WO2019041489A1 - 一种水滑石基磁光薄膜材料的制备方法 - Google Patents

一种水滑石基磁光薄膜材料的制备方法 Download PDF

Info

Publication number
WO2019041489A1
WO2019041489A1 PCT/CN2017/107223 CN2017107223W WO2019041489A1 WO 2019041489 A1 WO2019041489 A1 WO 2019041489A1 CN 2017107223 W CN2017107223 W CN 2017107223W WO 2019041489 A1 WO2019041489 A1 WO 2019041489A1
Authority
WO
WIPO (PCT)
Prior art keywords
film material
hydrotalcite
based magneto
optical film
vacuum chamber
Prior art date
Application number
PCT/CN2017/107223
Other languages
English (en)
French (fr)
Inventor
戴晓宸
Original Assignee
苏州云舒新材料科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 苏州云舒新材料科技有限公司 filed Critical 苏州云舒新材料科技有限公司
Publication of WO2019041489A1 publication Critical patent/WO2019041489A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/14Decomposition by irradiation, e.g. photolysis, particle radiation or by mixed irradiation sources
    • C23C18/143Radiation by light, e.g. photolysis or pyrolysis

Definitions

  • the invention relates to the technical field of film materials, in particular to a preparation method of a hydrotalcite-based magneto-optical film material.
  • the layer-by-layer assembly method is an important film-forming technique for constructing ordered composite ultra-thin films by alternately assembling different building elements based on weak interaction.
  • layered double hydroxides also known as hydrotalcites, LDHs
  • LDHs hydrotalcites
  • the preliminary research work is mainly based on electrostatic interaction.
  • the positively charged LDHs nanosheets after stripping are assembled with the negatively charged polyelectrolytes.
  • the driving force of the film formation is relatively simple, which limits the choice of assembly primitives and further affects the influence. Its performance has hindered the development of LDHs-based composite functional film materials. Therefore, how to expand the assembly driving force, enrich the types of film-forming building elements, and achieve functional enhancement are important problems in designing and constructing new LDHs-based functional film materials.
  • Hydrotalcite (Layered Double Hydroxides, abbreviated as LDHs) is a new multifunctional layered material with good thermal and chemical stability, and the composition and molarity of LDHs laminate metal ions.
  • the interlayer anions are exchangeable compared to the variability. Therefore, it can be used as a precursor to prepare a metal composite film material, which can not only achieve uniform dispersion of particles, but also can prepare a metal composite film material with adjustable band gap by adjusting the element ratio of hydrotalcite layer under mild reaction conditions. Effectively improve the photoelectric conversion rate. Therefore, by regulating the elements and interlayer anions of hydrotalcite, the chemical composition and reaction environment of the laminate can be realized, which provides a feasible way for the preparation of high-efficiency and uniform metal composite film materials.
  • the present invention provides a method for preparing a hydrotalcite-based magneto-optical film material, The process is deposited by metal ion adsorption method, and the hydrotalcite-based magneto-optical film precursor is obtained under vacuum condition, and then the finished film material is obtained by inert gas washing, ultraviolet curing and the like.
  • the prepared hydrotalcite-based magneto-optical film material has a simple manufacturing process, uniform and compact texture of the film material, and superior electrical properties, and has a good application prospect.
  • the preparation method of the hydrotalcite-based magneto-optical film material comprises the following steps:
  • step (2) placing the reaction processing device of step (1) in a vacuum chamber, and closing the vacuum chamber to evacuate.
  • the vacuum chamber vacuum is 10-3 to 10-4 Pa
  • the power source is turned on to heat the cathode plate and the anode plate, and the cathode plate is
  • the temperature is controlled to 550 ⁇ 650 ° C
  • the temperature of the anode plate is 260 ⁇ 350 ° C
  • the plasma generator power supply outside the vacuum chamber is activated, and a 1:2:1 mixture of sulfur, hydrogen and argon is introduced, and the reaction is continued for 12-24 hours.
  • the metal ion solution in the step (1) is one or more of Mg2+, Co2+, Ni2+, Ca2+, Cu2+, Fe2+, Mn2+, Al3+, Cr3+, Ga3+, In3+, Co3+, Fe3+, and V3+.
  • concentration of the divalent cation is 3M
  • concentration of the trimethoxy ion is 2M.
  • the concentration of the urea solution in the step (1) is 2.5 mole/L.
  • the ultraviolet curing condition in the step (4) is a wavelength of 200 nm, and the irradiation is for 10-12 h.
  • the invention has the following beneficial effects:
  • the preparation method of the hydrotalcite-based magneto-optical film material of the present invention is deposited by metal ion adsorption method, and the hydrotalcite-based magneto-optical film precursor is obtained under vacuum condition, and then the finished film is obtained by inert gas washing, ultraviolet curing and the like. material.
  • Prepared hydrotalcite-based magneto-optical film material The manufacturing process is simple, the film material texture is uniform and compact, and the electrical performance is superior, and has a good application prospect.
  • the hydrotalcite-based magneto-optical film material of the present invention is easy to obtain, has a simple process, is suitable for large-scale industrial use, and has high practicability.
  • step (2) placing the reaction processing device of step (1) in a vacuum chamber, and closing the vacuum chamber to evacuate.
  • the vacuum chamber vacuum is 10 -3 Pa
  • the power source is turned on to heat the cathode plate and the anode plate, and the temperature of the cathode plate is controlled to 550 ° C, the temperature of the anode plate is 260 ° C, start the plasma generator power supply outside the vacuum chamber, and pass a 1:2:1 mixture of sulfur, hydrogen, argon, and continue to react for 12h to obtain the hydrotalcite-based magneto-optical film material. body;
  • the dried film of the step (3) is subjected to ultraviolet curing, wherein the ultraviolet curing condition is a wavelength of 200 nm, and the product is irradiated for 10 hours to obtain a finished product.
  • step (2) placing the reaction processing device of step (1) in a vacuum chamber, and closing the vacuum chamber to evacuate.
  • the vacuum chamber vacuum is 10 -4 Pa
  • the power source is turned on to heat the cathode plate and the anode plate, and the temperature of the cathode plate is controlled to 650 ° C, the temperature of the anode plate is 350 ° C, start the plasma generator power supply outside the vacuum chamber, and pass a 1:2:1 mixture of sulfur, hydrogen, argon, and continue to react for 24 hours to obtain the hydrotalcite-based magneto-optical film material. body;
  • the dried film of the step (3) is subjected to ultraviolet curing, wherein the ultraviolet curing condition is a wavelength of 200 nm, and the product is irradiated for 12 hours.
  • step (2) placing the reaction processing device of step (1) in a vacuum chamber, and closing the vacuum chamber to evacuate.
  • the vacuum chamber vacuum is 10 -4 Pa
  • the power source is turned on to heat the cathode plate and the anode plate, and the temperature of the cathode plate is controlled to 650 ° C, the anode plate temperature is 350 ° C, start the plasma generator power supply outside the vacuum chamber, continuous reaction for 24h, to obtain a hydrotalcite-based magneto-optical film material precursor;
  • the dried film of the step (3) is subjected to ultraviolet curing, wherein the ultraviolet curing condition is a wavelength of 200 nm, and the product is irradiated for 12 hours.
  • hydrotalcite-based magneto-optical film materials prepared in Examples 1-2 and Comparative Examples and the commercially available common film materials were subjected to performance tests of magneto-optical merit, Faraday rotation coefficient and light absorption coefficient, respectively.
  • the preparation method of the hydrotalcite-based magneto-optical film material of the invention is deposited by metal ion adsorption method, and the hydrotalcite-based magneto-optical film precursor is obtained under vacuum condition, and then the finished film material is obtained by inert gas washing, ultraviolet curing and the like.
  • the prepared hydrotalcite-based magneto-optical film material has a simple manufacturing process, uniform and compact texture of the film material, and superior electrical properties, and has a good application prospect.
  • the hydrotalcite-based magneto-optical film material of the invention is easy to obtain raw materials, simple in process, suitable for large-scale industrial application, and has strong practicability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Toxicology (AREA)
  • General Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Health & Medical Sciences (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Compositions Of Macromolecular Compounds (AREA)
  • Thin Magnetic Films (AREA)
  • Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)

Abstract

一种水滑石基磁光薄膜材料的制备方法,该工艺利用金属离子吸附法沉积,在真空条件下得到水滑石基磁光薄膜前体,然后利用惰性气体洗涤、紫外固化等工艺得到成品薄膜材料。制备而成的水滑石基磁光薄膜材料,制作工艺简单、薄膜材料质地均匀致密、电性能好。

Description

一种水滑石基磁光薄膜材料的制备方法 技术领域
本发明涉及薄膜材料这一技术领域,特别涉及到水滑石基磁光薄膜材料的制备方法。
背景技术
层层组装法是一种基于弱相互作用将不同构筑基元交替组装,构筑有序复合超薄膜的重要成膜技术。在过去几年中,基于层层组装技术构筑的层状双金属氢氧化物(又称水滑石,LDHs)复合功能薄膜材料在诸多领域展现出重要的应用价值,如减反射涂层、电化学储能与转换、荧光传感以及药物缓/控释体系等。然而,前期研究工作主要基于静电相互作用,将剥层后带正电荷的LDHs纳米片与带负电荷的聚电解质进行组装,成膜驱动力比较单一,限制了组装基元的选择,进一步影响了其性能的发挥,阻碍了LDHs基复合功能薄膜材料的发展。因此,如何扩展组装驱动力、丰富成膜构筑基元种类、实现功能强化是目前设计和构筑新型LDHs基功能薄膜材料面临的重要难题。
水滑石(层状双金属复合氢氧化物Layered Double Hydroxides,简写为LDHs)是一种新型多功能层状材料,具有良好的热稳定性和化学稳定性,且LDHs层板金属离子的组成及摩尔比可调变,层间阴离子具有可交换性。因此将其作为前体可制备金属复合薄膜材料,不仅可实现粒子的均匀分散,而且能在温和的反应条件下通过调控水滑石层板元素计量比制备得到带隙可调的金属复合薄膜材料,实现光电转换率的有效提高。因此,通过调控水滑石层板元素和层间阴离子,可实现调变层板化学组成及反应环境的目的,为制备高效、均一的金属复合薄膜材料提供了可行途径。
发明内容
为解决上述技术问题,本发明提供水滑石基磁光薄膜材料的制备方法, 该工艺利用金属离子吸附法沉积,在真空条件下得到水滑石基磁光薄膜前体,然后利用惰性气体洗涤、紫外固化等工艺得到成品薄膜材料。制备而成的水滑石基磁光薄膜材料,其制作工艺简单、薄膜材料质地均匀致密、电性能优越,具有较好的应用前景。
本发明的目的可以通过以下技术方案实现:
水滑石基磁光薄膜材料的制备方法,包括以下步骤:
(1)在聚四氟乙烯衬底放入阴极板的沟槽中,加入体积比为1:1的金属离子溶液和尿素溶液;
(2)将步骤(1)的反应处理装置置于真空室内,关闭真空室抽真空,当真空室真空度为10-3~10-4Pa时,打开电源加热阴极板和阳极板,阴极板的温度控制为550~650℃,阳极板的温度为260~350℃,启动真空室外的等离子体发生器电源,并通入硫、氢、氩1:2:1混合气体,持续反应12-24h,得到水滑石基磁光薄膜材料前体;
(3)将上述步骤(2)的薄膜前体置于二氧化碳气氛中用去离子水中洗涤至中性,65℃干燥12h以上;
(4)将步骤(3)的干燥薄膜进行紫外固化,即得成品。
优选地,所述步骤(1)中的金属离子溶液为:Mg2+、Co2+、Ni2+、Ca2+、Cu2+、Fe2+,Mn2+,Al3+、Cr3+、Ga3+、In3+、Co3+、Fe3+,V3+中的一种或几种,二价阳离子的浓度为3M,三甲氧离子的浓度为2M。
优选地,所述步骤(1)中的尿素溶液浓度为2.5mole/L。
优选地,所述步骤(4)中紫外固化的条件为200nm波长,照射10-12h。
本发明与现有技术相比,其有益效果为:
(1)本发明的水滑石基磁光薄膜材料的制备方法利用金属离子吸附法沉积,在真空条件下得到水滑石基磁光薄膜前体,然后利用惰性气体洗涤、紫外固化等工艺得到成品薄膜材料。制备而成的水滑石基磁光薄膜材料, 其制作工艺简单、薄膜材料质地均匀致密、电性能优越,具有较好的应用前景。
(2)本发明的水滑石基磁光薄膜材料原料易得、工艺简单,适于大规模工业化运用,实用性强。
具体实施方式
下面结合具体实施例对发明的技术方案进行详细说明。
实施例1
(1)在聚四氟乙烯衬底放入阴极板的沟槽中,加入体积比为1:1的金属离子溶液和尿素溶液,其中金属离子为Mg2+、Co2+、Ni2+、Ca2+、Ga3+、In3+、Co3+、Fe3+、V3+,尿素溶液浓度为2.5mole/L;
(2)将步骤(1)的反应处理装置置于真空室内,关闭真空室抽真空,当真空室真空度为10-3Pa时,打开电源加热阴极板和阳极板,阴极板的温度控制为550℃,阳极板的温度为260℃,启动真空室外的等离子体发生器电源,并通入硫、氢、氩1:2:1混合气体,持续反应12h,得到水滑石基磁光薄膜材料前体;
(3)将上述步骤(2)的薄膜前体置于二氧化碳气氛中用去离子水中洗涤至中性,65℃干燥14h;
(4)将步骤(3)的干燥薄膜进行紫外固化,其中紫外固化的条件为200nm波长,照射10h,即得成品。
制得的水滑石基磁光薄膜材料的性能测试结果如表1所示。
实施例2
(1)在聚四氟乙烯衬底放入阴极板的沟槽中,加入体积比为1:1的金属离子溶液和尿素溶液,其中金属离子为Ni2+、Ca2+、Cu2+、Fe2+、Al3+、Cr3+、Ga3+,尿素溶液浓度为2.5mole/L;
(2)将步骤(1)的反应处理装置置于真空室内,关闭真空室抽真空, 当真空室真空度为10-4Pa时,打开电源加热阴极板和阳极板,阴极板的温度控制为650℃,阳极板的温度为350℃,启动真空室外的等离子体发生器电源,并通入硫、氢、氩1:2:1混合气体,持续反应24h,得到水滑石基磁光薄膜材料前体;
(3)将上述步骤(2)的薄膜前体置于二氧化碳气氛中用去离子水中洗涤至中性,65℃干燥18h;
(4)将步骤(3)的干燥薄膜进行紫外固化,其中紫外固化的条件为200nm波长,照射12h,即得成品。
制得的水滑石基磁光薄膜材料的性能测试结果如表1所示。
对比例1
(1)在聚四氟乙烯衬底放入阴极板的沟槽中,加入体积比为1:1的金属离子溶液和尿素溶液,其中金属离子为Co2+、Ni2+、Cu2+、Mn2+、Al3+、In3+、Co3+、V3+,尿素溶液浓度为2.5mole/L;
(2)将步骤(1)的反应处理装置置于真空室内,关闭真空室抽真空,当真空室真空度为10-4Pa时,打开电源加热阴极板和阳极板,阴极板的温度控制为650℃,阳极板的温度为350℃,启动真空室外的等离子体发生器电源,持续反应24h,得到水滑石基磁光薄膜材料前体;
(3)将上述步骤(2)的薄膜前体置于二氧化碳气氛中用去离子水中洗涤至中性,65℃干燥16h;
(4)将步骤(3)的干燥薄膜进行紫外固化,其中紫外固化的条件为200nm波长,照射12h,即得成品。
制得的水滑石基磁光薄膜材料的性能测试结果如表1所示。
将实施例1-2和对比例的制得的水滑石基磁光薄膜材料及市售常见同类薄膜材料分别进行磁光优值、法拉第旋转系数和光吸收系数这几项性能测试。
表1
Figure PCTCN2017107223-appb-000001
本发明的水滑石基磁光薄膜材料的制备方法利用金属离子吸附法沉积,在真空条件下得到水滑石基磁光薄膜前体,然后利用惰性气体洗涤、紫外固化等工艺得到成品薄膜材料。制备而成的水滑石基磁光薄膜材料,其制作工艺简单、薄膜材料质地均匀致密、电性能优越,具有较好的应用前景。本发明的水滑石基磁光薄膜材料原料易得、工艺简单,适于大规模工业化运用,实用性强。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。

Claims (4)

  1. 水滑石基磁光薄膜材料的制备方法,其特征在于,包括以下步骤:
    (1)在聚四氟乙烯衬底放入阴极板的沟槽中,加入体积比为1:1的金属离子溶液和尿素溶液;
    (2)将步骤(1)的反应处理装置置于真空室内,关闭真空室抽真空,当真空室真空度为10-3~10-4Pa时,打开电源加热阴极板和阳极板,阴极板的温度控制为550~650℃,阳极板的温度为260~350℃,启动真空室外的等离子体发生器电源,并通入硫、氢、氩1:2:1混合气体,持续反应12-24h,得到水滑石基磁光薄膜材料前体;
    (3)将上述步骤(2)的薄膜前体置于二氧化碳气氛中用去离子水中洗涤至中性,65℃干燥12h以上;
    (4)将步骤(3)的干燥薄膜进行紫外固化,即得成品。
  2. 根据权利要求1所述的水滑石基磁光薄膜材料的制备方法,其特征在于,所述步骤(1)中的金属离子溶液为:Mg2+、Co2+、Ni2+、Ca2+、Cu2+、Fe2+,Mn2+,Al3+、Cr3+、Ga3+、In3+、Co3+、Fe3+,V3+中的一种或几种,二价阳离子的浓度为3M,三甲氧离子的浓度为2M。
  3. 根据权利要求1所述的水滑石基磁光薄膜材料的制备方法,其特征在于,所述步骤(1)中的尿素溶液浓度为2.5mole/L。
  4. 根据权利要求1所述的水滑石基磁光薄膜材料的制备方法,其特征在于,所述步骤(4)中紫外固化的条件为200nm波长,照射10-12h。
PCT/CN2017/107223 2017-09-01 2017-10-23 一种水滑石基磁光薄膜材料的制备方法 WO2019041489A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710777998.X 2017-09-01
CN201710777998.XA CN107541718B (zh) 2017-09-01 2017-09-01 一种水滑石基磁光薄膜材料的制备方法

Publications (1)

Publication Number Publication Date
WO2019041489A1 true WO2019041489A1 (zh) 2019-03-07

Family

ID=60958569

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/107223 WO2019041489A1 (zh) 2017-09-01 2017-10-23 一种水滑石基磁光薄膜材料的制备方法

Country Status (2)

Country Link
CN (1) CN107541718B (zh)
WO (1) WO2019041489A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115232485A (zh) * 2022-07-13 2022-10-25 塔里木大学 一种蛭石紫外阻隔材料及其制备方法和应用

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102051603A (zh) * 2010-10-26 2011-05-11 南开大学 一种等离子体辅助硒硫化处理装置及工艺
CN102343283A (zh) * 2011-07-21 2012-02-08 北京化工大学 一种垂直取向类水滑石薄膜及其在结构化催化方面的应用
WO2016067884A1 (ja) * 2014-10-28 2016-05-06 日本碍子株式会社 層状複水酸化物緻密膜の形成方法
CN106498498A (zh) * 2016-10-08 2017-03-15 常州创索新材料科技有限公司 一种石榴石磁光薄膜的制备方法
CN106693945A (zh) * 2016-11-29 2017-05-24 北京化工大学 剥层水滑石纳米片基复合催化剂及其制备方法
CN106861454A (zh) * 2017-04-14 2017-06-20 北京工业大学 一种原位合成水滑石复合膜的方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2003243054A1 (en) * 2003-07-07 2005-01-21 Instituto Mexicano Del Petroleo Method of obtaining multimetallic oxides derived from hydrotalcite-type compounds
CN1333113C (zh) * 2004-11-15 2007-08-22 北京化工大学 高度定向层状双羟基复合金属氧化物薄膜及其制备方法
CN101497786B (zh) * 2009-03-02 2012-04-18 北京化工大学 一种磺化聚联苯与水滑石复合发光薄膜及其制备方法
CN101649198B (zh) * 2009-09-17 2012-10-31 北京化工大学 一种光泽精阳离子与水滑石复合发光薄膜及其制备方法
CN103642486B (zh) * 2013-11-04 2015-10-14 北京化工大学 一种阴离子型稀土配合物与水滑石复合发光超薄膜及其制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102051603A (zh) * 2010-10-26 2011-05-11 南开大学 一种等离子体辅助硒硫化处理装置及工艺
CN102343283A (zh) * 2011-07-21 2012-02-08 北京化工大学 一种垂直取向类水滑石薄膜及其在结构化催化方面的应用
WO2016067884A1 (ja) * 2014-10-28 2016-05-06 日本碍子株式会社 層状複水酸化物緻密膜の形成方法
CN106498498A (zh) * 2016-10-08 2017-03-15 常州创索新材料科技有限公司 一种石榴石磁光薄膜的制备方法
CN106693945A (zh) * 2016-11-29 2017-05-24 北京化工大学 剥层水滑石纳米片基复合催化剂及其制备方法
CN106861454A (zh) * 2017-04-14 2017-06-20 北京工业大学 一种原位合成水滑石复合膜的方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115232485A (zh) * 2022-07-13 2022-10-25 塔里木大学 一种蛭石紫外阻隔材料及其制备方法和应用
CN115232485B (zh) * 2022-07-13 2023-11-07 塔里木大学 一种蛭石紫外阻隔材料及其制备方法和应用

Also Published As

Publication number Publication date
CN107541718A (zh) 2018-01-05
CN107541718B (zh) 2020-01-21

Similar Documents

Publication Publication Date Title
Pawar et al. Crystal facet engineering of ZnO photoanode for the higher water splitting efficiency with proton transferable nafion film
Lu et al. Constructing atomic layer gC 3 N 4–CdS nanoheterojunctions with efficiently enhanced visible light photocatalytic activity
CN104743551B (zh) 一种还原氧化石墨烯导热薄膜的制备方法
Yang et al. Ternary hetero-structured BiOBr/Bi2MoO6@ MXene composite membrane: Construction and enhanced removal of antibiotics and dyes from water
CN108273541B (zh) 一种绿色高效制备石墨相氮化碳纳米片的方法和应用
CN102888584B (zh) 一种基于金刚石薄膜上沉积CdTe薄膜的方法
CN106384811A (zh) 一种蓝磷/过渡金属二硫化物异质结阳极材料及制备方法
WO2012109968A1 (zh) 一种在可控气氛环境中用微波辐照制备改性石墨烯材料的方法
CN102876287A (zh) 一种自组装叠层红外膜材料及其制备方法
CN104795456A (zh) 电沉积法制备三带隙铁掺杂铜镓硫太阳能电池材料的方法
CN104211054A (zh) 一种可控制备石墨烯的方法
WO2019041489A1 (zh) 一种水滑石基磁光薄膜材料的制备方法
KR101419340B1 (ko) 그라파이트 산화물 및 그래핀 나노시트 제조 방법
CN104058446B (zh) 一种低维氧化锌纳米材料及其低温等离子体制备方法
CN107214334B (zh) 一种石墨烯改性铝基材料粉末的制备方法和应用
Li et al. Synthesizing ZnWO4 with enhanced performance in photoelectrocatalytic inactivating marine microorganisms
Lee et al. Effects of spin speed on the photoelectrochemical properties of Fe2O3 thin films
Saleem et al. The effect of annealing on structural and optical properties of α-Fe2O3/CdS/α-Fe2O3 multilayer heterostructures
CN116651489A (zh) 一种磁改性三维花状N-Bi 2 O 2 CO 3 / g-C3 N 4光催化材料的制备方法及应用
CN114772584A (zh) 一种图案化立式石墨烯及其制备方法
CN114162809A (zh) 一种两步化学气相沉积法制备石墨烯的方法
Du et al. Optical band gap of zinc nitride films prepared by reactive rf magnetron sputtering
KR102137308B1 (ko) 층상형 SiOx, 이의 제조 방법, 이로부터 박리된 SiOx 나노시트
CN112481593A (zh) 一种气固反应制备太阳能电池吸收层四硫化锑三铜薄膜的方法
CN104810249B (zh) CdTe薄膜上生长CdS薄膜或CdS纳米结构的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17922943

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17922943

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC