WO2019041513A1 - 一种移动机器人 - Google Patents

一种移动机器人 Download PDF

Info

Publication number
WO2019041513A1
WO2019041513A1 PCT/CN2017/108672 CN2017108672W WO2019041513A1 WO 2019041513 A1 WO2019041513 A1 WO 2019041513A1 CN 2017108672 W CN2017108672 W CN 2017108672W WO 2019041513 A1 WO2019041513 A1 WO 2019041513A1
Authority
WO
WIPO (PCT)
Prior art keywords
stage
link
active
telescopic mechanism
telescopic
Prior art date
Application number
PCT/CN2017/108672
Other languages
English (en)
French (fr)
Other versions
WO2019041513A8 (zh
Inventor
董学会
Original Assignee
歌尔科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 歌尔科技有限公司 filed Critical 歌尔科技有限公司
Publication of WO2019041513A1 publication Critical patent/WO2019041513A1/zh
Publication of WO2019041513A8 publication Critical patent/WO2019041513A8/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B62LAND VEHICLES FOR TRAVELLING OTHERWISE THAN ON RAILS
    • B62DMOTOR VEHICLES; TRAILERS
    • B62D57/00Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track
    • B62D57/02Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members
    • B62D57/028Vehicles characterised by having other propulsion or other ground- engaging means than wheels or endless track, alone or in addition to wheels or endless track with ground-engaging propulsion means, e.g. walking members having wheels and mechanical legs

Definitions

  • the present invention relates to the field of robot technology, and in particular, to a mobile robot.
  • the existing mobile robot has the characteristics of light weight, large carrying capacity, simple mechanism, fast walking speed and high efficiency
  • the moving robot is relatively fixed in structure, and the object carried on the robot is caused by the upslope or the rough terrain.
  • the invention provides a mobile robot, which aims to keep the level of the stage and prevent the object from falling off when the robot is running on the upslope or the rough terrain.
  • a mobile robot includes: a stage, an active telescopic mechanism, a sensor, and a controller; the number of the active telescopic mechanisms is at least two, and are both hinged on the stage to support the stage; a sensor mounted on the stage for detecting whether the stage is in an adjustment direction
  • the controller is coupled to the sensor and the at least two of the active telescopic mechanisms, respectively, for controlling the at least two when the sensor detects the tilt in the adjustment direction of the stage
  • the active telescopic mechanism includes: a first parallelogram mechanism and an active telescopic rod; wherein an extended end of the first link of the first parallelogram mechanism is fixed to the stage; the active telescopic rod One end is hinged to the stage, and the other end is hinged to any one of the first parallelogram mechanisms except the first link.
  • the active telescopic rod includes a second connecting rod, a third connecting rod and a telescopic assembly;
  • the telescopic assembly includes: a first motor, a lead screw connected to the first motor, and the threaded rod a connected lead screw nut; one end of the second link is fixed to the lead screw nut, the other end of which is hinged to the stage; and the third link is provided at one end thereof with the first motor The other end is hinged to any of the first parallelogram mechanisms except the first link.
  • the number of the active telescopic mechanisms is two; two of the active telescopic mechanisms are respectively located on the same side of the stage; or on opposite sides of the stage.
  • the mobile robot further includes: a driven telescopic mechanism; the number of the driven telescopic mechanisms is at least one; the driven telescopic mechanism is hinged to the stage for supporting the load
  • the driven telescopic mechanism is coupled to the active telescopic mechanism to drive the driven telescopic mechanism to elongate when the active telescopic mechanism is extended, and to drive the driven telescopic mechanism when the active telescopic mechanism is shortened.
  • the telescopic mechanism is shortened.
  • the driven telescopic mechanism is disposed opposite to the active telescopic mechanism on both sides of the stage.
  • the driven telescopic mechanism comprises: a second parallelogram mechanism and a driven telescopic rod; wherein an extended end of the fourth link of the second parallelogram mechanism is fixed to the stage;
  • the movable telescopic rod is hinged at one end to the stage, and the other end is hinged to any one of the second parallelogram mechanisms except the fourth link.
  • the driven telescopic mechanism is coupled to the active telescopic mechanism by a fifth link.
  • the driven telescopic rod comprises: a twelfth link and a thirteenth link; the thirteenth link has one end provided with a slot, and the other end of which is hinged in the second parallelogram mechanism One of the four links is inserted into the slot to form a moving pair, and the other end is hinged to the stage.
  • a bottom of the active telescopic mechanism is provided with a sliding wheel and a second motor; and a power output end of the second motor is coupled to the power access end of the sliding wheel.
  • At least two active telescopic mechanisms are disposed under the stage to support the stage, and a sensor is disposed on the stage to detect whether the stage has a tilt in the adjustment direction.
  • the controller controls the partial active telescopic mechanism or all of the active telescopic mechanisms of the at least two active telescopic mechanisms to extend or shorten according to the detection result of the sensor to adjust the stage to the horizontal state. It can be seen that the mobile robot provided by the present invention can maintain the level of the stage when running on the upslope or the rough terrain to prevent the object from falling off.
  • FIG. 1 is a schematic structural diagram of a mobile robot according to an embodiment of the present invention.
  • FIG. 2 is a schematic exploded view of an active telescopic mechanism according to an embodiment of the present invention
  • FIG. 3 is a schematic exploded view of a telescopic assembly according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of a telescopic assembly according to an embodiment of the present invention.
  • FIG. 5 is still another schematic structural diagram of a mobile robot according to an embodiment of the present invention.
  • FIG. 6 is a schematic diagram of an explosion of a mobile robot according to an embodiment of the present invention.
  • FIG. 7 is a schematic exploded view of a driven telescopic mechanism according to an embodiment of the present invention.
  • FIG. 8 is still another schematic structural diagram of a mobile robot according to an embodiment of the present invention.
  • FIG. 9 is still another schematic structural diagram of a mobile robot according to an embodiment of the present invention.
  • FIG. 10 is another schematic exploded view of a mobile robot according to an embodiment of the present invention.
  • FIG. 11 is a schematic diagram of a mechanism motion of a mobile robot according to an embodiment of the present invention.
  • first, second, third, etc. may be used to describe XXX in embodiments of the invention, these XXX should not be limited to these terms. These terms are only used to distinguish XXX from each other.
  • first XXX may also be referred to as a second XXX without departing from the scope of the embodiments of the present invention.
  • second XXX may also be referred to as a first XXX.
  • the words “if” and “if” as used herein may be interpreted to mean “when” or “when” or “in response to determining” or “in response to monitoring.”
  • the phrase “if determined” or “if monitored (conditions or events stated)” can be interpreted as “when determined” or “in response to determination” or “when monitored (conditions or events stated)” or “ Responsive to monitoring (conditions or events stated).
  • FIG. 1 is a schematic structural diagram of a mobile robot according to an embodiment of the present invention.
  • the mobile robot includes a stage 1, an active telescopic mechanism 3, a sensor (not shown), and a controller (not shown).
  • the number of the active telescopic mechanisms 3 is at least two, and are both hinged on the stage 1 to support the stage 1;
  • the sensor is mounted on the stage 1 for use Detecting whether the stage 1 is tilted in an adjustment direction;
  • the controller is respectively connected to the sensor and at least two of the active telescopic mechanisms 3 for detecting the stage when the sensor detects When the tilt in the adjustment direction occurs, some or all of the at least two active telescopic mechanisms 3 are controlled to be elongated or shortened to adjust the stage 1 to the level.
  • the tilt direction of the stage 1 includes two dimensions: front and rear tilt and left and right tilt. When passing through the roads with different heights before and after (that is, when going up and down), it is a front-rear slope, and it is left and right inclined when passing through the roads with different heights on the left and right sides.
  • the tilt angle of the stage in any direction can be decomposed into these two dimensions, that is, the tilt angle of the stage in any direction can be described by the front and rear tilt and/or the left and right tilt angles.
  • the two active telescopic mechanisms 3 may be respectively located on the same side of the stage; or on opposite sides of the stage to support the stage 1.
  • the mobile robot can adjust the tilt angle in one dimension direction.
  • the two active telescopic mechanisms 3 are respectively located on the left and right sides of the rear side or the front side of the stage 1 (as shown in FIG. 1 ), the left and right tilts can be adjusted to the horizontal level, and the robot can pass the road surface with different heights on the left and right sides. Keep the stage level. If the two active telescopic mechanisms 3 are respectively located at the front and rear of the left or right side of the stage 1, the front and rear tilts can be adjusted to the level, and the robot can maintain the level of the stage when going up and down.
  • the number of the active telescopic mechanisms 3 is three, two of the active telescopic mechanisms can be respectively disposed at the front and the rear of the left side, and the other active telescopic mechanism is relatively disposed at the right side.
  • the robot can realize the two dimensional directions.
  • the adjustment of the tilt angle that is, the tilt angle in any direction can be adjusted. That is to say, the stage level can be maintained when moving on any rough and complicated road surface.
  • the number of the active telescopic mechanisms 3 is four, two of the active telescopic mechanisms may be respectively disposed at the front and rear of the left side, and the other two active telescopic mechanisms are oppositely disposed at the front and rear of the right side.
  • This type of robot can adjust the tilt angle in two dimensions, that is, it can adjust the tilt angle in any direction. That is to say, the stage level can be maintained when moving on any rough and complicated road surface.
  • At least two active telescopic mechanisms are disposed under the stage to support the stage, and a sensor is disposed on the stage to detect whether the stage has a tilt in the adjustment direction.
  • the controller controls the partial active telescopic mechanism or all of the active telescopic mechanisms of the at least two active telescopic mechanisms to extend or shorten according to the detection result of the sensor to adjust the stage to the horizontal state. It can be seen that the mobile robot provided by the present invention can maintain the level of the stage when running on the upslope or the rough terrain to prevent the object from falling off.
  • the active telescopic mechanism 3 may be in the form of a simple active telescopic rod, or a combination of a parallelogram mechanism and an active telescopic rod.
  • the active telescopic mechanism 3 is in the form of a simple active telescopic rod, the upper end of the active telescopic rod is hinged on the stage, and the lower end is fixed on the support table of the mobile robot.
  • the active telescopic mechanism 3 is a combination of a parallelogram mechanism and an active telescopic rod
  • the active telescopic mechanism 3 includes a first parallelogram mechanism 201 and an active telescopic rod 202 as shown in FIG. 1 .
  • the first parallelogram mechanism 201 includes a first link 2011, a sixth link 38, a seventh link 36, and an eighth link 37, wherein the first link 2011 and the seventh link 36 are parallel to each other, and the sixth The link 38 and the eighth link 37 are parallel to each other.
  • the extended end of the first link 2011 in the first parallelogram mechanism 201 is fixed to the stage 1; the active telescopic rod 202 is hinged at one end to the stage 1 and the other end is hinged to the
  • the first parallelogram mechanism 201 is on any of the links other than the first link 2011. It should be noted that the other end of the active telescopic rod 202 can be hinged at any position of the sixth link 38, the seventh link 36 and the eighth link 37, except for the sixth link 38 and the eighth link.
  • the rod 37 is hinged to the first link 2011. 1 shows that the other end of the active telescopic rod 202 is hinged to an intermediate portion of the sixth link 38.
  • the first link 2011 is perpendicular to the stage 1 .
  • the active telescopic rod 202 includes a second link 31, a third link 33, and a telescopic assembly 32.
  • the telescopic assembly 32 includes: a first motor 326, and the a lead screw 324 connected to the first motor 326 and a lead screw nut 323 threadedly connected to the lead screw 324; one end of the second link 31 is fixed to the lead screw nut 323, and the other end thereof is hinged to the On the stage 1; one end of the third link 33 is provided with the first motor 326, and the other end thereof is hinged to any one of the first parallelogram mechanisms 201 except the first link 2011 On the connecting rod.
  • the first motor 326 is coupled to the controller, and the controller controls the rotation of the first motor to drive the lead screw to extend or shorten the length of the active telescopic rod.
  • the telescopic assembly 32 can include a first motor 326, a lead screw 324, a bearing 325, a screw nut 323, a sleeve 321, and a telescopic head 322;
  • the first end of the three-link 33 is hinged to any one of the first parallelogram mechanisms 201 except the first link 2011, and the second end thereof is fixed to one end of the sleeve 321
  • the second end is provided with a groove, the first motor 326 is disposed in the groove;
  • the outer ring of the bearing 325 is fixed in the sleeve 321;
  • the lead screw 324 is fixed in the bearing 325
  • the first motor 326 is coupled to the first end of the lead screw 324 to drive the lead screw 324 to rotate;
  • the lead screw nut 323 is disposed in the sleeve 321 and is opposite to the wire Bar 324 threaded connection;
  • the first end of the telescopic head 322 is provided with a groove, the first end
  • the first end of the telescopic head 322 is fixed to the lead screw nut 323.
  • the first motor 326 drives the lead screw 324 to rotate, the telescopic head 322 is telescopically moved. Mobile vice. Since the telescopic head 322 is fixed to the second link 31, the sleeve 321 is fixed to the third link 33, and the telescopic movement of the telescopic head 322 causes the second link 31 to move relative to the third link 33.
  • the telescopic assembly can also be a hydraulic cylinder structure.
  • the mobile robot may further include: a driven telescopic mechanism 2; the number of the driven telescopic mechanisms 2 is at least one; the driven telescopic mechanism 2 is hinged to the stage 1 for supporting the stage 1; the driven telescopic mechanism 2 is coupled to the active telescopic mechanism 3 to drive the driven telescopic mechanism 2 when the active telescopic mechanism 3 is extended When the active telescopic mechanism 3 is shortened, the driven telescopic mechanism 2 is shortened.
  • the driven telescopic mechanism 2 and the active telescopic mechanism 3 are connected to each other on opposite sides of the stage 1 , and the driven telescopic mechanism 2 passes through the fifth link 4 and the active telescopic mechanism 3 . Secured to achieve a linked connection.
  • the driven telescopic mechanism 2 includes: a second parallelogram mechanism 401 and a driven telescopic rod 402; and an extended end of the fourth link 4011 of the second parallelogram mechanism 401 is fixed to the a stage 1; the driven telescopic rod 402 is hinged at one end to the stage 1 and the other end is hinged to any of the second parallelogram mechanisms 401 except the fourth link 4011. Except for the hinge of the ninth link 25, the eleventh link 24 and the fourth link 4011.
  • the second parallelogram mechanism 401 includes a fourth link 4011, a ninth link 25, a tenth link 23, and an eleventh link 24.
  • the fourth link 4011 is parallel to the tenth link 23, and the ninth link 25 is parallel to the eleventh link 24.
  • the fourth link 4011 is perpendicular to the stage 1 .
  • the driven telescopic rod 402 includes a twelfth link 21 and a thirteenth link 22.
  • One end of the thirteenth link 22 is provided with a slot, and the other end thereof is hinged to any one of the second parallelogram mechanisms 401 except the fourth link 4011.
  • the twelfth link One end of the 21 is inserted into the slot to constitute a moving pair, and the other end is hinged to the stage 1.
  • the active telescopic mechanism and the passive telescopic mechanism are a combination of a parallelogram mechanism and a telescopic rod
  • the bottom of one of the active telescopic mechanism and the driven telescopic mechanism can be fixed on the support platform of the robot.
  • the bottom of the remaining telescopic mechanism can be slid on the support table of the robot. In this case, the adjustment of the tilt angle in the adjustment direction and the adjustment of the position of the center of gravity of the object on the stage can be achieved.
  • a sliding wheel and a second motor are disposed at a bottom of each of the active telescopic mechanisms; a power output end of the second motor is coupled to a power access end of the sliding wheel.
  • the sliding wheel and the second motor are disposed at the extended end of the seventh link 36, and the extended end of the seventh link 36 and the extended end of the first link 2011 are extended ends in opposite directions, as shown in FIG. It is shown that the extended end of the first link 2011 is the extended end of the x direction (upward) indicated in FIG. 1, and the extended end of the seventh link 36 is the extended end of the y direction (downward) indicated in FIG.
  • the rear wheel is provided as a drive wheel (a sliding wheel to which a second motor is connected), and the front wheel is provided as a universal wheel (no motor drive required).
  • the installed sliding wheel can directly touch the ground to move, not only to adjust the tilt angle in the adjustment direction and the position of the center of gravity of the cargo on the stage, but also to adjust the load due to the existence of the parallelogram mechanism.
  • the position of the center of gravity of the goods on the stage can adjust the spacing between the front and rear wheels or the left and right wheels to adjust the chassis area.
  • the upper end of the first link 2011 in the first parallelogram mechanism 201 of the active telescopic mechanism 3 (i.e., the extended end in the x direction indicated in FIG. 1) is fixed to the stage. 1 is vertical and perpendicular to the stage 1.
  • a lower sliding end of the seventh link 36 parallel to the first link 2011 (ie, an extended end in the y direction labeled in FIG. 1) is provided with a first sliding wheel 34 and a second motor 35 (not shown in FIG. 1) Out).
  • the upper end of the fourth link 4011 in the second parallelogram mechanism 401 of the driven telescopic mechanism 2 (ie, the extended end in the x direction indicated in FIG. 6) is fixed to the load.
  • the lower end of the tenth link 23 parallel to the fourth link 4011 is provided with a second sliding wheel 27 and a third motor 26.
  • two active telescopic mechanisms The first active telescopic mechanism A3 and the second active telescopic mechanism B3 are respectively located on the same side of the stage.
  • the two first active telescopic mechanism A3 and the second active telescopic mechanism B3 may have a mirror-symmetric structure with the main axis of the first link 2011 as a symmetry axis to support the stage 1, that is, the first active telescopic mechanism.
  • the first link in A3 and the first link in the second active telescopic mechanism B3 are the same link.
  • a first sliding wheel and a second motor are disposed at the bottom of the first active telescopic mechanism A3 and the second active telescopic mechanism B3.
  • the mobile robot can realize the adjustment of the tilt angle in one dimension direction (for example, left and right tilt), and also realize the position adjustment of the center of gravity of the cargo on the stage and the adjustment of the chassis area.
  • the first active telescopic mechanism A3 and the second active telescopic mechanism B3 are disposed on the same side of the stage, and the third active telescopic mechanism C3 is relatively active and contracted.
  • the mechanism A3 or the second active telescopic mechanism B3 is disposed on the other side of the stage.
  • the first active telescopic mechanism A3 and the second active telescopic mechanism B3 may have a mirror-symmetric structure in which the main axis of the first link 2011 is a symmetric axis, that is, the first link and the second active in the first active telescopic mechanism A3.
  • the first link in the telescopic mechanism B3 is the same link, and the third active telescopic mechanism C3 is disposed in parallel with the first active telescopic mechanism A3 or the second active telescopic mechanism B3 on the other side of the stage, and the third active The first link of the telescopic mechanism C3 is also the same link as the first link of the second active telescopic mechanism B3.
  • the bottoms of the first active telescopic mechanism A3, the second active telescopic mechanism B3, and the third active telescopic mechanism C3 are all provided with a first sliding wheel and a second motor.
  • the front wheel can be set as a universal wheel and later on the drive wheel (ie, a sliding wheel driven by a motor).
  • the mobile robot can adjust the tilt angle in any direction, and can also adjust the position of the center of gravity of the cargo on the stage and the adjustment of the chassis area.
  • the first active telescopic mechanism A3 and the second active telescopic mechanism B3 are disposed on the same side of the stage, and the third active telescopic mechanism C3 is disposed.
  • the fourth active telescopic mechanism D3 is disposed opposite to the other side of the stage.
  • the first active telescopic mechanism A3 and the second active telescopic mechanism B3 may be the main axis of the first link 2011 It has a mirror symmetrical structure for the axis of symmetry.
  • the third active telescopic mechanism C3 and the fourth active telescopic mechanism D3 are oppositely disposed on the other side of the stage in the same mirror symmetrical structure.
  • the four active telescopic mechanisms can share the same first link.
  • the bottoms of the first active telescopic mechanism A3, the second active telescopic mechanism B3, the third active telescopic mechanism C3, and the fourth active telescopic mechanism D3 are all provided with a first sliding wheel and a second motor.
  • the front wheel can be set as a universal wheel and the rear wheel as a drive wheel.
  • the bottoms of the first active telescopic mechanism A3 and the third active telescopic mechanism C3 are provided with driving wheels, that is, a first sliding wheel and a second motor, a second active telescopic mechanism B3 and a fourth active telescopic mechanism.
  • the bottom of the D3 is equipped with a universal wheel, eliminating the need for a second motor.
  • the mobile robot can adjust the tilt angle in any direction, and can also adjust the position of the center of gravity of the cargo on the stage and the adjustment of the chassis area.
  • one or two driven telescopic mechanisms 2 may be provided to make the stage more stable.
  • more of the driven telescopic mechanism can be disposed under the stage, which is not specifically limited in the present invention.
  • the driven telescopic mechanism may not be provided.
  • one or more driven telescopic mechanisms may be provided, which is not specifically limited in the present invention.
  • the mobile robot includes a first active telescopic mechanism A3, a second active telescopic mechanism B3, and a first driven telescopic mechanism A2.
  • the first active telescopic mechanism A3 and the second active telescopic mechanism B3 are disposed symmetrically on the same side of the stage 1 with the main axis of the first link 2011 as a symmetry axis.
  • the first driven telescopic mechanism A2 is disposed opposite to the first active telescopic mechanism A3 or the second active telescopic mechanism B3 on opposite sides of the stage 1
  • the first driven telescopic mechanism A2 is disposed opposite to the loading device
  • the active telescopic mechanism on the other side of the table 1 is connected in linkage.
  • FIG. 8 shows that the first driven telescopic mechanism A2 and the first active telescopic mechanism A3 are disposed on opposite sides of the stage 1, and the first driven telescopic mechanism A2 and the first active telescopic mechanism A3 pass through the fifth.
  • the connecting rod 4 is connected. It should be noted that the active telescopic mechanism and the driven telescopic mechanism of the linkage connection are interchangeable positions.
  • the mobile robot includes a first active telescopic mechanism A3, a second active telescopic mechanism B3, and a first driven telescopic mechanism A2 and a second driven telescopic mechanism B2.
  • the first active telescopic mechanism A3 and the second active telescopic mechanism B3 are disposed symmetrically on the same side of the stage 1 with the main axis of the first link 2011 as a symmetry axis.
  • the first driven telescopic mechanism A2 and the first active telescopic mechanism A3 are disposed opposite to each other on the two sides of the stage, and the second driven telescopic mechanism B2 and the second active telescopic mechanism B3 are oppositely disposed on the stage. On both sides.
  • the first driven telescopic mechanism A2 and the first active telescopic mechanism A3 are fixed by the fifth link 4 to achieve linkage therebetween; the second driven telescopic mechanism B2 and the second active telescopic mechanism B3 are fixed by the fourteenth link 5 In order to achieve the linkage between the two.
  • the first driven telescopic mechanism A2 and the second driven telescopic mechanism B2 are disposed on the same side of the stage in a mirror symmetrical structure with the main axis of the fourth link 4011 as an axis of symmetry.
  • the fourth link 4011 and the first link 2011 are the same link. It should be noted that the active telescopic mechanism and the driven telescopic mechanism of the linkage connection are interchangeable positions.
  • Figure 11 is a schematic diagram of the motion of the robot mechanism.
  • AB corresponds to the stage 1
  • GH corresponds to the first link 2011,
  • BF corresponds to the active telescopic rod 202
  • HE corresponds to the sixth link 38
  • DE corresponds to the seventh link 36
  • DG corresponds to In the eighth link 37, wherein AI, JG, JK, KH correspond one-to-one to the link in the second active telescopic assembly B3.
  • the telescopic assembly of the two active telescopic rods can be moved relative to the stage by the motor control therein.
  • the controller drives the two active extensions according to the tilt angle detected by the sensor.
  • Some or all of the telescoping assemblies in the active telescopic rod are elongated or shortened to adjust the stage to level. For example, if the front of the stage is higher than the rear, the telescopic rod in front of the stage can be shortened, or the telescopic rod behind the stage can be extended to keep the stage horizontal (for example, a gyroscope is placed on the stage).
  • the relative horizontal plane deflection angle can be detected to ensure that the objects on the stage are righted up to prevent the goods from falling off.
  • the motor in the two telescopic components can also control the increase of the front and rear wheel spacing, increase the chassis area, and make the movement more stable.
  • the motor in the two telescopic components can reduce the distance between the two wheels, reduce the turning radius, lower the center of gravity, and be more suitable for turning.
  • the telescopic rod can be extended to increase the front and rear wheel spacing and increase the chassis area.
  • the telescopic rod can be shortened to reduce the front and rear wheel spacing, reducing the turning radius and reducing the turning radius. Center of gravity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Transportation (AREA)
  • Mechanical Engineering (AREA)
  • Manipulator (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

一种移动机器人,包括:载物台(1)、主动伸缩机构(3)、传感器以及控制器;该主动伸缩机构(3)的数量为至少两个,且均铰接于该载物台(1)上,以支撑该载物台(1);该传感器安装在该载物台(1)上,用于检测该载物台(1)是否发生调节方法上的倾斜;该控制器分别与该传感器和至少两个主动伸缩机构(3)连接,用于当该传感器检测到载物台(1)发生调节方向上的倾斜时,控制该至少两个主动伸缩机构(3)中的部分或全部主动伸缩机构伸长或缩短来调整该载物台(1)至水平。移动机器人能够在上下坡或崎岖的地形运行时,保持载物台水平,防止载物台上的货物脱落。

Description

一种移动机器人
交叉引用
本发明引用于2017年08月29日递交的名称为“一种移动机器人”的第201710757737.1号中国专利申请,其通过引用被全部并入本发明。
技术领域
本发明涉及机器人技术领域,尤其涉及一种移动机器人。
背景技术
随着科学技术的不断发展,移动机器人得到了广泛的应用,例如:仓库中用于搬运货物的搬运机器人。
现有的移动机器人虽然具有自重轻、承载大、机构简单、行走速度快以及工作高效等特点,但是由于移动机器人结构相对固定,导致其通过上下坡或者崎岖的地形时,机器人上承载的物体和水平面会存在倾斜角度,很容易发生物体脱落。
发明内容
本发明提供一种移动机器人,目的在于在机器人在上下坡或崎岖的地形运行时,保持载物台水平,防止物体脱落。
于是,在本发明的一个实施例中,提供了一种移动机器人。该移动机器人包括:载物台、主动伸缩机构、传感器以及控制器;所述主动伸缩机构的数量为至少两个,且均铰接于所述载物台上,以支撑所述载物台;所述传感器安装在所述载物台上,用于检测所述载物台是否发生调节方向上 的倾斜;所述控制器分别与所述传感器和至少两个所述主动伸缩机构连接,用于当所述传感器检测到所述载物台发生调节方向上的倾斜时,控制所述至少两个主动伸缩机构中的部分或全部主动伸缩机构伸长或缩短来调整所述载物台至水平。
可选地,所述主动伸缩机构包括:第一平行四边形机构和主动伸缩杆;所述第一平行四边形机构中第一连杆的延长端固接于所述载物台;所述主动伸缩杆一端铰接于所述载物台上,另一端铰接于所述第一平行四边形机构中除所述第一连杆以外的任一连杆上。
可选地,所述主动伸缩杆包括第二连杆、第三连杆以及伸缩组件;所述伸缩组件包括:第一电机、与所述第一电机连接的丝杠以及与所述丝杠螺纹连接的丝杠螺母;所述第二连杆的一端固接于所述丝杠螺母,其另一端铰接于所述载物台上;所述第三连杆的一端设置有所述第一电机,其另一端铰接于所述第一平行四边形机构中除所述第一连杆以外的任一连杆上。
可选地,所述主动伸缩机构的数量为两个;两个所述主动伸缩机构分别位于所述载物台的同侧;或位于所述载物台的相对两侧。
可选地,该移动机器人,还包括:从动伸缩机构;所述从动伸缩机构的数量为至少一个;所述从动伸缩机构铰接于所述载物台上,用于支撑所述载物台;所述从动伸缩机构与所述主动伸缩机构联动连接,以在所述主动伸缩机构伸长时带动所述从动伸缩机构伸长,在所述主动伸缩机构缩短时带动所述从动伸缩机构缩短。
可选地,所述从动伸缩机构与所述主动伸缩机构相对设置在所述载物台的两侧。
可选地,所述从动伸缩机构包括:第二平行四边形机构和从动伸缩杆;所述第二平行四边形机构中第四连杆的延长端固接于所述载物台;所述从动伸缩杆一端铰接于所述载物台,另一端铰接于所述第二平行四边形机构中除所述第四连杆以外的任一连杆。
可选地,所述从动伸缩机构通过第五连杆与所述主动伸缩机构联动连接。
可选地,所述从动伸缩杆包括:第十二连杆和第十三连杆;第十三连杆的一端设置有插槽,其另一端铰接在所述第二平行四边形机构中除所述第四连杆以外的任一连杆上;所述第十二连杆的一端插入所述插槽以构成移动副,其另一端铰接于所述载物台上。
可选地,所述主动伸缩机构的底部设有滑动轮及第二电机;所述第二电机的动力输出端与所述滑动轮的动力接入端连接。
本发明实施例提供的技术方案中,在载物台的下方设置至少两个主动伸缩机构以支撑载物台,并且在载物台上设置传感器来检测载物台是否有发生调节方向上的倾斜,一旦检测到,控制器则根据传感器的检测结果来控制至少两个主动伸缩机构中的部分主动伸缩机构或全部主动伸缩机构伸长或缩短,以调整载物台至水平状态。可见,本发明提供的移动机器人能够在上下坡或崎岖的地形上运行时,保持载物台水平,以防止物体脱落。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作一简单地介绍,显而易见地,下面描述中的附图是本发明的一些实施例,对于本领域普通技术人员来讲在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本发明一实施例提供的移动机器人的结构示意图;
图2为本发明一实施例提供的主动伸缩机构的爆炸示意图;
图3为本发明一实施例提供的伸缩组件的爆炸示意图;
图4为本发明一实施例提供的伸缩组件的剖面图;
图5为本发明一实施例提供的移动机器人的又一结构示意图;
图6为本发明一实施例提供的移动机器人的爆炸示意图;
图7为本发明一实施例提供的从动伸缩机构的爆炸示意图;
图8为本发明一实施例提供的移动机器人的又一结构示意图;
图9为本发明一实施例提供的移动机器人的又一结构示意图;
图10为本发明一实施例提供的移动机器人的又一爆炸示意图;
图11为本发明一实施例提供的移动机器人的机构运动简图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
在本发明实施例中使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本发明。在本发明实施例和所附权利要求书中所使用的单数形式的“一种”、“所述”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义,“多种”一般包含至少两种,但是不排除包含至少一种的情况。
应当理解,本文中使用的术语“和/或”仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应当理解,尽管在本发明实施例中可能采用术语第一、第二、第三等来描述XXX,但这些XXX不应限于这些术语。这些术语仅用来将XXX彼此区分开。例如,在不脱离本发明实施例范围的情况下,第一XXX也可以被称为第二XXX,类似地,第二XXX也可以被称为第一XXX。
取决于语境,如在此所使用的词语“如果”、“若”可以被解释成为“在……时”或“当……时”或“响应于确定”或“响应于监测”。类似地,取决于 语境,短语“如果确定”或“如果监测(陈述的条件或事件)”可以被解释成为“当确定时”或“响应于确定”或“当监测(陈述的条件或事件)时”或“响应于监测(陈述的条件或事件)”。
还需要说明的是,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的商品或者系统不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种商品或者系统所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括所述要素的商品或者系统中还存在另外的相同要素。
图1为本发明一实施例提供的移动机器人的结构示意图。如图1所示,该移动机器人,包括:载物台1、主动伸缩机构3、传感器(未图示)以及控制器(未图示)。其中,所述主动伸缩机构3的数量为至少两个,且均铰接于所述载物台1上,以支撑所述载物台1;所述传感器安装在所述载物台1上,用于检测所述载物台1是否发生调节方向上的倾斜;所述控制器分别与所述传感器和至少两个所述主动伸缩机构3连接,用于当所述传感器检测到所述载物台1发生调节方向上的倾斜时,控制所述至少两个主动伸缩机构3中的部分或全部主动伸缩机构伸长或缩短来调整所述载物台1至水平。
载物台1的倾斜方向包括两个维度:前后倾斜和左右倾斜。经过前后高度不同的路面时(即上下坡时)属于前后倾斜情况,经过左右边高度不同的路面时属于左右倾斜。载物台任何方向上倾斜角度都可以分解到这两个维度上,即载物台任何方向上倾斜角度可由前后倾斜和/或左右倾斜角度来描述。
当主动伸缩机构3的数量为两个时,两个所述主动伸缩机构可分别位于所述载物台的同侧;或者位于所述载物台的相对两侧,以支撑所述载物台1。该移动机器人则可实现一个维度方向上的倾斜角度的调节。例如: 若两个主动伸缩机构3分别位于载物台1后侧或前侧的左右方(如图1所示),则可调节左右倾斜至水平,这种机器人在经过左右边高度不同的路面时可保持载物台水平。若两个主动伸缩机构3分别位于载物台1左侧或右侧的前后方,则可调节前后倾斜至水平,这种机器人在上下坡时可保持载物台水平。
当主动伸缩机构3的数量为三个时,可将其中两个主动伸缩机构分别设置在左侧的前后方,另一个主动伸缩机构相对设置在右侧,这种机器人可实现两个维度方向上的倾斜角度的调节,也即是可调整任何方向上的倾斜角度。也即是说,在任何崎岖复杂的路面上运动时,就可保持载物台水平。
当主动伸缩机构3的数量为四个时,可将其中两个主动伸缩机构分别设置在左侧的前后方,另两个主动伸缩机构相对设置在右侧的前后方。这种机器人可实现两个维度方向上的倾斜角度的调节,也即是可调整任何方向上的倾斜角度。也即是说,在任何崎岖复杂的路面上运动时,就可保持载物台水平。
本发明实施例提供的技术方案中,在载物台的下方设置至少两个主动伸缩机构以支撑载物台,并且在载物台上设置传感器来检测载物台是否有发生调节方向上的倾斜,一旦检测到,控制器则根据传感器的检测结果来控制至少两个主动伸缩机构中的部分主动伸缩机构或全部主动伸缩机构伸长或缩短,以调整载物台至水平状态。可见,本发明提供的移动机器人能够在上下坡或崎岖的地形上运行时,保持载物台水平,以防止物体脱落。
具体地,所述主动伸缩机构3可以为一简单的主动伸缩杆形式,也可是平行四边形机构与主动伸缩杆的组合形式。
若所述主动伸缩机构3为一简单的主动伸缩杆形式时,则将所述主动伸缩杆的上端铰接在所述载物台上,下端固定于移动机器人的支撑台上。
若所述主动伸缩机构3为平行四边形机构与主动伸缩杆的组合形式, 则所述主动伸缩机构3如图1所示的那样,包括:第一平行四边形机构201和主动伸缩杆202。所述第一平行四边形机构201包括第一连杆2011、第六连杆38、第七连杆36以及第八连杆37,其中第一连杆2011与第七连杆36相互平行,第六连杆38与第八连杆37相互平行。所述第一平行四边形机构201中第一连杆2011的延长端固接于所述载物台1上;所述主动伸缩杆202一端铰接于所述载物台1上,另一端铰接于所述第一平行四边形机构201中除所述第一连杆2011以外的任一连杆上。需要说明的是,所述主动伸缩杆202的另一端可铰接于第六连杆38、第七连杆36和第八连杆37的任一位置处,除了第六连杆38和第八连杆37与第一连杆2011铰接处。图1示出的是所述主动伸缩杆202的另一端铰接于所述第六连杆38的中间部位上。其中,所述第一连杆2011与所述载物台1垂直。
如图2、图3及图4所示,所述主动伸缩杆202包括第二连杆31、第三连杆33以及伸缩组件32;所述伸缩组件32包括:第一电机326、与所述第一电机326连接的丝杠324以及与所述丝杠324螺纹连接的丝杠螺母323;所述第二连杆31的一端固接于所述丝杠螺母323,其另一端铰接于所述载物台1上;所述第三连杆33的一端设置有所述第一电机326,其另一端铰接于所述第一平行四边形机构201中除所述第一连杆2011以外的任一连杆上。其中,第一电机326与控制器连接,控制器控制第一电机驱动丝杠的旋转以伸长或缩短主动伸缩杆的长度。
在一可实现的方案中,如图3和图4所示,伸缩组件32可包括第一电机326、丝杠324、轴承325、丝杠螺母323、套筒321、伸缩头322;所述第三连杆33的第一端铰接于所述第一平行四边形机构201中除所述第一连杆2011以外的任一连杆上,其第二端固接于所述套筒321一端,且其第二端设置有一凹槽,凹槽内设置有所述第一电机326;所述轴承325的外圈固定于所述套筒321内;所述丝杠324固定于所述轴承325的内圈内;所述第一电机326与所述丝杠324的第一端连接,以驱动所述丝杠324转动;所述丝杠螺母323设置在所述套筒321内,并与所述丝杠324螺纹连接; 所述伸缩头322的第一端设置有凹槽,所述伸缩头322的第一端固定于所述丝杠螺母323上,且所述凹槽口正对于所述丝杠324的第二端;所述第二连杆31的一端固接于所述伸缩头322的第二端,其另一端铰接于所述载物台1上。其中,丝杠螺母323和丝杠324啮合,由于伸缩头322的第一端固定在丝杠螺母323上,当第一电机326驱动丝杠324转动时会带动所述伸缩头322伸缩移动,构成移动副。由于伸缩头322固定在第二连杆31上,套筒321固定在第三连杆33上,伸缩头322的伸缩移动实现了第二连杆31相对第三连杆33移动。当然,所述伸缩组件还可是液压缸结构。
进一步的,如图5所示,所述移动机器人还可包括:从动伸缩机构2;所述从动伸缩机构2的数量为至少一个;所述从动伸缩机构2铰接于所述载物台1上,用于支撑所述载物台1;所述从动伸缩机构2与所述主动伸缩机构3联动连接,以在所述主动伸缩机构3伸长时带动所述从动伸缩机构2伸长,在所述主动伸缩机构3缩短时带动所述从动伸缩机构2缩短。联动连接的所述从动伸缩机构2与所述主动伸缩机构3相对设置在所述载物台1的两侧,所述从动伸缩机构2通过第五连杆4与所述主动伸缩机构3固接,以实现联动连接。
如图6所示,所述从动伸缩机构2包括:第二平行四边形机构401和从动伸缩杆402;所述第二平行四边形机构401中第四连杆4011的延长端固接于所述载物台1;所述从动伸缩杆402一端铰接于所述载物台1,另一端铰接于所述第二平行四边形机构401中除所述第四连杆4011以外的任一连杆上,除了第九连杆25、第十一连杆24与第四连杆4011的铰接处。所述第二平行四边形机构401包括第四连杆4011、第九连杆25、第十连杆23、第十一连杆24。第四连杆4011与第十连杆23平行,第九连杆25与第十一连杆24平行。其中,所述第四连杆4011与所述载物台1垂直。
如图7所示,所述从动伸缩杆402包括:第十二连杆21和第十三连杆22。第十三连杆22的一端设置有插槽,其另一端铰接在所述第二平行四边形机构401中除所述第四连杆4011以外的任一连杆上。所述第十二连杆 21的一端插入所述插槽以构成移动副,其另一端铰接于所述载物台1上。
需要说明的是,若主动伸缩机构和被动伸缩机构为平行四边形机构与伸缩杆的组合形式,则可将主动伸缩机构和从动伸缩机构中的一个伸缩机构的底部固定在机器人的支撑台上,剩下的伸缩机构的底部可在机器人的支撑台上滑动,这种情况下,可以实现调节方向上的倾斜角度的调节,以及载物台上的物体的重心位置的调节。
或者,在各个主动伸缩机构的底部设置滑动轮以及第二电机;所述第二电机的动力输出端与所述滑动轮的动力接入端连接。具体地,将滑动轮和第二电机设置在第七连杆36的延长端,第七连杆36的延长端与第一连杆2011的延长端为相反方向上的延长端,如图1所示,第一连杆2011的延长端为图1标注的x方向(向上)的延长端,第七连杆36的延长端为图1标注的y方向(向下)的延长端。优选的,将后轮设置为驱动轮(连接有第二电机的滑动轮),前轮设置为万向轮(无需电机驱动)。这种情况下,安装的滑动轮可直接接触地面移动,不仅可以实现调节方向上的倾斜角度的调节以及载物台上的货物重心位置的调节,还会因平行四边形机构的存在,在调节载物台上的货物重心位置的同时能够调节前后车轮或左右车轮之间的间距以调整底盘面积。
如图1和图2所示,主动伸缩机构3的第一平行四边形机构201中的第一连杆2011的上延长端(即图1中标注的x方向上的延长端)固定于载物台1上,且与载物台1垂直。与第一连杆2011平行的第七连杆36的下延长端(即图1中标注的y方向上的延长端)上设置有第一滑动轮34和第二电机35(图1中未示出)。如图6和图7所示,从动伸缩机构2的第二平行四边形机构401中的第四连杆4011的上延长端(即图6中标注的x方向上的延长端)固定于载物台1上,且与载物台1垂直。与第四连杆4011平行的第十连杆23的下延长端(即图6中标注的y方向上的延长端)上设置有第二滑动轮27及第三电机26。
当主动伸缩机构的数量为两个时,如图1所示,两个主动伸缩机构中 的第一主动伸缩机构A3和第二主动伸缩机构B3分别位于所述载物台的同侧。优选的,两个第一主动伸缩机构A3和第二主动伸缩机构B3可以第一连杆2011的主轴线为对称轴呈镜像对称结构,以支撑所述载物台1,即第一主动伸缩机构A3中的第一连杆与第二主动伸缩机构B3中的第一连杆为同一连杆。
可选地,第一主动伸缩机构A3和第二主动伸缩机构B3底部均设置有第一滑动轮和第二电机。这种情况下,移动机器人可实现一个维度方向上(例如:左右倾斜)倾斜角度的调整,还可实现载物台上的货物的重心位置调整以及底盘面积的调整。
当主动伸缩机构的数量为三个(未图示)时,将第一主动伸缩机构A3和第二主动伸缩机构B3设置在载物台的同侧,第三主动伸缩机构C3相对第一主动伸缩机构A3或第二主动伸缩机构B3设置在载物台的另一侧。优选的,第一主动伸缩机构A3和第二主动伸缩机构B3可以第一连杆2011的主轴线为对称轴呈镜像对称结构,即第一主动伸缩机构A3中的第一连杆与第二主动伸缩机构B3中的第一连杆为同一连杆,第三主动伸缩机构C3与第一主动伸缩机构A3或第二主动伸缩机构B3平行对称设置在载物台的另一侧,且第三主动伸缩机构C3的第一连杆也与第二主动伸缩机构B3中的第一连杆为同一连杆。
可选地,第一主动伸缩机构A3、第二主动伸缩机构B3和第三主动伸缩机构C3的底部均设置有第一滑动轮和第二电机。优选的,可将其中前轮设置为万向轮,后来设置在驱动轮(即由电机驱动的滑动轮)。这种情况下,移动机器人可实现任意方向上的倾斜角度的调整,还可实现载物台上的货物的重心位置调整以及底盘面积的调整。
当主动伸缩机构的数量为四个时,如图9和图10所示,将第一主动伸缩机构A3和第二主动伸缩机构B3设置在载物台的同侧,将第三主动伸缩机构C3和第四主动伸缩机构D3相对设置在载物台的另一侧。优选的,第一主动伸缩机构A3和第二主动伸缩机构B3可以第一连杆2011的主轴线 为对称轴呈镜像对称结构。第三主动伸缩机构C3和第四个主动伸缩机构D3以相同的镜像对称结构相对设置在载物台的另一侧。这四个主动伸缩机构可共用同一第一连杆。
可选地,如图9所示,第一主动伸缩机构A3、第二主动伸缩机构B3、第三主动伸缩机构C3以及第四主动伸缩机构D3的底部均设置有第一滑动轮和第二电机。优选的,可将前轮设置为万向轮,后轮设置为驱动轮。如图9示出的是第一主动伸缩机构A3和第三主动伸缩机构C3的底部设置有驱动轮,即设置第一滑动轮和第二电机,第二主动伸缩机构B3和第四主动伸缩机构D3的底部设置有万向轮,无需第二电机。这种情况下,移动机器人可实现任意方向上的倾斜角度的调整,还可实现载物台上的货物的重心位置调整以及底盘面积的调整。
需要说明的是,当主动伸缩机构为两个时,可设置一个或两个从动伸缩机构2使得载物台更加稳定。当然,也可以在载物台下方设置更多的从动伸缩机构,本发明对此不作具体限定。当主动伸缩机构为三个以上时,可不用再设置从动伸缩机构,当然,也可设置一个或多个从动伸缩机构,本发明对此不作具体限定。
如图8所示,所述移动机器人包括第一主动伸缩机构A3、第二主动伸缩机构B3和第一从动伸缩机构A2。第一主动伸缩机构A3和第二主动伸缩机构B3以第一连杆2011的主轴线为对称轴呈镜像对称设置在载物台1的同侧。第一从动伸缩机构A2与第一主动伸缩机构A3或第二主动伸缩机构B3相对设置在所述载物台1的两侧,第一从动伸缩机构A2与与其相对设置在所述载物台1的另一侧的主动伸缩机构联动连接。图8示出的是第一从动伸缩机构A2与第一主动伸缩机构A3相对设置在所述载物台1的两侧,第一从动伸缩机构A2与第一主动伸缩机构A3通过第五连杆4连接。需要说明的是,联动连接的主动伸缩机构和从动伸缩机构可互换位置。
如图5所示,所述移动机器人包括第一主动伸缩机构A3、第二主动伸缩机构B3和第一从动伸缩机构A2、第二从动伸缩机构B2。第一主动伸缩机构A3和第二主动伸缩机构B3以第一连杆2011的主轴线为对称轴呈镜像对称设置在载物台1的同侧。第一从动伸缩机构A2与第一主动伸缩机构A3通过相对设置在所述载物台的两侧,第二从动伸缩机构B2与第二主动伸缩机构B3相对设置在所述载物台的两侧。第一从动伸缩机构A2与第一主动伸缩机构A3通过第五连杆4固接以实现两者联动;第二从动伸缩机构B2与第二主动伸缩机构B3通过第十四连杆5固接以实现两者联动。且第一从动伸缩机构A2和第二从动伸缩机构B2以第四连杆4011的主轴线为对称轴呈镜像对称结构设置在载物台的同侧。优选的,第四连杆4011与第一连杆2011为同一连杆。需要说明的是,联动连接的主动伸缩机构和从动伸缩机构可互换位置。
图11为机器人机构运动简图。结合图1,可知AB对应于载物台1,GH对应于第一连杆2011,BF对应于主动伸缩杆202,HE对应于第六连杆38,DE对应于第七连杆36,DG对应于第八连杆37,其中,AI、JG、JK、KH一一对应于第二主动伸缩组件B3中的连杆。
由图可见,其中活动构件数n=10,低副数Pl=14,高副数Ph=0,再根据自由度计算公式F=3n-(2Pl+Ph)进行计算,可得F=2。由于机器人有两个伸缩组件的原动件(即图11中的AI之间的主动伸缩杆以及BF之间的主动伸缩杆中的伸缩组件),因此,机构具有确定运动。
下面将以包括两个主动伸缩机构和两个从动伸缩机构的移动机器人(如图5所示)的工作原理做简要介绍。其他结构的移动机器人的工作原理类似,在此不再赘述。
两个主动伸缩杆中的伸缩组件通过其中的电机控制可实现车轮相对于载物台位置移动。当机器人上下坡时,一旦传感器检测到载物台发生前后方向的倾斜时,控制器则根据传感器检测到的倾斜角度来驱动两个主动伸 缩杆中的部分或全部主动伸缩杆中的伸缩组件伸长或缩短以调整载物台至水平。例如:载物台前方高于后方,则可缩短载物台前方的伸缩杆,或伸长载物台后方的伸缩杆,使载物台保持水平(例如:在载物台上设置陀螺仪,即可检测相对水平面偏转角度),使载物台上的物体扶正,防止货物脱落。
除了可以使载物台保持水平外,两个伸缩组件中电机还可控制前后车轮间距增大,增大底盘面积,运动更加稳定。当机器人转弯时,两个伸缩组件中电机可以使两个车轮间距减少,减少其转弯半径,降低重心位置,更适合转弯。例如:在机器人直行时,可伸长伸缩杆,以加大前后车轮间距,增大底盘面积,一旦检测到机器人要转弯时,则可缩短伸缩杆使前后车轮间距减少,减少其转弯半径,降低重心位置。
最后应说明的是:以上实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述实施例对本发明进行了详细的说明,本领域的普通技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的精神和范围。

Claims (10)

  1. 一种移动机器人,其特征在于,包括:载物台、主动伸缩机构、传感器以及控制器;
    所述主动伸缩机构的数量为至少两个,且均铰接于所述载物台上,以支撑所述载物台;
    所述传感器安装在所述载物台上,用于检测所述载物台是否发生调节方向上的倾斜;
    所述控制器分别与所述传感器和至少两个所述主动伸缩机构连接,用于当所述传感器检测到所述载物台发生调节方向上的倾斜时,控制所述至少两个主动伸缩机构中的部分或全部主动伸缩机构伸长或缩短来调整所述载物台至水平。
  2. 根据权利要求1所述的移动机器人,其特征在于,所述主动伸缩机构包括:第一平行四边形机构和主动伸缩杆;
    所述第一平行四边形机构中第一连杆的延长端固接于所述载物台上;
    所述主动伸缩杆一端铰接于所述载物台上,另一端铰接于所述第一平行四边形机构中除所述第一连杆以外的任一连杆上。
  3. 根据权利要求2所述的移动机器人,其特征在于,所述主动伸缩杆包括第二连杆、第三连杆以及伸缩组件;
    所述伸缩组件包括:第一电机、与所述第一电机连接的丝杠以及与所述丝杠螺纹连接的丝杠螺母;
    所述第二连杆的一端固接于所述丝杠螺母,其另一端铰接于所述载物台上;
    所述第三连杆的一端设置有所述第一电机,其另一端铰接于所述第一平行四边形机构中除所述第一连杆以外的任一连杆上。
  4. 根据权利要求1至3任一所述的移动机器人,其特征在于,所述主动伸缩机构的数量为两个;
    两个所述主动伸缩机构分别位于所述载物台的同侧;或位于所述载物台的相对两侧。
  5. 根据权利要求1至3任一所述的移动机器人,其特征在于,还包括:从动伸缩机构;
    所述从动伸缩机构的数量为至少一个;
    所述从动伸缩机构铰接于所述载物台上,用于支撑所述载物台;
    所述从动伸缩机构与所述主动伸缩机构联动连接,以在所述主动伸缩机构伸长时带动所述从动伸缩机构伸长,在所述主动伸缩机构缩短时带动所述从动伸缩机构缩短。
  6. 根据权利要求5所述的移动机器人,其特征在于,联动连接的所述从动伸缩机构与所述主动伸缩机构相对设置在所述载物台的两侧。
  7. 根据权利要求5所述的移动机器人,其特征在于,所述从动伸缩机构包括:第二平行四边形机构和从动伸缩杆;
    所述第二平行四边形机构中第四连杆的延长端固接于所述载物台;
    所述从动伸缩杆一端铰接于所述载物台,另一端铰接于所述第二平行四边形机构中除所述第四连杆以外的任一连杆。
  8. 根据权利要求5所述的移动机器人,其特征在于,所述从动伸缩机构通过第五连杆与所述主动伸缩机构联动连接。
  9. 根据权利要求5所述的移动机器人,其特征在于,所述从动伸缩杆包括:第十二连杆和第十三连杆;
    第十三连杆的一端设置有插槽,其另一端铰接在所述第二平行四边形机构中除所述第四连杆以外的任一连杆上;
    所述第十二连杆的一端插入所述插槽以构成移动副,其另一端铰接于所述载物台上。
  10. 根据权利要求1至3任一项所述的移动机器人,其特征在于,所述主动伸缩机构的底部设有滑动轮及第二电机;
    所述第二电机的动力输出端与所述滑动轮的动力接入端连接。
PCT/CN2017/108672 2017-08-29 2017-10-31 一种移动机器人 WO2019041513A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN2017107577371 2017-08-29
CN201710757737.1A CN107380293B (zh) 2017-08-29 2017-08-29 一种移动机器人

Publications (2)

Publication Number Publication Date
WO2019041513A1 true WO2019041513A1 (zh) 2019-03-07
WO2019041513A8 WO2019041513A8 (zh) 2019-06-06

Family

ID=60346954

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/108672 WO2019041513A1 (zh) 2017-08-29 2017-10-31 一种移动机器人

Country Status (2)

Country Link
CN (1) CN107380293B (zh)
WO (1) WO2019041513A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110253593B (zh) * 2019-06-03 2021-07-20 北京交通大学 具有可变形车架结构的轮式越障机器人
CN113086047B (zh) * 2021-04-06 2022-07-12 哈尔滨工业大学 一种多连杆式轮步复合多地形探测车

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4527650A (en) * 1983-03-18 1985-07-09 Odetics, Inc. Walking machine
CN101260962A (zh) * 2008-04-24 2008-09-10 上海交通大学 移动载体自动调平系统
CN101704416A (zh) * 2009-11-20 2010-05-12 河南科技大学 一种月球车
CN104787140A (zh) * 2015-04-24 2015-07-22 桂林电子科技大学 仿跷跷板平衡原理的走钢丝装置
CN106976496A (zh) * 2017-05-05 2017-07-25 山东大学 一种平衡伸缩机构及包含其的平衡车
CN107089181A (zh) * 2017-04-28 2017-08-25 南通大学 三维自动调平运载装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4224029B2 (ja) * 2005-01-06 2009-02-12 株式会社東芝 移動ロボット
CN203391898U (zh) * 2013-06-17 2014-01-15 范雄 一种两轮摩托的平衡系统
CN104443100A (zh) * 2014-11-19 2015-03-25 兰州理工大学 用于阶梯攀爬机器人的重心调节机构
CN105128015A (zh) * 2015-10-08 2015-12-09 深圳市易致机器人科技有限公司 一种可自动起落的支撑架以及具有支撑架的移动机器人
CN105197124A (zh) * 2015-10-08 2015-12-30 深圳市易致机器人科技有限公司 一种可自动起落的支撑架以及具有支撑架的移动机器人
CN207129039U (zh) * 2017-08-29 2018-03-23 歌尔科技有限公司 一种移动机器人

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4527650A (en) * 1983-03-18 1985-07-09 Odetics, Inc. Walking machine
CN101260962A (zh) * 2008-04-24 2008-09-10 上海交通大学 移动载体自动调平系统
CN101704416A (zh) * 2009-11-20 2010-05-12 河南科技大学 一种月球车
CN104787140A (zh) * 2015-04-24 2015-07-22 桂林电子科技大学 仿跷跷板平衡原理的走钢丝装置
CN107089181A (zh) * 2017-04-28 2017-08-25 南通大学 三维自动调平运载装置
CN106976496A (zh) * 2017-05-05 2017-07-25 山东大学 一种平衡伸缩机构及包含其的平衡车

Also Published As

Publication number Publication date
CN107380293A (zh) 2017-11-24
CN107380293B (zh) 2020-05-19
WO2019041513A8 (zh) 2019-06-06

Similar Documents

Publication Publication Date Title
ES2881249T3 (es) Dispositivo de soporte equilibrado
US20160347227A1 (en) Height adjustable loading ramp
CN107521576B (zh) 一种可地面行走及爬楼梯机器人
CN107117225B (zh) 一种四足轮式移动机器人
JP4824492B2 (ja) 移動型ロボット
WO2019041513A1 (zh) 一种移动机器人
BR112020011459A2 (pt) aparelho de carrinho com inclinação ajustável.
KR102274498B1 (ko) 리프트가 탑재된 전 방향 이동 운송 로봇
US20200038273A1 (en) Patient lifting robot
US20220308585A1 (en) Two-wheel In-Line Robots
TWI501897B (zh) Personal transport vehicle
WO2020034974A1 (zh) 多足轮式机器人
US20140299417A1 (en) Lifting apparatus
CN207129039U (zh) 一种移动机器人
CN109914852B (zh) 一种土木工程施工用支护结构
JP2022526814A (ja) 昇降装置
ES2955702T3 (es) Vehículo industrial y dispositivo de rodamiento de ruedas motrices para vehículos industriales
JP6159185B2 (ja) 自走式搬送カート
CN209383330U (zh) 货叉倾角调节装置及托盘车
WO2022161149A1 (zh) 移动底座及搬运机器人
CN113800444B (zh) 基于倾翻角的高空作业平台稳定性主动控制系统及方法
CN112249980B (zh) 一种三支点电动叉车防倾翻的方法及防倾翻机构
JP2014001034A (ja) リフト車
TWI622518B (zh) Intelligent electric balance car and its intelligent control device
CN220265189U (zh) 移动式液压升降平台

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17923111

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17923111

Country of ref document: EP

Kind code of ref document: A1