WO2019041657A1 - 一种工业机器人轨迹五次多项式规划方法 - Google Patents
一种工业机器人轨迹五次多项式规划方法 Download PDFInfo
- Publication number
- WO2019041657A1 WO2019041657A1 PCT/CN2017/117062 CN2017117062W WO2019041657A1 WO 2019041657 A1 WO2019041657 A1 WO 2019041657A1 CN 2017117062 W CN2017117062 W CN 2017117062W WO 2019041657 A1 WO2019041657 A1 WO 2019041657A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- trajectory
- planning
- order polynomial
- velocity
- curve
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B19/00—Programme-control systems
- G05B19/02—Programme-control systems electric
- G05B19/18—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form
- G05B19/404—Numerical control [NC], i.e. automatically operating machines, in particular machine tools, e.g. in a manufacturing environment, so as to execute positioning, movement or co-ordinated operations by means of programme data in numerical form characterised by control arrangements for compensation, e.g. for backlash, overshoot, tool offset, tool wear, temperature, machine construction errors, load, inertia
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B2219/00—Program-control systems
- G05B2219/30—Nc systems
- G05B2219/35—Nc in input of data, input till input file format
- G05B2219/35408—Calculate new position data from actual data to compensate for contour error
Definitions
- the invention relates to a trajectory planning method for an industrial robot, in particular to a fifth-order polynomial programming method for an industrial robot trajectory.
- Robot trajectory planning is to plan the path, velocity, acceleration and jerk of the end of the robot or each joint between the start and end points.
- Robot trajectory planning is performed in two spaces: the joint space (the space in which the joint movements of the robot is located, ie the joint angle) and the Cartesian space (the right-angle space in which the robot end effector is located, ie the position (XYZ) and the attitude (Euler angle) )), but no matter which space is used for trajectory planning, it is necessary to ensure that the planned trajectory is continuous and smooth, and meet the inherent motion parameters of the robot to ensure the smooth motion of the robot.
- the current common industrial robot trajectory planning has trapezoidal planning, S-shaped planning and polynomial programming.
- the polynomial planning is more of a five-order polynomial programming.
- Trapezoidal planning is the simplest, but because of its low order, the acceleration in a single-segment motion is discontinuous, which will bring the vibration of the robot and have a strong impact on the machine; the S-type plan is one more than the highest order of the trapezoidal plan.
- the order can ensure that the acceleration in a single motion is continuous, but the jerk is discontinuous, and still brings mechanical impact, and the continuity of the acceleration between the segments is not guaranteed in the multi-segment movement.
- the fifth-order polynomial trajectory is higher in order than the S-curve, so it is smoother and can ensure continuous displacement, velocity, acceleration and jerk in single-segment motion. And can ensure that the acceleration between the segment and the segment is continuous and the motion is stable.
- the fifth-order polynomial programming is applied more in the transition planning, such as the literature “Mechanical Cartesian space trajectory planning research [J]” (Lin Shigao, Liu Xiaolin, Euro Xian, “Mechanical Design and Manufacturing”, 2013 (3): 49-52 ), a five-degree polynomial transition is used between the two curves of the continuous trajectory, so that the trajectory speed of the robot end is continuously smooth and the acceleration is smooth.
- the biggest problem of the fifth-order polynomial programming is that the shape of the fifth-order polynomial curve is not fixed. The curve is prone to sway. If the planning time is not good, the displacement, velocity, and acceleration curve are prone to occur during the planning process. Control, it is likely to exceed the limit of the motion parameters of the robot itself, resulting in problems such as overspeed and super acceleration, causing the robot to stop abnormally.
- the technical problem to be solved by the present invention is to overcome the above-mentioned drawbacks of the prior art, and to propose a five-order polynomial programming method for industrial robot trajectories.
- the method of the invention can ensure that the movement trend of the planning curve is similar to the S-type planning, and the shape is fixed, so that each point in the planning process satisfies the limitation of the motion parameter of the robot itself, while retaining the inherent advantages of the above-mentioned five-time curve.
- the invention provides a fifth-order polynomial programming method for industrial robot trajectory, and aims to solve the problem that the planned curve is beyond the limit of the motion parameter of the robot itself due to the unfixed shape of the fifth-order polynomial curve, and the planned trajectory is guaranteed.
- the displacement, velocity and acceleration are continuous at each moment, the curve is smooth, and the inherent motion parameter limitation of the robot is satisfied.
- the fifth-order polynomial programming method for industrial robot trajectory proposed by the invention is as follows:
- s(t) is the displacement of the joint space or the displacement of the Cartesian space; a 0 , a 1 , a 2 , a 3 , a 4 , a 5 are the fifth-order polynomial coefficients; t is the interpolation time.
- the starting displacement s 0 of the trajectory, the starting velocity v 0 , the starting acceleration acc 0 , the ending displacement s e , the ending velocity v e , and the ending acceleration acc e are known to satisfy:
- the ancestors set the total interpolation time and then use the above conditions to determine the coefficients of the fifth-order polynomial, but if the total interpolation time is different, the shape of the fifth-order polynomial is different.
- the fifth-order polynomial programming method for industrial robot trajectory proposed by the present invention (referred to as the fifth-order planning), according to the principle of fixed shape of the S-shaped planning curve, skillfully design the interpolation time of the fifth-order polynomial programming, and eliminate the twisting of the curve shape. happening.
- the present invention provides a fifth-order polynomial programming method for industrial robot trajectory, which has the following steps:
- Step 1 Determine the start and stop displacement, velocity, and acceleration information of the trajectory
- the trajectory preprocessing module determines the effective starting and ending displacement, velocity and acceleration information of the trajectory according to the starting and ending position points and the inherent motion parameter limits, and inputs the information to the trajectory planning module.
- Starting point information starting displacement s 0 , starting speed v 0 , initial acceleration acc 0 .
- Termination information termination displacement s e , termination speed v e , termination acceleration acc e .
- Step 2 determine the fifth-order polynomial trajectory planning interpolation time
- the fifth-order polynomial trajectory planning interpolation time is fitted by the velocity trend of the S-shaped trajectory planning:
- Step 3 determine the fifth-order polynomial trajectory planning model
- the fifth-order polynomial model parameters a 0 , a 1 , a 2 , a 3 , a 4 , a 5 are determined .
- C(1) is the first element of matrix C
- C(2) is the second element of matrix C
- C(3) is the third element of matrix C
- matrix C satisfies the following equation.
- Step 4 determine the fine interpolation period for five-degree polynomial programming
- the fifth-order polynomial programming model determined in step 3 outputs the position of each point from the start point to the end point in real time, and completes the trajectory planning from the start point to the end point.
- the method of the invention utilizes the fixed curve characteristic of the S-type plan, and fits the interpolation time of the fifth-order polynomial plan according to the speed running trend of the S-shaped trajectory planning, and solves the problem that the shape of the fifth-order polynomial curve is not fixed and is easy to occur.
- the situation of torsion pendulum ensures that the speed change in the planning process becomes monotonic, and no large convexity and reverse direction will occur, ensuring that the planned trajectory can meet the inherent motion of the robot at each moment from the start point to the end point of the trajectory. Parameter limit.
- the key of the method of the invention lies in the designed interpolation time, which solves the phenomenon that the fifth-order polynomial curve is prone to twisting, and ensures that the planned trajectory satisfies the inherent motion parameter limitation at each moment of the trajectory.
- the method of the invention has a higher order, and the planning curve is smoother and the running process is more stable.
- the fifth-order polynomial planning can ensure that the position, velocity, acceleration and jerk between the starting and ending points of the trajectory are continuous, and the position, velocity and acceleration between the segment and the segment are also continuous, so that the segment and the segment are connected. The movement is still stable.
- FIG. 4 is a flow chart of a fifth-order polynomial planning method for the trajectory of the industrial robot of the present invention.
- Figure 5 is a five-order planning curve (displacement) of the present invention for industrial robot transition.
- Figure 6 is a five-stage planning curve (speed) of the present invention for industrial robot transition.
- Figure 7 is a five-stage planning curve (acceleration) of the present invention for industrial robot transition.
- the trajectory pre-processing module determines the effective starting and stopping displacement, velocity and acceleration information of the trajectory according to the starting and ending position points and the inherent motion parameter limits.
- Equations (5) and (6) identify the five-planning model.
- the system fine interpolation module determines that the fine interpolation period is 0.004s, and the transition period is five times according to the fine interpolation period.
- the planning curve is shown in Figure 5.
Landscapes
- Engineering & Computer Science (AREA)
- Human Computer Interaction (AREA)
- Manufacturing & Machinery (AREA)
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Manipulator (AREA)
- Numerical Control (AREA)
Abstract
公开了一种工业机器人轨迹五次多项式规划方法。该方法根据轨迹的起止位移、速度和加速度信息,利用S型轨迹规划的速度趋势,拟合出五次多项式轨迹规划的插补时间,进一步确定出五次多项式轨迹规划模型。所提出的五次多项式规划方法,根据S型轨迹规划的速度运行趋势确定出五次多项式轨迹规划模型,能够解决五次多项式曲线形状不固定,易发生扭摆的情况,保证规划过程中速度的变化成单调性,不会发生较大的凸度和反向的情况,保证所规划的轨迹在轨迹的起点到终点的各个时刻均可以满足机器人固有的运动参数限制,且相较于常用的梯形规划和S型规划模型规划曲线更加平滑,轨迹运行过程更加平稳。
Description
本发明涉及一种工业机器人的轨迹规划方法,具体说,是一种工业机器人轨迹五次多项式规划方法。
轨迹规划是机器人技术应用的基础。机器人轨迹规划是规划机器人末端或各个关节在起点和终点之间的路径、速度、加速度及加加速度等信息。机器人轨迹规划在两种空间中进行:关节空间(机器人各个关节运动所在的空间,即关节角)和笛卡尔空间(机器人末端执行器所在的直角空间,即位置(XYZ)和姿态(欧拉角)),但无论在哪个空间进行轨迹规划,均要保证所规划的轨迹是连续的、平滑的,并且满足机器人固有的运动参数要求,保证机器人平稳的运动。
经文献研究,目前常见的工业机器人轨迹规划有梯形规划、S型规划及多项式规划,多项式规划中较多的是五次多项式规划。梯形规划最简单,但是由于其阶数较低,单段运动中加速度是不连续的,这样会带来机器人振动,对机器产生强烈的冲击;S型规划相较于梯形规划最高阶次多一阶,可以保证单段运动中加速度是连续的,但是加加速度是不连续的,依然会带来机械上的冲击,而且多段运动时,段与段之间的加速度的连续性是不能保证的,在段与段的衔接处很容易引起机械抖动;五次多项式轨迹,阶数上比S型曲线更高,因此其更为平滑,可以保证单段运动中位移、速度、加速度、加加速度均连续,且可以保证段与段之间的加速度连续,运动平稳。五次多项式的规划在过渡规划中应用较多,如文献《机械手笛卡尔空间轨迹规划研究[J]》(林仕高,刘晓麟,欧元贤,《机械设计与制造》,2013(3):49-52), 在连续轨迹的两条曲线间采用五次多项式过渡,使得机械手末端轨迹速度连续平滑和加速度平滑。
但是五次多项式规划最大的问题,就是五次多项式曲线形状的不固定性,曲线容易出现摇摆,若规划的时间选取的不好,规划过程中很容易出现位移、速度、加速度曲线摇摆,不受控制,很可能超出机器人本身的运动参数限制,导致超速、超加速度等问题而使机器人异常停机。
发明内容
本发明所要解决的技术问题在于,克服现有技术存在的上述缺陷,提出了一种工业机器人轨迹五次多项式规划方法。本发明方法能够保证规划曲线运动趋势类似S型规划,形状固定,使得规划过程中各个点均满足机器人本身运动参数的限制,同时保留上述五次曲线固有的优势。
本发明提出一种工业机器人轨迹五次多项式规划方法,目的是解决由于五次多项式曲线形状不固定而带来所规划曲线的过程中会出现超出机器人本身运动参数限制的问题,保证所规划的轨迹各个时刻位移、速度、加速度连续,曲线平滑,且满足机器人固有的运动参数限制。
本发明所提出的一种工业机器人轨迹五次多项式规划方法,模型为:
s(t)=a
5t
5+a
4t
4+a
3t
3+a
2t
2+a
1t+a
0 (1)
式中,s(t)为关节空间的位移或笛卡尔空间的位移;a
0,a
1,a
2,a
3,a
4,a
5为五次多项式系数;t为插补时间。
轨迹的起始位移s
0、起始速度v
0、起始加速度acc
0,终止位移s
e、终止速度v
e、终止加 速度acc
e已知,满足:
六个方程,七个未知数(a
0,a
1,a
2,a
3,a
4,a
5及插补总时间t
e),无法得到所有未知数。因此,先人为设定出插补总时间,再利用上述条件去确定五次多项式的系数,但是如果插补总时间不同,五次多项式的形状也不同。如附图1~附图3:同样的起止条件(s
0=0,v
0=0,acc
0=0,s
e=100,v
e=100,acc
e=0),不同的插补时间(t
e=0.4s,2s,10s)的曲线图。由图可以看出,图2的规划最好,图1由于插补时间选择的较短,速度凸度较大,最大速度很高,超过本身的速度约束(最大速度为100),图3由于插补时间选择的较长,运动过程中位移和速度出现反向,曲线形状发生扭摆,而且时间选择的较长降低机器人运行效率。
基于此,本发明所提出的工业机器人轨迹五次多项式规划方法(简称五次规划),根据S型规划曲线形状固定的原理,巧妙设计五次多项式规划的插补时间,排除曲线形状发生扭摆的情况。
本发明为实现发明目的,所提出的工业机器人轨迹五次多项式规划方法,其步骤如下:
步骤1,确定轨迹的起止位移、速度、加速度信息
轨迹预处理模块根据示教出的起止位置点,结合固有的运动参数限制,确定出轨迹的有效起止位移、速度和加速度信息,并输入给轨迹规划模块。起点信息:起始位移s
0、起始速度v
0、起始加速度acc
0。终止信息:终止位移s
e、终止速度v
e、终止加速度acc
e。
步骤2,确定五次多项式轨迹规划插补时间
结合S型轨迹规划曲线形状的固定性,利用S型轨迹规划的速度趋势,拟合出五次多项式轨迹规划插补时间:
步骤3,确定五次多项式轨迹规划模型
根据步骤1确定的路径起止信息及步骤2确定的插补时间,确定出五次多项式模型参数a
0,a
1,a
2,a
3,a
4,a
5。
由公式(1)可以推出以下公式:
将公式(2)满足的条件,代入公式(4),得到系数a
0,a
1,a
2,a
3,a
4,a
5:
其中,C(1)为矩阵C的第一个元素,C(2)为矩阵C的第二个元素,C(3)为矩阵C的第三个元素,矩阵C满足下式。
C=A
-1*B
步骤4,确定细插补周期进行五次多项式规划
根据细插补周期,按步骤3确定出的五次多项式规划模型,实时地输出起点到终点各个时刻的位置,完成起点到终点间的轨迹规划。
本发明方法,运用S型规划所具有的曲线固定的特性,根据S型轨迹规划的速度运行趋势,拟合出五次多项式规划的插补时间,解决了五次多项式曲线形状不固定,易发生扭摆的情况,保证规划过程中速度的变化成单调性,不会发生较大的凸度和反向的情况,保证所规划的轨迹在轨迹的起点到终点的各个时刻均可以满足机器人固有的运动参数限制。本发明方法关键在于所设计的插补时间,解决了五次多项式曲线易发生扭摆的现象,保证所规划的轨迹在轨迹的各个时刻均满足固有的运动参数限制。
本发明方法,相较于常用的梯形规划和S型规划模型阶数更高,因此规划曲线更加平滑,运行过程更加平稳。采用五次多项式的规划,可以保证轨迹起止点间位置、速度、加速度和加加速度均连续,且可以保证多段运动过程中段与段之间位置、速度和加速度也是连续的,使得段与段的衔接处运动依然平稳。
图1是本发明方法t=0.4s的五次规划曲线。
图2是本发明方法t=2s的五次规划曲线。
图3是本发明方法t=10s的五次规划曲线。
图4是本发明工业机器人轨迹五次多项式规划方法流程图。
图5是本发明用于工业机器人过渡的五次规划曲线(位移)。
图6是本发明用于工业机器人过渡的五次规划曲线(速度)。
图7是本发明用于工业机器人过渡的五次规划曲线(加速度)。
下面结合具体实施例,对本发明方法作进一步详细说明。
实施例
以某工业机器人直线间过渡为例,采用五次多项式轨迹规划。
1、确定轨迹的起止位移、速度、加速度信息
轨迹预处理模块根据示教出的起止位置点,结合固有的运动参数限制,确定出轨迹的有效起止位移、速度和加速度信息。
s
0=0,v
0=20,acc
0=0;
s
e=100,v
e=82,acc
e=0。
2、确定五次规划插补时间
公式(3)确定出插补时间1.961s,由于系统的细插补周期为0.004s,取插补时间为细插补周期的整数倍,向上取整,确定五次规划插补时间t
e=1.964s。
3、确定五次规划模型
公式(5)和(6)确定出五次规划模型。
a
0=0,a
1=20,a
2=0,a
3=15.8570,
a
4=-3.9267,a
5=-0.0337
4、确定细插补周期进行五次规划
系统细插补模块确定出细插补周期为0.004s,根据细插补周期进行过渡段五次规划,规划曲线如附图5所示。
Claims (1)
- 一种工业机器人轨迹五次多项式规划方法,五次多项式模型为:s(t)=a 5t 5+a 4t 4+a 3t 3+a 2t 2+a 1t+a 0式中,s(t)为关节空间的位移或笛卡尔空间的位移;a 0,a 1,a 2,a 3,a 4,a 5为五次多项式系数;t为插补时间;其规划步骤如下:步骤1,确定轨迹的起止位移、速度、加速度信息轨迹预处理模块根据示教出的起止位置点,结合固有的运动参数限制,确定出轨迹的有效起止位移、速度和加速度信息,并输入给轨迹规划模块;起点信息:起始位移s 0、起始速度v 0、起始加速度acc 0。终止信息:终止位移s e、终止速度v e、终止加速度acc e;步骤2,确定五次多项式轨迹规划插补时间:步骤3,确定五次多项式轨迹规划模型参数根据步骤1确定的起止信息及步骤2确定的插补时间,确定出五次多项式模型参数:其中,C(1)为矩阵C的第一个元素,C(2)为矩阵C的第二个元素,C(3)为矩阵C的第三个元素,矩阵C满足:C=A -1*B步骤4,确定细插补周期进行五次多项式规划根据细插补周期,按步骤3确定出的五次多项式规划模型,实时地输出起点到终点各个时刻的位置,完成起点到终点间的轨迹规划。
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201710770454.0 | 2017-08-31 | ||
CN201710770454.0A CN107390634B (zh) | 2017-08-31 | 2017-08-31 | 一种工业机器人轨迹五次多项式规划方法 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019041657A1 true WO2019041657A1 (zh) | 2019-03-07 |
Family
ID=60347224
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/CN2017/117062 WO2019041657A1 (zh) | 2017-08-31 | 2017-12-19 | 一种工业机器人轨迹五次多项式规划方法 |
Country Status (2)
Country | Link |
---|---|
CN (1) | CN107390634B (zh) |
WO (1) | WO2019041657A1 (zh) |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN107390634B (zh) * | 2017-08-31 | 2019-11-12 | 南京埃斯顿机器人工程有限公司 | 一种工业机器人轨迹五次多项式规划方法 |
CN110231041B (zh) * | 2018-03-06 | 2021-05-25 | 北京京东尚科信息技术有限公司 | 一种车道切换的导航方法和装置 |
CN110307853B (zh) * | 2018-03-27 | 2021-11-02 | 北京京东尚科信息技术有限公司 | 一种导航控制方法和装置 |
CN108646674A (zh) * | 2018-07-20 | 2018-10-12 | 深圳市众为创造科技有限公司 | 位置s型平滑指令产生方法、系统和电子设备 |
CN108994418B (zh) * | 2018-07-26 | 2021-03-23 | 上海工程技术大学 | 一种管-管相贯线机器人运动轨迹规划方法 |
CN109108983A (zh) * | 2018-10-12 | 2019-01-01 | 中国航天空气动力技术研究院 | 基于分拣工艺的机械手轨迹规划方法 |
CN109551478A (zh) * | 2018-11-16 | 2019-04-02 | 重庆邮电大学 | 一种基于集散控制系统的双机器人主从协调控制方法 |
CN109505069A (zh) * | 2018-11-19 | 2019-03-22 | 杰克缝纫机股份有限公司 | 运动轨迹规划方法及其装置、贴袋机和存储介质 |
CN109814568B (zh) | 2019-02-19 | 2022-05-03 | 阿波罗智能技术(北京)有限公司 | 无人车速度轨迹的生成方法、装置和存储介质 |
CN109968357B (zh) * | 2019-03-27 | 2022-04-05 | 杭州电子科技大学 | 一种直线轨迹间过渡运动的快速规划方法 |
CN109933008B (zh) * | 2019-03-28 | 2021-11-09 | 佛山智能装备技术研究院 | 一种非实时系统和机器人控制器的双插补方法及装置 |
CN111015669B (zh) * | 2019-12-27 | 2022-03-11 | 南京埃斯顿机器人工程有限公司 | 一种工业机器人停止运动轨迹规划方法 |
CN113110423B (zh) * | 2021-03-26 | 2024-04-26 | 深圳市优必选科技股份有限公司 | 步态轨迹规划方法、装置、计算机可读存储介质及机器人 |
CN113110484B (zh) * | 2021-04-30 | 2024-06-21 | 深圳市优必选科技股份有限公司 | 一种步态轨迹规划方法、装置、可读存储介质及机器人 |
CN113230093A (zh) * | 2021-06-17 | 2021-08-10 | 广西大学 | 适用于下肢康复机器人被动训练的可变类圆周步态规划 |
CN113334385A (zh) * | 2021-06-24 | 2021-09-03 | 安徽理工大学 | 一种自驱动关节臂测量机直线轨迹间平滑过渡的规划方法 |
CN116610070B (zh) * | 2023-07-20 | 2023-10-20 | 杭州芯控智能科技有限公司 | 基于笛卡尔空间的轨迹匀速过渡方法和装置 |
CN117687417A (zh) * | 2024-01-29 | 2024-03-12 | 安徽大学 | 一种工业机器人外部运动轨迹规划方法及系统 |
Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3586110B2 (ja) * | 1998-08-13 | 2004-11-10 | 三菱電機株式会社 | 軌跡制御装置 |
CN101525011A (zh) * | 2008-03-04 | 2009-09-09 | 王慧娟 | 一种跳跃机器人及采用惯性匹配的运动优化方法 |
CN101733750A (zh) * | 2009-11-05 | 2010-06-16 | 浙江大学 | 基于动态响应谱的关节含间隙机器人轨迹规划方法 |
CN102510793A (zh) * | 2010-06-04 | 2012-06-20 | 中国科学院自动化研究所 | 加速度连续的机器人轨迹生成系统和方法 |
CN103235513A (zh) * | 2013-04-24 | 2013-08-07 | 武汉科技大学 | 一种基于遗传算法的移动机械臂轨迹规划优化方法 |
CN107390634A (zh) * | 2017-08-31 | 2017-11-24 | 南京埃斯顿机器人工程有限公司 | 一种工业机器人轨迹五次多项式规划方法 |
Family Cites Families (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN1971457A (zh) * | 2005-11-25 | 2007-05-30 | 中国科学院沈阳计算技术研究所有限公司 | 一种用于数控机床的加减速控制方法 |
CN102566511B (zh) * | 2010-12-09 | 2013-07-03 | 中国科学院沈阳计算技术研究所有限公司 | 五轴数控系统刀心点插补路径插值方法 |
MX2012015057A (es) * | 2012-12-18 | 2014-06-20 | Itesm | Metodo quintico para la solucion de ecuaciones diferenciales no lineales. |
CN105353725B (zh) * | 2015-11-18 | 2017-12-19 | 南京埃斯顿机器人工程有限公司 | 用于工业机器人的过辅助点姿态空间圆弧插补方法 |
CN106863306B (zh) * | 2017-03-31 | 2020-08-18 | 华南理工大学 | 一种机器人关节空间平滑轨迹规划方法 |
-
2017
- 2017-08-31 CN CN201710770454.0A patent/CN107390634B/zh active Active
- 2017-12-19 WO PCT/CN2017/117062 patent/WO2019041657A1/zh active Application Filing
Patent Citations (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3586110B2 (ja) * | 1998-08-13 | 2004-11-10 | 三菱電機株式会社 | 軌跡制御装置 |
CN101525011A (zh) * | 2008-03-04 | 2009-09-09 | 王慧娟 | 一种跳跃机器人及采用惯性匹配的运动优化方法 |
CN101733750A (zh) * | 2009-11-05 | 2010-06-16 | 浙江大学 | 基于动态响应谱的关节含间隙机器人轨迹规划方法 |
CN102510793A (zh) * | 2010-06-04 | 2012-06-20 | 中国科学院自动化研究所 | 加速度连续的机器人轨迹生成系统和方法 |
CN103235513A (zh) * | 2013-04-24 | 2013-08-07 | 武汉科技大学 | 一种基于遗传算法的移动机械臂轨迹规划优化方法 |
CN107390634A (zh) * | 2017-08-31 | 2017-11-24 | 南京埃斯顿机器人工程有限公司 | 一种工业机器人轨迹五次多项式规划方法 |
Also Published As
Publication number | Publication date |
---|---|
CN107390634A (zh) | 2017-11-24 |
CN107390634B (zh) | 2019-11-12 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2019041657A1 (zh) | 一种工业机器人轨迹五次多项式规划方法 | |
CN111791236B (zh) | 一种工业机器人笛卡尔空间轨迹过渡方法 | |
CN105500354B (zh) | 一种工业机器人应用的过渡轨迹规划方法 | |
WO2018133439A1 (zh) | 一种考虑末端运动误差的六自由度机器人轨迹规划方法 | |
CN106393106B (zh) | 参数自适应密化的机器人nurbs曲线运动插补方法 | |
EP2022608A2 (en) | Improved blending algorithm for trajectory planning | |
CN105045101B (zh) | 一种基于扩张状态观测器的机械臂伺服系统全阶滑模控制方法 | |
CN109605369B (zh) | 机械臂奇异点控制方法及系统 | |
CN108568817A (zh) | 一种基于贝塞尔曲线的Delta机器人轨迹连接控制方法 | |
WO2017024749A1 (zh) | 一种变传动比线齿轮机构 | |
CN109571432A (zh) | 一种基于力传感器的机器人直接示教方法 | |
CN111002308A (zh) | 基于分段多阶次多项式插值的工业机械臂路径规划方法 | |
CN115741695A (zh) | 一种六轴串联工业机器人末端的姿态轨迹过渡规划方法 | |
CN112338912A (zh) | 一种柔性单链机械臂的有限时间稳定控制方法及系统 | |
CN111580453A (zh) | 基于plc的提高二维圆弧插补轨迹精度的实现方法 | |
WO2022161315A1 (zh) | 机器人路径规划方法、运行方法、机器人以及介质 | |
CN110703684B (zh) | 一种端点速度不限的轨迹规划方法及装置 | |
CN105563482A (zh) | 用于工业机器人的末端执行器的旋转运动规划方法 | |
US20210260761A1 (en) | Method And Control System For Controlling An Industrial Actuator | |
US20190188358A1 (en) | Cam Curve Design Method for Cap Screwing Machine Based on Multi-Objective Method | |
CN110018635A (zh) | 一种并联机器人拾放操作轨迹规划方法及系统 | |
CN109773778B (zh) | 一种工业机器人关节空间同步运动的规划方法 | |
CN111531532A (zh) | 一种基于旋量理论的机器人攀爬运动速度建模方法 | |
CN109531573B (zh) | 一种基于样条线机器人姿态平滑路径生成方法 | |
Kunz et al. | Turning paths into trajectories using parabolic blends |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 17923573 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 17923573 Country of ref document: EP Kind code of ref document: A1 |