WO2019039715A1 - Acier inoxydable austénitique ayant une excellente aptitude au façonnage et une excellente résistance aux fissures anti-vieillissement et produit d'étirage l'utilisant - Google Patents

Acier inoxydable austénitique ayant une excellente aptitude au façonnage et une excellente résistance aux fissures anti-vieillissement et produit d'étirage l'utilisant Download PDF

Info

Publication number
WO2019039715A1
WO2019039715A1 PCT/KR2018/006853 KR2018006853W WO2019039715A1 WO 2019039715 A1 WO2019039715 A1 WO 2019039715A1 KR 2018006853 W KR2018006853 W KR 2018006853W WO 2019039715 A1 WO2019039715 A1 WO 2019039715A1
Authority
WO
WIPO (PCT)
Prior art keywords
stainless steel
austenitic stainless
aging
workability
steel
Prior art date
Application number
PCT/KR2018/006853
Other languages
English (en)
Korean (ko)
Inventor
김상석
박미남
정한용
민현웅
김영민
Original Assignee
주식회사 포스코
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 포스코 filed Critical 주식회사 포스코
Priority to JP2020511263A priority Critical patent/JP7256792B2/ja
Priority to CN201880068255.8A priority patent/CN111247265B/zh
Publication of WO2019039715A1 publication Critical patent/WO2019039715A1/fr

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/58Ferrous alloys, e.g. steel alloys containing chromium with nickel with more than 1.5% by weight of manganese
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/001Austenite

Definitions

  • the present invention relates to an austenitic stainless steel which is excellent in workability and anti-aging crack resistance without causing defects such as age cracking or delayed fracture even when applied to a design sink having a radius of curvature of 50 mm or less.
  • Stainless steel is generally used for sink bowls in kitchen sinks. 300 series universal stainless steels are mainly used, but the general shape of the sink bowl is not widely used because of the problem of moldability.
  • Fig. 1 shows a deformation amount distribution during molding of a design sink model in which the curvature radius R of the corner corner is 20 mm. As shown in Fig. 1, the deformation amount concentrates on the edge leading from the flange portion to the bottom during drawing, and a crack is generated in the concentrated deformation portion.
  • the embodiments of the present invention provide an austenitic stainless steel excellent in workability and anti-aging crack resistance without occurrence of defects such as age cracking or delayed fracture even when applied to a design sink having a radius of curvature of 50 mm or less I want to.
  • the austenitic stainless steel according to one embodiment of the present invention is excellent in workability and anti-aging crack resistance, and contains 0.01 to 0.04% of C, 0.1 to 1% of Si, 0.1 to 2% of Mn, 0.1 to 2% of Mn, (1), wherein the alloy contains 6 to 10% of Cr, 16 to 20% of Cr, 1 to 2% of Cu, 0.01 to 0.2% of Mo, 0.035 to 0.07% of N and the balance of Fe and unavoidable impurities
  • the austenite stabilization parameter (ASP) value is not more than -3 and the work hardening index n value satisfies the range of 0.4 to 0.5 in the true strain range of 0.3 to 0.4.
  • C, N, Si, Mn, Ni, Cr, and Cu mean the content (weight%) of each element.
  • the stainless steel may satisfy the following formula (2).
  • Cu and N mean the content (weight%) of each element.
  • the stainless steel may have a yield strength (YS) of 230 MPa or more and a tensile strength (TS) of 540 MPa or more.
  • the stainless steel may satisfy the following formula (3).
  • N, Mn, and Cu mean the content (weight%) of each element.
  • the stainless steel may have an average potential of 245 mV or higher.
  • the austenitic stainless steel drawing finished product excellent in workability and anti-aging cracking property according to an embodiment of the present invention is characterized in that when the stainless steel is drawn using a punch,
  • the amounts of modified organic martensite measured at the side wall positions of 20 mm, 30 mm and 40 mm satisfy 1.0%, 1.0%, 5.0%, 10% and 15%, respectively.
  • aged cracks may not occur in the drawn product after 24 hours of processing.
  • the austenitic stainless steel excellent in workability and anti-aging resistance according to the embodiment of the present invention can prevent defects such as aging cracks or delayed fracture even when applied to a design sink having a radius of curvature of 50 mm or less have.
  • the material has a yield strength of 230 MPa or more and a tensile strength of 540 MPa or more to satisfy the material specifications and exhibits an average electric potential of 245 mV or more, which is excellent in corrosion resistance.
  • Fig. 1 shows a deformation amount distribution during molding of a design sink model having a curvature radius of corner corner of 20 mm.
  • FIG. 2 is a graph showing the relationship between true strain-work hardening indexes of austenitic stainless steels and comparative steels according to an embodiment of the present invention.
  • FIG 3 is a cross-sectional view schematically showing a cup drawing process using a punch.
  • Fig. 4 shows the position where the amount of modified organic martensite of the workpiece after the cup drawing process was measured.
  • the austenitic stainless steel according to one embodiment of the present invention is excellent in workability and anti-aging crack resistance, and contains 0.01 to 0.04% of C, 0.1 to 1% of Si, 0.1 to 2% of Mn, 0.1 to 2% of Mn, (1), wherein the alloy contains 6 to 10% of Cr, 16 to 20% of Cr, 1 to 2% of Cu, 0.01 to 0.2% of Mo, 0.035 to 0.07% of N and the balance of Fe and unavoidable impurities
  • the austenite stabilization parameter (ASP) value is not more than -3 and the work hardening index n value satisfies the range of 0.4 to 0.5 in the true strain range of 0.3 to 0.4.
  • C, N, Si, Mn, Ni, Cr, and Cu mean the content (weight%) of each element.
  • the inventors of the present invention have studied the processing conditions capable of forming austenitic stainless steel sheet without designing cracks. However, the inventors of the present invention have been able to develop a new austenitic stainless steel because the cracking can not be suppressed merely by controlling the processing conditions.
  • the STS304 steel has excellent deep drawability, but cracks often occur during machining of complex shapes or design sinking. From this point, it has been found that it is important to control not only the deep drawability but also the work hardening index in the case of a design sink product which is complicated in shape by press molding or whose radius of curvature R is controlled to be 50 mm or less.
  • the work hardening index and the anti-aging cracking property can be ensured by controlling the work hardening index according to the Austenite Stability Parameter (hereinafter referred to as " ASP ") value together with the composition of the component system.
  • &quot Austenite Stability Parameter
  • the austenitic stainless steel according to one embodiment of the present invention is excellent in workability and anti-aging crack resistance, and contains 0.01 to 0.04% of C, 0.1 to 1% of Si, 0.1 to 2% of Mn, 0.1 to 2% of Mn, 6 to 10%, Cr: 16 to 20%, Cu: 1 to 2%, Mo: 0.01 to 0.2%, N: 0.035 to 0.07%, balance Fe and unavoidable impurities.
  • the content of carbon (C) is 0.01 to 0.04%.
  • the content of silicon (Si) is 0.1 to 1.0%.
  • Silicon in steel is added as a deoxidizer in the steelmaking process.
  • Si-oxide is formed in the passive film when the film is subjected to a bright annealing process, thereby improving the corrosion resistance of the steel.
  • the content is 1.0% or more, there is a problem that the ductility of the steel is lowered.
  • the content of manganese (Mn) is 0.1 to 2.0%.
  • Ni nickel
  • the content of nickel (Ni) is 6.0 to 10.0%.
  • the content of chromium (Cr) is 16.0 to 20.0%.
  • Chromium in steel is an essential element for improvement of corrosion resistance. It is necessary to add more than 16% in order to secure corrosion resistance in atmospheric environment and sink applications. However, when added excessively, chromium is hardened and moldability such as deep drawability is disadvantageous , So it is limited to 20%.
  • the content of copper (Cu) is 1.0 to 2.0%.
  • Copper in steel is an austenite phase stabilizing element, and as the amount of copper is increased, the austenite phase is stabilized and the effect of suppressing work hardening due to the generation of modified organic martensite is suppressed.
  • corrosion resistance is lowered and cost is increased.
  • the content of molybdenum (Mo) is 0.01 to 0.2%.
  • Molybdenum in the steel has an effect of improving the corrosion resistance and workability and is added by 0.01% or more, and excessive addition is limited to 0.2% or less because it involves an increase in cost.
  • the content of nitrogen (N) is 0.035 to 0.07%.
  • austenite stabilization parameter (ASP) value represented by the following formula (1) satisfies -3 or below together with the composition of the component system.
  • FIG. 2 is a graph showing the relationship between true strain-work hardening indexes of austenitic stainless steels and comparative steels according to an embodiment of the present invention.
  • most of the 300-grade austenitic stainless steels have a work hardening index (n) in the range of 0.3 to 0.4 at a strain rate of 10 to 20% at the early stage of deformation.
  • n work hardening index
  • a work hardening index in the range of 0.55 to 0.65 at an elongation strain of 30 to 40%.
  • R radius of curvature
  • the austenitic stainless steel according to one embodiment of the present invention satisfies the Austenite Stabilization Parameter (ASP) value of -3 or less, and the work hardening index n value in the range of true strain 0.3 to 0.4 can exhibit a range of 0.4 to 0.5 have.
  • ASP Austenite Stabilization Parameter
  • the excellent formability of the material is also important, but it is sometimes necessary to guarantee the material specification for each country.
  • the strength of the material of the 304 material standard can not be guaranteed, and in the present invention, excellent material strength and corrosion resistance, And to develop a steel which can secure corrosion resistance.
  • the austenitic stainless steel according to one embodiment of the present invention can satisfy the following formula (2).
  • the austenitic stainless steel according to the present invention can have a yield strength (YS) of 230 MPa or more and a tensile strength (TS) of 540 MPa or more.
  • the austenitic stainless steel according to one embodiment of the present invention can satisfy the following formula (3).
  • the austenitic stainless steel according to the present invention can secure a formal potential of 245 mV or more.
  • FIG 3 is a cross-sectional view schematically showing a cup drawing process using a punch.
  • the deep drawing raises a circular blank on the drawing die 2 and then presses the circular blank with the blank holder 3 at an appropriate pressure. Subsequently, the punch 1 draws the circular blank into the die 2, at which time the center of the workpiece is slowly drawn and the outer periphery of the workpiece slides on the side of the die and into the die 2.
  • the thickness of the bottom portion 10 of the blank surrounding the bottom surface of the punch 1 is accompanied by a reduction in thickness, and the stress state in this portion is a biaxial tensile state.
  • the flange portion 30 since the material is drawn toward the entrance of the die 2 in the radial direction, compressive deformation occurs in the circumferential direction and tensile deformation occurs in the radial direction. Due to the peripheral action of the compression deformation and the tensile deformation, an increase in thickness occurs in the flange portion 30. That is, in the flange portion 30, the thickness of the material becomes thick, and at the same time, the strength of the material increases due to work hardening due to compressive deformation.
  • the thickness of the workpiece becomes thinner and the workpiece hardens due to work hardening.
  • the work hardening of the flange portion 30 Is very low.
  • the flange portion 30 and the side wall portion 20 of the blank having the same fracture limit have a difference in fracture limit.
  • the flange portion 30 has a fracture limit of [high strength x thick thickness]
  • the sidewall portion 20 has a fracture limit of [somewhat high strength x thin thickness], so that the fracture limit becomes uneven, Deformation concentrates on the part where the strength is weak and cracks occur.
  • the austenitic stainless steel drawing finished product excellent in workability and anti-age cracking property according to an embodiment of the present invention was drawn using a punch to a range of 2.0 to 2.3 in the range of the minimum draw ratio (LDR) ,
  • LDR minimum draw ratio
  • the amount of modified organic martensite measured at side wall positions of 10 mm, 20 mm, 30 mm, and 40 mm from the bottom and bottom surfaces of the drawn product satisfies 1.0%, 1.0%, 5.0%, 10%, and 15% .
  • the limited drawing ratio refers to the ratio (D / d) of the maximum diameter (D) of the workpiece to the diameter (d) of the punch.
  • austenite stabilization parameter (ASP) value exceeds -3, aging cracks may occur after 24 hours of processing because the ⁇ ⁇ ⁇ 'transformation can not be suppressed during the drawing process. Therefore, in the case of drawing using the stainless steel having the austenite stabilization parameter (ASP) value of -3 or less according to the present invention, the amount of the modified organic martensite of the drawn product can be controlled, and aging cracks can be prevented .
  • the austenitic stainless steels of the component system shown in Table 1 below are partly manufactured by Lab. Ingot was produced by vacuum melting, and some slabs were produced through an electric furnace-VOD-playing process. The prepared ingot and slab were reheated at 1,240 ° C. for 1 to 2 hours and then heat-treated by a roughing mill and a continuous finishing mill. Hot rolled annealing was performed at a temperature of 1,000 to 1,100 ° C., followed by cold rolling and cold annealing .
  • Inventive steels 1 to 5 controlled the value of Cu / (100 * N) to 0.55 or less and controlled the ASP value to -3 or less to secure the desired yield strength (230 MPa or more) and tensile strength (540 MPa or more) ,
  • the work hardening index n value in the range of the true strain 0.3 to 0.4 suitable for the design sink was 0.5 or less.
  • the comparative steels 1 to 3 had the desired yield strength and tensile strength of the present invention at the values of Cu / (100 * N) of 0.13, 0.03 and 0.20, respectively.
  • ASP values were 18.1, 5.6,
  • the value of the work hardening index n is 0.5 or more in the range of the true strain 0.3 to 0.4, which is not suitable for the design sink application.
  • the comparative steels 4 and 5 had an ASP value of -10.9 and -11.1, respectively, falling within the object range of the present invention, but the Cu / (100 * N) values were 2.90 and 0.73, respectively, And the tensile strength was not ensured.
  • Table 3 shows the correlation between the value of 100 * N - (Mn + Cu) of formula (3) and the formula potential.
  • the average electric potential was measured using a 3.5% NaCl solution at 30 ° C after polishing the surface of the steel sheet # 600.
  • Invention steels 1 to 5 showed that the values of 100 * N - (Mn + Cu) were all 0 or more, and the formula potential indicating the corrosion resistance of the material was more than 245 mV which is a target range of the present invention.
  • the ASP values are -10.9 and -11.1 (see Table 2)
  • the corrosion resistance (over 245 mV) of the STS304 level required by the design sink is lower than 200 mV due to the fact that the N - (Mn + Cu) values do not satisfy the formula (3) could not be secured.
  • Austenitic stainless steel according to an embodiment of the present invention was cup-drawn using a punch having a diameter of 50 mm at a punch speed of 100 mm / min. Drawing processing was performed within a range of 1.9 to 2.3 in the range of the minimum drawing ratio (LDR) and within a range in which creases and fractures did not occur in the upper part of the cup. After drawing, the amount of deformation organic martensite ( ⁇ ') was measured at the side wall positions of 10 mm, 20 mm, 30 mm, and 40 mm from the bottom and bottom surfaces of the cup product as shown in FIG. 4, And whether aged cracks occurred after 24 hours of processing. The amount of modified organic martensite was measured using a ferrite-scope.
  • the austenitic stainless steels according to the embodiments of the present invention have excellent workability and corrosion resistance cracking resistance as well as corrosion resistance, and can be applied to highly molded products such as design sinks.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Heat Treatment Of Steel (AREA)
  • Heat Treatment Of Sheet Steel (AREA)
  • Shaping Metal By Deep-Drawing, Or The Like (AREA)

Abstract

La présente invention concerne un acier inoxydable austénitique ayant une excellente aptitude au façonnage et une excellente résistance aux fissures antivieillissement qui ne provoque pas de défauts tels que des fissures de vieillissement ou des fractures retardées, etc., même lorsque l'acier inoxydable austénitique est appliqué sur un évier type dans lequel le rayon de courbure d'un coin est inférieur ou égal à 50 mm. L'acier inoxydable austénitique ayant une excellente aptitude au façonnage et une excellente résistance aux fissures anti-vieillissement, selon un mode de réalisation de la présente invention, comprend, en % en poids: 0,01 à 0,04 % de C; 0,1 à 1 % de Si; 0,1 à 2 % de Mn; 6 à 10 % de Ni; 16 à 20 % de Cr; 1 à 2 % de Cu; 0,01 à 0,2 % de Mo; 0,035 à 0,07 % de N; et le reste étant du Fe et des impuretés inévitables, la valeur de paramètre de stabilisation d'austénite (ASP) est de -3 ou moins et le coefficient d'écrouissage n dans la plage de déformation réelle de 0,3 à 0,4 satisfait la plage de 0,4 à 0,5.
PCT/KR2018/006853 2017-08-21 2018-06-18 Acier inoxydable austénitique ayant une excellente aptitude au façonnage et une excellente résistance aux fissures anti-vieillissement et produit d'étirage l'utilisant WO2019039715A1 (fr)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020511263A JP7256792B2 (ja) 2017-08-21 2018-06-18 加工性および耐時効割れ性に優れたオーステナイト系ステンレス鋼のドローイング加工品
CN201880068255.8A CN111247265B (zh) 2017-08-21 2018-06-18 加工性和抗季裂性优异的奥氏体不锈钢及利用它的拉伸加工产品

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020170105277A KR101964314B1 (ko) 2017-08-21 2017-08-21 가공성 및 내시효균열성이 우수한 오스테나이트계 스테인리스강 및 이를 이용한 드로잉 가공품
KR10-2017-0105277 2017-08-21

Publications (1)

Publication Number Publication Date
WO2019039715A1 true WO2019039715A1 (fr) 2019-02-28

Family

ID=65439112

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/006853 WO2019039715A1 (fr) 2017-08-21 2018-06-18 Acier inoxydable austénitique ayant une excellente aptitude au façonnage et une excellente résistance aux fissures anti-vieillissement et produit d'étirage l'utilisant

Country Status (4)

Country Link
JP (1) JP7256792B2 (fr)
KR (1) KR101964314B1 (fr)
CN (1) CN111247265B (fr)
WO (1) WO2019039715A1 (fr)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102120700B1 (ko) * 2018-09-13 2020-06-09 주식회사 포스코 확관가공성 및 내시효균열성이 우수한 오스테나이트계 스테인리스강
KR102448741B1 (ko) * 2020-08-31 2022-09-30 주식회사 포스코 심가공성이 향상된 오스테나이트계 스테인리스강
KR20220169655A (ko) * 2021-06-21 2022-12-28 주식회사 포스코 오스테나이트계 스테인리스강 및 그 제조방법

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07197200A (ja) * 1993-12-29 1995-08-01 Nkk Corp 深絞り加工時に発生する形状凍結量の異方性の小さいオーステナイト系ステンレス鋼
KR950009223B1 (ko) * 1993-08-25 1995-08-18 포항종합제철주식회사 프레스 성형성, 열간가공성 및 고온내산화성이 우수한 오스테나이트계 스테인레스강
KR970010807B1 (ko) * 1994-11-30 1997-07-01 포항종합제철 주식회사 프레스 성형성, 내시효 균열성, 내식성, 열간가공성 및 고온내산화성이 우수한 오스테나이트계 스테인레스강
JP2007031777A (ja) * 2005-07-27 2007-02-08 Nisshin Steel Co Ltd 摺動特性に優れたオーステナイト系ステンレス鋼製部材
JP2008169423A (ja) * 2007-01-10 2008-07-24 Nisshin Steel Co Ltd 曲げ加工用オーステナイト系ステンレス鋼板

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5412884B2 (fr) * 1973-06-07 1979-05-26
JP3200148B2 (ja) * 1992-04-08 2001-08-20 日新製鋼株式会社 加工性及び耐時期割れ性に優れたオーステナイト系ステンレス鋼の製造方法
JPH06134503A (ja) * 1992-10-27 1994-05-17 Nippon Steel Corp 材質と耐蝕性の優れたCu添加オーステナイト系ステンレス鋼薄鋳片の製造方法
KR970001327B1 (ko) * 1994-06-24 1997-02-05 김만제 프레스 성형성이 우수한 극연질 오스테나이트계 스테인레스강
JP3464297B2 (ja) * 1994-08-31 2003-11-05 日新製鋼株式会社 高速温間絞り成形用オーステナイト系ステンレス鋼板およびその温間絞り成型法
JPH08269638A (ja) * 1995-03-27 1996-10-15 Nisshin Steel Co Ltd 耐時期割れ性に優れた高速連続プレス加工用オーステナイト系ステンレス鋼
JPH08283915A (ja) * 1995-04-12 1996-10-29 Nkk Corp 加工性に優れたオーステナイトステンレス鋼
JPH09310155A (ja) * 1996-05-16 1997-12-02 Nkk Corp 加工後の表面特性に優れたオーステナイトステンレス鋼
FR2778188B1 (fr) * 1998-04-29 2000-06-02 Ugine Savoie Sa Acier inoxydable pour l'elaboration de fil trefile notamment de fil de renfort de pneumatique et procede de realisation dudit fil
JP3691341B2 (ja) * 2000-05-16 2005-09-07 日新製鋼株式会社 精密打抜き性に優れたオーステナイト系ステンレス鋼板
JP3696552B2 (ja) 2001-04-12 2005-09-21 日新製鋼株式会社 加工性,冷間鍛造性に優れた軟質ステンレス鋼板
JP2004238700A (ja) * 2003-02-07 2004-08-26 Nisshin Steel Co Ltd 表面平滑性の良好なプレス成形品に適したオーステナイト系ステンレス鋼板
TWI271438B (en) * 2003-05-09 2007-01-21 Nippon Mining Co Metastable austenite series stainless steel strap with excellent fatigue resistance
CN102330033B (zh) * 2010-07-15 2013-07-31 宝山钢铁股份有限公司 一种耐腐蚀性能优良的低成本奥氏体不锈钢
KR20140131214A (ko) * 2013-05-03 2014-11-12 주식회사 포스코 시효균열 저항성이 향상된 오스테나이트계 스테인리스강

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR950009223B1 (ko) * 1993-08-25 1995-08-18 포항종합제철주식회사 프레스 성형성, 열간가공성 및 고온내산화성이 우수한 오스테나이트계 스테인레스강
JPH07197200A (ja) * 1993-12-29 1995-08-01 Nkk Corp 深絞り加工時に発生する形状凍結量の異方性の小さいオーステナイト系ステンレス鋼
KR970010807B1 (ko) * 1994-11-30 1997-07-01 포항종합제철 주식회사 프레스 성형성, 내시효 균열성, 내식성, 열간가공성 및 고온내산화성이 우수한 오스테나이트계 스테인레스강
JP2007031777A (ja) * 2005-07-27 2007-02-08 Nisshin Steel Co Ltd 摺動特性に優れたオーステナイト系ステンレス鋼製部材
JP2008169423A (ja) * 2007-01-10 2008-07-24 Nisshin Steel Co Ltd 曲げ加工用オーステナイト系ステンレス鋼板

Also Published As

Publication number Publication date
JP7256792B2 (ja) 2023-04-12
CN111247265A (zh) 2020-06-05
KR101964314B1 (ko) 2019-08-07
CN111247265B (zh) 2022-05-03
KR20190020393A (ko) 2019-03-04
JP2020532645A (ja) 2020-11-12

Similar Documents

Publication Publication Date Title
WO2019039715A1 (fr) Acier inoxydable austénitique ayant une excellente aptitude au façonnage et une excellente résistance aux fissures anti-vieillissement et produit d'étirage l'utilisant
CN102124132B (zh) 搪瓷钢板及其制造方法
WO2020054999A1 (fr) Acier inoxydable austénitique présentant une excellente expansibilité de tuyau et une excellente résistance à la fissuration liée au vieillissement
WO2018110779A1 (fr) Tôle d'acier faiblement allié ayant une résistance et une ductilité excellentes
WO2019039768A1 (fr) Acier inoxydable austénitique à faible teneur en ni présentant d'excellentes propriétés d'ouvrabilité à chaud et de résistance à la fragilisation par l'hydrogène
WO2019117430A1 (fr) Acier inoxydable ferritique ayant une excellente résistance à l'oxydation à haute température et procédé de fabrication associé
WO2017111251A1 (fr) Acier inoxydable austénitique présentant des propriétés de résistance au fluage et une résistance à la traction améliorées et son procédé de fabrication
WO2019059660A1 (fr) Tôle d'acier faiblement allié possédant une résistance et une ductilité excellentes et procédé de fabrication s'y rapportant
WO2021085800A1 (fr) Acier inoxydable austénitique ayant un rapport limite d'élasticité plus élevé et procédé pour sa fabrication
WO2019112152A1 (fr) Acier inoxydable austénitique ayant d'excellentes aptitude au formage et résistance à la crique saisonnière
WO2016105092A1 (fr) Acier inoxydable à base de ferrite et procédé pour le fabriquer
WO2011081236A1 (fr) Feuille d'acier trempé ayant une excellente aptitude au formage à chaud par pression, et son procédé de fabrication
WO2019117432A1 (fr) Acier inoxydable à base de ferrite à excellente ténacité à l'impact, et son procédé de production
WO2017209431A1 (fr) Acier inoxydable austénitique présentant une résistance à la corrosion et une aptitude au façonnage améliorées et son procédé de production
KR20200073788A (ko) 내피쉬스케일성 및 법랑 밀착성이 우수한 법랑용 강판 및 그 제조방법
JP2008308751A (ja) プラスチック成形金型用鋼材およびその製造方法
WO2021125564A1 (fr) Acier inoxydable ferritique à haute résistance pour collier de serrage et son procédé de fabrication
WO2021261884A1 (fr) Acier inoxydable austénitique à haute résistance présentant une excellente productivité et un excellent effet de réduction des coûts et son procédé de production
WO2017111467A1 (fr) Acier inoxydable austénitique ayant une aptitude à la transformation améliorée
WO2020085687A1 (fr) Acier inoxydable ferritique à haute résistance pour collier de serrage et son procédé de production
WO2022045595A1 (fr) Acier inoxydable austénitique présentant une aptitude à l'emboutissage profond améliorée
WO2019124690A1 (fr) Acier inoxydable ferritique ayant une aptitude au façonnage améliorée pour la dilatation de tubes et son procédé de fabrication
WO2016104973A1 (fr) Acier inoxydable duplex présentant d'excellentes propriétés d'emboutissage profond
WO2016105067A1 (fr) Matériau d'acier inoxydable ferritique présentant une excellente usinabilité et son procédé de production
WO2019132190A1 (fr) Acier inoxydable ferritique doté d'une résistance à la peau d'orange et d'une aptitude au formage améliorées

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18847820

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020511263

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18847820

Country of ref document: EP

Kind code of ref document: A1