the wafer has a great relationship with the flatness of the wafer surface. The better the surface flatness, the more wafers can be cut by the same wafer.
  • the polishing pad polishes the wafer, and the polishing rate is not exactly the same in each region. When the performance is close to the edge of the wafer, the removal rate shows a significant downward trend.
  • the abscissa indicates the distance from the center of the wafer, and the coordinates indicate the removal rate during the grinding process.
  • Curve 1 is a polishing pad using Dow's brand IC1010
  • curve 2 is a polishing pad prepared by using the polishing layer of the embodiment 12 of the present invention, and the removal rate obtained by wafer polishing is plotted against the wafer position.
  • the polishing rate showed a significant drop in the circumference of the outermost side larger than 50 mm as shown by the curve 1.
  • the polishing pad prepared by using Example 12 (curve 2 in Fig. 5) of the present invention surprisingly found that it has excellent polishing characteristics and exhibits a markedly improved edge effect phenomenon.
  • This embodiment provides a polyurethane polishing layer, which is produced as follows:
  • Step 1 Treatment of an isocyanate-terminated polyurethane prepolymer (or simply a prepolymer).
  • 100 parts by mass of an isocyanate-terminated prepolymer (containing 8.75 to 9.05% by mass of unreacted -NCO groups) obtained by reacting toluene diisocyanate and polytetrahydrofuran is heated to 80 ° C and vacuum ( ⁇ 0.095 MPa) Gas for 2 hours to remove the gas in the prepolymer and the small molecule compound; then add 0.86 parts by mass of hollow microsphere polymer with an average diameter of 40 microns, and uniformly disperse the hollow microsphere polymer in the prepolymerization under stirring In the body, degassed again under vacuum ( ⁇ 0.095MPa) for 2 hours, then cooled to 50 ° C, ready for use;
  • Step 2 Preparation of a curing agent composition.
  • Step 3 Curing the prepolymer containing the hollow microsphere polymer with a curing agent composition.
  • the prepolymer and the curing agent composition were mixed under high speed shearing, and then cast into a cylindrical mold to form a casting block having a thickness of 12 cm, and allowed to gel at 70 ° C for 15 minutes, and then within 30 minutes.
  • the cast body was heated to 100 ° C and cured for 16 hours. After the curing was completed, it was automatically cooled to room temperature in an oven, and then the cured cast block was cut from bottom to top into a sheet having a thickness of 2 mm, for a total of 60 sheets.
  • the polyurethane polishing layer of this comparative example is produced as follows:
  • Step 1 Treatment of an isocyanate-terminated polyurethane prepolymer (hereinafter referred to as a prepolymer).
  • Step 2 Preparation of curing agent.
  • Step 3 Curing the prepolymer containing the hollow microsphere polymer with a curing agent.
  • the prepolymer and the curing agent were mixed under high speed shearing, then cast into a cylindrical mold to form a casting block having a thickness of 12 cm, and allowed to gel at 70 ° C for 15 minutes, and then cast in 30 minutes.
  • the body was heated to 100 ° C and cured for 16 hours. After the curing was completed, it was automatically cooled to room temperature in an oven, and then the cured cast block was cut from bottom to top into a sheet having a thickness of 2 mm, for a total of 60 sheets.
  • Table 8 The amounts of each component of the polyurethane polishing layer of Examples 21-35 and Comparative Examples 3-4 (unit: parts by mass)
  • the ratio of the primary polyamine polyether to the aromatic primary amine can be conveniently adjusted, thereby adjusting the hardness of the polishing pad over a wide range to obtain a polishing pad with different polishing effects. . From Examples 21 to 23 and 34 to 35 in Table 8, it is understood that the larger the mass ratio of the terminal secondary amino polyether in the curing agent system, the smaller the hardness of the polyurethane polishing layer, and the larger the compression ratio.
  • Example 21 By comparing Example 21 and Comparative Examples 3 to 4, it is known that after adding MOCA, the hardness of the polishing layer becomes large, the compression ratio becomes smaller, the physical and chemical properties of the polishing pad are enhanced, and the stability and durability are better; The secondary amino polyether and the MOCA curing agent system are more crosslinkable, the physical and chemical properties are further improved, and the grinding performance is also improved.
  • Example 21 the heat in the casting process was reduced by using the reactive secondary secondary polyether and the aromatic difunctional two-component curing system, and by lowering the effect of the curing agent on the use temperature of the secondary amino polyether.
  • the uniformity of the solidification of the cast block is better controlled, and the polished piece taken from different parts of the cast block exhibits significantly improved uniformity. Comparing the experimental results of Example 1 in Fig. 2, it can be seen that the density of the polished layer obtained in each part of the self-cured casting block of Example 21 is more uniform, and it can be seen that a more uniform casting block is obtained by using the terminal secondary amino polyether.
  • the density of the polishing sheet in Comparative Example 4 exhibits a phenomenon that the density is closer to the center of the circle, and the density is higher toward the edge, and the embodiment is higher.
  • the density uniformity in 21 was significantly better than that in Comparative Example 4.
  • the reason for such density uniformity improvement is also due to the preferred two-component curing agent system of the present invention.
  • the curing system of the terminal secondary amino polyether and the aromatic difunctional compound of the present invention can effectively improve the quality controllability in the preparation of the polishing layer, and not only can obtain a more uniform polishing layer, but also obtain each
  • the density uniformity of the polishing layer from the center to the edge effectively improves the quality uniformity of the polishing pad, and thus can reduce the defect rate of the semiconductor product and improve the planarization quality of the semiconductor as a whole.
  • a polishing layer of the same portion of the above Examples 21 to 23 and a conventional polishing layer of Comparative Example 3 were prepared as polishing pads.
  • polishing pads of Examples 21 to 23 and Comparative Example 3 prepared above were evaluated by the machine test, and the test conditions were as follows:
  • test machine is AMAT Refelxion (Modify 5Zone);
  • the repair disk is Saesol Disk 6045C4, P/C downforce 5lbf, Head&Platen RPM: 93/87;
  • the wafer used was a Patten wafer: Semitech 754, Cu Blanket wafer Pre Thickness 10KA.
  • the wafers were polished on the AMAT Refelxion tester using the polishing pads prepared in the polishing layers of Examples 21 to 23 and Comparative Example 3, and the removal rate and defect rate during the life cycle were recorded in the polishing.
  • the results are summarized in Table 10 and 7 to 8 in.
  • Figure 7 is a graph showing the removal rates of the polishing pads of Examples 21-23 and the conventional polishing pads of Comparative Example 3 at different locations of the wafers tested at 2.5 psi.
  • Fig. 8 is a scanning electron micrograph showing defects on the substrate after polishing of the polishing pads of Examples 21 to 23 and the conventional polishing pad of Comparative Example 3.
  • Example 21 and Example 22 exhibited a higher polishing rate than the polishing pad of Comparative Example 3, while polishing pad Example 23 had a lower removal rate, possibly due to lower hardness. . It can be seen that if a polishing layer with a higher hardness is required, the mass fraction of the secondary amino polyether in the curing agent system should not be too high.
  • the polishing pads of Examples 21 to 23 and 34 to 35 all exhibited a rate uniformity similar to that of the conventional polishing pad of Comparative Example 3: from the center of the wafer to the edge, there was no large rate fluctuation, and the NU value was Less than 5% indicates that the curing agent system used in the preparation of the polishing layer of the present invention can effectively balance the removal rate and defect rate of the polishing pad while obtaining a satisfactory removal rate and defect rate.
  • the removal rates of Examples 21 to 22 and 34 to 35 were remarkably improved, and the defect rate was not significantly increased, and a good balance of the removal rate and the defect rate was obtained.
  • the removal rate of Example 23 decreased (about 2.9% relative to Comparative Example 1), the number of defects was significantly improved (about 15% lower than Comparative Example 1, from 359 to 305).
  • Example 35 uses a trifunctional degree of perfluoro-secondary amine
  • the polishing pad has a nearly perfect appearance and there is no water ripple, and the problem of water ripple in Comparative Example 3 is serious, which may also be caused by polishing the substrate.
  • Examples 21 to 23 and 34 used a terminal secondary amino component curing agent to improve the generation of the water ripple problem of the polishing pad to some extent.
  • the hardness of the endpoint detection window was controlled, and the polishing layer of Example 22 and Comparative Examples 5 to 10 having the endpoint detection window was prepared, and further according to Test Example 7 above. A polishing pad was prepared and the number of defects was measured.
  • the hardness of the polishing layer of Example 22 and Comparative Examples 5 to 10, the hardness of the end point detection window, the hardness difference between the polishing layer and the end point detection window, and the number of defects are shown in Table 11 below.

Abstract

一种抛光垫、聚氨酯抛光层及其制备方法,属于化学机械平面化处理的抛光技术领域。热膨胀系数为100-200ppm/℃的聚氨酯抛光层含有由多成分反应生成的反应产物。多成分包括:异氰酸酯封端的预聚物,中空微球聚合物,及固化剂组合物。固化剂组合物包含:5~55wt%脂肪族二元胺组合物、0~8wt%多元胺组合物、40~90wt%芳香族双官能组合物。聚氨酯抛光层密度为0.6~1.1g/cm 3,邵氏硬度为45~70D,断裂伸长率为50~450%。所述聚氨酯抛光层的制备工艺简单、成本低、能耗小。由所述工艺制备的聚氨酯抛光层水解稳定性高、密度均一、去除率稳定。

Description

一种聚氨酯抛光层、含抛光层的抛光垫、抛光层的制备方法及平坦化材料的方法 技术领域
本发明涉及化学机械平面化处理的抛光技术领域,具体而言,涉及一种聚氨酯抛光层及其制备方法,包含所述聚氨酯抛光层的抛光垫以及使用该抛光垫对材料平坦化的方法。
背景技术
在半导体器件制备过程中,随着制程技术的升级,导线与栅极之间的尺寸不断缩小,光刻技术对晶圆表面的平坦程度要求越来越高。自1991年IBM将化学机械研磨(CMP)技术成功应用到64Mb DRAM的生产中后,CMP技术得到了快速发展,目前已广泛应用于半导体晶片、存储磁盘以及高精光学材料的平坦化应用中。化学机械研磨亦称为化学机械抛光,是将化学腐蚀同机械去除相结合的技术,是目前机械加工中唯一可以实现表面全局平坦化的技术。常规的CMP过程如下:将待加工材料固定在支架上,以待抛光表面朝下的方式在一定压力下压向固定在机台上的抛光垫上,借助于待加工材料和抛光垫的相对旋转,在抛光液存在下,利用磨粒的机械切削以及氧化剂的化学腐蚀,完成对工件表面的材料去除,并获得光洁表面。
随着集成电路的特征尺寸向着深纳米制程的发展过程中,制造工艺对介电材料提出了更高的要求,为了抑制金属线间串扰增大带来的互联延迟,越来越多的低κ,甚至超低κ介电材料应用于其中。然而,低κ以及超低κ介电材料,通常是以提高材料的孔隙率的方式来获得的。因而与常规的电介质相比,低κ和超低κ电介质倾向于具有更低的机械强度和更差的粘附力,从而使得平整化更困难。
此外,随着特征尺寸的减小,CMP过程导致的缺陷,例如划痕变成了更大的问题,因此,先进制程的工艺,例如特征尺寸为28nm以及低于28nm的工艺,要求抛光垫具有更低的缺陷、更少的划痕以及对于低κ和超低κ材料更好的去除率。另外,在特征尺寸28nm及以下的先进制程中,对于抛光垫的均一性提出更高的要求,浇铸工艺中由于混合不均匀或者散热产生的水波纹(Striation)控制越来越严格,要求在强光光桌上不能看见明显的水波纹路。
聚氨酯抛光垫是高精密抛光领域中应用最多的抛光垫类型,其以良好的耐磨性能、极高的抗撕裂强度以及适当的耐酸碱腐蚀性能而能够应用于抛光硅晶片、图案化的晶 片、平板显示器以及磁盘存储器的制备工艺中。公知的是,使用低硬度的聚氨酯能够有效地降低抛光过程中产生的划痕等缺陷,但是与之相对应的则会降低去除速率,如何在划痕与去除速率之间达到一个理想的平衡,是抛光垫中研发中需要关注的重要话题。
另一方面,在抛光层的制造中,将聚氨酯浇铸成块状,然后再切割成一定厚度的薄片的方法已经被证明是一种行之有效的制造具有稳定的可再现性抛光性质的抛光垫的方法。然而不幸的是,使用浇铸切割法制造的聚氨酯抛光层会由于抛光垫的浇铸位置的不同而在抛光时产生一些或大或小的不同。
例如,从块状聚氨酯底部浇铸位置切割的抛光垫和顶部浇铸位置切割的抛光垫会具有不同的密度和孔隙率,通常而言,底部切割的抛光垫密度大于顶部,而孔隙率则呈现相反的结果。此外,在同一片抛光垫中,从中心到边缘,抛光垫也会显示出不同的密度分布,越靠近中心位置,密度越小;越靠近边缘,密度则越大。这些不同会对要求很高的用途,例如带低k图案的晶片造成负面影响。
因此存在进一步改进多组分固化剂体系,以提供能稳定制造品质均一,性能均衡的抛光垫的需求,以适应先进制程的工艺要求。
发明内容
有鉴于此,本发明的主要目的在于解决上述问题中的至少一种。
为此,本发明的第一目的在于提供一种品质均一,兼具较好的硬度、断裂伸长率、水解稳定性以及热膨胀系数的聚氨酯抛光层及其制备方法,以及包括本发明聚氨酯抛光层的抛光垫。
为实现以上至少第一目的,本发明的第一方面,提供了一种聚氨酯抛光层。本发明的抛光层采用熔点和使用温度较低的多组分(如两组分和三组分)固化剂体系。所述熔点和使用温度较低的多组分(如两组分和三组分)的固化剂,通过低熔点的脂肪族二胺化合物调节固化剂体系整体的粘度和熔点,使固化反应可在较低温度(如在初始反应低于70℃)下进行,有效避免了聚氨酯浇注块因固化反应热不能迅速扩散导致局部过热的现象,通过切割浇铸块获得的抛光层并不随切割位置的不同而有品质的变化,从而获得品质,特别是密度,均一的聚氨酯抛光层。因此,本发明的聚氨酯抛光层具有相对较均一的密度,从而使其边缘效应被改善,抛光作业时边缘部分和中心部分的去除率更接近。另外,通过选择适当的固化剂及其用量获得适当的固化剂体系,从而获得具有较好的硬度、断裂伸长率、水解稳定性以及热膨胀系数的抛光层。
为此,本发明提供一种聚氨酯抛光层,所述聚氨酯抛光层是原料组合的反应产物,所述原料组合包括异氰酸酯封端的预聚物,中空微球聚合物及固化剂组合物,其特征在于,
基于所述固化剂组合物的总重量,所述固化剂组合物包括:
5~55wt%的脂肪族二元胺固化剂,其中,所述脂肪族二元胺的数均分子量为1000~5000;
0~8wt%的多元胺固化剂,其中,所述多元胺固化剂的分子结构中至少含有三个伯胺基或至少含有三个仲胺基,所述多元胺固化剂的数均分子量为250~6000;和
40~90wt%的芳香族双官能固化剂,
其中,所述聚氨酯抛光层密度为0.6~1.1g/cm 3,邵氏硬度为45~70,断裂伸长率为50~450%;且
其中,所述聚氨酯抛光层的热膨胀系数为100-200ppm/℃。
根据一种实施方式,所述异氰酸酯封端的预聚物含有8.5~9.5wt%未反应的-NCO基团。
根据一种实施方式,所述异氰酸酯封端的预聚物中的未反应的-NCO基团与所述固化剂组合物中的活性氢基团的化学计量比为1.05~1.20。
根据一种实施方式,所述多元胺固化剂选自脂肪族多元胺、芳香族多元胺及其混合物组成的组;其中,所述脂肪族多元胺的数均分子量为2000~6000,所述脂肪族多元胺的数均分子量为250~2000。
根据一种实施方式,所述聚氨酯抛光层在pH值为2~5的条件下水解80小时的水解稳定性小于1.5%,在pH值为9~12的条件下水解80小时的水解稳定性小于1.5%。
根据一种具体实施方式,本发明的聚氨酯抛光层,其特征在于,所述聚氨酯抛光层是原料组合的反应产物,所述原料组合包括:异氰酸酯封端的氨基甲酸酯预聚物、中空微球聚合物及固化剂组合物,其中:
基于所述固化剂组合物的总重量,所述固化剂组合物包括:
5~55wt%聚醚二元胺固化剂;
0.1~8wt%多元胺固化剂;和
40~90wt%芳香族双官能固化剂,
其中,所述聚氨酯抛光层的断裂伸长率为50~200%;且其中,所述聚氨酯抛光层的热膨胀系数为100~140ppm/℃。
在该具体实施方式中,通过引入官能度大于等于3的固化剂,使得聚氨酯形成体型交联网状结构,改变弱相互作用的氢键为强相互作用的化学键,从而降低了抛光层的热膨胀系数,提高水解稳定性和去除率稳定性。
在该具体实施方式中,本发明的所述聚氨酯抛光层在pH值为2~5的条件下水解80小时的水解稳定性小于0.65%,在pH值为9~12的条件下水解80小时的水解稳定性小于0.80%。
根据一种实施方式,本发明的抛光层还具有至少一个终点检测区域,
本发明还提供了一种上述聚氨酯抛光层的制备方法。所述的制备方法采用具有多组 分且熔点低的组合物为固化剂,实现了70℃以下的初始反应温度,有效避免了浇注块中部因固化反应放热不易扩散造成的局部过热情况,显著改善了浇铸块固化后各个部位的密度、硬度等性能的均一性。因而确保由本发明方法的浇铸块切割获得的抛光层本身中心和边缘品质均一,且取自浇铸块不同部位的各抛光层之间的品质也一致。因此,由本发明的制备方法能够稳定地制造品质均一的抛光层。。
具体地,本发明提供一种上述聚氨酯抛光层的制备方法,其特征在于,所述制备方法包括:
将液体状态的异氰酸酯封端的预聚物与中空微球聚合物混合,真空脱气后得到第一产物;
将所述第一产物在50℃下与固化剂组合物在高速剪切下混合,得到第二产物;
控制所述第二产物的温度,在初始反应温度≤70℃,且反应峰值温度≤80℃的条件下进行固化反应。
本发明进一步提供了一种基于上述聚氨酯抛光层的抛光垫,其采用上述的聚氨酯抛光层作为功能层。所述的抛光垫可以实现对晶圆表面的更高精度的平坦化处理,获得更加光洁的表面。
为此,本发明提供一种化学机械抛光垫,所述化学机械抛光垫具有前述的聚氨酯抛光层。
本发明还提供一种对基材进行平坦化的方法,所述方法包括以下步骤:
提供基材,所述基材具有表面;
提供前述化学机械抛光垫;和
用所述化学机械抛光垫对所述基材表面进行动态抛光处理。
具体地,所述动态抛光处理在提供抛光液的情况下,在一定的压力下,使所述化学机械抛光垫相对于所述基材旋转而进行。
所述基材选自半导体基材、光学基材和磁性基材中至少一种。
对于不同的基材,要求抛光层具有不同的理化性质,其消除速率、抛光中施加的压力也各不相同,这些是技术人员根据实际需要能够具体选择的。
进一步地,本发明人研究发现在多固化剂体系中,基本都采用芳香族多元胺与脂肪族多元醇相组合的方式,分别提供固化剂的硬段和软段,调节其比例便可控制最终抛光垫的软硬度。在此种固化剂组合物中,存在一个难以避免的先天缺陷,就是芳香族多元胺和脂肪族多元醇与游离异氰酸酯反应活性的差异,前者的反应活性通常是后者的数十倍甚至上百倍,这就导致反应过程中,芳香族多元胺优先反应,使得反应体系产生不均匀凝胶,进而导致脂肪族多元醇较难参与反应而出现反应程度不均一的现象,最终影响抛光性能。
本发明人进一步的研究惊奇地发现,端仲氨基聚醚类化合物具有相对于端伯氨基聚 醚类化合物显著减缓的反应速度,能够大体与芳香族胺类固化剂反应活性接近,从根源上避免反应活性差异而导致的抛光层不均一现象,从而获得能够使被抛光基材的去除率及缺陷率同时得到改进的聚氨酯抛光层。
有鉴于此,本发明的第二目的在于提供一种具有聚氨酯抛光层的抛光垫,所述抛光层采用脂肪族化合物与芳香族化合物的双组分固化剂体系,其中,通过结构上的修饰来调整脂肪族固化剂的反应活性,使脂肪族固化剂与芳香族固化剂的反应活性接近,从根源上避免反应活性差异而导致的抛光层不均一现象,从而获得具有改进抛光性能的化学机械抛光垫。
因此,本发明第二方面,提供一种化学机械抛光垫,所述抛光垫包括聚氨酯抛光层,其特征在于,所述聚氨酯抛光层是原料组合的反应产物,所述原料组合包括异氰酸酯封端的预聚体、中空微球聚合物和固化剂组合物的,其中,
所述固化剂组合物包括:端仲氨基聚醚固化剂和芳香族双官能固化剂,且所述端仲氨基聚醚固化剂与所述芳香族双官能固化剂的质量比为1:4~4:1;和
所述异氰酸酯封端的预聚体含有5.5~9.5wt%未反应的NCO基团。
根据一种实施方式,所述端仲氨基聚醚固化剂的数均分子量为250~6000。根据不同需要,所述端仲氨基聚醚固化剂的数均分子量可在不同范围内调节,例如可为400~800,或1000~2000,3000~4000,5000~6000,1500~2200或3500~5600等,优选400~800或1000~2000。
根据具体的实施方式,述端仲氨基聚醚固化剂包括至少一种选自以下通式I和通式II所示的化合物:
Figure PCTCN2018103619-appb-000001
其中,R 1为C1~C8的烷基或含氟烷基,R 2、R 3、R 4和R 5各自独立地为H或C1~C8的烷基或含氟烷基;且x、y分别为0或正整数,前提为:x+y≤12。
Figure PCTCN2018103619-appb-000002
Figure PCTCN2018103619-appb-000003
其中,R 1为C1~C8的烷基或含氟烷基,R 2、R 3、R 4和R 5各自独立地为H或C1~C8的烷基或含氟烷基,且a=b=c=1,x、y、m、n、o、p分别为0或正整数,前提为:x+y+m+n+o+p≤12。
根据一种具体的实施方式,所述通式I或II的化合物可以是全氟取代的化合物。一个实例为下式化合物:
Figure PCTCN2018103619-appb-000004
根据一种实施方式,所述芳香族双官能固化剂为芳族二胺。优选实例诸如:MOCA(4,4’-亚甲基-二邻氯苯胺)、MCDEA(4,4’-亚甲基-双(3-氯-2,,6-二乙基苯胺))等,但不限于此。最优选的是MOCA。
根据一种优选的实施方式,本发明所用的固化剂组合物是由所述端仲氨基聚醚固化剂与所述芳香族双官能固化剂组成的双组份固化剂系统。
根据一种优选实施方式,所述原料组合进一步包括中空微球聚合物。
根据本发明的聚氨酯抛光层的理化性能没有特别限制,可根据抛光材料的具体要求进行调节。通常来说,所述抛光层的密度为0.6~1.1g/cm 3,邵氏硬度为45~75D。优选地,所述抛光层的密度为0.7~1.05g/cm 3,更优选为0.8~1.0g/cm 3;优选地,所述抛光层的邵氏硬度为55~70,更优选为55~65。
根据一种实施方式,本发明的抛光垫还具有终点检测窗,所述终点检测窗的邵氏硬度与所述聚氨酯抛光层的邵氏硬度的差的绝对值≤5。
所述终点检测窗采用可见光透过率≥40%,优选≥60%的材料制成。
通常来说,所述终点检测窗的面积占抛光垫总面积的0.1%~0.5%,位于抛光垫的圆心到边缘1/2到1/3位置,但不限于此。
根据一种实施方式,本发明的抛光垫的抛光表面还具有沟槽。所述沟槽用于接收抛光液。所述沟槽的性状可以是同心的环状或螺旋状、网格线、多边形或轮胎面形状等,但不限于此。所述沟槽的横截面可为例如直侧壁矩形、“V”形、“U”形和锯齿形。所述沟槽的宽度为0.1~0.6cm,更佳地,所述沟槽的宽度为0.2~0.4cm。
根据第二方面,本发明还提供一种对基材进行平坦化的方法,所述方法包括以下步骤:
提供基材,所述基材具有表面;
提供前述化学机械抛光垫;和
用所述化学机械抛光垫对所述基材表面进行动态抛光处理。
具体地,所述动态抛光处理在提供抛光液的情况下,在一定的压力下,使所述化学机械抛光垫相对于所述基材旋转而进行。
所述基材选自半导体基材、光学基材和磁性基材中至少一种。
对于不同的基材,要求抛光层具有不同的理化性质,其消除速率、抛光中施加的压力也各不相同,这些是技术人员根据实际需要能够具体选择的。
本发明提供的聚氨酯抛光层采用脂肪族端仲氨基聚醚化合物与芳香族化合物的固化剂体系。通过在分子结构上的修饰有效调整了传统脂肪族固化剂(例如聚醚多元醇)的反应活性。
进一步地,本发明的固化剂系统中更优选使用的端仲氨基聚醚在室温下为低黏度液体,其在与芳香族固化剂混合后,能够降低固化剂组合物的凝固点,因而可以在更低温度下完成固化反应,从而抑制反应的放热,有效的减少放热过快或者放热不均一而产生的水波纹,提高抛光垫的均一性。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,以下将对实施例或现有技术描述中所需要使用的附图作简单地介绍。附图中相同的附图标记指代相同的部件。示意性附图中各部件的形状和尺寸仅用于示意,并不能被认为体现了实际的形状、尺寸和绝对的位置。
图1为采用本发明实施例提供的抛光层进行抛光作业的过程示意图;
图2是实施例1和对比例1分别提供的抛光层的密度分布对比图;
图3是实施例1和对比例1分别提供的单一抛光层的径向密度分布对比图;
图4是对比例2、实施例13、16、19提供的抛光层的使用寿命对比图;
图5是采用实施例12的聚氨酯抛光层制备的抛光垫与市售抛光垫在进行抛光作业时的去除率效果对比图。
图6是实施例21和对比例3制备的、取自经固化的浇铸块不同位置处的抛光层的密度分布对比图;
图7是实施例21和对比例3制备的、取自经固化的浇铸块中部的单片抛光层的径向密度分布对比图;
图8是用实施例21~23和对比例3的抛光层制备的抛光垫对半导体晶圆的去除速率效果对比图;和
图9是用实施例21~23和对比例3的抛光层制备的抛光垫对半导体晶圆抛光后,晶圆缺陷率评价对比图。
图标:1-待抛光材料,2-抛光垫,3-抛光机台,4-支架,5-抛光液。
具体实施方式
下面将结合实施例对本发明的实施方案进行详细描述,但是本领域技术人员将会理解,下列实施例仅用于说明本发明,而不应视为限制本发明的范围。实施例中未注明具体条件者,按照常规条件或制造商建议的条件进行。所用试剂或仪器未注明生产厂商者,均为可以通过市售购买获得的常规产品。
在整个说明书中,除非另有特别说明,本文使用的术语应理解为如本领域中通常所使用的含义。因此,除非另有定义,本文使用的所有技术和科学术语具有与本发明所属领域技术人员的一般理解相同的含义。若存在矛盾,本说明书优先。
聚氨酯抛光垫是一种应用较多的抛光器械。但是,随着加工制造的技术标准要求越来越高,现有的聚氨酯抛光器械已难以满足需要。发明人已知的是,基于聚氨酯的抛光器械,多采用浇铸-切割工艺制备而成。其制作工序为:将异氰酸酯封端的预聚物加热至一定温度使其具有合适的黏度,真空脱气除去预聚物中的小分子化合物,接下来混入中空微球聚合物,再次真空脱气一定时间,然后该混合物与固化剂组合物混合,浇铸成聚氨酯块,通过切割形成抛光层薄片。
在本发明的第一方面中,发明人经过研究发现,异氰酸酯封端的氨基甲酸酯预聚物在常温下是一粘稠的液体,需要升至一定温度来降低其黏度,方便在真空下将其中气体排出。另一方面也需要较低的黏度以方便和固化剂混合——黏度过高,会使得两者混合不均匀而影响抛光垫的抛光效果。
此外,若温度过高则会使黏度过低,此时中空微球聚合物呈现出更加容易分相的特性,导致其在预聚物中分布不均一,使得浇铸所得聚氨酯块从顶部和底部位置切割出来的抛光层密度呈现出较大差异,即顶部偏低而底部偏高。另一方面,若预聚物温度过高,则会使其与固化剂混合后反应过快,在短时间内释放出大量的热量,使聚氨酯浇铸块发生不可逆的膨胀,这表现在同一片抛光层中,中心密度偏低,而边缘密度偏高。
由此可知,异氰酸酯封端的预聚物温度需要控制在一个合适的范围内,不能过高或者过低。温度过高,预聚物与固化剂反应太快;温度过低,由于固化剂的粘度增大,预聚物与固化剂混合不均匀。将温度控制在50±1℃是一个可选的做法。
基于以上的描述,发明人提出了一种多组分(2,或3,或更多组分)固化剂组合物,其具有低的使用温度、熔点。换言之,所述的固化剂组合物可以在较低的初始反应温度下使预聚物发生反应进而固化,以获得改善了性能的固化产品(如聚氨酯浇铸块)。进一步地,采用前述的固化产品,还可获得化学机械抛光性能优异的抛光层。
脂肪族二元胺固化剂在常温下是液体或者粘稠液体。发明人发现将之与芳香族固化剂例如4,4'-二氨基-3,3'-二氯二苯甲烷(MOCA)混合后,混合物的熔点出现明显的降低。 而且,脂肪族二元胺固化剂的用量越大,混合物的熔点越低。此外,混合物在温度下降过程中,由于过冷现象,混合物往往表现出更低的凝固温度。
一些实例中,发明人惊奇的发现,在向芳香族固化剂(MOCA)中添加20wt%的聚醚二元胺D2000后,混合物在温度降低至70℃时仍为低黏度的液体。采用上述使用温度可低至70℃的固化剂组合物与异氰酸酯封端的预聚物反应时,与采用使用温度为116℃的MOCA固化剂(单组份固化剂)进行固化反应相比较,前者(双组份固化剂组合物)的混合后温度比后者(单组份芳族固化剂)有显著下降,从而反应初始温度低。例如,100份50℃的预聚体与50份使用温度为120℃的MOCA混合,混合后的温度为74℃,而若与本发明的使用温度为70℃固化剂组合混合后的温度就降低为56℃,低了近20℃。因此,有效地抑制了反应过程中的剧烈放热,使得热量能够缓慢而平稳地释放出来,从而得到了密度高度均一的固化物。
另外,发明人还发现,在固化剂体系中加入适量的官能度大于或等于3的多官能固化剂,能够有效地降低抛光垫的热膨胀系数并提高水解稳定性。基于固化剂组合物,发明人还提出了一种聚氨酯抛光层,以及包括所述的聚氨酯抛光层的抛光垫。
以下针对本发明具体实施方式对本发明的聚氨酯抛光层及其制备方法,以及具有本发明抛光层的抛光垫进行具体说明。
本文中,除非特别说明,某组分并不限于一种物质,可以是一种、两种或更多种。
例如,本文中提及的固化剂组合物中的脂肪族二元胺固化剂可为一种具体的脂肪族二元胺固化剂,也可为两种或更多种脂肪族二元胺固化剂的混合物;芳香族二元胺固化剂可为一种具体的芳香族二元胺固化剂,也可为两种或更多种芳香族二元胺固化剂的混合物。
再如,多元胺固化剂选自脂肪族多元胺固化、芳香族多元胺固化剂及其混合物,意味着所述多元胺固化剂可由一种具体的脂肪族多元胺固化剂组成,或由两种或更多种脂肪族多元胺固化剂的混合物组成;或者,可由一种具体的芳香族多元胺固化剂组成,或由两种或更多种芳香族多元胺固化剂的混合物组成;还或者,可由一种、两种或更多种具体的脂肪族多元胺固化剂和一种、两种或更多种具体的芳香族多元胺固化剂共同组成。
聚氨酯抛光层
聚氨酯抛光层是指基于聚氨酯制作的抛光层。其中,“聚氨酯”是衍生自二官能或多官能异氰酸酯的产物,例如聚醚脲、聚异氰脲酸酯、聚氨基甲酸酯、聚脲、聚氨酯脲中的两种以上的混合物或共聚物。此外,通过化学成分调整,可以有效的改善制作的抛光层的抛光效果。
在一些优选例中,抛光层由多异氰酸酯与聚醚类多元醇反应所得异氰酸酯封端的预聚物再与固化剂混合物相反应制备的产物。抛光层中还可以被添加适当的改性材料,以 便获得更优的综合性能改进。
本发明中,聚氨酯抛光层是包括多种成分的原料组合进行反应生成的反应产物。所述的原料组合包括异氰酸酯封端的预聚物,中空微球聚合物,及固化剂组合物。中空微球聚合物被混合于异氰酸酯封端的预聚物中,并以与固化剂组合物混合后的初始反应温度可低于70℃,优选地,初始反应温度低于60℃,并且其峰值反应温度出现在混合后第2~5分钟,峰值反应温度低于80℃。
本发明中提供原料制备的聚氨酯抛光层具有以下理化特性:
在一些示例中,所获得聚氨酯抛光层的密度大致为0.6~1.1g/cm 3,优选地密度为0.7~1.05g/cm 3,最优选地密度为0.8~1.0g/cm 3
邵氏D硬度为35~75D,更优选地硬度为45~70D,最优选地,硬度为55~65D。当硬度大于75D时,聚氨酯抛光层具有很高的去除速率,但是与之带来的则是诸如划痕等缺陷过多的问题。而当硬度小于35D时,虽然能有效地降低划痕,但是去除速率却严重下降,因而为了保持划痕以及去除速率的平衡,应选择具有适当硬度的抛光层。
断裂伸长率为50~450%,或50~200%。更优地,断裂伸长率为60~350%。最优地,断裂伸长率为70~300%。通常而言邵氏D硬度小于45的抛光层通常具有非常高的断裂伸长率(即,>500%),而在进行机械加工时,具有如此高断裂伸长率的材料会产生可逆的形变,导致不能接受的差的沟槽形成以及在金刚石修整时无法足够形成纹理。
聚氨酯封端的预聚物
本发明所述预聚物由多官能异氰酸酯和聚醚类多元醇反应而得。较佳地,异氰酸酯封端的预聚物含有8.5~9.5wt%的未反应异氰酸基团(-NCO),特别地,预聚物是具有两个-NCO基团封端的预聚物。
在一些可选的示例中,在预聚物中,未反应的-NCO基团与固化剂组合物中的活性氢基团(氨基或羟基)的化学计量比为1~1.25,更优选为1.05~1.2。在具体实施例中,活性氢基团的总和(包括-NH 2与-OH)与未反应的-NCO的比例(化学计量比)以扩链系数计。
在另一些示例中,多官能异氰酸酯和聚醚类多元醇反应时,可控制NCO基团与含有活性氢的OH(羟基)的比例在1.1~5.0之间,优选在1.2~2.5。在NCO基团与含有活性氢的OH基团的比例小于1.1的条件下,合成过程中,预聚物倾向于高分子量化,进行固化或凝胶化。另一方面,在-NCO基团与含有活性氢的-OH基团的比例超过5.0时,由于未反应的异氰酸酯大量残存,因此与固化剂的反应速度过快,聚氨酯树脂浇铸体的成型加工性倾向于变差。
优选地,聚氰酸酯封端的预聚物是基于聚醚的异氰酸酯封端的氨基甲酸酯预聚物。前述氨基甲酸酯预聚物中未反应的-NCO含量在8.5~9.5wt%之间,更优选地控制未反应的-NCO含量在8.6~9.25wt%之间。
用于本发明的预聚物可以是市售的基于聚醚与TDI和MDI反应所得预聚物,可以列举但不限于例如科聚亚(Chemtura)公司生产的
Figure PCTCN2018103619-appb-000005
系列预聚物LF800A、LF900A、LF910A、LF930A、LF931A、LF939A、LF950A、LF952A、LF600D、LF601D、LF650D、LF667D、LF700D、LF750D、LF751D、LF752D、LF753D、L325、LFG963A、LFG964A、LFG740D。
预聚物的制备原料中,多官能异氰酸酯包括但不限于芳香族异氰酸酯、脂肪族异氰酸酯中的一种或两种。优选使用90摩尔%以上的芳香族异氰酸酯,更优选95摩尔%以上,特别优选100摩尔%。
芳香族异氰酸酯可以是芳香族二异氰酸酯类。芳香族二异氰酸酯类包括但不限于2,4-甲苯二异氰酸酯、2,6-甲苯二异氰酸酯、2,2’-二苯基甲烷二异氰酸酯、2,4’-二苯基甲烷二异氰酸酯、4,4’-二苯基甲烷二异氰酸酯、1,5-萘二异氰酸酯、对苯二异氰酸酯、间苯二异氰酸酯、对苯二亚甲基二异氰酸酯、间苯二亚甲基二异氰酸酯中的一种或多种。
脂肪族异氰酸酯可以是脂肪族二异氰酸酯类。脂肪族二异氰酸酯类包括但不限于亚乙基二异氰酸酯、2,2,4-三甲基六亚甲基二异氰酸酯、1,6-六亚甲基二异氰酸酯中的一种或多种。脂肪族异氰酸酯还可以是脂环式二异氰酸酯类。脂环式二异氰酸酯类包括但不限于1,4-环己烷二异氰酸酯、4,4’-二环己基甲烷二异氰酸酯、异佛尔酮二异氰酸酯、降冰片烷二异氰酸酯中的一种或多种。
预聚物的制备原料中,聚醚类多元醇可以是基于聚醚的高分子量多元醇。例如,聚醚类多元醇包括但不限于聚四亚甲基醚二醇(PTMEG)、聚乙二醇(PEG)、聚丙二醇(PPG)以及聚四亚甲基醚二醇-聚乙二醇、聚四亚甲基醚二醇-聚丙二醇、聚乙二醇-聚丙二醇中的任一种,或两种以上的共聚物,或两种以上的混合物。作为一种可选的示例,聚醚类多元醇的数均分子量可以是500~5000,或500~2000,或500~1500。需要说明的是,当使用数均分子量小于500的聚醚类多元醇时,得到的聚氨酯树脂不具有足够的弹性特性,容易成为脆的聚合物。由前述的聚氨酯树脂(脆的聚合物)形成的研磨垫变得过硬,易成为研磨对象物表面的划痕的产生原因,并且也易磨耗而导致研磨点的寿命缩短。当使用数均分子量大于5000的聚醚类多元醇时,得到的聚氨酯树脂形成的研磨垫变得柔软,难以得到能够充分满意的平面性。
固化剂组合物
本发明的固化剂组合物主要由脂肪族固化剂以及芳香族固化剂混合而得。换言之,固化剂组合物可以是双组分的固化剂。
具体地,本发明的固化剂组合物可包括脂肪族二元胺固化剂、芳香族双官能固化剂和可选的多元胺固化剂,其中多元胺固化剂可以选自脂肪族多元胺和芳香族多元胺。
如本文所提及的术语“多元胺”固化剂,如无特别说明,是指含有三元或更多元胺基的固化剂。
进一步地,固化剂组合物的量,作为一种示例,基于所述固化剂组合物的总重量,所述固化剂组合物包括5~55wt%的脂肪族二元胺组合物、0~8wt%的多元胺组合物、40~90wt%的芳香族双官能组合物。
更进一步地,本发明的固化剂组合物,基于所述固化剂组合物的总重量,可包括5~55wt%脂肪族二元胺组合物、0.1~8wt%多元胺组合物以及40~90wt%芳香族双官能组合物。
多元胺组合物分子结构中含有三个伯胺基或三个仲胺基,多元胺组合物为脂肪族多元胺、芳香族多元胺及其混合物,脂肪族多元胺数均分子量为2000~6000,脂肪族多元胺数均分子量为250~2000。
以下对固化剂组合物中的各个组分作进一步的分别阐述。
脂肪族二元胺固化剂
脂肪族二元胺固化剂可以选用在常温(通常为室温,如25~30℃)下为液体的固化剂。较佳地,脂肪族二元胺组合物的数均分子量为1000~5000。当脂肪族二元胺的数均分子量小于1000时,导致前述预聚物固化反应过快,迅速凝胶。聚醚多元胺分子量大于5000时,会使形成的抛光垫变得柔软,难以得到能够充分满意的平面性。脂肪族二元胺的数均分子量的实例例如可为2000~3000,或4000~5000,或1050~2500,或3500~4600,但不限于此。
在本发明的固化剂组合物中,基于所述组合物的总重量,脂肪族二元胺固化剂的量为5-55wt%。当脂肪族二元胺在固化剂组合物中的占比低于5wt%时,对固化剂组合物的熔点降低作用不明显;当脂肪族双官能度高分子固化剂的占比高于55%时,会使得固化得到的聚氨酯抛光层变得柔软,其平坦化能力降低。
可用于本发明的脂肪族二元胺固化剂可为任何现有的在常温为液体的,且符合上述分子量范围的脂肪族二元胺固化剂。
较佳地,所含脂肪族二元胺固化剂为聚醚二元胺。可用于本发明的聚醚二元胺可为商购的那些适用的产品。举例来说,聚醚胺包括亨斯曼(Huntsman)公司的聚醚胺
Figure PCTCN2018103619-appb-000006
系列,例如D230、D400、D2000、D4000、HK511、ED600、ED900、ED2003、SD231、SD401、SD404、SD2001等,但不限于此。
芳香族双官能固化剂
本发明中芳香族双官能固化剂作为硬段结构调节物而包含在固化剂组合物中。
本发明对芳香族双官能固化剂无特别限定,可为本领域中任何合适的芳香族双官能固化剂。本领域技术人员可以根据具体需要进行适当选择。可列举的芳香族双官能固化剂包括,但不限于:二乙基甲苯二胺(DETDA)、N,N’-二烷基二氨基二苯甲烷、3,5-二乙基-2,4-甲苯二胺及其异构体(例如,3,5-二乙基-2,6-甲苯二胺)、3,5-二甲硫基-2,4-甲苯二胺及其异构体、4,4’-亚甲基-双-(2-氯苯胺)(MOCA)、4,4’-双-(仲丁基氨基)-二苯甲烷、1,4- 双-(仲丁基氨基)-苯、4,4’-亚甲基-双-(2-氯苯胺)、4,4’-亚甲基-双-(3-氯-2,6-二乙苯胺)(MCDEA)、聚氧化四亚甲基-二-对氨基苯甲酸酯;、p,p’-亚甲基双苯胺(MDA);间苯二胺(MPDA);4,4’-亚甲基-二-(2,6-二乙基苯胺)(MDEA)、4,4’-亚甲基-二-(2,3-二氯苯胺)(MDCA)、4,4’-二氨基-3,3’-二乙基-5,5’-二甲基二苯甲烷、2,2’,3,3’-四氯二氨基二苯甲烷、丙二醇-二-对氨基苯甲酸酯及其混合物。更优选,所用双官能固化剂B3选自4,4’-亚甲基-双-(2-氯苯胺)、4,4’-亚甲基-双-(3-氯-2,6-二乙苯胺)(MCDEA)及其异构体中一种或多种。
优选地,所用芳香族双官能固化剂为选自4,4’-亚甲基-双-(2-氯苯胺)(MOCA)、4,4’-亚甲基-双-(3-氯-2,6-二乙苯胺)(MCDEA)及其异构体。
更佳地,芳香族双官能固化剂为MOCA。MOCA独特的化学结构,保证了抛光垫制备中具有合适的可操作时间,并且所得抛光垫具有良好的抛光性能。
在本发明的固化剂组合物中,基于所述组合物的总重量,脂肪族二元胺固化剂的量为40-90wt%。
多元胺固化剂
本发明中可不包含任何多元胺固化剂,也可包含一种多元胺固化剂或两种以上多元胺固化剂的混合物。
对于聚氨酯抛光层而言,其良好的尺寸稳定性以及水解稳定性对于抛光过程尤其重要。一方面,抛光作业过程通常会涉及到抛光液的使用。而抛光液通常具有一定的酸碱性,且pH值介于2~12之间。在连续抛光工作时,抛光液会对抛光垫形成持续的腐蚀作用,进而造成抛光层溶胀,从而使抛光层的硬度降低。在研磨时表现为同一抛光层,研磨前期去除率高,而随着抛光时间延长,去除率逐渐下降。另一方面,由于研磨过程中的摩擦作用,在基于上述聚氨酯抛光层制备的抛光垫中,抛光层的温度逐渐上升,可上升至接近85℃,而缓冲层温度仍然较低,抛光层与缓冲层之间有着巨大的温度差,因而在水平方向上,抛光层由于热膨胀而与缓冲层之间出现应力,大大增加了脱胶的风险。
发明人发现,控制聚氨酯的交联度是一个有效的控制抛光层脱胶和硬度降低的方法。本发明实施例中,提高聚氨酯本体的交联度的方式例如可以是,通过引入官能度大于等于3的分子(以作为固化剂组合物中的一种组分被提供),将线性聚氨酯转化为体型交联网状结构。体型交联的网状结构聚氨酯中,分子链之间的相互作用力,由微弱的物理作用“—氢键—”转化为较强的化学键。而化学键可以有效地降低抛光层的热膨胀系数,降低脱胶风险以及提高耐水解性,提高平坦化过程中去除率的均一性。另外,通过调节多元胺固化剂的添加量,能够有效地调节抛光垫的交联密度,使之达到最优的抛光效果。
作为一种可选的示例,每个多元胺固化剂分子中至少含有3个伯氨基团或者仲氨基团。如,三个伯/仲氨基团,或四个伯/仲氨基团,或五个伯/仲氨基团,或六个伯/仲氨基 团,或七个伯/仲氨基团。更优选地,多元胺固化剂每个分子中含有3个伯氨基或者仲氨基。通过采用具有多个活性氢的基团(氨基和羟基)作为固化剂中的一种组分,可以适当地改善聚氨酯抛光层中的交联程度,进而改善抛光层的性能。
可用于本发明的多元胺固化剂可以是脂肪族多元胺和/或芳香族多元胺。
优选地,可用于本发明的多元胺固化剂的数均分子量可在250~6000的范围内。举例来说,多元胺固化剂的数均分子量可为1000~2000,或3000~4000,或5000~6000,或1500~2200,或3500~5600,但不限于此。当多元胺组合物是脂肪族多元胺时,针对脂肪族多元胺而言,其分子量可在2000~6000范围内。当分子量低于2000时,在反应过程中脂肪族多元胺的反应过快,会使得聚氨酯迅速凝胶,具有极差的可操作性。而当脂肪族多元胺分子量大于6000时,其对于体系的交联能力大大降低,不能起到有效提高体系交联密度,降低抛光垫的热膨胀系数以及提高水解稳定性的目的。
多元胺聚醚固化剂可以列举的有,如:亨斯曼(Huntsman)的聚醚胺
Figure PCTCN2018103619-appb-000007
T3000、T5000、T403、ST404,但不限于此。当多元胺固化剂是芳香族多元胺时,针对芳香族多元胺而言,其分子量为250~2000。当芳香族多元胺分子量低于250时,反应活性过高,使得聚氨酯迅速凝胶,可操作性差。当分子量高于2000,芳香族多元胺熔点太高,不适应于制备聚氨酯浇铸体。
用于本发明的芳香族多元胺固化剂可选自4,4',4”-三氨基(三苯基甲烷)、4,4',4”-三氨基(三苯基乙烷)、N,N'N”-三异丙基-4,4',4”-三氨基(三苯基甲烷)、N,N'N”-三异丙基-4,4',4”-三氨基(三苯基乙烷)、均苯三胺、偏苯三胺,但不限于。
在本发明提出的聚氨酯抛光层中,可以通过控制固化剂组合物中的多元胺固化剂的含量,从而控制聚氨酯的交联密度,以有效地降低获得的聚氨酯抛光层的断裂伸长率。
本发明中,基于所述固化剂组合物的总重量,所述多元胺固化剂的含量为0-8wt%,优选地为0.1-8wt%。在一些优选的示例中,多元胺固化剂占比为1~5wt%,最优地,占比2.5~3.5%。通过适当增加多元胺固化剂的含量,可有效地调节聚氨酯的交联密度,然而,若多元胺固化剂添加量大于8%,则会使得体系交联密度过大,表现为抛光垫弹性不足、易碎。
通过多元胺固化剂的交联作用,可以有效地降低聚氨酯抛光层的热膨胀系数,并将热膨胀系数控制其在250ppm/℃以内。
本发明的优选实施方式中,抛光层的热膨胀系数为50~250ppm/℃,或100~150ppm/℃,或100~200ppm/℃。更优选地,热膨胀系数为60~200ppm/℃,最优选地,热膨胀系数为70~160ppm/℃。研磨作业时,过高的热膨胀系数会导致抛光垫中抛光层与缓冲层之间较大的温度差而出现应力,进而导致脱胶风险增大。
聚氨酯抛光层还会受到抛光液的影响。抛光液通常具有一定的酸碱性,其pH介于2~12之间,在连续工作时会对抛光垫形成持续的腐蚀作用,造成抛光层溶胀,使得其硬 度逐渐下降。在研磨时表现为同一抛光层,研磨前期去除率高,而随着抛光时间延长,去除率逐渐下降。在抛光过程中(一张抛光垫的抛光时长通常为50~70小时),稳定的去除速率对于连续工业化生产有着重要作用。本发明通过多元胺固化剂的加入,提高抛光层的交联密度,可以提高其对抛光液的耐性,保证其在工作寿命时间段以内,具有稳定的理化性质。
对于抛光液的耐性可以水解稳定性来表示。本文所指“80小时水解稳定性”,是将抛光层浸没在pH为2~5的盐酸溶液或者pH为9~12的NaOH溶液中,于80小时后测量其直径变化,由该变化值相对于浸泡前直径的百分数来表示。抛光层直径变化率约小,其耐酸碱的稳定性越好。本发明的抛光层,较佳地,80小时酸和碱水解稳定性均为小于1.5%。进一步地,抛光层在pH为2~5的盐酸溶液中的80小时水解稳定性为小于0.65%;抛光层在pH为9~12的氢氧化钠溶液中的80小时水解稳定性为小于0.80%。
中空微球聚合物
中空微球聚合物主要是一种膨胀微球体。其可以采购自阿克苏诺贝尔公司、松本油脂制药株式会社或积水化学工业株式会社任一家公司的微球或微珠,优选阿克苏诺贝尔公司(Akzo Nobel)Expancel系列中空微球或松本微珠F系列。作为一种中空微球聚合物的可选示例,中空微球聚合物包括具有聚丙烯腈和聚丙烯腈共聚物外壁的囊状结构。
发明人通过调整中空微球聚合物在聚氨酯抛光层中分布方式(如密度)而实现了对聚氨酯抛光层的抛光效果的调整。例如,在制作聚氨酯抛光层的工艺流程中,优选使中空微球聚合物均匀地分散在抛光层中,更优选地,中空微球聚合物均匀地分布于所述抛光层中以使抛光层具有10~40%的孔隙率。通过使中空微球聚合物均匀地分散在抛光层,并结合调节中空微球聚合物的粒度,可以进一步调节抛光层的抛光性能。例如,控制中空微球聚合物直径小于120微米;更优选地,直径小于60微米,最优选地,直径介于10~50微米之间。
采用上述原料制备的聚氨酯抛光层是一种可应用于化学机械抛光作业的抛光层。
本发明中,聚氨酯抛光层中还可以被添加适当的改性材料,以便获得更优的综合性能改进。
这些改性材料包括但不限于:抗氧化剂、耐磨填料、储存稳定剂等。
终点检测区域
本发明中,基于实际的需要,还可对聚氨酯抛光层的结构进行改进以使其实用性更强。
作为一种可选的示例,在聚氨酯抛光层形成至少一个终点检测区域。在进行抛光作业时,聚氨酯抛光层的终点检测区域能够进行高精度的光学终点检测。检测的方法例如可以是光学检测。通过使终点检测区域由适当的材料制作而成,其具有适当的光透过率,以便观测被抛光物体(如硅晶片)。较佳地,形成终点检测区域的材料是在波长 300~800nm的整个范围内光透过率为≥40%;更佳地,高透过率材料的光透过率为≥60%。
较佳地,终点检测区域的材料包括但不限于聚氨酯树脂、聚酯树脂、酚树脂、尿素树脂、三聚氰胺树脂、环氧树脂及丙烯酸树脂等热固性树脂;聚氨酯树脂、聚酯树脂、聚酰胺树脂、纤维素类树脂、丙烯酸树脂、聚碳酸酯树脂、含卤素树脂(聚氯乙烯、聚四氟乙烯、聚偏氟乙烯等)、聚苯乙烯及烯烃类树脂(聚乙烯、聚丙烯等)等热塑性树脂中的一种或组合物。
较佳地,终点检测区域的邵氏硬度为40~65D;更佳地为45~55D。当终点检测区域的邵氏硬度小于40D时,该区域容易产生蠕变,难以稳定地进行光学终点检测,而当邵氏硬度超过65D时被研磨材料表面容易产生划痕。
缓冲垫
本发明中,聚氨酯抛光层的背面还设有缓冲垫,所述缓冲垫能够减轻抛光过程中向所述抛光垫施加的冲击。
基于所述的聚氨酯抛光层,可以通过在基底上形成缓冲层,再将聚氨酯抛光层通过胶合的方式固定于缓冲层,即可获得基于聚氨酯的化学机械抛光垫。
抛光层的制备方法
本发明还提供上述抛光层的制备方法。所述制备方法包括:
将液体状态的所述异氰酸酯封端的预聚物与所述中空微球聚合物混合,真空脱气后得到第一产物;
将所述第一产物在50℃下与所述固化剂组合物在高速剪切下混合,得到第二产物;
控制所述第二产物的温度,以使所述第一产物、所述固化剂组合物的初始反应温度≤70℃,且反应峰值温度≤80℃。
具体操作步骤可包括:
(1)可选地,将能够制得对应硬度的终点检测区的浇注组合物浇注至模具的内腔中,固化,脱模,表面打磨,得圆柱块体;
(2)将可选的步骤(1)所得的圆柱块体置于抛光层模具的圆环侧壁内,向所述环状内腔内浇注上述第二产物,在初始反应温度≤70℃,且反应峰值温度≤80℃的条件下进行固化,然后脱模,表面打磨,得圆柱形固化块体;
(3)将所述固化块体进行切片,即得一体成型的,可选具有终点检测区域的抛光层。
(4)可选地,在抛光层上形成沟槽。
抛光处理
采用具有上述抛光层的化学机械抛光垫进行抛光处理的示意图可参见图1。其中,抛光垫2被固定在抛光机台3上。待抛光材料1被固定在支架4上。抛光作用时,首先使抛光垫2在抛光机台的作用下进行旋转。然后,通过支架4将待抛光材料1以垂直于 抛光垫2的方式靠近(由上至下),支架在向下运动的同时进行旋转,且支架4的转动方向与抛光台3的转动方向一致,以使抛光垫2与待抛光材料1的转转动方向一致。在抛光的同时,向抛光垫2上喷洒抛光液5。
根据本发明的第二方面,而本发明人惊奇地发现,通过位阻效应和电子效应即增加氨基的位阻以及降低氨基的电子云密度,能够有效降低脂肪族氨基固化剂的反应性。具体地,端仲氨基聚醚相比于端伯氨基聚醚具有显著降低的活性,能够达到与芳香族双官能固化剂,特别是芳香族双胺固化剂,相当的反应活性,从而消除因固化剂反应速度不同而带来的固化初期的凝胶现象和最终产物的不均一性。
本发明人还发现,端仲氨基聚醚其氮原子上较大的取代基,可以更有效地增加了氨基的位阻作用,使得其反应活性进一步降低。
因此,根据所选择的芳香族固化剂的反应活性,可以通过调节氨基取代基的结构,获得各固化剂反应活性相当的固化剂体系,从而从根本上解决了多固化剂体系均一性差的问题。
因此,本发明人提出了通过结构上的修饰来调整脂肪族固化剂的反应活性,使脂肪族固化剂与芳香族固化剂的反应活性接近的固化剂组合物,由此获得了品质均一的抛光层。
抛光层
通常,聚氨酯抛光层反应制作工序为:将异氰酸酯封端的预聚体加热至一定温度使其具有合适的黏度,优选可混入中空微球聚合物以调节最终产品的密度,然后该混合物与固化剂混合,浇注形成聚氨酯浇注块,在一定条件下固化后形成聚氨酯材料块,然后切割为具有一定厚度的薄片作为抛光垫的抛光层。
聚氨酯抛光层是指基于聚氨酯制作的抛光层。其中,"聚氨酯"是衍生自二官能或多官能异氰酸酯的产物,例如聚醚脲、聚异氰脲酸酯、聚氨基甲酸酯、聚脲、聚氨酯脲中的两种以上的混合物或共聚物。此外,通过化学成分调整,可以有效的改善制作的抛光层的抛光效果。
本发明中,聚氨酯抛光层包括多种原料反应生成的反应产物。所述的多种原料包括以下将详述的异氰酸酯封端的预聚体,固化剂组合物,和可选的中空微球聚合物。较佳地,中空微球聚合物被混合于异氰酸酯封端的预聚体中,并使该混合物与固化剂组合物混合后,进行固化反应。
本发明中,提供原料制备的聚氨酯抛光层具有以下理化特性:
其中,所获得聚氨酯抛光层的密度为0.6~1.1g/cm 3;较佳地,密度为0.7~1.05g/cm 3;更佳地,密度为0.8~1.0g/cm 3
其中,所获得聚氨酯抛光层的邵氏D硬度为45~75D,较佳地硬度为55~70D,最佳地,硬度为55~65D。当硬度大于75D时,聚氨酯抛光层具有很高的去除速率,但是与 之带来的则是诸如划痕等缺陷过多的问题。而当硬度小于45D时,虽然能有效地降低缺陷率,但是去除速率却严重下降。而本发明的抛光层获得了缺陷率以及去除速率的良好平衡,在不增加缺陷率(甚至有所降低的情况下)显著增加了去除速率。
固化剂组合物
本发明中的固化剂组合物为包括脂肪族固化剂和芳香族固化剂混合物的多组分固化剂体系。如前所述,多组分固化剂体系在反应制备聚氨酯抛光层中,其显著的优势是可以根据需要选择适当结构的固化剂分别作为调节最终产品硬度的软段结构和硬段结构,并对固化剂的软段和硬段结构的比例进行调节,以达到在更大范围内改善抛光垫理化指标参数,从而能够制造适用于不同抛光材料需要的抛光层。
端仲氨基聚醚固化剂
本发明中,脂肪族固化剂包括端仲氨基聚醚固化剂。脂肪族氨基由于较高的电子云密度,而具有很高的活性,其活性甚至高于芳香族氨基。为了实现调整多组分固化剂各组分反应活性以使不同固化剂具有相当的反应活性的目的,发明人研究了脂肪族氨基固化剂的反应性。发现端仲氨基聚醚类的化合物具有与双官能芳香族固化剂相当的固化反应速率,因而可采用包括端仲氨基聚醚固化剂和双官能芳香族固化剂的固化剂组合物来获得品质均一的抛光层。
此外,本发明的端仲氨基聚醚室温下为低黏度液体,其在与芳香族固化剂混合后,也能够降低固化剂组合物的凝固点,因而可以在更低温度下完成固化反应,从而利于反应热的消散,有效的减少放热过快或者放热不均一而导致的抛光层的差的均一性。
特别是对于以下将详述的添加中空微球聚合物的抛光层,因中空微球聚合物的膨胀率与温度相关,反应放热不均一或热量消散过慢会导致中空微球的膨胀不均一,从而导致抛光垫的密度不均匀。而本发明的抛光层因采用了低粘度的端仲氨基聚醚,避免了局部反应热过高的情况,因而能够获得密度及孔隙率都更加均匀的添加中空微球聚合物的抛光层。
较佳地,端氨基聚醚包括但不限于亨斯曼(Huntsman)公司的聚醚胺
Figure PCTCN2018103619-appb-000008
系列,例如SD231、SD401、SD2001、ST404、HK511以及其混合物,但不限于此。
在本发明一些较佳示例中,上述端氨基聚醚组合包括但不限于至少一种选自以下通式I和通式II所示的化合物:
Figure PCTCN2018103619-appb-000009
Figure PCTCN2018103619-appb-000010
通式I中,R 1为C1~C8的烷基或含氟烷基,R 2、R 3、R 4和R 5各自独立地为H或C1~C8的烷基或含氟烷基;且x、y分别为0或正整数,前提为:x+y≤12。
通式II中,R 1为C1~C8的烷基或含氟烷基,R 2、R 3、R 4和R 5各自独立地为H或C1~C8的烷基或含氟烷基;且a=b=c=1,x、y、m、n、o、p分别为0或正整数,前提为:x+y+m+n+o+p≤12。
较佳地,以上通式中,R 1为C1~C4的烷基或含氟烷基,R 2、R 3、R 4和R 5各自独立地为H或C1~C4的烷基或含氟烷基。
所述通式I或II的化合物还可以是全氟取代的化合物。
更佳地,上述端氨基聚醚组合包括如下分子结构的化合物A:
Figure PCTCN2018103619-appb-000011
发明人惊奇的发现采用上述三官能度全氟仲胺时,抛光垫具有近完美的外观且不存在水波纹路,水波纹路指抛光垫上存在的近白色的较不规则状连续条纹(水波纹大概可描述为平均宽为0.1-1.5cm,长为10-50cm的不规则状条纹),目前形成原因不是很明确,推断的可能原因是产品内部放热不均,导致微球分散不均,这样的现象存在会使抛光过程中产生不可预料的后果,极有可能导致抛光不均,但是宏观上易于测量出此差异。
本发明的端仲氨基聚醚固化剂用作软段结构调节物,优选具有数均分子量为250~6000。
当分子量低于250时,在反应过程中脂肪族端氨基聚醚的反应过快,会使得聚氨酯迅速凝胶,具有极差的可操作性。而当脂肪族端氨基聚醚分子量大于6000时,其参与反应的氨基基团活性大大降低,与异氰酸酯封端的预聚体中未反应的NCO基团不能很 好的反应,不利于抛光垫的力学性能。
根据具体需要,本发明的端仲氨基聚醚固化剂的数均分子量可为例如400~800,或1000~2000,或3000~4000,或5000~6000,或1500~2200,或3500~5600等,优选400~800或1000~2000。
芳香族双官能固化剂
本发明中作为硬段结构调节物的芳香族固化剂为芳香族双官能固化剂。本发明对芳香族双官能固化剂无特别限定,可为本领域中任何合适的芳香族双官能固化剂。本领域技术人员可以根据具体需要进行适当选择。
本发明中可以使用的芳香族双官能固化剂的实例有:二乙基甲苯二胺(DETDA)、N,N’-二烷基二氨基二苯甲烷、3,5-二乙基-2,4-甲苯二胺及其异构体(例如,3,5-二乙基-2,6-甲苯二胺)、3,5-二甲硫基-2,4-甲苯二胺及其异构体、4,4’-亚甲基-双-(2-氯苯胺)(MOCA)、4,4’-双-(仲丁基氨基)-二苯甲烷、1,4-双-(仲丁基氨基)-苯、4,4’-亚甲基-双-(2-氯苯胺)、4,4’-亚甲基-双-(3-氯-2,6-二乙苯胺)(MCDEA)、聚氧化四亚甲基-二-对氨基苯甲酸酯;、p,p’-亚甲基双苯胺(MDA);间苯二胺(MPDA);4,4’-亚甲基-二-(2,6-二乙基苯胺)(MDEA)、4,4’-亚甲基-二-(2,3-二氯苯胺)(MDCA)、4,4’-二氨基-3,3’-二乙基-5,5’-二甲基二苯甲烷、2,2’,3,3’-四氯二氨基二苯甲烷、丙二醇-二-对氨基苯甲酸酯及其混合物,但不限于此。
优选地,所用芳香族双官能固化剂为选自4,4’-亚甲基-双-(2-氯苯胺)(MOCA)、4,4’-亚甲基-双-(3-氯-2,6-二乙苯胺)(MCDEA)及其异构体。
更佳地,芳香族双官能组合物为MOCA。MOCA独特的化学结构,保证了抛光垫制备中具有合适的可操作时间,并且所得抛光垫具有良好的抛光性能。
本发明的多组分固化剂体系中,采用脂肪族多元胺固化剂和芳香族多元胺固化剂相组合的方式,使得脂肪族固化剂与芳香族固化剂具有非常接近的反应活性,可获得均匀性改进的聚氨酯抛光层,从而能够被更好地应用于先进制程半导体工艺,尤其是28nm以下工艺。
本发明中,多组分固化剂体系中,脂肪族端仲氨基聚醚固化剂和芳香族双官能组合物的混合质量比为1:4~4:1。端仲氨基脂族聚醚在固化剂组合物中的占比低于20wt%时,对固化剂组合物的熔点降低作用不明显;而端仲氨基聚醚在固化剂组合物中的占比高于80wt%时,会使得固化得到的聚氨酯抛光层变得柔软,其平坦化能力降低。
由于端仲氨基聚醚固化剂与双官能芳香族固化剂的反应速度类似,最终能够获得理想的去除速率与缺陷率的平衡,因而相对于本发明的第一方面的方案可以加入较多的软段的端仲氨基聚醚化合物,从而可以获得硬度范围更宽的抛光层。
异氰酸酯封端的预聚体
本发明中,异氰酸酯封端的预聚体由多官能异氰酸酯和聚醚类多元醇反应而得;较佳地,预聚体具有两个~NCO基团封端;更佳地,预聚体是基于聚醚的异氰酸酯封端的 氨基甲酸酯预聚体。
其中,异氰酸酯封端的预聚体的制备原料中多官能异氰酸酯包括但不限于芳香族异氰酸酯、脂肪族异氰酸酯中的一种或两种。优选使用90摩尔%以上的芳香族异氰酸酯,更优选95摩尔%以上,特别优选100摩尔%。
较佳地,芳香族异氰酸酯包括但不限于芳香族二异氰酸酯类。芳香族二异氰酸酯类包括但不限于2,4-甲苯二异氰酸酯、2,6-甲苯二异氰酸酯、2,2’-二苯基甲烷二异氰酸酯、2,4’-二苯基甲烷二异氰酸酯、4,4’-二苯基甲烷二异氰酸酯、1,5-萘二异氰酸酯、对苯二异氰酸酯、间苯二异氰酸酯、对苯二亚甲基二异氰酸酯、间苯二亚甲基二异氰酸酯中的一种或多种。
较佳地,脂肪族异氰酸酯包括但不限于脂肪族二异氰酸酯类。脂肪族二异氰酸酯类包括但不限于亚乙基二异氰酸酯、2,2,4~三甲基六亚甲基二异氰酸酯、1,6~六亚甲基二异氰酸酯中的一种或多种。脂肪族异氰酸酯还可以是脂环式二异氰酸酯类。脂环式二异氰酸酯类包括但不限于1,4~环己烷二异氰酸酯、4,4’~二环己基甲烷二异氰酸酯、异佛尔酮二异氰酸酯、降冰片烷二异氰酸酯中的一种或多种。
其中,异氰酸酯封端的预聚体的制备原料中,聚醚类多元醇可以是基于聚醚的高分子量多元醇。
较佳地,聚醚类多元醇包括但不限于聚四亚甲基醚二醇(PTMEG)、聚乙二醇(PEG)、聚丙二醇(PPG)以及聚四亚甲基醚二醇-聚乙二醇、聚四亚甲基醚二醇-聚丙二醇、聚乙二醇-聚丙二醇中的任一种,或两种以上的共聚物,或两种以上的混合物。
作为一种可选的示例,聚醚类多元醇的数均分子量可以是500~5000。例如,根据需要可为500~2000,或500~1500。需要说明的是,当使用数均分子量小于500的聚醚类多元醇时,得到的聚氨酯树脂不具有足够的弹性特性,容易成为脆的聚合物。由前述的聚氨酯树脂(脆的聚合物)形成的研磨垫变得过硬,易成为研磨对象物表面的划痕的产生原因,并且也易磨耗而导致研磨点的寿命缩短。而当使用数均分子量大于5000的聚醚类多元醇时,得到的聚氨酯树脂形成的研磨垫变得柔软,难以得到令人满意的平面性。
本发明中,较佳地,异氰酸酯封端的预聚体可以是市售的基于聚醚与TDI和MDI反应所得预聚体。异氰酸酯封端的预聚体包括但不限于科聚亚(Chemtura)公司生产的
Figure PCTCN2018103619-appb-000012
系列预聚体LF800A、LF900A、LF910A、LF930A、LF931A、LF939A、LF950A、LF952A、LF600D、LF601D、LF650D、LF667D、LF700D、LF750D、LF751D、LF752D、LF753D、L325、LFG963A、LFG964A、LFG740D。
本发明中,异氰酸酯封端的预聚体含有5.5~9.5wt%的未反应异氰酸基团(-NCO);较佳地,控制预聚体中未反应的~NCO含量在5.5~9.5wt%之间;更佳地,未反应的~NCO含量在6.5~9.2wt%之间。
中空微球聚合物
采用中空微球聚合物制备的聚氨酯抛光层是一种可应用于化学机械抛光作业的抛光层。所制备的聚氨酯抛光层可以是多孔结构或者非孔的结构,本发明并不做具体限定。
作为一种可选的示例,在聚氨酯抛光层制备工艺流程中,将中空微球聚合物均匀地分散在抛光层中,从而实现对聚氨酯抛光层的抛光效果的调整。
本发明中的术语“中空微球聚合物”是指一种可膨胀的中空聚合物微球体,可在固化过程中借助反应放热导致的温度升高而适度膨胀。通过调整中空微球聚合物在聚氨酯抛光层中分布方式(如密度)并结合调节中空微球聚合物的粒度,可以进一步调节抛光层的抛光性能。较佳地,中空微球聚合物分散在抛光层中可使抛光层最终具有的孔隙率为10~40%,孔径为<120μm;更佳地,孔隙率为15~35%,孔径为<50μm。
较佳地,中空微球聚合物包括但不限于具有聚丙烯腈和聚丙烯腈共聚物外壁的囊状结构,可以采购自阿克苏诺贝尔公司、松本油脂制药株式会社或积水化学工业株式会社任一家公司的微球或微珠,优选阿克苏诺贝尔公司(Akzo Nobel)Expancel系列中空微球或松本微珠F系列。
其他添加剂
本发明中,聚氨酯抛光层中还可以被添加适当的改性材料,以便获得更优的综合性能改进。
这些改性材料包括但不限于:抗氧化剂、、耐磨填料、储存稳定剂。
终点检测窗
本发明中,基于实际的需要,还可对聚氨酯抛光层的结构进行改进以使其实用性更强。
作为一种可选的示例,在聚氨酯抛光层形成至少一个终点检测区域。在进行抛光作业时,聚氨酯抛光层的终点检测区域能够进行高精度的光学终点检测。检测的方法例如可以是光学检测。通过使终点检测区域由适当的材料制作而成,其具有适当的光透过率,以便观测被抛光物体(如硅晶片)。较佳地,形成终点检测区域的材料是在波长300~800nm的整个范围内光透过率为≥40%;更佳地,高透过率材料的光透过率为≥60%。
较佳地,终点检测区域的材料包括但不限于聚氨酯树脂、聚酯树脂、酚树脂、尿素树脂、三聚氰胺树脂、环氧树脂及丙烯酸树脂等热固性树脂;聚氨酯树脂、聚酯树脂、聚酰胺树脂、纤维素类树脂、丙烯酸树脂、聚碳酸酯树脂、含卤素树脂(聚氯乙烯、聚四氟乙烯、聚偏氟乙烯等)、聚苯乙烯及烯烃类树脂(聚乙烯、聚丙烯等)等热塑性树脂中的一种或组合物。
较佳地,研磨作业时,终点检测区域的邵氏硬度为40~75D;更佳地为55~70D。当终点检测区域的邵氏硬度小于40D时,该区域容易产生蠕变,难以稳定地进行光学终点检测,而当邵氏硬度超过75D时被研磨材料表面容易产生划痕。
优选地,本发明中,终点检测区域的硬度应与抛光层硬度相匹配,两者的硬度差的 绝对值应控制在5以内,使其在研磨中具有相似的磨耗速率。若终点检测区域硬度高于抛光垫本体,差值大于5时,较硬的终点检测区域对待研磨对象产生的划痕等缺陷高于抛光垫本体,使得抛光垫有较高的缺陷率。而若终点检测区域硬度低于抛光垫本体,差值大于5时,硬度较低的终点检测区域具有更快的磨耗速率,易产生凹陷,即终点检测区域的寿命短于抛光垫本体,导致抛光垫的整体使用寿命降低,增加使用成本。优选地,终点检测区域的硬度应与抛光层硬度相匹配,两者的硬度差的绝对值应控制在3以内.
沟槽
本发明中,聚氨酯抛光层上可按本领域常规设有沟槽,沟槽用于在抛光过程中接收抛光液。沟槽可在所述抛光垫成型之后经加工获得。沟槽的设置能够确保抛光过程中所用的抛光液的平稳排放和流动。较佳地,沟槽为同心沟槽(例如可以是环状或螺旋状的沟槽)、曲线沟槽、网格线沟槽、正多边形沟槽(例如,六边形、三角形)、和轮胎面型图案中的一种或多种。更佳地,沟槽为环状沟槽、螺旋沟槽、X~Y网格沟槽、六边形沟槽、三角形沟槽和分形沟槽中的一种或多种。更佳地,沟槽的横截面为直侧壁矩形、“V”形、“U”形和锯齿形中的一种或多种。进一步更佳地,沟槽为环状沟槽和/或网格线沟槽。
较佳地,所述沟槽的宽度为0.1~0.6cm,更佳地,所述沟槽的宽度为0.2~0.4cm。
缓冲垫
本发明中,聚氨酯抛光层的背面还设有缓冲垫,所述缓冲垫能够减轻抛光过程中向所述抛光垫施加的冲击。
抛光层的制备方法
本发明还提供上述抛光层的制备方法。本发明抛光层的制备方法可为本领域常规使用的浇注固化工艺,制备方法包括如下步骤:
(1)可选地,将能够制得对应硬度的终点检测区的浇注组合物浇注至模具的内腔中,固化,脱模,表面打磨,得圆柱块体;
(2)将可选的步骤(1)所得的圆柱块体置于抛光层模具的圆环侧壁内,向所述环状内腔内浇注能够制得对应硬度的抛光区的上述抛光层原料组合,固化,脱模,表面打磨,得圆柱形固化块体;
(3)将所述固化块体进行切片,即得一体成型的具有终点检测窗的抛光层。
(4)可选地,在抛光层上形成沟槽。
本发明中,步骤(1)中,所述固化较佳地包括如下过程:凝胶、升温、固化和降温。其中,所述凝胶的温度较佳地为65~75℃,例如可为70℃;所述凝胶的时间较佳地为10~20分钟,例如可为15min;所述升温较佳地将温度升至90~110℃,例如可为100℃;所述升温的时间较佳地为20~40min,例如可为30min;所述固化的时间较佳地为15~17小时,例如可为16h;所述降温较佳地降至15~30℃,例如可为25℃。
本发明中,步骤(2)中,所述固化较佳地包括如下过程:凝胶、升温、固化和降 温。其中,所述凝胶的温度较佳地为65~75℃,例如可为70℃;所述凝胶的时间较佳地为10~20分钟,例如可为15min;所述升温较佳地将温度升至90~110℃,例如可为100℃;所述升温的时间较佳地为20~40min,例如可为30min;所述固化的时间较佳地为15~17小时,例如可为16h;所述降温较佳地降至15~30℃,例如可为25℃。
步骤(1)~(2)中,所述固化较佳地包括如下过程:凝胶、升温、固化和降温,其中,所述凝胶的温度为70℃;所述凝胶的时间为15min;所述升温为将温度升至100℃;所述升温的时间为30min;所述固化的时间为16h;所述降温为降至25℃。
抛光处理
采用具有上述抛光层的化学机械抛光垫进行抛光处理的示意图仍参见图1,在此不再赘述。
以下结合实施例对本发明的固化剂组合物、聚氨酯抛光层及抛光垫作进一步的详细描述。
实施例
以下涉及的理化参数测定方法如下:
邵氏硬度:根据ASTM D 2240方法测量
密度:按以下公式计算:S.G=m/v=m/(π(d/2)^2*h),其中m为抛光垫重量,d为抛光垫直径,h为抛光垫厚度。
压缩率:按以下公式计算:压缩比=((T1-T2)/T1)×100%,其中T1为抛光垫从无负荷状态经历60s、30kpa压强时的薄板厚度,T2是从T1状态经历60s负载180kpa压强时的薄板厚度。
断裂伸长率:参考GB T 6344-2008
热膨胀系数:参考ASTM D1903-1996。
实施例1
本实施例提供了一种抛光层,其制作方法如下:
步骤一、异氰酸酯封端的聚氨基甲酸酯预聚物(或简称预聚物)的处理。
将100质量份由甲苯二异氰酸酯和聚四氢呋喃反应所得的异氰酸酯封端的预聚物(含有未反应的-NCO基团质量百分数为8.75~9.05%)升温至80℃,真空(~0.095MPa)下脱气2小时,以便将预聚物中的气体以及小分子化合物除去;然后加入0.77质量份的平均直径为40微米的中空微球聚合物,搅拌下使中空微球聚合物均匀地分散于预聚物中,真空(~0.095MPa)下再次脱气2小时,然后降温至50℃,待用;
步骤二、固化剂组合物的配制。
将23.27质量份的MOCA升温至116℃,使其完全熔化成澄清透明液体,向其中加入5.92质量份的由氨基封端的聚氧化丙烯醚D2000,搅拌下使两者混合均匀,形成均一的透明液体,然后降温至70℃,待用;
步骤三、采用固化剂组合物对含有中空微球聚合物的预聚物进行固化。
将预聚物与固化剂组合物在高速剪切下混合,然后浇铸到圆柱形模具中,形成厚度为12厘米的浇铸块,并且使之在70℃下凝胶15分钟,然后在30分钟内将浇铸体升温至100℃,固化16小时。固化完成后使其在烘箱内自动降温至室温,然后将固化的浇铸块由上至下依次切割成厚度为2毫米的薄片,总计60片,由上至下依次编号1~60。
取编号为15的抛光层薄片按上述方法分别测定密度、硬度、断裂伸长率和膨胀系数。
各原料及用量和理化性能总结于表1和表2中。其中所有原料的量为质量份数。
对比例1
本对比例提供了一种抛光层,其制作方法如下:
步骤一、异氰酸酯封端的聚氨基甲酸酯预聚物(以下简称预聚物)的处理。
将100质量份由甲苯二异氰酸酯和聚四氢呋喃反应所得的异氰酸酯封端的预聚物(含有未反应的NCO基团质量百分数为8.75~9.05%)升温至80℃,真空(-0.095MPa)下脱气2小时,以便将预聚物中的气体以及小分子化合物除去;然后加入0.77质量份的平均直径为40微米的中空微球聚合物,搅拌下使中空微球聚合物均匀地分散于预聚物中,真空(-0.095MPa)下再次脱气2小时,然后降温至50℃,待用;
步骤二、固化剂的配制。
将28.32质量份的MOCA升温至116℃,使其完全熔化成澄清透明液体,待用;
步骤三、采用固化剂对含有中空微球聚合物的预聚物进行固化。
将预聚物与固化剂在高速剪切下混合,然后浇铸到圆柱形模具中,形成厚度为12厘米的浇铸块,并且使之在70℃下凝胶15分钟,然后在30分钟内将浇铸体升温至100℃,固化16小时。固化完成后使其在烘箱内自动降温至室温,然后将固化的浇铸块由上至下依次切割成厚度为2毫米的薄片,总计60片,由上至下依次编号。
取编号为15的抛光层薄片按上述方法分别测定密度、硬度、断裂伸长率和膨胀系数。
各原料及用量和理化性能总结于表1和表2中。其中所有原料的量为质量份数。
试验例1
抛光层的密度均一性评价。
实验方法1:将实施例1和对比例1中切割所得抛光层薄片分别记为第一组和第二组,并且分别将第一组和第二组的薄片从上至下依次编号为1~60,分别测试每一片的邵氏密度,并将其结果总结于图2中。
实验方法2:取出实施例1以及对比例1最中间,即编号为29号的薄片,沿半径方向,从内(圆心)至外(边缘)分别取直径为4厘米的小圆片,依次编号1~10号,并测试其邵氏密度,并将其结果总结于图3中。
分析图2和图3可以得到以下结果。
图2中,对比例1的密度分布呈现出中间低,两端高的“微笑曲线”。这是由于浇铸后的反应过程中,中间的热量比两端更难以放出,使得温度比两端高,导致聚氨酯本体以及中空微球聚合物发生一定的膨胀,因而密度较低。而实施例1中,由于降低了固化剂组合物的初始温度,使得聚氨酯反应过程中的热量能够均匀而平稳的释放出来,虽然中间的密度仍然比两端稍低,但是聚氨酯本体以及中空微球聚合物的膨胀得到了有效的抑制,因而表现出更加平直的曲线。
图3所示的径向密度分布中,对比例1和实施例1中的薄片密度均呈现出越靠近圆心,密度越低、越靠近边缘,密度越高的现象。但是,实施例1中的密度均一性,远优于对比例1中结果,其原因也是较低的起始反应温度所致。总之,采用更低温度的固化剂组合物,有效地抑制了反应剧烈放热的过程,可以得到密度均一性更好的抛光层。
实施例2~11
采用同实施例1相同的工艺,选取不同种类的脂肪族二元胺以及不同NCO含量的预聚物、平均直径不同的中空微球聚合物以及不同的扩链系数,可获得不同效果的抛光层。各原料及用量和理化性能总结于表1和表2中。其中所有原料的量为质量份数。
表1实施例1-11及对比例1的聚氨酯抛光层原料组成
Figure PCTCN2018103619-appb-000013
表2实施例1-11及对比例1的聚氨酯抛光层理化特性
Figure PCTCN2018103619-appb-000014
Figure PCTCN2018103619-appb-000015
对照例2
本实施例提供了一种抛光层,其制作方法如下:
异氰酸酯封端的聚氨基甲酸酯预聚物(以下简称预聚物)的处理:将100质量份由甲苯二异氰酸酯和聚四氢呋喃反应所得的异氰酸酯封端的预聚物(含有未反应的NCO基团质量百分数为8.75~9.05%)升温至80℃,真空(-0.095MPa)下脱气2小时,以便将预聚物中的气体以及小分子化合物除去;然后加入0.77质量份的平均直径为40微米的中空微球聚合物,搅拌下使中空微球聚合物均匀地分散于预聚物中,真空(-0.095MPa)下再次脱气2小时,然后降温至50℃,待用;
固化剂组合物的配制:将23.46质量份的MOCA升温至116℃,使其完全熔化成澄清透明液体,向其中加入5质量份的由氨基封端的聚氧化丙烯醚D2000,搅拌下使两者混合均匀,形成均一的透明液体,然后降温至70℃,待用;
将预聚物与固化剂组合物在高速剪切下混合,然后浇铸到圆柱形模具中,形成厚度为12厘米的浇铸块,并且使之在70℃下凝胶15分钟,然后在30分钟内将浇铸体升温至100℃,固化16小时。固化完成后使其在烘箱内自动降温至室温,然后将固化的浇铸块由上至下依次切割成厚度为2毫米的薄片,总计60片,由上至下依次编号。
取编号为15的抛光层薄片按上述方法分别测定密度、硬度、断裂伸长率和膨胀系数。
各原料及用量和理化性能总结于表3和表4中。其中所有原料的量为质量份数。
实施例12
本实施例提供了一种抛光层,其制作方法如下:
异氰酸酯封端的聚氨基甲酸酯预聚物(以下简称预聚物)的处理:
将100质量份由甲苯二异氰酸酯和聚四氢呋喃反应所得的异氰酸酯封端的预聚物(含有未反应的NCO基团质量百分数为8.75~9.05%)升温至80℃,真空(-0.095MPa)下脱气2小时,以便将预聚物中的气体以及小分子化合物除去;然后加入0.77质量份的平均直径为40微米的中空微球聚合物,搅拌下使中空微球聚合物均匀地分散于预聚物中,真空(-0.095MPa)下再次脱气2小时,然后降温至50℃,待用;
固化剂组合物的配制:将23.46质量份的MOCA升温至116℃,使其完全熔化成澄清透明液体,向其中加入4质量份的由氨基封端的聚氧化丙烯醚D2000以及1质量份的三官能度聚醚胺T5000,搅拌下使两者混合均匀,形成均一的透明液体,然后降温至70℃,待用;
将预聚物与固化剂组合物在高速剪切下混合,然后浇铸到圆柱形模具中,形成厚度为12厘米的浇铸块,并且使之在70℃下凝胶15分钟,然后在30分钟内将浇铸体升温至100℃,固化16小时。固化完成后使其在烘箱内自动降温至室温,然后将固化的浇铸块由上至下依次切割成厚度为2毫米的薄片,总计60片,由上至下依次编号。
取编号为15的抛光层薄片按上述方法分别测定密度、硬度、断裂伸长率和膨胀系数。
各原料及用量和理化性能总结于表1和表2中。其中所有原料的量为质量份数。
实施例13~20
采用同实施例12相同的工艺,控制脂肪族二元胺和多元胺的总量不变,调节两者的比例,可获得一系列交联密度不同的抛光垫,其各原料及用量和理化性能总结于表3和表4中。
表3实施例12-20及对照例2的聚氨酯抛光层原料组成
Figure PCTCN2018103619-appb-000016
表4实施例12-20及对照2的聚氨酯抛光层的理化特性
Figure PCTCN2018103619-appb-000017
试验例2耐水解性评价
实验方法:取实施例13~20以及对照例2编号为15的抛光层,分别裁剪出直径为127mm的圆片,然后浸没于pH=2的盐酸溶液和pH=12的氢氧化钠溶液中,浸没80小时后测量其尺寸,计算其尺寸变化情况,结果总结于表5中。
表5实施例13~20以及对照例2的抛光层的耐水解性
Figure PCTCN2018103619-appb-000018
Figure PCTCN2018103619-appb-000019
由表4可见,随着抛光层的交联密度的提升,其热膨胀系数呈现出明显下降的趋势,并且多元胺组合物的含量越高,热膨胀系数越小。
分析表5可知,从实施例13到20,随着配方中多元胺组合物含量的提高,其耐酸、耐碱水解性能都有着大幅提高,并且直径变化率均小于对照例2,说明即使较低的交联(实施例13),也能在一定程度上提升抛光垫的耐水解性。
试验例3抛光层的去除速率评价
实验方法:将实施例13、16、19以及对照例2所得相同部位的抛光层,制备成抛光垫。通过上机测试,对其抛光性能进行评价,测试条件如下:
测试机台为AMAT Refelxion(Modify 5Zone);
抛光液为ANJI 3060(1:9稀释,H2O2%=1%),流速250mL/min;
修整盘为Saesol Disk 6045C4,P/C downforce 5lbf,Head&Platen RPM:93/87;
所用的晶圆(wafer)为Patten wafer:Semitech 754,Cu Blanket wafer Pre Thickness10KA。
在研磨中记录其寿命周期内的去除速率变化,结果总结于图4中。
分析图4可知,随着研磨时间的延长,抛光垫的去除速率均呈现出逐渐下降的趋势,但是,交联密度越高的体系,去除率下降得越缓慢。
试验例4抛光垫的使用寿命评价
实验方法:将实施例13~20以及比照例2所得抛光层制备成抛光垫,通过修整盘的长时间切削,测试其极限使用寿命,即将参数相同的沟槽切削完所需时间,结果总结于表6中。
表6抛光层使用寿命
Figure PCTCN2018103619-appb-000020
由表6可得如下结果:
在较低交联密度时,使用寿命并无明显差异,然而当交联密度升高到一定程度后,抛光垫的弹性不足逐渐暴露出来,表现为抛光垫易碎、使用寿命逐渐缩短,综合去除速率以及使用寿命两方面因素,控制多元胺固化剂的量在1.5~3.5%之间是一个较好的选择。
试验例5
在硅晶片的加工中,晶圆能够切割成的晶片数量与晶圆表面平整性有很大关系,表面平整性越好,同一晶圆能够切割出的晶片数量则越多。然而在实际的抛光过程中,由于边缘效应的存在,抛光垫对晶圆的抛光,其研磨速率并不是各个区域完全相同。表现为靠近晶圆边缘时,去除速率呈现出明显的下降趋势。
如图5中,横坐标表示距离晶圆圆心的距离,众坐标表示研磨过程中的去除速率。其中曲线1为采用Dow公司牌号IC1010的抛光垫,曲线2为采用本发明实施例12的抛光层制备的抛光垫,分别对晶圆研磨获得的的去除速率与晶圆位置的关系曲线图。
由图5可以看出,在300mm晶圆的抛光过程中,曲线1所示在最外侧大于50mm的圆周中,抛光速率呈现显著的下降。然而,采用本发明实施例12(图5中曲线2)制备的抛光垫,令人惊奇地发现,其研磨特性优异,表现出显著改进的边缘效应现象。
实施例21
本实施例提供了一种聚氨酯抛光层,其制作方法如下:
步骤一、异氰酸酯封端的聚氨基甲酸酯预聚体(或简称预聚体)的处理。
将100质量份由甲苯二异氰酸酯和聚四氢呋喃反应所得的异氰酸酯封端的预聚体(含有未反应的-NCO基团质量百分数为8.75~9.05%)升温至80℃,真空(~0.095MPa)下脱气2小时,以便将预聚体中的气体以及小分子化合物除去;然后加入0.86质量份的平均直径为40微米的中空微球聚合物,搅拌下使中空微球聚合物均匀地分散于预聚体中,真空(~0.095MPa)下再次脱气2小时,然后降温至50℃,待用;
步骤二、固化剂组合物的配制。
将23.5质量份的MOCA升温至115℃,使其完全熔化成澄清透明液体,向其中加入10质量份的脂肪族端仲氨基聚醚SD2001,搅拌下使两者混合均匀,形成均一的透明液体待用;
步骤三、采用固化剂组合物对含有中空微球聚合物的预聚体进行固化。
各原料及用量见表7和表8,其中所有物料的量为质量份数。
将预聚体与固化剂组合物在高速剪切下混合,然后浇铸到圆柱形模具中,形成厚度为12厘米的浇铸块,并且使之在70℃下凝胶15分钟,然后在30分钟内将浇铸体升温至100℃,固化16小时。固化完成后使其在烘箱内自动降温至室温,然后将固化后的浇铸块由下至上切割成厚度为2毫米的薄片,总计60片。
分别按前述方法测定所得聚氨酯抛光层的邵氏硬度、密度和压缩率,结果请见表9。
实施例22~35
采用同实施例21相同的工艺,选取不同牌号的脂肪族端仲氨基聚醚以及不同未反应的-NCO含量的预聚体、平均直径不同的中空微球聚合物以及不同的扩链系数,可获得不同效果的聚氨酯抛光层。各原料及用量总结于表1和表2,其中所有物料的量为质量份数。按实施例1中的方法测定各实施例制得的聚氨酯抛光层的硬度、密度和压缩率,结果请见表3。
对比例3
购买了目前先进制程中广泛应用于铜制程上的一款市售抛光垫,各原料总结于表7。按实施例21中的方法测定本对比例的聚氨酯抛光层的硬度、密度和压缩率,结果请见表9。
对比例4
本对比例的聚氨酯抛光层,其制作方法如下:
步骤一、异氰酸酯封端的聚氨基甲酸酯预聚体(以下简称预聚体)的处理。
将100质量份由甲苯二异氰酸酯和聚四氢呋喃反应所得的异氰酸酯封端的预聚体(含有未反应的NCO基团质量百分数为8.75~9.05%)升温至80℃,真空(~0.095MPa)下脱气2小时,以便将预聚体中的气体以及小分子化合物除去;然后加入0.86质量份的平均直径为40微米的中空微球聚合物,搅拌下使中空微球聚合物均匀地分散于预聚体中,真空(~0.095MPa)下再次脱气2小时,然后降温至50℃,待用;
步骤二、固化剂的配制。
将23.5质量份的MOCA升温至115℃,使其完全熔化成澄清透明液体,待用;
步骤三、采用固化剂对含有中空微球聚合物的预聚体进行固化。
将预聚体与固化剂在高速剪切下混合,然后浇铸到圆柱形模具中,形成厚度为12厘米的浇铸块,并且使之在70℃下凝胶15分钟,然后在30分钟内将浇铸体升温至100℃,固化16小时。固化完成后使其在烘箱内自动降温至室温,然后将固化后的浇铸块由下至上切割成厚度为2毫米的薄片,总计60片。
各原料及用量总结于表7和表8,其中所有物料的量为质量份数。测定本对比例制得的聚氨酯抛光层的硬度、密度和压缩率,结果请见表9。
表7实施例21-35及对比例3-4的聚氨酯抛光层组分
Figure PCTCN2018103619-appb-000021
Figure PCTCN2018103619-appb-000022
*:化合物A的分子结构为:
Figure PCTCN2018103619-appb-000023
表8实施例21-35及对比例3-4的聚氨酯抛光层各组分用量(单位:质量份)
Figure PCTCN2018103619-appb-000024
Figure PCTCN2018103619-appb-000025
*:其中SD401和SD2001的用量比为1:1;
**:其中SD401和SD2001的用量比为2:1。
实施例21~35和对比例3~4抛光垫聚氨酯抛光层的理化特征如表9所示。
表9实施例21-35及对比例3-4的聚氨酯抛光层理化特性
Figure PCTCN2018103619-appb-000026
分析表7~9可得到如下结果:
由于端仲氨基聚醚反应活性与芳香族伯胺固化剂接近,可以方便的调节其与芳香族伯胺的比例,从而在较大范围内调节抛光垫的硬度,以获得不同抛光效果的抛光垫。从表8中实施例21~23和34~35可知,固化剂体系中端仲氨基聚醚质量比越大,聚氨酯抛光层硬度随之变小,压缩率随之变大。通过比较实施例21和对比例3~4可知,加入MOCA后,其抛光层硬度变大,压缩率随之变小,抛光垫的理化性能增强,其稳定性和持久性越好;然而加入端仲氨基聚醚与MOCA固化剂体系,其交联性更强,理化性能进一步提高,研磨性能也随之提高。
试验例6:抛光层的密度均一性评价
实验方法1:测试聚氨酯浇铸块切片的密度均一性:将实施例21和对比例4中切割所得抛光层薄片,各60片,由下至上每隔5片取一片,编号1~10,分别测试邵氏密度,并将其结果总结于图6中。
由图6可见,对比例4各抛光层薄片代表的聚氨酯浇铸块的密度分布呈现出中间低,两端高的“微笑曲线”。
实施例21中,由于使用反应活性相近的端仲氨基聚醚和芳族双官能的双组份固化体系,并通过端仲氨基聚醚的降低固化剂使用温度的效应,减少了浇筑过程中热量的产生,浇铸块固化后的均一性得到较好控制,取自浇铸块不同部位的抛光片表现出显著改进的均一性。对比图2中实施例1的实验结果,可以看出实施例21获得自固化的浇铸块各部位抛光层的密度更加一致,可见采用端仲氨基聚醚获得了整体固化更为均匀的浇铸块。
实验方法2:测试聚氨酯浇铸块中部的聚氨酯切片从中心到边缘的密度均一性:取出实施例1以及对比例2各自60片抛光层薄片最中间的,即第29片薄片,分别沿半径方向,从内(圆心)至外(边缘)依次取直径为4厘米的10各小圆片,顺序编号1~10号,测试其邵氏密度,并将其结果总结于图7中。
图7所示的取自聚氨酯浇铸块中部的抛光片的径向密度分布中,对比例4中的抛光片密度呈现出越靠近圆心密度越低、越靠近边缘密度越高的现象,而实施例21中的密度均一性显著优于对比例4。同样的,这样的密度均一性的改进原因也是本发明较佳的双组份固化剂体系所致。
可见,采用本发明的端仲氨基聚醚和芳香族双官能化合物的固化体系,可以有效地改善抛光层制备中的品质可控性,不但能够获得品质更为均一的抛光层,还能获得各抛光层从中心到边缘的密度均一性,从而有效提高了抛光垫的品质均一性,并因此可降低了半导体产品的缺陷率,整体提高半导体的平坦化质量。
试验例7:抛光垫的抛光性能评价
取上述实施例21~23的相同部位的抛光层和对比例3的常规抛光层制备成抛光垫。
对于上述制备的实施例21~23和对比例3抛光垫,通过上机测试,对其抛光性能进行评价,测试条件如下:
测试机台为AMAT Refelxion(Modify 5Zone);
抛光液为ANJI 3060(1:9稀释,H2O2%=1%),流速250mL/min;
修整盘为Saesol Disk 6045C4,P/C downforce 5lbf,Head&Platen RPM:93/87;
所用的晶圆(wafer)为Patten wafer:Semitech 754,Cu Blanket wafer Pre Thickness10KA。
抛光垫的去除速率评价
在AMAT Refelxion测试机上用实施例21~23和对比例3的抛光层制备的抛光垫对晶圆进行研磨,在研磨中记录其寿命周期内的去除速率和缺陷率,结果总结于表10和图7~8中。
表10抛光垫实施例21~23、34~35和对比例3去除速率和非均一性NU值对比
Figure PCTCN2018103619-appb-000027
×-无,○-小于2条,○○○-大于6条
图7给出了实施例21~23的抛光垫以及对比例3的常规抛光垫在2.5psi压力下所测试的晶圆不同位置处的去除速率的曲线图。
图8给出了给出了实施例21~23的抛光垫以及对比例3的常规抛光垫的对上述基材抛光后材料上的缺陷(defect)的扫描电镜照片。
参见表10及图7~8,实施例21和实施例22表现出比对比例3的抛光垫更高的抛光速率,而抛光垫实施例23则去除速率较低,可能的原因是硬度较低。可见,如需硬度较高的抛光层,则固化剂体系中端仲氨基聚醚的质量份数不宜过高。
其次,实施例21~23和34~35抛光垫均表现出与对比例3的常规抛光垫相近的速率均一性:从晶圆的圆心到边缘,均没有出现较大的速率波动,NU值均小于5%,说明本发明的抛光层制备中采用的固化剂体系可以有效均衡抛光垫的去除速率和缺陷率,同时获得满意的去除速率和缺陷率。例如,实施例21~22和34~35的去除速率明显提高,而缺陷率并没有显著增加,获得了去除速率和缺陷率的良好平衡。实施例23的去除速率虽然有所下降(相对于对比例1下降了约2.9%),但是其缺陷数量则明显改善(相对于对比例1下降了约15%,由359降至305)。
此外,实施例35固化剂采用三官能度全氟仲胺时,抛光垫具有近完美的外观且不存在水波纹路,而对比例3水波纹问题严重,这也可能是其导致抛光基材后材料表面的缺陷(defect)率高的重要原因,同时使得NU值偏高。而实施例21~23和34使用端仲氨基组分固化剂,在一定程度上改善了抛光垫水波纹问题的产生。
对比例5~10终点检测窗的硬度对缺陷数量的影响
采用实施例22的抛光层的配方,采用不同的聚氨酯材料,控制终点检测窗的硬度,制备了具有终点检测窗的实施例22及对比例5~10的抛光层,并进一步按照以上试验例7制备了抛光垫,并检测其缺陷数量。实施例22与对比例5~10的抛光层硬度、终点检测窗硬度、抛光层与终点检测窗的硬度差以及缺陷数量,请见下表11。
表11抛光层与终点检测窗的硬度差对缺陷数量的影响
Figure PCTCN2018103619-appb-000028
由上表可以看到,当终点检测窗硬度低于抛光层硬度且差值大于5时(对比例5~7),视窗形态出现凹陷的情形,这对于抛光的持久性是不利的;而当终点检测窗硬度高于抛光层硬度且差值大于5时(对比例8~10),缺陷数量随硬度差的增大呈现明显增加的趋势。因此终点检测窗硬度与抛光层硬度的差值需控制在±5以内。
尽管已用具体实施例来说明和描述了本发明,然而应意识到,在不背离本发明的精神和范围的情况下可以作出许多其它的更改和修改。因此,这意味着在所附权利要求中包括属于本发明范围内的所有这些变化和修改。

Claims (16)

  1. 一种聚氨酯抛光层,用于制备化学机械抛光垫,其特征在于,所述聚氨酯抛光层含有由多成分原料组合反应生成的反应产物,所述原料组合包括异氰酸酯封端的预聚物,中空微球聚合物及固化剂组合物,其特征在于,
    基于所述固化剂组合物的总重量,所述固化剂组合物包括:
    5~55wt%的脂肪族二元胺固化剂,其中,所述脂肪族二元胺的数均分子量为1000~5000;
    0~8wt%的多元胺固化剂,其中,所述多元胺固化剂的分子结构中至少含有三个伯胺基或至少含有三个仲胺基,所述多元胺固化剂的数均分子量为250~6000;和
    40~90wt%的芳香族双官能固化剂,
    其中,所述聚氨酯抛光层密度为0.6~1.1g/cm 3,邵氏硬度为45~70,断裂伸长率为50~450%;且
    其中,所述聚氨酯抛光层的热膨胀系数为100-200ppm/℃。
  2. 根据权利要求1所述的聚氨酯抛光层,其特征在于,所述异氰酸酯封端的预聚物含有8.5~9.5wt%未反应的-NCO基团。
  3. 根据权利要求1所述的聚氨酯抛光层,其特征在于,所述异氰酸酯封端的预聚物中的未反应的-NCO基团与所述固化剂组合物中的活性氢基团的化学计量比为1.05~1.20。
  4. 根据权利要求1所述的聚氨酯抛光层,其特征在于,所述多元胺固化剂选自脂肪族多元胺、芳香族多元胺及其混合物组成的组;其中,所述脂肪族多元胺的数均分子量为2000~6000,所述脂肪族多元胺的数均分子量为250~2000。
  5. 根据权利要求1所述的聚氨酯抛光层,其特征在于,所述聚氨酯抛光层在pH值为2~5的条件下水解80小时的水解稳定性小于1.5%,在pH值为9~12的条件下水解80小时的水解稳定性小于1.5%。
  6. 根据权利要求1所述的聚氨酯抛光层,其特征在于,所述原料组合包括:异氰酸酯封端的氨基甲酸酯预聚物、中空微球聚合物及固化剂组合物,其中:
    基于所述固化剂组合物的总重量,所述固化剂组合物包括:
    5~55wt%聚醚二元胺固化剂,;和
    0.1~8wt%多元胺固化剂;
    40~90wt%芳香族双官能固化剂,
    其中,所述聚氨酯抛光层的断裂伸长率为50~200%;且
    其中,所述聚氨酯抛光层的热膨胀系数为100~140ppm/℃。
  7. 根据权利要求6所述的聚氨酯抛光层,其特征在于,所述聚氨酯抛光层在pH值 为2~5的条件下水解80小时的水解稳定性小于0.65%,在pH值为9~12的条件下水解80小时的水解稳定性小于0.80%。
  8. 根据权利要求1所述的聚氨酯抛光层,其特征在于,所述聚氨酯抛光层包括至少一个终点检测区域和/或用于接收抛光液的沟槽。
  9. 一种如权利要求1~8中任一项所述的聚氨酯抛光层的制备方法,其特征在于,所述制备方法包括:
    将液体状态的异氰酸酯封端的预聚物与中空微球聚合物混合,真空脱气后得到第一产物;
    将所述第一产物在50℃下与固化剂组合物在高速剪切下混合,得到第二产物;
    控制所述第二产物的温度,以使所述第一产物、所述固化剂组合物的初始反应温度≤70℃,且反应峰值温度≤80℃。
  10. 一种化学机械抛光垫,其特征在于,所述化学机械抛光垫具有如权利要求1至8中任一项所述的聚氨酯抛光层。
  11. 一种化学机械抛光垫,所述抛光垫包括聚氨酯抛光层,其特征在于,
    所述聚氨酯抛光层是原料组合的反应产物,所述原料组合包括异氰酸酯封端的预聚体、中空微球聚合物和固化剂组合物的,其中,
    所述固化剂组合物包括:端仲氨基聚醚固化剂和芳香族双官能固化剂,且所述端仲氨基聚醚固化剂与所述芳香族双官能固化剂的质量比为1:4~4:1;和
    所述异氰酸酯封端的预聚体含有5.5~9.5wt%未反应的NCO基团。
  12. 根据权利要求11所述的化学机械抛光垫,其中所述端仲氨基聚醚固化剂的数均分子量为250~6000。
  13. 根据权利要求11或12所述的化学机械抛光垫,其中,所述端仲氨基聚醚固化剂包括至少一种选自以下通式I和通式II所示的化合物所组成的组:
    Figure PCTCN2018103619-appb-100001
    Figure PCTCN2018103619-appb-100002
    其中,通式I中,R 1为C1~C8的烷基或含氟烷基,R 2、R 3、R 4和R 5各自独立地为H或C1~C8的烷基或含氟烷基;且x、y分别为0或正整数,前提为:x+y≤12;
    通式II中,R 1为C1~C8的烷基或含氟烷基,R 2、R 3、R 4和R 5各自独立地为H或C1~C8的烷基或含氟烷基;且a=b=c=1,x、y、m、n、o、p分别为0或正整数,前提为:x+y+m+n+o+p≤12。
  14. 根据权利要求11所述的化学机械抛光垫,其中,所述聚氨酯抛光层密度为0.6~1.1g/cm 3,邵氏硬度为45~75。
  15. 根据权利要求11所述的化学机械抛光垫,其中,所述抛光垫还具有终点检测窗,所述终点检测窗的邵氏硬度与所述聚氨酯抛光层的邵氏硬度的差的绝对值≤5。
  16. 一种对半导体基材、光学基材和磁性基材中至少一种基材进行平坦化的方法,所述方法包括以下步骤:
    提供半导体基材、光学基材和磁性基材中至少一种基材,所述基材具有表面;
    提供权利要求11~15中任一项所述的化学机械抛光垫;和
    用所述化学机械抛光垫对所述基材表面进行动态抛光处理。
PCT/CN2018/103619 2017-08-31 2018-08-31 一种聚氨酯抛光层、含抛光层的抛光垫、抛光层的制备方法及平坦化材料的方法 WO2019042428A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/642,008 US11179822B2 (en) 2017-08-31 2018-08-31 Polyurethane polishing layer, polishing pad comprising polishing layer, method for preparing polishing layer and method for planarizing material
KR1020207005721A KR102338854B1 (ko) 2017-08-31 2018-08-31 폴리우레탄 연마층, 연마층을 포함하는 연마 패드, 연마층의 제조 방법 및 재료 평탄화 방법

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201710769743.9 2017-08-31
CN201710769743.9A CN107553313B (zh) 2017-08-31 2017-08-31 一种抛光垫、聚氨酯抛光层及其制备方法
CN201810182728.9 2018-03-06
CN201810182728 2018-03-06

Publications (1)

Publication Number Publication Date
WO2019042428A1 true WO2019042428A1 (zh) 2019-03-07

Family

ID=65526203

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/103619 WO2019042428A1 (zh) 2017-08-31 2018-08-31 一种聚氨酯抛光层、含抛光层的抛光垫、抛光层的制备方法及平坦化材料的方法

Country Status (3)

Country Link
US (1) US11179822B2 (zh)
KR (1) KR102338854B1 (zh)
WO (1) WO2019042428A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114735763A (zh) * 2022-04-01 2022-07-12 青岛爱尔家佳新材料股份有限公司 一种中空多壳层金属氧化物及其制备方法和用于方舱的防爆聚脲

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11628535B2 (en) * 2019-09-26 2023-04-18 Skc Solmics Co., Ltd. Polishing pad, method for manufacturing polishing pad, and polishing method applying polishing pad
CN112574386B (zh) * 2020-12-03 2022-08-05 万华化学集团电子材料有限公司 透光性改进的浇注型聚氨酯弹性体制造方法及其作为抛光垫窗口材料的应用
CN113021200B (zh) * 2021-03-12 2022-10-14 安徽禾臣新材料有限公司 一种低损伤性光学晶体片抛光用无蜡垫及其生产工艺
US11548114B1 (en) 2021-09-11 2023-01-10 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Compressible non-reticulated polyurea polishing pad
US11897082B2 (en) 2021-09-11 2024-02-13 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Heterogeneous fluoropolymer mixture polishing pad
CN115284166B (zh) * 2022-08-16 2024-02-23 湖北鼎汇微电子材料有限公司 一种抛光垫
DE102022126743A1 (de) * 2022-10-13 2024-04-18 Ernst-Abbe-Hochschule Jena Körperschaft des öffentlichen Rechts Werkzeug zum Materialabtrag und Verfahren zu seiner Herstellung

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1914241A (zh) * 2004-02-03 2007-02-14 罗门哈斯电子材料Cmp控股股份有限公司 聚氨酯抛光垫
CN101077569A (zh) * 2006-05-25 2007-11-28 罗门哈斯电子材料Cmp控股股份有限公司 化学机械抛光垫
CN103802018A (zh) * 2012-11-01 2014-05-21 罗门哈斯电子材料Cmp控股股份有限公司 柔软可修整的化学机械抛光垫
CN105904352A (zh) * 2016-06-03 2016-08-31 湖北鼎龙化学股份有限公司 一种抛光层及其制备方法以及低损伤化学机械抛光垫
CN107553313A (zh) * 2017-08-31 2018-01-09 湖北鼎龙控股股份有限公司 一种抛光垫、聚氨酯抛光层及其制备方法

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6477926B1 (en) * 2000-09-15 2002-11-12 Ppg Industries Ohio, Inc. Polishing pad
US7097549B2 (en) * 2001-12-20 2006-08-29 Ppg Industries Ohio, Inc. Polishing pad
US6910951B2 (en) * 2003-02-24 2005-06-28 Dow Global Technologies, Inc. Materials and methods for chemical-mechanical planarization
US7704125B2 (en) * 2003-03-24 2010-04-27 Nexplanar Corporation Customized polishing pads for CMP and methods of fabrication and use thereof
US9278424B2 (en) * 2003-03-25 2016-03-08 Nexplanar Corporation Customized polishing pads for CMP and methods of fabrication and use thereof
US20060089094A1 (en) * 2004-10-27 2006-04-27 Swisher Robert G Polyurethane urea polishing pad
US20060089095A1 (en) * 2004-10-27 2006-04-27 Swisher Robert G Polyurethane urea polishing pad
US20060089093A1 (en) * 2004-10-27 2006-04-27 Swisher Robert G Polyurethane urea polishing pad
TW200709892A (en) * 2005-08-18 2007-03-16 Rohm & Haas Elect Mat Transparent polishing pad
BRPI0719499B1 (pt) * 2006-12-21 2023-10-10 Dow Global Technologies Inc Composição de poliolefina funcional
CN102448669B (zh) * 2009-05-27 2014-12-10 罗杰斯公司 抛光垫、其聚氨酯层及抛光硅晶片的方法
US9040467B2 (en) * 2011-05-03 2015-05-26 Preferred Technology, Llc Coated and cured proppants
US8801949B2 (en) * 2011-09-22 2014-08-12 Dow Global Technologies Llc Method of forming open-network polishing pads
US8512427B2 (en) * 2011-09-29 2013-08-20 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Acrylate polyurethane chemical mechanical polishing layer
JP5945874B2 (ja) * 2011-10-18 2016-07-05 富士紡ホールディングス株式会社 研磨パッド及びその製造方法
CN102702946B (zh) 2012-01-05 2014-09-24 北京东方雨虹防水技术股份有限公司 一种专用于水工建筑防护的喷涂聚脲弹性涂料及其制备方法、使用方法
US9238295B2 (en) * 2013-05-31 2016-01-19 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Soft and conditionable chemical mechanical window polishing pad
US9102034B2 (en) * 2013-08-30 2015-08-11 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Method of chemical mechanical polishing a substrate
CN103878707B (zh) 2014-03-31 2016-04-13 湖北鼎龙化学股份有限公司 化学机械抛光的抛光垫及其制备方法
US9731398B2 (en) * 2014-08-22 2017-08-15 Rohm And Haas Electronic Materials Cmp Holding, Inc. Polyurethane polishing pad
US10875153B2 (en) 2014-10-17 2020-12-29 Applied Materials, Inc. Advanced polishing pad materials and formulations
JP6539910B2 (ja) 2015-04-03 2019-07-10 富士紡ホールディングス株式会社 研磨パッド及びその製造方法
US10092998B2 (en) * 2015-06-26 2018-10-09 Rohm And Haas Electronic Materials Cmp Holdings, Inc. Method of making composite polishing layer for chemical mechanical polishing pad
CN105038546B (zh) 2015-07-30 2019-03-05 青岛爱尔家佳新材料股份有限公司 一种喷涂聚脲弹性体及其制备方法
CN106046313A (zh) 2016-06-03 2016-10-26 湖北鼎龙化学股份有限公司 一种化学机械抛光垫、缓冲层及其制备方法
CN106891246B (zh) 2017-03-30 2019-05-07 湖北鼎龙控股股份有限公司 一种用于半导体、光学材料和磁性材料表面平坦化的化学机械抛光垫

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1914241A (zh) * 2004-02-03 2007-02-14 罗门哈斯电子材料Cmp控股股份有限公司 聚氨酯抛光垫
CN101077569A (zh) * 2006-05-25 2007-11-28 罗门哈斯电子材料Cmp控股股份有限公司 化学机械抛光垫
CN103802018A (zh) * 2012-11-01 2014-05-21 罗门哈斯电子材料Cmp控股股份有限公司 柔软可修整的化学机械抛光垫
CN105904352A (zh) * 2016-06-03 2016-08-31 湖北鼎龙化学股份有限公司 一种抛光层及其制备方法以及低损伤化学机械抛光垫
CN107553313A (zh) * 2017-08-31 2018-01-09 湖北鼎龙控股股份有限公司 一种抛光垫、聚氨酯抛光层及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114735763A (zh) * 2022-04-01 2022-07-12 青岛爱尔家佳新材料股份有限公司 一种中空多壳层金属氧化物及其制备方法和用于方舱的防爆聚脲
CN114735763B (zh) * 2022-04-01 2023-11-21 青岛爱尔家佳新材料股份有限公司 一种中空多壳层金属氧化物及其制备方法和用于方舱的防爆聚脲

Also Published As

Publication number Publication date
KR20200037314A (ko) 2020-04-08
US20200215661A1 (en) 2020-07-09
KR102338854B1 (ko) 2021-12-15
US11179822B2 (en) 2021-11-23

Similar Documents

Publication Publication Date Title
WO2019042428A1 (zh) 一种聚氨酯抛光层、含抛光层的抛光垫、抛光层的制备方法及平坦化材料的方法
CN107553313B (zh) 一种抛光垫、聚氨酯抛光层及其制备方法
JP5078000B2 (ja) 研磨パッド
TWI329045B (en) Polishing pad and method of polishing semiconductor substrate
TWI442997B (zh) Polishing pad
CN109015342B (zh) 一种化学机械抛光垫及其平坦化基材的方法
TWI488712B (zh) Polishing pad and manufacturing method thereof
JP7197330B2 (ja) アミン開始ポリオール含有硬化剤からの高除去速度ケミカルメカニカルポリッシングパッド
TW201540430A (zh) 硏磨墊及其製造方法
JP5426469B2 (ja) 研磨パッドおよびガラス基板の製造方法
TWI492817B (zh) A polishing pad and its manufacturing method, and manufacturing method of a semiconductor device
CN109824854B (zh) 一种抛光垫
JP5276502B2 (ja) 研磨パッド及びその製造方法
JP7118841B2 (ja) 研磨パッド
JP7323265B2 (ja) 研磨パッド
WO2012056512A1 (ja) 研磨パッド及びその製造方法
JP2013144353A (ja) 研磨パッド
JP7442275B2 (ja) 研磨パッド
JP2014111296A (ja) 研磨パッド及びその製造方法
JP5465578B2 (ja) 研磨パッドおよびその製造方法、ならびに半導体デバイスの製造方法
JP5087440B2 (ja) 研磨パッド、研磨パッドの製造方法、及び半導体デバイスの製造方法
JP5009020B2 (ja) 研磨パッド
JP6855202B2 (ja) 研磨パッド
JP6803712B2 (ja) 研磨パッド
JP5738728B2 (ja) 研磨パッド

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18851785

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 20207005721

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18851785

Country of ref document: EP

Kind code of ref document: A1