WO2019041945A1 - 显示基板及其制造方法、显示面板 - Google Patents

显示基板及其制造方法、显示面板 Download PDF

Info

Publication number
WO2019041945A1
WO2019041945A1 PCT/CN2018/090202 CN2018090202W WO2019041945A1 WO 2019041945 A1 WO2019041945 A1 WO 2019041945A1 CN 2018090202 W CN2018090202 W CN 2018090202W WO 2019041945 A1 WO2019041945 A1 WO 2019041945A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
substrate
raised portion
display
insulating layer
Prior art date
Application number
PCT/CN2018/090202
Other languages
English (en)
French (fr)
Inventor
程鸿飞
Original Assignee
京东方科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 京东方科技集团股份有限公司 filed Critical 京东方科技集团股份有限公司
Priority to JP2019562268A priority Critical patent/JP7196098B2/ja
Priority to US16/335,599 priority patent/US11245094B2/en
Publication of WO2019041945A1 publication Critical patent/WO2019041945A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/80Constructional details
    • H10K59/87Passivation; Containers; Encapsulations
    • H10K59/873Encapsulations
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/80Constructional details
    • H10K50/84Passivation; Containers; Encapsulations
    • H10K50/844Encapsulations
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L27/00Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate
    • H01L27/02Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier
    • H01L27/12Devices consisting of a plurality of semiconductor or other solid-state components formed in or on a common substrate including semiconductor components specially adapted for rectifying, oscillating, amplifying or switching and having at least one potential-jump barrier or surface barrier; including integrated passive circuit elements with at least one potential-jump barrier or surface barrier the substrate being other than a semiconductor body, e.g. an insulating body
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/10OLED displays
    • H10K59/12Active-matrix OLED [AMOLED] displays
    • H10K59/1201Manufacture or treatment
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K77/00Constructional details of devices covered by this subclass and not covered by groups H10K10/80, H10K30/80, H10K50/80 or H10K59/80
    • H10K77/10Substrates, e.g. flexible substrates
    • H10K77/111Flexible substrates

Definitions

  • At least one embodiment of the present disclosure is directed to a display substrate, a method of manufacturing the same, and a display panel.
  • At least one embodiment of the present disclosure provides a display substrate, comprising: a substrate including a display area and a non-display area located around the display area; at least one raised portion disposed on the substrate; The protrusion is disposed in the non-display area.
  • the display substrate further includes: a passivation layer disposed on the substrate; wherein the protrusion is located on the substrate And the passivation layer, and the passivation layer at least partially covers the protrusion.
  • the display substrate further includes: an interlayer insulating layer, a gate insulating layer, and a buffer between the passivation layer and the substrate. At least one of the layers.
  • At least one of the protrusions is disposed between the passivation layer and the interlayer insulating layer; and/or at least one of the a raised portion disposed between the interlayer insulating layer and the gate insulating layer; and/or at least one of the raised portions is disposed between the gate insulating layer and the buffer layer; and/or at least one The raised portion is disposed between the buffer layer and the substrate.
  • the protrusion is at least partially disposed in the same layer as the interlayer insulating layer and is made of the same material; and/or the protrusion At least partially configured to be in the same layer as the gate insulating layer and made of the same material; and/or the raised portion is at least partially configured to be in the same layer as the buffer layer and made of the same material.
  • the protrusion is at least partially configured to include a stack of a first protrusion and a second protrusion; wherein the first The protrusion is configured to be made of the same material as the at least one of the interlayer insulating layer, the gate insulating layer, and the buffer layer, and the second protrusion is configured as a photoresist material.
  • the preparation material of the convex portion includes a photoresist material.
  • the height of the convex portion is 0.2 to 3 ⁇ m in a direction perpendicular to a surface of the substrate; and parallel to The convex portion has a width of 3 to 9 ⁇ m in the direction in which the substrate is located.
  • the convex portion includes at least a portion sequentially arranged around the display region on a same layer parallel to a surface on which the substrate is located. a convex portion and a second convex portion, the first convex portion is disposed in the same layer as the second convex portion, and the first convex portion is located inside the second convex portion.
  • a display substrate provided by at least one embodiment of the present disclosure, characterized in that, between the first convex portion and the second convex portion, in a direction parallel to a surface of the substrate The spacing is 3 to 10 microns.
  • the convex portion includes at least a first convex layer and a plurality of layers located in different layers in a direction perpendicular to a surface of the substrate a second raised layer, and the first raised layer is between the second raised layer and the substrate.
  • an orthographic projection of the first bump layer on the substrate and a second bump layer on the substrate The orthogonal projections coincide; or the orthographic projection of the first raised layer on the substrate is outside the orthographic projection of the second raised layer on the substrate.
  • the convex portion is provided in an annular structure and disposed around the display region, wherein each of the convex portions is provided as an integrated closure.
  • An annular structure; or each of the raised portions is configured to include at least two raised segments that are spaced apart from one another.
  • the display substrate further includes: an encapsulation layer disposed on a side of the passivation layer away from the substrate; and the display area
  • the substrate includes a plurality of pixel regions, and at least one organic light emitting device is disposed on the substrate of each of the pixel regions, the organic light emitting device being located between the passivation layer and the encapsulation layer .
  • an orthographic projection of the raised portion on the substrate is located within an orthographic projection of the encapsulation layer on the substrate.
  • the display substrate further includes: a buffer layer, a gate insulating layer, an interlayer insulating layer, and a passivation layer disposed on the substrate; At least one of the flat layers.
  • the protrusion is at least partially disposed in the same layer as the interlayer insulating layer and is made of the same material; and/or the protrusion At least partially configured to be in the same layer as the gate insulating layer and made of the same material; and/or the raised portion is at least partially configured to be in the same layer as the buffer layer and made of the same material; and/or the raised portion is at least A portion is configured to be in the same layer as the passivation layer and made of the same material; an orthographic projection of the raised portion on the substrate is within an orthographic projection of the planar layer on the substrate.
  • the display substrate further includes: a buffer layer, a gate insulating layer, an interlayer insulating layer, a passivation layer, and a flat layer; the raised portion is at least partially disposed in the same layer as the interlayer insulating layer and made of the same material; and/or the raised portion is at least partially disposed in the same layer as the gate insulating layer and is made of the same material And/or the raised portion is at least partially configured to be in the same layer as the passivation layer and made of the same material; an orthographic projection of the raised portion on the substrate is located in the planar layer on the substrate Within the orthographic projection, the orthographic projection of the raised portion on the substrate is within the orthographic projection of the buffer layer on the substrate.
  • the display substrate further includes: a buffer layer, a gate insulating layer, an interlayer insulating layer, and a flat layer disposed on the substrate;
  • the raised portion is at least partially disposed in the same layer as the interlayer insulating layer and is made of the same material; and/or the raised portion is at least partially disposed in the same layer as the gate insulating layer and is made of the same material;
  • An orthographic projection of the starting portion on the substrate is located within an orthographic projection of the planar layer on the substrate, and an orthographic projection of the raised portion on the substrate is located in the buffer layer at the Within the orthographic projection on the substrate.
  • At least two of the protrusions are disposed on the same side of the display area.
  • the height of the convex portion is 0.2 to 3 ⁇ m in a direction perpendicular to a surface of the substrate;
  • the width of the convex portion is 3 to 9 ⁇ m in the direction in which the substrate is located; the spacing between two adjacent convex portions is 3 in a direction parallel to the surface of the substrate ⁇ 10 microns.
  • At least one embodiment of the present disclosure provides a display panel including the display substrate in any of the above embodiments.
  • At least one embodiment of the present disclosure provides a method of fabricating a display substrate, comprising: providing a substrate including a display region and a non-display region located around the display region; and forming at least one on the substrate a raised portion; wherein the raised portion is formed in the non-display area.
  • the method of manufacturing a display substrate provided by at least one embodiment of the present disclosure further includes: forming a passivation layer on the substrate; wherein the protrusion is formed between the substrate and the passivation layer And the passivation layer at least partially covers the raised portion.
  • the method of manufacturing a display substrate further includes: forming a planarization layer on the substrate; and forming a buffer layer, a gate insulating layer, and a layer between the substrate and the planarization layer At least one of an insulating layer and a passivation layer; wherein an orthographic projection of the raised portion on the substrate is within an orthographic projection of the planar layer on the substrate, and the bump a portion at least partially in the same layer as the interlayer insulating layer and formed of the same material; and/or the raised portion is at least partially formed in the same layer and the same material as the gate insulating layer; and/or the raised portion is at least partially Formed in the same layer as the buffer layer and formed of the same material; and/or the raised portion is at least partially formed in the same layer as the passivation layer and formed of the same material.
  • the manufacturing method of the display substrate further includes: forming a buffer layer, a gate insulating layer, an interlayer insulating layer, a passivation layer, and a flat layer on the substrate; wherein the protrusion An orthographic projection on the substrate is located within an orthographic projection of the planar layer on the substrate, and an orthographic projection of the raised portion on the substrate is located in the buffer layer in the lining Within the orthographic projection on the bottom, and the raised portion is at least partially disposed in the same layer as the interlayer insulating layer and made of the same material; and/or the raised portion is at least partially disposed with the gate insulating layer
  • the same layer and the same material are prepared; and/or the raised portion is at least partially configured to be in the same layer as the passivation layer and made of the same material.
  • the manufacturing method of the display substrate further includes: forming a buffer layer, a gate insulating layer, an interlayer insulating layer, and a flat layer on the substrate; wherein the convex portion is in the An orthographic projection on the substrate is located within an orthographic projection of the planar layer on the substrate, and an orthographic projection of the raised portion on the substrate is located on the buffer layer on the substrate Within the projection, and the raised portion is at least partially disposed in the same layer as the interlayer insulating layer and made of the same material; and/or the raised portion is at least partially disposed in the same layer and the same as the gate insulating layer Material preparation.
  • FIG. 1 is a plan view of a display substrate according to an embodiment of the present disclosure
  • Figure 2 is a cross-sectional view of the display substrate of Figure 1 taken along line M-N;
  • FIG. 3 is a partial cross-sectional view of another display substrate according to an embodiment of the present disclosure.
  • FIG. 4 is a partial cross-sectional view of another display substrate according to an embodiment of the present disclosure.
  • FIG. 5 is a partial cross-sectional view showing another display substrate according to an embodiment of the present disclosure.
  • FIG. 6 is a partial cross-sectional view showing another display substrate according to an embodiment of the present disclosure.
  • FIG. 7 is a plan view showing another display substrate according to an embodiment of the present disclosure.
  • FIG. 8 is a partial cross-sectional view showing another display substrate according to an embodiment of the present disclosure.
  • FIG. 9 is a partial cross-sectional view showing another display substrate according to an embodiment of the present disclosure.
  • FIG. 10 is a partial cross-sectional view showing another display substrate according to an embodiment of the present disclosure.
  • FIG. 11 is a partial cross-sectional view showing another display substrate according to an embodiment of the present disclosure.
  • FIG. 12 is a partial cross-sectional view of a display panel according to an embodiment of the present disclosure.
  • At least one embodiment of the present disclosure provides a display substrate including: a substrate and at least one protrusion disposed on the substrate, the substrate including a display area and a non-display area around the display area, the protrusion It is placed on the substrate in the non-display area.
  • the arrangement of the raised portions increases the path in which the external water, oxygen, and the like invade the inside of the display substrate, and protects the components in the display substrate.
  • FIG. 1 is a plan view of a display substrate according to an embodiment of the present disclosure.
  • the display substrate includes a substrate 100 and a protrusion 300 disposed on the substrate 100.
  • the substrate 100 includes a display area 100 and a non-display area 120 located around the display area 100.
  • the protrusion 300 is disposed at On the substrate 100 in the non-display area 120.
  • the convex portion 300 is disposed around the display region 110, and in the process of intrusion of external water, oxygen, or the like into the interior of the display substrate, the convex portion 300 increases an intrusion path of water, oxygen, or the like to perform, for example, components in the display region 110. protection.
  • the manner in which the protrusions 300 are disposed may be various.
  • the at least one embodiment of the present disclosure does not limit the manner in which the protrusions 300 are embodied, as long as the arrangement of the protrusions 300 can be increased.
  • Water, oxygen, or the like may enter the path inside the display substrate.
  • the structure of the display substrate in the embodiment of the present disclosure will be described based on the manner in which the different convex portions 300 are disposed.
  • FIG. 2 is a cross-sectional view of the display substrate of FIG. 1 taken along M-N.
  • the display substrate includes a substrate 100 and a passivation layer 200 disposed on the substrate 100.
  • the raised portion 300 may be configured to increase the path of water, oxygen, etc., that invade the interior of the display substrate along the surface of the passivation layer 200; for example, in other embodiments of the present disclosure, The raised portion 300 can be configured to increase the path of water, oxygen, and other structures invading the interior of the display substrate.
  • the arrangement of the convex portion 300 can increase the path of water, oxygen, or the like entering the inside of the display substrate along the surface of the passivation layer 200 as an example, and the specific structure of the display substrate will be described.
  • the display substrate includes a passivation layer 200 disposed on the substrate 100, and the protrusion 300 is located between the passivation layer 200 and the substrate 100, and The passivation layer 200 at least partially covers the raised portion 300.
  • the display substrate includes a passivation layer 200 disposed on the substrate 100, and the protrusion 300 is located between the passivation layer 200 and the substrate 100, and The passivation layer 200 at least partially covers the raised portion 300.
  • the passivation layer 200 in the non-display area 120, is disposed along the protrusion 300, such that the face of the passivation layer 200 facing the substrate 100
  • the surface area is increased, the path of external water and oxygen entering the inside of the display substrate is increased, and the convex portion 300 increases the adhesion area of the passivation layer 200 on the display substrate, thereby increasing the adhesion of the passivation layer 200 on the display substrate.
  • the passivation layer 200 can be disposed to cover all of the raised portions 300, i.e., the orthographic projection of the raised portions 300 on the substrate 100 can be within the orthographic projection of the passivation layer 200 on the substrate 100.
  • the material for preparing the substrate 100 in the display substrate is not limited.
  • the preparation material of the substrate 100 may be a glass substrate, a quartz substrate or a resin-based material
  • the resin-based material includes, for example, polyimide, polycarbonate, polyacrylate, polyetherimide, polyethersulfone, and poly-pair.
  • polyimide polycarbonate
  • polyacrylate polyacrylate
  • polyetherimide polyethersulfone
  • poly-pair One or more of ethylene phthalate and polyethylene naphthalate.
  • the material for preparing the passivation layer 200 is not limited.
  • the material of the passivation layer 200 may include silicon nitride (SiN x ), silicon oxide (SiO x ), silicon oxynitride (SiN x O y ), or other suitable materials.
  • a three-dimensional coordinate system is established with reference to the substrate 100 in the display substrate to direct the components in the display substrate.
  • the directions of the X-axis and the Y-axis are parallel to the direction in which the substrate 100 is located, and the Z-axis is a direction perpendicular to the plane in which the substrate 100 is located.
  • the display substrate is an array substrate.
  • the substrate 100 of the display region 110 includes a plurality of pixel regions 111, and each of the pixel regions 111 is provided with at least one switching element such as a thin film transistor 400.
  • the display substrate may further include at least one of the buffer layer 410, the gate insulating layer 420, and the interlayer insulating layer 430 disposed between the substrate 100 and the passivation layer 200. .
  • At least one embodiment of the present disclosure does not limit the preparation materials of the buffer layer 410, the gate insulating layer 420, and the interlayer insulating layer 430, and may be selected according to actual needs.
  • the preparation material of the buffer layer 410 may include an oxide of silicon (SiOx) or a nitride of silicon (SiNx).
  • the buffer layer 410 may be a single layer structure composed of silicon nitride or silicon oxide, or may have a two-layer structure composed of silicon nitride and silicon oxide.
  • the material of the gate insulating layer 420 may include silicon nitride (SiNx), silicon oxide (SiOx), aluminum oxide (Al 2 O 3 ), aluminum nitride (AlN), or the like. Suitable materials, etc.
  • the interlayer insulating layer 430 may have a single layer structure or a structure of two or more layers.
  • the material of the interlayer insulating layer 430 may include an inorganic insulating material such as silicon nitride or silicon oxide, or may be an organic insulating material.
  • the specific structure of the thin film transistor 400 is not limited.
  • the thin film transistor 400 may further include an active layer, a gate electrode, and a source/drain electrode layer (including a source electrode and a drain electrode).
  • Components such as an active layer, a gate electrode, a source/drain electrode layer, and the like in the thin film transistor 400 may be affected by water, oxygen, or the like, thereby degrading the electrical performance of the thin film transistor 400.
  • the convex portion 300 disposed between the substrate 100 and the passivation layer 200 may increase the path of water and oxygen from entering between the substrate 100 and the passivation layer 200 into the interior of the display substrate, thereby protecting the thin film transistor 400.
  • the thin film transistor 400 may be a bottom gate thin film transistor, a top gate thin film transistor, or a double gate thin film transistor.
  • the arrangement of the protrusions 300 is not limited to protecting only the above-described thin film transistor 400, and other components such as the substrate 100 and the passivation layer 200 in the display substrate can be protected.
  • the relationship between the parts to be protected and the positions at which the bosses 300 are disposed may be designed according to actual conditions, and at least one embodiment of the present disclosure is not limited herein.
  • the buffer layer 410 is disposed in the display substrate.
  • the buffer layer 410 may not be provided in the display substrate.
  • the following embodiments of the present disclosure will be described by taking the buffer layer 410 provided in the display substrate as an example.
  • the specific structure and the specific arrangement position of the convex portion 300 are not limited as long as the arrangement of the convex portion 300 can increase the path of water, oxygen, or the like invading the inside of the display substrate.
  • the specific structure and the specific arrangement position of the convex portion 300 are not limited as long as the arrangement of the convex portion 300 can increase the path of water, oxygen, or the like invading the inside of the display substrate.
  • the protrusion 300 may be disposed on at least one of the passivation layer 200, the interlayer insulating layer 430, the gate insulating layer 420, the buffer layer 410, and the substrate 100. Between two adjacent layers. For example, at least one raised portion 300 is disposed between the passivation layer 200 and the interlayer insulating layer 430; and/or at least one raised portion 300 is disposed between the interlayer insulating layer 430 and the gate insulating layer 420; and/or At least one raised portion 300 is disposed between the gate insulating layer 420 and the buffer layer 410; and/or at least one raised portion 300 is disposed between the buffer layer 410 and the substrate 100.
  • the buffer layer 410 is not disposed in the display substrate, and at least one of the bumps 300 may be disposed between the gate insulating layer 420 and the substrate 100.
  • the protrusion 300 is disposed between the buffer layer 410 and the gate insulating layer 420, thus increasing the intrusion of water, oxygen, etc. along the interface between the buffer layer 410 and the gate insulating layer 420.
  • the path inside the substrate is exemplary, as shown in FIG. 2, the protrusion 300 is disposed between the buffer layer 410 and the gate insulating layer 420, thus increasing the intrusion of water, oxygen, etc. along the interface between the buffer layer 410 and the gate insulating layer 420. The path inside the substrate.
  • the interlayer insulating layer 430 and the passivation layer 200 on the gate insulating layer 420 are also formed to correspond to the uneven portion of the bump 300, such that the interface between the gate insulating layer 420 and the interlayer insulating layer 430 and The area of the interface between the interlayer insulating layer 430 and the passivation layer 200 is increased, and correspondingly, water, oxygen is along the interface between the gate insulating layer 420 and the interlayer insulating layer 430, and the interlayer insulating layer 430 and the passivation layer.
  • the interface between the 200 intrusion shows an increase in the path inside the substrate, and the connection between the gate insulating layer 420 and the interlayer insulating layer 430 and between the interlayer insulating layer 430 and the passivation layer 200 is increased, and the package effect of the display substrate is increased. improve.
  • FIG. 3 is a partial cross-sectional view of another display substrate according to an embodiment of the present disclosure.
  • a portion of the display substrate in which at least one of the buffer layer 410, the gate insulating layer 420, and the interlayer insulating layer 430 is located in the non-display region 120 is configured as at least a portion of the bump 300.
  • the manufacturing process of the display substrate can be simplified, and the cost can be reduced.
  • the raised portion 300 is at least partially configured in the same layer as the interlayer insulating layer 430 and is made of the same material; and/or the raised portion 300 is at least partially configured to be the same layer and the same material as the gate insulating layer 420.
  • a buffer layer 410 is disposed in the display substrate, and the protrusion portion 300 may be at least partially disposed in the same layer as the buffer layer 410 and made of the same material.
  • a portion of the gate insulating layer 420 in the display substrate located at the non-display area 120 and a portion of the interlayer insulating layer 430 located at the non-display area 120 are configured as the convex portion 300.
  • the gate insulating layer 420 and the interlayer insulating layer 430 in the non-display region 120 are subjected to a patterning process, The gate insulating layer 420 and the interlayer insulating layer 430 in the non-display region 120 are formed such that the convex portion 300 is formed.
  • a via hole for connecting the source/drain electrode layer and the active layer needs to be formed in the gate insulating layer 420 and the interlayer insulating layer 430, so that the via hole is formed by a patterning process.
  • the bosses 300 can be prepared simultaneously.
  • the patterning process may be, for example, a photolithographic patterning process, which may include, for example, coating a photoresist film on a structural layer that needs to be patterned, and coating the photoresist film may be spin coating. a method of knife coating or roll coating; then exposing the photoresist layer with a mask, developing the exposed photoresist layer to obtain a photoresist pattern; and then etching the structure layer using the photoresist pattern The photoresist material pattern is selectively removed; the remaining photoresist material is finally stripped to form the desired pattern structure.
  • a photolithographic patterning process which may include, for example, coating a photoresist film on a structural layer that needs to be patterned, and coating the photoresist film may be spin coating. a method of knife coating or roll coating; then exposing the photoresist layer with a mask, developing the exposed photoresist layer to obtain a photoresist pattern; and then etching the structure layer using the photoresist pattern The photo
  • FIG. 4 is a partial cross-sectional view of another display substrate according to an embodiment of the present disclosure.
  • the raised portion 300 is at least partially configured to include a stack of a first protrusion 301 and a second protrusion 302; wherein the first protrusion 301 can be disposed with the interlayer insulating layer 430 and the gate
  • At least one of the insulating layer 420 and the buffer layer 410 is made of the same layer and made of the same material
  • the second protrusion 302 is configured as a photoresist material.
  • the boss 300 includes a plurality of first protrusions 301 and a plurality of second protrusions 302, and the first protrusions 301 and the second protrusions 302 are alternately disposed in a direction parallel to the Z-axis.
  • the height of the convex portion 300 in the direction parallel to the Z-axis can be further increased to increase
  • the intrusion of water and oxygen into the path inside the display substrate can also simplify the preparation process of the display substrate and reduce the cost.
  • each protrusion in the display substrate includes two first protrusions 301 and two second protrusions 302, and the two first protrusions 301 and the gate insulating layer 420 and the layer respectively
  • the insulating layer 430 is made of the same layer and made of the same material.
  • the surface of each of the first protrusions 301 remote from the substrate 100 is provided with a second protrusion 302 in contact with itself.
  • the second protrusion 302 is a photoresist material.
  • the interlayer insulating layer 430 can also perform the above process.
  • a stack of two first protrusions 301 and two second protrusions 302 alternately arranged with each other, that is, the boss portion 300 as shown in FIG. 4, may be formed on the substrate 100 of the non-display area 120.
  • the raised portions 300 may also be separately disposed on the substrate 100 of the non-display area 120.
  • the preparation material of the boss 300 may include a photoresist material.
  • a photoresist material may be coated on the substrate 100 of the non-display area 120, developed by exposure through a mask, and the remaining portion of the photoresist material forms the bumps 300. The process of preparing the bumps 300 by the above method is simple in operation and does not affect other structures in the display substrate.
  • the specific structural design of the convex portion 300 is not limited to the foregoing several combinations, and may be designed according to actual needs. At least one embodiment of the present disclosure does not make the specific structure of the convex portion 300. limit.
  • FIG. 5 is a partial cross-sectional view of another display substrate according to an embodiment of the present disclosure.
  • the convex portion 300 includes at least a first convex portion 311 and a second convex portion 312 which are sequentially arranged around the display region 110, and the first convex portion
  • the rising portion 311 is disposed in the same layer as the second convex portion 312, and the first convex portion 311 is located inside the second convex portion 312.
  • the multi-layered protrusion 300 can further increase the path of the outside water and oxygen invading the inside of the display substrate, thereby further improving the packaging effect of the display substrate.
  • the height of the different raised portions 300 disposed in the same layer (the distance of one end of the raised portion 300 away from the substrate 100 to the other end of the raised portion 300 near the other end of the substrate 100) Relationships are not restricted.
  • the height of the boss 300 located on the outer layer of the display substrate may be set to be greater than the height of the boss 300 of the inner layer.
  • the height H2 of the second raised portion 312 is greater than the height H1 of the first raised portion 311.
  • the height H1 of the first convex portion 311 located in the inner layer is low to avoid adversely affecting the structure in the display region 110, and the height H2 of the second convex portion 312 located at the outer layer is high, which can increase the water and oxygen intrusion path. Improve the packaging effect of the display substrate.
  • the spacing distance between adjacent raised portions 300 disposed in the same layer is not limited.
  • the spacing between adjacent raised portions 300 eg, first raised portion 311 and second raised portion 312 is between about 1 and 20 microns, and further between about 3 and 10 Micron.
  • the spacing S between the first raised portion 311 and the second raised portion 312 is about 3 to 10 microns in a direction parallel to the plane of the substrate 100.
  • FIG. 6 is a partial cross-sectional view of another display substrate according to an embodiment of the present disclosure.
  • the convex portion 300 in a direction perpendicular to the plane of the substrate 100, the convex portion 300 includes at least the first convex layer 321 and the second convex layer 322 at different layers, and the first convex layer 321 is located. Between the second raised layer 322 and the substrate 100.
  • the arrangement of the plurality of raised portions 300 can further increase the path of water, oxygen, etc., which invades the inside of the display substrate, and improve the packaging effect of the display substrate.
  • a first bump layer 321 may be disposed between the buffer layer 410 and the gate insulating layer 420, and a second bump layer may be disposed between the gate insulating layer 420 and the interlayer insulating layer 430. 322.
  • the protrusions 300 are disposed in different layers, at least one embodiment of the present disclosure does not limit the number of layers, the specific position and the number of the protrusions 300, and may be set according to actual needs.
  • At least one embodiment of the present disclosure does not limit the relative positional relationship between the bosses 300 of different layers.
  • the orthographic projection of the first raised layer 321 on the substrate 100 and the orthographic projection of the second raised layer 322 on the substrate 100 coincide, ie, A raised portion 321 and a second raised portion 322 may be disposed in a superposed manner.
  • the orthographic projection of the first raised layer 321 on the substrate 100 is outside the orthographic projection of the second raised layer 322 on the substrate 100, ie, the first raised layer 321 And the second raised layer 322 may be staggered.
  • At least one embodiment of the present disclosure does not limit the size of the boss 300, and may be designed according to an actual process.
  • the height H of the raised portion 300 may be about 0.2 to 3 microns in a direction perpendicular to the plane of the substrate 100; parallel to the substrate 100.
  • the width W of the raised portion 300 may be about 3 to 9 microns in the direction of the face.
  • the arrangement of the protrusions 300 on the substrate 100 is not limited as long as the protrusions 300 are provided to increase the path of water, oxygen, or the like that intrudes into the interior of the display substrate.
  • the boss 300 is disposed in an annular structure and disposed around the display area 110, and the boss 300 may be disposed to be partially disposed around the display area 110, or may be disposed It is a ring structure and is disposed around the display area 110, wherein each of the protrusions 300 may be provided as an integrated closed ring structure.
  • the raised portion 300 can protect components in the entire display area 110.
  • FIG. 7 is a plan view of another display substrate according to an embodiment of the present disclosure.
  • the raised portion 300 is disposed in an annular configuration and disposed around the display area 110, and each raised portion 300 can be configured to include at least two raised segments 330 that are spaced apart from each other (eg, including the first raised portion 331) , the second raised section 332, etc.).
  • the protruding segments 330 can be arranged according to the specific structure of the display substrate, so as to avoid causing the display substrate to be too thick, resulting in poor subsequent manufacturing processes and the like.
  • At least one embodiment of the present disclosure does not limit the length of the flange segment 330 and can be designed according to actual process conditions.
  • the ratio of the length of the bump segment 330 to the side length of the display substrate is not less than 1/3, further not less than 2/3.
  • the ratio of the length of the bump segment 330 to the side length of the display substrate is not less than 1/3, further not less than 2/3.
  • the ratio of the length of the first bump segment 331 extending in parallel with the Y direction to the side length of the S1 side of the display substrate is not less than 1/3;
  • the ratio of the length of the second bump segment 332 extending in parallel to the X direction to the side length of the S2 side of the display substrate is not less than 1/3.
  • the ratio of the length of the bump segment 330 to the side length of the display substrate is not less than 1/3.
  • At least one embodiment of the present disclosure does not limit the extended shape of the boss 300 on the display substrate.
  • the extended shape of the raised portion 300 eg, the raised portion 330
  • the extended shape of the first convex segment 331 in the direction parallel to the Y-axis direction or the extended shape of the second convex segment 332 in the direction parallel to the X-axis is linear.
  • the display substrate may be an array substrate for liquid crystal display.
  • the display substrate may be an array substrate for an Organic Light-Emitting Diode (OLED) display.
  • OLED Organic Light-Emitting Diode
  • the arrangement of the protrusions 300 may be adjusted correspondingly for different types of display substrates, or the structure of other components in the display substrate may be adjusted to cooperate with the protrusions 300, thereby Further improving the packaging effect of the display substrate.
  • the structure of the display substrate will be further described by taking the display substrate as an OLED array substrate as an example.
  • FIG. 8 is a partial cross-sectional view of another display substrate according to an embodiment of the present disclosure.
  • the display substrate may include an encapsulation layer 600 disposed on a side of the passivation layer 200 away from the substrate 100, and at least one organic light emitting device 800 is disposed on the substrate 100 of each of the pixel regions 111, organic The light emitting device 800 is located between the encapsulation layer 600 and the passivation layer 200.
  • the distribution of the pixel area 111 can be referred to the related content shown in FIG. 1.
  • the arrangement of the convex portion 300 can prevent water, oxygen, or the like from intruding into the organic light emitting device 800 from between the substrate 100 and the passivation layer 200, thereby protecting the organic light emitting device.
  • the organic light emitting device 800 may include a first electrode 810, an organic light emitting layer 820, and a second electrode 620, and the organic light emitting layer 820 is located at the first electrode 810 and the second Between the electrodes 830.
  • the source-drain electrode layer in the thin film transistor 400 may be electrically connected to the first electrode 810 in the organic light emitting diode 800 to drive the organic light emitting diode 800.
  • the structure of the organic light emitting device 800 is not limited to the above, and for example, the organic light emitting device 800 may further include a hole injection layer, a hole transport layer, an electron transport layer, and an electron between the first electrode 810 and the second electrode 830.
  • the structure of the injection layer or the like may further include a hole blocking layer and an electron blocking layer, and the hole blocking layer may be disposed between the electron transport layer and the organic light emitting layer 820, for example, the electron blocking layer may be disposed in the hole transport layer and organic Between the light-emitting layers 820.
  • At least one embodiment of the present disclosure does not limit the materials of preparation of the first electrode 810 and the second electrode 830 in the organic light emitting device 800.
  • one of the first electrode 810 and the second electrode 830 may be an anode and the other may be a cathode.
  • the anode may be formed, for example, of a transparent conductive material having a high work function, and the electrode material may include indium tin oxide (ITO), indium zinc oxide (IZO), indium gallium oxide (IGO), gallium zinc oxide (GZO) zinc oxide (ZnO).
  • the cathode can be formed, for example, of a material having high conductivity and a low work function, and the electrode material thereof may include magnesium aluminum alloy (MgAl), lithium aluminum An alloy such as an alloy (LiAl) or a single metal such as magnesium, aluminum, lithium or silver.
  • MgAl magnesium aluminum alloy
  • LiAl lithium aluminum An alloy
  • a single metal such as magnesium, aluminum, lithium or silver.
  • At least one embodiment of the present disclosure does not limit the material for preparing the organic light-emitting layer 820 in the organic light-emitting device 800.
  • the material of the organic light-emitting layer 820 may be selected according to the color of its emitted light.
  • the material for preparing the organic light-emitting layer 820 includes a fluorescent material or a phosphorescent material.
  • the organic light-emitting layer 820 may employ a doping system in which a dopant material is mixed in the host light-emitting material to obtain a usable light-emitting material.
  • the host light-emitting material may be a metal compound material, a ruthenium derivative, an aromatic diamine compound, a triphenylamine compound, an aromatic triamine compound, a biphenyldiamine derivative, or a triarylamine polymer.
  • the encapsulation layer 600 may be a single layer structure or a conforming structure of at least two layers.
  • the preparation material of the encapsulation layer 600 may include an insulating material such as silicon nitride (SiN x ), silicon oxide (SiO x ), silicon oxynitride (SiN x O y ), or a polymer resin.
  • At least one embodiment of the present disclosure does not limit the distribution of the encapsulation layer 600 on the substrate 100.
  • the orthographic projection of the raised portion 300 on the substrate 100 is within the orthographic projection of the encapsulation layer 600 on the substrate 100, ie, the encapsulation layer 600 extends to the location of the raised portion 300. region.
  • the orthographic projection of the raised portion 300 on the substrate 100 is outside of the orthographic projection of the encapsulation layer 600 on the substrate 100.
  • the distribution of the encapsulation layer 600 on the substrate 100 is related to the subsequent package structure of the display substrate.
  • the different arrangement manners of the encapsulation layer 600 can refer to the related content in the following embodiments (such as the embodiment of the display panel shown in FIG. 12). At least one embodiment of the present disclosure is not described herein.
  • the display substrate may further include a pixel defining layer 700 disposed on the substrate 100, and the organic light emitting device 800 is disposed in a region defined by the pixel defining layer 700. .
  • the pixel defining layer 700 may be a one-layer or two-layer structure, or may be a multi-layer composite layer structure.
  • the pixel defining layer 700 can include at least a first defined layer and a second defined layer.
  • the first defined layer can be formed, for example, of a hydrophilic organic material
  • the second defined layer can be formed, for example, of a hydrophobic organic material.
  • the first defining layer is between the substrate 100 and the second defining layer, and when a partial structure of the organic light emitting device 800 (for example, the organic light emitting layer 820 or the like) is prepared by, for example, inkjet printing, the first defining layer having hydrophilic properties will The inkjet material is adsorbed and fixed in a region defined by the pixel defining layer 700, and the second defining layer having hydrophobic properties causes the inkjet material falling thereon to slide down and move to the region defined by the pixel defining layer 700, which can be improved Shows the yield of substrate preparation.
  • a partial structure of the organic light emitting device 800 for example, the organic light emitting layer 820 or the like
  • the first defining layer having hydrophilic properties will The inkjet material is adsorbed and fixed in a region defined by the pixel defining layer 700, and the second defining layer having hydrophobic properties causes the inkjet material falling thereon to slide down and move to the region defined by the pixel defining layer 700, which can be improved Show
  • the display substrate may further include a flat layer 500 disposed between the organic light emitting device 800 and the passivation layer 200.
  • the planarization layer 500 may planarize the display substrate to facilitate subsequent processes.
  • the preparation material of the flat layer 500 may be an organic material such as an epoxy resin, polyimide, polyamide, acrylic, or other suitable material.
  • the manner in which the bosses are disposed is not limited to increasing the path of water, oxygen, or the like invading the interior of the display substrate along the surface of the passivation layer.
  • FIG. 9 is a partial cross-sectional view of another display substrate according to an embodiment of the present disclosure.
  • the display substrate may include at least one of a buffer layer 410, a gate insulating layer 420, an interlayer insulating layer 430, a passivation layer 200, and a flat layer 500 which are sequentially disposed on the substrate 100.
  • the selection of the buffer layer 410, the gate insulating layer 420, the interlayer insulating layer 430, the passivation layer 200, and the flat layer 500 may be designed according to actual needs, and at least one embodiment of the present disclosure is not limited herein.
  • the buffer layer 410 the gate insulating layer 420, the interlayer insulating layer 430, the passivation layer 200, and the flat layer 500 simultaneously provided in the display substrate as an example.
  • the raised portion 300 is at least partially configured in the same layer as the interlayer insulating layer 430 and is made of the same material; and/or the raised portion 300 is at least partially configured to
  • the gate insulating layer 420 is formed in the same layer and made of the same material; and/or the raised portion 300 is at least partially configured in the same layer as the buffer layer 410 and is made of the same material; and/or the raised portion 300 is at least partially configured to be the same as the passivation layer 200
  • the layers are prepared in the same material.
  • the orthographic projection of the raised portion 300 on the substrate 100 is within the orthographic projection of the planarization layer 500 on the substrate 100.
  • the buffer layer 410, the gate insulating layer 420, the interlayer insulating layer 430, and the passivation layer 200 may be sequentially formed on the substrate 100, and then the buffer layer in the non-display region 120 410, the gate insulating layer 420, the interlayer insulating layer 430, and the passivation layer 200 are patterned so that the buffer layer 410, the gate insulating layer 420, the interlayer insulating layer 430, and the passivation layer 200 are located in the non-display region 120.
  • the convex portion 300 is partially formed, and then the flat layer 500 is covered on the substrate 100.
  • the convex portion 300 can not only increase the path of water, oxygen, etc., which invades the inside of the display substrate, but also can be used in the application of the display substrate (for example, the display substrate can be a flexible display substrate, and the display substrate has operations such as bending during application). It can reduce the probability of damage such as cracking, and reduce the risk of the outside water, oxygen, etc. invading the inside of the display substrate.
  • FIG. 10 is a partial cross-sectional view of another display substrate according to an embodiment of the present disclosure.
  • the display substrate includes a buffer layer 410, a gate insulating layer 420, an interlayer insulating layer 430, a passivation layer 200, and a flat layer 500 disposed on the substrate 100.
  • the display substrate includes a buffer layer 410, a gate insulating layer 420, an interlayer insulating layer 430, a passivation layer 200, and a flat layer 500 disposed on the substrate 100.
  • FIG. 10 is a partial cross-sectional view of another display substrate according to an embodiment of the present disclosure.
  • the display substrate includes a buffer layer 410, a gate insulating layer 420, an interlayer insulating layer 430, a passivation layer 200, and a flat layer 500 disposed on the substrate 100.
  • the raised portion 300 is at least partially disposed in the same layer as the interlayer insulating layer 430 and is made of the same material; and/or the raised portion 300 is at least partially disposed in the same layer as the gate insulating layer 420 and is made of the same material; And/or the raised portion 300 is at least partially configured to be in the same layer as the passivation layer 200 and made of the same material.
  • the orthographic projection of the raised portion 300 on the substrate 100 is within the orthographic projection of the buffer layer 410 on the substrate 100, and the raised portion 300 is positive on the substrate 100.
  • the projection is located within the orthographic projection of the planarization layer 500 on the substrate 100.
  • the buffer layer 410, the gate insulating layer 420, the interlayer insulating layer 430, and the passivation layer 200 are sequentially formed on the substrate 100, and then the gate insulating layer 420 and the interlayer insulating layer are formed. a portion of the non-display region 120 of the passivation layer 430 and the passivation layer 200 is patterned such that portions of the gate insulating layer 420, the interlayer insulating layer 430, and the passivation layer 200 located in the non-display region 120 form the bumps 300, The planar layer 500 is then overlaid on the substrate 100.
  • the buffer layer 410 extends to the non-display area 120 of the substrate 100, for example, to the area where the protrusions 300 are located, and can serve as a buffer between the substrate 100 and the structure disposed on the substrate 100 to be disposed in the lining
  • the structure on the bottom 100 is protected. In this way, not only can the path of water, oxygen, etc. invade the inside of the display substrate be increased, but in the application of the display substrate (for example, the display substrate can be a flexible display substrate, and the display substrate has a bending operation during application), damage can be reduced, for example, The probability of cracking reduces the risk of intrusion of water, oxygen, etc. from the outside into the interior of the display substrate.
  • FIG. 11 is a partial cross-sectional view of another display substrate according to an embodiment of the present disclosure.
  • the display substrate includes a buffer layer 410, a gate insulating layer 420, an interlayer insulating layer 430, and a flat layer 500 disposed on the substrate 100.
  • the raised portion 300 is at least partially disposed in the same layer as the interlayer insulating layer 430 and is made of the same material; and/or the raised portion 300 is at least partially configured to be the same layer and the same material as the gate insulating layer 420.
  • the orthographic projection of the raised portion 300 on the substrate 100 is within the orthographic projection of the buffer layer 410 on the substrate 100, and the raised portion 300 is positive on the substrate 100.
  • the projection is located within the orthographic projection of the planarization layer 500 on the substrate 100.
  • the buffer layer 410, the gate insulating layer 420, the interlayer insulating layer 430 are sequentially formed on the substrate 100, and then the non-display area of the gate insulating layer 420 and the interlayer insulating layer 430 is formed.
  • a portion of 120 is subjected to a patterning process such that portions of the gate insulating layer 420 and the interlayer insulating layer 430 located in the non-display region 120 form the bumps 300, and then the planar layer 500 is covered on the substrate 100.
  • the convex portion 300 disposed in the display substrate can not only increase the path of water, oxygen, etc., which invades the inside of the display substrate, but also can be applied to the display substrate (for example, the display substrate can be a flexible display substrate, and the display substrate exists during application).
  • the display substrate can be a flexible display substrate, and the display substrate exists during application.
  • the probability of damage such as cracking may be reduced, and the risk of intrusion of water, oxygen, etc. into the interior of the display substrate may be reduced; and the passivation layer 200 as shown in FIG. 10 is not disposed in the display substrate to be a flat layer.
  • the thickness of the display substrate can be further reduced to facilitate the thinning of the display substrate; further, the buffer layer 410 extends to the non-display area 120 of the substrate 100, for example, to the area where the protrusion 300 is located, A buffer is provided between the substrate 100 and the structure disposed on the substrate 100 to protect the structure disposed on the substrate 100.
  • the plurality of protrusions 300 may be disposed around the display area 110 of the display substrate such that water, oxygen, or the like may be blocked by the plurality of protrusions 300 during intrusion into the display substrate, To further increase the encapsulation effect of the convex portion 300 on the display substrate.
  • At least two raised portions 300 may be disposed on the same side of the display area 110 of the display substrate.
  • the height of the convex portion 300 is about 0.2 to 3 ⁇ m in a direction perpendicular to the plane of the substrate 100; the width of the convex portion 300 is about 3 to 9 in a direction parallel to the surface of the substrate 100.
  • Micron; the spacing between adjacent two raised portions 300 is about 3 to 10 microns in a direction parallel to the face of the substrate 100.
  • the size setting of the convex portion 300 reference may be made to the related content in the foregoing embodiment (for example, the embodiment shown in FIG. 5), and at least one embodiment of the present disclosure is not described herein.
  • At least one embodiment of the present disclosure provides a display panel including the display substrate in any of the above embodiments. At least one embodiment of the present disclosure does not limit the type of display panel.
  • the display panel may be a liquid crystal display panel, such as a display substrate as an array substrate of the liquid crystal display panel, and the display panel may further include a color filter substrate disposed on the array substrate, The two are opposed to each other to form a liquid crystal cell, and the liquid crystal cell is filled with a liquid crystal material.
  • the pixel electrode and the common electrode of each pixel unit of the array substrate are used to apply an electric field to control the degree of rotation of the liquid crystal material to perform a display operation.
  • the display panel may be an organic light emitting diode (OLED) display panel, wherein a stack of organic light emitting materials may be formed in a sub-pixel region of the display panel, each pixel unit
  • the pixel electrode serves as an anode or a cathode for driving the organic light-emitting material to emit light for a display operation.
  • the display panel may be an electronic paper display panel, wherein an electronic ink layer may be formed on the display substrate of the display panel, and the pixel electrode of each pixel unit is used for application.
  • the specific structure of the display panel in the embodiment of the present disclosure will be described by taking the display panel as the OLED display panel and the display substrate in the display panel as the OLED array substrate.
  • FIG. 12 is a partial cross-sectional view of a display panel according to an embodiment of the present disclosure.
  • the display panel may further include a counter substrate 1100 disposed opposite the substrate 100 and a frame disposed between the opposite substrate 1100 and the substrate 100.
  • the sealant 900 in a direction parallel to the Z-axis, may be disposed to cover a region where the boss 300 is located.
  • the sealant 900 can connect the display substrate and the opposite substrate 1100, and package the display panel to prevent foreign matter from intruding into the interior of the display panel.
  • the encapsulation layer 600 may be in contact with the encapsulation glue 900, for example, that is, the orthographic projection of the protrusion 300 on the substrate 100 is located on the encapsulation layer 600 at the substrate 100. Inside the orthographic projection.
  • the encapsulation layer 600 is also formed with a non-flat portion corresponding to the convex portion 300, so that the contact surface of the sealant 900 and the encapsulation layer 600 in the region is increased, so that not only It is possible to increase the path of the interface between the sealant 900 and the encapsulation layer 600, such as water and oxygen, to invade the inside of the display panel, and to improve the connection between the sealant 900 and the encapsulation layer 600, and improve the packaging effect of the display panel.
  • the encapsulation layer 600 is not in contact with the encapsulation glue 900, ie, the orthographic projection of the raised portion 300 on the substrate 100 is within the orthographic projection of the encapsulation layer 600 on the substrate 100.
  • the passivation layer 200 is also formed with a non-flat portion corresponding to the bump 200, so that the contact faces of the sealant 900 and the passivation layer 200 in the region are increased, and thus, The intrusion of the interface between the sealant 900 and the encapsulation layer 600 into the interior of the display panel can be increased, and the connection between the sealant 900 and the encapsulation layer 600 can be improved, and the encapsulation effect of the display panel can be improved.
  • the material for preparing the sealant 900 may include an organic material, an inorganic material, or a combination of an organic material and an inorganic material.
  • the organic material may include an epoxy resin, a polyurethane, an organic silicone, an acrylate, a polysiloxane, a polyamide, a polyester, or a combination of the above materials, and the inorganic material may include water glass or the like.
  • the sealant 900 is cured (for example, ultraviolet irradiation curing or heat curing, etc.) to complete the packaging of the display panel.
  • the sealant 900 can also be cured by pressing, melting, cooling, reaction curing, or a combination thereof.
  • the material that is cured by pressing may include a pressure sensitive adhesive.
  • the material cured by melting and cooling may include a hot melt adhesive such as polyolefin, polyester or polyamide.
  • the material cured by the reaction may include acrylate, epoxy resin, polyurethane, polysiloxane, or a combination thereof, and the reaction curing may include heat curing or ultraviolet radiation curing or the like.
  • the material of the filling layer 31 may be a polymer material containing a desiccant or a polymer material that can block moisture, such as a polymer resin, or a water-absorbent material, for example, an alkali metal (for example, Li, Na).
  • Alkaline earth metal such as Ba, Ca
  • other moisture reactive metals such as Al, Fe
  • Alkaline earth metal may also be alkali metal oxides (such as Li 2 O, Na 2 O), alkaline earth metal oxides (such as MgO, CaO) , BaO), a sulfate (for example, anhydrous MgSO 4 ), a metal halide (for example, CaCl 2 ), or a perchlorate (for example, Mg(ClO 4 ) 2 ).
  • the OLED display panel may not be provided with a structure such as a sealant 900, a filling layer 1000, a counter substrate 1100, etc., for example, the OLED display may be completed only by the encapsulation layer 600. The package of the panel.
  • the display substrate in the display panel may be a flexible substrate to be applied to the field of flexible display.
  • the touch substrate may be disposed on the display substrate to enable the display panel to obtain a touch display function.
  • the display panel may be any product or component having a display function such as a television, a digital camera, a mobile phone, a watch, a tablet, a notebook, a navigator, or the like.
  • At least one embodiment of the present disclosure provides a method of fabricating a display substrate, comprising: providing a substrate including a display region and a non-display region located around the display region; and forming at least one raised portion on the substrate; The raised portion is formed in the non-display area.
  • the provision of the convex portion increases the path in which the external water, oxygen, or the like intrudes into the inside of the display substrate, and protects the components in the display substrate.
  • the method of manufacturing a display substrate provided by at least one embodiment of the present disclosure further includes: forming a passivation layer on the substrate; wherein the protrusion is formed between the substrate and the passivation layer, and the passivation layer is at least partially covered Raised portion.
  • the convex portion can increase the path of water, oxygen, or the like entering the inside of the display substrate along the surface of the passivation layer, and protect the components in the display substrate.
  • a method of manufacturing a display substrate further includes: forming a planarization layer on the substrate; and forming a buffer layer, a gate insulating layer, an interlayer insulating layer, and passivation between the substrate and the planarization layer At least one of the layers; wherein the orthographic projection of the raised portion on the substrate is within an orthographic projection of the planar layer on the substrate, and the raised portion is at least partially in the same layer as the interlayer insulating layer and formed of the same material; And/or the raised portion is at least partially in the same layer as the gate insulating layer and formed of the same material; and/or the raised portion is at least partially formed in the same layer as the buffer layer and formed of the same material; and/or the raised portion is at least partially in the same layer as the passivation layer And formed with the same material.
  • the convex portion can not only increase the path of water, oxygen, or the like invading the inside of the display substrate, but also can be applied to the display substrate (for example, the display substrate can be a flexible display substrate, and the display substrate is During the application process, such as bending, etc., the probability of damage such as cracking may be reduced, and the risk of intrusion of water, oxygen, etc. from the outside into the interior of the display substrate may be reduced.
  • the manufacturing method of the display substrate further includes: forming a buffer layer, a gate insulating layer, an interlayer insulating layer, a passivation layer, and a flat layer on the substrate; wherein the protrusion is on the substrate
  • the upper orthographic projection is located within the orthographic projection of the planar layer on the substrate, the orthographic projection of the raised portion on the substrate is within the orthographic projection of the buffer layer on the substrate, and the raised portion is at least partially configured as a layer
  • the insulating layer is formed in the same layer and made of the same material; and/or the raised portion is at least partially disposed in the same layer as the gate insulating layer and made of the same material; and/or the raised portion is at least partially disposed in the same layer as the passivation layer and is of the same material preparation.
  • the display substrate obtained by the above-described manufacturing method, not only water, oxygen, or the like can be added to the inside of the display substrate, but the display substrate can be applied.
  • the display substrate can be a flexible display substrate, and the display substrate has a bend during application. During the folding operation, the probability of damage such as cracking can be reduced, and the risk of intrusion of water, oxygen, etc. from the outside into the interior of the display substrate can be reduced.
  • the manufacturing method of the display substrate further includes: forming a buffer layer, a gate insulating layer, an interlayer insulating layer, and a flat layer on the substrate; wherein the orthographic projection of the convex portion on the substrate Located within the orthographic projection of the planar layer on the substrate, the orthographic projection of the raised portion on the substrate is within the orthographic projection of the buffer layer on the substrate, and the raised portion is at least partially configured to be the same as the interlayer insulating layer
  • the layers are made of the same material; and/or the raised portions are at least partially configured in the same layer as the gate insulating layer and are made of the same material.
  • the convex portion can not only increase the path of water, oxygen, or the like invading the inside of the display substrate, but also can be applied to the display substrate (for example, the display substrate can be a flexible display substrate, and the display substrate is During the bending process in the application process, the probability of damage such as cracking, the risk of intrusion of water, oxygen, etc. into the interior of the display substrate can be reduced, and the passivation layer is not formed in the display substrate, which can further reduce the display substrate.
  • the thickness is favorable for lightening and thinning of the display substrate; further, the buffer layer extending to the non-display area of the substrate can buffer between the substrate and the structure formed on the substrate to form a structure formed on the substrate Protect.
  • At least one embodiment of the present disclosure provides a display substrate, a method of manufacturing the same, a display panel, and may have at least one of the following effects:
  • the convex portion provided in the non-display area can increase the path of water, oxygen, or the like entering the inside of the display substrate, thereby improving the packaging effect of the display substrate.
  • the convex portion can also increase the robustness of the connection between the layer structures (for example, the passivation layer and the interlayer insulating layer) in the display substrate, and improve the display substrate.
  • the packaging effect is also increased.

Abstract

一种显示基板及其制造方法、显示面板。该显示基板包括:衬底(100),包括显示区(110)和位于显示区(110)周围的非显示区(120);设置于衬底(100)上的至少一个凸起部(300);其中,凸起部(300)设置于非显示区(120)中。凸起部(300)可以增加水、氧等外界物质侵入显示基板内部的路径,保护显示基板中的部件。

Description

显示基板及其制造方法、显示面板
本申请要求于2017年8月31日递交的中国专利申请第201721107517.6号的优先权,在此全文引用上述中国专利申请公开的内容以作为本申请的一部分。
技术领域
本公开至少一个实施例涉及一种显示基板及其制造方法、显示面板。
背景技术
随着电子显示产品的普及,如何提升电子显示产品对环境的适应能力越来越受到用户的关注。例如,在电子显示产品的生产和使用过程中,外界环境中的水汽、氧气等会侵入电子显示产品内部,例如水汽、氧气等可以与电子显示产品内部的结构发生反应而影响其电学性能,从而降低电子显示产品的性能和寿命。然而,针对上述问题,虽然各厂商已研发多种封装技术,但是,当前的封装技术并不能满足客户对电子显示产品的封装效果的进一步需求。
发明内容
本公开至少一个实施例提供一种显示基板,其特征在于,包括:衬底,包括显示区和位于所述显示区周围的非显示区;设置于所述衬底上的至少一个凸起部;其中,所述凸起部设置于所述非显示区中。
例如,在本公开至少一个实施例提供的显示基板中,其特征在于,所述显示基板还包括:设置于所述衬底上的钝化层;其中,所述凸起部位于所述衬底和所述钝化层之间,并且所述钝化层至少部分覆盖所述凸起部。
例如,在本公开至少一个实施例提供的显示基板中,其特征在于,所述显示基板还包括:位于所述钝化层和所述衬底之间的层间绝缘层、栅绝缘层和缓冲层中的至少一个。
例如,在本公开至少一个实施例提供的显示基板中,其特征在于,至少一个所述凸起部设置于所述钝化层和所述层间绝缘层之间;和/或至少一 个所述凸起部设置于所述层间绝缘层和所述栅绝缘层之间;和/或至少一个所述凸起部设置于所述栅绝缘层和所述缓冲层之间;和/或至少一个所述凸起部设置于所述缓冲层和所述衬底之间。
例如,在本公开至少一个实施例提供的显示基板中,其特征在于,所述凸起部至少部分配置为与所述层间绝缘层同层且同材料制备;和/或所述凸起部至少部分配置为与所述栅绝缘层同层且同材料制备;和/或所述凸起部至少部分配置为与所述缓冲层同层且同材料制备。
例如,在本公开至少一个实施例提供的显示基板中,其特征在于,所述凸起部至少部分配置为包括一个第一凸起和一个第二凸起的叠层;其中,所述第一凸起配置为与所述层间绝缘层、所述栅绝缘层和所述缓冲层中的至少一个同层且同材料制备,所述第二凸起配置为光阻材料。
例如,在本公开至少一个实施例提供的显示基板中,其特征在于,所述凸起部的制备材料包括光阻材料。
例如,在本公开至少一个实施例提供的显示基板中,其特征在于,在垂直于所述衬底所在面的方向上,所述凸起部的高度为0.2~3微米;以及在平行于所述衬底所在面的方向上,所述凸起部的宽度为3~9微米。
例如,在本公开至少一个实施例提供的显示基板中,其特征在于,在平行于所述衬底所在面的同一层上,所述凸起部至少包括环绕所述显示区依次排布的第一凸起部和第二凸起部,所述第一凸起部与所述第二凸起部同层设置,且所述第一凸起部位于所述第二凸起部的内侧。
例如,在本公开至少一个实施例提供的显示基板中,其特征在于,在平行于所述衬底所在面的方向上,所述第一凸起部与所述第二凸起部之间的间距为3~10微米。
例如,在本公开至少一个实施例提供的显示基板中,其特征在于,在垂直于所述衬底所在面的方向上,所述凸起部至少包括位于不同层的第一凸起层和第二凸起层,且所述第一凸起层位于所述第二凸起层和所述衬底之间。
例如,在本公开至少一个实施例提供的显示基板中,其特征在于,所述第一凸起层在所述衬底上的正投影和所述第二凸起层在所述衬底上的正投影重合;或者所述第一凸起层在所述衬底上的正投影位于所述第二凸起层在所述衬底上的正投影之外。
例如,在本公开至少一个实施例提供的显示基板中,其特征在于,所述凸起部设置为环形结构并且围绕所述显示区设置,其中,各所述凸起部设置为一体化的闭合环形结构;或者各所述凸起部设置为包括至少两个彼此间隔的凸起段。
例如,在本公开至少一个实施例提供的显示基板中,其特征在于,所述显示基板还包括:设置于所述钝化层的远离所述衬底一侧的封装层;以及所述显示区的所述衬底包括多个像素区域,在每个所述像素区域的所述衬底上设置有至少一个有机发光器件,所述有机发光器件位于所述钝化层和所述封装层之间。
例如,在本公开至少一个实施例提供的显示基板中,其特征在于,所述凸起部在所述衬底上的正投影位于所述封装层在所述衬底上的正投影之内。
例如,在本公开至少一个实施例提供的显示基板中,其特征在于,所述显示基板还包括:设置于所述衬底上的缓冲层、栅绝缘层、层间绝缘层和钝化层和平坦层中的至少一个。
例如,在本公开至少一个实施例提供的显示基板中,其特征在于,所述凸起部至少部分配置为与所述层间绝缘层同层且同材料制备;和/或所述凸起部至少部分配置为与所述栅绝缘层同层且同材料制备;和/或所述凸起部至少部分配置为与所述缓冲层同层且同材料制备;和/或所述凸起部至少部分配置为与所述钝化层同层且同材料制备;所述凸起部在所述衬底上的正投影位于所述平坦层在所述衬底上的正投影之内。
例如,在本公开至少一个实施例提供的显示基板中,其特征在于,所述显示基板还包括:设置于所述衬底上的缓冲层、栅绝缘层、层间绝缘层、钝化层和平坦层;所述凸起部至少部分配置为与所述层间绝缘层同层且同材料制备;和/或所述凸起部至少部分配置为与所述栅绝缘层同层且同材料制备;和/或所述凸起部至少部分配置为与所述钝化层同层且同材料制备;所述凸起部在所述衬底上的正投影位于所述平坦层在所述衬底上的正投影之内,所述凸起部在所述衬底上的正投影位于所述缓冲层在所述衬底上的正投影之内。
例如,在本公开至少一个实施例提供的显示基板中,其特征在于,所述显示基板还包括:设置于所述衬底上的缓冲层、栅绝缘层、层间绝缘层 和平坦层;所述凸起部至少部分配置为与所述层间绝缘层同层且同材料制备;和/或所述凸起部至少部分配置为与所述栅绝缘层同层且同材料制备;所述凸起部在所述衬底上的正投影位于所述平坦层在所述衬底上的正投影之内,所述凸起部在所述衬底上的正投影位于所述缓冲层在所述衬底上的正投影之内。
例如,在本公开至少一个实施例提供的显示基板中,其特征在于,在所述显示区的同一侧设置有至少两个所述凸起部。
例如,在本公开至少一个实施例提供的显示基板中,其特征在于,在垂直于所述衬底所在面的方向上,所述凸起部的高度为0.2~3微米;在平行于所述衬底所在面的方向上,所述凸起部的宽度为3~9微米;在平行于所述衬底所在面的方向上,相邻的两个所述凸起部之间的间距为3~10微米。
本公开至少一个实施例提供一种显示面板,所述显示面板包括上述任一实施例中的显示基板。
本公开至少一个实施例提供一种显示基板的制造方法,包括:提供衬底,所述衬底包括显示区和位于所述显示区周围的非显示区;以及在所述衬底上形成至少一个凸起部;其中,所述凸起部形成于所述非显示区中。
例如,本公开至少一个实施例提供的显示基板的制造方法还包括:在所述衬底上形成钝化层;其中,所述凸起部形成在所述衬底和所述钝化层之间,并且所述钝化层至少部分覆盖所述凸起部。
例如,本公开至少一个实施例提供的显示基板的制造方法还包括:在所述衬底上形成平坦层;以及在所述衬底和所述平坦层之间形成缓冲层、栅绝缘层、层间绝缘层和钝化层中的至少一个;其中,所述凸起部在所述衬底上的正投影位于所述平坦层在所述衬底上的正投影之内,以及所述凸起部至少部分与所述层间绝缘层同层且同材料形成;和/或所述凸起部至少部分与所述栅绝缘层同层且同材料形成;和/或所述凸起部至少部分与所述缓冲层同层且同材料形成;和/或所述凸起部至少部分与所述钝化层同层且同材料形成。
例如,本公开至少一个实施例提供的显示基板的制造方法还包括:在所述衬底上形成缓冲层、栅绝缘层、层间绝缘层、钝化层和平坦层;其中,所述凸起部在所述衬底上的正投影位于所述平坦层在所述衬底上的正投影 之内,所述凸起部在所述衬底上的正投影位于所述缓冲层在所述衬底上的正投影之内,以及所述凸起部至少部分配置为与所述层间绝缘层同层且同材料制备;和/或所述凸起部至少部分配置为与所述栅绝缘层同层且同材料制备;和/或所述凸起部至少部分配置为与所述钝化层同层且同材料制备。
例如,本公开至少一个实施例提供的显示基板的制造方法还包括:在所述衬底上形成缓冲层、栅绝缘层、层间绝缘层和平坦层;其中,所述凸起部在所述衬底上的正投影位于所述平坦层在所述衬底上的正投影之内,所述凸起部在所述衬底上的正投影位于所述缓冲层在所述衬底上的正投影之内,以及所述凸起部至少部分配置为与所述层间绝缘层同层且同材料制备;和/或所述凸起部至少部分配置为与所述栅绝缘层同层且同材料制备。
附图说明
为了更清楚地说明本发明实施例的技术方案,下面将对实施例的附图作简单地介绍,显而易见地,下面描述中的附图仅仅涉及本发明的一些实施例,而非对本发明的限制。
图1为本公开一个实施例提供的一种显示基板的平面图;
图2为图1所示显示基板沿M-N的截面图;
图3为本公开一个实施例提供的另一种显示基板的局部截面图;
图4为本公开一个实施例提供的另一种显示基板的局部截面图;
图5为本公开一个实施例提供的另一种显示基板的局部截面图;
图6为本公开一个实施例提供的另一种显示基板的局部截面图;
图7为本公开一个实施例提供的另一种显示基板的平面图;
图8为本公开一个实施例提供的另一种显示基板的局部截面图;
图9为本公开一个实施例提供的另一种显示基板的局部截面图;
图10为本公开一个实施例提供的另一种显示基板的局部截面图;
图11为本公开一个实施例提供的另一种显示基板的局部截面图;以及
图12为本公开一个实施例提供的一种显示面板的局部截面图。
附图标记:
100-衬底;110-显示区;111-像素区域;120-非显示区;200-钝化层;300-凸起部;301-第一凸起;302-第二凸起;311-第一凸起部;312-第二凸起部;321-第一凸起层;322-第二凸起层;330-凸起段;331-第一凸起段; 332-第二凸起段;400-薄膜晶体管;410-缓冲层;420-栅绝缘层;430-层间绝缘层;500-平坦层;600-封装层;700-像素界定层;800-有机发光器件;810-第一电极;820-有机发光层;830-第二电极;900-封框胶;1000-填充层;1100-对置基板。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例的附图,对本发明实施例的技术方案进行清楚、完整地描述。显然,所描述的实施例是本发明的一部分实施例,而不是全部的实施例。基于所描述的本发明的实施例,本领域普通技术人员在无需创造性劳动的前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另外定义,本公开使用的技术术语或者科学术语应当为本发明所属领域内具有一般技能的人士所理解的通常意义。本公开中使用的“第一”、“第二”以及类似的词语并不表示任何顺序、数量或者重要性,而只是用来区分不同的组成部分。“包括”或者“包含”等类似的词语意指出现该词前面的元件或者物件涵盖出现在该词后面列举的元件或者物件及其等同,而不排除其他元件或者物件。“连接”或者“相连”等类似的词语并非限定于物理的或者机械的连接,而是可以包括电性的连接,不管是直接的还是间接的。“上”、“下”、“左”、“右”等仅用于表示相对位置关系,当被描述对象的绝对位置改变后,则该相对位置关系也可能相应地改变。
本公开至少一个实施例提供一种显示基板,该显示基板包括:衬底以及设置在衬底上的至少一个凸起部,衬底包括显示区和位于显示区周围的非显示区,凸起部设置于非显示区中的衬底上。在非显示区,凸起部的设置增加了外界水、氧等物质侵入显示基板内部的路径,对显示基板中的部件进行保护。
下面,结合附图对根据本公开至少一个实施例的显示基板及其制造方法、显示面板进行说明。
本公开至少一个实施例提供一种显示基板,图1为本公开一个实施例提供的一种显示基板的平面图。例如图1所示,显示基板包括衬底100以及设置在衬底100上的凸起部300,衬底100包括显示区100和位于显示区100周围的非显示区120,凸起部300设置在非显示区120中的衬底100 上。凸起部300设置在显示区110的周围,在外界水、氧等侵入显示基板内部的过程中,凸起部300会增加水、氧等的侵入路径,以对例如显示区110中的元件进行保护。
在本公开至少一个实施例中,凸起部300的设置方式可以有多种,本公开至少一个实施例对凸起部300的具体化设置方式不做限制,只要凸起部300的设置可以增加水、氧等侵入显示基板内部的路径即可。下面,基于不同的凸起部300的设置方式,对本公开实施例中的显示基板的结构进行说明。
例如,在本公开至少一个实施例中,图2为图1所示显示基板沿M-N的截面图。例如图1和图2所示,显示基板包括衬底100以及设置在衬底100上的钝化层200。例如,在本公开的一些实施例中,凸起部300可以设置为增加水、氧等沿着钝化层200的表面侵入显示基板内部的路径;例如,在本公开的另一些实施例中,凸起部300可以设置为增加水、氧沿着其它结构侵入显示基板内部的路径。
下面,以凸起部300的设置可以增加水、氧等沿着钝化层200的表面侵入显示基板内部的路径为例,对显示基板的具体化结构进行说明。
例如,在本公开至少一个实施例中,如图2所示,显示基板包括设置在衬底100上的钝化层200,凸起部300位于钝化层200和衬底100之间,并且,钝化层200至少部分覆盖凸起部300。例如,在本公开至少一个实施例中,如图2所示,在非显示区120中,钝化层200沿着凸起部300设置,如此,钝化层200的面向衬底100的面的表面积增加,增加了外界水、氧进入显示基板内部的路径,而且凸起部300增加了钝化层200在显示基板上的附着面积,增加了钝化层200在显示基板上粘附的牢固性,提高了显示基板的封装效果。例如,钝化层200可以设置为覆盖全部的凸起部300,即凸起部300在衬底100上的正投影可以位于钝化层200在衬底100上的正投影之内。
在本公开至少一个实施例中,对显示基板中的衬底100的制备材料不做限制。例如,衬底100的制备材料可以是玻璃基板、石英基板或树脂类材料,树脂类材料例如包括聚酰亚胺、聚碳酸酯、聚丙烯酸酯、聚醚酰亚胺、聚醚砜、聚对苯二甲酸乙二醇酯和聚萘二甲酸乙二醇酯等中的一种或多种。
在本公开至少一个实施例中,对钝化层200的制备材料不做限制。例如,钝化层200的制备材料可以包括氮化硅(SiN x)、氧化硅(SiO x)、氮氧化硅(SiN xO y)或其他合适的材料。
为便于说明本公开的技术方案中各部件的位置,如图1和图2所示,以显示基板中的衬底100为参考建立三维坐标系,以对显示基板中的各部件进行方向性的指定。例如,在上述三维坐标系中,X轴和Y轴的方向为平行于衬底100所在面的方向,Z轴为垂直于衬底100所在面的方向。
例如,在本公开至少一个实施例中,显示基板为阵列基板。例如图1和图2所示,显示区110的衬底100包括多个像素区域111,每个像素区域111中设置有至少一个开关元件例如薄膜晶体管400。相应的,例如,在本公开至少一个实施例中,显示基板还可以包括设置在衬底100和钝化层200之间的缓冲层410、栅绝缘层420和层间绝缘层430中的至少一个。
本公开至少一个实施例对缓冲层410、栅绝缘层420和层间绝缘层430的制备材料不做限制,可以根据实际需要进行选择。
例如,在本公开至少一个实施例中,缓冲层410的制备材料可以包括硅的氧化物(SiOx)或硅的氮化物(SiNx)。例如,该缓冲层410可以为氮化硅或者氧化硅构成的单层结构,也可以为由氮化硅和氧化硅构成的双层结构。
例如,在本公开至少一个实施例中,栅绝缘层420的制备材料可以包括氮化硅(SiNx)、氧化硅(SiOx)、氧化铝(Al 2O 3)、氮化铝(AlN)或其他适合的材料等。
例如,在本公开至少一个实施例中,层间绝缘层430可以为单层结构,也可以为两层或两层以上的结构。例如,层间绝缘层430的材料可以包括氮化硅、氧化硅等无机绝缘材料,也可以为有机绝缘材料。
在本公开至少一个实施例中,对薄膜晶体管400的具体化结构不做限制。例如,薄膜晶体管400还可以包括有源层、栅电极和源漏电极层(包括源电极和漏电极)等结构。薄膜晶体管400中的部件例如有源层、栅电极和源漏电极层等会受到水、氧等的影响,从而使得薄膜晶体管400的电学性能下降。设置于衬底100和钝化层200之间的凸起部300可以增加水、氧从衬底100和钝化层200之间进入显示基板内部的路径,从而对薄膜晶体管400进行保护。例如,薄膜晶体管400可以为底栅型薄膜晶体管、顶 栅型薄膜晶体管或者双栅型薄膜晶体管等。
需要说明的是,凸起部300的设置不限于只对上述的薄膜晶体管400进行保护,对于显示基板中的例如位于衬底100和钝化层200之间的其它部件也可以进行保护。需要被保护的部件以及凸起部300的设置位置之间的关系可以根据实际情况进行设计,本公开至少一个实施例在此不做限制。
需要说明的是,在本公开至少一个实施例中,对显示基板中是否设置缓冲层410不做限制。例如,在薄膜晶体管为底栅型薄膜晶体管或者双栅型薄膜晶体管的情况下,显示基板中也可以不设置缓冲层410。下面,以显示基板中设置有缓冲层410为例,对本公开的下述实施例进行说明。
在本公开至少一个实施例中,对凸起部300的具体化结构及具体设置位置不做限制,只要凸起部300的设置可以增加水、氧等侵入显示基板内部的路径即可。下面,在本公开的至少一个实施例中,对于凸起部300的几种设置位置以及几种设置结构分别进行说明。
例如,在本公开至少一个实施例中,如图2所示,凸起部300可以设置于钝化层200、层间绝缘层430、栅绝缘层420、缓冲层410和衬底100中的至少两个相邻层之间。例如,至少一个凸起部300设置于钝化层200和层间绝缘层430之间;和/或至少一个凸起部300设置于层间绝缘层430和栅绝缘层420之间;和/或至少一个凸起部300设置于栅绝缘层420和缓冲层410之间;和/或至少一个凸起部300设置于缓冲层410和衬底100之间。例如,显示基板中未设置有缓冲层410,至少一个凸起部300可以设置在栅绝缘层420和衬底100之间。
示例性的,如图2所示,凸起部300设置在缓冲层410和栅绝缘层420之间,如此增加了水、氧等沿着缓冲层410和栅绝缘层420之间的界面侵入显示基板内部的路径。此外,位于栅绝缘层420上的层间绝缘层430和钝化层200也会形成对应于凸起部300的非平坦部分,如此,栅绝缘层420和层间绝缘层430之间的界面以及层间绝缘层430和钝化层200之间的界面的面积增加,相应的,水、氧沿着栅绝缘层420和层间绝缘层430之间的界面以及层间绝缘层430和钝化层200之间的界面侵入显示基板内部的路径增加,并且栅绝缘层420和层间绝缘层430之间以及层间绝缘层430和钝化层200之间连接的牢固性增加,显示基板的封装效果提高。
例如,在本公开至少一个实施例中,图3为本公开一个实施例提供的 另一种显示基板的局部截面图。例如图3所示,显示基板中的缓冲层410、栅绝缘层420和层间绝缘层430中的至少一个位于非显示区120中的部分配置为凸起部300的至少一部分。如此,可以简化显示基板的制备工艺流程,降低成本。例如,凸起部300至少部分配置为与层间绝缘层430同层且同材料制备;和/或凸起部300至少部分配置为与栅绝缘层420同层且同材料制备。例如,显示基板中设置有缓冲层410,凸起部300至少部分也可以配置为与缓冲层410同层且同材料制备。
示例性的,如图3所示,显示基板中的栅绝缘层420的位于非显示区120的部分以及层间绝缘层430的位于非显示区120的部分配置为凸起部300。例如,在制备显示基板的过程中,在衬底100上形成栅绝缘层420和层间绝缘层430之后,对非显示区120中的栅绝缘层420和层间绝缘层430进行构图工艺处理,以使得非显示区120中的栅绝缘层420和层间绝缘层430形成凸起部300。例如,在制备薄膜晶体管的过程中,需要在栅绝缘层420和层间绝缘层430中形成用于连通源漏电极层和有源层的过孔,所以,在通过构图工艺形成该过孔的同时可以同步制备凸起部300。
在本公开至少一个实施例中,构图工艺例如可以为光刻构图工艺,其例如可以包括:在需要被构图的结构层上涂覆光阻材料膜,光阻材料膜的涂覆可以采用旋涂、刮涂或者辊涂的方式;接着使用掩模板对光阻材料层进行曝光,对曝光的光阻材料层进行显影以得到光阻材料图案;然后使用光阻材料图案对结构层进行蚀刻,可选地去除光阻材料图案;最后剥离剩余的光阻材料以形成需要的图案结构。
例如,在本公开至少一个实施例中,图4为本公开一个实施例提供的另一种显示基板的局部截面图。例如图4所示,凸起部300至少部分配置为包括一个第一凸起301和一个第二凸起302的叠层;其中,第一凸起301可以配置为与层间绝缘层430、栅绝缘层420和缓冲层410中的至少一个同层且同材料制备,以及第二凸起302配置为光阻材料。例如,凸起部300包括多个第一凸起301和多个第二凸起302,第一凸起301和第二凸起302在平行于Z轴的方向上交替设置。如此,可以进一步增加凸起部300在平行于Z轴的方向上的高度(凸起部300的远离衬底100的一端至凸起部300的靠近衬底100的另一端的距离),以增加水、氧侵入显示基板内部的路径,还可以简化显示基板的制备工艺,降低成本。
示例性的,如图4所示,显示基板中的每个凸起包括两个第一凸起301和两个第二凸起302,两个第一凸起301分别与栅绝缘层420以及层间绝缘层430同层且同材料制备,每个第一凸起301的远离衬底100的表面上都设置有与自身接触的第二凸起302,第二凸起302为光阻材料。例如,在制备显示基板的过程中,在形成栅绝缘层420之后对其进行构图工艺处理,以使得栅绝缘层420的位于非显示区120的部分形成为第一凸起301,并且在形成有第一凸起301的衬底基板上涂覆光阻材料层,经过曝光、显影形成第二凸起302。相应的,层间绝缘层430也可以进行上述处理过程。如此,在非显示区120的衬底100上可以形成两个第一凸起301和两个第二凸起302彼此交替设置的叠层,即如图4所示的凸起部300。
例如,在本公开至少一个实施例中,凸起部300也可以单独设置在非显示区120的衬底100上。例如,在本公开至少一个实施例中,凸起部300的制备材料可以包括光阻材料。示例性的,可以在非显示区120的衬底100上涂覆光阻材料,通过掩模板对其曝光之后显影,光阻材料剩余的部分形成凸起部300。上述方法制备凸起部300的工艺操作简单,并且不会对显示基板中的其它结构造成影响。
在本公开至少一个实施例中,凸起部300的具体化结构设计不限于前述几种组合方式,可以根据实际需要进行设计,本公开至少一个实施例对凸起部300的具体化结构不做限制。
例如,在本公开至少一个实施例中,图5为本公开一个实施例提供的另一种显示基板的局部截面图。例如图5所示,在平行于衬底100所在面的同一层上,凸起部300至少包括环绕显示区110依次排布的第一凸起部311和第二凸起部312,第一凸起部311与第二凸起部312同层设置,且第一凸起部311位于第二凸起部312的内侧。多层凸起部300可以进一步增加外界水、氧侵入显示基板内部的路径,进一步提高显示基板的封装效果。
在本公开至少一个实施例中,对同层设置的不同凸起部300的高度(凸起部300的远离衬底100的一端至凸起部300的靠近衬底100的另一端的距离)的关系不做限制。例如,在本公开至少一个实施例中,位于显示基板的外层的凸起部300的高度可以设置为大于内层的凸起部300的高度。示例性的,如图5所示,第二凸起部312的高度H2大于第一凸起部311的高度H1。位于内层的第一凸起部311的高度H1较低以免对显示区110 中的结构造成不良影响,位于外层的第二凸起部312的高度H2较高,可以增加水、氧侵入路径,提高显示基板的封装效果。
在本公开至少一个实施例中,对于同层设置的相邻凸起部300之间的间隔距离不做限制。例如,在本公开至少一个实施例中,相邻凸起部300(例如第一凸起部311和第二凸起部312)之间的间距约为1~20微米,进一步约为3~10微米。示例性的,如图5所示,在平行于衬底100所在面的方向上,第一凸起部311与第二凸起部312之间的间距S约为3~10微米。
例如,在本公开至少一个实施例中,图6为本公开一个实施例提供的另一种显示基板的局部截面图。例如图6所示,在垂直于衬底100所在面的方向上,凸起部300至少包括位于不同层的第一凸起层321和第二凸起层322,并且第一凸起层321位于第二凸起层322和衬底100之间。多层凸起部300的设置可以进一步增加水、氧等侵入显示基板内部的路径,提高显示基板的封装效果。
示例性的,如图6所示,可以在缓冲层410和栅绝缘层420之间设置第一凸起层321,并且在栅绝缘层420和层间绝缘层430之间设置第二凸起层322。对于凸起部300设置在不同层的情况,本公开至少一个实施例对凸起部300设置的层数、具体位置和数量不做限制,可以根据实际需要进行设置。
本公开至少一个实施例对不同层的凸起部300的之间的相对位置关系不做限制。
例如,在本公开至少一个实施例中,如图6所示,第一凸起层321在衬底100上的正投影和第二凸起层322在衬底100上的正投影重合,即第一凸起部321和第二凸起部322可以重合设置。
例如,在本公开至少一个实施例中,第一凸起层321在衬底100上的正投影位于第二凸起层322在衬底100上的正投影之外,即第一凸起层321和第二凸起层322可以交错设置。
本公开至少一个实施例对凸起部300的尺寸不做限制,可以根据实际工艺进行设计。例如,在本公开至少一个实施例中,如图2所示,在垂直于衬底100所在面的方向上,凸起部300的高度H可以约为0.2~3微米;在平行于衬底100所在面的方向上,凸起部300的宽度W可以约为3~9 微米。
在本公开至少一个实施例中,对凸起部300在衬底100上的排布方式不做限制,只要凸起部300设置可以增加水、氧等侵入显示基板内部的路径即可。
例如,在本公开至少一个实施例中,如图1所示,凸起部300设置为环形结构并且围绕显示区110设置,并且凸起部300可以设置为部分围绕显示区110设置,或者可以设置为环形结构并且围绕显示区110设置,其中,各凸起部300可以设置为一体化的闭合环形结构。如此,凸起部300可以对整个显示区110中的部件进行保护。
例如,在本公开至少一个实施例中,图7为本公开一个实施例提供的另一种显示基板的平面图。如图7所示,凸起部300设置为环形结构并且围绕显示区110设置,并且各凸起部300可以设置为包括至少两个彼此间隔的凸起段330(例如包括第一凸起段331、第二凸起段332等)。凸起段330可以根据显示基板的具体结构进行布置,以免引起显示基板厚度过大、导致后续制备工艺不良等。
本公开至少一个实施例对凸起段330的长度不做限制,可以根据实际工艺条件进行设计。例如图7所示,在显示基板的同一侧,凸起段330的长度与显示基板的边长的比值不小于1/3,进一步不小于2/3。示例性的,例如图7所示,以在显示基板的S1侧,第一凸起段331在平行于Y方向上延伸的长度与显示基板的S1侧的边长的比值不小于1/3;在显示基板的S2侧,第二凸起段332在平行于X方向上延伸的长度与显示基板的S2侧的边长的比值不小于1/3。同样地,在显示基板的S3、S4侧,凸起段330的长度与显示基板的边长的比值不小于1/3。
本公开至少一个实施例对凸起部300在显示基板上的延伸形状不做限制。例如,从平行于Z轴的方向上看,凸起部300(例如凸起段330)在平行于衬底100所在面中的延伸形状(不包括弯折段的延伸形状)可以为直线型、波浪形等。示例性的,如图7所示,第一凸起段331在平行于Y轴方向上的延伸形状或者第二凸起段332在平行于X轴的方向上的延伸形状为直线形。
在本公开至少一个实施例中,对显示基板的类型不做限制。例如,在本公开的一些实施例中,显示基板可以为用于液晶显示的阵列基板。例如, 在本公开的另一些实施例中,显示基板可以为用于有机发光二极管(OLED,Organic Light-Emitting Diode)显示的阵列基板。
在本公开至少一个实施例中,针对不同类型的显示基板,凸起部300的设置方式可以进行相应调整,或者显示基板中的其它部件的结构可以进行调整以与凸起部300相互配合,从而进一步提升显示基板的封装效果。下面,以显示基板为OLED阵列基板为例,对显示基板的结构进行进一步说明。
例如,在本公开至少一个实施例中,图8为本公开一个实施例提供的另一种显示基板的局部截面图。如图8所示,显示基板可以包括设置在钝化层200的远离衬底100一侧的封装层600,并且在每个像素区域111的衬底100上设置有至少一个有机发光器件800,有机发光器件800位于封装层600和钝化层200之间。像素区域111的分布可以参考图1中所示的相关内容。凸起部300的设置可以防止水、氧等从衬底100和钝化层200之间侵入有机发光器件800中,从而对有机发光器件进行保护。
例如,在本公开至少一个实施例中,如图8所示,有机发光器件800可以包括第一电极810、有机发光层820和第二电极620,有机发光层820位于第一电极810和第二电极830之间。薄膜晶体管400中的源漏电极层可以与有机发光二极管800中的第一电极810电连接以驱动有机发光二极管800。有机发光器件800的结构不限于上述所述内容,例如,有机发光器件800还可以包括位于第一电极810和第二电极830之间的空穴注入层、空穴传输层、电子传输层、电子注入层等结构,进一步还可以包括空穴阻挡层和电子阻挡层,空穴阻挡层例如可设置在电子传输层和有机发光层820之间,电子阻挡层例如可设置在空穴传输层和有机发光层820之间。
本公开至少一个实施例对有机发光器件800中的第一电极810和第二电极830的制备材料不做限制。例如,在本公开至少一个实施例中,第一电极810和第二电极830中的一方可以为阳极,另一方可以为阴极。阳极例如可由具有高功函数的透明导电材料形成,其电极材料可以包括氧化铟锡(ITO)、氧化铟锌(IZO)、氧化铟镓(IGO)、氧化镓锌(GZO)氧化锌(ZnO)、氧化铟(In 2O 3)、氧化铝锌(AZO)和碳纳米管等;阴极例如可由高导电性和低功函数的材料形成,其电极材料可以包括镁铝合金(MgAl)、锂铝合金(LiAl)等合金或者镁、铝、锂、银等单金属。
本公开至少一个实施例对有机发光器件800中的有机发光层820的制备材料不做限制。例如,在本公开至少一个实施例中,有机发光层820的材料可以根据其发射光颜色的不同进行选择。例如,有机发光层820的制备材料包括荧光发光材料或磷光发光材料。例如,在本公开至少一个实施例中,有机发光层820可以采用掺杂体系,即在主体发光材料中混入掺杂材料来得到可用的发光材料。例如,主体发光材料可以采用金属化合物材料、蒽的衍生物、芳香族二胺类化合物、三苯胺化合物、芳香族三胺类化合物、联苯二胺衍生物、或三芳胺聚合物等。
本公开至少一个实施例对封装层600的制备材料和具体化结构不做限制。例如,封装层600可以为单层结构也可以为至少两层的符合结构。例如,封装层600的制备材料可以包括氮化硅(SiN x)、氧化硅(SiO x)、氮氧化硅(SiN xO y)、高分子树脂等绝缘材料。
本公开至少一个实施例对封装层600在衬底100上的分布范围不做限制。例如,在本公开至少一个实施例中,凸起部300在衬底100上的正投影位于封装层600在衬底100上的正投影之内,即封装层600延伸至凸起部300所在的区域。例如,在本公开至少一个实施例中,凸起部300在衬底100上的正投影位于封装层600在衬底100上的正投影之外。封装层600在衬底100上的分布与显示基板的后续封装结构有关,封装层600的不同设置方式可以参考下述实施例(如图12所示的关于显示面板的实施例)中的相关内容,本公开至少一个实施例在此不做赘述。
例如,在本公开至少一个实施例中,如图8所示,显示基板还可以包括位于设置于衬底100上的像素界定层700,有机发光器件800设置在像素界定层700所限定的区域内。
本公开至少一个实施例对像素界定层700的具体化结构和制备材料等不做限制。例如,在本公开至少一个实施例中,像素界定层700可以为一层或两层结构,也可以是多层的复合层结构。例如,像素界定层700至少可以包括第一界定层和第二界定层的叠层第一界定层例如可以由亲水性有机材料形成,第二界定层例如可以由疏水性有机材料形成。第一界定层位于衬底100和第二界定层之间,在通过例如喷墨打印制备有机发光器件800的部分结构(例如有机发光层820等)时,具有亲水性质的第一界定层将喷墨材料吸附固定在像素界定层700所限定的区域中,具有疏水性质的第 二界定层使得落在其上的喷墨材料滑落,并且移动至像素界定层700所限定的区域中,可以提升显示基板制备的良率。
例如,在本公开至少一个实施例中,如图8所示,显示基板还可以包括设置在有机发光器件800和钝化层200之间的平坦层500。在显示基板的制备过程中,平坦层500可以对显示基板进行平坦化,以便于进行后续工艺。本公开至少一个实施例对平坦层500的制备材料不做限制。例如,平坦层500的制备材料可以为有机材料,例如环氧树脂、聚酰亚胺、聚酰胺、丙烯酸或其他合适的材料。
在本公开的至少一个实施例中,凸起部的设置方式不限制于增加水、氧等沿着钝化层的表面侵入显示基板内部的路径。
例如,在本公开至少一个实施例中,图9为本公开一个实施例提供的另一种显示基板的局部截面图。例如图9所示,显示基板可以包括依次设置在衬底100上缓冲层410、栅绝缘层420、层间绝缘层430、钝化层200和平坦层500中的至少一个。缓冲层410、栅绝缘层420、层间绝缘层430、钝化层200和平坦层500的设置选择可以根据实际需要进行设计,本公开至少一个实施例在此不做限制。下面,以显示基板中同时设置有缓冲层410、栅绝缘层420、层间绝缘层430、钝化层200和平坦层500为例,对本公开下述实施例中的内容进行说明。
例如,在本公开至少一个实施例中,如图9所示,凸起部300至少部分配置为与层间绝缘层430同层且同材料制备;和/或凸起部300至少部分配置为与栅绝缘层420同层且同材料制备;和/或凸起部300至少部分配置为与缓冲层410同层且同材料制备;和/或凸起部300至少部分配置为与钝化层200同层且同材料制备。例如,凸起部300在衬底100上的正投影位于平坦层500在衬底100上的正投影之内。示例性的,在制备显示基板的过程中,可以在衬底100上依次形成缓冲层410、栅绝缘层420、层间绝缘层430和钝化层200,然后对非显示区120中的缓冲层410、栅绝缘层420、层间绝缘层430和钝化层200进行构图工艺,以使得缓冲层410、栅绝缘层420、层间绝缘层430和钝化层200的位于非显示区120中的部分形成凸起部300,然后在衬底100上覆盖平坦层500。凸起部300不仅可以增加水、氧等侵入显示基板内部的路径,还可以在显示基板的应用(例如显示基板可以为柔性显示基板,显示基板在应用过程中存在例如弯折等操作) 过程中,可以减少损坏例如出现裂纹的几率,降低外界的水、氧等侵入显示基板内部的风险。
例如,在本公开至少一个实施例中,图10为本公开一个实施例提供的另一种显示基板的局部截面图。例如图10所示,显示基板包括设置在衬底100上的缓冲层410、栅绝缘层420、层间绝缘层430、钝化层200和平坦层500。如图10所示,凸起部300至少部分配置为与层间绝缘层430同层且同材料制备;和/或凸起部300至少部分配置为与栅绝缘层420同层且同材料制备;和/或凸起部300至少部分配置为与钝化层200同层且同材料制备。例如,在平行于Z轴的方向上,凸起部300在衬底100上的正投影位于缓冲层410在衬底100上的正投影之内,且凸起部300在衬底100上的正投影位于平坦层500在衬底100上的正投影之内。
示例性的,在制备显示基板的过程中,在衬底100上依次形成缓冲层410、栅绝缘层420、层间绝缘层430和钝化层200,然后对栅绝缘层420、层间绝缘层430和钝化层200的非显示区120中的部分进行构图工艺,以使得栅绝缘层420、层间绝缘层430和钝化层200的位于非显示区120中的部分形成凸起部300,然后在衬底100上覆盖平坦层500。缓冲层410延伸至衬底100的非显示区120,例如延伸到凸起300所在的区域,可以在衬底100及设置在衬底100上的结构之间起到缓冲作用,以对设置在衬底100上的结构进行保护。如此,不仅可以增加水、氧等侵入显示基板内部的路径,在显示基板的应用(例如显示基板可以为柔性显示基板,显示基板在应用过程中存在弯折操作)过程中,可以减少损坏例如出现裂纹的几率,降低外界的水、氧等侵入显示基板内部的风险。
例如,在本公开至少一个实施例中,图11为本公开一个实施例提供的另一种显示基板的局部截面图。例如图11所示,显示基板包括设置在衬底100上的缓冲层410、栅绝缘层420、层间绝缘层430和平坦层500。如图11所示,凸起部300至少部分配置为与层间绝缘层430同层且同材料制备;和/或凸起部300至少部分配置为与栅绝缘层420同层且同材料制备。例如,在平行于Z轴的方向上,凸起部300在衬底100上的正投影位于缓冲层410在衬底100上的正投影之内,且凸起部300在衬底100上的正投影位于平坦层500在衬底100上的正投影之内。
示例性的,在制备显示基板的过程中,在衬底100上依次形成缓冲层 410、栅绝缘层420、层间绝缘层430,然后对栅绝缘层420和层间绝缘层430的非显示区120中的部分进行构图工艺,以使得栅绝缘层420和层间绝缘层430的位于非显示区120中的部分形成凸起部300,然后在衬底100上覆盖平坦层500。如此,显示基板中设置的凸起部300,不仅可以增加水、氧等侵入显示基板内部的路径,还可以在显示基板的应用(例如显示基板可以为柔性显示基板,显示基板在应用过程中存在弯折操作)过程中,可以减少损坏例如出现裂纹的几率,降低外界的水、氧等侵入显示基板内部的风险;而且显示基板中未设置如图10所示的钝化层200,以平坦层500替代钝化层200,可以进一步降低显示基板的厚度,有利于显示基板的轻薄化;此外,缓冲层410延伸至衬底100的非显示区120,例如延伸到凸起300所在的区域,可以在衬底100及设置在衬底100上的结构之间起到缓冲作用,以对设置在衬底100上的结构进行保护。
在本公开至少一个实施例中,可以在显示基板的显示区110的周围设置多层凸起部300,使得水、氧等在侵入显示基板的过程中可以受到多层凸起部300的阻隔,以进一步增加凸起部300对显示基板的封装效果。
例如,在本公开至少一个实施例中,如图11所示,在显示基板的显示区110的同一侧,可以设置有至少两个凸起部300。例如,在垂直于衬底100所在面的方向上,凸起部300的高度约为0.2~3微米;在平行于衬底100所在面的方向上,凸起部300的宽度约为3~9微米;在平行于衬底100所在面的方向上,相邻的两个凸起部300之间的间距约为3~10微米。关于凸起部300的尺寸设置可以参考前述实施例(例如图5所示的实施例)中的相关内容,本公开至少一个实施例在此不做赘述。
本公开至少一个实施例提供一种显示面板,该显示面板包括上述任一实施例中的显示基板。本公开至少一个实施例对显示面板的类型不做限制。
例如,在本公开实施例的一个示例中,该显示面板可以为液晶显示面板,例如显示基板作为该液晶显示面板的阵列基板,显示面板还可以包括与阵列基板对盒设置的彩膜基板,二者彼此对置以形成液晶盒,在液晶盒中填充有液晶材料。阵列基板的每个像素单元的像素电极和公共电极用于施加电场对液晶材料的旋转的程度进行控制从而进行显示操作。
例如,在本公开实施例的一个示例中,该显示面板可以为有机发光二极管(OLED)显示面板,其中,该显示面板的子像素区域中可以形成有 机发光材料的叠层,每个像素单元的像素电极作为阳极或阴极用于驱动有机发光材料发光以进行显示操作。
例如,在本公开实施例的一个示例中,该显示面板可以为电子纸显示面板,其中,在该显示面板的显示基板上可以形成有电子墨水层,每个像素单元的像素电极作为用于施加驱动电子墨水中的带电微颗粒移动以进行显示操作的电压。
下面,以显示面板为OLED显示面板以及显示面板中的显示基板为OLED阵列基板为例,对本公开实施例中的显示面板的具体化结构进行说明。
图12为本公开一个实施例提供的一种显示面板的局部截面图。例如,在本公开至少一个实施例中,如图12所示,显示面板还可以包括与衬底100对盒设置的对置基板1100以及设置在对置基板1100和衬底100之间的封框胶900、填充层1000等结构。
例如,在本公开至少一个实施例中,如图12所示,在平行于Z轴的方向上,封框胶900可以设置为覆盖凸起部300所在的区域。封框胶900可以连接显示基板和对置基板1100,并且对显示面板进行封装以免外界物质侵入显示面板内部。
例如,在本公开至少一个实施例中,如图12所示,封装层600例如可以与封框胶900接触,即凸起部300在衬底100上的正投影位于封装层600在衬底100上的正投影之内。在设置有凸起部300的区域,封装层600也形成有对应于凸起部300的非平坦部分,如此,使得该区域中的封框胶900和封装层600的接触面增加,如此,不仅可以增加水、氧等沿封框胶900和封装层600的界面侵入显示面板内部的路径,还可以提升封框胶900和封装层600之间连接的牢固性,提高显示面板的封装效果。
例如,在本公开至少一个实施例中,封装层600未与封框胶900接触,即凸起部300在衬底100上的正投影位于封装层600在衬底100上的正投影之内。在设置有凸起部300的区域,钝化层200也形成有对应于凸起200的非平坦部分,如此,使得该区域中的封框胶900和钝化层200的接触面增加,如此,不仅可以增加水、氧等沿封框胶900和封装层600的界面侵入显示面板内部的路径,还可以提升封框胶900和封装层600之间连接的牢固性,提高显示面板的封装效果。
本公开至少一个实施例对封框胶900的制备材料不做限制。例如,封框胶900的制备材料可以包括有机材料、无机材料或者有机材料与无机材料的组合。有机材料可以包括环氧树脂、聚氨酯、有机硅胶、丙烯酸酯、聚硅氧烷、聚酰胺、聚酯或者以上材料的组合,无机材料可以包括水玻璃等。
当对置基板1100和显示基板相对贴合后,固化封框胶900(例如紫外线照射固化或者热固化等)以完成显示面板的封装。例如,封框胶900还可以通过压制、熔化、冷却、反应固化或者它们的组合而完成其固化。通过压制而固化的材料可以包括压敏粘合剂。通过熔化和冷却而固化的材料可以包括聚烯烃、聚酯或聚酰胺等热熔性粘合剂。通过反应固化的材料可以包括丙烯酸酯、环氧树脂、聚氨酯、聚硅氧烷或它们的组合,并且反应固化可以包括热固化或紫外线辐射固化等。
本公开至少一个实施例对填充层1000的制备材料不做限制。例如,填充层31的材料可以为含有干燥剂的高分子材料或可阻挡水汽的高分子材料等,例如高分子树脂等,还可以为吸水性材料,例如可以为碱金属(例如Li、Na)、碱土金属(例如Ba、Ca)或其它湿气反应性金属(例如Al、Fe);还可以为碱金属氧化物(例如Li 2O、Na 2O)、碱土金属氧化物(例如MgO、CaO、BaO)、硫酸盐(例如无水MgSO 4)、金属卤化物(例如CaCl 2)或高氯酸盐(例如Mg(ClO 4) 2)等。
需要说明的是,在本公开至少一个实施例中,OLED显示面板中也可以不设置封框胶900、填充层1000、对置基板1100等结构,例如,可以只通过封装层600完成对OLED显示面板的封装。
例如,在本公开至少一个实施例中,显示面板中的显示基板可以为柔性基板以应用于柔性显示领域。例如,在本公开实施例提供的显示面板中,可以在显示基板上设置触控基板以使得显示面板获得触控显示功能。
例如,在本公开至少一个实施例中,该显示面板可以为电视、数码相机、手机、手表、平板电脑、笔记本电脑、导航仪等任何具有显示功能的产品或者部件。
需要说明的是,为表示清楚,并没有叙述该显示面板的全部结构。为实现显示面板的必要功能,本领域技术人员可以根据具体应用场景进行设置其他结构,本公开对此不做限制。
本公开至少一个实施例提供一种显示基板的制造方法,包括:提供衬底,衬底包括显示区和位于显示区周围的非显示区;以及在衬底上形成至少一个凸起部;其中,凸起部形成于非显示区中。在利用上述制造方法获得的显示基板中,在该显示基板的非显示区,凸起部的设置增加了外界水、氧等物质侵入显示基板内部的路径,对显示基板中的部件进行保护。
例如,本公开至少一个实施例提供的显示基板的制造方法还包括:在衬底上形成钝化层;其中,凸起部形成在衬底和钝化层之间,并且钝化层至少部分覆盖凸起部。如此,在利用上述制造方法获得的显示基板中,凸起部可以增加水、氧等沿着钝化层的表面侵入显示基板内部的路径,对显示基板中的部件进行保护。
例如,本公开至少一个实施例提供的显示基板的制造方法还包括:在衬底上形成平坦层;以及在衬底和平坦层之间形成缓冲层、栅绝缘层、层间绝缘层和钝化层中的至少一个;其中,凸起部在衬底上的正投影位于平坦层在衬底上的正投影之内,以及凸起部至少部分与层间绝缘层同层且同材料形成;和/或凸起部至少部分与栅绝缘层同层且同材料形成;和/或凸起部至少部分与缓冲层同层且同材料形成;和/或凸起部至少部分与钝化层同层且同材料形成。如此,在利用上述制造方法获得的显示基板中,凸起部不仅可以增加水、氧等侵入显示基板内部的路径,还可以在显示基板的应用(例如显示基板可以为柔性显示基板,显示基板在应用过程中存在例如弯折等操作)过程中,可以减少损坏例如出现裂纹的几率,降低外界的水、氧等侵入显示基板内部的风险。
例如,本公开至少一个实施例提供的显示基板的制造方法还包括:在衬底上形成缓冲层、栅绝缘层、层间绝缘层、钝化层和平坦层;其中,凸起部在衬底上的正投影位于平坦层在衬底上的正投影之内,凸起部在衬底上的正投影位于缓冲层在衬底上的正投影之内,以及凸起部至少部分配置为与层间绝缘层同层且同材料制备;和/或凸起部至少部分配置为与栅绝缘层同层且同材料制备;和/或凸起部至少部分配置为与钝化层同层且同材料制备。如此,在利用上述制造方法获得的显示基板中,不仅可以增加水、氧等侵入显示基板内部的路径,在显示基板的应用(例如显示基板可以为柔性显示基板,显示基板在应用过程中存在弯折操作)过程中,可以减少损坏例如出现裂纹的几率,降低外界的水、氧等侵入显示基板内部的风险。
例如,本公开至少一个实施例提供的显示基板的制造方法还包括:在衬底上形成缓冲层、栅绝缘层、层间绝缘层和平坦层;其中,凸起部在衬底上的正投影位于平坦层在衬底上的正投影之内,凸起部在衬底上的正投影位于缓冲层在衬底上的正投影之内,以及凸起部至少部分配置为与层间绝缘层同层且同材料制备;和/或凸起部至少部分配置为与栅绝缘层同层且同材料制备。如此,在利用上述制造方法获得的显示基板中,凸起部不仅可以增加水、氧等侵入显示基板内部的路径,还可以在显示基板的应用(例如显示基板可以为柔性显示基板,显示基板在应用过程中存在弯折操作)过程中,可以减少损坏例如出现裂纹的几率,降低外界的水、氧等侵入显示基板内部的风险;而且显示基板中未形成钝化层,可以进一步降低显示基板的厚度,有利于显示基板的轻薄化;此外,缓冲层延伸至衬底的非显示区可以在衬底及形成在衬底上的结构之间起到缓冲作用,以对形成在衬底上的结构进行保护。
本公开至少一个实施例提供一种显示基板及其制造方法、显示面板,并且可以具有以下至少一项有益效果:
(1)在本公开至少一个实施例提供的显示基板中,设置于非显示区中的凸起部可以增加水、氧等侵入显示基板内部的路径,提高显示基板的封装效果。
(2)在本公开至少一个实施例提供的显示基板中,凸起部还可以增加显示基板中的各层结构(例如钝化层和层间绝缘层)之间连接的牢固性,提高显示基板的封装效果。
对于本公开,还有以下几点需要说明:
(1)本公开实施例附图只涉及到与本公开实施例涉及到的结构,其他结构可参考通常设计。
(2)为了清晰起见,在用于描述本公开的实施例的附图中,层或区域的厚度被放大或缩小,即这些附图并非按照实际的比例绘制。
(3)在不冲突的情况下,本公开的实施例及实施例中的特征可以相互组合以得到新的实施例。
以上,仅为本公开的具体实施方式,但本公开的保护范围并不局限于此,本公开的保护范围应以权利要求的保护范围为准。

Claims (27)

  1. 一种显示基板,包括:
    衬底,包括显示区和位于所述显示区周围的非显示区;
    设置于所述衬底上的至少一个凸起部;
    其中,所述凸起部设置于所述非显示区中。
  2. 根据权利要求1所述的显示基板,还包括:
    设置于所述衬底上的钝化层;
    其中,所述凸起部位于所述衬底和所述钝化层之间,并且所述钝化层至少部分覆盖所述凸起部。
  3. 根据权利要求2所述的显示基板,还包括:
    位于所述钝化层和所述衬底之间的层间绝缘层、栅绝缘层和缓冲层中的至少一个。
  4. 根据权利要求3所述的显示基板,其中,
    至少一个所述凸起部设置于所述钝化层和所述层间绝缘层之间;和/或
    至少一个所述凸起部设置于所述层间绝缘层和所述栅绝缘层之间;和/或
    至少一个所述凸起部设置于所述栅绝缘层和所述缓冲层之间;和/或
    至少一个所述凸起部设置于所述缓冲层和所述衬底之间。
  5. 根据权利要求3所述的显示基板,其中,
    所述凸起部至少部分配置为与所述层间绝缘层同层且同材料制备;和/或
    所述凸起部至少部分配置为与所述栅绝缘层同层且同材料制备;和/或
    所述凸起部至少部分配置为与所述缓冲层同层且同材料制备。
  6. 根据权利要求3所述的显示基板,其中,
    所述凸起部至少部分配置为包括一个第一凸起和一个第二凸起的叠层;
    其中,所述第一凸起配置为与所述层间绝缘层、所述栅绝缘层和所述缓冲层中的至少一个同层且同材料制备,所述第二凸起配置为光阻材料。
  7. 根据权利要求3所述的显示基板,其中,
    所述凸起部的制备材料包括光阻材料。
  8. 根据权利要求3-7中任一项所述的显示基板,其中,
    在垂直于所述衬底所在面的方向上,所述凸起部的高度为0.2~3微米;以及
    在平行于所述衬底所在面的方向上,所述凸起部的宽度为3~9微米。
  9. 根据权利要求3-8中任一项所述的显示基板,其中,在平行于所述衬底所在面的同一层上,
    所述凸起部至少包括环绕所述显示区依次排布的第一凸起部和第二凸起部,所述第一凸起部与所述第二凸起部同层设置,且所述第一凸起部位于所述第二凸起部的内侧。
  10. 根据权利要求9所述的显示基板,其中,
    在平行于所述衬底所在面的方向上,所述第一凸起部与所述第二凸起部之间的间距为3~10微米。
  11. 根据权利要求3-10中任一项所述的显示基板,其中,在垂直于所述衬底所在面的方向上,
    所述凸起部至少包括位于不同层的第一凸起层和第二凸起层,且所述第一凸起层位于所述第二凸起层和所述衬底之间。
  12. 根据权利要求11所述的显示基板,其中,
    所述第一凸起层在所述衬底上的正投影和所述第二凸起层在所述衬底上的正投影重合;或者
    所述第一凸起层在所述衬底上的正投影位于所述第二凸起层在所述衬底上的正投影之外。
  13. 根据权利要求3-12任一所述的显示基板,其中,所述凸起部设置为环形结构并且围绕所述显示区设置,其中,
    各所述凸起部设置为一体化的闭合环形结构;或者
    各所述凸起部设置为包括至少两个彼此间隔的凸起段。
  14. 根据权利要求2-13中任一项所述的显示基板,还包括:
    设置于所述钝化层的远离所述衬底一侧的封装层;以及
    所述显示区的所述衬底包括多个像素区域,在每个所述像素区域的所述衬底上设置有至少一个有机发光器件,所述有机发光器件位于所述钝化 层和所述封装层之间。
  15. 根据权利要求14所述的显示基板,其中,
    所述凸起部在所述衬底上的正投影位于所述封装层在所述衬底上的正投影之内。
  16. 根据权利要求1所述的显示基板,还包括:
    设置于所述衬底上的缓冲层、栅绝缘层、层间绝缘层和钝化层和平坦层中的至少一个。
  17. 根据权利要求16所述的显示基板,其中,
    所述凸起部至少部分配置为与所述层间绝缘层同层且同材料制备;和/或
    所述凸起部至少部分配置为与所述栅绝缘层同层且同材料制备;和/或
    所述凸起部至少部分配置为与所述缓冲层同层且同材料制备;和/或
    所述凸起部至少部分配置为与所述钝化层同层且同材料制备;
    所述凸起部在所述衬底上的正投影位于所述平坦层在所述衬底上的正投影之内。
  18. 权利要求1所述的显示基板,还包括:
    设置于所述衬底上的缓冲层、栅绝缘层、层间绝缘层、钝化层和平坦层;
    所述凸起部至少部分配置为与所述层间绝缘层同层且同材料制备;和/或
    所述凸起部至少部分配置为与所述栅绝缘层同层且同材料制备;和/或
    所述凸起部至少部分配置为与所述钝化层同层且同材料制备;
    所述凸起部在所述衬底上的正投影位于所述平坦层在所述衬底上的正投影之内,所述凸起部在所述衬底上的正投影位于所述缓冲层在所述衬底上的正投影之内。
  19. 根据权利要求1所述的显示基板,还包括:
    设置于所述衬底上的缓冲层、栅绝缘层、层间绝缘层和平坦层;
    所述凸起部至少部分配置为与所述层间绝缘层同层且同材料制备;和/或
    所述凸起部至少部分配置为与所述栅绝缘层同层且同材料制备;
    所述凸起部在所述衬底上的正投影位于所述平坦层在所述衬底上的正投影之内,所述凸起部在所述衬底上的正投影位于所述缓冲层在所述衬底上的正投影之内。
  20. 根据权利要求16-19任一所述的显示基板,其中,
    在所述显示区的同一侧设置有至少两个所述凸起部。
  21. 根据权利要求20所述的显示基板,其中,
    在垂直于所述衬底所在面的方向上,所述凸起部的高度为0.2~3微米;
    在平行于所述衬底所在面的方向上,所述凸起部的宽度为3~9微米;
    在平行于所述衬底所在面的方向上,相邻的两个所述凸起部之间的间距为3~10微米。
  22. 一种显示面板,包括权利要求1-21任一所述的显示基板。
  23. 一种显示基板的制造方法,包括:
    提供衬底,所述衬底包括显示区和位于所述显示区周围的非显示区;以及
    在所述衬底上形成至少一个凸起部;
    其中,所述凸起部形成于所述非显示区中。
  24. 根据权利要求23所述的制造方法,还包括:
    在所述衬底上形成钝化层;
    其中,所述凸起部形成在所述衬底和所述钝化层之间,并且所述钝化层至少部分覆盖所述凸起部。
  25. 根据权利要求23所述的制造方法,还包括:
    在所述衬底上形成平坦层;以及
    在所述衬底和所述平坦层之间形成缓冲层、栅绝缘层、层间绝缘层和钝化层中的至少一个;
    其中,所述凸起部在所述衬底上的正投影位于所述平坦层在所述衬底上的正投影之内,以及
    所述凸起部至少部分与所述层间绝缘层同层且同材料形成;和/或
    所述凸起部至少部分与所述栅绝缘层同层且同材料形成;和/或
    所述凸起部至少部分与所述缓冲层同层且同材料形成;和/或
    所述凸起部至少部分与所述钝化层同层且同材料形成。
  26. 根据权利要求23所述的制造方法,还包括:
    在所述衬底上形成缓冲层、栅绝缘层、层间绝缘层、钝化层和平坦层;
    其中,所述凸起部在所述衬底上的正投影位于所述平坦层在所述衬底上的正投影之内,所述凸起部在所述衬底上的正投影位于所述缓冲层在所述衬底上的正投影之内,以及
    所述凸起部至少部分配置为与所述层间绝缘层同层且同材料制备;和/或
    所述凸起部至少部分配置为与所述栅绝缘层同层且同材料制备;和/或
    所述凸起部至少部分配置为与所述钝化层同层且同材料制备。
  27. 根据权利要求23所述的制造方法,还包括:
    在所述衬底上形成缓冲层、栅绝缘层、层间绝缘层和平坦层;
    其中,所述凸起部在所述衬底上的正投影位于所述平坦层在所述衬底上的正投影之内,所述凸起部在所述衬底上的正投影位于所述缓冲层在所述衬底上的正投影之内,以及
    所述凸起部至少部分配置为与所述层间绝缘层同层且同材料制备;和/或所述凸起部至少部分配置为与所述栅绝缘层同层且同材料制备。
PCT/CN2018/090202 2017-08-31 2018-06-07 显示基板及其制造方法、显示面板 WO2019041945A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2019562268A JP7196098B2 (ja) 2017-08-31 2018-06-07 表示基板及びその製造方法、表示パネル
US16/335,599 US11245094B2 (en) 2017-08-31 2018-06-07 Display substrate and manufacture method thereof, display panel

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201721107517.6 2017-08-31
CN201721107517.6U CN207381403U (zh) 2017-08-31 2017-08-31 显示基板、显示面板

Publications (1)

Publication Number Publication Date
WO2019041945A1 true WO2019041945A1 (zh) 2019-03-07

Family

ID=62342504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/090202 WO2019041945A1 (zh) 2017-08-31 2018-06-07 显示基板及其制造方法、显示面板

Country Status (4)

Country Link
US (1) US11245094B2 (zh)
JP (1) JP7196098B2 (zh)
CN (1) CN207381403U (zh)
WO (1) WO2019041945A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110211995A (zh) * 2019-05-24 2019-09-06 昆山国显光电有限公司 显示面板

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN207381403U (zh) * 2017-08-31 2018-05-18 京东方科技集团股份有限公司 显示基板、显示面板
CN107689425A (zh) * 2017-08-31 2018-02-13 昆山国显光电有限公司 薄膜封装结构及薄膜封装方法和显示面板
CN207116481U (zh) * 2017-08-31 2018-03-16 京东方科技集团股份有限公司 显示基板、显示装置
CN108511503B (zh) * 2018-05-28 2020-11-24 京东方科技集团股份有限公司 一种电致发光显示面板、其制作方法及显示装置
CN109256487B (zh) * 2018-09-12 2020-09-01 武汉华星光电半导体显示技术有限公司 一种显示面板
CN109273504B (zh) * 2018-09-27 2021-01-22 京东方科技集团股份有限公司 显示面板及其制作方法、显示装置
CN109300970B (zh) * 2018-11-30 2020-09-25 上海天马微电子有限公司 显示面板和显示装置
KR20200143602A (ko) * 2019-06-14 2020-12-24 삼성디스플레이 주식회사 표시 장치 및 표시 장치의 제조 방법
KR20210086273A (ko) * 2019-12-31 2021-07-08 엘지디스플레이 주식회사 디스플레이 장치
CN111261800B (zh) * 2020-02-07 2021-07-06 武汉华星光电半导体显示技术有限公司 一种阵列基板及其制备方法、显示面板
CN111682032B (zh) * 2020-06-29 2023-05-02 武汉华星光电技术有限公司 显示面板及其制造方法
CN115050796A (zh) * 2022-06-15 2022-09-13 武汉华星光电半导体显示技术有限公司 显示面板

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103811530A (zh) * 2012-11-09 2014-05-21 乐金显示有限公司 柔性有机电致发光装置及其制造方法
CN203883009U (zh) * 2014-05-29 2014-10-15 京东方科技集团股份有限公司 Oled显示面板
CN104900681A (zh) * 2015-06-09 2015-09-09 上海天马有机发光显示技术有限公司 有机发光显示面板及其形成方法
CN105810710A (zh) * 2014-12-31 2016-07-27 昆山国显光电有限公司 一种oled器件及其制备方法
CN106409869A (zh) * 2015-07-29 2017-02-15 三星显示有限公司 有机发光二极管显示器
CN106848087A (zh) * 2015-12-07 2017-06-13 上海和辉光电有限公司 显示模组封装结构及其制备方法
CN207381403U (zh) * 2017-08-31 2018-05-18 京东方科技集团股份有限公司 显示基板、显示面板

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003092192A (ja) * 2001-09-18 2003-03-28 Matsushita Electric Ind Co Ltd 有機エレクトロルミネッセンス表示装置およびその製造方法
JP4520226B2 (ja) * 2003-06-27 2010-08-04 株式会社半導体エネルギー研究所 表示装置及び表示装置の作製方法
JP4683883B2 (ja) * 2003-08-29 2011-05-18 株式会社半導体エネルギー研究所 発光装置
US7719499B2 (en) * 2005-12-28 2010-05-18 E. I. Du Pont De Nemours And Company Organic electronic device with microcavity structure
JP4849279B2 (ja) * 2009-05-28 2012-01-11 Tdk株式会社 有機el表示装置
KR102117612B1 (ko) 2013-08-28 2020-06-02 삼성디스플레이 주식회사 유기 발광 표시 장치 및 이의 제조 방법
KR102218573B1 (ko) * 2013-09-30 2021-02-23 삼성디스플레이 주식회사 표시 장치 및 표시 장치의 제조 방법
US9395574B2 (en) * 2014-07-31 2016-07-19 Shenzhen China Star Optoelectronics Technology Co., Ltd Liquid crystal display having black matrix made of molybdenum
KR102250048B1 (ko) * 2014-09-16 2021-05-11 삼성디스플레이 주식회사 유기 발광 표시 장치
CN105632959B (zh) 2016-01-05 2019-01-22 京东方科技集团股份有限公司 一种阵列基板及其制备方法和显示装置
KR102492032B1 (ko) * 2016-04-04 2023-01-27 삼성디스플레이 주식회사 표시 장치 및 이의 제조 방법
KR102516055B1 (ko) * 2016-07-05 2023-03-31 삼성디스플레이 주식회사 플렉서블 디스플레이 장치

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103811530A (zh) * 2012-11-09 2014-05-21 乐金显示有限公司 柔性有机电致发光装置及其制造方法
CN203883009U (zh) * 2014-05-29 2014-10-15 京东方科技集团股份有限公司 Oled显示面板
CN105810710A (zh) * 2014-12-31 2016-07-27 昆山国显光电有限公司 一种oled器件及其制备方法
CN104900681A (zh) * 2015-06-09 2015-09-09 上海天马有机发光显示技术有限公司 有机发光显示面板及其形成方法
CN106409869A (zh) * 2015-07-29 2017-02-15 三星显示有限公司 有机发光二极管显示器
CN106848087A (zh) * 2015-12-07 2017-06-13 上海和辉光电有限公司 显示模组封装结构及其制备方法
CN207381403U (zh) * 2017-08-31 2018-05-18 京东方科技集团股份有限公司 显示基板、显示面板

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110211995A (zh) * 2019-05-24 2019-09-06 昆山国显光电有限公司 显示面板

Also Published As

Publication number Publication date
JP2020531885A (ja) 2020-11-05
US11245094B2 (en) 2022-02-08
US20200035946A1 (en) 2020-01-30
CN207381403U (zh) 2018-05-18
JP7196098B2 (ja) 2022-12-26

Similar Documents

Publication Publication Date Title
WO2019041945A1 (zh) 显示基板及其制造方法、显示面板
JP7203763B2 (ja) 表示基板及びその製造方法、表示装置
CN110416434B (zh) 显示基板及其制备方法、显示装置
CN106876328B (zh) Oled显示面板及其制备方法、显示装置
EP3327786B1 (en) Organic light-emitting display device
TWI716948B (zh) 可拉伸顯示面板和包含其之可拉伸顯示裝置
CN107799555B (zh) 有机发光显示装置及其制造方法
CN111129078B (zh) 透明有机发光显示设备及其制造方法
KR101998949B1 (ko) 표시 장치 및 표시 장치의 제조 방법
WO2020024705A1 (zh) 显示基板及其制备方法、显示面板
US20180138450A1 (en) Organic light-emitting display device
US11800735B2 (en) Flexible display module and manufacturing method thereof, and flexible display apparatus
KR102504073B1 (ko) 유기발광 표시장치
CN108321175B (zh) 基板及其制造方法、显示装置
CN108091675B (zh) 显示基板及其制作方法
CN112151445A (zh) 一种显示基板的制备方法及显示基板、显示装置
KR20180054386A (ko) 유기 발광 표시 장치
KR102432128B1 (ko) 터치 내장형 표시 장치
KR20230017968A (ko) 표시 장치
KR20200039973A (ko) 스트레쳐블 표시 장치 및 그 제조 방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18850361

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019562268

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 20.08.2020)

122 Ep: pct application non-entry in european phase

Ref document number: 18850361

Country of ref document: EP

Kind code of ref document: A1