WO2019039539A1 - 溶鋼中りん濃度推定方法、転炉吹錬制御装置、プログラム及び記録媒体 - Google Patents

溶鋼中りん濃度推定方法、転炉吹錬制御装置、プログラム及び記録媒体 Download PDF

Info

Publication number
WO2019039539A1
WO2019039539A1 PCT/JP2018/031134 JP2018031134W WO2019039539A1 WO 2019039539 A1 WO2019039539 A1 WO 2019039539A1 JP 2018031134 W JP2018031134 W JP 2018031134W WO 2019039539 A1 WO2019039539 A1 WO 2019039539A1
Authority
WO
WIPO (PCT)
Prior art keywords
molten steel
exhaust gas
phosphorus concentration
converter
dephosphorization
Prior art date
Application number
PCT/JP2018/031134
Other languages
English (en)
French (fr)
Inventor
健 岩村
明大 杉本
Original Assignee
新日鐵住金株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 新日鐵住金株式会社 filed Critical 新日鐵住金株式会社
Priority to KR1020197028444A priority Critical patent/KR102232483B1/ko
Priority to CN201880053411.3A priority patent/CN111032887B/zh
Priority to JP2019537673A priority patent/JP6725078B2/ja
Publication of WO2019039539A1 publication Critical patent/WO2019039539A1/ja

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/285Plants therefor
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/30Regulating or controlling the blowing
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21CPROCESSING OF PIG-IRON, e.g. REFINING, MANUFACTURE OF WROUGHT-IRON OR STEEL; TREATMENT IN MOLTEN STATE OF FERROUS ALLOYS
    • C21C5/00Manufacture of carbon-steel, e.g. plain mild steel, medium carbon steel or cast steel or stainless steel
    • C21C5/28Manufacture of steel in the converter
    • C21C5/42Constructional features of converters
    • C21C5/46Details or accessories
    • C21C5/4606Lances or injectors
    • C21C5/462Means for handling, e.g. adjusting, changing, coupling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/25Process efficiency
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P90/00Enabling technologies with a potential contribution to greenhouse gas [GHG] emissions mitigation
    • Y02P90/30Computing systems specially adapted for manufacturing

Definitions

  • the present invention relates to a method for estimating phosphorus concentration in molten steel, a converter blowing controller, a program, and a recording medium.
  • control of components in molten steel at the time of blowout is very important for quality control of steel.
  • the injected oxygen amount, the injection amount of secondary raw material such as quick lime or scale, the injection timing of the secondary raw material, the top blowing lance height, the top blowing oxygen flow rate, and the bottom blowing gas flow rate Etc. are generally used as the amount of operation.
  • These manipulated variables are often determined by information obtained before the start of blowing, such as a target phosphorus concentration, molten metal data, and criteria created based on past operation results and the like.
  • Patent Document 1 the dephosphorization rate constant is estimated using the operating conditions and the exhaust gas measured for the blowing, and the phosphorus concentration in molten steel at the time of blowing is calculated using the estimated dephosphorization rate constant. Techniques for estimating are disclosed. Furthermore, in Patent Document 1 below, the estimated phosphorus concentration in molten steel and the target phosphorus concentration in molten steel are compared, and the phosphorus concentration in molten steel is controlled by changing the operation conditions for blowing based on the comparison result. Technology is disclosed.
  • SRP Simple Refining Process
  • decarburization processing is referred to as "decarburization processing”.
  • dephosphorization treatment is performed using equipment other than a converter such as a ladle or torpedo car, similarly, at the time of decarburization treatment using a converter, blowing is performed in consideration of dephosphorization Is required.
  • CaO sources such as quick lime and slaked lime may be introduced into the converter in order to advance further dephosphorization treatment in parallel with decarburizing treatment.
  • the introduction of such a CaO source promotes the dephosphorization reaction represented by the following chemical formula (101) in the decarburization treatment.
  • the chemical formula (101) below the notation “[substance X]” indicates that substance X is present in the molten metal, and the notation “(substance Y)” indicates that substance Y is a slag Indicates that it is a substance present in it.
  • the degree of progress of the dephosphorization reaction represented by the above chemical formula (101) is related to the hatching status of the CaO source. For example, if the dephosphorization reaction represented by the above chemical formula (101) is promoted, the hatching of the CaO source will proceed. That is, it is considered that the state of hatching of the CaO source affects the phosphorus concentration in the molten steel at the time of the decarburization treatment.
  • the present invention has been made in view of the above problems, and an object of the present invention is to carry out the case where the dephosphorization treatment is not performed prior to the decarburization treatment using a converter, or Method of estimating phosphorus concentration in molten steel capable of accurately estimating phosphorus concentration in molten steel at the time of decarburization processing when dephosphorizing treatment is performed using equipment different from a converter used in treatment, converter blowing controller , Providing a program and a recording medium.
  • a method of estimating phosphorus concentration in molten steel for estimating phosphorus concentration in molten steel at the time of the decarburization processing in the case of performing the above dephosphorization treatment by different facilities and an exhaust gas data acquisition step of acquiring an exhaust gas component and an exhaust gas flow rate
  • the molten steel data acquisition step of acquiring the molten steel temperature and the carbon concentration in the molten steel by sublance measurement, the data relating to the decarboxylation efficiency obtained by using the exhaust gas component and the exhaust gas flow rate, the exhaust gas component, the exhaust gas flow rate, Data on the molten steel temperature and the carbon concentration, and the dephosphorization rate constant calculated using the operating conditions for decarburizing treatment A phosphorus concentration estimating step for estimating the phosphorus concentration in the molten steel after the sublance measurement using the
  • a categorical variable may be used which identifies clusters obtained by time series clustering performed on time series data of a plurality of the decarboxylation efficiencies obtained in past operations.
  • a converter blowing smelting control device for estimating the phosphorus concentration in molten steel at the time of the decarburization processing when the above dephosphorization processing is performed using equipment different from a furnace, and an exhaust gas data acquisition unit for acquiring an exhaust gas component and an exhaust gas flow rate
  • a molten steel data acquisition unit for acquiring the molten steel temperature and the carbon concentration in the molten steel by the sublance measurement, data relating to the decarboxylation element efficiency obtained using the exhaust gas component and the exhaust gas flow rate, the exhaust gas component, the exhaust gas flow rate,
  • the dephosphorization rate constant is calculated using the data relating to the molten steel temperature and the carbon concentration, and the operating conditions relating to the decarburization treatment, and the calculated dephospho
  • the phosphorus concentration estimation unit identifies clusters obtained by time series clustering performed on time series data of a plurality of the decarboxylation efficiencies obtained in the past operation in the calculation of the dephosphorization rate constant. Categorical variables may be used.
  • the dephosphorization rate constant is calculated using the above-mentioned exhaust gas component, the above-mentioned exhaust gas flow rate, the above-mentioned molten steel temperature and the
  • the phosphorus concentration estimating function identifies clusters obtained by time series clustering performed on a plurality of time series data of the decarboxylation efficiency obtained in the past operation in the calculation of the dephosphorization rate constant. Categorical variables may be used.
  • a recording medium on which a program for causing a computer to function as a converter blasting control device for estimating the phosphorus concentration in molten steel at the time of the above decarburization processing when the above dephosphorization processing is performed using equipment different from a furnace is recorded.
  • a recording medium on which a program for causing a computer to realize a function is recorded.
  • the phosphorus concentration estimating function identifies clusters obtained by time series clustering performed on a plurality of time series data of the decarboxylation efficiency obtained in the past operation in the calculation of the dephosphorization rate constant. Categorical variables may be used.
  • the dephosphorization rate constant is calculated using various data including the decarboxylation efficiency and the operating conditions, and the dephosphorization rate constant is used to calculate the dephosphorization rate constant.
  • the phosphorus concentration in molten steel is estimated. In this way, it is possible to reflect in the estimation of the phosphorus concentration in the molten steel the operation factor relating to the state of deterioration of the CaO source at the time of the decarburization treatment of the primary refining.
  • molten steel is referred to as "molten steel” for convenience.
  • molten iron is used as it is.
  • [P] ini is a phosphorus concentration initial value (phosphorus phosphorus concentration) (%)
  • k is a dephosphorization rate constant (sec ⁇ 1 ).
  • the "phosphorus concentration initial value” means the actual value (namely, phosphorus concentration at the time of a decarburization treatment start) of the phosphorus concentration measured immediately before the decarburization process.
  • the actual value of the phosphorus concentration is, for example, the phosphorus concentration actually measured after the hot metal pretreatment which is the previous step (after the dephosphorization treatment).
  • dephosphorization rate constant k for each charge can be determined using the past operation result data.
  • dephosphorization rate constant k i in the charge i is calculated using the following equation (3).
  • [P] end, i is the phosphorus concentration (%) in the molten steel at the time of blow stop
  • t end i is the elapsed time from the start of the decarburization treatment to the time of the blow stop (Sec).
  • a model equation having the dephosphorization rate constant k obtained by the equation (3) as an objective variable is prepared in advance.
  • This model equation can be appropriately constructed by various statistical methods.
  • a regression equation using various operation factors X as explanatory variables is used as the model equation.
  • the regression equation is obtained by a well-known multiple regression analysis method, and is constructed, for example, as the following equation (4).
  • the dephosphorization rate constant k is estimated by substituting the operation factor X at the time of the blowing in the equation (4) below, and the dephosphorization rate constant k is applied to the above equation (2) By this, the phosphorus concentration in molten steel can be estimated.
  • ⁇ j is a regression coefficient corresponding to the j-th operation factor X j
  • ⁇ 0 is a constant.
  • the operation factors shown in the following Table 1 can be mentioned.
  • the operation factors shown in Table 1 below are merely an example, and any operation factor X may be considered in the estimation of the dephosphorization rate constant k.
  • all or part of the operation factors included in Table 1 below may be used to estimate the dephosphorization rate constant k.
  • Patent Document 1 the in-furnace accumulated oxygen amount basic unit obtained by calculating the oxygen balance from the exhaust gas flow rate during blow smelting, the exhaust gas component, the upper bottom blowing gas flow rate, the auxiliary raw material input amount and the molten iron component It was shown that the effect on the dephosphorization rate constant is large. Therefore, in Patent Document 1 described above, the basic unit of stored oxygen amount in the furnace obtained by utilizing exhaust gas data and the like, and the dynamic operation during blowing of the upper blowing lance height, oxygen gas flow rate and bottom blowing gas flow rate, etc. It is shown that it is possible to estimate the dephosphorization rate constant more accurately by further adopting a factor as an explanatory variable of the regression equation shown in the above equation (4) in addition to the explanatory variables described in Table 1 ing.
  • the decarbonation efficiency in the decarburization treatment is an index indicating the efficiency of the reaction between the oxygen blown into the converter and the carbon in the molten steel in the decarburization treatment.
  • the present inventors estimate the phosphorus concentration in molten steel by adopting the decarboxylation efficiency, which reflects the CaO concentration in the slag during blasting at the time of decarburizing treatment, as an operation factor for the estimation of the phosphorus concentration in molten steel. It was conceived that the accuracy could be further improved.
  • data relating to the decarboxylation efficiency and an application example thereof will be described.
  • Such decarboxylation efficiency can be obtained from exhaust gas information discharged from the converter, as described below.
  • the decarboxylation efficiency k 0 [i] (% / (Nm 3 / ton)) is calculated using the following equation (5) based on the exhaust gas flow rate measured in a constant cycle and the exhaust gas information including exhaust gas components Ru.
  • CO [i + N] (%) is the CO concentration in the exhaust gas
  • CO 2 [i + N] (%) is the CO 2 concentration in the exhaust gas
  • V offgas [i (Nm 3 / hr (NTP)) is the total exhaust gas flow rate
  • F O2 [i] (Nm 3 / hr (NTP)) is from the start of blowing to the time of calculation of the decarboxylation efficiency k 0 [i] Input oxygen amount into the converter.
  • F O2 [i] can be calculated from the blown oxygen amount that can be determined before the start of blowing by static control.
  • i in square brackets [] represents a sampling cycle in the measurement of the exhaust gas flow rate and the exhaust gas component.
  • N in square brackets [] corresponds to the analysis delay by the exhaust gas component analyzer (the time delay until the exhaust gas reaches the installation position of the exhaust gas component analyzer).
  • the specific value of the analysis delay N may be appropriately determined in accordance with the installation position of the exhaust gas component analyzer in the flue or the like.
  • NTP means Normal Temperature Pressure.
  • the above equation (5) is derived as follows.
  • the decarburized amount wc [i] (g / sec) per unit time obtained from the exhaust gas information is calculated by the following equation (6).
  • V offgas [i] is divided by 1000 ⁇ 3600 to convert the unit to (L / sec). Moreover, it divides in 22.4 (L / mol) in order to convert into the number of moles. Also, 12 is the atomic weight of carbon.
  • the decarboxylation efficiency k 0 [i] is defined as the decarburized amount (% by weight) divided by the oxygen unit (Nm 3 / ton)
  • the decarboxylation efficiency k 0 [i] is It is expressed by equation (7).
  • W st is the molten steel (hot metal) weight (ton).
  • the time series data is time series data from the start of the decarburization process at the start of the decarburization process.
  • the decarboxylation efficiency k 0 [i] repeats rising and falling.
  • the decarboxylation efficiency k 0 [i] indicates that the oxygen blown into the converter reacts more with carbon than with Fe in molten steel.
  • the state in which the decarboxylation efficiency k 0 [i] is relatively high is a state in which the dephosphorization reaction is not promoted either.
  • the decarboxylation efficiency k 0 [i] when the decarboxylation efficiency k 0 [i] is relatively low, it indicates that oxygen injected into the converter reacts more with Fe in molten steel than carbon. In this case, since more FeO is generated, it is in a situation where the aging of the CaO source is in progress. Therefore, it can be said that the state in which the decarboxylation efficiency k 0 [i] is relatively low is a state in which the dephosphorization reaction is promoted. Thus, the decarboxylation efficiency can be an index that can reflect the phosphorus concentration in molten steel.
  • the decarboxylation element efficiency k 0 [i] largely fluctuates at the beginning of the decarburization treatment, and then often gradually converges to a substantially constant value. It is considered that the change in the decarbonation efficiency at the start is due to the aging of the CaO source due to the progress of the dephosphorization reaction on the converter surface. Therefore, in the present embodiment, data relating to the decarbonation efficiency at the start of the decarburization process can be used as one of the operation factors X j that is an explanatory variable of the above equation (4).
  • the start point of the decarburization process corresponds to a period from the start of the decarburization process to about one third of the total elapsed time in the decarburization process.
  • the average value of the time series data of the decarboxylation efficiency at the start of the decarburization operation is an operation which is an explanatory variable of the above equation (4) which is a regression equation for estimating the dephosphorization rate constant k. It may be used as the factor X j . In this way, the degree of progression of the incubation of the CaO source due to the progress of the dephosphorization reaction can be reflected in the estimation of the dephosphorization rate constant k.
  • the maximum value, the minimum value, or the intermediate value of the time-series data of the decarboxylation efficiency at the start of the decarburization process (specifically, the decarboxylation efficiency at the center time of the measurement target period)
  • a variable based on time-series data of the decarboxylation efficiency such as a change rate of the time-series data (specifically, a change rate of the decarboxylation efficiency in a measurement target period) may be used as an explanatory variable .
  • a categorical variable that identifies a cluster obtained by performing time-series clustering on time-series data of decarboxylation efficiency may be used as an explanatory variable.
  • Time-series clustering is a method of obtaining a distance between time-series data and performing clustering based on the distance.
  • time series clustering is performed in advance on time series data of the decarbonation efficiency at the start of the decarburization process acquired from past operation data.
  • the nearest neighbor method of hierarchical clustering is used as a method of time series clustering.
  • the method of time series clustering is not limited to the present method, and may be, for example, the k-means method of non-hierarchical clustering.
  • time-series clustering is performed such that these time-series data are classified into four clusters, but the number of clusters is not particularly limited. The number of clusters is appropriately set according to the result of clustering.
  • FIG. 2 is a diagram showing an example of results of time series clustering performed on time series data of decarboxylation efficiency.
  • Each graph of FIG. 2 is a graph showing the result of time series clustering for the cluster corresponding to each categorical variable (No. 1 to 8).
  • Data obtained by Moreover, the time-series data of the decarbonation efficiency used for time-series clustering according to the present embodiment is data obtained from the decarbonation efficiency up to 50 seconds after the start of blowing of the decarburization treatment. is there.
  • the time range for selecting time series data of decarboxylation efficiency used for this time series clustering is not particularly limited.
  • the time range corresponds to the trend of time series data of decarboxylation efficiency actually obtained, or It may be appropriately set based on the operation state of the converter blowing facility and the like.
  • each of the broken lines present in each graph shows the time-dependent change of the decarboxylation efficiency in one given decarburization treatment.
  • pieces of data having high similarity of time series data of decarboxylation efficiency are classified into the same cluster.
  • cluster No. As shown in the graph according to No. 1, cluster No. The time series data in which the decarbonation efficiency is gradually increased are classified into 1.
  • cluster No. As shown in the graph according to No. 2, cluster No. In 2, the time-series data in which the decarboxylation efficiency hardly changes are classified.
  • a categorical variable that identifies a cluster obtained by time-series clustering performed on time-series data of decarboxylation efficiency is adopted as the operation factor X j which is an explanatory variable of the equation (4).
  • Can. it is possible to reflect the degree of progress of the aging of the CaO source merely introduced at the time of the decarburization treatment in the estimation of the phosphorus concentration in the molten steel.
  • the degree of progress of the hatching of the CaO source is closely related to the degree of progress of the dephosphorization reaction. Therefore, the degree of progress of the dephosphorization reaction in the decarburization treatment is further added to the estimation of the phosphorus concentration in the molten steel, so that the estimation accuracy of the phosphorus concentration in the molten steel can be further improved.
  • time-series clustering is performed in advance on time-series data of decarbonation efficiency at the start of decarburization processing acquired from past operation data, and the time-series data is classified into a plurality of clusters. Then, a regression equation (equation (4) above) in which the categorical variable for each cluster is one of explanatory variables is constructed in advance for each cluster.
  • a measurement point means the measurement time of decarboxylation efficiency in the object range of the said time-series data. For example, in each cluster shown in FIG. 2, time series data up to a point at which 50 seconds have elapsed from the start of the decarburization processing are classified. If the decarboxylation efficiency is measured every second, the number of measurement points is 50.
  • time series data (S j ) of the decarboxylation efficiency at the time of actual decarburization processing, which is an object to estimate the dephosphorization rate constant k, is acquired, and the time series data of the obtained decarboxylation efficiency and each cluster
  • the difference between the time-series data S j and the average value ⁇ ave, j is obtained as the similarity to the above for each cluster.
  • the cluster having the smallest difference is determined to be the cluster to which the time series data (S j ) belongs, and the categorical variable corresponding to this cluster is used as an explanatory variable relating to the operation factor.
  • the difference any known one can be used, but the difference may be, for example, a sum of squared difference (SSD) shown by the following equation (8).
  • the said difference is suitably calculated
  • the dephosphorization rate constant k can be calculated by substituting the obtained categorical variable into the constructed regression equation together with other explanatory variables.
  • the explanatory variable based on the time-series data of the decarboxylation efficiency is not limited to the example described above.
  • an average value or an intermediate value of time series data of decarboxylation efficiency at the start of the decarburization process, a change rate of the time series data, or the like may be used as an explanatory variable.
  • FIG. 3 is a figure which shows the structural example of the converter blasting system 1 which concerns on one Embodiment of this invention.
  • the converter blowing system 1 according to the present embodiment includes a converter blowing facility 10, a converter blowing control device 20, a measurement control device 30, and an operation database 40.
  • the converter blowing facility 10 includes a converter 11, a flue 12, a top blowing lance 13, a sublance 14, an exhaust gas component analyzer 101, and an exhaust gas flow meter 102.
  • the converter blowing facility 10 starts and stops the supply of oxygen to the hot metal by the upper blowing lance 13 based on the control signal output from the measurement control device 30, for example, the concentration of components in the molten steel by the sublance 14, and the molten steel
  • the temperature measurement, the charging of the cooling material and the auxiliary raw material (for example, quick lime etc.), and the disposal of molten steel and slag by the converter 11 are performed.
  • a feed device for supplying oxygen to the upper blow lance 13 a cold material input device having a drive system for introducing the cold material to the converter 11, and
  • various devices used for blowing in a general converter such as a secondary material feeding device having a drive system for feeding the secondary material into the furnace 11.
  • An upper blowing lance 13 used for blowing is inserted from the furnace port of the converter 11, and oxygen 15 sent from an acid feeder is supplied to the hot metal in the furnace through the upper blowing lance 13.
  • an inert gas such as nitrogen gas or argon gas may be introduced from the bottom of the converter 11 as the bottom blowing gas 16 for stirring the hot metal.
  • a hot metal, a cold material for adjusting the temperature of the hot metal (molten steel), and an auxiliary material for forming slag such as quick lime which is a CaO source are introduced.
  • the powder auxiliary material may be supplied into the converter 11 together with the oxygen 15 through the upper blowing lance 13.
  • oxygen injected and carbon, phosphorus, silicon or the like in the hot metal react to form an oxide.
  • the oxide produced by blowing is discharged as exhaust gas or stabilized as slag.
  • Carbon is removed by oxidation reaction in blowing and phosphorus and the like are taken into slag and removed, thereby producing a low carbon steel with few impurities.
  • the sublance 14 inserted from the furnace port of the converter 11 is immersed in molten steel at a predetermined timing at the time of decarburization processing, and measures the component concentration in the molten steel including the carbon concentration, the molten steel temperature, etc.
  • Used for The measurement of molten steel data such as the component concentration and / or molten steel temperature by the sublance 14 is hereinafter referred to as "sublance measurement”.
  • the molten steel data obtained by the sublance measurement is transmitted to the converter blow controller 20 via the measurement controller 30.
  • the exhaust gas generated by the blowing flows to a flue 12 provided outside the converter 11.
  • an exhaust gas component analyzer 101 and an exhaust gas flow meter 102 are provided.
  • the exhaust gas component analyzer 101 analyzes components contained in the exhaust gas.
  • the exhaust gas component analyzer 101 analyzes, for example, the concentration of CO and CO 2 contained in the exhaust gas.
  • the exhaust gas flow meter 102 measures the flow rate of the exhaust gas.
  • the exhaust gas component analyzer 101 and the exhaust gas flow meter 102 sequentially perform the component analysis and the flow rate measurement of the exhaust gas at a predetermined sampling cycle (for example, a cycle of 5 to 10 (sec)).
  • exhaust gas data Data concerning exhaust gas components analyzed by the exhaust gas component analyzer 101 and data concerning exhaust gas flow rate measured by the exhaust gas flow meter 102 (hereinafter, these data are referred to as "exhaust gas data") are measurement control devices
  • the data are output as time-series data to the converter blowing controller 20 through the reference numeral 30. It is preferable that the exhaust gas data be sequentially output to the converter blowing controller 20 in order for the converter blowing controller 20 to sequentially estimate the phosphorus concentration in molten steel.
  • the converter blow-blowing control device 20 includes a data acquisition unit 201, a cluster determination unit 202, a clustering execution unit 203, a phosphorus concentration estimation unit 204, a converter blow-blowing database 21, and an input / output unit 22.
  • the converter blow-blowing control device 20 has a hardware configuration such as a central processing unit (CPU), a read only memory (ROM), a random access memory (RAM), a storage, and a communication device.
  • CPU central processing unit
  • ROM read only memory
  • RAM random access memory
  • storage a communication device.
  • the functions of the data acquisition unit 201, the cluster determination unit 202, the clustering execution unit 203, and the phosphorus concentration estimation unit 204 are realized by these hardware configurations.
  • the converter blasting database 21 is a database which stores the various data used in the converter blasting control apparatus 20, and is implement
  • the input / output unit 22 is realized by an input device such as a keyboard, a mouse, or a touch panel, an output device such as a display or a printer, and a communication device.
  • the converter blasting control device 20 includes various data stored in the converter blasting database 21, exhaust gas data acquired from the exhaust gas component analyzer 101 and the exhaust gas flow meter 102, and molten steel data acquired from the sublance 14.
  • the phosphorus concentration in molten steel is estimated, using as an input value.
  • the molten steel phosphorus concentration is estimated by the function of each functional unit of the converter blowing controller 20.
  • the converter blowing controller 20 may use the estimated molten steel phosphorus concentration to control the operation of the converter blowing. For example, when it is determined that the estimated molten steel phosphorus concentration exceeds the target molten steel phosphorus concentration stored as one of the target data 212, the converter blasting control device 20 determines the molten steel phosphorus concentration.
  • the operating conditions of the converter blasting can be changed so that is below the target molten steel phosphorus concentration.
  • the phosphorus concentration in the molten steel can be estimated with high accuracy, the quality of the molten steel obtained by the primary refining can be maintained high.
  • the converter blowing controller 20 has a function to control the whole process regarding converter blowing, such as blowing of oxygen to the converter 11 and injection of a cold material and a secondary raw material, for example. Also, for example, the converter blowing controller 20 is carried out in general static control, using a predetermined mathematical model or the like before the start of blowing, the amount of oxygen blown into the converter 11, the cold material It has functions such as determining the input amount (hereinafter referred to as “the amount of cold material”), the input amount of the auxiliary material, and the like. Further, for example, the converter blow-blowing control device 20 has a function of controlling an object to be measured, a measurement timing, and the like of the sublance measurement performed in general dynamic control.
  • the converter blowout database 21 stores hot metal data 211, target data 212, parameters 213 and the like. These data may be added, updated, changed or deleted via an input device or communication device (not shown). For example, among the various data stored in the operation database 40 described later, data used for converter blowing may be added to the converter blowing database 21. Various data stored in the converter blowout database 21 are read by the data acquisition unit 201.
  • storage device which has the converter blasting database 21 which concerns on this embodiment is comprised integrally with the converter blasting control apparatus 20, as shown in FIG. 3, in other embodiment, it is comprised.
  • the storage device having the converter blowout database 21 may be configured separately from the converter blowoff control device 20.
  • the molten metal data 211 is various data related to molten metal in the converter 11.
  • the molten metal data 211 includes information on molten metal (initial molten metal weight for each charge, concentration of molten metal components (carbon, phosphorus, silicon, iron, manganese, etc.), molten metal temperature, molten metal ratio, etc.).
  • various information generally used in decarburization processing for example, information on the addition of auxiliary materials and cooling material (information on auxiliary materials and amount of cooling material), and sublance measurement Information (information about the measurement target, measurement timing, etc.), information about the amount of oxygen blown, etc. may be included.
  • the target data 212 includes data such as a target component concentration and a target temperature in hot metal (in molten steel) after decarburization processing, at the time of measuring the sublance, and the like.
  • the parameters 213 are various parameters used in the cluster determination unit 202 and the phosphorus concentration estimation unit 204.
  • the parameter 213 includes a parameter in a regression equation in which the operation factor is an explanatory variable, and a parameter (such as dephosphorization rate constant) for estimating the phosphorus concentration.
  • the input / output unit 22 has a function of acquiring, for example, the estimation result of the phosphorus concentration in molten steel by the phosphorus concentration estimation unit 204 and outputting the result to various output devices.
  • the input / output unit 22 may cause the operator to display the estimated molten steel phosphorus concentration.
  • the converter blowing control is performed based on the phosphorus concentration in molten steel estimated by the converter blowing squeeze control device 20
  • the input / output unit 22 relates to the converter blowing smelting based on the phosphorus concentration in molten steel estimated.
  • the instruction may be output to the measurement control device 30.
  • the instruction may be an instruction automatically generated by the function related to the converter blowing control that the converter blowing controller 20 has, or the displayed molten steel medium phosphorus concentration (estimated value) It may be an instruction input by the operation of the operator who browsed the information related to.
  • the input / output unit 22 may have a function of an input interface for adding, updating, changing, or deleting various data stored in the converter blasting database 21.
  • the input / output unit 22 may output various data acquired by the data acquisition unit 201, the determination result by the cluster determination unit 202, and the estimation result by the phosphorus concentration estimation unit 204 to the operation database 40.
  • the measurement control device 30 has a hardware configuration such as a CPU, a ROM, a RAM, a storage, and a communication device.
  • the measurement control device 30 communicates with each device provided in the converter blasting facility 10 and has a function of controlling the overall operation of the converter blasting facility 10. For example, according to the instruction from the converter blowing controller 20, the measurement control device 30 inputs the cold material and the auxiliary raw material to the converter 11, blows the oxygen 15 of the upper blowing lance 13, and the sublance 14 Control operations related to immersion in molten steel, sublance measurement, etc.
  • the measurement control device 30 acquires data obtained from each device of the converter blowing facility 10 such as the exhaust gas component analyzer 101, the exhaust gas flow meter 102 and the sublance 14, and outputs the data to the converter blowing controller 20. Send.
  • the operation database 40 is a database realized by a storage device such as a storage, and is a database that stores various data related to the operation of converter blasting.
  • the various data include data obtained from each device of the converter blowing facility 10 acquired by the data acquisition unit 201, a determination result by the cluster determination unit 202, and an estimation result by the phosphorus concentration estimation unit 204.
  • the operation database 40 is data relating to the decarbonation efficiency obtained from the exhaust gas data measured by the exhaust gas component analyzer 101 and the exhaust gas flow meter 102 (that is, time series data of decarboxylation efficiency) Is accumulated for each operation.
  • the operation database 40 outputs time series data of the decarbonation efficiency for each operation to the clustering execution unit 203.
  • storage device which has the operation database 40 which concerns on this embodiment is isolate
  • the converter blow-blowing control device 20 includes functional units of a data acquisition unit 201, a cluster determination unit 202, a clustering execution unit 203, and a phosphorus concentration estimation unit 204.
  • the data acquisition unit 201 acquires various data for estimating the phosphorus concentration in molten steel.
  • the data acquisition unit 201 acquires the hot metal data 211, the target data 212, and the parameter 213 stored in the converter blasting database 21. That is, the data acquisition unit 201 has a function as a molten metal data acquisition unit. These data are acquired at the latest before the estimation processing of phosphorus concentration in molten steel by the phosphorus concentration estimation unit 204 is started.
  • the data acquisition unit 201 acquires various data stored in the converter blasting database 21 before the start of the decarburization process.
  • the data acquisition unit 201 acquires exhaust gas data output from the exhaust gas component analyzer 101 and the exhaust gas flow meter 102. That is, the data acquisition unit 201 has a function as an exhaust gas data acquisition unit.
  • the exhaust gas data acquired is time series data. Acquisition of exhaust gas data is conducted throughout primary refining.
  • the data acquisition unit 201 according to the present embodiment sequentially acquires exhaust gas data sequentially measured by the exhaust gas component analyzer 101 and the exhaust gas flow meter 102.
  • the data acquisition unit 201 can calculate the decarbonation efficiency from the acquired exhaust gas data. That is, the data acquisition unit 201 has a function as a carbon dioxide removal efficiency calculation unit.
  • the decarbonation efficiency is time-series data obtained using the equation (5) from the acquired time-series data of the exhaust gas flow rate and the exhaust gas component.
  • the data acquisition unit 201 calculates time series data of the decarbonation efficiency at least from the start time of the decarburization process to the elapse of a predetermined time from exhaust gas data measured sequentially.
  • the data acquisition unit 201 collectively acquires exhaust gas data from the start of the decarburization process to the elapse of a predetermined time before the intermediate sublance measurement, and removes the acquired exhaust gas data. Time series data of carbonic acid efficiency may be calculated.
  • the data acquisition unit 201 acquires molten steel data obtained by sublance measurement by the sublance 14 at the time of decarburization processing. That is, the data acquisition unit 201 has a function as a molten steel data acquisition unit.
  • the data acquisition unit 201 acquires data related to the decarburization process in addition to the various data described above.
  • the data acquisition unit 201 acquires data output from various devices provided in the converter blasting facility 10 via the measurement control device 30.
  • the data acquisition unit 201 outputs the acquired data to the cluster determination unit 202 and the phosphorus concentration estimation unit 204. Further, the data acquired by the data acquisition unit 201 is stored in the operation database 40.
  • the cluster determination unit 202 determines, among the plurality of clusters extracted by the clustering execution unit 203, a cluster having the highest similarity for the time-series data of the decarboxylation efficiency acquired from the data acquisition unit 201.
  • the method of calculating the degree of similarity is not particularly limited, and various known methods can be used as appropriate.
  • As the degree of similarity for example, as described above, it is possible to use the sum of squared differences between time-series data of the target decarboxylation efficiency and each cluster.
  • the categorical variable corresponding to the cluster determined by the cluster determination unit 202 is output to the phosphorus concentration estimation unit 204.
  • the categorical variable is used as an operation factor X j which is an explanatory variable of the regression equation shown in the above equation (4) used for estimation by the phosphorus concentration estimation unit 204.
  • the clustering execution unit 203 performs clustering on the time series data of decarboxylation efficiency in the past operation acquired from the operation database 40 to obtain a plurality of clusters.
  • the information on the cluster obtained by the clustering execution unit 203 is output to the cluster determination unit 202.
  • information related to the cluster may be output to the operation database 40.
  • the clustering execution unit 203 may appropriately execute clustering when the time series data of the decarboxylation efficiency in the past operation stored in the operation database 40 is updated.
  • the cluster determination part 202 and the clustering execution part 203 do not need to be contained in the converter blasting control apparatus 20.
  • the phosphorus concentration estimation unit 204 uses the various data output from the data acquisition unit 201 and the categorical variable, which is a variable for identifying a cluster output from the cluster determination unit 202, to obtain the phosphorus removal rate constant k. And estimate the phosphorus concentration in molten steel. Specifically, the phosphorus concentration estimation unit 204 first calculates the dephosphorization rate constant k by substituting the above various data and categorical variables as explanatory variables into the regression equation shown in the above equation (4). And the phosphorus concentration estimation part 204 estimates phosphorus concentration in molten steel by substituting the dephosphorization rate constant k calculated to said Formula (2).
  • the phosphorus concentration estimation unit 204 sequentially estimates the dephosphorization rate constant k and the phosphorus concentration in molten steel sequentially after the sublance measurement by the sublance 14 (that is, after the start of acquisition of molten steel data by the data acquisition unit 201). That is, the phosphorus concentration estimation unit 204 estimates the dephosphorization rate constant k and the molten steel phosphorus concentration in the range from the time of sublance measurement to the time of blowing back of the decarburization treatment (at the end point).
  • the variable for example, average value etc.
  • the variable based on the time series data of decarboxylation element efficiency may be used as the said explanatory variable.
  • the converter blow-blowing control device 20 may further include an operation amount calculation unit. Based on the phosphorus concentration in the molten steel estimated by the phosphorus concentration estimation unit 204, the operation amount calculation unit calculates an operation amount such as the blown oxygen amount or the cold material amount in the decarburization process, or the height of the upper blowing lance or the like. It is also good.
  • the function of the operation amount calculation unit may be, for example, the same as the function disclosed in Patent Document 1 above.
  • the phosphorus concentration in molten steel estimated by the phosphorus concentration estimation unit 204 according to the present embodiment is higher in accuracy than the phosphorus concentration in molten steel estimated by the technology disclosed in the above-mentioned Patent Document 1. Therefore, since the reliability of the operation amount calculated by the operation amount calculation unit is also high, it is possible to make the actual phosphorus concentration in molten steel closer to the target phosphorus concentration in molten steel.
  • FIG. 4 is an example of the flowchart of the molten steel phosphorus concentration estimation method by the converter blasting system 1 which concerns on this embodiment.
  • FIG. 4 a flow of a method of estimating phosphorus concentration in molten steel by the converter blasting system 1 according to the present embodiment will be described.
  • the data acquiring unit 201 acquires various data such as data stored in the converter blasting database 21 before starting the converter blasting (step S101). Specifically, the data acquisition unit 201 acquires the hot metal data 211, the target data 212, and the parameter 213.
  • the data acquisition unit 201 acquires data related to the decarburization process from the start of the decarburization process (step S103). Specifically, the data acquisition unit 201 sequentially acquires exhaust gas data measured by the exhaust gas component analyzer 101 and the exhaust gas flow meter 102 from the exhaust gas component analyzer 101 and the exhaust gas flow meter 102. In addition, acquisition of exhaust gas data is continuously performed from the start time of decarburization processing to the end time.
  • the data acquisition process related to the decarburization process according to step S103 is a process that is repeatedly performed until a predetermined time elapses from the start time of the decarburization process (step S105). The predetermined time corresponds to the time range of the time series data of the decarbonation efficiency used in the determination process by the cluster determination unit 202 in the latter stage.
  • the data acquisition unit 201 determines whether a predetermined time (a predetermined time range) has elapsed from the start of the decarburization process (step S105). If the predetermined time has not elapsed from the start of the decarburization process (step S105 / NO), the data acquisition unit 201 acquires data relating to the decarboxylation efficiency (step S107). Specifically, the data acquisition unit 201 sequentially calculates the decarboxylation efficiency from the exhaust gas data acquired sequentially, from the start of the decarburization process to the time when a predetermined time elapses, Get time-lapse data of prime efficiency.
  • a predetermined time a predetermined time range
  • the cluster determination unit 202 sets the operation factor as the operation factor based on the time-series data of the decarboxylation efficiency obtained in step S107.
  • the cluster to be used is determined (step S109). Specifically, the cluster determination unit 202 determines, among the clusters extracted by the clustering execution unit 203, the cluster having the highest similarity among the time series data of the decarboxylation efficiency at the start of the decarburization process of the main charge. .
  • the cluster determination unit 202 outputs the categorical variable corresponding to the cluster determined here to the phosphorus concentration estimation unit 204.
  • the data acquisition unit 201 continues to acquire data related to the decarburization process (step S111).
  • the data acquisition process related to the decarburization process according to step S111 is a process that is repeatedly performed from the time when a predetermined time has elapsed from the start time of the decarburization process to the end time of the decarburization process (step S117).
  • the process according to step S111 is similar to the process according to step S103. Further, at the timing when the sublance measurement is performed, the data acquisition unit 201 acquires molten steel data.
  • the phosphorus concentration estimation unit 204 determines whether sublance measurement has already been performed in the method for estimating phosphorus concentration in molten steel according to the present embodiment (step S113). If the sublance measurement has not been performed yet (step S113 / NO), the phosphorus concentration estimation unit 204 does not estimate the phosphorus concentration in molten steel, and the data acquisition unit 201 repeatedly uses data related to decarburization processing such as exhaust gas data. It acquires (step S111). On the other hand, when the sublance measurement has already been performed (step S113 / YES), the phosphorus concentration estimation unit 204 estimates the phosphorus concentration in molten steel (step S115).
  • the phosphorus concentration estimation unit 204 first estimates the dephosphorization rate constant k and the phosphorus concentration in molten steel at the time of sublance measurement. This is because the molten steel temperature actual value and the molten steel carbon concentration actual value obtained by the sublance measurement are effective due to the high accuracy of the estimation of the dephosphorization rate constant k. More specifically, the dephosphorization rate constant is obtained by first substituting explanatory variables based on various data including the actual temperature of molten steel and the actual value of carbon concentration in molten steel obtained by the sublance measurement into the regression equation of the above equation (4) get k.
  • the hot metal phosphorus concentration is made the phosphorus concentration initial value [P] ini , and decarburization treatment
  • the phosphorus concentration [P] at the time of sublance measurement is determined by substituting the elapsed time from the start to the time of sublance measurement as t in the above equation (2).
  • the phosphorus concentration estimation unit 204 determines whether the decarburization processing has ended (step S117).
  • the phosphorus concentration estimation unit 204 sets the estimated value of phosphorus concentration in molten steel at the time of the sublance measurement as an initial value until the time when the decarburization processing is completed.
  • the estimation of the dephosphorization rate constant k according to the equation (4) and the estimation of the phosphorus concentration in the molten steel according to the equation (2) using the estimated k are repeated (the process according to step S111 to step S115).
  • the phosphorus concentration estimation unit 204 ends the estimation processing of the phosphorus concentration in molten steel according to the present embodiment.
  • the timing at which the process of step S101 and the processes of step S107 and step S109 are performed is not particularly limited as long as it is before the process of estimating the molten steel phosphorus concentration in step S115 is started.
  • the data acquisition unit 201 acquires data relating to the decarboxylation efficiency all at once from various devices
  • the determination process of S may be completed before the estimation process of the molten steel phosphorus concentration in step S115 is started. This is because it is sufficient if the data used to estimate the phosphorus concentration in the molten steel is prepared at the start of the estimation processing of the phosphorus concentration in the molten steel in step S115.
  • the hatching condition of the CaO source in the decarburization process reflects the degree of progress of the dephosphorization reaction that affects the phosphorus concentration in the molten steel.
  • the hatching status of this CaO source is related to the decarbonation efficiency in the decarburization treatment. From this, according to the present embodiment, as one of operation factors used as an explanatory variable for calculating the dephosphorization rate constant k, time-series data of decarboxylation efficiency at the start of the decarburization treatment (and / Or an average value of time series data of decarboxylation efficiency is used.
  • the decarboxylation efficiency obtained at the time of the decarburization treatment is applied to the estimation of the phosphorus concentration in molten steel as the state of hatching of CaO related to the degree of progress of the dephosphorization reaction.
  • a categorical variable identifying a cluster obtained by time series clustering performed on time series data of decarbonation efficiency at the time of operation in the past is used as an explanatory variable relating to an operation factor. . Then, a cluster similar to the tendency indicated by the time series data of decarboxylation efficiency obtained at the time of actual operation is determined, and the categorical variable corresponding to the determined cluster is regressed as an explanatory variable relating to the operation factor of the charge. Assigned to an expression. As a result, it is possible to simply reflect the variation pattern of the decarboxylation efficiency at the start of the decarburization treatment in the estimation of the dephosphorization rate constant k. That is, the estimation accuracy of the molten steel phosphorus concentration in converter blasting can be further enhanced.
  • the structure shown in FIG. 3 is an example of the converter blasting system 1 which concerns on this embodiment to the last, and the specific structure of the converter blasting system 1 is not limited to this example.
  • the converter blasting system 1 may be configured to be able to realize the functions described above, and can take any configuration that can be generally assumed.
  • each function with which the converter blowout control device 20 is provided may not be performed in one device, and may be performed by cooperation of a plurality of devices.
  • one apparatus having only one or more of the functions of the data acquisition unit 201, the cluster determination unit 202, the clustering execution unit 203, and the phosphorus concentration estimation unit 204 may be combined with another device having another function.
  • functions equivalent to those of the illustrated converter blow-blowing control device 20 may be realized.
  • a computer program for realizing each function of the converter blow-blowing control device 20 according to the present embodiment shown in FIG. 3 and to install it on a processing device such as a PC.
  • a computer readable recording medium in which such a computer program is recorded can be provided.
  • the recording medium is, for example, a magnetic disk, an optical disk, a magneto-optical disk, a flash memory or the like.
  • the above computer program may be distributed via, for example, a network without using a recording medium.
  • the application object of this invention is not limited only to SRP operation.
  • the converter blasting system 1 according to the present invention performs the hot metal pretreatment using equipment such as a ladle and a torpedo car
  • the converter is charged with the molten iron and decarburized, and removal
  • the present invention is also applicable to an operation using a plurality of converters, in which dephosphorization is performed using a converter different from the converter that performs charcoal treatment.
  • the converter blasting system 1 which concerns on this invention is applicable also to the ordinary kiln operation which a hot metal pre-processing is not implemented.
  • the phosphorus concentration initial value [P] ini is, for example, the phosphorus concentration actually measured after the desulfurization treatment which is a general pre-process.
  • the phosphorus concentration in the molten steel at the time of sublance measurement was calculated for each of the example and the comparative example.
  • the phosphorus concentration in the molten steel was obtained by substituting the dephosphorization rate constant k obtained by the above equation (4) into the above equation (2).
  • the calculated molten steel phosphorus concentration is hereinafter referred to as "estimated value”.
  • the actual value of the molten steel phosphorus concentration at the time of sublance measurement was measured in order to verify the estimation accuracy of the molten steel phosphorus concentration according to the example and the comparative example.
  • the error (estimated error) between the estimated value of the molten steel phosphorus concentration and the actual value according to the example and the comparative example was calculated, and the standard deviation (%) of the estimated error was determined. The smaller the standard deviation, the smaller the estimation error, ie, the higher the estimation accuracy.
  • the explanatory variables used for the regression shown by said Formula (4) are as showing in following Table 2.
  • the conventional operation factor shown in the above-mentioned Table 1 was used as an explanatory variable.
  • categorical variables corresponding to the clusters determined by the cluster determination unit 202 with respect to time series data of the decarboxylation efficiency were used.
  • FIG. 5 is a graph showing the standard deviation of the estimation error relative to the actual value of the phosphorus concentration in molten steel at the time of measuring the sublance according to the example and the comparative example.
  • the standard deviation of the estimation error is smaller than that of the comparative example, and it can be seen that the estimation accuracy of the molten steel phosphorus concentration is further improved.
  • the inventors of the present invention have found that the dephosphorization efficiency tends to fluctuate depending on the state of transition of the decarboxylation efficiency as a result of analyzing the regression results according to the regression equation represented by the above equation (4) for each charge.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Botany (AREA)
  • Carbon Steel Or Casting Steel Manufacturing (AREA)

Abstract

【課題】脱炭処理時の溶鋼中りん濃度を精度高く推定する。 【解決手段】本発明に係る溶鋼中りん濃度推定方法は、転炉を用いた脱炭処理の前に、脱りん処理を行わない場合、または脱炭処理で用いる転炉とは異なる設備により脱りん処理を行う場合における、脱炭処理時の溶鋼中りん濃度を推定するためのものであり、排ガス成分および排ガス流量を取得する排ガスデータ取得ステップと、サブランス測定により溶鋼温度および溶鋼中の炭素濃度を取得する溶鋼データ取得ステップと、排ガス成分および排ガス流量を用いて得られる脱炭酸素効率に係るデータ、排ガス成分、排ガス流量、溶鋼温度および炭素濃度に係るデータ、並びに、脱炭処理に係る操業条件を用いて脱りん速度定数を算出し、算出された脱りん速度定数と、脱炭処理開始時の溶鋼中のりん濃度とを用いて、サブランス測定以降における溶鋼中のりん濃度を推定するりん濃度推定ステップと、を含む。

Description

溶鋼中りん濃度推定方法、転炉吹錬制御装置、プログラム及び記録媒体
 本発明は、溶鋼中りん濃度推定方法、転炉吹錬制御装置、プログラム及び記録媒体に関する。
 転炉吹錬において吹止め時の溶鋼中成分の制御(特に、溶鋼中りん濃度の制御)は、鋼の品質管理上非常に重要である。溶鋼中りん濃度の制御のために、吹込み酸素量、生石灰またはスケール等の副原料の投入量、当該副原料の投入タイミング、上吹きランス高さ、上吹き酸素流量、および、底吹きガス流量等が、一般に操作量として用いられている。これらの操作量は、目標りん濃度、溶銑データおよび過去の操業実績等に基づいて作成された基準などといった、吹錬開始前に得られる情報により決定されることが多い。
 しかしながら、同じような操業条件であっても、実際の吹錬における脱りん挙動の再現性は低く、吹止め時の溶鋼中りん濃度のばらつきが大きくなるという問題があった。そのため、上記のような吹錬開始前に得られる情報のみに基づいて決定された操作量による吹錬では、吹止め時の溶鋼中りん濃度のばらつきを抑制することは困難であった。
 上記問題に対応すべく、吹錬時に逐次的に得られる排ガス成分および排ガス流量等の測定値を活用した技術が開発されている。例えば、下記特許文献1には、吹錬に係る操業条件および排ガスに関する測定値を用いて脱りん速度定数を推定し、推定された脱りん速度定数を用いて吹錬時の溶鋼中りん濃度を推定する技術が開示されている。さらに、下記特許文献1には、推定された溶鋼中りん濃度と目標溶鋼中りん濃度とを比較し、その比較結果に基づいて吹錬に係る操業条件を変更することにより溶鋼中りん濃度を制御する技術が開示されている。
特開2013-23696号公報
 近年、一次精錬において、転炉を用いた脱りん処理等の溶銑予備処理が一般に行われている。このような一次精錬の操業技術として、脱りん処理と脱炭処理とを別々の転炉で行うシンプル・リファイニング・プロセス(Simple Refining Process:SRP)と呼ばれる技術が存在する。このSRPにおいては、1基目の転炉では脱りん処理が行われ、2基目の転炉では脱炭処理が行われる。かかる技術では、高効率でりんを除去することが可能である。
 しかしながら、近年では、溶銑中りん濃度の上昇に伴い、脱りん処理のみでは脱りんが十分に行えないという問題があった。そのため、転炉を用いた脱炭処理時においても、脱りんを考慮した吹錬を行うことが要求される。以降、転炉を用いた脱炭処理を、「脱炭処理」と表記する。また、取鍋やトーピードカー等の転炉以外の設備を用いて脱りん処理を行う場合であっても、同様に、転炉を用いた脱炭処理時において、脱りんを考慮した吹錬を行うことが要求される。また、脱炭処理前の溶銑予備処理として脱りん処理を行わない普通銑操業の場合は、一般的には溶銑中りん濃度が高く、脱炭処理時において脱りんを考慮した吹錬を行うことが要求される。
 そこで、例えば、脱炭処理の吹錬初期において、脱炭処理と並行して更なる脱りん処理を進めるために、生石灰や消石灰等のCaO源が転炉に投入され得る。かかるCaO源の投入により、脱炭処理において、下記化学式(101)に示す脱りん反応が促進される。なお、下記化学式(101)において、「[物質X]」との表記は、物質Xが溶銑中に存在する物質であることを示し、「(物質Y)」との表記は、物質Yがスラグ中に存在する物質であることを示す。
Figure JPOXMLDOC01-appb-M000001
 上記化学式(101)で表される脱りん反応の進行の程度は、CaO源の滓化状況と関連する。例えば、上記化学式(101)で表される脱りん反応が促進されれば、CaO源の滓化が進行することとなる。すなわち、CaO源の滓化状況が、脱炭処理時における溶鋼中りん濃度に影響すると考えられる。
 上記特許文献1では、転炉吹錬の操業時の操業条件等を用いて溶鋼中りん濃度の推定が行われている。しかしながら、上記特許文献1では、脱炭処理時のCaO源の滓化状況については考慮されていない。脱炭処理時における溶鋼中りん濃度が脱炭処理時のCaO源の滓化状況に影響することを考慮すると、上記特許文献1に開示された技術では、脱炭処理時における溶鋼中りん濃度を精度高く推定することは困難である。
 そこで、本発明は、上記問題に鑑みてなされたものであり、本発明の目的とするところは、転炉を用いた脱炭処理の前に、脱りん処理を行わない場合、または、脱炭処理で用いる転炉とは異なる設備により脱りん処理を行う場合の、脱炭処理時の溶鋼中りん濃度を精度高く推定することが可能な、溶鋼中りん濃度推定方法、転炉吹錬制御装置、プログラムおよび記録媒体を提供することにある。
 上記課題を解決するために、本発明のある観点によれば、転炉を用いた脱炭処理の前に、脱りん処理を行わない場合、または、上記脱炭処理で用いる上記転炉とは異なる設備により上記脱りん処理を行う場合の、上記脱炭処理時の溶鋼中りん濃度を推定するための溶鋼中りん濃度推定方法であって、排ガス成分および排ガス流量を取得する排ガスデータ取得ステップと、サブランス測定により溶鋼温度および溶鋼中の炭素濃度を取得する溶鋼データ取得ステップと、上記排ガス成分および上記排ガス流量を用いて得られる脱炭酸素効率に係るデータ、上記排ガス成分、上記排ガス流量、上記溶鋼温度および上記炭素濃度に係るデータ、並びに、脱炭処理に係る操業条件を用いて脱りん速度定数を算出し、算出された上記脱りん速度定数と、上記脱炭処理開始時の溶鋼中のりん濃度とを用いて、上記サブランス測定以降における上記溶鋼中のりん濃度を推定するりん濃度推定ステップと、を含む、溶鋼中りん濃度推定方法が提供される。
 上記脱りん速度定数の算出において、過去の操業において取得された複数の上記脱炭酸素効率の時系列データに対して行われた時系列クラスタリングにより得られるクラスタを識別するカテゴリ変数を用いてもよい。
 また、上記課題を解決するために、本発明の別の観点によれば、転炉を用いた脱炭処理の前に、脱りん処理を行わない場合、または、上記脱炭処理で用いる上記転炉とは異なる設備により上記脱りん処理を行う場合の、上記脱炭処理時の溶鋼中りん濃度を推定する転炉吹錬制御装置であって、排ガス成分および排ガス流量を取得する排ガスデータ取得部と、サブランス測定により溶鋼温度および溶鋼中の炭素濃度を取得する溶鋼データ取得部と、上記排ガス成分および上記排ガス流量を用いて得られる脱炭酸素効率に係るデータ、上記排ガス成分、上記排ガス流量、上記溶鋼温度および上記炭素濃度に係るデータ、並びに、脱炭処理に係る操業条件を用いて脱りん速度定数を算出し、算出された上記脱りん速度定数と、上記脱炭処理開始時の溶鋼中のりん濃度とを用いて、上記サブランス測定以降における上記溶鋼中のりん濃度を推定するりん濃度推定部と、を備える、転炉吹錬制御装置が提供される。
 上記りん濃度推定部は、上記脱りん速度定数の算出において、過去の操業において取得された複数の上記脱炭酸素効率の時系列データに対して行われた時系列クラスタリングにより得られるクラスタを識別するカテゴリ変数を用いてもよい。
 また、上記課題を解決するために、本発明の別の観点によれば、転炉を用いた脱炭処理の前に、脱りん処理を行わない場合、または、上記脱炭処理で用いる上記転炉とは異なる設備により上記脱りん処理を行う場合の、上記脱炭処理時の溶鋼中りん濃度を推定する転炉吹錬制御装置としてコンピュータを機能させるためのプログラムであって、排ガス成分および排ガス流量を取得する排ガスデータ取得機能と、サブランス測定により溶鋼温度および溶鋼中の炭素濃度を取得する溶鋼データ取得機能と、上記排ガス成分および上記排ガス流量を用いて得られる脱炭酸素効率に係るデータ、上記排ガス成分、上記排ガス流量、上記溶鋼温度および上記炭素濃度に係るデータ、並びに、脱炭処理に係る操業条件を用いて脱りん速度定数を算出し、算出された上記脱りん速度定数と、上記脱炭処理開始時の溶鋼中のりん濃度とを用いて、上記サブランス測定以降における上記溶鋼中のりん濃度を推定するりん濃度推定機能と、をコンピュータに実現させるためのプログラムが提供される。
 上記りん濃度推定機能は、上記脱りん速度定数の算出において、過去の操業において取得された複数の上記脱炭酸素効率の時系列データに対して行われた時系列クラスタリングにより得られるクラスタを識別するカテゴリ変数を用いてもよい。
 また、上記課題を解決するために、本発明の別の観点によれば、転炉を用いた脱炭処理の前に、脱りん処理を行わない場合、または、上記脱炭処理で用いる上記転炉とは異なる設備により上記脱りん処理を行う場合の、上記脱炭処理時の溶鋼中りん濃度を推定する転炉吹錬制御装置としてコンピュータを機能させるためのプログラムが記録された記録媒体であって、排ガス成分および排ガス流量を取得する排ガスデータ取得機能と、サブランス測定により溶鋼温度および溶鋼中の炭素濃度を取得する溶鋼データ取得機能と、上記排ガス成分および上記排ガス流量を用いて得られる脱炭酸素効率に係るデータ、上記排ガス成分、上記排ガス流量、上記溶鋼温度および上記炭素濃度に係るデータ、並びに、脱炭処理に係る操業条件を用いて脱りん速度定数を算出し、算出された上記脱りん速度定数と、上記脱炭処理開始時の溶鋼中のりん濃度とを用いて、上記サブランス測定以降における上記溶鋼中のりん濃度を推定するりん濃度推定機能と、をコンピュータに実現させるためのプログラムが記録された記録媒体が提供される。
 上記りん濃度推定機能は、上記脱りん速度定数の算出において、過去の操業において取得された複数の上記脱炭酸素効率の時系列データに対して行われた時系列クラスタリングにより得られるクラスタを識別するカテゴリ変数を用いてもよい。
 上記溶鋼中りん濃度推定方法および上記転炉吹錬制御装置では、脱炭酸素効率を含む種々のデータおよび操業条件を用いて脱りん速度定数が算出され、算出された脱りん速度定数を用いて溶鋼中りん濃度が推定される。これにより、一次精錬の脱炭処理時におけるCaO源の滓化状況に係る操業要因を、溶鋼中りん濃度の推定に反映させることができる。
 したがって、転炉を用いた脱炭処理の前に、脱りん処理を行わない場合、または、脱炭処理で用いる転炉とは異なる設備により脱りん処理を行う場合の、脱炭処理時の溶鋼中りん濃度を、従来よりもより一層精度高く推定することが可能である。
脱炭処理時における脱炭酸素効率k[i]の時系列データの例を示すグラフである。 脱炭酸素効率の時系列データに対して行われた時系列クラスタリングの結果の例を示す図である。 本発明の一実施形態に係る転炉吹錬システムの構成例を示す図である。 同実施形態に係る転炉吹錬システムによる溶鋼中りん濃度推定方法のフローチャートの一例である。 実施例および比較例に係る、サブランス測定時の溶鋼中りん濃度の実績値に対する推定誤差の標準偏差を示すグラフである。
 以下に添付図面を参照しながら、本発明の好適な実施の形態について詳細に説明する。なお、本明細書及び図面において、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重複説明を省略する。
 なお、脱炭処理時の転炉内には、その炭素濃度に応じて銑鉄又は鋼が存在し得るが、以下の説明では、説明が煩雑になることを避けるために、「転炉内の溶銑又は溶鋼」のことを、便宜的に、いずれも「溶鋼」と呼称することとする。また、脱炭処理開始時において転炉に装入される溶銑については、そのまま「溶銑」という単語を用いる。
<<1.本実施形態に係る溶鋼中りん濃度の推定方法>>
 本実施形態に係る転炉吹錬システム1の構成および機能について説明する前に、本実施形態に係る溶鋼中りん濃度の推定方法について説明する。なお、以下の説明においては、特に説明がない限り、各成分の濃度の単位である(質量%)は、(%)と記載する。
(操業条件、操業要因を用いた溶鋼中りん濃度の推定方法)
 吹錬中の溶鋼中りん濃度[P](%)の時間変化が1次反応式で表されると仮定すると、当該1次反応式は、下記式(1)のように示される。
Figure JPOXMLDOC01-appb-M000002
 ここで、上記式(1)において、[P]iniは、りん濃度初期値(溶銑りん濃度)(%)であり、kは、脱りん速度定数(sec-1)である。なお、ここで言う「りん濃度初期値」とは、脱炭処理の直前に実測されたりん濃度の実績値(すなわち、脱炭処理開始時におけるりん濃度)を意味する。かかるりん濃度の実績値は、例えば、前工程である溶銑予備処理後(脱りん処理後)に実測されたりん濃度である。
 正確な脱りん速度定数kが得られれば、溶鋼中りん濃度を高精度に推定することができる。ただし、一般に実際の吹錬における脱りん速度定数kは一定ではなく、様々な操業条件の影響を受けて変動すると考えられる。そのため、例えば上記特許文献1(特開2013-23696号公報)に開示されているように、溶銑成分および溶銑温度のようなスタティックな情報だけではなく、逐次的に測定される排ガス成分に係るデータおよび排ガス流量に係るデータ等の排ガスデータのような吹錬中のダイナミックな情報を活用して、脱りん速度定数kを推定することが行われる。以下、脱りん速度定数kの推定方法について説明する。
 上記式(1)より、吹錬開始(脱炭処理開始)からt秒後における溶鋼中りん濃度は、下記式(2)のように示される。
Figure JPOXMLDOC01-appb-M000003
 そうすると、過去の操業実績データを用いて、チャージ毎の脱りん速度定数kを求めることができる。例えば、チャージiにおける脱りん速度定数kは、下記式(3)を用いて算出される。
Figure JPOXMLDOC01-appb-M000004
 ここで、上記式(3)において、[P]end,iは、吹止め時の溶鋼中りん濃度(%)であり、tend,iは、脱炭処理開始から吹止め時点までの経過時間(sec)である。
 そして、上記式(3)により得られた脱りん速度定数kを目的変数とするモデル式を、予め作成しておく。このモデル式は、種々の統計的手法により適宜構築可能である。本実施形態では、当該モデル式として、種々の操業要因Xを説明変数とする回帰式が用いられる。当該回帰式は、周知の重回帰分析手法によって得られ、例えば下記式(4)のように構築される。実際の吹錬では、当該吹錬時における操業要因Xを下記式(4)に代入することにより、脱りん速度定数kが推定され、当該脱りん速度定数kを上記式(2)に適用することにより、溶鋼中りん濃度が推定され得る。
Figure JPOXMLDOC01-appb-M000005
 
 ここで、上記式(4)において、αは、j番目の操業要因Xに対応する回帰係数であり、αは、定数である。また、操業要因Xの具体例としては、下記表1に示す操業要因が挙げられる。ただし、下記表1に示す操業要因はあくまで一例であって、脱りん速度定数kの推定においては、あらゆる操業要因Xが考慮されてよい。また、脱りん速度定数kの推定には、下記表1に含まれる操業要因の全部または一部が用いられてもよい。
Figure JPOXMLDOC01-appb-T000006
 また、上記特許文献1によれば、吹錬中の排ガス流量、排ガス成分、上底吹きガス流量、副原料投入量および溶銑成分から酸素収支を計算して得られる炉内蓄積酸素量原単位が、脱りん速度定数に及ぼす影響が大きいことが示された。したがって、上記特許文献1では、排ガスデータ等を活用して得られる炉内蓄積酸素量原単位、並びに、上吹きランス高さ、酸素ガス流量および底吹きガス流量等の吹錬中のダイナミックな操業要因を、上記式(4)に示される回帰式の説明変数として、表1に記載の説明変数に加えてさらに採用することにより、より精度よく脱りん速度定数の推定が可能であると示されている。
(脱炭酸素効率に係るデータの利用)
 CaO源の滓化は、転炉内に吹込まれた酸素が溶鋼中のFeと反応して、FeOが多く生成されることにより、進行しやすくなると考えられる。この場合、転炉内に吹込まれた酸素が溶鋼中の炭素と反応する割合が、低下し得る。そこで、転炉内に吹込まれた酸素の、溶鋼中の炭素との反応状況を把握することにより、CaO源の滓化状況を把握することができる旨に本発明者らは想到した。
 転炉内に吹込まれた酸素の、溶鋼中の炭素との反応状況を示す指標の例として、脱炭酸素効率がある。脱炭処理における脱炭酸素効率とは、転炉内に吹込まれる酸素と、脱炭処理における溶鋼中の炭素と、の反応の効率を示す指標である。本発明者らは、脱炭処理時の吹錬におけるスラグ中のCaO濃度を反映する脱炭酸素効率を、溶鋼中りん濃度の推定に係る操業要因として採用することにより、溶鋼中りん濃度の推定精度をより向上させることができる旨に想到した。以下、脱炭酸素効率に係るデータ、および、その利用例について説明する。かかる脱炭酸素効率は、以下に示すように、転炉から排出される排ガス情報から取得することができる。
 脱炭酸素効率k[i](%/(Nm/ton))は、定周期で測定される排ガス流量および排ガス成分を含む排ガス情報に基づいて、下記式(5)を用いて算出される。
Figure JPOXMLDOC01-appb-M000007
 ここで、上記式(5)において、CO[i+N](%)は、排ガス中のCO濃度であり、CO[i+N](%)は、排ガス中のCO濃度であり、Voffgas[i](Nm/hr(NTP))は、総排ガス流量であり、FO2[i](Nm/hr(NTP))は、吹錬開始から脱炭酸素効率k[i]算出時までの転炉内への入力酸素量である。なお、FO2[i]は、スタティック制御により吹錬開始前に決定され得る吹込酸素量から算出され得る。また、角括弧[]内のiは、排ガス流量および排ガス成分の測定におけるサンプリング周期を表している。また、角括弧[]内のNは、排ガス成分分析計による分析遅れ(排ガスが排ガス成分分析計の設置位置に至るまでの時間的な遅れ)に対応する。分析遅れNの具体的な値は、煙道における排ガス成分分析計の設置位置等に応じて、適宜決定されてよい。また、「NTP」は、Normal Temperature Pressureを意味する。
 なお、上記式(5)は、以下のように導出される。排ガス情報から求められる単位時間当たりの脱炭量wc[i](g/sec)は、下記式(6)によって算出される。
Figure JPOXMLDOC01-appb-M000008
 ここで、上記式(6)において、Voffgas[i]を1000×3600で除しているのは、単位を(L/sec)に変換するためである。また、22.4(L/mol)で除しているのは、モル数に換算するためである。また、12は、炭素の原子量である。
 脱炭酸素効率k[i]は、脱炭量(重量%)を酸素原単位(Nm/ton)で割ったものとして定義されるため、脱炭酸素効率k[i]は、下記数式(7)によって表現される。ここで、Wstは溶鋼(溶銑)重量(ton)である。下記式(7)を上記式(6)に代入すれば、上記式(5)が得られる。
Figure JPOXMLDOC01-appb-M000009
 図1は、脱炭処理時における脱炭酸素効率k[i]の時系列データの例を示すグラフである。なお、当該グラフにより示されるデータは、実際に得られた脱炭酸素効率k[i]のデータに対し、平均=0となり、かつ、標準偏差=1となるように標準化処理を施すことにより得られたデータである。当該時系列データは、脱炭処理始期における脱炭処理開始時点からの時系列データである。
 図1のグラフに示した例では、脱炭酸素効率k[i]は上昇と下降を繰り返している。脱炭酸素効率k[i]が相対的に高いときは、転炉内に吹込まれた酸素が溶鋼中のFeより炭素とより多く反応していることを示している。この場合、FeOがあまり生成されないため、CaO源の滓化は進行しにくい。そのため、脱炭酸素効率k[i]が相対的に高い状態は、脱りん反応も促進されていない状態であるといえる。一方で、脱炭酸素効率k[i]が相対的に低いときは、転炉内に吹込まれた酸素が炭素よりも溶鋼中のFeとより多く反応していることを示している。この場合、FeOがより多く生成されるため、CaO源の滓化が進行している状況である。そのため、脱炭酸素効率k[i]が相対的に低い状態は、脱りん反応が促進されている状態であるといえる。このように、脱炭酸素効率は、溶鋼中りん濃度を反映し得る指標となり得る。
 脱炭酸素効率k[i]は、脱炭処理の始期において大きく変動し、その後徐々に略一定の値に収束していくことが多い。当該始期における脱炭酸素効率の変動は、転炉表面における脱りん反応の進行によるCaO源の滓化に伴うものであると考えられる。したがって、本実施形態では、脱炭処理の始期における脱炭酸素効率に係るデータを、上記式(4)の説明変数である操業要因Xの一つとして用いることができる。ここで、「脱炭処理の始期」とは、脱炭処理の開始時から、脱炭処理での全経過時間の3分の1程度経過するまでの期間に対応する。
 本実施形態では、例えば、脱炭処理始期における脱炭酸素効率の時系列データの平均値が、脱りん速度定数kを推定するための回帰式である上記式(4)の説明変数である操業要因Xとして用いられてもよい。これにより、脱りん反応の進行によるCaO源の滓化の進行の程度を、脱りん速度定数kの推定に反映させることができる。
 また、本実施形態では、例えば、脱炭処理始期における脱炭酸素効率の時系列データの最大値、最小値、もしくは中間値(具体的には、測定対象期間の中央の時刻における脱炭酸素効率)または当該時系列データの変化率(具体的には、測定対象期間における脱炭酸素効率の変化速度)等、脱炭酸素効率の時系列データに基づく変数が、説明変数として用いられてもよい。
 また、本実施形態では、例えば、脱炭酸素効率の時系列データに対して時系列クラスタリングを施して得られるクラスタを識別するカテゴリ変数が、説明変数として用いられてもよい。時系列クラスタリングとは、時系列データ同士の距離を求め、当該距離に基づいてクラスタリングを行う手法である。脱炭酸素効率の推移を時系列データとして扱うことにより、単純な平均値では表現できない脱炭酸素効率の複雑な挙動(換言すれば、平均値を算出する過程で平均化されてしまうような、脱炭酸素効率の時間的な挙動変化)を有意なものとして捉え、このような脱炭酸素効率の複雑な挙動を、より精度良く反映させることが可能となる。
 以下では、脱炭酸素効率の時系列データに対して時系列クラスタリングを施して得られるクラスタを識別するカテゴリ変数を、説明変数として用いる場合について、詳細に説明する。
 本実施形態では、まず、過去の操業データから取得される脱炭処理の始期における脱炭酸素効率の時系列データに対して、予め時系列クラスタリングが行われる。なお、本実施形態では、時系列クラスタリングの手法として、階層クラスタリングの最近隣法が用いられる。時系列クラスタリングの手法としては、本手法に限定されるものではなく、例えば非階層クラスタリングのk-means法などでもよい。また、本実施形態では、これらの時系列データに対して4つのクラスタに分類されるよう時系列クラスタリングが行われるが、クラスタの数については特に限定されない。クラスタの数については、クラスタリングの結果に応じて適宜設定される。
 図2は、脱炭酸素効率の時系列データに対して行われた時系列クラスタリングの結果の例を示す図である。図2の各グラフは、各カテゴリ変数(No.1~8)に対応するクラスタについての時系列クラスタリングの結果をそれぞれ示すグラフである。なお、各グラフに示される脱炭酸素効率に係るデータは、実際に算出された脱炭酸素効率のデータに対し、平均=0となり、かつ、標準偏差=1となるように標準化処理を施すことにより得られたデータである。また、本実施形態に係る時系列クラスタリングに用いられた脱炭酸素効率の時系列データは、それぞれ脱炭処理の吹錬開始時から50秒経過した時点までの脱炭酸素効率から得られるデータである。この時系列クラスタリングに用いられる脱炭酸素効率の時系列データを選択する時間範囲は特に限定されず、例えば、当該時間範囲は、実際に得られる脱炭酸素効率の時系列データのトレンド、または、転炉吹錬設備の操業状態等に基づいて、適宜設定され得る。
 図2において、各グラフ中に存在している折れ線のそれぞれが、ある1回の脱炭処理における脱炭酸素効率の経時変化を示している。図2の各グラフに示すように、脱炭酸素効率の時系列データの類似性が高いデータ同士が、それぞれ同一のクラスタに分類されている。例えば、クラスタNo.1に係るグラフに示すように、クラスタNo.1には、脱炭酸素効率が漸増している時系列データが分類されている。一方、クラスタNo.2に係るグラフに示すように、クラスタNo.2には、脱炭酸素効率がほとんど変化していない時系列データが分類されている。
 このように、脱炭酸素効率の時系列データに対して行われた時系列クラスタリングにより得られるクラスタを識別するカテゴリ変数を、上記式(4)の説明変数である操業要因Xとして採用することができる。これにより、単に脱炭処理時に投入されたCaO源の滓化の進行の程度を、溶鋼中りん濃度の推定に反映させることができる。CaO源の滓化の進行の程度は、脱りん反応の進行の程度と大きく関連する。したがって、脱炭処理における脱りん反応の進行の程度がさらに溶鋼中りん濃度の推定に対して加味されるので、溶鋼中りん濃度の推定精度をさらに向上させることが可能となる。
(実際の操業時におけるクラスタリング結果の利用)
 次に、実際の操業時において、上述した各時系列データのクラスタリング結果を脱りん速度定数kの推定に用いる方法について説明する。
 まず、過去の操業データから取得される脱炭処理の始期における脱炭酸素効率の時系列データに対して、予め時系列クラスタリングを行い、当該時系列データを複数のクラスタに分類しておく。そして、これらのクラスタごとのカテゴリ変数を説明変数の一つとする回帰式(上記式(4))を、クラスタ毎に予め構築しておく。
 次に、各クラスタに分類される脱炭酸素効率の複数の時系列データの、測定点j(j=1~n)における平均値βave,jを、測定点ごとに算出する。測定点とは、当該時系列データの対象範囲における、脱炭酸素効率の測定時点を意味する。例えば、図2に示した各クラスタには、脱炭処理開始時から50秒経過した時点までの各時系列データが分類されている。脱炭酸素効率が1秒ごとに測定されている場合、測定点数は50点となる。
 次いで、脱りん速度定数kを推定する対象である、実際の脱炭処理時における脱炭酸素効率の時系列データ(S)を取得し、取得した脱炭酸素効率の時系列データと各クラスタとの類似度として、例えば、当該時系列データSと上記の平均値βave,jとの差分を、クラスタごとに求める。当該差分の最も小さいクラスタを、時系列データ(S)が属するクラスタであると判断して、このクラスタに対応するカテゴリ変数が、操業要因に係る説明変数として用いられる。当該差分としては、公知の任意のものを用いることが可能であるが、当該差分は、例えば、下記式(8)で示す差分二乗和(Sum of Squared Difference:SSD)であってもよい。当該差分は、公知の統計的手法により適宜求められる。脱りん速度定数kは、得られたカテゴリ変数を構築された回帰式に他の説明変数とともに代入することにより算出され得る。
Figure JPOXMLDOC01-appb-M000010
 
 以上、脱炭酸素効率の時系列データに対して時系列クラスタリングを施して得られるクラスタを識別するカテゴリ変数を、説明変数として用いる場合について、詳細に説明した。
 なお、脱炭酸素効率の時系列データに基づく説明変数は、上述した例に限られない。例えば、脱炭処理始期における脱炭酸素効率の時系列データの平均値もしくは中間値、又は、当該時系列データの変化率等が、説明変数として用いられてもよい。
 以上、本実施形態に係る溶鋼中りん濃度の推定方法について説明した。
<<2.本実施形態に係る転炉吹錬システム>>
<2.1.転炉吹錬システムの構成>
 続いて、上記に示した本実施形態に係る溶鋼中りん濃度の推定方法を実現するためのシステムの一例について説明する。図3は、本発明の一実施形態に係る転炉吹錬システム1の構成例を示す図である。図3を参照すると、本実施形態に係る転炉吹錬システム1は、転炉吹錬設備10、転炉吹錬制御装置20、計測制御装置30および操業データベース40を備える。
(転炉吹錬設備)
 転炉吹錬設備10は、転炉11、煙道12、上吹きランス13、サブランス14、排ガス成分分析計101および排ガス流量計102を備える。転炉吹錬設備10は、例えば、計測制御装置30より出力された制御信号に基づいて、上吹きランス13による溶銑への酸素の供給の開始および停止、サブランス14による溶鋼中の成分濃度および溶鋼温度の測定、冷材および副原料(例えば生石灰等)の投入、並びに、転炉11による溶鋼およびスラグの排滓に関する処理を行う。転炉吹錬設備10には、上吹きランス13に対して酸素を供給するための送酸装置、転炉11に対して冷材を投入するための駆動系を有する冷材投入装置、並びに転炉11に対して副原料を投入するための駆動系を有する副原料投入装置等、一般的な転炉による吹錬に用いられる各種装置が設けられ得る。
 転炉11の炉口からは吹錬に用いられる上吹きランス13が挿入されており、送酸装置から送られた酸素15が上吹きランス13を通じて炉内の溶銑に供給される。また、溶銑の撹拌のために、窒素ガスやアルゴンガス等の不活性ガス等が底吹きガス16として転炉11の底部から導入され得る。転炉11内には、溶銑、溶銑(溶鋼)温度を調整するための冷材、およびCaO源である生石灰等のスラグ形成のための副原料が投入される。なお、副原料が粉体である場合、粉体の副原料は、上吹きランス13を通じて酸素15とともに転炉11内に供給されてもよい。
 一次精錬の脱炭処理では、溶銑中の炭素が、上吹きランス13から供給された酸素と酸化反応する(脱炭反応)。これにより、COまたはCOの排ガスが生成される。これらの排ガスは、転炉11から煙道12へ排出される。
 また、一次精錬の脱炭処理では、上記化学式(101)に示されるように、溶銑に含まれるりんが、転炉内のスラグに含まれるFeO、およびCaO含有物質を含む副原料と化学反応することにより(脱りん反応)、スラグに取り込まれる。つまり、吹錬によりスラグの酸化鉄の濃度を増加させることにより、脱りん反応が促進される。
 このように、転炉吹錬では、吹込まれた酸素と、溶銑中の炭素、りん、または、珪素等とが反応し、酸化物が生じる。吹錬により生じた酸化物は、排ガスとして排出されるか、または、スラグとして安定化する。吹錬における酸化反応によって炭素が除去されるとともに、りん等がスラグに取り込まれて除去されることにより、低炭素で不純物の少ない鋼が生成される。
 また、転炉11の炉口から挿入されるサブランス14は、脱炭処理時に、その先端が所定のタイミングで溶鋼に浸漬され、炭素濃度を含む溶鋼中の成分濃度、および溶鋼温度等を測定するために用いられる。このサブランス14による成分濃度および/または溶鋼温度等の溶鋼データの測定のことを、以下では、「サブランス測定」と呼ぶ。サブランス測定により得られた溶鋼データは、計測制御装置30を介して転炉吹錬制御装置20に送信される。
 吹錬により発生した排ガスは、転炉11外に設けられる煙道12へと流れる。煙道12には、排ガス成分分析計101、および、排ガス流量計102が設けられる。排ガス成分分析計101は、排ガスに含まれる成分を分析する。排ガス成分分析計101は、例えば、排ガスに含まれるCOおよびCOの濃度を分析する。排ガス流量計102は、排ガスの流量を測定する。排ガス成分分析計101および排ガス流量計102は、所定のサンプリング周期(例えば5~10(sec)周期)で、逐次的に、排ガスの成分分析および流量測定を行う。排ガスの成分分析および流量測定は、上記式(4)に示した回帰式の説明変数として用いられる炉内蓄積酸素量原単位の算出のために、脱炭処理開始時から行われる。排ガス成分分析計101によって分析された排ガス成分に係るデータ、および排ガス流量計102によって測定された排ガス流量に係るデータ(以下、これらのデータを「排ガスデータ」と呼称する。)は、計測制御装置30を介して転炉吹錬制御装置20に、時系列データとして出力される。なお、転炉吹錬制御装置20が溶鋼中りん濃度を逐次的に推定するためには、この排ガスデータは、逐次、転炉吹錬制御装置20に出力されることが好ましい。
(転炉吹錬制御装置)
 転炉吹錬制御装置20は、データ取得部201、クラスタ決定部202、クラスタリング実行部203、りん濃度推定部204、転炉吹錬データベース21および入出力部22を備える。転炉吹錬制御装置20は、CPU(Central Processing Unit)、ROM(Read Only Memory)、RAM(Random Access Memory)、ストレージおよび通信装置等のハードウェア構成を備える。転炉吹錬制御装置20では、これらハードウェア構成によって、データ取得部201、クラスタ決定部202、クラスタリング実行部203およびりん濃度推定部204の各機能が実現される。また、転炉吹錬データベース21は、転炉吹錬制御装置20において用いられる各種データを格納するデータベースであり、ストレージ等の記憶装置により実現される。また、入出力部22は、キーボード、マウス、またはタッチパネル等の入力装置、ディスプレイ、またはプリンタ等の出力装置、および、通信装置により実現される。
 転炉吹錬制御装置20は、転炉吹錬データベース21に格納されている各種データ、排ガス成分分析計101および排ガス流量計102から取得される排ガスデータ、並びに、サブランス14から取得される溶鋼データを入力値として、溶鋼中りん濃度を推定する。溶鋼中りん濃度は、転炉吹錬制御装置20の各機能部が有する機能により推定される。また、転炉吹錬制御装置20は、推定された溶鋼中りん濃度を、転炉吹錬における操業の制御に用いてもよい。例えば、推定された溶鋼中りん濃度が、目標データ212の一つとして格納されている目標溶鋼中りん濃度を超えていると判断された場合、転炉吹錬制御装置20は、溶鋼中りん濃度が目標溶鋼中りん濃度を下回るように、転炉吹錬の操業条件を変更し得る。このように、溶鋼中りん濃度を高精度で推定することができれば、一次精錬により得られる溶鋼の品質を高く維持することができる。
 なお、本実施形態に係る転炉吹錬制御装置20の各機能部が有する具体的な機能については後述する。
 また、転炉吹錬制御装置20は、例えば、転炉11への酸素の吹込み、並びに、冷材および副原料の投入等の転炉吹錬に関するプロセス全体を制御する機能を有する。また、例えば、転炉吹錬制御装置20は、一般的なスタティック制御において行われている、吹錬開始前に所定の数式モデル等を用いて転炉11への吹込み酸素量、冷材の投入量(以降、「冷材量」と呼称する)および副原料の投入量等を決定する機能等を有する。また、例えば、転炉吹錬制御装置20は、一般的なダイナミック制御において行われているサブランス測定について、その測定対象や測定タイミング等を制御する機能を有する。
 図示しない各機能における具体的な処理(例えば、上述した、冷材および副原料投入の制御方法、スタティック制御において吹錬開始前に吹込み酸素量や各種冷材および副原料の投入量等を決定する方法、並びにサブランス測定の制御方法)としては、各種の公知の方法が適用され得るため、ここでは詳細な説明は省略する。
 転炉吹錬データベース21は、例えば、図3に示したように、溶銑データ211、目標データ212、およびパラメータ213等を格納する。これらのデータは、不図示の入力装置や通信装置を介して追加、更新、変更、または削除されてもよい。例えば、後述する操業データベース40に格納されている各種データのうち転炉吹錬に用いられるデータが、転炉吹錬データベース21に追加されてもよい。転炉吹錬データベース21に記憶されている各種データは、データ取得部201により読み出される。なお、本実施形態に係る転炉吹錬データベース21を有する記憶装置は、図3に示すように転炉吹錬制御装置20と一体となって構成されているが、他の実施形態においては、転炉吹錬データベース21を有する記憶装置は、転炉吹錬制御装置20とは分離された構成であってもよい。
 溶銑データ211は、転炉11内の溶銑に関する各種のデータである。例えば、溶銑データ211には、溶銑についての情報(チャージごとの初期の溶銑重量、溶銑成分(炭素、りん、珪素、鉄、マンガン等)の濃度、溶銑温度、溶銑率等)が含まれる。溶銑データ211には、その他にも、一般的に脱炭処理において用いられる各種の情報(例えば、副原料および冷材の投入についての情報(副原料および冷材量についての情報)、サブランス測定についての情報(測定対象や測定タイミング等についての情報)、吹込み酸素量についての情報等)が含まれ得る。目標データ212には、脱炭処理後、およびサブランス測定時等における溶銑中(溶鋼中)の目標成分濃度および目標温度などのデータが含まれる。パラメータ213は、クラスタ決定部202およびりん濃度推定部204において用いられる各種のパラメータである。例えば、パラメータ213には、操業要因を説明変数とする回帰式におけるパラメータ、およびりん濃度を推定するためのパラメータ(脱りん速度定数等)が含まれる。
 入出力部22は、例えば、りん濃度推定部204による溶鋼中りん濃度の推定結果等を取得し、各種出力装置に出力する機能を有する。例えば、入出力部22は、推定された溶鋼中りん濃度をオペレータに表示させてもよい。また、転炉吹錬制御装置20が推定された溶鋼中りん濃度に基づいて転炉吹錬制御を行う場合、入出力部22は、推定された溶鋼中りん濃度に基づく転炉吹錬に係る指示を、計測制御装置30に出力してもよい。この場合、当該指示は、転炉吹錬制御装置20の有する転炉吹錬制御に係る機能により自動的に生成される指示であってもよいし、表示された溶鋼中りん濃度(推定値)に係る情報を閲覧したオペレータの操作により入力される指示であってもよい。また、入出力部22は、転炉吹錬データベース21に格納されている各種データを追加、更新、変更、または削除するための入力インタフェースの機能を有してもよい。また、入出力部22は、データ取得部201により取得された各種データ、クラスタ決定部202による決定結果、およびりん濃度推定部204による推定結果を、操業データベース40に出力してもよい。
(計測制御装置)
 計測制御装置30は、CPU、ROM、RAM、ストレージおよび通信装置等のハードウェア構成を備える。計測制御装置30は、転炉吹錬設備10の備える各装置と通信し、転炉吹錬設備10の全体の動作を制御する機能を有する。例えば、計測制御装置30は、転炉吹錬制御装置20からの指示に応じて、転炉11への冷材および副原料の投入、上吹きランス13の酸素15の吹込み、並びにサブランス14の溶鋼への浸漬およびサブランス測定等に係る操作を制御する。また、計測制御装置30は、排ガス成分分析計101、排ガス流量計102およびサブランス14等の転炉吹錬設備10の各装置から得られたデータを取得して、転炉吹錬制御装置20に送信する。
(操業データベース)
 操業データベース40は、ストレージ等の記憶装置により実現されるデータベースであり、転炉吹錬の操業に係る各種データを格納するデータベースである。当該各種データは、データ取得部201により取得された転炉吹錬設備10の各装置から得られるデータ、並びにクラスタ決定部202による決定結果、およびりん濃度推定部204による推定結果を含む。
 例えば、本実施形態に係る操業データベース40は、排ガス成分分析計101および排ガス流量計102により測定された排ガスデータから得られる脱炭酸素効率に係るデータ(すなわち、脱炭酸素効率の時系列データ)を操業ごとに蓄積する。
 本実施形態に係る操業データベース40は、操業ごとの脱炭酸素効率の時系列データをクラスタリング実行部203に出力する。なお、本実施形態に係る操業データベース40を有する記憶装置は、図3に示すように転炉吹錬制御装置20とは分離されて構成されているが、他の実施形態においては、操業データベース40を有する記憶装置は、転炉吹錬制御装置20と一体になった構成であってもよい。
<2.2.各機能部の構成および機能>
 次に、本実施形態に係る転炉吹錬制御装置20の各機能部の構成および機能について説明する。
 再度図3を参照すると、本実施形態に係る転炉吹錬制御装置20には、データ取得部201、クラスタ決定部202、クラスタリング実行部203およびりん濃度推定部204の各機能部が備えられる。
(データ取得部)
 データ取得部201は、溶鋼中りん濃度を推定するための各種データを取得する。例えば、データ取得部201は、転炉吹錬データベース21に記憶されている溶銑データ211、目標データ212およびパラメータ213を取得する。すなわち、データ取得部201は、溶銑データ取得部としての機能を有する。これらのデータは、遅くとも、りん濃度推定部204による溶鋼中りん濃度の推定処理が開始される前に取得される。本実施形態に係るデータ取得部201は、転炉吹錬データベース21に記憶されている各種データを、脱炭処理開始前に取得する。
 また、データ取得部201は、排ガス成分分析計101および排ガス流量計102から出力される排ガスデータを取得する。すなわち、データ取得部201は、排ガスデータ取得部としての機能を有する。取得される排ガスデータは、時系列データである。排ガスデータの取得は、一次精錬の全般にわたって行われる。本実施形態に係るデータ取得部201は、排ガス成分分析計101および排ガス流量計102が逐次的に測定する排ガスデータを逐次的に取得する。
 また、データ取得部201は、取得した排ガスデータから脱炭酸素効率を算出し得る。すなわち、データ取得部201は、脱炭酸素効率算出部としての機能を有する。脱炭酸素効率は、取得した排ガス流量および排ガス成分の時系列データから、前記式(5)を用いて得られる時系列データである。本実施形態に係るデータ取得部201は、少なくとも脱炭処理の開始時点から所定時間を経過するまでの脱炭酸素効率の時系列データを、逐次的に測定される排ガスデータから算出する。なお、他の実施形態においては、データ取得部201は、脱炭処理の開始時点から所定時間を経過するまでの排ガスデータを中間サブランス測定前に一括して取得し、取得された排ガスデータから脱炭酸素効率の時系列データを算出してもよい。
 また、データ取得部201は、脱炭処理時にサブランス14によるサブランス測定により得られる溶鋼データを取得する。すなわち、データ取得部201は、溶鋼データ取得部としての機能を有する。
 なお、データ取得部201は、上述した各種データ以外にも、脱炭処理に係るデータを取得する。データ取得部201は、転炉吹錬設備10に備えられる各種装置から出力されるデータを、計測制御装置30を介して取得する。
 データ取得部201は、取得したデータをクラスタ決定部202およびりん濃度推定部204に出力する。また、データ取得部201で取得されたデータは操業データベース40に格納される。
(クラスタ決定部、クラスタリング実行部)
 クラスタ決定部202は、クラスタリング実行部203により取り出される複数のクラスタのうち、データ取得部201から取得した脱炭酸素効率の時系列データについて最も類似度の高いクラスタを決定する。ここで、類似度の算出方法については、特に限定されず、公知の各種の方法を適宜利用することができる。かかる類似度として、例えば上記のように、着目している脱炭酸素効率の時系列データと、各クラスタとの差分二乗和を用いることができる。クラスタ決定部202により決定されたクラスタに対応するカテゴリ変数は、りん濃度推定部204に出力される。当該カテゴリ変数は、りん濃度推定部204による推定に用いられる上記式(4)に示した回帰式の説明変数である操業要因Xとして用いられる。
 また、クラスタリング実行部203は、操業データベース40から取得した過去の操業における脱炭酸素効率の時系列データに対してクラスタリングを行い、複数のクラスタを得る。クラスタリング実行部203により得られたクラスタに係る情報は、クラスタ決定部202に出力される。また、当該クラスタに係る情報は、操業データベース40に出力されてもよい。また、クラスタリング実行部203は、操業データベース40に格納されている過去の操業における脱炭酸素効率の時系列データが更新された場合に、適宜クラスタリングを実行してもよい。
 なお、他の実施形態において上記カテゴリ変数を説明変数として用いない場合、クラスタ決定部202およびクラスタリング実行部203は、転炉吹錬制御装置20に含まれなくてもよい。
(りん濃度推定部)
 本実施形態に係るりん濃度推定部204は、データ取得部201から出力された各種データ、およびクラスタ決定部202から出力されたクラスタを識別する変数であるカテゴリ変数を用いて、脱りん速度定数kおよび溶鋼中りん濃度を推定する。具体的には、りん濃度推定部204は、まず、上記の各種データおよびカテゴリ変数を説明変数として、上記式(4)に示す回帰式に代入することにより、脱りん速度定数kを算出する。そして、りん濃度推定部204は、上記式(2)に算出した脱りん速度定数kを代入することにより、溶鋼中りん濃度を推定する。りん濃度推定部204は、サブランス14によるサブランス測定以降(すなわち、データ取得部201による溶鋼データの取得の開始以降)、逐次的に脱りん速度定数kおよび溶鋼中りん濃度を推定する。すなわち、サブランス測定以降、脱炭処理の吹止め時(終点時)までの範囲における脱りん速度定数kおよび溶鋼中りん濃度が、りん濃度推定部204により推定される。
 なお、他の実施形態において上記カテゴリ変数を説明変数として用いない場合、脱炭酸素効率の時系列データに基づく変数(例えば、平均値等)が、当該説明変数として用いられ得る。
 以上、図3を参照して、本実施形態に係る転炉吹錬制御装置20の各機能部の構成および機能について説明した。なお、図3には示されていないが、転炉吹錬制御装置20は、操作量算出部をさらに備えてもよい。操作量算出部は、りん濃度推定部204により推定された溶鋼中りん濃度に基づいて、脱炭処理における吹込み酸素量もしくは冷材量、または上吹きランス高さ等の操作量を算出してもよい。操作量算出部の機能は、例えば、上記特許文献1に開示されている機能と同一であってもよい。本実施形態に係るりん濃度推定部204により推定される溶鋼中りん濃度は、上記特許文献1に開示された技術により推定される溶鋼中りん濃度よりも精度が高い。そのため、操作量算出部により算出される操作量の信頼度も高いので、実際の溶鋼中りん濃度を、目標溶鋼中りん濃度により近づけることが可能となる。
<<3.溶鋼中りん濃度推定方法のフロー>>
 図4は、本実施形態に係る転炉吹錬システム1による溶鋼中りん濃度推定方法のフローチャートの一例である。図4を参照しながら、本実施形態に係る転炉吹錬システム1による溶鋼中りん濃度推定方法のフローについて説明する。なお、図4に示す各処理は、図3に示す転炉吹錬制御装置20によって実行される各処理に対応している。そのため、図4に示す各処理の詳細については省略し、各処理の概要を説明するに留める。
 本実施形態に係る溶鋼中りん濃度推定方法では、まず、データ取得部201は、転炉吹錬開始前に、転炉吹錬データベース21に格納されたデータ等の各種データを取得する(ステップS101)。具体的には、データ取得部201は、溶銑データ211、目標データ212、およびパラメータ213を取得する。
 次に、データ取得部201は、脱炭処理の開始時点から、脱炭処理に係るデータを取得する(ステップS103)。具体的には、データ取得部201は、排ガス成分分析計101および排ガス流量計102によって測定された排ガスデータを、排ガス成分分析計101および排ガス流量計102から逐次的に取得する。なお、排ガスデータの取得は、脱炭処理の開始時点から終了時点まで連続的に行われる。ステップS103に係る脱炭処理に係るデータの取得処理は、脱炭処理の開始時点から所定時間が経過する時点(ステップS105)まで繰り返し実施される処理である。かかる所定時間は、後段におけるクラスタ決定部202による決定処理に用いられる脱炭酸素効率の時系列データの時間範囲に相当する。
 次に、データ取得部201は、脱炭処理の開始時点から所定時間(予め定められた時間範囲)が経過したか否か判別する(ステップS105)。脱炭処理の開始時点から所定時間が経過していない場合(ステップS105/NO)、データ取得部201は、脱炭酸素効率に係るデータを取得する(ステップS107)。具体的には、データ取得部201は、逐次的に取得される排ガスデータから脱炭酸素効率を、脱炭処理の開始時点から所定時間が経過する時点までの間逐次的に算出し、脱炭酸素効率の時系列データを取得する。
 次に、脱炭処理の開始時点から所定時間が経過した場合(ステップS105/YES)、クラスタ決定部202は、ステップS107において取得された脱炭酸素効率の時系列データに基づいて、操業要因として用いられるクラスタを決定する(ステップS109)。具体的には、クラスタ決定部202は、本チャージの脱炭処理始期における脱炭酸素効率の時系列データについて、クラスタリング実行部203により取り出された各クラスタのうち最も類似度の高いクラスタを決定する。クラスタ決定部202は、ここで決定されたクラスタに対応するカテゴリ変数を、りん濃度推定部204に出力する。
 次に、データ取得部201は、引き続き脱炭処理に係るデータを取得する(ステップS111)。ステップS111に係る脱炭処理に係るデータの取得処理は、脱炭処理の開始時点から所定時間が経過した時点から脱炭処理の終了時点(ステップS117)まで繰り返し実施される処理である。ステップS111に係る処理はステップS103に係る処理と同様である。また、サブランス測定が行われるタイミングにおいては、データ取得部201は、溶鋼データを取得する。
 次に、りん濃度推定部204は、本実施形態に係る溶鋼中りん濃度の推定方法において、サブランス測定が既に行われているか否か判別する(ステップS113)。サブランス測定がまだ行われていない場合(ステップS113/NO)、りん濃度推定部204による溶鋼中りん濃度の推定は行われず、データ取得部201は、繰り返し排ガスデータ等の脱炭処理に係るデータを取得する(ステップS111)。一方、サブランス測定が既に行われている場合(ステップS113/YES)、りん濃度推定部204は、溶鋼中りん濃度の推定を行う(ステップS115)。
 具体的には、りん濃度推定部204は、データ取得部201により取得された各種データを用いて、まず、サブランス測定時の脱りん速度定数kおよび溶鋼中りん濃度の推定を行う。これは、サブランス測定で得られる溶鋼温度実績値および溶鋼中炭素濃度実績値が、脱りん速度定数kの推定の高精度化により有効であるためである。より詳細には、まず、サブランス測定で得られる溶鋼温度実績値および溶鋼中炭素濃度実績値を含む各種データに基づく説明変数を上記式(4)の回帰式に代入することにより、脱りん速度定数kを得る。次に、得られた脱りん速度定数kが脱炭処理開始時からサブランス測定時まで同一の値であるとみなして、溶銑りん濃度をりん濃度初期値[P]iniとし、かつ、脱炭処理開始からサブランス測定時までの経過時間をtとして上記式(2)に代入することにより、サブランス測定時のりん濃度[P]を求める。このように、サブランス測定時に推定された脱りん速度定数kを用いて脱炭処理開始からサブランス測定時におけるりん濃度を推定しても、下記実施例に示すように、十分な精度でりん濃度を推定可能であるので、実用上の問題はない。
 サブランス測定以降、りん濃度推定部204は、脱炭処理が終了したか否か判別する(ステップS117)。脱炭処理が終了していない場合(ステップS117/NO)、りん濃度推定部204は、脱炭処理が終了する時点まで、上記のサブランス測定時の溶鋼中りん濃度推定値を初期値として、上記式(4)による脱りん速度定数kの推定と、推定されたkを用いた、上記式(2)による溶鋼中りん濃度の推定を繰り返し行う(ステップS111~ステップS115に係る処理)。一方、脱炭処理が終了した場合(ステップS117/YES)、りん濃度推定部204は、本実施形態に係る溶鋼中りん濃度の推定処理を終了する。
 以上、図4を参照して、本実施形態に係る溶鋼中りん濃度の推定方法のフローについて説明した。なお、図4に示した本実施形態に係る溶鋼中りん濃度の推定方法に係るフローチャートに示したステップは、あくまでも一例にすぎない。
 例えば、ステップS101に係る処理や、ステップS107およびステップS109に係る処理が実行されるタイミングは、ステップS115における溶鋼中りん濃度の推定処理が開始される以前であれば、特に限定されない。具体的には、他の実施形態において、データ取得部201が脱炭酸素効率に係るデータを一括して各種装置から取得する場合、ステップS101およびステップS107におけるデータの取得処理、並びにステップS109におけるクラスタの決定処理は、ステップS115における溶鋼中りん濃度の推定処理が開始される以前に完了していればよい。ステップS115における溶鋼中りん濃度の推定処理の開始時に溶鋼中りん濃度の推定に用いられるデータがそろっていれば十分だからである。
<<4.まとめ>>
 脱炭処理におけるCaO源の滓化状況は、溶鋼中りん濃度に影響する脱りん反応の進行の程度を反映する。このCaO源の滓化状況は、脱炭処理における脱炭酸素効率に関係する。このことから、本実施形態によれば、脱りん速度定数kを算出するための説明変数に用いられる操業要因の一つとして、脱炭処理の始期における脱炭酸素効率の時系列データ(および/または脱炭酸素効率の時系列データの平均値)が用いられる。すなわち、脱りん反応の進行の程度と関係するCaOの滓化状況として、脱炭処理時に取得される脱炭酸素効率が溶鋼中りん濃度の推定に適用される。これにより、本実施形態によれば、転炉吹錬における溶鋼中りん濃度の推定精度をより高くすることができる。
 また、本実施形態によれば、過去の操業時における脱炭酸素効率の時系列データに対して行われる時系列クラスタリングにより得られるクラスタを識別するカテゴリ変数が、操業要因に係る説明変数として用いられる。そして、実際の操業時において得られる脱炭酸素効率の時系列データの示す傾向と類似するクラスタが決定され、決定されたクラスタに対応するカテゴリ変数が、当該チャージの操業要因に係る説明変数として回帰式に代入される。これにより、単に脱炭処理の始期における脱炭酸素効率の変動のパターンを、脱りん速度定数kの推定に反映させることができる。すなわち、転炉吹錬における溶鋼中りん濃度の推定精度をさらに高くすることができる。
 なお、図3に示す構成は、あくまで本実施形態に係る転炉吹錬システム1の一例であり、転炉吹錬システム1の具体的な構成はかかる例に限定されない。転炉吹錬システム1は、以上説明した機能を実現可能に構成されればよく、一般的に想定され得るあらゆる構成を取ることができる。
 例えば、転炉吹錬制御装置20が備える各機能は、1台の装置においてその全てが実行されなくてもよく、複数の装置の協働によって実行されてもよい。例えば、データ取得部201、クラスタ決定部202、クラスタリング実行部203およびりん濃度推定部204のうちの1又は複数のいずれかの機能のみを有する一の装置が、他の機能を有する他の装置と通信可能に接続されることにより、図示する転炉吹錬制御装置20と同等の機能が実現されてもよい。
 また、図3に示す本実施形態に係る転炉吹錬制御装置20の各機能を実現するためのコンピュータプログラムを作製し、PC等の処理装置に実装することが可能である。また、このようなコンピュータプログラムが記録された、コンピュータで読み取り可能な記録媒体も提供することができる。記録媒体は、例えば、磁気ディスク、光ディスク、光磁気ディスク、フラッシュメモリなどである。また、上記のコンピュータプログラムは、記録媒体を用いずに、例えばネットワークを介して配信してもよい。
 また、上記実施形態では、転炉吹錬システム1をSRP操業に適用した例について説明したが、本発明の適用対象は、SRP操業のみに限られない。例えば、本発明に係る転炉吹錬システム1は、溶銑予備処理を取鍋やトーピードカー等の設備を用いて行った後に転炉に溶銑を装入して脱炭処理を行う操業、および、脱炭処理を行う転炉とは異なる転炉を用いて脱りん処理を行うような、複数の転炉を用いる操業に対しても、適用することが可能である。また、本発明に係る転炉吹錬システム1は、溶銑予備処理が実施されない普通銑操業に対しても適用することが可能である。普通銑操業に適用する場合、りん濃度初期値[P]iniとして脱炭処理前に実測されたりん濃度の実績値を用いることで、溶鋼中りん濃度を推定することが可能である。なお、普通銑操業の場合、りん濃度初期値[P]iniは、例えば、一般的な前工程である脱硫処理後に実測されたりん濃度である。
 次に、本発明の実施例について説明する。本発明の効果を確認するために、本実施例では、本実施形態に係る溶鋼中りん濃度推定方法により得られる溶鋼中りん濃度の推定精度について検証した。なお、以下の実施例は、本発明の効果を検証するために行ったものに過ぎず、本発明が以下の実施例に限定されるものではない。
 実施例および比較例について、サブランス測定時の溶鋼中りん濃度がそれぞれ算出された。溶鋼中りん濃度は、上記式(4)により得られた脱りん速度定数kを上記式(2)に代入することにより得られた。算出された溶鋼中りん濃度を、以下「推定値」と称する。
 なお、実施例および比較例に係る溶鋼中りん濃度の推定精度の検証のため、サブランス測定時の溶鋼中りん濃度の実績値が測定された。実施例および比較例に係る溶鋼中りん濃度の推定値と実績値との誤差(推定誤差)をそれぞれ算出し、当該推定誤差の標準偏差(%)を求めた。標準偏差が小さいほど、推定誤差が小さい、すなわち、推定精度が高いと言える。
 上記式(4)で示される回帰式に用いられる説明変数は、下記表2に示すとおりである。具体的には、比較例では、説明変数として、上記表1に示す従来の操業要因が用いられた。一方、実施例では、説明変数として、上記表1に示す操業要因に加え、脱炭酸素効率の時系列データについてクラスタ決定部202により決定されたクラスタに対応するカテゴリ変数(脱炭酸素効率に係るカテゴリ変数と称する)が用いられた。
Figure JPOXMLDOC01-appb-T000011
 次に、実施例および比較例に係る溶鋼中りん濃度の推定精度の検証結果を示す。図5は、実施例および比較例に係る、サブランス測定時の溶鋼中りん濃度の実績値に対する推定誤差の標準偏差を示すグラフである。図5を参照すると、実施例では、比較例に比べて推定誤差の標準偏差が小さな値となっており、溶鋼中りん濃度の推定精度がより向上していることが分かる。
 本発明者らは、各チャージに関して上記式(4)で示される回帰式による回帰結果を分析した結果、脱炭酸素効率の推移の状況に応じて脱りん効率が変動する傾向があることを見出した。この傾向に着目することで、脱炭処理におけるCaO源の滓化状況が、脱炭酸素効率の時系列データに基づく説明変数により脱りん速度定数kの算出に反映されたため、溶鋼中りん濃度の推定精度が向上したと考えられる。
 以上、添付図面を参照しながら本発明の好適な実施形態について詳細に説明したが、本発明はかかる例に限定されない。本発明の属する技術の分野における通常の知識を有する者であれば、特許請求の範囲に記載された技術的思想の範疇内において、各種の変更例または修正例に想到し得ることは明らかであり、これらについても、当然に本発明の技術的範囲に属するものと了解される。
 1   転炉吹錬システム
 10  転炉吹錬設備
 11  転炉
 12  煙道
 13  上吹きランス
 14  サブランス
 20  転炉吹錬制御装置
 21  転炉吹錬データベース
 22  入出力部
 30  計測制御装置
 40  操業データベース
 101 排ガス成分分析計
 102 排ガス流量計
 201 データ取得部
 202 クラスタ決定部
 203 クラスタリング実行部
 204 りん濃度推定部

Claims (8)

  1.  転炉を用いた脱炭処理の前に、脱りん処理を行わない場合、または、前記脱炭処理で用いる前記転炉とは異なる設備により前記脱りん処理を行う場合の、前記脱炭処理時の溶鋼中りん濃度を推定するための溶鋼中りん濃度推定方法であって、
     排ガス成分および排ガス流量を取得する排ガスデータ取得ステップと、
     サブランス測定により溶鋼温度および溶鋼中の炭素濃度を取得する溶鋼データ取得ステップと、
     前記排ガス成分および前記排ガス流量を用いて得られる脱炭酸素効率に係るデータ、前記排ガス成分、前記排ガス流量、前記溶鋼温度および前記炭素濃度に係るデータ、並びに、前記脱炭処理に係る操業条件を用いて脱りん速度定数を算出し、算出された前記脱りん速度定数と、前記脱炭処理開始時の溶鋼中のりん濃度とを用いて、前記サブランス測定以降における前記溶鋼中のりん濃度を推定するりん濃度推定ステップと、
    を含む、溶鋼中りん濃度推定方法。
  2.  前記脱りん速度定数の算出において、過去の操業において取得された複数の前記脱炭酸素効率の時系列データに対して行われた時系列クラスタリングにより得られるクラスタを識別するカテゴリ変数を用いる、請求項1に記載の溶鋼中りん濃度推定方法。
  3.  転炉を用いた脱炭処理の前に、脱りん処理を行わない場合、または、前記脱炭処理で用いる前記転炉とは異なる設備により前記脱りん処理を行う場合の、前記脱炭処理時の溶鋼中りん濃度を推定する転炉吹錬制御装置であって、
     排ガス成分および排ガス流量を取得する排ガスデータ取得部と、
     サブランス測定により溶鋼温度および溶鋼中の炭素濃度を取得する溶鋼データ取得部と、
     前記排ガス成分および前記排ガス流量を用いて得られる脱炭酸素効率に係るデータ、前記排ガス成分、前記排ガス流量、前記溶鋼温度および前記炭素濃度に係るデータ、並びに、前記脱炭処理に係る操業条件を用いて脱りん速度定数を算出し、算出された前記脱りん速度定数と、前記脱炭処理開始時の溶鋼中のりん濃度とを用いて、前記サブランス測定以降における前記溶鋼中のりん濃度を推定するりん濃度推定部と、
    を備える、転炉吹錬制御装置。
  4.  前記りん濃度推定部は、前記脱りん速度定数の算出において、過去の操業において取得された複数の前記脱炭酸素効率の時系列データに対して行われた時系列クラスタリングにより得られるクラスタを識別するカテゴリ変数を用いる、請求項3に記載の転炉吹錬制御装置。
  5.  転炉を用いた脱炭処理の前に、脱りん処理を行わない場合、または、前記脱炭処理で用いる前記転炉とは異なる設備により前記脱りん処理を行う場合の、前記脱炭処理時の溶鋼中りん濃度を推定する転炉吹錬制御装置としてコンピュータを機能させるためのプログラムであって、
     排ガス成分および排ガス流量を取得する排ガスデータ取得機能と、
     サブランス測定により溶鋼温度および溶鋼中の炭素濃度を取得する溶鋼データ取得機能と、
     前記排ガス成分および前記排ガス流量を用いて得られる脱炭酸素効率に係るデータ、前記排ガス成分、前記排ガス流量、前記溶鋼温度および前記炭素濃度に係るデータ、並びに、前記脱炭処理に係る操業条件を用いて脱りん速度定数を算出し、算出された前記脱りん速度定数と、前記脱炭処理開始時の溶鋼中のりん濃度とを用いて、前記サブランス測定以降における前記溶鋼中のりん濃度を推定するりん濃度推定機能と、
    をコンピュータに実現させるためのプログラム。
  6.  前記りん濃度推定機能は、前記脱りん速度定数の算出において、過去の操業において取得された複数の前記脱炭酸素効率の時系列データに対して行われた時系列クラスタリングにより得られるクラスタを識別するカテゴリ変数を用いる、請求項5に記載のプログラム。
  7.  転炉を用いた脱炭処理の前に、脱りん処理を行わない場合、または、前記脱炭処理で用いる前記転炉とは異なる設備により前記脱りん処理を行う場合の、前記脱炭処理時の溶鋼中りん濃度を推定する転炉吹錬制御装置としてコンピュータを機能させるためのプログラムが記録された記録媒体であって、
     排ガス成分および排ガス流量を取得する排ガスデータ取得機能と、
     サブランス測定により溶鋼温度および溶鋼中の炭素濃度を取得する溶鋼データ取得機能と、
     前記排ガス成分および前記排ガス流量を用いて得られる脱炭酸素効率に係るデータ、前記排ガス成分、前記排ガス流量、前記溶鋼温度および前記炭素濃度に係るデータ、並びに、前記脱炭処理に係る操業条件を用いて脱りん速度定数を算出し、算出された前記脱りん速度定数と、前記脱炭処理開始時の溶鋼中のりん濃度とを用いて、前記サブランス測定以降における前記溶鋼中のりん濃度を推定するりん濃度推定機能と、
    をコンピュータに実現させるためのプログラムが記録された記録媒体。
  8.  前記りん濃度推定機能は、前記脱りん速度定数の算出において、過去の操業において取得された複数の前記脱炭酸素効率の時系列データに対して行われた時系列クラスタリングにより得られるクラスタを識別するカテゴリ変数を用いる、請求項7に記載の記録媒体。
     
     
     
PCT/JP2018/031134 2017-08-24 2018-08-23 溶鋼中りん濃度推定方法、転炉吹錬制御装置、プログラム及び記録媒体 WO2019039539A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020197028444A KR102232483B1 (ko) 2017-08-24 2018-08-23 용강 중 인 농도 추정 방법, 전로 취련 제어 장치, 프로그램 및 기록 매체
CN201880053411.3A CN111032887B (zh) 2017-08-24 2018-08-23 钢水中磷浓度估计方法、转炉吹炼控制装置、程序和记录介质
JP2019537673A JP6725078B2 (ja) 2017-08-24 2018-08-23 溶鋼中りん濃度推定方法、転炉吹錬制御装置、プログラム及び記録媒体

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017161315 2017-08-24
JP2017-161315 2017-08-24

Publications (1)

Publication Number Publication Date
WO2019039539A1 true WO2019039539A1 (ja) 2019-02-28

Family

ID=65439060

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/031134 WO2019039539A1 (ja) 2017-08-24 2018-08-23 溶鋼中りん濃度推定方法、転炉吹錬制御装置、プログラム及び記録媒体

Country Status (5)

Country Link
JP (1) JP6725078B2 (ja)
KR (1) KR102232483B1 (ja)
CN (1) CN111032887B (ja)
TW (1) TWI665307B (ja)
WO (1) WO2019039539A1 (ja)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7156560B2 (ja) * 2020-09-01 2022-10-19 Jfeスチール株式会社 精錬処理制御装置及び精錬処理制御方法
TWI773386B (zh) * 2021-06-16 2022-08-01 統一企業股份有限公司 預測飲料中最高咖啡因含量值的方法及其系統

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5792121A (en) * 1980-11-29 1982-06-08 Sumitomo Metal Ind Ltd Method for estimation of phosphorus concentration of steel bath
JP2011202252A (ja) * 2010-03-26 2011-10-13 Nisshin Steel Co Ltd 溶鋼中の燐濃度を精度よく推定する方法
JP2012136767A (ja) * 2010-12-28 2012-07-19 Jfe Steel Corp 転炉りん濃度推定方法
JP2012167366A (ja) * 2011-01-28 2012-09-06 Jfe Steel Corp リン濃度予測装置及び吹錬制御方法
JP2014037605A (ja) * 2012-08-20 2014-02-27 Nippon Steel & Sumitomo Metal 溶銑脱りん方法、溶銑脱りんシステム、低りん溶銑の製造方法および低りん溶銑の製造装置
JP2017115173A (ja) * 2015-12-21 2017-06-29 株式会社神戸製鋼所 転炉の操業方法
WO2018012257A1 (ja) * 2016-07-14 2018-01-18 新日鐵住金株式会社 溶鋼中りん濃度推定方法及び転炉吹錬制御装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5493997B2 (ja) 2010-02-25 2014-05-14 Jfeスチール株式会社 転炉精錬方法
JP5582105B2 (ja) * 2011-07-15 2014-09-03 新日鐵住金株式会社 転炉吹錬制御方法
JP5924186B2 (ja) 2011-08-23 2016-05-25 Jfeスチール株式会社 転炉での溶銑の脱炭精錬方法
CN103361461B (zh) * 2012-03-30 2015-08-05 鞍钢股份有限公司 一种转炉冶炼低碳钢磷含量在线预测控制方法
CN103160640B (zh) * 2013-02-26 2014-10-15 河北钢铁股份有限公司邯郸分公司 一种转炉炼钢过程中动态检测炉渣中锰、磷、硫含量的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5792121A (en) * 1980-11-29 1982-06-08 Sumitomo Metal Ind Ltd Method for estimation of phosphorus concentration of steel bath
JP2011202252A (ja) * 2010-03-26 2011-10-13 Nisshin Steel Co Ltd 溶鋼中の燐濃度を精度よく推定する方法
JP2012136767A (ja) * 2010-12-28 2012-07-19 Jfe Steel Corp 転炉りん濃度推定方法
JP2012167366A (ja) * 2011-01-28 2012-09-06 Jfe Steel Corp リン濃度予測装置及び吹錬制御方法
JP2014037605A (ja) * 2012-08-20 2014-02-27 Nippon Steel & Sumitomo Metal 溶銑脱りん方法、溶銑脱りんシステム、低りん溶銑の製造方法および低りん溶銑の製造装置
JP2017115173A (ja) * 2015-12-21 2017-06-29 株式会社神戸製鋼所 転炉の操業方法
WO2018012257A1 (ja) * 2016-07-14 2018-01-18 新日鐵住金株式会社 溶鋼中りん濃度推定方法及び転炉吹錬制御装置

Also Published As

Publication number Publication date
KR20190124754A (ko) 2019-11-05
CN111032887B (zh) 2022-03-15
TW201920691A (zh) 2019-06-01
TWI665307B (zh) 2019-07-11
JPWO2019039539A1 (ja) 2019-11-07
CN111032887A (zh) 2020-04-17
JP6725078B2 (ja) 2020-07-15
KR102232483B1 (ko) 2021-03-29

Similar Documents

Publication Publication Date Title
JP6573035B2 (ja) 溶鋼中りん濃度推定方法及び転炉吹錬制御装置
JP2018178200A (ja) 溶鋼中りん濃度推定方法、転炉吹錬制御装置、プログラム及び記録媒体
JP5582105B2 (ja) 転炉吹錬制御方法
JP6515385B2 (ja) 溶銑予備処理方法及び溶銑予備処理制御装置
JP6725078B2 (ja) 溶鋼中りん濃度推定方法、転炉吹錬制御装置、プログラム及び記録媒体
JP2018178199A (ja) 溶鋼中りん濃度推定方法、転炉吹錬制御装置、プログラム及び記録媒体
JP2017115216A (ja) 溶湯成分推定装置及び溶湯成分推定方法
JP6547901B2 (ja) 溶銑予備処理方法及び溶銑予備処理制御装置
JP2018095943A (ja) 溶銑予備処理方法、溶銑予備処理制御装置、プログラム及び記録媒体
JP7043949B2 (ja) T.Fe推定方法、T.Fe制御方法、転炉吹錬制御装置、およびプログラム
JP6277991B2 (ja) スラグ成分推定方法、媒溶剤の計算方法および溶銑予備処理方法
JP6331601B2 (ja) 製鋼用転炉における吹錬制御方法
JP7376787B2 (ja) 溶鋼中りん濃度推定装置、統計モデル構築装置、溶鋼中りん濃度推定方法、統計モデル構築方法、およびプログラム
RU2817694C1 (ru) Устройство управления процессом рафинирования и способ управления процессом рафинирования
WO2020195598A1 (ja) 転炉型脱燐精錬炉の吹錬制御方法及び吹錬制御装置
JP2024005899A (ja) 統計モデル構築装置、方法及びプログラム、並びに溶鋼中りん濃度推定装置、方法及びプログラム
JP2021031684A (ja) 転炉吹錬制御装置、統計モデル構築装置、転炉吹錬制御方法、統計モデル構築方法およびプログラム
JP2023114592A (ja) 操業演算装置および操業演算方法
JP2019183227A (ja) 転炉パラメータ導出装置、転炉パラメータ導出方法、およびプログラム
JP2013249523A (ja) 転炉操業方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18848354

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019537673

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20197028444

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18848354

Country of ref document: EP

Kind code of ref document: A1