WO2019039687A1 - 산성가스 포집 장치 - Google Patents

산성가스 포집 장치 Download PDF

Info

Publication number
WO2019039687A1
WO2019039687A1 PCT/KR2018/003119 KR2018003119W WO2019039687A1 WO 2019039687 A1 WO2019039687 A1 WO 2019039687A1 KR 2018003119 W KR2018003119 W KR 2018003119W WO 2019039687 A1 WO2019039687 A1 WO 2019039687A1
Authority
WO
WIPO (PCT)
Prior art keywords
acid gas
porous support
absorbent
catalyst
support
Prior art date
Application number
PCT/KR2018/003119
Other languages
English (en)
French (fr)
Inventor
곽노상
심재구
이지현
이정현
이동욱
Original Assignee
한국전력공사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 한국전력공사 filed Critical 한국전력공사
Priority to CN201880024377.7A priority Critical patent/CN110536736A/zh
Publication of WO2019039687A1 publication Critical patent/WO2019039687A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D53/00Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols
    • B01D53/14Separation of gases or vapours; Recovering vapours of volatile solvents from gases; Chemical or biological purification of waste gases, e.g. engine exhaust gases, smoke, fumes, flue gases, aerosols by absorption

Definitions

  • the present invention relates to an acid gas collecting apparatus used for collecting (separating and storing) an acidic gas (for example, carbon dioxide) in an exhaust gas.
  • an acidic gas for example, carbon dioxide
  • the absorbent absorbs the acidic gas contained in the exhaust gas.
  • the absorbent absorbing the acidic gas is discharged from the absorption tower 2, and is injected into the upper part of the regeneration tower 5 via the absorbent conveying line 3 and the heat exchanger 4.
  • the regeneration process of the absorbent is performed under high temperature and atmospheric pressure conditions, and the heat energy to be consumed is supplied through the reboiler 6.
  • the regenerated absorbent is re-supplied to the absorption tower 2 through the heat exchanger 4, and the acid gas (for example, CO 2 gas) separated from the absorbent by the regeneration process is discharged to the outside.
  • the present invention provides an absorption tower for producing an acid gas-rich absorbent by reacting an acid gas-containing flue gas with an absorbent contained therein and discharging the flue gas from which acid gas has been removed to the outside;
  • a regeneration tower for separating the acid gas-rich absorbent transferred from the absorption tower into an acid gas and an acid gas-lean absorbent, and discharging the separated acid gas to the outside;
  • a transfer line for transferring the acid gas-rich absorbent from the absorption tower to the regeneration tower;
  • a recycle line for recirculating the acid gas-lean absorbent from the regeneration tower to the absorption tower and for passing heat to the transfer line by heat exchange crossing the transfer line,
  • at least one of the lines contains a porous supporting catalyst for removal comprising a porous support and an active catalyst of a metal oxide supported on the porous support.
  • the porous support may have a porosity of 20 to 50% and a mean pore diameter of 50 to 150 nm.
  • the pores of the porous support may be formed by removing the polystyrene resin portion by heat treatment of the mixture of the polystyrene resin and the precursor of the porous support.
  • the porous support is made of Al 2 O 3 And zeolite may be used.
  • the metal oxide may be at least one selected from the group consisting of TiO 2 and MoO 3 .
  • the removal of the porous support catalyst comprises an Al 2 O 3 support-TiO 2 active catalyst, an Al 2 O 3 support-MoO 3 active catalyst, a zeolite support-TiO 2 active catalyst, a zeolite support-MoO 3 active catalyst, And at least one selected from the group consisting of
  • the removal porous support catalyst may include 5 to 10 parts by weight of an active catalyst of a metal oxide based on 100 parts by weight of the support.
  • the absorbent may include at least one selected from the group consisting of an amine compound, an amino acid salt, an inorganic salt, and ammonia.
  • the acidic gas may include at least one selected from the group consisting of carbon dioxide (CO 2 ), hydrogen sulfide (H 2 S), sulfur dioxide (SO 2 ), nitrogen (NO 2 ) and carbonyl sulfide (COS).
  • CO 2 carbon dioxide
  • H 2 S hydrogen sulfide
  • SO 2 sulfur dioxide
  • NO 2 nitrogen
  • COS carbonyl sulfide
  • the acidic gas collecting apparatus of the present invention comprises a porous supporting catalyst for removal comprising a porous support and an active catalyst of a metal oxide supported on the porous support to accelerate the reaction between the absorbent and the acidic gas, This can reduce the amount of steam used in the reboiler by 10 to 30%.
  • FIG. 1 is a schematic view showing a conventional acid gas collecting apparatus.
  • FIG. 2 is a schematic view showing an acid gas collecting apparatus according to an embodiment of the present invention.
  • FIG. 3 is a schematic view showing an acidic gas collecting apparatus according to another embodiment of the present invention.
  • the present invention relates to an acid gas collecting apparatus which consumes low energy during operation and is excellent in the collection efficiency of acid gas.
  • the acid gas collecting apparatus comprises an absorption tower (10), a regenerator (20), a transfer line (30) , And a recycle line (40), wherein at least one of the regeneration tower (20) and the transfer line (30) is provided with a porous support, and an active catalyst of a metal oxide supported on the porous support, And a catalyst 15.
  • an acid gas collecting apparatus includes an absorption tower 10, a regeneration tower 20, a transfer line 30, and a recycle line 40, (20), a porous supporting catalyst (15) containing a porous support and an active catalyst of a metal oxide supported on the porous support is accommodated.
  • the absorption tower 10 included in the acidic gas collecting apparatus generates acid gas-rich absorbent by reaction of the acid gas-containing flue gas G1 with the absorbent contained therein, And discharges the exhaust gas G2 to the outside.
  • the acidic gas-rich absorbent absorbs acidic gas contained in the flue gas G1 and can be defined as an absorbent having a high acid gas concentration relative to the initial absorbent.
  • the absorbent used for absorbing the acidic gas in the absorption tower 10 is not particularly limited, but monoethanolamine, diethanolamine, triethanolamine, isopropanolamine, ethyleneamine, methyldiethanolamine, piperidine, dibutyl Amine compounds such as amine, diisopropylamine and the like, amino acid salts, inorganic salts and ammonia.
  • the acidic gas absorbed in the absorber 10 is not particularly limited but may be any one selected from the group consisting of carbon dioxide (CO 2 ), hydrogen sulfide (H 2 S), sulfur dioxide (SO 2 ), nitrogen (NO 2 ) and carbonyl sulfide It is preferable to include at least one selected from the group consisting of
  • the regeneration tower 20 included in the acidic gas collecting apparatus removes the acidic gas-rich absorbent transferred from the absorption tower 10 through the transfer line 30 to remove the acidic gas G3, And an acidic gas-lean absorbent, and discharges the separated acid gas (G3) to the outside.
  • the acid gas-lean absorbent can be defined as an absorbent (regenerated absorbent) in which the acid gas (G3) is removed from the acid gas-rich absorbent and the concentration of the acid gas is reduced.
  • the regeneration tower 20 includes a porous support catalyst 15 for removing the porous support and an active catalyst of the metal oxide supported on the porous support.
  • the removal porous support catalyst 15 serves as a catalyst for promoting the reaction between the absorbent and the acidic gas.
  • the removal porous support catalyst 15 can increase the amount of the supported catalyst and the supported ratio of the metal oxide due to the porous support. At this time, if the supported amount of the active catalyst and the supported ratio of the metal oxide are high, the reaction rate between the absorbent and the acid gas can be improved, and the present invention can exhibit high acid gas collection efficiency.
  • the removal porous support catalyst 15 preferably comprises 5 to 10 parts by weight of the metal oxide active catalyst based on 100 parts by weight of the porous support.
  • the content of the active catalyst of the metal oxide is less than 5 parts by weight, the removal efficiency is very small.
  • the amount of the catalyst is more than 10 parts by weight, it is difficult to disperse the catalyst.
  • the porous support preferably has substantially uniform pores, wherein the porosity is preferably 20 to 50%, more preferably 30 to 40%. Further, the average pore diameter is preferably 50 to 150 nm, more preferably 80 to 120 nm. If the porosity and average pore diameter of the porous support are out of the above-mentioned range, the removal efficiency improvement can be reduced due to dispersion of the carrier and reduction of the acidic catalyst performance.
  • the uniform pores of the porous support may be formed by removing the polystyrene resin portion by heat treatment of a mixture of the polystyrene resin and the precursor of the porous support.
  • the method for preparing the porous support is not particularly limited, but may be prepared by a sol-gel method using polystyrene beads.
  • the porous support may be at least one member selected from the group consisting of Al 2 O 3 and zeolite.
  • the metal oxide may be at least one selected from the group consisting of TiO 2 and MoO 3 .
  • the method of supporting the active catalyst on the porous support having the uniform pore as described above is not particularly limited and the porous support may be impregnated with the solution of the precursor containing the active catalyst and sintered at a predetermined temperature and time, And the compound of the active catalyst is supported on the inside of the pores.
  • the removal porous support catalyst 15 may be an Al 2 O 3 support-TiO 2 active catalyst, an Al 2 O 3 support-MoO 3 active catalyst, a zeolite support-TiO 2 active catalyst, a zeolite support-MoO 3 active catalyst, And mixtures thereof.
  • the recycle line 40 included in the acid gas collecting apparatus recirculates the acid gas-lean absorbent discharged from the regeneration tower 20 to the absorption tower 10, To transfer heat to the transfer line (30) by the heat exchanger (50).
  • the acidic gas-rich absorbent supplied to the regeneration tower 20 by the heat exchange of the heat exchanger 50 can be heated to about 100 to 105 ° C and supplied to the regeneration tower 20.
  • the acidic gas collecting apparatus may be provided with the porous support catalyst 15 for removal on the transfer line 30.
  • the acid gas-rich absorbent transferred from the absorption tower 10 to the regeneration tower 20 is heat-exchanged with the acid gas-lean absorbent discharged from the lower part of the regeneration tower 20 by a heat exchanger 50, Rich absorbent is supplied to the regeneration tower 20 through the removal porous support catalyst 15 provided in the transfer line 30 and is separated into an acidic gas and an acidic gas-lean absorbent And isolate only the acid gas (e.g., CO 2 ) separated through the flash drum 35.
  • Rich absorbent is supplied to the regeneration tower 20 through the removal porous support catalyst 15 provided in the transfer line 30 and is separated into an acidic gas and an acidic gas-lean absorbent And isolate only the acid gas (e.g., CO 2 ) separated through the flash drum 35.
  • the flash drum 35 separates the mixed fluid in which the gas and the liquid are mixed, and selectively separates the acidic gas-rich absorbent from the acidic gas-rich absorbent through the regenerative flash drum 35, Can be supplied to the regeneration tower (20).
  • the gas-liquid separation of the acidic gas-rich absorbent supplied to the regeneration tower 20 is controlled in advance to prevent the hammering phenomenon, and the energy consumed in the regeneration of the absorbent in the regeneration tower (for example, (Thermal energy supplied from the heat source 60).
  • the acid gas trapping apparatus of the present invention can reduce the amount of steam used in the reboiler 60 by about 10 to 30% when compared with the conventional acid gas trapping apparatus, thereby greatly reducing the size of the regeneration tower .
  • AIP aluminum isopropoxide
  • 1,600 g of water 20 g were mixed and stirred at 85 ⁇ for 30 minutes at 400 rpm. Thereafter, 4 g of nitric acid was added to adjust the pH to 4.2, and the alumina sol was prepared by proceeding the peptization process. 40 g of polystyrene beads having a diameter of 100 to 150 nm was added to the prepared alumina sol, followed by stirring for 22 hours.
  • Ti precursor TiCl 4, concentration: 99%
  • TiCl 4 concentration: 99%
  • a uniform pore solution 50g obtained in the above-mentioned porous gamma-after impregnating the alumina 500g, hayeoseo baked at 400 °C for 6 hours, a porous supported catalyst for the stripping (Al 2 O 3 support - TiO 2 active catalyst).
  • the acid gas was collected using an acid gas collecting apparatus having the structure shown in Fig.
  • a 30 wt% monoethanolamine solution was used as the absorbent, and a combustion flue gas at 40 ° C containing 15 vol% carbon dioxide as flue gas (G1) was injected into the lower part of the absorption tower at a flow rate of 2.0 m 3.
  • the circulation amount of the absorbent was 100 ml / min, and the temperature of the absorbent charged into the absorption tower was 40 ° C.
  • the porous supported catalyst (Al 2 O 3 support - TiO 2 active catalyst) obtained in Preparation Example 1 was used as the removal porous catalyst installed in the middle of the transfer line.
  • the acidic gas was collected using an acidic gas collecting device having the structure of FIG.
  • a 30 wt% monoethanolamine solution was used as the absorbent, and a combustion flue gas at 40 ° C containing 15 vol% carbon dioxide as flue gas (G1) was injected into the lower part of the absorption tower at a flow rate of 2.0 m 3.
  • the circulation amount of the absorbent was 100 ml / min, and the temperature of the absorbent charged into the absorption tower was 40 ° C.
  • the porous supported catalyst (Al 2 O 3 support - TiO 2 active catalyst) obtained in Production Example 1 was used as the removal porous catalyst accommodated in the regeneration tower.
  • the acid gas collecting process was carried out as in Example 2 by using the acid gas collecting apparatus having the structure of FIG. At this time, a porous supported catalyst (Al 2 O 3 support-TiO 2 active catalyst) obtained by the same procedure as described in Production Example 1 except that polystyrene beads were not added (used) was used.
  • a porous supported catalyst Al 2 O 3 support-TiO 2 active catalyst
  • the acid gas collecting process was carried out as in Example 2 by using the acid gas collecting apparatus having the structure of FIG.
  • the removal of the porous catalyst was carried out in the same manner as in Preparation Example 1 except that the Mo precursor ((NH 4 ) 6 Mo 7 O 24 .4H 2 O, concentration: 99%) was used instead of 50 g of the Ti precursor (TiCl 4 , (Al 2 O 3 scavenger - MoO 3 active catalyst) was used, except that 50 g of the solution of the above-mentioned catalyst was added.
  • the acid gas collecting process was carried out as in Example 2 by using the acid gas collecting apparatus having the structure of FIG.
  • the removal porous catalyst was the same as that of Production Example 1 except that 500 g of zeolite raw material [sodium aluminate (150 g) + colloidal silica 40 wt% solution (350 g)] was used instead of 20 g of aluminum isopropoxide (Zeolite support - TiO 2 active catalyst) was used.
  • the porous catalyst for removal was prepared by using 500 g of zeolite raw material (150 g of sodium aluminate (150 g) + 40 wt% solution of colloidal silica (350 g) in place of 20 g of aluminum isopropoxide in Production Example 1) 4, concentration: 99% Mo precursor ((NH 4) in 50g instead of the solution of a) 6 Mo 7 O 24 ⁇ 4H 2 O, concentration: 99%) and is hayeoseo the same porous supporting obtained except that the addition of a solution of 50g of Catalyst (zeolite support - MoO 3 active catalyst) was used.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Analytical Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Exhaust Gas Treatment By Means Of Catalyst (AREA)
  • Catalysts (AREA)

Abstract

본 발명은 산성가스를 포집하는데 사용되는 산성가스 포집 장치에 관한 것으로, 상기 산성가스 포집 장치는 흡수탑; 재생탑; 이송 라인; 및 재순환 라인을 포함하고, 상기 재생탑 및 상기 이송 라인 중의 적어도 어느 하나에는 다공성 지지체 및 상기 다공성 지지체에 담지된 금속 산화물의 활성 촉매를 포함하는 탈거용 다공성 담지 촉매를 포함한다.

Description

산성가스 포집 장치
본 발명은 배가스 중 산성가스(예를 들어, 이산화탄소)를 포집(분리 및 저장)하는데 사용되는 산성가스 포집 장치에 관한 것이다.
최근 지구온난화의 원인 물질인 산성가스를 포집하고자 하는 노력이 국제적으로 증가하고 있다. 특히 산성가스 중 하나인 이산화탄소를 줄이기 위하여 화학적 흡수법, 흡착법, 막분리법, 심냉법 등과 같은 산성가스 포집 기술이 개발되고 있다.
상기 산성가스 포집 기술 중 화학적 흡수법은 높은 효율과 안정적인 운전 기술로 가장 많이 연구되고 있다. 이러한 화학적 흡수법이 적용된 산성가스 포집 장치로 산성가스를 포집하는 과정에 대해 도 1을 참조하여 구체적으로 설명하면 다음과 같다.
냉각된 배가스(exhaust gas)가 흡수제 공급라인(1)을 통해 흡수탑(2)으로 유입되는 흡수제와 접촉 및 반응하면, 흡수제는 배가스에 포함된 산성가스를 흡수하게 된다. 다음, 산성가스를 흡수한 흡수제는 흡수탑(2)에서 배출되고, 흡수제 이송라인(3)과 열교환기(4)를 거쳐 재생탑(5)의 상부로 주입된다. 흡수제가 주입된 재생탑(5)에서는 고온 및 대기압 조건 하에 흡수제의 재생 과정이 수행되며, 이때, 소비되는 열에너지는 리보일러(6)를 통해 공급된다. 상기 재생 과정에 의해 흡수제에서 분리된 산성가스(예를 들어, CO2 gas)는 외부로 배출되며, 재생된 흡수제는 열교환기(4)를 거쳐 흡수탑(2)으로 재공급된다.
그러나, 이러한 산성가스 포집 장치는 흡수제를 재생하는 데는 많은 에너지가 소비되며, 흡수제의 성능 열화로 인해 산성가스의 포집 효율이 떨어지는 문제점이 있다.
대한민국 공개특허공보 제2016-0077378호
본 발명은 상기한 문제점을 해결하기 위해, 운전 시 소비되는 에너지가 낮으며, 산성가스의 포집 효율이 우수한 산성가스 포집 장치를 제공하는 것을 목적으로 한다.
상기한 목적을 달성하기 위해 본 발명은, 산성가스 함유 배가스와 내부에 수용된 흡수제의 반응에 의해서 산성가스-리치 흡수제를 생성하고, 산성가스가 제거된 배가스를 외부로 배출시키는 흡수탑; 상기 흡수탑으로부터 이송된 산성가스-리치 흡수제를 탈거하여 산성가스 및 산성가스-린 흡수제로 분리시키고, 분리된 산성가스를 외부로 배출시키는 재생탑; 상기 흡수탑으로부터 상기 산성가스-리치 흡수제를 상기 재생탑으로 이송시키는 이송 라인; 및 상기 재생탑으로부터 상기 산성가스-린 흡수제를 상기 흡수탑으로 재순환시키고, 상기 이송 라인과 교차되어서 열교환에 의해 상기 이송 라인에 열을 전달시켜 주는 재순환 라인;을 포함하고, 상기 재생탑 및 상기 이송 라인 중의 적어도 어느 하나에는 다공성 지지체 및 상기 다공성 지지체에 담지된 금속 산화물의 활성 촉매를 포함하는 탈거용 다공성 담지 촉매가 수용되어 있는 것인 산성가스 포집 장치를 제공한다.
상기 다공성 지지체는 공극률(porosity)이 20 내지 50%이며, 평균 기공 직경 (mean pore diameter)이 50 내지 150 nm인 것 일 수 있다.
상기 다공성 지지체의 기공은 폴리스티렌 수지와 다공성 지지체의 전구체를 혼합한 혼합물의 열처리에 의한 폴리스티렌 수지 부분의 제거에 의해 형성된 것일 수 있다.
상기 다공성 지지체는 Al2O3 및 제올라이트로 이루어진 군으로부터 선택되는 적어도 1종인 것일 수 있다.
상기 금속산화물은 TiO2 및 MoO3로 이루어진 군으로부터 선택되는 적어도 하나인 것일 수 있다.
상기 탈거용 다공성 담지 촉매는 Al2O3 지지체 - TiO2 활성 촉매, Al2O3 지지체 - MoO3 활성 촉매, 제올라이트 지지체 - TiO2 활성 촉매, 제올라이트 지지체 - MoO3 활성 촉매 및 이들의 혼합으로 이루어진 군으로부터 선택되는 적어도 하나인 것일 수 있다.
상기 탈거용 다공성 담지 촉매는 상기 지지체 100 중량부를 기준으로, 금속산화물의 활성 촉매 5 내지 10 중량부 포함하는 것일 수 있다.
상기 흡수제는 아민계 화합물, 아미노산염, 무기염 및 암모니아로 이루어진 군에서 선택된 1종 이상을 포함하는 것일 수 있다.
상기 산성가스는 이산화탄소(CO2), 황화수소(H2S), 이산화황(SO2), 질소(NO2) 및 황화카르보닐(COS)로 이루어진 군에서 선택된 1종 이상을 포함하는 것일 수 있다.
본 발명의 산성가스 포집 장치는, 다공성 지지체 및 상기 다공성 지지체에 담지된 금속 산화물의 활성 촉매를 포함하는 탈거용 다공성 담지 촉매가 구비되어 있어 흡수제와 산성가스의 반응이 촉진되기 때문에 저에너지로 산성가스를 과량 탈거할 수 있으며, 이로 인해 리보일러에 사용하는 스팀량을 10~30%까지 감소시킬 수 있다.
도 1은 종래의 산성가스 포집 장치를 나타낸 개략도이다.
도 2는 본 발명의 일 실시예에 따른 산성가스 포집 장치를 나타낸 개략도이다.
도 3은 본 발명의 다른 일 실시예에 따른 산성가스 포집 장치를 나타낸 개략도이다.
도 4는 본 발명의 다공성 지지체(γ-Alumina)의 SEM 이미지이다.
이하 본 발명을 설명한다.
본 발명은 운전 시에 낮은 에너지가 소비되며, 산성가스의 포집 효율이 우수한 산성가스 포집 장치에 관한 것으로, 상기 산성가스 포집 장치는 흡수탑(10), 재생탑(20), 이송 라인(30), 및 재순환 라인(40)을 포함하고, 상기 재생탑(20) 및 상기 이송 라인(30) 중의 적어도 어느 하나에는 다공성 지지체 및 상기 다공성 지지체에 담지된 금속 산화물의 활성 촉매를 포함하는 탈거용 다공성 담지 촉매(15)를 포함한다.
이에 대해 도면을 참조하여 구체적으로 설명하면 다음과 같다.
도 2를 참조하면, 본 발명의 일 실시예에 따른 산성가스 포집 장치는 흡수탑(10), 재생탑(20), 이송 라인(30), 및 재순환 라인(40)을 포함하며, 상기 재생탑(20) 내부에 다공성 지지체 및 상기 다공성 지지체에 담지된 금속 산화물의 활성 촉매를 포함하는 탈거용 다공성 담지 촉매(15)가 수용되어 있다.
본 발명의 일 실시예에 따른 산성가스 포집 장치에 포함되는 흡수탑(10)은 산성가스 함유 배가스(G1)와 내부에 수용된 흡수제의 반응에 의해서 산성가스-리치 흡수제를 생성하고, 산성가스가 제거된 배가스(G2)를 외부로 배출시킨다. 상기 산성가스-리치 흡수제란 배가스(G1)에 포함된 산성가스를 흡수하여 초기 흡수제 대비 산성가스의 농도가 높은 흡수제로 정의할 수 있다.
상기 흡수탑(10) 내에서 산성가스를 흡수하는데 사용되는 흡수제는 특별히 한정되지 않으나, 모노에탄올아민, 디에탄올아민, 트리에탄올아민, 이소프로판올아민, 에틸렌아민, 메틸디에탄올아민, 피페리딘, 디부틸아민, 디이소프로필아민 등과 같은 아민계 화합물, 아미노산염, 무기염 및 암모니아로 이루어진 군에서 선택된 1종 이상을 포함하는 것이 바람직하다.
상기 흡수탑(10)에서 흡수되는 산성가스는 특별히 한정되지 않으나, 이산화탄소(CO2), 황화수소(H2S), 이산화황(SO2), 질소(NO2) 및 황화카르보닐(COS)로 이루어진 군에서 선택된 1종 이상을 포함하는 것이 바람직하다.
본 발명의 일 실시예에 따른 산성가스 포집 장치에 포함되는 재생탑(20)은 이송 라인(30)을 통해 상기 흡수탑(10)으로부터 이송된 산성가스-리치 흡수제를 탈거하여 산성가스(G3) 및 산성가스-린 흡수제로 분리시키고, 분리된 산성가스(G3)를 외부로 배출시킨다. 상기 산성가스-린 흡수제란 산성가스-리치 흡수제에서 산성가스(G3)가 탈거되어 산성가스의 농도가 저감된 흡수제(재생 흡수제)로 정의될 수 있다.
이때 상기 재생탑(20) 내부에 다공성 지지체 및 상기 다공성 지지체에 담지된 금속 산화물의 활성 촉매를 포함하는 탈거용 다공성 담지 촉매(15)를 포함한다. 상기 탈거용 다공성 담지 촉매(15)는 흡수제와 산성가스의 반응을 촉진시키는 촉매 역할을 하게 된다.
상기 탈거용 다공성 담지 촉매(15)는 다공성 지지체로 인해 금속 산화물의 활성 촉매의 담지량 및 담지율을 높일 수 있다. 이때, 상기 금속 산화물의 활성 촉매의 담지량 및 담지율이 높으면 흡수제와 산성가스의 반응율을 향상시킬 수 있으며, 이로 인해 본 발명은 높은 산성가스 포집 효율을 나타낼 수 있다.
구체적으로, 탈거용 다공성 담지 촉매(15)는 상기 다공성 지지체 100 중량부를 기준으로, 금속산화물의 활성 촉매 5 내지 10 중량부를 포함하는 것이 바람직하다. 상기 금속산화물의 활성 촉매의 함량이 5 중량부 미만이면 탈거 효율향상이 매우 적고, 10 중량부를 초과하면 촉매 분산이 어려워 활성점이 감소하는 부작용을 보인다.
도 4를 참고하면, 상기 다공성 지지체는 대체로 균일한 기공을 갖는 것이 바람직하고, 이때 공극률이 20 내지 50 %인 것이 바람직하며, 공극률이 30 내지 40%인 것이 더 바람직하다. 또한 평균 기공 직경(mean pore diameter)이 50 내지 150 nm 인 것이 바람직하며, 80 내지 120 nm인 것이 더 바람직하다. 만약, 상기 다공성 지지체의 공극률, 평균 기공 직경이 상기 수치 범위를 벗어나면 담지체의 분산 및 산성촉매 성능 감소로 탈거효율 향상도가 감소 할 수 있다.
상기 다공성 지지체의 균일한 기공은 폴리스티렌 수지와 다공성 지지체의 전구체를 혼합한 혼합물의 열처리에 의한 폴리스티렌 수지 부분의 제거에 의해 형성될 수 있다. 구체적으로, 상기 다공성 지지체를 제조하는 방법은 특별히 한정되지 않으나, 폴리스티렌 비드(Polystyrene bead)를 이용한 졸-겔 방법으로 제조할 수 있다.
상기 다공성 지지체는 Al2O3 및 제올라이트로 이루어진 군으로부터 선택되는 적어도 1종일 수 있다. 상기 금속산화물은 TiO2 및 MoO3로 이루어진 군으로부터 선택되는 적어도 하나인 것일 수 있다.
상기와 같은 균일한 기공의 다공성 지지체에 활성 촉매를 담지시키는 방법은 특별하게 한정되지는 않으며, 다공성 지지체를 활성 촉매 함유 전구체의 용액에 함침시켜서 소정의 온도 및 시간으로 소성함으로써, 다공성 지지체의 균일한 기공 내부에 활성 촉매의 화합물을 담지시키는 방법에 의해 얻을 수도 있다.
상기 탈거용 다공성 담지 촉매(15)는 Al2O3 지지체 - TiO2 활성 촉매, Al2O3 지지체 - MoO3 활성 촉매, 제올라이트 지지체 - TiO2 활성 촉매, 제올라이트 지지체 - MoO3 활성 촉매 및 이들의 혼합으로 이루어진 군으로부터 선택되는 적어도 하나일 수 있다.
본 발명의 일 실시예에 따른 산성가스 포집 장치에 포함되는 재순환 라인(40)은 재생탑(20)으로부터 배출된 산성가스-린 흡수제를 흡수탑(10)으로 재순환시키고, 상기 이송 라인(30)과 교차되어서 열교환기(50)에 의해 이송 라인(30)에 열을 전달시켜준다. 이와 같은 열교환기(50)의 열교환에 의해 재생탑(20)으로 공급되는 산성가스-리치 흡수제는 약 100 내지 105 ℃로 승온되어 재생탑(20)으로 공급될 수 있다.
도 3을 참조하면, 본 발명의 다른 실시예에 따른 산성가스 포집 장치는 이송 라인(30)에 상기 탈거용 다공성 담지 촉매(15)가 설치될 수 있다.
구체적으로, 흡수탑(10)에서 재생탑(20)으로 이송되는 산성가스-리치 흡수제를 재생탑(20) 하부에서 배출되는 산성가스-린 흡수제와 열교환기(50)에 의해 열교환하여 재생탑(20)으로 공급되는 산성가스-리치 흡수제가 재생탑(20)으로 공급되기 전에 이송 라인(30)에 설치된 상기 탈거용 다공성 담지 촉매(15)를 통과하여 산성가스 및 산성가스-린 흡수제로 분리를 촉진시키고, 플래쉬 드럼(35)을 통해 분리된 산성가스(예컨대, CO2)만 분리 시킬 수 있다.
상기 플래쉬 드럼(35)은 기체와 액체가 혼합된 혼합 유체를 분리하는 것으로, 산성가스-리치 흡수제가 재생 플래쉬 드럼(35)을 거침에 따라 산성가스-리치 흡수제에서 기체 성분인 산성가스를 선택적으로 재생탑(20)에 공급할 수 있다. 이에 따라 재생탑(20)으로 공급되는 산성가스-리치 흡수제의 기액 분리가 미리 조절되어 해머링 현상을 방지할 수 있으며, 재생탑(20)에서 흡수제의 재생에 소비되는 에너지(예를 들어, 리보일러(60)에서 공급되는 열에너지)를 낮출 수 있다.
구체적으로, 본 발명의 산성가스 포집 장치는 종래의 산성가스 포집 장치와 대비할 때 리보일러(60)에서 사용되는 스팀량을 10 내지 30 % 정도 감소시킬 수 있으며, 이로 인해 재생탑의 크기를 획기적으로 줄일 수 있다.
이하 본 발명을 실시예를 통하여 상세히 설명하면 다음과 같다. 단, 하기 실시예는 본 발명을 예시하는 것일 뿐, 본 발명이 하기 실시예에 의해 한정되는 것은 아니다.
[ 제조예 1] - 탈거용 다공성 담지 촉매의 제조
알루미늄 이소프로폭사이드(aluminum isopropoxide, AIP) 20g과 물 1,600g을 혼합하여 85℃에서 30분간 400rpm으로 교반하였다. 그 후, 질산 4g을 첨가하여 pH를 4.2에 맞추고 해교과정을 진행하여 알루미나 졸을 제조하였다. 제조된 알루미나 졸에 직경 100 ~ 150 nm 의 폴리스티렌 비드를 40g 첨가한 후, 22시간 동안 교반시켰다. 그 후, 진공증발기에서 20시간동안 서서히 물을 증발시킨 후, 소성로에서 600℃로 5시간동안 열처리하여 폴리스티렌 비드를 제거함으로써, 균일한 기공의 다공성 감마-알루미나를 제조하였다(공극률: 35 %, 평균기공크기: 100 nm, BET 측정 기기(Micromeritics, ASAP2000)를 이용하여 측정된 비표면적: 385 m2/g). Ti 전구체(TiCl4, 농도: 99%)의 용액 50g을 상기에서 얻어진 균일한 기공의 다공성 감마-알루미나 500g에 함침한 후에, 400℃에서 6시간 동안 소성하여서, 탈거용의 다공성 담지 촉매(Al2O3 지지체 - TiO2 활성 촉매)를 제조하였다.
[ 실시예 1]
도 3의 구조를 갖는 산성가스 포집 장치를 이용하여 산성가스를 포집하였다. 흡수제로는 30 wt%의 모노에탄올아민 용액이 사용되었으며, 배가스(G1) 로는 15 vol%의 이산화탄소를 포함하고 있는 40℃의 연소 배가스가 2.0 ㎥의 유량으로 흡수탑 하부에 투입되었다. 상기 흡수제의 순환량은 100 ㎖/min이었으며, 흡수탑에 투입되는 흡수제의 온도는 40℃로 하였다. 이때, 이송라인 도중에 설치된 탈거용 다공성 촉매는 상기 제조예 1에서 얻어진 다공성 담지 촉매(Al2O3 지지체 - TiO2 활성 촉매)를 사용하였다.
[ 실시예 2]
도 2의 구조를 갖는 산성가스 포집 장치를 이용하여 산성가스를 포집하였다. 흡수제로는 30 wt%의 모노에탄올아민 용액이 사용되었으며, 배가스(G1)로는 15 vol%의 이산화탄소를 포함하고 있는 40℃의 연소 배가스가 2.0 ㎥의 유량으로 흡수탑 하부에 투입되었다. 상기 흡수제의 순환량은 100 ㎖/min이었으며, 흡수탑에 투입되는 흡수제의 온도는 40℃로 하였다. 이때, 재생탑 내부에 수용된 탈거용 다공성 촉매는 상기 제조예 1에서 얻어진 다공성 담지 촉매(Al2O3 지지체 - TiO2 활성 촉매)를 사용하였다.
[ 실시예 3]
도 2의 구조를 갖는 산성가스 포집 장치를 이용하여 실시예 2에서와 같이 산성가스 포집 공정을 수행하였다. 이때, 탈거용 다공성 촉매는 상기 제조예 1에서 폴리스티렌 비드를 첨가(사용)하지 않은 것을 제외하고는 동일하게 하여서 얻어진 다공성 담지 촉매(Al2O3 지지체 - TiO2 활성 촉매)를 사용하였다.
[ 실시예 4]
도 2의 구조를 갖는 산성가스 포집 장치를 이용하여 실시예 2에서와 같이 산성가스 포집 공정을 수행하였다. 이때, 탈거용 다공성 촉매는 상기 제조예 1에서 Ti 전구체 (TiCl4, 농도: 99%)의 용액 50g 대신에 Mo 전구체 ((NH4)6Mo7O24·4H2O, 농도: 99%)의 용액 50g을 첨가한 것을 제외하고는 동일하게 하여서 얻어진 다공성 담지 촉매(Al2O3 지지체 - MoO3 활성 촉매)를 사용하였다.
[ 실시예 5]
도 2의 구조를 갖는 산성가스 포집 장치를 이용하여 실시예 2에서와 같이 산성가스 포집 공정을 수행하였다. 이때, 탈거용 다공성 촉매는 상기 제조예 1에서 알루미늄 이소프로폭사이드 20g 대신에 제올라이트 원료물질[소듐알루미네이트(150g) + 콜로이달 실리카 40 wt% 용액(350g)] 500g을 사용한 것을 제외하고는 동일하게 하여서 얻어진 다공성 담지 촉매(제올라이트 지지체 - TiO2 활성 촉매)를 사용하였다.
[ 실시예 6]
도 2의 구조를 갖는 산성가스 포집 장치를 이용하여 산성가스 포집 공정을 수행하였다. 이때, 탈거용 다공성 촉매는 상기 제조예 1에서 알루미늄 이소프로폭사이드 20g 대신에 제올라이트 원료물질[소듐알루미네이트(150g) + 콜로이달 실리카 40 wt% 용액(350g)] 500g을 사용하고 Ti 전구체 (TiCl4, 농도: 99%)의 용액 50g 대신에 Mo 전구체 ((NH4)6Mo7O24·4H2O, 농도: 99%)의 용액 50g을 첨가한 것을 제외하고는 동일하게 하여서 얻어진 다공성 담지 촉매(제올라이트 지지체 - MoO3 활성 촉매)를 사용하였다.
[ 비교예 1]
본 발명에서의 탈거용의 다공성 담지 촉매가 재생탑 및 이송라인의 어디에도 수용되어 있지 않은 도 1의 종래의 구조를 갖는 포집 장치를 이용하되, 높이가 1.2 배 증가된 재생탑이 적용된 것을 제외하고는, 실시예 1과 동일한 조건으로 산성가스를 포집하였다.
[ 실험예 1]
흡수탑에 투입되기 전의 배가스에 포함된 이산화탄소 농도와, 흡수탑을 거쳐 외부로 배출되는 배가스에 포함된 이산화탄소 농도를 가스 분석기로 각각 측정한 후, 이산화탄소 제거율이 90%일 때의 이산화탄소 포집량(ton)당 리보일러 열사용량을 계산하였으며, 그 결과를 하기 표 1에 나타내었다.
구분 리보일러 열사용량(GJ/ton-CO2)
실시예 1 3.46
실시예 2 3.27
실시예 3 3.08
실시예 4 3.00
실시예 5 3.10
실시예 6 2.95
비교예 1 3.85
상기 표 1을 참조하면, 본 발명의 산성가스 포집 장치를 사용함에 따라 리보일러의 열사용량이 낮은 것을 확인할 수 있다.

Claims (9)

  1. 산성가스 함유 배가스와 내부에 수용된 흡수제의 반응에 의해서 산성가스-리치 흡수제를 생성하고, 산성가스가 제거된 배가스를 외부로 배출시키는 흡수탑;
    상기 흡수탑으로부터 이송된 산성가스-리치 흡수제를 탈거하여 산성가스 및 산성가스-린 흡수제로 분리시키고, 분리된 산성가스를 외부로 배출시키는 재생탑;
    상기 흡수탑으로부터 상기 산성가스-리치 흡수제를 상기 재생탑으로 이송시키는 이송 라인; 및
    상기 재생탑으로부터 상기 산성가스-린 흡수제를 상기 흡수탑으로 재순환시키고, 상기 이송 라인과 교차되어서 열교환에 의해 상기 이송 라인에 열을 전달시켜 주는 재순환 라인;을 포함하고,
    상기 재생탑 및 상기 이송 라인 중의 적어도 어느 하나에는 다공성 지지체 및 상기 다공성 지지체에 담지된 금속 산화물의 활성 촉매를 포함하는 탈거용 다공성 담지 촉매가 수용되어 있는 것인 산성가스 포집 장치.
  2. 청구항 1에 있어서,
    상기 다공성 지지체는 공극률(porosity)이 20 내지 50%이며, 평균 기공 직경(mean pore diameter)이 50 내지 150 nm인 것인 산성가스 포집 장치.
  3. 청구항 1에 있어서,
    상기 다공성 지지체의 기공은 폴리스티렌 수지와 다공성 지지체의 전구체를 혼합한 혼합물의 열처리에 의한 폴리스티렌 수지 부분의 제거에 의해 형성된 것인 산성가스 포집 장치.
  4. 청구항 1에 있어서,
    상기 다공성 지지체는 Al2O3 및 제올라이트로 이루어진 군으로부터 선택되는 적어도 1종인 것인 산성가스 포집 장치.
  5. 청구항 1에 있어서,
    상기 금속산화물은 TiO2 및 MoO3로 이루어진 군으로부터 선택되는 적어도 하나인 것인 산성가스 포집 장치.
  6. 청구항 1에 있어서,
    상기 탈거용 다공성 담지 촉매는 Al2O3 지지체 - TiO2 활성 촉매, Al2O3 지지체 - MoO3 활성 촉매, 제올라이트 지지체 - TiO2 활성 촉매, 제올라이트 지지체 - MoO3 활성 촉매 및 이들의 혼합으로 이루어진 군으로부터 선택되는 적어도 하나인 것인 산성가스 포집 장치.
  7. 청구항 1에 있어서,
    상기 탈거용 다공성 담지 촉매는 상기 다공성 지지체 100 중량부를 기준으로, 금속산화물의 활성 촉매 5 내지 10 중량부 포함하는 것인 산성가스 포집 장치.
  8. 청구항 1에 있어서,
    상기 흡수제는 아민계 화합물, 아미노산염, 무기염 및 암모니아로 이루어진 군에서 선택된 1종 이상을 포함하는 것인 산성가스 포집 장치.
  9. 청구항 1에 있어서,
    상기 산성가스는 이산화탄소(CO2), 황화수소(H2S), 이산화황(SO2), 질소(NO2) 및 황화카르보닐(COS)로 이루어진 군에서 선택된 1종 이상을 포함하는 것인 산성가스 포집 장치.
PCT/KR2018/003119 2017-08-25 2018-03-16 산성가스 포집 장치 WO2019039687A1 (ko)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201880024377.7A CN110536736A (zh) 2017-08-25 2018-03-16 酸性气体捕集装置

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR20170108095 2017-08-25
KR10-2017-0108095 2017-08-25

Publications (1)

Publication Number Publication Date
WO2019039687A1 true WO2019039687A1 (ko) 2019-02-28

Family

ID=65438922

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/003119 WO2019039687A1 (ko) 2017-08-25 2018-03-16 산성가스 포집 장치

Country Status (2)

Country Link
CN (1) CN110536736A (ko)
WO (1) WO2019039687A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010120013A (ja) * 2008-10-23 2010-06-03 Hitachi Ltd 二酸化炭素と硫化水素の除去方法および除去装置
JP2010241630A (ja) * 2009-04-03 2010-10-28 Mitsubishi Heavy Ind Ltd Co2回収装置及びその方法
KR20120119839A (ko) * 2011-04-22 2012-10-31 한양대학교 에리카산학협력단 마크로-메조 기공을 갖는 금속촉매/지지체 복합체 및 이를 이용한 수소가스 센서 및 그 제조 방법
KR20140039910A (ko) * 2012-09-25 2014-04-02 한국전력공사 이산화탄소 흡수액 열화 방지 장치
JP5759566B2 (ja) * 2011-11-29 2015-08-05 関西電力株式会社 Co2脱離触媒

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102311134B (zh) * 2010-07-07 2013-08-28 中国石油化工股份有限公司 一种球形整体式大孔氧化铝及其制备方法
CN103221114A (zh) * 2010-09-02 2013-07-24 加州大学评议会 从气流中俘获二氧化碳和/或二氧化硫的方法和系统
EA202192874A1 (ru) * 2013-03-14 2022-01-19 Стамикарбон Б.В. Эктин Андер Те Нейм Оф Мт Инновейшн Сентр Способ удаления cos и cs2
KR20150035170A (ko) * 2013-09-27 2015-04-06 한국전력공사 산성 가스 포집 장치
WO2015186725A1 (ja) * 2014-06-04 2015-12-10 株式会社 東芝 二酸化炭素回収装置および排ガスの処理方法
CN106984333B (zh) * 2017-05-26 2019-11-05 湖南大学 用于富二氧化碳的胺溶液再生的负载型催化剂的制备方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010120013A (ja) * 2008-10-23 2010-06-03 Hitachi Ltd 二酸化炭素と硫化水素の除去方法および除去装置
JP2010241630A (ja) * 2009-04-03 2010-10-28 Mitsubishi Heavy Ind Ltd Co2回収装置及びその方法
KR20120119839A (ko) * 2011-04-22 2012-10-31 한양대학교 에리카산학협력단 마크로-메조 기공을 갖는 금속촉매/지지체 복합체 및 이를 이용한 수소가스 센서 및 그 제조 방법
JP5759566B2 (ja) * 2011-11-29 2015-08-05 関西電力株式会社 Co2脱離触媒
KR20140039910A (ko) * 2012-09-25 2014-04-02 한국전력공사 이산화탄소 흡수액 열화 방지 장치

Also Published As

Publication number Publication date
CN110536736A (zh) 2019-12-03

Similar Documents

Publication Publication Date Title
US20070092427A1 (en) Pre-treatment of lime-based sorbents using hydration
CN106881021B (zh) 一种处理后可直接排放的硫磺尾气净化工艺
CN106457139B (zh) 二氧化碳回收装置及排气的处理方法
CN103962087A (zh) 一种表面包覆改性的纳米氧化钙基co2吸附剂及其制备方法
US7879139B2 (en) Reactivation of lime-based sorbents by CO2 shocking
CN103285712A (zh) 一种离子液循环吸收rfcc再生烟气中so2的方法
CN109589935A (zh) 一种二氧化碳固体吸附剂及其制备方法与应用
WO2015064793A1 (ko) 산소분리 장치를 구비한 이산화탄소 분리 회수 장치 및 이를 이용한 연도가스에서 이산화탄소 분리 회수 방법
WO2023138204A1 (zh) 一种ssz-16含铜催化剂的制备方法
EP0671199A2 (en) Method for the removal of carbon dioxide and sulfor oxides from combustion exhaust gas
TW201545811A (zh) 已穩定無機氧化物載體及從中得到用於捕獲二氧化碳之吸附劑
WO2018066751A1 (ko) 이산화탄소 흡수제용 고체원료, 이를 포함하는 이산화탄소 흡수제 조성물, 및 이를 이용하여 제조된 이산화탄소 흡수제
CN102210968A (zh) 含硫化氢混合气体的脱硫方法
WO2020262779A1 (ko) 청정연료 생산을 위한 바이오가스 정제 시스템 및 방법
US3798310A (en) Method of removing sulfur oxide from gases
CN101480559B (zh) 一种用膜回收烟气中硫的方法
WO2019039687A1 (ko) 산성가스 포집 장치
WO2011049281A1 (ko) 이산화탄소 분리 장치 및 방법
WO2019164081A1 (ko) 이산화탄소 흡수제와 이를 이용한 이산화탄소의 분리방법
WO2021117912A1 (ko) 금속 산화물 촉매를 이용한 아민계 이산화탄소 흡수제의 증류 재생방법
CN101543761B (zh) 一种提高沸石二氧化碳吸附量的方法
CN101450273B (zh) 含氟化合物气体的处理方法
WO2015102136A1 (ko) 암모니아수에 의한 전처리를 통한 에너지 절감형 산성가스 제거 방법
CN113082957A (zh) 一种工业烟气二氧化硫脱除剂及制备方法
WO2015012426A1 (ko) 철-치환 혼종다종산이 함침된 메조포러스 셀 형태, 그 제조방법 및 그를 이용한 이산화탄소 분리방법

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18848815

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18848815

Country of ref document: EP

Kind code of ref document: A1