WO2019042288A1 - 空调及其过冷管组的故障检测和处理方法 - Google Patents

空调及其过冷管组的故障检测和处理方法 Download PDF

Info

Publication number
WO2019042288A1
WO2019042288A1 PCT/CN2018/102768 CN2018102768W WO2019042288A1 WO 2019042288 A1 WO2019042288 A1 WO 2019042288A1 CN 2018102768 W CN2018102768 W CN 2018102768W WO 2019042288 A1 WO2019042288 A1 WO 2019042288A1
Authority
WO
WIPO (PCT)
Prior art keywords
air conditioner
flow rate
exhaust gas
time
tube group
Prior art date
Application number
PCT/CN2018/102768
Other languages
English (en)
French (fr)
Inventor
杨中锋
曾福祥
王彦生
孙远成
Original Assignee
青岛海尔空调器有限总公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海尔空调器有限总公司 filed Critical 青岛海尔空调器有限总公司
Publication of WO2019042288A1 publication Critical patent/WO2019042288A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/20Disposition of valves, e.g. of on-off valves or flow control valves
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/37Capillary tubes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2500/00Problems to be solved
    • F25B2500/06Damage
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/13Mass flow of refrigerants
    • F25B2700/131Mass flow of refrigerants at the outlet of a subcooler
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2115Temperatures of a compressor or the drive means therefor
    • F25B2700/21152Temperatures of a compressor or the drive means therefor at the discharge side of the compressor

Definitions

  • the invention relates to the field of air conditioners, and in particular to a fault detection and processing method for an air conditioner and a supercooled tube set thereof.
  • the check valve in the supercooled tube group sometimes fails and cannot work normally. Specifically, the valve core of the check valve cannot be reset, and the refrigerant opening cannot be normally closed. As a result, the secondary capillary in the supercooled tube group does not have a throttling effect during heating, which hinders the heat exchange of the refrigerant, which seriously affects the heating effect of the air conditioner and greatly reduces the user experience.
  • the present invention has been made in order to provide a failure detecting and processing method for an air conditioner and a supercooled pipe group thereof that overcomes the above problems or at least partially solves the above problems.
  • Another object of the invention is to repair the failure of the supercooled tube set.
  • the present invention provides a fault detection and processing method for an air conditioning supercooled tube set, comprising: heating and heating of an air conditioner; recording a time required from the start of heating until the exhaust temperature of the compressor is stabilized; determining the time required for stabilization Whether it is less than the first preset time; if yes, detecting the flow rate of the refrigerant flowing through the cold pipe group per unit time; determining whether the refrigerant flow rate is greater than the preset flow rate; and if so, determining that the check valve in the supercooled pipe group is faulty.
  • the method further includes: performing a repairing step of the supercooled tube group, the repairing step comprising: first converting the air conditioner into a cooling state, and then converting to a heating state again; After the exhaust gas temperature of the compressor is stabilized, the flow rate of the refrigerant flowing through the cold pipe group per unit time is detected again; whether the refrigerant flow rate is greater than the preset flow rate; if so, the air conditioner is stopped and the information is sent to notify the user that the one-way valve is damaged; Or perform the repair step of the cold tube group and its subsequent steps again; and if not, control the air conditioner to continue heating.
  • the step of recording the time required for the exhaust gas temperature to stabilize from the start of heating to the compressor comprises: detecting the exhaust gas temperature of the compressor once every predetermined time period from the start of the air conditioning heating; calculating the adjacent two rows The difference between the gas temperatures; determining whether the difference between the last two detected exhaust temperatures is less than the preset temperature difference; if so, determining that the exhaust temperature is stable, calculating the last time from the start of heating to determining that the exhaust temperature is stable The time difference of the exhaust gas temperature of the compressor is detected as the time required for the exhaust gas temperature to stabilize.
  • the step of first converting the air conditioner to the cooling state and then converting to the heating state again comprises: after the second preset time of the air conditioner is stopped, converting to the cooling state; and the air conditioner continues to cool for the third preset time and then stopping the second preset. Time, then convert to the heating state again.
  • the present invention also provides an air conditioner comprising: a refrigerant circulation system formed by sequentially connecting a compressor, an outdoor unit heat exchanger and an indoor unit heat exchanger; and a supercooled tube group disposed in the outdoor unit heat exchanger Downstream of the refrigerant flow path, the supercooled tube group includes: a main capillary tube, one end of which leads to the indoor unit heat exchanger, and the other end of which is connected to one end of the one-way valve; the sub-capillary tube is connected in parallel to both ends of the one-way valve; and the check valve Configuring to allow only the refrigerant to flow in one direction from the outdoor heat exchanger to the indoor heat exchanger; the timing device is configured to record the time required from the start of the air conditioning heating to the stabilization of the exhaust temperature of the compressor; the flow detecting device, Configuring to detect the flow rate of the refrigerant flowing through the cold pipe group per unit time; and the main control device is configured such that the time required for the exhaust gas temperature to stabilize is less than the first
  • the check valve includes: a valve body having a chamber for circulating refrigerant therein, an opening inside the chamber for circulating refrigerant; and a valve body disposed inside the chamber for moving along the extending direction of the chamber To open or close the opening.
  • the flow detecting device comprises a flow meter, and the flow meter is disposed at one end of the main capillary to the indoor heat exchanger.
  • the main control device is further configured to: after determining that the one-way valve of the supercooled tube group is faulty, control the air conditioning to perform the repairing step of the supercooled tube group, the repairing step includes: first converting the air conditioner to a cooling state, and then converting again The heating state is configured; the flow detecting device is configured to detect the flow of the refrigerant flowing through the cold pipe group per unit time; the main control device is further configured to flow the refrigerant flow through the cold pipe group per unit time after the exhaust gas temperature is stabilized again.
  • the air conditioner is stopped and the information is sent, the user is prompted to the one-way valve to be damaged, or the repairing step of the cold pipe group and the subsequent steps are performed again; and when the refrigerant flow is less than the preset flow rate , control the air conditioner to continue to heat.
  • the air conditioner further includes: an exhaust gas temperature detecting device configured to detect the exhaust gas temperature of the compressor once every predetermined time period from the air conditioning heating; the main control device is further configured to calculate the adjacent two rows The difference in gas temperature; determining whether the exhaust gas temperature is stable in the case where the difference between the last two detected exhaust gas temperatures is less than a preset temperature difference; the timing device is further configured to calculate from the heating start to the determined row The time difference between the exhaust gas temperature of the compressor is last detected before the gas temperature is stabilized as the time required for the exhaust gas temperature to stabilize.
  • the main control device is further configured to: after determining that the one-way valve of the supercooled tube group is faulty, control the air conditioner to stop for a second predetermined time, and then switch to a cooling state; and after controlling the air conditioner to continue cooling for a third preset time Stop for a second preset time and then switch to the heating state again.
  • the time required for the exhaust gas temperature to stabilize is less than the first preset time.
  • the one-way valve of the supercooled tube group in the heating state fails, the opening of the valve body cannot be normally closed, and the secondary capillary of the supercooled tube group cannot play a throttling effect, so that the flow rate of the refrigerant is too large, and the exhaust gas temperature can be quickly and stably stabilized. Therefore, if the time required for the exhaust gas temperature to stabilize is less than the first predetermined time, it is basically possible to determine that the check valve has failed.
  • the main control device In order to further determine that the one-way valve is faulty, the main control device also detects the flow of the refrigerant flowing through the cold pipe group per unit time, and compares the refrigerant flow rate with the preset flow rate. If the check valve fails, the secondary capillary cannot be throttled, which will cause the flow rate of the refrigerant in the supercooled tube group to rise, and the flow rate of the refrigerant will increase greatly. Therefore, when the refrigerant flow rate is greater than the preset flow rate, it can be determined that the check valve has failed.
  • the method of the invention determines whether the one-way valve is faulty by detecting the compressor exhaust gas temperature stabilization time and the flow rate of the refrigerant flowing through the cold pipe group per unit time, and the detection process is simple and convenient, and the subcooling pipe group can be determined without disassembling the machine. Whether the check valve has failed.
  • the method of the invention is beneficial for detecting and handling faults in time, and preventing the one-way valve failure from affecting the heating effect of the air conditioner.
  • the method of the present invention also includes the handling of a one-way valve failure.
  • the air conditioner After determining that the one-way valve of the supercooled tube group has failed, the air conditioner first switches to the cooling state and then to the heating state again. After entering the cooling state, the refrigerant flows from the first port of the one-way valve to the second port, and the refrigerant exerts an impact force on the one-way valve to restore the misaligned valve core with a certain probability.
  • the method of detecting the above failure is performed again after the heating is resumed. That is, the exhaust gas temperature detecting means detects the flow rate of the refrigerant flowing through the cold pipe group per unit time.
  • the air conditioner is stopped and the user is prompted to be damaged and needs to be replaced. If the refrigerant flow rate is less than the preset flow rate, it proves that the valve core of the check valve is restored and returns to normal, and the air conditioner can normally heat.
  • the method of the present invention uses the air conditioner to cool after the failure of the check valve of the supercooled tube group is determined, the impact force of the refrigerant on the check valve spool causes the spool to be reset, so that the check valve returns to normal.
  • FIG. 1 is a schematic view of an air conditioner according to an embodiment of the present invention.
  • FIG. 2 is a schematic view of a refrigerant tube group during cooling of an air conditioner according to an embodiment of the present invention
  • FIG. 3 is a schematic view of a refrigerant tube group during heating of an air conditioner according to an embodiment of the present invention
  • FIG. 4 is a schematic diagram of a method for detecting and processing a fault of an air conditioning supercooled pipe group according to an embodiment of the present invention
  • FIG. 5 is a flow chart of a method of fault detection and processing of an empty supercooled tube set in accordance with another embodiment of the present invention.
  • the embodiment of the invention firstly provides an air conditioner comprising: a refrigerant circulation system formed by sequentially connecting the compressor 100, the outdoor unit heat exchanger 200 and the indoor unit heat exchanger 300.
  • the supercooled tube group 400 is disposed downstream of the refrigerant flow path of the outdoor unit heat exchanger 200, and the "downstream" refers to the refrigerant that directly or indirectly connects the subcooling tube group 400 to the outdoor unit heat exchanger 200 in the normal cooling state of the air conditioner. exit.
  • the refrigerant sequentially flows through the compressor 100, the outdoor unit heat exchanger 200, the supercooled tube group 400, and the indoor unit heat exchanger 300, and in the heating state, the refrigerant starts to circulate in the opposite direction from the compressor 100.
  • the supercooled tube group 400 includes a main capillary 410, a sub capillary 420, and a check valve 430.
  • the check valve 430 allows only the refrigerant to flow in one direction from the outdoor unit heat exchanger 200 to the indoor unit heat exchanger 300.
  • the one-way valve 430 has a first port 433 that connects the main capillary 410 and a second port 434 that leads to the outdoor unit heat exchanger 200.
  • the check valve 430 described above includes a valve body 431, a valve body 432, and a spring.
  • the valve body 432 is disposed inside the chamber of the valve body 431.
  • the chamber interior also has an opening 435 for circulating refrigerant.
  • the valve core 432 can move along the extending direction of the chamber when the refrigerant flows from the second port 434 to the first port 433.
  • the spool 432 is moved toward the first port 433 by the impact of the refrigerant, and the opening 435 is kept open to allow the refrigerant to flow.
  • the spool 432 is blocked by the impact of the refrigerant. 435, to prevent the circulation of refrigerant.
  • the spring is used to provide a restoring force to the spool 432 to move toward the opening 435, so that the spool 432 returns to the position blocking the opening 435 when it is not subjected to the refrigerant.
  • the one-way valve 430 may also not include a spring, that is, the one-way valve 430 includes only the valve body 431 and the valve body 432. The spool 432 is completely restored by the impact force of the refrigerant at the time of heating.
  • the normal working principle of the supercooled tube set 400 of the present embodiment is: when the air conditioner is cooled, as shown in FIG. 1, the refrigerant flows from the second port 434 to the first port 433, the check valve 430 is turned on, and the refrigerant is controlled by the check valve.
  • the 430 enters the main capillary 410, so the secondary capillary 420 does not have any effect.
  • the air conditioner is heating, as shown in FIG. 2
  • the refrigerant flows from the first port 433 to the second port 434, the check valve 430 is closed, the refrigerant is forced into the sub-capillary 420, and the sub-capillary 420 functions as a throttle.
  • a check valve 430 may occur when the air conditioner is heating.
  • the spool 432 does not completely block the opening 435, causing the refrigerant to circulate through the one-way valve 430, so that the sub-capillary 420 does not function at all. If the sub-capillary 420 does not function as a throttle, the resistance of the refrigerant flow becomes small, and the exhaust temperature of the compressor 100 can quickly reach a steady state.
  • the air conditioner of this embodiment can detect the failure of the check valve 430 in the supercooled tube group 400 in time to prevent the check valve 430 from being adversely affected by the heating effect.
  • the air conditioner of this embodiment further includes a timing device 110, an exhaust gas temperature detecting device 120, a flow rate detecting device 310, and a main control device 500.
  • the timekeeping device 110 is configured to record the time required from the start of the air-conditioning heating to the stabilization of the exhaust gas temperature of the compressor 100, and the timekeeping device 110 may be a timer or a built-in clock of the air conditioner or the like.
  • the exhaust gas temperature detecting device 120 is configured to detect the exhaust gas temperature of the compressor 100, and the exhaust gas temperature detecting device 120 may be a temperature sensor provided at the exhaust port of the compressor 100.
  • the flow rate detecting device 310 includes a flow meter disposed at one end of the main capillary 410 to the indoor unit heat exchanger 300.
  • the main control device 500 is configured to determine that the check valve 430 occurs when the time required for the exhaust gas temperature to stabilize is less than the first preset time and the refrigerant flow rate per unit time flowing through the cold pipe group 400 is greater than the preset flow rate per unit time after the exhaust gas temperature is stabilized. malfunction.
  • the exhaust gas temperature detecting means 120 detects the exhaust gas temperature of the compressor 100 every time a predetermined period of time starts from the air-conditioning heating, for example, every 1 s, to obtain an exhaust gas temperature value. As the heating time increases, the exhaust gas temperature detecting device 120 detects a set of temperature values that continuously change over time. The exhaust gas temperature detecting device 120 also transmits the plurality of temperature values to the main control device 500, and the main control device 500 performs one-step processing on the data.
  • the main control device 500 may be a computer board of an air conditioner.
  • the master device 500 is further configured to calculate a difference in temperature between adjacent two exhaust gases; and in a case where the difference between the last two detected exhaust gas temperatures is less than a preset temperature difference, it is determined that the exhaust gas temperature is stable.
  • the main control device 500 calculates the difference between the last two (or the latest two) detected exhaust gas temperatures, if the above temperature difference is less than the preset temperature Poor, it is proved that the exhaust gas temperature tends to be stable, and the above preset temperature difference can be set to 1 °C.
  • the exhaust gas temperature detected last time before stabilization can be used as the exhaust gas temperature in the steady state.
  • the timing device 110 calculates the time difference from the last detection of the exhaust gas temperature from the start of heating to the stabilization of the exhaust gas temperature as the time required for the exhaust gas temperature to stabilize.
  • the main control device 500 first determines whether the time required for the exhaust gas temperature to stabilize is less than the first preset time.
  • the one-way valve 430 of the supercooled tube group 400 in the heating state fails, the opening 435 of the valve body 431 cannot be normally closed, and the sub-capillary 420 of the supercooled tube group 400 cannot be throttled, causing the refrigerant flow to be too large.
  • the gas temperature is fast and stable. Therefore, if the time required for the exhaust gas temperature to stabilize is less than the first predetermined time, it is basically possible to determine that the check valve 430 has failed.
  • the main control device 500 also compares the flow rate of the refrigerant flowing through the cold pipe group per unit time with the preset flow rate. If the check valve 430 fails, the sub-capillary 420 does not function as a throttle, and the flow rate of the refrigerant in the supercooled tube group 400 becomes faster, and the flow rate of the refrigerant flowing through the cold tube group 400 per unit time increases. Therefore, when the flow rate of the refrigerant flowing through the cold pipe group 400 per unit time is greater than the preset flow rate, it can be determined that the check valve 430 is malfunctioning.
  • the air conditioner of the embodiment can further perform fault processing to repair the check valve 430 in time.
  • the main control device 500 performs a repairing step of the supercooled tube group 400 after determining that the one-way valve 430 of the supercooled tube group 400 has failed.
  • the repairing step includes: controlling the air conditioner to first convert to a cooling state, and then converting to a heating state again. .
  • the main control device 500 controls the air conditioner to stop for a second predetermined time, and then converts to a cooling state; and controls the air conditioner to continue cooling for a third preset time, then stops for a second preset time, and then switches to the heating state again.
  • the second preset time may be 1 min
  • the third preset time may be 2 min.
  • the failure of the check valve 430 described above is mostly caused by the spring twist being stuck or due to the lack of precision of the spool 432, and the spool 432 of the check valve 430 cannot normally reset the closed opening 435.
  • the repairing step is performed on the supercooled tube group 400. Specifically, the second preset time is stopped first, and then the four-way valve is reversed to make the air conditioner enter the cooling state. After entering the cooling state, the refrigerant flows from the first port 433 to the second port 434, and the refrigerant applies an impact force to the check valve 430 to restore the misaligned spool 432 with a certain probability.
  • the second preset time is stopped after the third preset time of cooling, and then converted to the heating state again. Since the air conditioner should not be directly converted from the cooling state to the heating state, in order to prevent damage to the air conditioner, after the cooling is completed, it is necessary to stop the second preset time before starting to heat up.
  • the above method of fault detection is performed again. That is, the flow rate detecting device 310 detects again the flow rate of the refrigerant flowing through the cold pipe group 400 per unit time after the exhaust gas temperature is in a stable state.
  • the main control device 500 can selectively perform the following two operations: 1.
  • the invention also provides a fault detection and processing method for the air conditioning supercooled tube set 400.
  • 4 is a schematic diagram of a method of fault detection and processing of an air conditioning supercooled tube set 400 in accordance with one embodiment of the present invention.
  • the detecting method of this embodiment may generally include the following steps:
  • step S402 the air conditioner turns on the heating.
  • the air conditioner is heated, the refrigerant flows through the compressor 100, the indoor unit heat exchanger 300, the supercooled tube group 400, and the outdoor unit heat exchanger 200 in this order.
  • step S404 the time required from the start of heating to the temperature of the exhaust of the compressor 100 is recorded.
  • the air conditioner is just beginning to heat up, the refrigerant circulation needs to be stabilized for a period of time, so the exhaust temperature of the compressor 100 also continuously changes during the period in which the air conditioner just starts to heat up, and then stabilizes.
  • Step S406 determining whether the time required for the stabilization is less than the first preset time.
  • step S408 if the result of the determination in step S406 is YES, the exhaust gas temperature in the steady state is detected. If the time required for the exhaust gas temperature to stabilize is less than the first predetermined time, it is basically possible to determine that the check valve 430 has failed. In order to further determine that the check valve 430 has failed, the main control device 500 also calculates the flow rate of the refrigerant flowing through the cold pipe group 400 per unit time after the exhaust gas temperature is stabilized, and compares the refrigerant flow rate with the preset flow rate.
  • step S410 if the result of the determination in the step S406 is NO, the check valve 430 does not malfunction, and the air conditioner continues to heat normally.
  • step S412 it is determined whether the flow rate of the refrigerant flowing through the cold pipe group 400 per unit time is greater than the preset flow rate.
  • the refrigerant flow rate flowing through the cold pipe group 400 per unit time after the exhaust gas temperature of the compressor 100 is stabilized is calculated, and the refrigerant flow rate is compared with the preset flow rate.
  • step S414 if the result of the determination in step S412 is YES, it is determined that the check valve 430 in the supercooled tube group 400 has failed. If the check valve 430 fails, the sub-capillary 420 does not function as a throttle, and the flow rate of the refrigerant greatly increases. Therefore, when the refrigerant flow rate is greater than the preset flow rate, it can be determined that the check valve 430 has failed.
  • FIG. 5 is a flow chart of a method for detecting and processing a fault of an air conditioning supercooled tube set 400 according to an embodiment of the present invention, the control method sequentially performing the following steps:
  • step S502 the exhaust gas temperature of the compressor 100 is detected once every predetermined time period from the start of heating of the air conditioner. Starting from the heating of the air conditioner, the exhaust gas temperature of the compressor 100 is detected once every predetermined time interval, for example, every 1 s to obtain an exhaust gas temperature value. As the heating time increases, a set of temperature values that change continuously over time is detected.
  • Step S504 calculating a difference between adjacent two exhaust gas temperatures. Each time the detecting device detects a new exhaust gas temperature, the difference between the last two detected exhaust gas temperatures is calculated.
  • Step S506 determining whether the difference between the last two detected exhaust gas temperatures is less than a preset temperature difference.
  • step S508 if the result of the determination in step S506 is YES, it is determined that the exhaust gas temperature is stable, and the time difference from the last detection of the exhaust gas temperature from the start of heating to the stabilization of the exhaust gas temperature is calculated as the time required for the exhaust gas temperature to stabilize. If the temperature difference is less than the preset temperature difference, it is proved that the exhaust temperature tends to be stable, and the preset temperature difference may be set to 1 °C. The time difference from the last detection of the exhaust gas temperature from the start of heating to the stabilization of the exhaust gas temperature is calculated as the time required for the exhaust gas temperature to stabilize. If the result of the determination in the step S506 is NO, it is proved that the exhaust gas temperature has not stabilized, and the value of the exhaust gas temperature is continuously collected.
  • step S510 it is determined whether the time required for stabilization is less than the first preset time.
  • step S512 if the result of the determination in step S510 is YES, the exhaust gas temperature of the compressor 100 detected last time before the exhaust gas temperature is stabilized is taken as the exhaust gas temperature in the steady state.
  • step S514 if the result of the determination in step S510 is NO, it is proved that the check valve 430 has not failed, and the air conditioner is controlled to continue heating.
  • step S5166 it is determined whether the flow rate of the refrigerant flowing through the cold pipe group 400 per unit time is greater than the preset flow rate after the exhaust gas temperature is stabilized.
  • Step S5108 if the result of the determination in step S516 is YES, it is determined that the check valve 430 in the supercooled tube group 400 has failed. If the result of the determination in the step S516 is NO, it is proved that the check valve 430 has not failed, and the air conditioner is controlled to continue heating.
  • step S520 after the second preset time is stopped, the air conditioner is switched to the cooling state.
  • the processing process is specifically: first controlling the air conditioner to stop for a second preset time, and then converting to a cooling state.
  • the second preset time is stopped to prevent the air conditioner from directly switching from the heating state to the cooling state.
  • the failure of the check valve 430 described above is mostly caused by the spring twist being stuck or due to the lack of precision of the spool 432, and the spool 432 of the check valve 430 cannot normally reset the closed opening 435.
  • the second preset time is stopped first, and then the four-way valve is reversed to make the air conditioner enter the cooling state.
  • the refrigerant flows from the first port 433 to the second port 434, and the refrigerant applies an impact force to the check valve 430 to cause the misaligned check valve 430 to recover with a certain probability.
  • Step S522 the air conditioner continues to cool for a third preset time and then stops for a second preset time, and then converts to the heating state again.
  • step S524 after the exhaust gas temperature of the compressor 100 is stabilized, the flow rate of the refrigerant flowing through the cold pipe group 400 per unit time is detected again. In order to determine whether the above-described processing is effective, after the air conditioner re-enters the heating state, the above-described fault detection step is performed again.
  • step S5266 it is determined whether the flow rate of the refrigerant flowing through the cold pipe group 400 per unit time is greater than the preset flow rate.
  • step S528 if the result of the determination in the step S526 is YES, the air conditioner is stopped and the information is sent, and the user is prompted to the check valve 430 to be damaged or to perform the repairing step of the supercooled tube group again. If the refrigerant flow rate is still greater than the preset flow rate, it is proved that the above process does not restore the valve body 432 of the check valve 430, and the check valve 430 may be mechanically damaged. At this time, the air conditioner may be stopped and the user is prompted to check the valve. The 430 is damaged and needs to be replaced. The repair step of the above-mentioned supercooled tube group can also be performed.
  • the repairing step may be performed continuously for a plurality of times until the check valve 430 returns to normal, and the preset number of times (for example, three times) may be executed. If the refrigerant flow rate is still greater than the preset flow rate after the preset number of times, the air conditioner is stopped and the air conditioner is stopped. The user is prompted to check that the one-way valve 430 is damaged and needs to be replaced. If the result of the determination in step S526 is NO, that is, the upper refrigerant flow rate is less than the preset flow rate, it is proved that the above-described processing is effective, and the spool 432 of the check valve 430 has been restored. When the air conditioner returns to normal, the air conditioner can continue to heat normally.
  • the preset number of times for example, three times

Abstract

一种空调及空调过冷管组(400)的故障检测和处理方法,在空调制热的过程中,判断压缩机(100)排气温度稳定所需时间是否小于第一预设时间;若排气温度稳定所需时间小于第一预设时间,主控装置(500)检测单位时间内流经过冷管组(400)的冷媒流量;当冷媒流量大于预设流量时,确定单向阀(430)发生故障。

Description

空调及其过冷管组的故障检测和处理方法 技术领域
本发明涉及空调领域,特别涉及一种空调及其过冷管组的故障检测和处理方法。
背景技术
在热泵空调使用过程中,有时过冷管组中的单向阀发生故障,不能正常工作,具体是指单向阀的阀芯无法复位,冷媒开口不能正常闭合。从而导致在制热时过冷管组中的副毛细管起不到节流作用,阻碍了冷媒进行热交换,严重影响了空调的制热效果,大大降低了用户体验效果。
该故障一般大多在新的空调器中出现,因为过冷管组中部件磨合的还不充分,会出现阀芯卡壳无法复位的现象,用旧了磨合充分基本不会出现该问题。此故障将极大影响空调制热性能,因此及时检测出来十分重要。该故障如若处置得当会使过冷管组恢复正常,若此故障未及时发现并修复,可能会导致单向阀永久损坏。另外,由于该故障并不影响空调运转,同时出现频率较低,因此不易发现,但是该故障又确实影响空调性能,影响制热效果和用户体验,因此如何及早检测出来并设法解决此类问题至关重要。
发明内容
鉴于上述问题,提出了本发明以便提供一种克服上述问题或者至少部分地解决上述问题的空调及其过冷管组的故障检测和处理方法。
本发明的一个目的是为了检测过冷管组的故障。
本发明的另一个目的是为了修复过冷管组的故障。
一方面,本发明提供了一种空调过冷管组的故障检测和处理方法,包括:空调开启制热;记录从制热开始到压缩机的排气温度稳定所需时间;判断稳定所需时间是否小于第一预设时间;若是,再检测单位时间内流经过冷管组的冷媒流量;判断冷媒流量是否大于预设流量;以及若是,确定过冷管组中的单向阀发生故障。
可选地,在确定过冷管组的单向阀发生故障的步骤之后还包括:执行过冷管组的修复步骤,修复步骤包括:空调首先转换为制冷状态,然后再次转 换为制热状态;待压缩机的排气温度稳定后,再次检测单位时间内流经过冷管组的冷媒流量;判断冷媒流量是否大于预设流量;若是,控制空调停机并发送信息,向用户提示单向阀损坏;或再次执行过冷管组的修复步骤及其后续步骤;以及若否,控制空调继续制热。
可选地,记录从制热开始到压缩机的排气温度稳定所需时间的步骤包括:从空调制热开始,每间隔预定时间段检测一次压缩机的排气温度;计算相邻两次排气温度的差值;判断最后两次检测到的排气温度的差值是否小于预设温度差值;若是,则确定排气温度稳定,计算从制热开始到确定排气温度稳定前最后一次检测压缩机的排气温度的时间差以作为排气温度稳定所需时间。
可选地,空调首先转换为制冷状态,然后再次转换为制热状态的步骤包括:空调停机第二预设时间后,转换为制冷状态;空调持续制冷第三预设时间后停机第二预设时间,然后再次转换为制热状态。
另一方面,本发明还提供了一种空调,包括:由压缩机、室外机换热器和室内机换热器依次相连形成的冷媒循环系统;过冷管组,设置于室外机换热器冷媒流路的下游,过冷管组包括:主毛细管,其一端通往室内机换热器,另一端连接单向阀的一端;副毛细管,并联于单向阀的两端;和单向阀,配置成仅允许冷媒由室外机换热器向室内机换热器方向单向流通;计时装置,配置成记录从空调制热开始到压缩机的排气温度稳定所需时间;流量检测装置,配置成检测单位时间内流经过冷管组的冷媒流量;和主控装置,配置成当排气温度稳定所需时间小于第一预设时间且单位时间内流经过冷管组的冷媒流量大于预设流量时,确定单向阀发生故障。
可选地,单向阀包括:阀体,其内部形成供冷媒流通的腔室,腔室内部具有供冷媒流通的开口;和阀芯,设置于腔室内部,可沿腔室的延伸方向运动,以打开或封闭开口。
可选地,流量检测装置包括流量计,流量计设置于主毛细管通往室内机换热器的一端。
可选地,主控装置,还配置成在确定过冷管组的单向阀发生故障后,控制空调执行过冷管组的修复步骤,修复步骤包括:空调首先转换为制冷状态,然后再次转换为制热状态;流量检测装置配置成再次检测单位时间内流经过冷管组的冷媒流量;主控装置,还配置成在排气温度再次稳定后,单位时间 内流经过冷管组的冷媒流量仍大于预设流量的情况下,控制空调停机并发送信息,向用户提示单向阀损坏,或再次执行过冷管组的修复步骤及其后续步骤;以及在冷媒流量小于预设流量的情况下,控制空调继续制热。
可选地,上述空调还包括:排气温度检测装置,配置成从空调制热开始,每间隔预定时间段检测一次压缩机的排气温度;主控装置,还配置成计算相邻两次排气温度的差值;在最后两次检测到的排气温度的差值是否小于预设温度差值的情况下,确定排气温度稳定;计时装置,还配置成计算从制热开始到确定排气温度稳定前最后一次检测压缩机的排气温度的时间差以作为排气温度稳定所需时间。
可选地,主控装置,还配置成在确定过冷管组的单向阀发生故障后,控制空调停机第二预设时间后,转换为制冷状态;控制空调持续制冷第三预设时间后停机第二预设时间,然后再次转换为制热状态。
本发明的方法,在空调制热的过程中,判断排气温度稳定所需时间是否小于第一预设时间。在制热状态过冷管组单向阀发生故障时,阀体的开口不能正常封闭,过冷管组的副毛细管无法起到节流作用,致使冷媒流量过大,排气温度能够快速稳定。因此,若排气温度稳定所需时间是小于第一预设时间,那么基本可以确定单向阀发生故障。为了进一步确定单向阀发生故障,主控装置还检测单位时间内流经过冷管组的冷媒流量,并将上述冷媒流量与预设流量进行比较。若单向阀发生故障,副毛细管无法起到节流作用,会导致过冷管组内的冷媒流速上升,上述冷媒流量会大幅度增加。因此,当上述冷媒流量大于预设流量时,可以确定单向阀发生故障。本发明的方法通过检测压缩机排气温度稳定时间以及单位时间内流经过冷管组的冷媒流量判断单向阀是否发生故障,检测过程简单方便,无需拆机即可确定过冷管组中的单向阀是否发生故障。本发明的方法有利于及时发现并处理故障,防止单向阀故障影响空调的制热效果。
进一步地,本发明的方法还包括对单向阀故障的处理。在确定过冷管组的单向阀发生故障之后空调首先转换为制冷状态,然后再次转换为制热状态。在进入制冷状态后,冷媒由单向阀的第一端口流向第二端口,冷媒对单向阀施加一个冲击力可使错位的阀芯有一定概率复原。恢复制热后再次执行上述故障检测的方法。即排气温度检测装置再次检测单位时间内流经过冷管组的冷媒流量。若上述冷媒流量仍大于预设流量,则证明单向阀的阀芯未复 原,此时控制空调停机并提示用户单向阀损坏,需要更换。若上述冷媒流量小于预设流量,则证明单向阀的阀芯复原,恢复正常,则空调可以正常制热。本发明的方法在确定过冷管组的单向阀发生故障之后利用空调制冷时,冷媒对单向阀阀芯的冲击力使得阀芯复位,使得单向阀恢复正常。
根据下文结合附图对本发明具体实施例的详细描述,本领域技术人员将会更加明了本发明的上述以及其他目的、优点和特征。
附图说明
后文将参照附图以示例性而非限制性的方式详细描述本发明的一些具体实施例。附图中相同的附图标记标示了相同或类似的部件或部分。本领域技术人员应该理解,这些附图未必是按比例绘制的。附图中:
图1是根据本发明一个实施例的空调的示意图;
图2是根据本发明一个实施例的空调制冷时的冷媒管组的示意图;
图3是根据本发明一个实施例的空调制热时的冷媒管组的示意图;
图4是根据本发明一个实施例的空调过冷管组的故障检测和处理方法的示意图;
图5是根据本发明另一个实施例的空过冷管组的故障检测和处理方法的流程图。
具体实施方式
本发明实施例首先提供了一种空调,包括:由压缩机100、室外机换热器200和室内机换热器300依次相连形成的冷媒循环系统。过冷管组400设置于室外机换热器200冷媒流路的下游,上述“下游”是指在空调正常制冷状态下,过冷管组400直接或间接地连接室外机换热器200的冷媒出口处。在制冷状态下冷媒依次流经压缩机100、室外机换热器200、过冷管组400和室内机换热器300循环流动,在制热状态下,冷媒由压缩机100开始反方向循环流动。过冷管组400包括:主毛细管410、副毛细管420以及单向阀430。
主毛细管410一端通往室内机换热器200,另一端连接单向阀430的一端。副毛细管420并联于单向阀430的两端。单向阀430仅允许冷媒由室外机换热器200向室内机换热器300方向单向流通。具体地,单向阀430具有第一端口433和第二端口434,第一端口433连接主毛细管410,第二端口 434通向室外机换热器200。上述单向阀430包括:阀体431、阀芯432和弹簧。阀芯432设置于阀体431的腔室内部,腔室内部还具有供冷媒流通的开口435,阀芯432可以沿腔室的延伸方向运动,当冷媒由第二端口434流向第一端口433时,阀芯432受到冷媒的冲击作用朝第一端口433运动,开口435保持打开状态,允许冷媒流通;当冷媒由第一端口433流向第二端口434时,阀芯432受到冷媒的冲击作用堵塞开口435,阻止冷媒流通。弹簧用于向阀芯432提供朝向开口435方向运动的恢复力,以使得阀芯432在不受冷媒作用时,恢复到堵塞开口435的位置。在本发明另外一些实施例中,单向阀430也可以不包含弹簧,也就是单向阀430仅包含阀体431、阀芯432。阀芯432完全依靠制热时冷媒的冲击力复原。
本实施例的过冷管组400的正常工作原理为:在空调制冷时,如图1所示,冷媒由第二端口434流向第一端口433,单向阀430导通,冷媒由单向阀430进入主毛细管410,因此副毛细管420不起任何作用。在空调制热时,如图2所示,冷媒由第一端口433流向第二端口434,单向阀430封闭,冷媒被迫进入副毛细管420,副毛细管420发挥节流作用。然而,在某些情况下(例如弹簧发生故障或由于阀芯432的制作精度欠缺等问题导致单向阀430的阀芯432没能正常复位),会出现在空调制热时,单向阀430的阀芯432没有完全堵塞开口435,导致冷媒由单向阀430流通,从而副毛细管420起不到任何作用。如果副毛细管420不能起到节流作用,冷媒流通的阻力变小,压缩机100的排气温度能够快速达到稳定状态。同时,单位时间内通过过冷管组400的冷媒流量会大幅度增加。本实施例的空调能够及时检测出上述过冷管组400中单向阀430的故障,以防止单向阀430故障对制热效果造成不利影响。
本实施例的空调还包括:计时装置110、排气温度检测装置120、流量检测装置310和主控装置500。计时装置110配置成记录从空调制热开始到压缩机100的排气温度稳定所需时间,上述计时装置110可以为计时器或空调内置的时钟等。排气温度检测装置120配置成检测压缩机100的排气温度,上述排气温度检测装置120可以为设置于压缩机100排气口的温度传感器。上述流量检测装置310包括流量计,流量计设置于主毛细管410通往室内机换热器300的一端。主控装置500配置成当排气温度稳定所需时间小于第一预设时间且排气温度稳定后单位时间内流经过冷管组400的冷媒流量大于预 设流量时,确定单向阀430发生故障。
在空调刚开始制热时,冷媒循环需要一段时间稳定,因此压缩机100的排气温度也会在空调刚开始制热的一段时间内连续变化,然后才能趋于稳定。在本实施例中,排气温度检测装置120从空调制热开始,每间隔预定时间段检测一次压缩机100的排气温度,例如每隔1s检测一次,获得一个排气温度值。随着制热时间的增加,排气温度检测装置120会检测到一组随时间连续变化的温度值。排气温度检测装置120还将上述多个温度值发送给主控装置500,主控装置500对数据进行一步处理。
上述主控装置500可以为空调的电脑板。主控装置500还配置成计算相邻两次排气温度的差值;在最后两次检测到的排气温度的差值小于预设温度差值的情况下,确定排气温度稳定。每当排气温度检测装置120检测到新的排气温度时,主控装置500计算最后两次(或最新两次)检测到的排气温度的差值,如果上述温度差值小于预设温度差,则证明排气温度趋于稳定,上述预设温度差值可设置为1℃。在稳定前最后一次检测的排气温度即可作为稳定状态时的排气温度。计时装置110计算从制热开始到排气温度稳定前最后一次检测排气温度的时间差以作为排气温度稳定所需时间。
主控装置500首先判断排气温度稳定所需时间是否小于第一预设时间。在制热状态过冷管组400单向阀430发生故障时,阀体431的开口435不能正常封闭,过冷管组400的副毛细管420无法起到节流作用,致使冷媒流量过大,排气温度能够快速稳定。因此,若排气温度稳定所需时间小于第一预设时间,那么基本可以确定单向阀430发生故障。为了进一步确定单向阀430发生故障,主控装置500还将单位时间内流经过冷管组的冷媒流量与预设流量进行比较。若单向阀430发生故障,副毛细管420无法起到节流作用,导致过冷管组400内的冷媒流速变快,单位时间内流经过冷管组400的冷媒流量增加。因此,当单位时间内流经过冷管组400的冷媒流量大于预设流量时,可以确定单向阀430发生故障。
本实施例的空调在检测出上述单向阀430的故障后,还可以进一步进行故障处理,以便及时修复单向阀430。主控装置500在确定过冷管组400的单向阀430发生故障后,执行过冷管组400的修复步骤,上述修复步骤包括:控制空调首先转换为制冷状态,然后再次转换为制热状态。具体地,主控装置500控制空调停机第二预设时间后,转换为制冷状态;控制空调持续制冷 第三预设时间后停机第二预设时间,然后再次转换为制热状态。在本实施例中,上述第二预设时间可以为1min,第三预设时间可以为2min。
上述单向阀430的故障大多是由于弹簧扭曲被卡住或由于阀芯432的制作精度欠缺,单向阀430的阀芯432无法正常复位封闭开口435所导致。在本实施例中,在主控板检测到故障后,对过冷管组400执行修复步骤。具体地,先停机第二预设时间,再控制四通阀换向,使空调进入制冷状态。在进入制冷状态后,冷媒由第一端口433流向第二端口434,冷媒对单向阀430施加一个冲击力可使错位的阀芯432有一定概率复原。
在制冷第三预设时间后停机第二预设时间,然后再次转换为制热状态。由于空调不宜由制冷状态直接转换为制热状态,为了防止对空调造成损坏,在制冷完毕后,需要停机第二预设时间后再开始制热。重新制热后,再次执行上述故障检测的方法。即流量检测装置310再次检测排气温度处于稳定状态后,单位时间内流经过冷管组400的冷媒流量。主控装置500在单位时间内流经过冷管组400的冷媒流量大于预设流量的情况下,可以选择执行以下两种操作:1.控制空调停机并发送信息,向用户提示单向阀430损坏;2.重复执行上述修复步骤,再一次对过冷管组400进行故障处理。若上述冷媒流量仍大于预设流量,则证明单向阀430的阀芯432未复原,此时控制空调停机并提示用户单向阀430损坏,需要更换;或者对过冷管组400再进行一次修复步骤。上述提示信息可以通过空调面板予以显示。若上述冷媒流量小于预设流量,则证明单向阀430的阀芯432复原,恢复正常,则空调可以正常制热。
本发明还提供了一种空调过冷管组400的故障检测和处理方法。图4是根据本发明一个实施例的空调过冷管组400的故障检测和处理方法的示意图。本实施例的检测方法一般性地可以包括以下步骤:
步骤S402,空调开启制热。空调制热时,冷媒由依次流经压缩机100、室内机换热器300、过冷管组400和室外机换热器200。
步骤S404,记录从制热开始到压缩机100的排气温度稳定所需时间。在空调刚开始制热时,冷媒循环需要一段时间稳定,因此压缩机100的排气温度也会在空调刚开始制热的一段时间内连续变化,然后才能趋于稳定。
步骤S406,判断上述稳定所需时间是否小于第一预设时间。在制热状态过冷管组400单向阀430发生故障时,阀体431的开口435不能正常封闭, 过冷管组400的副毛细管420无法起到节流作用,致使冷媒流量过大,排气温度能够快速稳定。
步骤S408,若步骤S406的判断结果为是,检测处于稳定状态的排气温度。若排气温度稳定所需时间小于第一预设时间,那么基本可以确定单向阀430发生故障。为了进一步确定单向阀430发生故障,主控装置500还计算排气温度稳定后,单位时间内流经过冷管组400的冷媒流量,并将上述冷媒流量与预设流量进行比较。
步骤S410,若步骤S406的判断结果为否,则单向阀430没有发生故障,空调继续正常制热。
步骤S412,判断单位时间内流经过冷管组400的冷媒流量是否大于预设流量。计算压缩机100排气温度稳定后单位时间内流经过冷管组400的冷媒流量,并将上述冷媒流量与预设流量进行比较。
步骤S414,若步骤S412的判断结果为是,确定过冷管组400中的单向阀430发生故障。若单向阀430发生故障,副毛细管420无法起到节流作用,冷媒流量会大幅度上升。因此,当上述冷媒流量大于预设流量时,可以确定单向阀430发生故障。
图5是根据本发明一个实施例的空调过冷管组400的故障检测和处理方法的流程图,该控制方法依次执行以下步骤:
步骤S502,从空调制热开始,每间隔预定时间段检测一次压缩机100的排气温度。从空调制热开始,每间隔预定时间段检测一次压缩机100的排气温度,例如每隔1s检测一次,获得一个排气温度值。随着制热时间的增加,会检测到一组随时间连续变化的温度值。
步骤S504,计算相邻两次排气温度的差值。每次检测装置检测到新的排气温度时,计算最后相邻两次检测到的排气温度的差值。
步骤S506,判断最后两次检测到的排气温度的差值是否小于预设温度差值。
步骤S508,若步骤S506的判断结果为是,确定排气温度稳定,计算从制热开始到排气温度稳定前最后一次检测排气温度的时间差作为排气温度稳定所需时间。如果上述温度差值小于预设温度差值,则证明排气温度趋于稳定,上述预设温度差值可设置为1℃。计算从制热开始到排气温度稳定前最后一次检测排气温度的时间差以作为排气温度稳定所需时间。若步骤S506 的判断结果为否,则证明排气温度还未稳定,则继续采集排气温度的数值。
步骤S510,判断稳定所需时间是否小于第一预设时间。
步骤S512,若步骤S510的判断结果为是,将排气温度稳定前最后一次检测到的压缩机100的排气温度作为处于稳定状态的排气温度。
步骤S514,若步骤S510的判断结果为否,则证明单向阀430未发生故障,控制空调继续制热。
步骤S516,判断排气温度稳定后,单位时间内流经过冷管组400的冷媒流量是否大于预设流量。
步骤S518,若步骤S516的判断结果为是,确定过冷管组400中的单向阀430发生故障。若步骤S516的判断结果为否,则证明单向阀430未发生故障,控制空调继续制热。
步骤S520,空调停机第二预设时间后,转换为制冷状态。在确定单向阀430发生故障后,需要对故障进行处理,使得单向阀430尽可能恢复正常。处理过程具体为:首先控制空调停机第二预设时间,然后转换为制冷状态。停机第二预设时间是为了避免空调直接由制热状态切换到制冷状态。上述单向阀430的故障大多是由于弹簧扭曲被卡住或由于阀芯432的制作精度欠缺,单向阀430的阀芯432无法正常复位封闭开口435所导致。在本实施例中,在主控板检测到故障后,先停机第二预设时间,再控制四通阀换向,使空调进入制冷状态。在进入制冷状态后,冷媒由第一端口433流向第二端口434,冷媒对单向阀430施加一个冲击力可使错位的单向阀430有一定概率复原。
步骤S522,空调持续制冷第三预设时间后停机第二预设时间,然后再次转换为制热状态。
步骤S524,待压缩机100的排气温度稳定后,再次检测单位时间内流经过冷管组400的冷媒流量。为了确定上述处理过程是否有效,在空调重新进入制热状态后,再次执行上述故障检测的步骤。
步骤S526,判断单位时间内流经过冷管组400的冷媒流量是否大于预设流量。
步骤S528,若步骤S526的判断结果为是,控制空调停机并发送信息,向用户提示单向阀430损坏或再次执行过冷管组的修复步骤。若上述冷媒流量仍大于预设流量,则证明上述处理过程并未使单向阀430的阀芯432复原, 单向阀430可能出现了机械损坏,此时可以控制空调停机并提示用户单向阀430损坏,需要更换,也可以再执行上述过冷管组的修复步骤。上述修复步骤可以连续执行多次,直到单向阀430恢复正常,也可以执行预设次数(例如执行三次),若执行预设次数后,上述冷媒流量仍大于预设流量,则控制空调停机并提示用户单向阀430损坏,需要更换。若步骤S526的判断结果为否,即上冷媒流量小于预设流量,则证明上述处理过程生效,单向阀430的阀芯432已经复原。空调恢复正常,则空调可以继续正常制热。
至此,本领域技术人员应认识到,虽然本文已详尽示出和描述了本发明的多个示例性实施例,但是,在不脱离本发明精神和范围的情况下,仍可根据本发明公开的内容直接确定或推导出符合本发明原理的许多其他变型或修改。因此,本发明的范围应被理解和认定为覆盖了所有这些其他变型或修改。

Claims (10)

  1. 一种空调过冷管组的故障检测和处理方法,包括:
    空调开启制热;
    记录从制热开始到压缩机的排气温度稳定所需时间;
    判断稳定所需时间是否小于第一预设时间;
    若是,再检测单位时间内流经所述过冷管组的冷媒流量;
    判断所述冷媒流量是否大于预设流量;以及
    若是,确定所述过冷管组中的单向阀发生故障。
  2. 根据权利要求1所述的故障检测和处理方法,其中在确定所述过冷管组的单向阀发生故障的步骤之后还包括:
    执行所述过冷管组的修复步骤,所述修复步骤包括:空调首先转换为制冷状态,然后再次转换为制热状态;
    待所述压缩机的排气温度稳定后,再次检测单位时间内流经所述过冷管组的冷媒流量;
    判断所述冷媒流量是否大于所述预设流量;
    若是,控制空调停机并发送信息,向用户提示所述单向阀损坏;或再次执行所述过冷管组的修复步骤及其后续步骤;以及
    若否,控制空调继续制热。
  3. 根据权利要求1所述的故障检测和处理方法,其中记录从制热开始到压缩机的排气温度稳定所需时间的步骤包括:
    从空调制热开始,每间隔预定时间段检测一次所述压缩机的排气温度;
    计算相邻两次排气温度的差值;
    判断最后两次检测到的排气温度的差值是否小于预设温度差值;
    若是,则确定所述排气温度稳定,计算从制热开始到确定所述排气温度稳定前最后一次检测所述压缩机的排气温度的时间差以作为所述排气温度稳定所需时间。
  4. 根据权利要求2所述的故障检测和处理方法,其中空调首先转换为制冷状态,然后再次转换为制热状态的步骤包括:
    空调停机第二预设时间后,转换为制冷状态;
    空调持续制冷第三预设时间后停机第二预设时间,然后再次转换为制热状态。
  5. 一种空调,包括:
    由压缩机、室外机换热器和室内机换热器依次相连形成的冷媒循环系统;
    过冷管组,设置于所述室外机换热器冷媒流路的下游,所述过冷管组包括:
    主毛细管,其一端通往所述室内机换热器,另一端连接单向阀的一端;
    副毛细管,并联于所述单向阀的两端;和
    所述单向阀,配置成仅允许冷媒由所述室外机换热器向所述室内机换热器方向单向流通;
    计时装置,配置成记录从空调制热开始到压缩机的排气温度稳定所需时间;
    流量检测装置,配置成检测单位时间内流经所述过冷管组的冷媒流量;和
    主控装置,配置成当排气温度稳定所需时间小于第一预设时间且单位时间内流经所述过冷管组的冷媒流量大于预设流量时,确定所述单向阀发生故障。
  6. 根据权利要求5所述的空调,其中所述单向阀包括:
    阀体,其内部形成供冷媒流通的腔室,所述腔室内部具有供冷媒流通的开口;和
    阀芯,设置于所述腔室内部,可沿腔室的延伸方向运动,以打开或封闭所述开口。
  7. 根据权利要求5所述的空调,其中
    所述流量检测装置包括流量计,所述流量计设置于所述主毛细管通往所述室内机换热器的一端。
  8. 根据权利要求5所述的空调,其中
    所述主控装置,还配置成在确定所述过冷管组的单向阀发生故障后,控制所述空调执行所述过冷管组的修复步骤,所述修复步骤包括:空调首先转换为制冷状态,然后再次转换为制热状态;
    所述流量检测装置配置成再次检测单位时间内流经所述过冷管组的冷媒流量;
    所述主控装置,还配置成在排气温度再次稳定后,单位时间内流经所述过冷管组的冷媒流量仍大于预设流量的情况下,控制空调停机并发送信息,向用户提示所述单向阀损坏,或再次执行所述过冷管组的修复步骤及其后续步骤;以及在所述冷媒流量小于所述预设流量的情况下,控制空调继续制热。
  9. 根据权利要求5所述的空调,还包括:
    排气温度检测装置,配置成从空调制热开始,每间隔预定时间段检测一次所述压缩机的排气温度;
    所述主控装置,还配置成计算相邻两次排气温度的差值;在最后两次检测到的排气温度的差值是否小于预设温度差值的情况下,确定所述排气温度稳定;
    所述计时装置,还配置成计算从制热开始到确定所述排气温度稳定前最后一次检测所述压缩机的排气温度的时间差以作为所述排气温度稳定所需时间。
  10. 根据权利要求8所述的空调,其中
    所述主控装置,还配置成在确定所述过冷管组的单向阀发生故障后,控制空调停机第二预设时间后,转换为制冷状态;控制空调持续制冷第三预设时间后停机第二预设时间,然后再次转换为制热状态。
PCT/CN2018/102768 2017-08-30 2018-08-28 空调及其过冷管组的故障检测和处理方法 WO2019042288A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710765049.XA CN107702271B (zh) 2017-08-30 2017-08-30 空调及其过冷管组的故障检测和处理方法
CN201710765049.X 2017-08-30

Publications (1)

Publication Number Publication Date
WO2019042288A1 true WO2019042288A1 (zh) 2019-03-07

Family

ID=61170001

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/102768 WO2019042288A1 (zh) 2017-08-30 2018-08-28 空调及其过冷管组的故障检测和处理方法

Country Status (2)

Country Link
CN (1) CN107702271B (zh)
WO (1) WO2019042288A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112378032A (zh) * 2020-10-12 2021-02-19 长沙格力暖通制冷设备有限公司 一种空调测试监控装置、方法及设备
DE102020123653A1 (de) 2020-09-10 2022-03-10 Krohne Ag Verfahren zum Betreiben eines Ultraschall-Durchflussmessgeräats und Ultraschall-Durchflussmessgerät

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107747789B (zh) * 2017-08-30 2019-11-05 青岛海尔空调器有限总公司 空调及其过冷管组的故障检测和处理方法
CN107702271B (zh) * 2017-08-30 2020-02-04 青岛海尔空调器有限总公司 空调及其过冷管组的故障检测和处理方法
CN115264753A (zh) * 2022-07-27 2022-11-01 青岛海尔空调器有限总公司 用于诊断空调单向阀故障的方法、装置、空调和存储介质

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106196367A (zh) * 2016-07-15 2016-12-07 珠海格力电器股份有限公司 一种具有再冷作用气液分离器的空调系统及其控制方法
CN106546420A (zh) * 2016-10-10 2017-03-29 广东美的暖通设备有限公司 空调样机的阀体检测方法及装置、空调系统
WO2017057861A2 (ko) * 2015-10-01 2017-04-06 엘지전자 주식회사 공기조화 시스템
CN107560073A (zh) * 2017-08-30 2018-01-09 青岛海尔空调器有限总公司 空调及其过冷管组的故障检测和处理方法
CN107702271A (zh) * 2017-08-30 2018-02-16 青岛海尔空调器有限总公司 空调及其过冷管组的故障检测和处理方法
CN107747789A (zh) * 2017-08-30 2018-03-02 青岛海尔空调器有限总公司 空调及其过冷管组的故障检测和处理方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07104055B2 (ja) * 1988-08-30 1995-11-13 松下電器産業株式会社 冷暖房装置
JPH09165289A (ja) * 1995-12-13 1997-06-24 Komatsu Electron Metals Co Ltd 単結晶インゴット把持装置および把持方法
JP2001227824A (ja) * 2000-02-14 2001-08-24 Sanyo Electric Co Ltd 冷却装置
CN1337552A (zh) * 2000-08-03 2002-02-27 北京海尔集成电路设计有限公司 风冷热泵式空调器的防结冰装置
CN1170096C (zh) * 2001-08-29 2004-10-06 广东科龙电器股份有限公司 不间断制热的运行方法及其空调系统
JP3958015B2 (ja) * 2001-10-16 2007-08-15 株式会社テージーケー 集合弁
JP2004204705A (ja) * 2002-12-24 2004-07-22 Denso Corp ターボポンプ
CN2937909Y (zh) * 2006-05-07 2007-08-22 珠海格力电器股份有限公司 空调热水器
CN201262446Y (zh) * 2008-08-08 2009-06-24 广东美的电器股份有限公司 高性价比的新型空调器
CN201440017U (zh) * 2009-05-27 2010-04-21 海尔集团公司 空调过冷管组件
KR20120056515A (ko) * 2010-11-25 2012-06-04 (주)동신냉열이엔지 전기에너지 절약형 항온항습기
JP2015068571A (ja) * 2013-09-30 2015-04-13 ダイキン工業株式会社 冷凍装置
CN103615838B (zh) * 2013-12-05 2016-04-13 中国扬子集团滁州扬子空调器有限公司 内外换热器容积比可变的制冷/制热系统
CN104048798A (zh) * 2014-06-20 2014-09-17 四川长虹电器股份有限公司 一种单向阀泄漏检测方法及空调
JP5950010B1 (ja) * 2015-08-25 2016-07-13 富士電機株式会社 ヒートポンプ式蒸気生成装置

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2017057861A2 (ko) * 2015-10-01 2017-04-06 엘지전자 주식회사 공기조화 시스템
CN106196367A (zh) * 2016-07-15 2016-12-07 珠海格力电器股份有限公司 一种具有再冷作用气液分离器的空调系统及其控制方法
CN106546420A (zh) * 2016-10-10 2017-03-29 广东美的暖通设备有限公司 空调样机的阀体检测方法及装置、空调系统
CN107560073A (zh) * 2017-08-30 2018-01-09 青岛海尔空调器有限总公司 空调及其过冷管组的故障检测和处理方法
CN107702271A (zh) * 2017-08-30 2018-02-16 青岛海尔空调器有限总公司 空调及其过冷管组的故障检测和处理方法
CN107747789A (zh) * 2017-08-30 2018-03-02 青岛海尔空调器有限总公司 空调及其过冷管组的故障检测和处理方法

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102020123653A1 (de) 2020-09-10 2022-03-10 Krohne Ag Verfahren zum Betreiben eines Ultraschall-Durchflussmessgeräats und Ultraschall-Durchflussmessgerät
EP3967989A1 (de) 2020-09-10 2022-03-16 Krohne AG Verfahren zum betreiben eines ultraschall-durchflussmessgeräts und ultraschall-durchflussmessgerät
CN112378032A (zh) * 2020-10-12 2021-02-19 长沙格力暖通制冷设备有限公司 一种空调测试监控装置、方法及设备

Also Published As

Publication number Publication date
CN107702271B (zh) 2020-02-04
CN107702271A (zh) 2018-02-16

Similar Documents

Publication Publication Date Title
WO2019042288A1 (zh) 空调及其过冷管组的故障检测和处理方法
WO2019015535A1 (zh) 空调及其过冷管组的故障检测和处理方法
WO2019042286A1 (zh) 空调及其过冷管组的故障检测和处理方法
WO2019042287A1 (zh) 空调及其过冷管组的故障检测和处理方法
CN107131611B (zh) 空调器除霜控制方法
CN108317667B (zh) 一种空调内机结冰检测方法及装置
CA2913664C (en) Oil return method for multiple air conditioning unit in heating
EP3473946A1 (en) Multi-split air conditioner control device, multi-split air conditioner, multi-split air conditioner control method, and multi-split air conditioner control program
JPWO2018216127A1 (ja) 空調システム
US9273898B2 (en) Device for detecting abnormality in refrigeration cycle of refrigerator and method therefor
JP5053430B2 (ja) 空気調和機
US20180187936A1 (en) Air-conditioning apparatus
JP2010506132A (ja) 空気調和機の停止運転制御方法及び装置
CN109631388A (zh) 一种空调制热四通阀换向异常控制方法、装置及空调器
CN102297549A (zh) 空调的除霜方法
CN107178939B (zh) 空调器除霜控制方法
WO2020103758A1 (zh) 空调控制方法、系统及空调器
JP2015206509A (ja) 冷温熱機器
CN110567128A (zh) 一种多联机空调及其控制方法
JPWO2016139783A1 (ja) 冷凍サイクル装置
US20150198341A1 (en) Air Conditioner
CN110470018B (zh) 用于空调除霜的控制方法及装置、空调
JP6820654B2 (ja) 空気調和機
CN112361541A (zh) 用于多联机空调系统的膨胀阀控制方法
WO2019153797A1 (zh) 室外机换热器匹配方法及室外机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18849695

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18849695

Country of ref document: EP

Kind code of ref document: A1