WO2019039417A1 - ヌクレオチド標的認識を利用した標的配列特異的改変技術 - Google Patents
ヌクレオチド標的認識を利用した標的配列特異的改変技術 Download PDFInfo
- Publication number
- WO2019039417A1 WO2019039417A1 PCT/JP2018/030607 JP2018030607W WO2019039417A1 WO 2019039417 A1 WO2019039417 A1 WO 2019039417A1 JP 2018030607 W JP2018030607 W JP 2018030607W WO 2019039417 A1 WO2019039417 A1 WO 2019039417A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- sequence
- target
- gene
- cas5d
- nucleotide sequence
- Prior art date
Links
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K14/00—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
- C07K14/195—Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from bacteria
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12Q—MEASURING OR TESTING PROCESSES INVOLVING ENZYMES, NUCLEIC ACIDS OR MICROORGANISMS; COMPOSITIONS OR TEST PAPERS THEREFOR; PROCESSES OF PREPARING SUCH COMPOSITIONS; CONDITION-RESPONSIVE CONTROL IN MICROBIOLOGICAL OR ENZYMOLOGICAL PROCESSES
- C12Q1/00—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions
- C12Q1/68—Measuring or testing processes involving enzymes, nucleic acids or microorganisms; Compositions therefor; Processes of preparing such compositions involving nucleic acids
- C12Q1/6806—Preparing nucleic acids for analysis, e.g. for polymerase chain reaction [PCR] assay
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/111—General methods applicable to biologically active non-coding nucleic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/10—Processes for the isolation, preparation or purification of DNA or RNA
- C12N15/102—Mutagenizing nucleic acids
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/11—DNA or RNA fragments; Modified forms thereof; Non-coding nucleic acids having a biological activity
- C12N15/113—Non-coding nucleic acids modulating the expression of genes, e.g. antisense oligonucleotides; Antisense DNA or RNA; Triplex- forming oligonucleotides; Catalytic nucleic acids, e.g. ribozymes; Nucleic acids used in co-suppression or gene silencing
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N15/00—Mutation or genetic engineering; DNA or RNA concerning genetic engineering, vectors, e.g. plasmids, or their isolation, preparation or purification; Use of hosts therefor
- C12N15/09—Recombinant DNA-technology
- C12N15/63—Introduction of foreign genetic material using vectors; Vectors; Use of hosts therefor; Regulation of expression
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N9/00—Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
- C12N9/14—Hydrolases (3)
- C12N9/16—Hydrolases (3) acting on ester bonds (3.1)
- C12N9/22—Ribonucleases RNAses, DNAses
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07K—PEPTIDES
- C07K2319/00—Fusion polypeptide
- C07K2319/01—Fusion polypeptide containing a localisation/targetting motif
- C07K2319/09—Fusion polypeptide containing a localisation/targetting motif containing a nuclear localisation signal
-
- C—CHEMISTRY; METALLURGY
- C12—BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
- C12N—MICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
- C12N2310/00—Structure or type of the nucleic acid
- C12N2310/10—Type of nucleic acid
- C12N2310/20—Type of nucleic acid involving clustered regularly interspaced short palindromic repeats [CRISPRs]
Definitions
- the present invention provides a method of targeting a target nucleotide sequence, a method of specifically modifying a target nucleotide sequence, and expression of a target gene using nucleotide target recognition of a CRISPR (Clustered Regularly Interspaced Short Palindromic Repeats) type ID system. And a complex comprising the Cas (Crisps-associated (Crisps-related) protein and the guide RNA used in the method.
- CRISPR Cirliciously Interspaced Short Palindromic Repeats
- the CRISPR system utilizes small RNAs (referred to as guide RNAs or gRNAs) that have complementarity to the invading DNA sequences to promote targeting and degradation to the target foreign DNA.
- gRNAs small RNAs
- gRNAs guide RNAs
- a Cas protein that binds to gRNA to form a complex is required.
- Type I, Type II, Type III and Type V systems in the CRISPR system. Both systems interfere with viruses and foreign plasmids by the Cas protein-gRNA complex acting on the target sequence.
- Type II and Type V systems DNA double strand break on target DNA is the mechanism of interference action by an integral protein having a protein domain retaining gRNA binding and a RuvC-like DNA cleavage protein domain.
- Type III systems complexes of 5 to 8 Cas proteins and gRNA, unlike Type II, have been shown in vitro and in vivo to produce interference by cleaving target RNA sequences There is.
- Cas9 and Cpf1 have been used as Cas proteins.
- Cas9 and Cpf1 require a sequence of 2 to 5 bases or so called proto-spacer flanking motif (PAM) sequence in the vicinity of the target sequence in order to recognize the target DNA.
- PAM proto-spacer flanking motif
- Cas9-gRNA complex and Cpf1-gRNA complex are sequence-specific RNA-inducible endonucleases that cause DNA double-strand breaks at target sites near PAM sequences in vitro and in vivo Has been demonstrated.
- CRISPR type I system systems classified into multiple subtypes from various fungi have been identified as genome sequences, and types IA, IB, IC, ID, I- It is classified and named as E, I-F, and I-U.
- types IA, IB, IC, ID, I- It is classified and named as E, I-F, and I-U.
- the type I-E system derived from E. coli is most advanced, and a complex consisting of six Cas proteins (Cas3, Cse1, Cse2, Cas7, Cas5, Cas6e) and gRNA promotes the degradation of target DNA sequences. has been proven.
- RNA molecules that precede and follow the PAM sequence of about 2 bases to 5 bases that define target specificity are used for target targeting.
- a new targeting system and a new RNA-inducible end that have problems in that there is a locus that can not be designed and in which similar sequences are cut. Development of nucleases is desired.
- the present invention [1] A method of targeting a target nucleotide sequence, wherein the method comprises: (I) a nucleic acid encoding the CRISPR type I-D related protein Cas5d, Cas6d, and Cas7d, or these proteins, and (ii) sequences complementary to the target nucleotide sequence and from the CRISPR locus before and after the sequence A guide RNA containing a common repeat sequence, or a DNA encoding the guide RNA Methods, including introducing [2] A method of altering a target nucleotide sequence, which is in a cell, (I) CRISPR Type I-D Related Proteins Cas3d, Cas5d, Cas6d, Cas7d, and Cas10d, or Nucleic Acids Encoding These Proteins, and (ii) Sequences Complementary to the Target Nucleotide Sequence and CRISPRs Before and After the Sequence A guide RNA comprising a common repeat sequence derived from a gene
- [5] The method according to [2] or [4], further comprising introducing a donor polynucleotide into the cell.
- [6] The method according to any one of [2], [4] and [5], wherein the modification is a deletion, insertion or substitution of a base
- [8] (i) CRISPR Type I-D Related Proteins Cas5d, Cas6d, and Cas7d, and (ii) a Guide Comprises Sequences Complementary to the Target Nucleotide Sequence and Common Repeat Sequences Derived from the CRISPR Locus before and after the Sequence RNA Complex containing [9]
- the complex according to [8], further comprising Cas3d and Cas10d [10] The complex according to [
- nucleic acids encoding CRISPR type I-D related proteins Cas5d, Cas6d, and Cas7d, and (ii) sequences complementary to the target nucleotide sequence and the common repeat derived from the CRISPR locus before and after the sequence DNA encoding a guide RNA containing a sequence
- An expression vector comprising [12] The expression vector according to [11], further comprising a nucleic acid encoding Cas3d and Cas10d, and a DNA molecule encoding the complex according to any one of [13] [8] to [10], 14) for targeting a target nucleotide sequence, (I) a nucleic acid encoding the CRISPR type I-D related protein Cas5d, Cas6d, and Cas7d, or these proteins, and (ii) sequences complementary to the target nucleotide sequence and from the CRISPR locus before and after the sequence A guide RNA containing a common repeat sequence, or a DNA en
- the PAM sequences utilized by the CRISPR type I-D (hereinafter also referred to as "TiD") systems differ from the PAM sequences utilized by the CRISPR type II and type V systems.
- the Cass protein of CRISPR type I-D is used to target loci that could not be designed by genome editing techniques using conventional CRISPR type II or type V RNA inducible endonucleases It became possible.
- PAM sequences utilized by the CRISPR type I-D-derived RNA-inducible endonuclease of the present invention are found more on several genome sequences than PAM sequences utilized by CRISPR type II and type V.
- the present invention it is possible to target more gene sequences than the genome editing techniques utilized by conventional CRISPR Type II and Type V systems. Still further, the present inventors have found that gRNA in the CRISPR type I-D system can target target sequences of 30 bases or more in length. On the other hand, the length of the sequence to which gRNA can be targeted in CRISPR Type II and Type V systems is around 20 bases. Therefore, the CRISPR type I-D system of the present invention is considered to exhibit more stable binding characteristics and target specificity than the prior art.
- composition of the CRISPR type I-D system of this invention and the outline of the targeting to a target sequence and a cleavage mode are shown.
- the vector for E. coli genome editing using TiD is shown. a) Structure of pEcTiD2 plasmid. b) Structure of pEcTiD3 plasmid.
- Pro J23108 synthetic promoter, t1: terminator sequence STOP767, RBS: ribosome binding sequence, t2: terminator sequence STOP768 (1), t3: terminator sequence TOP768 (2), t7: T7 terminator sequence, 7d: derived from Microcystis aeruginosa (below , Abbreviated as Ma) Cas 7d, 6d: MaCas 6d, 5d: MaCas 5d, 3d: MaCas 3d, 10d: MaCas 10 d, T7 pro: T7 promoter, crRNA: CRISPR repeat sequence from TiD, Cm: chloramphenicol resistance gene, p15A ori: p15 Plasmid-derived origin of replication.
- pMW_ccdB and pMW_ccdB-PAM library plasmid The structure of pMW_ccdB and pMW_ccdB-PAM library plasmid is shown.
- Fig. 6 shows a plant genome editing vector using TiD. a) Structure of pEgPTiD1 plasmid. b) Structure of plant crRNA expression cassette. c) Structure of pEgPTiD2 plasmid.
- RB Right border sequence
- LB left border sequence
- 2x35S 2x cauliflower mosaic virus 35S gene promoter and translation enhancer ⁇ sequence
- 3d MaCas3d with added sequence encoding 2xNLS (nuclear translocation signal)
- 10d 2xNLS added MaCas 10d
- 7d MaCas 7d with 2xNLS added
- 6d MaCas 6d with 2x NLS added
- 5d MaCas 5d with 2x NLS added
- (4) self-cleavage peptide 2A sequence (1) to (4)
- Ter Arabidopsis thaliana heat shock protein 18.2 kDa gene terminator
- Km kanamycin resistance gene expression cassette
- U6-26 Arabidopsis thaliana U6 snRNA-26 gene promoter
- crRNA TiD locus derived from CRISPR repeat sequences.
- FIG. 7 shows mutation of tobacco PDS gene using pEgPTiD2-pds.
- Target sequence 1 was selected from exon 3 and target sequence 2 was selected from exon 6.
- the boxed portions indicate PAM sequences, and the underlined portions indicate target sequences.
- FIG. 7 shows mutation of tobacco PDS gene using pEgPTiD2-pds.
- FIG. 7 shows mutagenesis of tomato IAA9 gene using pEgPTiD2-iaa9.
- Target sequence on the tomato IAA9 gene Target sequence 1 was selected from the second exon.
- the boxed portions indicate PAM sequences, and the underlined portions indicate target sequences.
- pEgPTiD2-iaa9 was introduced into a tomato disc by the Agrobacterium method to obtain transformed callus cells.
- the region containing the IAA9 target sequence was amplified by PCR from genomic DNA prepared from transformed callus cells into which pEgPTiD2-iaa9 had been introduced, and mutation analysis was performed by the PCR-RFLP method using AccI. Open triangles indicate AccI digested fragments derived from wild type, and upper triangles indicate mutagenized fragments that do not undergo AccI digestion.
- transduced callus is shown.
- the upper row shows the wild type IAA9 sequence and the underline shows the target sequence.
- the boxed sequences indicate PAM sequences.
- the site where the mutation occurred is indicated by an insertion symbol or a hyphen. A hyphen indicates a base deletion.
- FIG. 7 shows mutation analysis in pEcTiD2-iaa9 introduced and regenerated plants.
- the results of mutation analysis by heteroduplex mobility analysis are shown. From the crRNA containing the target 2 target sequence on the EMX1 gene and the genome from cells into which the TiD gene had been introduced, a fragment thought to be derived from the mutant sequence was detected (black key line). The identification of the mutant sequence by sequence analysis is shown. The white letters in the black background indicate PAM (proto-spacer flanking sequences) recognized by TiD, and the sequences within the black frames indicate target sequences. The hyphen (-) indicates a base deletion, and the black bold and lowercase alphabets indicate a base insertion. To the right of each sequence, somatic mutation efficiency (number of clones in which the mutant sequence was confirmed / total number of analyzed clones) is shown.
- the identification of the mutant sequence by sequence analysis is shown.
- the white letters in the black background indicate PAM (proto-spacer flanking sequences) recognized by TiD, and the sequences within the black frames indicate target sequences.
- the hyphen (-) indicates a base deletion, and the black bold and lowercase alphabets indicate a base insertion.
- somatic mutation efficiency (number of clones in which the mutant sequence was confirmed / total number of analyzed clones) is shown.
- the present invention provides genome editing technology using the CRISPR type I-D system.
- Cas3d, Cas5d, Cas6d, Cas7d, and Cas10d are used among the Cass of CRISPR type ID.
- the CRISPR type I-D system comprises a target recognition module comprising Cas5d, Cas6d and Cas7d, and a polynucleotide cleavage module comprising Cas3d and Cas10d.
- the operation principle of the present invention is as follows. 1) gRNA containing a sequence complementary to the target nucleotide sequence, which is necessary for targeting the target nucleotide sequence (hereinafter also referred to as “targeting”), and a common repetitive sequence present in the CRISPR type I-D locus, 2) Cas5d that recognizes PAM sequences present in the vicinity of the target nucleotide sequence, 3) Cas7d which binds to the gRNA of 1) above and is required for targeting of the target nucleotide sequence, and 4) Cas6d which processes the gRNA of 1) above And 5) providing the cell with a complex comprising Cas10d which interacts with the complex comprising 1) to 4) above to remodel the target nucleotide sequence, and Cas3d which performs degradation of the polynucleotide.
- Targeting to a target nucleotide sequence by a complex comprising 1) to 4) above ie 7) Targeting to a target nucleotide sequence is performed by a complex consisting of a mature gRNA obtained by processing the gRNA of the above 1) by the Cas6d of the above 4) and the above 2) and 3), 8) The complex of 5) above cleaves the polynucleotide on the target nucleotide sequence.
- the present invention provides a method of targeting a target nucleotide sequence using the CRISPR type I-D system (hereinafter, also referred to as “target sequence targeting method of the present invention”), a method of modifying a target nucleotide sequence (hereinafter referred to as " The present invention also provides a target sequence modification method of the present invention) and a method of suppressing the expression of a target gene (hereinafter, also referred to as a “target gene expression suppression method of the present invention”).
- the present invention provides a complex (hereinafter also referred to as “the complex of the present invention”) comprising the CRISPR type ID-related Cas protein and gRNA, which is used in these methods of the present invention, and the complex Provided is a vector comprising the encoding nucleic acid molecule.
- the cell may be either a prokaryotic cell or a eukaryotic cell, and is not particularly limited.
- bacteria, archaea, yeast, plant cells, insect cells, animal cells (eg, human cells, non-human cells, non-mammalian vertebrate cells, invertebrate cells, etc.) can be mentioned.
- RNA-inducible endonuclease comprises at least one nuclease domain and at least one domain that binds to gRNA, and the target nucleotide sequence (or An endonuclease which is derived at the target nucleotide site).
- the RNA-inducible endonuclease used in the present invention is an RNA-inducible endonuclease derived from CRISPR type I-D, and includes the CRISPR type I-D related proteins Cas3d, Cas5d, Cas6d, Cas7d, and Cas10d.
- Cas5d, Cas6d, and Cas7d constitute a "target recognition module” that contributes to target recognition
- Cas3d and Cas10d appear to constitute a "polynucleotide cleavage module” that contributes to the cleavage of a polynucleotide.
- the RNA-inducible endonuclease used in the present invention comprises a target recognition module comprising Cas5d, Cas6d and Cas7d, and a polynucleotide cleavage module comprising Cas3d and Cas10d.
- Cas3d, Cas5d, Cas6d, Cas7d and Cas10d used in the present invention may be derived from any bacteria or archaea, for example, Microcystis aeruginosa, Acetohalobium arabicum, Ammonifex degensii, Anabaena cylindrica, Anabaena variabilis, Caldicellulosiruptor lactoaceticus, Caldilinea aerophila, Clostridium algidicarnis, Crinium epipsammum, Cyanothece Sp.
- Microcystis aeruginosa Acetohalobium arabicum
- Ammonifex degensii Anabaena cylindrica
- Anabaena variabilis Caldicellulosiruptor lactoaceticus
- Caldilinea aerophila Clostridium algidicarnis, Crinium epipsammum, Cyanothece Sp.
- Thermacetogenium phaeum, Thermofilum pendens, etc. may be from a strain.
- the amino acid sequence and nucleotide sequence information of the above Cas protein can be obtained, for example, from public databases such as NCBI GenBank.
- sequence acquisition from a novel microorganism species is also possible.
- the nucleic acid encoding the above Cas protein may be constructed, for example, by selecting a codon optimized for translation in a host cell into which the nucleic acid is introduced based on amino acid sequence information, and synthesizing it by chemical synthesis or the like.
- the above Cas protein may be chemically synthesized based on amino acid sequence information, or a nucleic acid encoding the above Cas protein may be introduced into cells via an appropriate vector or the like and produced in the cells.
- Cas3d, Cas5d, Cas6d, Cas7d, and Cas10d Cas proteins may be mutant Cas proteins as long as they retain the functions of the respective Cas proteins described in the above-described principle of the present invention.
- a guide RNA is a molecule that forms a complex with the above target recognition modules (Cas5d, Cas6d and Cas7d) to target a target nucleotide sequence with these Cas proteins.
- gRNA binds to Cas7d of the target recognition module.
- gRNA binds to a complex comprising Cas5d, Cas6d, and Cas7d to direct the complex to a target nucleotide sequence.
- gRNA binds to the target recognition module of the RNA inducible endonuclease and directs the RNA inducible endonuclease to the target nucleotide sequence.
- the target recognition module is present as part of a fusion protein other than the RNA-inducible endonuclease, gRNA binds to the target recognition module and directs the fusion protein to the target nucleotide sequence.
- gRNA is a sequence complementary to the target sequence so that it can form a base pair with the target nucleotide sequence, and before and after the sequence (5 'end and 3' end), at the CRISPR type I-D locus. Contains the common repeat sequence from which it is derived.
- the common repeat sequence part of gRNA may have at least one hairpin structure.
- the common repeat sequence portion at the 5 'end of the sequence complementary to the target nucleotide sequence has a hairpin structure, and the single common repeat sequence portion at the 3' end of the sequence complementary to the target nucleotide sequence It may be a chain.
- gRNA preferably has one hairpin structure.
- a consensus repeat sequence derived from the CRISPR type I-D locus can be found from the gRNA gene sequence region adjacent to the type I-D gene cluster using a tandem repeat search program.
- the base length of the common repetitive sequence contained in gRNA is not particularly limited as long as the purpose of interacting with the target recognition module to target the target nucleotide sequence is achieved.
- the common repeat sequences before and after the sequence complementary to the target nucleotide sequence may each be about 10 to 70 bases long, for example 30 to 50 bases long.
- the gRNA can comprise a sequence of about 10 to 70 bases that is complementary to the target nucleotide sequence.
- the sequence complementary to the target nucleotide sequence contained in gRNA is preferably a sequence consisting of 20 bases to 50 bases, more preferably a sequence consisting of 25 bases to 45 bases, still more preferably a sequence consisting of 30 bases to 40 bases, and still more preferably It is a sequence consisting of 32 bases to 37 bases, for example, a sequence consisting of 32 bases, 33 bases, 34 bases, 35 bases, 36 bases or 37 bases. It is believed that the longer the targetable target sequence, the greater the sequence specificity of target recognition by gRNA.
- RNA-inducible endonucleases eg, Cas9 and Cpf1
- Cas9 and Cpf1 used in conventional genome editing techniques (eg, Cas9 and Cpf1) have a length of about 20-24 bases to which gRNA can be targeted
- the present invention is more sequence specific than conventional methods. It has excellent sex and stability.
- the target nucleotide sequence (herein also simply referred to as “target sequence”) is a sequence of any nucleic acid, which is located in the vicinity of the protospacer proximity motif (PAM) There is no particular limitation except that it is selected as a target sequence.
- the target nucleotide sequence may be either double stranded DNA sequence, single stranded DNA sequence, or RNA sequence. Examples of DNA include eukaryotic nuclear genomic DNA, mitochondrial DNA, plastid DNA, prokaryotic genomic DNA, phage DNA, or plasmid DNA.
- the target nucleotide sequence is preferably double-stranded DNA on the genome.
- "located in the vicinity” includes both adjacent and nearby.
- proximal includes both adjacent positions or near positions.
- the PAM sequences utilized for target recognition in the CRISPR system vary depending on the type of CRISPR system.
- a sequence located in the vicinity downstream of the 3 'side of the PAM sequence is selected as a target nucleotide sequence.
- the target nucleotide sequence may be a sequence located in the vicinity of the PAM sequence and present in the intron, coding region, non coding region or control region of the target gene.
- the target gene is any gene and may be selected arbitrarily.
- the PAM sequences of Cas9 and Cpf1 and the PAM sequences of TiD in the genomic sequences of higher plants are compared (ie, the number of candidate targets for the CRISPR system), the PAM sequence frequency of TiD is the highest, and Cas9 or Cpf1 It was found that the number of targets was larger than the conventional genome editing technology used (Table 1).
- the target sequence targeting method of the present invention is characterized in that the target recognition modules (Cas5d, Cas6d, and Cas7d) and the gRNA are introduced into the cells. That is, the target sequence targeting method of the present invention comprises: (i) nucleic acids encoding Cas5d, Cas6d, and Cas7d or these proteins, and (ii) introducing the above gRNA or DNA encoding the gRNA into the above cells It is characterized by The target sequence targeting method of the present invention may be performed either in vitro or in vivo.
- the target recognition module may be introduced into cells as an isolated complex containing Cas5d, Cas6d and Cas7d, or each of Cas5d, Cas6d and Cas7d may be single. It may be introduced into the cell alone as a released protein. Moreover, in the target sequence targeting method of the present invention, the target recognition module may be introduced into cells as a nucleic acid encoding the Cas protein Cas5d, Cas6d, and Cas7d. Examples of the nucleic acid include RNA such as mRNA or DNA.
- the DNA encoding the above Cas protein may be contained, for example, in a vector, and the DNA sequence is preferably operably linked to regulatory sequences such as a promoter and a terminator.
- regulatory sequences such as a promoter and a terminator.
- a nuclear localization signal sequence is added to the DNA encoding the Cas protein.
- Two or more or all of the above Cas proteins of Cas5d, Cas6d, and Cas7d may be contained in a single vector, or may be contained in separate vectors. There is no limitation on the number of vectors, and the type and combination of Cas proteins encoded by the DNAs incorporated into each vector.
- DNA sequences encoding the above Cas protein When two or more DNAs encoding the above Cas protein are contained in one vector, these DNA sequences may be mutually expressed, for example, via a sequence encoding a self-cleavable peptide, etc. so as to express polycistronically. It may be linked to The order in which two or more DNAs encoding the Cas protein are linked may be in any order.
- the gRNA may be introduced into cells as RNA or as DNA encoding gRNA.
- the DNA encoding gRNA may be, for example, contained in a vector, and the DNA sequence is preferably operably linked to regulatory sequences such as a promoter and a terminator.
- the DNA encoding the Cas protein and the DNA encoding the gRNA may be contained in the same vector or may be contained in separate vectors.
- one or more or all of the DNAs encoding Cas5d, Cas6d, and Cas7d, and the DNA encoding gRNA may be contained in a single vector.
- the regulatory sequences such as the promoter and the terminator, and the nuclear localization signal sequence are known in the art and can be appropriately selected according to the species from which the target recognition module and the cell into which the gRNA is introduced are derived.
- the vector used for the introduction may also be appropriately selected depending on the species of the organism from which the introduced cell is derived, and is not particularly limited. For example, plasmid vectors, viral vectors, phagemids, cosmids, artificial / minichromosomes, transposons and the like can be mentioned.
- the target recognition module and introduction of gRNA into cells can be performed by various means known in the art.
- transfection for example, calcium phosphate-mediated transfection, electroporation, liposome transfection, etc., virus transduction, lipofection, gene gun, microinjection, Agrobacterium method, agroinfiltration method, PEG-calcium method, etc.
- transfection for example, calcium phosphate-mediated transfection, electroporation, liposome transfection, etc.
- the target recognition module and gRNA may be introduced into cells simultaneously or sequentially.
- Cas5d, Cas6d, and Cas7d constituting the target recognition module, or nucleic acids encoding each of these Cas proteins may be introduced into cells simultaneously or sequentially.
- the above Cas proteins Cas5d, Cas6d and Cas7d synthesized respectively in vitro or in vivo and gRNA synthesized in vitro or in vivo are incubated in vitro to form a complex, Complexes can be introduced into cells.
- cells Upon introduction of the target recognition module and gRNA, cells are cultured under conditions suitable for targeting of the target nucleotide sequence. The cells are then cultured under conditions suitable for cell growth and maintenance.
- the culture conditions may be culture conditions suitable for the species from which the target recognition module and the cell into which gRNA is introduced are derived, and can be appropriately determined by those skilled in the art based on known cell culture techniques, for example.
- gRNA and Cas7d of the target recognition module are bound to form a complex between the target recognition module and the gRNA, and at the same time, the gRNA forms a base pair with the target nucleotide sequence
- the target recognition module targets the target nucleotide sequence in a sequence-specific manner by recognizing PAM sequences near the target nucleotide sequence.
- Cas10d may be further introduced into cells.
- the target sequence modification method of the present invention is characterized in that the RNA-inducible endonuclease and the gRNA are introduced into the cells. That is, the target sequence modification method of the present invention comprises the steps of (i) Cas3d, Cas5d, Cas6d, Cas7d, and Cas10d, or a nucleic acid encoding these proteins, and (ii) the above gRNA or said gRNA in cells. DNA is introduced into the cells.
- the target sequence modification method of the present invention comprises cleaving a nucleotide sequence targeted by the target sequence targeting method of the present invention by the above-mentioned polynucleotide cleavage module.
- the target sequence modification method of the present invention may be performed either in vitro or in vivo. In the present invention, modification includes deletion, insertion or substitution of at least one nucleotide, or a combination thereof.
- a donor polynucleotide may be introduced into cells in addition to the above-described RNA-inducible endonuclease and gRNA.
- the donor polynucleotide comprises at least one donor sequence comprising the modification that one wishes to introduce at the target site.
- the donor polynucleotide is, in addition to the donor sequence, a sequence having high homology to the upstream and downstream sequences of the target sequence at each end of the donor sequence (preferably, a sequence substantially identical to the upstream and downstream sequences of the target sequence ) May be included.
- the donor polynucleotide may be single stranded or double stranded DNA.
- the donor polynucleotide can be appropriately designed by those skilled in the art based on techniques known in the art.
- cleavage at the target nucleotide sequence can be repaired by non-homologous end joining (NHEJ).
- NHEJ non-homologous end joining
- the sequence may be altered at the target sequence site, thereby inducing a frameshift or an immature stop codon, which may inactivate or knock out expression of the gene encoded by the target sequence region.
- the donor sequence of the donor polynucleotide is inserted into the target sequence site by homologous recombination repair (HDR) of the cleaved target nucleotide sequence, or The target sequence site is replaced with the donor sequence.
- HDR homologous recombination repair
- the RNA-inducible endonuclease may be introduced into the cell as an isolated complex comprising Cas5d, Cas6d, Cas7d, Cas3d, and Cas10d, or each of Cas5d, Cas6d, Cas7d, Cas3d, and Cas10d is It may be introduced into cells alone as an isolated protein.
- the RNA-inducible endonuclease may be introduced into the cell as a nucleic acid encoding the Cas protein Cas5d, Cas6d, Cas7d, Cas3d, and Cas10d. Examples of the nucleic acid include RNA such as mRNA or DNA.
- the DNA encoding the above Cas protein may be contained, for example, in a vector, and the DNA sequence is preferably operably linked to regulatory sequences such as a promoter and a terminator.
- regulatory sequences such as a promoter and a terminator.
- a nuclear localization signal sequence is added to the DNA encoding the Cas protein.
- Two or more or all of the above Cas proteins of Cas protein, Cas5 d, Cas6 d, Cas7 d, and Cas10 d may be contained in a single vector, or may be contained in separate vectors. There is no limitation on the number of vectors, and the type and combination of Cas proteins encoded by the DNAs incorporated into each vector.
- DNA sequences encoding the above Cas protein When two or more DNAs encoding the above Cas protein are contained in one vector, these DNA sequences may be mutually expressed, for example, via a sequence encoding a self-cleavable peptide, etc. so as to express polycistronically. It may be linked to The order in which two or more DNAs encoding the Cas protein are linked may be in any order.
- the gRNA may be introduced into cells as RNA or as DNA encoding gRNA.
- the DNA encoding gRNA may be, for example, contained in a vector, and the DNA sequence is preferably operably linked to regulatory sequences such as a promoter and a terminator.
- the DNA encoding the Cas protein and the DNA encoding the gRNA may be contained in the same vector or may be contained in separate vectors. For example, all DNA encoding each of Cas3d, Cas5d, Cas6d, Cas7d, and Cas10d, and DNA encoding gRNA may be contained in a single vector.
- the regulatory sequences such as the promoter and terminator, and the nuclear localization signal sequence are known in the art, and can be appropriately selected according to the type of RNA-inducible endonuclease and cells into which the gRNA is introduced.
- the vector used for introduction may also be selected appropriately according to the type of cells to be introduced, and is not particularly limited. For example, plasmid vectors, viral vectors, phagemids, cosmids, artificial / minichromosomes, transposons and the like can be mentioned.
- RNA-inducible endonuclease for example, calcium phosphate-mediated transfection, electroporation, liposome transfection, etc., virus transduction, lipofection, gene gun, microinjection, Agrobacterium method, agroinfiltration method, PEG-calcium method, etc. Can be mentioned.
- RNA inducible endonuclease gRNA and donor polynucleotide may be introduced into the cell simultaneously or sequentially.
- Cas3d, Cas5d, Cas6d, Cas7d, and Cas10d, which constitute the above-mentioned RNA-inducible endonuclease, or a nucleic acid encoding each of these Cas proteins may be introduced into cells simultaneously or sequentially.
- RNA inducible endonuclease and gRNA At the time of introduction of the RNA inducible endonuclease and gRNA, or RNA inducible endonuclease, gRNA and donor polynucleotide, cells are cultured under conditions suitable for cleavage at the target sequence site. The cells are then cultured under conditions suitable for cell growth and maintenance.
- the culture conditions may be any culture conditions suitable for the species from which cells introducing RNA-inducible endonuclease and gRNA, or RNA-inducible endonuclease, gRNA and donor polynucleotide are derived, for example, known cell culture techniques. It can be appropriately determined by those skilled in the art based on
- the target sequence modification method of the present invention at the same time as the gRNA forms a base pair with the target nucleotide sequence, the interaction with the target recognition module of the RNA inducible endonuclease causes the RNA inducible endonuclease to become the target
- the cleavage module of the RNA-inducible endonuclease cleaves the sequence at the target sequence site, and upon repair of the cleavage sequence, the target sequence is altered.
- the target sequence modification method of the present invention can be used for modification of a target nucleotide sequence on the genome, whereby the double-stranded DNA on the genome is cleaved and the target site is modified.
- Target gene expression suppression method of the present invention is characterized in that the target recognition modules (Cas5d, Cas6d, and Cas7d) and the gRNA are introduced into the cells. That is, the target sequence targeting method of the present invention comprises: (i) nucleic acids encoding Cas5d, Cas6d, and Cas7d or these proteins, and (ii) introducing the above gRNA or DNA encoding the gRNA into the above cells It is characterized by In the target gene expression suppression method of the present invention, as the target nucleotide sequence, the sequence of at least a part of the sequence of the target gene is selected, and gRNA containing a sequence complementary to the sequence is used.
- the target gene expression suppression method of the present invention comprises the target sequence by targeting the nucleotide sequence by the target sequence targeting method of the present invention, by binding the complex of the target recognition module and gRNA to the target sequence. Including the suppression of gene expression.
- the target gene expression suppression method of the present invention may be performed either in vitro or in vivo. According to the target gene expression suppression method of the present invention, the target gene sequence is not cleaved, but the complex of the target recognition module and gRNA binds to the target nucleotide sequence to function as a function of the gene region including the target sequence or The expression of the gene is inhibited.
- Target recognition module and gRNA the method for introducing them into cells, and the cell culture at the time of introduction and after introduction are the same as those described in the above (5) Target sequence targeting method of the present invention. .
- Cas10d may be further introduced into cells.
- the complex of the present invention comprises the above-mentioned CRISPR type I-D Cas protein and the above-mentioned gRNA.
- the present invention particularly provides a complex comprising the target recognition module and the gRNA, and a complex comprising the RNA-inducible endonuclease and gRNA. More specifically, a complex comprising Cas5d, Cas6d, and Cas7d and gRNA, and a complex comprising Cas5d, Cas6d, Cas7d, Cas3d and Cas10d and gRNA are provided. In addition, DNA molecules encoding the above complexes are also provided.
- the complex of the present invention can be used for the target sequence modification method, target gene expression suppression method, and target sequence targeting method of the present invention described above.
- a complex containing an RNA-inducible endonuclease a complex containing Cas5d, Cas6d, Cas7d, Cas3d and Cas10d
- gRNA RNA-inducible endonuclease
- the complex is made to function in the cell to allow the cell to function.
- the target sequence on the genome can be altered.
- a target sequence in a cell is introduced by introducing a complex comprising a target recognition module (a complex containing Cas5d, Cas6d, and Cas7d) and gRNA into the cell to make the complex function in the cell.
- the complex containing the target recognition module and gRNA may further contain Cas10d.
- the complexes of the invention can be prepared in vitro or in vivo by conventional methods.
- a nucleic acid encoding the above RNA-inducible endonuclease or Cas protein constituting the above target recognition module, and gRNA or DNA encoding gRNA may be introduced into cells to form complexes in the cells. .
- Microcystis aeruginosa Cas5d (SEQ ID NO: 1), Cas6d (SEQ ID NO: 2), and Cas7d (SEQ ID NO: 3)
- Microcystis aeruginosa Cas5d (SEQ ID NO: 1), Cas6d (SEQ ID NO: 2), Cas7d (SEQ ID NO: 3), Cas3 d (SEQ ID NO: 4) and Cas 10 d (SEQ ID NO: 5),
- N is complex thereof comprising the gRNA consisting of the sequence shown in is any nucleotide) constituting a sequence complementary to the target nucleotide sequence.
- the number of N in the sequence of the above gRNA may be changed in the range of 10 to 70, preferably 20 to 50, more preferably 25 to 45, still more
- Expression vector of the present invention further provides a nucleic acid encoding RNA-inducible endonuclease comprising Cas3d, Cas5d, Cas6d, Cas7d, and Cas10d, and a sequence complementary to the target sequence and the CRISPR before and after said sequence
- An expression vector comprising a DNA encoding a guide RNA comprising a consensus repeat sequence derived from a genetic locus, and a nucleic acid encoding a CRISPR type I-D related protein Cas5d, Cas6d, and Cas7d, and a sequence complementary to a target sequence and said
- an expression vector comprising a DNA encoding a guide RNA comprising a consensus repeat sequence derived from the CRISPR locus before and after the sequence.
- the vector of the present invention is described in the above "(5) Target sequence targeting method of the present invention", “(6) Target sequence modification method of the present invention” and “(7) Target gene expression suppression method of the present invention” As described above, it is a vector for introducing the above Cas protein and gRNA into cells. After the introduction of the vector, the Cas protein and gRNA are expressed in the cells.
- the vector of the present invention may also be a vector in which the target sequence contained in the above gRNA is replaced with any sequence containing a restriction site. Such a vector is used by incorporating a desired target nucleotide sequence at the arbitrary sequence site.
- the arbitrary sequence may be, for example, a spacer sequence at a locus of CRISPR type I-D or a part thereof.
- the present invention further provides a fusion protein comprising the above target recognition module and a functional polypeptide.
- the fusion protein and the gRNA are introduced into cells, the fusion protein is induced to the target nucleotide sequence or target gene in the cell by the action of the target recognition module and gRNA, and the action of the functional polypeptide causes the target nucleotide sequence or the target nucleotide sequence or The target gene is altered or modified. Therefore, the present invention further provides a method for modifying or modifying a target nucleotide sequence or target gene, which comprises introducing the above fusion protein and the above gRNA into cells. Furthermore, the present invention also provides a complex comprising the fusion protein and the gRNA.
- the functional polypeptide is a polypeptide that exhibits some function to the target sequence, and is a polypeptide other than Cas3d and Cas10d.
- the functional polypeptide include, but are not limited to, restriction enzymes, transcription factors, DNA methylases, histone acetylases, fluorescent proteins, and nucleotide cleavage modules of restriction enzymes as polynucleotide cleavage modules, for example.
- Gene expression regulatory modules include transcription activation modules and transcription repression modules of transcription factors
- epigenome modification modules include methylation modules of DNA methylation enzymes and acetylation modules of histone acetylases.
- fluorescent proteins include GFP.
- a fusion protein containing the above target recognition module and a polynucleotide cleavage module can be modified with a target sequence by introducing it into cells together with gRNA, as in the target sequence modification method of the present invention.
- a fusion protein with the above-mentioned target recognition module and a gene expression regulatory module or an epigenomic modification module can modify the target sequence and regulate the expression of a target gene by introducing it into cells together with gRNA.
- a fusion protein with the above target recognition module and a fluorescent protein can be fluorescently labeled in the vicinity of a target sequence by introducing it into cells together with gRNA.
- a gene group (Cas3d, Cas5d, Cas6d, Cas7d, Cas10d) derived from Microcystis aeruginosa-derived CRISPR type I (hereinafter also referred to as “TiD”) locus was cloned and used.
- TiD Microcystis aeruginosa-derived CRISPR type I locus
- any of artificial gene chemical synthesis, PCR method, restriction enzyme treatment, ligation, and Gibson Assembly method was used.
- Sanger method or next-generation sequencing method was used to determine the base sequence.
- Example 1 Genome Editing in E. coli
- E. coli which is a typical bacterial model organism.
- TiD locus The gene group derived from the CRISPR type I-D locus (hereinafter also referred to as "TiD locus") of Microcystis aeruginosa (hereinafter also referred to as "M. aeruginosa”) was cloned. From the TiD locus M. Based on the amino acid sequence information of Cas5d, Cas6d, Cas7d, Cas3d and Cas10d derived from aeruginosa, E. coli codon type sequences (SEQ ID NOS: 7 to 11) encoding each Cas protein were artificially synthesized.
- a DNA fragment having a J23108 synthetic promoter (SEQ ID NO: 12) or synthetic ribosomal binding sequence (SEQ ID NO: 13) upstream of each gene and a terminator sequence (SEQ ID NO: 14 to 17) downstream of each gene is a plasmid vector pACYC184 ( It was ligated to Nippon Gene Co., Ltd.) to construct pEcTiD1. Furthermore, M.
- the CRISPR repeat sequence (crRNA, SEQ ID NO: 18) present near the CRISPR type I-D locus from aeruginosa is extracted, and the crRNA expression cassette (SEQ ID NO: 20) is synthesized under the control of the T7 promoter (SEQ ID NO: 19) did.
- the crRNA expression cassette contains the promoter region sequence of the E. coli ccdB gene to be the target sequence of this example.
- the crRNA expression cassette sequence was incorporated into pEcTiD1 to construct pEcTiD2 (FIG. 2a).
- construction of pEcTiD3 containing Cas5d, Cas6d and Cas7d gene expression cassettes was performed as a TiD expression plasmid vector performing genome editing without DNA double strand breaks (FIG. 2b).
- the promoter, terminator, CRISPR repeat sequence, and crRNA expression cassette sequence used in this example are shown in Table 2.
- the CRISPR system recognizes a protospacer flanking motif (PAM) sequence located near the target sequence and binds to the target sequence via gRNA.
- PAM protospacer flanking motif
- M. M. used in this example. Since the PAM sequence of aeruginosa TiD was unknown, first, M. aeruginosa TiD was unknown.
- a PAM sequence library plasmid was constructed to determine the PAM sequence of aeruginosa TiD.
- a random 4-base sequence was introduced into the pMW_ccdB1 T7 promoter upstream using artificial chemical DNA synthesis and PCR (FIG. 3 b).
- the constructed pMW_ccdB-PAM library plasmid was introduced into a CcdB resistant E. coli ccdB resistant cell line (manufactured by Thermo Fisher Scientific), and then a large amount of plasmid was prepared.
- the Cas5d / Cas6d / Cas7d-crRNA complex recognizes the target sequence adjacent to the appropriate PAM sequence and does not cleave the target sequence, but binds to the target sequence to inhibit the function of the T7 promoter as a target sequence Do.
- CcdB expression of pMW-ccdB-PAM introduced into strain BL21AI is induced in arabinose-added medium, and strain BL21AI not having CcdB resistance is killed.
- pMW_ccdB-PAM library plasmid is introduced into BL21AI strain into which TiD expression plasmid has been introduced in advance
- the pMW_ccdB-PAM library plasmid is prepared from the grown E. coli colonies and sequenced PAM sequence analysis. The PAM sequence of aeruginosa TiD is determined.
- the pMW_ccdB-PAM library plasmid subjected to large-scale plasmid preparation was introduced into BL21AI [pEcTiD3-T7] strain by a chemical competent cell method.
- BL21AI cells carrying pMW_ccdB-PAM library plasmid and pEcTiD3-T7 were selected on LB agar medium containing 25 mg / L chloramphenicol, 25 mg / L kanamycin and 1% glucose.
- LB liquid medium containing no antibiotics and glucose
- the suspension was cultured at 37 ° C. for 2 hours, and after induction of expression of crRNA and ccdB under the control of T7 promoter expression by arabinose, 200 ⁇ L of bacterial fluid was 25 mg / L chloramphenicol, 25 mg / L.
- the cells were plated on an LB agar medium containing L kanamycin and 1% arabinose, and cultured overnight at 37 ° C. to obtain bacterial colonies obtained.
- a plasmid was prepared from the recovered colonies of about 500 strains, and sequence analysis in the vicinity of the PAM sequence was performed.
- BL21AI strain carrying the correct plasmid is applied to LB agar medium containing 25 mg / L chloramphenicol, 25 mg / L kanamycin and 1% arabinose and cultured overnight at 37 ° C. It was not recognized and was considered to be due to double strand breaks of plasmid DNA in the presence of Cas3 and Cas10d.
- Example 2 Genome Editing in Higher Plants
- the technique of the present invention works effectively in Nicotiana benthamiana and Solanum lycopersicum as an example of genome editing in higher eukaryotes.
- Two cauliflower mosaic virus 35S gene promoters are arranged in tandem on the 5 ′ side upstream of the 5 TiD gene fragments linked by the 2A peptide sequence, and a promoter sequence (2 ⁇ 35S promoter; SEQ ID NO: 29) in which a translation enhancer ⁇ sequence is further added
- a TiD gene expression cassette was prepared in which an Arabidopsis heat shock protein 18.2 kDa gene terminator sequence (SEQ ID NO: 30) was linked downstream of the 3 'side.
- the TiD gene expression cassette was cloned into the binary plasmid vector pCAMBIA2300 to construct pEgPTiD1 (FIG. 4a).
- a plant crRNA expression cassette was artificially synthesized with a DNA sequence in which a spacer sequence containing two restriction enzyme sites BsaI was placed between two crRNA sequences so that arbitrary 35 base sequences could be ligated (SEQ ID NO: 31 ).
- a plant crRNA expression cassette was constructed in which a promoter sequence (SEQ ID NO: 32) of the Arabidopsis thaliana U6 snRNA-26 gene was added to the 5 'upstream side as an expression control sequence, and a poly T sequence was added to the 3' side downstream (Fig. 4b).
- the plant crRNA expression cassette was ligated between the RB sequence of pEgPTiD1 and the 2x35S promoter to construct pEgPTiD2, which was used as a TiD gene expression binary plasmid vector for plant genome editing (Fig. 4c). Sequences of dicotyledonous codon types encoding each Cas protein to which a nuclear localization signal is added in pEgPTiD1 and pEgPTiD2 are shown in SEQ ID NOs: 33 to 37. The nuclear localization signal sequence, the autocleavage peptide 2A sequence, the promoter, the terminator, and the crRNA expression cassette sequence used in this example are shown in Table 4.
- Target sequence 1 (Target 1, SEQ ID NO: 38) was selected from the third exon in the tobacco PDS gene, and pEgPTiD2-pds (1) was constructed by artificial chemical synthesis and incorporated into a plant crRNA expression cassette.
- target sequence 2 (Target 2, SEQ ID NO: 39) was selected from exon 6, and pEgPTiD2-pds (2) was constructed by artificial chemical synthesis and incorporated into a plant crRNA expression cassette.
- the constructed binary vector was introduced into Agrobacterium tumefaciens GV2260 strain, respectively.
- the introduction of the TiD expression vector targeting tobacco PDS into tobacco cells was performed by the agroinfiltration method.
- the Agrobacterium strain carrying pEgPTiD2-pds (1) or pEgPTiD2-pds (2) and the Agrobacterium strain carrying the GFP expression binary vector were respectively cultured to co-infect the true leaves of N. benthamiana ( Figure 5-1 b). After co-infection, 300-500 bp PDS gene fragment containing the target sequence was PCR amplified using genomic DNA prepared from the region emitting GFP fluorescence as a template in leaf pieces after 3 days.
- a Cel-1 assay was performed using the amplified PCR fragment to analyze the presence or absence of a mutation introduced on the PDS gene.
- a tobacco leaf into which only the GFP expression binary vector was introduced was used as a control.
- mutation was introduced on the target sequence of each PDS gene. It was recognized (c in Figure 5-2).
- Target sequences 1 and 2 are shown in Table 5.
- Target sequence 1 SEQ ID NO: 40
- pEgPTiD2-iaa9 was constructed by artificial chemical synthesis and incorporated into a plant crRNA expression cassette.
- the constructed binary vector was introduced into Agrobacterium tumefaciens GV2260 strain.
- the introduction of a TiD expression vector targeting tomato IAA9 gene into tomato cells was performed by the Agrobacterium method using a leaf disc derived from tomato cotyledon.
- the genomic DNA prepared from the resulting transformed calli was used as a template, and the approximately 300b region containing the target sequence of IAA9 was amplified by PCR.
- the callus culture-derived PCR fragment into which pEgPTiD2-iaa9 had been introduced contains a sequence that is not cleaved by AccI as a result of mutagenesis of the IAA9 target sequence.
- Figure 6c The base sequence of the PCR fragment derived from the callus from which pEgPTiD2-iaa9 was introduced was determined, and mutations of 1b to 4b with deletion or insertion of bases were introduced immediately after the PAM sequence on the target sequence of IAA9. It became clear that there was (Fig. 7).
- the callus to which pEgPTiD2-iaa9 had been introduced was further cultured on MS solidified medium containing 100 mg / L kanamycin and 1.0 mg / L t-zeatin to obtain transformed redifferentiated shoots.
- genomic DNA prepared from the redifferentiated shoot obtained was used as a template and PCR-RFLP analysis was performed with AccI, as shown in FIG. 8a, the PCR fragment not subjected to cleavage with AccI, that is, the mutation in the IAA9 target sequence is nearly complete.
- a 100% introduced transformed redifferentiated shoot was obtained.
- the transformed and regenerated shoots of 14 individuals which were regenerated as shown in FIG.
- Cytomegalovirus enhancer + avian ⁇ -actin gene promoter hybrid sequence (CBh promoter; SEQ ID NO: 41) upstream of 5 TiD gene fragments linked by 2A peptide sequence, and bovine derived growth downstream of 3 'side
- a TiD gene expression cassette in which a hormone gene terminator sequence (bGH terminator SEQ ID NO: 42) was linked was prepared, and pCR_hTiD linked to a pCR8TOPO vector (manufactured by Thermo Fisher Scientific Co., Ltd.) was constructed.
- a crRNA expression cassette As a crRNA expression cassette, a DNA (SEQ ID NO: 31) in which a spacer sequence including two restriction enzyme BsaI sites was arranged between two crRNA sequences so as to allow ligation of an arbitrary 35 base sequence was artificially synthesized.
- the promoter sequence of human U6 snRNA gene (SEQ ID NO: 43) was added to the 5 'side as an expression control sequence, and the poly T sequence was added to the 3' side, and ligated to pCR8TOPO vector (manufactured by Thermo Fisher Scientific Co.) pCR_crRNA was constructed.
- each Cas protein to which a nuclear localization signal has been added in pCR_hTiD is shown in SEQ ID NOs: 33 to 37.
- the CBh promoter, bGH terminator, and human U6 snRNA gene promoter sequences are shown in Table 7.
- coli HST08 strain manufactured by Takara Bio Inc.
- PureYield registered trademark
- Plasmid Miniprep System manufactured by Promega Corp.
- a mixture of pCR_hTiD and pUC_crRNA-T1 or a mixture of pCR_hTiD and pUC_crRNA-T2 was transfected into HEK293 cell line and introduced.
- the cell line on day 3 after plasmid vector introduction was recovered, and genomic DNA was prepared using Blood & Cell Culture DNA Mini Kit (manufactured by Qiagen).
- the genomic sequence region containing target 1 and target 2 was amplified by PCR, and mutation analysis was performed by heteroduplex mobility analysis using an automated electrophoresis apparatus MultiNA (manufactured by Shimadzu Corporation) . Also, the amplified PCR fragment was cloned into pNEB193 vector (manufactured by New England Biolab), and the mutated sequence was identified by sequence analysis. The somatic mutation efficiency was calculated by the number of clones in which each mutant sequence was confirmed / the total number of analyzed clones.
- FIG. 9 shows an experimental scheme of genome editing using the HEK 293 cell line.
- FIGS. 10 and 11 show the results of the HEK 293 cell line transfected with the mixture of pCR_hTiD and pUC_crRNA-T1 or the mixture of pCR_hTiD and pUC_crRNA-T2, or the HEK 293 cell line (control) into which no plasmid was introduced.
- FIG. 10 and FIG. 11 in the HEK 293 cell line transfected with a mixture of pCR_hTiD and pUC_crRNA-T1 or a mixture of pCR_hTiD and pUC_crRNA-T2, a peak that is thought to have a mutation introduced into the target sequence was detected .
- the present invention it has become possible to target gene sequences that could not be targeted by genome editing technology using conventional CRISPR type II or type V-derived RNA inducible endonuclease. That is, according to the present invention, it is possible to realize generation of mutant alleles on gene regions that can not be targeted by the prior art, gene expression control by transcriptional activation and inactivation, and epigenetic modification by targeting of DNA modification / histone modification protein domain It became possible.
- N is any nucleotide constituting a complementary sequence to a target nucleotide sequence.
- SEQ ID NO: 7 Cas5 d nucleotide sequence for expression in Escherichia coli SEQ ID NO: 8; Cas 6 d nucleotide sequence for expression in Escherichia coli SEQ ID NO: 9; Cas7 d nucleotide sequence for expression in Escherichia coli SEQ ID NO: 10; Cas3d nucleotide sequence for expression in Escherichia coli SEQ ID NO: 11; Cas10 d nucleotide sequence for expression in Escherichia coli SEQ ID NO: 12; J23108 synthesis promoter SEQ ID NO: 13; Ribosomal binding sequence SEQ ID NO: 14; Terminator sequence STOP 767 SEQ ID NO: 15; Terminator sequence STOP 768 (1) SEQ ID NO: 16; Terminator sequence TOP768 (2) SEQ ID NO: 17; T7 terminator sequence SEQ ID NO: 18; CRISPR repeat sequence SEQ ID NO: 19; T7 promoter sequence SEQ ID NO: 20; crRNA
Landscapes
- Health & Medical Sciences (AREA)
- Life Sciences & Earth Sciences (AREA)
- Genetics & Genomics (AREA)
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Biomedical Technology (AREA)
- Zoology (AREA)
- Wood Science & Technology (AREA)
- Bioinformatics & Cheminformatics (AREA)
- General Engineering & Computer Science (AREA)
- Biotechnology (AREA)
- Molecular Biology (AREA)
- Biochemistry (AREA)
- General Health & Medical Sciences (AREA)
- Microbiology (AREA)
- Biophysics (AREA)
- Physics & Mathematics (AREA)
- Plant Pathology (AREA)
- Proteomics, Peptides & Aminoacids (AREA)
- Medicinal Chemistry (AREA)
- Analytical Chemistry (AREA)
- Crystallography & Structural Chemistry (AREA)
- Immunology (AREA)
- Chemical Kinetics & Catalysis (AREA)
- Gastroenterology & Hepatology (AREA)
- Micro-Organisms Or Cultivation Processes Thereof (AREA)
- Enzymes And Modification Thereof (AREA)
- Measuring Or Testing Involving Enzymes Or Micro-Organisms (AREA)
- Breeding Of Plants And Reproduction By Means Of Culturing (AREA)
- Peptides Or Proteins (AREA)
Abstract
Description
[1]標的ヌクレオチド配列を標的化する方法であって、細胞中に、
(i)CRISPRタイプI-D関連タンパク質Cas5d、Cas6d、およびCas7d、またはこれらのタンパク質をコードする核酸、および
(ii)前記標的ヌクレオチド配列に相補的な配列および該配列の前後にCRISPR遺伝子座に由来する共通繰り返し配列を含むガイドRNA、または該ガイドRNAをコードするDNA
を導入することを含む方法、
[2]標的ヌクレオチド配列を改変する方法であって、細胞中に、
(i)CRISPRタイプI-D関連タンパク質Cas3d、Cas5d、Cas6d、Cas7d、およびCas10d、またはこれらのタンパク質をコードする核酸、および
(ii)前記標的ヌクレオチド配列に相補的な配列および該配列の前後にCRISPR遺伝子座に由来する共通繰り返し配列を含むガイドRNA、または該ガイドRNAをコードするDNA
を導入することを含む方法、
[3]標的遺伝子の発現を抑制する方法であって、細胞中に、
(i)CRISPRタイプI-D関連タンパク質Cas5d、Cas6d、およびCas7d、またはこれらのタンパク質をコードする核酸、および
(ii)前記標的遺伝子の配列の少なくとも一部に相補的な配列および該配列の前後にCRISPR遺伝子座に由来する共通繰り返し配列を含むガイドRNA、または該ガイドRNAをコードするDNA
を導入することを含む方法、
[4]前記ガイドRNAが、前記標的ヌクレオチド配列に相補的な20~50塩基からなる配列を含む、[1]~[3]のいずれか1項記載の方法、
[5]前記細胞中にドナーポリヌクレオチドを導入することをさらに含む、[2]または[4]記載の方法、
[6]改変が塩基の欠失、挿入、または置換である、[2]、[4]および[5]のいずれか1項記載の方法、
[7]前記Cas5dがプロトスペーサー隣接モチーフ(PAM)配列として5’-GTH-3’(H=A、C、またはT)を認識する、[1]~[6]のいずれか1項記載の方法、
[8](i)CRISPRタイプI-D関連タンパク質Cas5d、Cas6d、およびCas7d、および
(ii)標的ヌクレオチド配列に相補的な配列および該配列の前後にCRISPR遺伝子座に由来する共通繰り返し配列を含むガイドRNA
を含む複合体、
[9]Cas3dおよびCas10dをさらに含む、[8]記載の複合体、
[10]前記ガイドRNAが、前記標的ヌクレオチド配列に相補的な20~50塩基からなる配列を含む、[8]または[9]記載の複合体、
[11](i)CRISPRタイプI-D関連タンパク質Cas5d、Cas6d、およびCas7dをコードする核酸、および
(ii)標的ヌクレオチド配列に相補的な配列および該配列の前後にCRISPR遺伝子座に由来する共通繰り返し配列を含むガイドRNAをコードするDNA
を含む発現ベクター、
[12]Cas3dおよびCas10dをコードする核酸をさらに含む、[11]記載の発現ベクター、および
[13][8]~[10]のいずれか1項記載の複合体をコードするDNA分子、ならびに
[14]標的ヌクレオチド配列を標的化するための、
(i)CRISPRタイプI-D関連タンパク質Cas5d、Cas6d、およびCas7d、またはこれらのタンパク質をコードする核酸、および
(ii)前記標的ヌクレオチド配列に相補的な配列および該配列の前後にCRISPR遺伝子座に由来する共通繰り返し配列を含むガイドRNA、または該ガイドRNAをコードするDNA
の使用、
[15]標的ヌクレオチド配列を改変するための、
(i)CRISPRタイプI-D関連タンパク質Cas3d、Cas5d、Cas6d、Cas7d、およびCas10d、またはこれらのタンパク質をコードする核酸、および
(ii)前記標的ヌクレオチド配列に相補的な配列および該配列の前後にCRISPR遺伝子座に由来する共通繰り返し配列を含むガイドRNA、または該ガイドRNAをコードするDNA
の使用、
[16]標的遺伝子の発現を抑制するための、
(i)CRISPRタイプI-D関連タンパク質Cas5d、Cas6d、およびCas7d、またはこれらのタンパク質をコードする核酸、および
(ii)前記標的遺伝子の配列の少なくとも一部に相補的な配列および該配列の前後にCRISPR遺伝子座に由来する共通繰り返し配列を含むガイドRNA、または該ガイドRNAをコードするDNA
の使用、
[17]前記ガイドRNAが、前記標的ヌクレオチド配列に相補的な20~50塩基からなる配列を含む、[14]~[16]のいずれか1項記載の使用、
[18]改変が塩基の欠失、挿入、または置換である、[15]または[17]記載の使用、
[19]前記Cas5dがプロトスペーサー隣接モチーフ(PAM)配列として5’-GTH-3’(H=A、C、またはT)を認識する、[14]~[18]のいずれか1項記載の使用、
[20]標的ヌクレオチド配列を標的化するための、
(i)CRISPRタイプI-D関連タンパク質Cas5d、Cas6d、およびCas7d、および
(ii)標的ヌクレオチド配列に相補的な配列および該配列の前後にCRISPR遺伝子座に由来する共通繰り返し配列を含むガイドRNA
を含む複合体の使用、
[21]標的ヌクレオチド配列を改変するための、
(i)CRISPRタイプI-D関連タンパク質Cas3d、Cas5d、Cas6d、Cas7d、およびCas10dおよび
(ii)前記標的ヌクレオチド配列に相補的な配列および該配列の前後にCRISPR遺伝子座に由来する共通繰り返し配列を含むガイドRNA
を含む複合体の使用、
[22]標的遺伝子の発現を抑制するための、
(i)CRISPRタイプI-D関連タンパク質Cas5d、Cas6d、およびCas7d、および
(ii)前記標的遺伝子の配列の少なくとも一部に相補的な配列および該配列の前後にCRISPR遺伝子座に由来する共通繰り返し配列を含むガイドRNA
を含む複合体の使用、および
[23]前記ガイドRNAが、前記標的ヌクレオチド配列に相補的な20~50塩基からなる配列を含む、[20]~[22]のいずれか1項記載の複合体の使用
を提供する。
1)標的ヌクレオチド配列の標的化(以下、「ターゲティング」ともいう)に必要な、該標的ヌクレオチド配列に相補的な配列と、CRISPRタイプI-D遺伝子座に存在する共通繰り返し配列とを含むgRNA、
2)標的ヌクレオチド配列の近傍に存在するPAM配列を認識するCas5d、
3)上記1)のgRNAに結合し、標的ヌクレオチド配列のターゲティングに必要なCas7d、および
4)上記1)のgRNAのプロセシングを行うCas6d
を含む複合体、および
5)上記1)から4)を含む複合体に相互作用し、標的ヌクレオチド配列のリモデリングを行うCas10dと、ポリヌクレオチドの分解を行うCas3dを含む複合体
が細胞に提供され、該細胞において、
6)上記1)から4)を含む複合体による標的ヌクレオチド配列へのターゲティング、すなわち、
7)上記4)のCas6dにより上記1)のgRNAがプロセシングされて得られる成熟型gRNAと、上記2)および3)とからなる複合体による、標的ヌクレオチド配列へのターゲティングが行われ、
8)上記5)の複合体により、標的ヌクレオチド配列上のポリヌクレオチドが切断される。
本発明において、細胞は、原核細胞または真核細胞のいずれの細胞であってもよく、特に限定されない。例えば、細菌、古細菌、酵母、植物細胞、昆虫細胞、動物細胞(例えば、ヒト細胞、非ヒト細胞、非哺乳動物脊椎動物細胞、無脊椎動物細胞等)が挙げられる。
本発明において、「RNA誘導性エンドヌクレアーゼ」とは、少なくとも1つのヌクレアーゼドメイン、およびgRNAと結合する少なくとも1つのドメインを含み、gRNAによって標的ヌクレオチド配列(または標的ヌクレオチド部位)に誘導されるエンドヌクレアーゼをいう。本発明で使用されるRNA誘導性エンドヌクレアーゼは、CRISPRタイプI-D由来のRNA誘導性エンドヌクレアーゼであり、CRISPRタイプI-D関連タンパク質Cas3d、Cas5d、Cas6d、Cas7d、およびCas10dを含む。本発明において、Cas5d、Cas6d、およびCas7dは、標的認識に寄与する「標的認識モジュール」を構成し、Cas3dおよびCas10dは、ポリヌクレオチドの切断に寄与する「ポリヌクレオチド切断モジュール」を構成することが見出された。すなわち、本発明で使用されるRNA誘導性エンドヌクレアーゼは、Cas5d、Cas6d、およびCas7dを含む標的認識モジュールと、Cas3dおよびCas10dを含むポリヌクレオチド切断モジュールとを含む。
本発明において、ガイドRNA(gRNA)は、上記標的認識モジュール(Cas5d、Cas6d、およびCas7d)と複合体を形成して、これらのCasタンパク質と共に標的ヌクレオチド配列をターゲティングする分子である。本発明において、gRNAは、標的認識モジュールのCas7dに結合する。本発明において、gRNAは、Cas5d、Cas6d、およびCas7dを含む複合体に結合して、該複合体を標的ヌクレオチド配列に誘導する。例えば、gRNAは、上記RNA誘導性エンドヌクレアーゼの標的認識モジュールに結合し、該RNA誘導性エンドヌクレアーゼを標的ヌクレオチド配列に誘導する。また、上記標的認識モジュールが上記RNA誘導性エンドヌクレアーゼ以外の融合タンパク質の一部として存在する場合、gRNAは、該標的認識モジュールに結合し、当該融合タンパク質を標的ヌクレオチド配列に誘導する。
本発明において、標的ヌクレオチド配列(本明細書において、単に「標的配列」ともいう)は、任意の核酸の配列であり、プロトスペーサー近接モチーフ(PAM)の近傍に位置する配列を標的配列として選択することを除き、特に限定されない。標的ヌクレオチド配列は、二本鎖DNA配列、一本鎖DNA配列、またはRNA配列のいずれであってもよい。DNAとしては、例えば、真核生物核ゲノムDNA、ミトコンドリアDNA、プラスチドDNA、原核生物ゲノムDNA,ファージDNA,あるいはプラスミドDNA等が挙げられる。本発明において、標的ヌクレオチド配列は、好ましくは、ゲノム上の二本鎖DNAである。なお、本明細書において、「近傍に位置する」とは、隣接すること、および近くにあることの両方を包含する。また、本明細書において、「近傍」とは、隣接する位置または近くの位置の両方を包含する。
本発明の標的配列ターゲティング方法は、上記標的認識モジュール(Cas5d、Cas6d、およびCas7d)と上記gRNAとを上記細胞中に導入することを特徴とする。すなわち、本発明の標的配列ターゲティング方法は、(i)Cas5d、Cas6d、およびCas7d、またはこれらのタンパク質をコードする核酸、および(ii)上記gRNA、または該gRNAをコードするDNAを上記細胞中に導入することを特徴とする。本発明の標的配列ターゲティング方法は、イン・ビトロおよびイン・ビボのいずれで行ってもよい。
本発明の標的配列改変方法は、上記RNA誘導性エンドヌクレアーゼと上記gRNAとを上記細胞中に導入することを特徴とする。すなわち、本発明の標的配列改変方法は、細胞中に、(i)Cas3d、Cas5d、Cas6d、Cas7d、およびCas10d、またはこれらのタンパク質をコードする核酸、および(ii)上記gRNAまたは該gRNAをコードするDNAを上記細胞中に導入することを特徴とする。本発明の標的配列改変方法は、本発明の標的配列ターゲティング方法により標的化したヌクレオチド配列を、上記ポリヌクレオチド切断モジュールにより切断することを含む。本発明の標的配列改変方法は、イン・ビトロおよびイン・ビボのいずれで行ってもよい。本発明において、改変には、少なくとも1つのヌクレオチドの欠失、挿入、または置換、あるいはそれらの組み合わせが含まれる。
本発明の標的遺伝子発現抑制方法は、上記標的認識モジュール(Cas5d、Cas6d、およびCas7d)と上記gRNAとを上記細胞中に導入することを特徴とする。すなわち、本発明の標的配列ターゲティング方法は、(i)Cas5d、Cas6d、およびCas7d、またはこれらのタンパク質をコードする核酸、および(ii)上記gRNA、または該gRNAをコードするDNAを上記細胞中に導入することを特徴とする。本発明の標的遺伝子発現抑制方法では、標的ヌクレオチド配列として、標的遺伝子の配列の少なくとも一部の配列が選択され、該配列に相補的な配列を含むgRNAを使用する。本発明の標的遺伝子発現抑制方法は、本発明の標的配列ターゲティング方法によりヌクレオチド配列を標的化する際に、標的認識モジュールとgRNAとの複合体が標的配列に結合することにより、該標的配列を含む遺伝子の発現が抑制されることを含む。本発明の標的遺伝子発現抑制方法は、イン・ビトロおよびイン・ビボのいずれで行ってもよい。本発明の標的遺伝子発現抑制方法によれば、標的遺伝子配列は切断されないが、上記標的認識モジュールとgRNAとの複合体が標的ヌクレオチド配列に結合することにより、該標的配列を含む遺伝子領域の機能または該遺伝子の発現が阻害される。
本発明の複合体は、上記CRISPRタイプI-D Casタンパク質および上記gRNAを含む。本発明は、特に、上記標的認識モジュールと上記gRNAを含む複合体、および上記RNA誘導性エンドヌクレアーゼとgRNAを含む複合体を提供する。さらに具体的には、Cas5d、Cas6d、およびCas7dとgRNAを含む複合体、ならびにCas5d、Cas6d、Cas7d、Cas3dおよびCas10dとgRNAを含む複合体を提供する。さらに、上記複合体をコードするDNA分子も提供される。本発明の複合体は、上記した本発明の標的配列改変方法、標的遺伝子発現抑制方法、および標的配列ターゲティング方法に使用することができる。RNA誘導性エンドヌクレアーゼ(Cas5d、Cas6d、Cas7d、Cas3dおよびCas10dを含む複合体)とgRNAとを含む複合体を細胞に導入して、該細胞内で該複合体を機能させることにより、該細胞のゲノム上の標的配列を改変することができる。また、標的認識モジュール(Cas5d、Cas6d、およびCas7dを含む複合体)とgRNAとを含む複合体を細胞に導入して、該細胞内で該複合体を機能させることにより、該細胞中の標的配列を標的化することができ、また、該標的配列領域がコードする遺伝子の発現を抑制することができる。上記標的認識モジュールとgRNAとを含む複合体は、さらにCas10dを含んでいてもよい。
本発明はさらに、Cas3d、Cas5d、Cas6d、Cas7d、およびCas10dを含むRNA誘導性エンドヌクレアーゼをコードする核酸、および標的配列に相補的な配列および該配列の前後にCRISPR遺伝子座に由来する共通繰り返し配列を含むガイドRNAをコードするDNAを含む発現ベクター、ならびにCRISPRタイプI-D関連タンパク質Cas5d、Cas6d、およびCas7dをコードする核酸、および標的配列に相補的な配列および該配列の前後にCRISPR遺伝子座に由来する共通繰り返し配列を含むガイドRNAをコードするDNAを含む発現ベクターを提供する。
本発明は、さらに、上記標的認識モジュールおよび機能性ポリペプチドを含む融合タンパク質を提供する。該融合タンパク質および上記gRNAを細胞中に導入すると、標的認識モジュールおよびgRNAの作用により融合タンパク質が細胞中の標的ヌクレオチド配列または標的遺伝子に誘導され、上記機能性ポリペプチドの作用により該標的ヌクレオチド配列または標的遺伝子が改変または修飾される。したがって、本発明はさらに、上記融合タンパク質および上記gRNAを細胞中に導入することを特徴とする、標的ヌクレオチド配列または標的遺伝子の改変または修飾方法を提供する。さらに、本発明では、上記融合タンパク質と上記gRNAを含む複合体も提供される。
本実施例では、代表的な細菌のモデル生物である大腸菌において本発明の技術が有効に機能することを実証した。
Microcystis aeruginosa(以下、「M. aeruginosa」ともいう)のCRISPRタイプI-D遺伝子座(以下、「TiD遺伝子座」ともいう)由来の遺伝子群をクローン化した。TiD遺伝子座からM. aeruginosa由来のCas5d、Cas6d、Cas7d、Cas3d、およびCas10dのアミノ酸配列情報を基に、各Casタンパク質をコードする大腸菌コドン型の配列(配列番号7~11)を人工化学合成した。各遺伝子の上流にJ23108合成プロモーター(配列番号12)、あるいは合成リボゾーム結合配列(配列番号13)を、各遺伝子の下流にターミネーター配列(配列番号14~17)を付与したDNA断片をプラスミドベクターpACYC184(Nippon gene社製)に連結し、pEcTiD1を構築した。さらにM. aeruginosa由来のCRISPRタイプI-D遺伝子座の近傍に存在するCRISPRリピート配列(crRNA、配列番号18)を抽出し、T7プロモーター(配列番号19)の制御下にcrRNA発現カセット(配列番号20)を合成した。crRNA発現カセットには本実施例の標的配列となる大腸菌ccdB遺伝子のプロモーター領域配列を含んでいる。crRNA発現カセット配列をpEcTiD1に組込み、pEcTiD2(図2a)を構築した。また、DNA二重鎖切断を伴わないゲノム編集を行うTiD発現プラスミドベクターとして、Cas5d、Cas6dおよびCas7d遺伝子発現カセットを含むpEcTiD3の構築を行った(図2b)。本実施例で使用したプロモーター、ターミネーター、CRISPRリピート配列、およびcrRNA発現カセット配列を表2に示す。
本実施例においては、標的DNAとして大腸菌ccdB遺伝子の上流にT7プロモーター配列を連結した合成ccdB遺伝子カセット(配列番号21)(表3)を利用し、ccdB遺伝子上流のT7プロモーター領域を含む35塩基をTiDの標的配列とした。合成ccdB遺伝子カセットをプラスミドベクターpMW219(Nippon gene社製)のマルチクローニングサイトに連結し、pMW_ccdB1を構築した(図3a)。
pMW_ccdB-PAMライブラリープラスミド上のT7プロモーター領域と相補的な35塩基配列を組込んだpEcTiD3-T7を用いて、TiDにおけるPAM配列決定を行った。pEcTiD3-T7を大腸菌BL21AI株(Thermo Fisher Scientific社製)に導入し、ccdB遺伝子ゲノム編集用大腸菌ホスト株とした。BL21AI[pEcTiD3-T7]株は、標的配列認識に必要なCas5d、Cas6dおよびCas7dタンパク質を産生する。Cas5d/Cas6d/Cas7d-crRNA複合体は、適切なPAM配列に隣接する標的配列を認識し、標的配列の切断は行わないが、標的配列に結合することにより標的配列としたT7プロモーターの機能を阻害する。
pEcTiD3-T7とpMW_ccdB-PAMライブラリープラスミドを用いて決定した3種のPAM配列を含むpMW_ccdB-PAMgta、pMW_ccdB-PAMgtcおよびpMW_ccdB-PAMgttを構築し、それぞれpEcTiD2-T7とともにBL21AI株に導入した。pMW_ccdB-PAMgta/pEcTiD2-T7、pMW_ccdB-PAMgtc/pEcTiD2-T7およびpMW_ccdB-PAMgtt/pEcTiD2-T7を保持するBL21AI株を25mg/Lクロラムフェニコール、25mg/Lカナマイシンおよび1%グルコースを含むLB寒天培地上で選抜し、それぞれの菌株に導入したプラスミドが含まれることをシーケンス解析により確認した。次いで、正しいプラスミドを保持するBL21AI株を25mg/Lクロラムフェニコール、25mg/Lカナマイシンおよび1%アラビノースを含むLB寒天培地に塗布し、37℃で一晩培養したところ、すべての菌株において生育が認められず、Cas3およびCas10dの存在下によるプラスミドDNAの二重鎖切断によるものと考えられた。
本実施例では、高等真核生物のゲノム編集の実施例の一形態として、Nicotiana benthamianaおよびSolanum lycopersicumにおいて本発明の技術が有効に機能することを実証した。
M. aeruginosa由来のTiD遺伝子座からCas5d、Cas6d、Cas7d、Cas3d、およびCas10dのアミノ酸配列情報を基に、シロイヌナズナおよびタバコにおけるコドン頻度を参照し、各Casタンパク質をコードする双子葉植物コドン型の配列を人工化学合成した。各遺伝子の5’側上流には、タンデムに並べられた2つの核移行シグナルを含む核移行シグナル配列(配列番号22、配列番号23)を付与し、さらに各遺伝子間を自己開裂ペプチド2A配列(配列番号24~28)によりつなげたDNA断片を作製した。2Aペプチド配列により連結した5つのTiD遺伝子断片の5’側上流に、カリフラワーモザイクウイルス35S遺伝子プロモーターをタンデムに2つ並べ、さらに翻訳エンハンサーΩ配列を付加したプロモーター配列(2x35Sプロモーター;配列番号29)を、また3’側下流にシロイヌナズナ熱ショックタンパク質18.2kDa遺伝子ターミネーター配列(配列番号30)を連結したTiD遺伝子発現カセットを作製した。TiD遺伝子発現カセットをバイナリープラスミドベクターpCAMBIA2300にクローン化し、pEgPTiD1を構築した(図4a)。植物用crRNA発現カセットには、2つのcrRNA配列の間に、任意の35塩基配列を連結出来るように2ヶ所の制限酵素BsaIサイトを含むスペーサー配列を配置したDNAを人工化学合成した(配列番号31)。発現制御配列として5’側上流にシロイヌナズナU6 snRNA-26遺伝子のプロモーター配列(配列番号32)を、また3’側下流にポリT配列を付加した植物用crRNA発現カセットを構築した(図4b)。植物用crRNA発現カセットをpEgPTiD1のRB配列と2x35Sプロモーターの間に連結し、pEgPTiD2を構築し、植物ゲノム編集用のTiD遺伝子発現バイナリープラスミドベクターとした(図4c)。pEgPTiD1およびpEgPTiD2中における、核移行シグナルが付加された各Casタンパク質をコードする双子葉植物コドン型の配列を配列番号33~37に示す。本実施例で使用した核移行シグナル配列、自己開裂ペプチド2A配列、プロモーター、ターミネーター、およびcrRNA発現カセット配列を表4に示す。
タバコにおける実施例においては、標的配列および該配列に導入する変異として、フィトエン不飽和化酵素(PDS)遺伝子を選んだ(図5-1のa)。タバコPDS遺伝子中の第3エクソンから標的配列1(Target 1、配列番号38)を選び、人工化学合成により植物用crRNA発現カセットに組込んだ、pEgPTiD2-pds(1)を構築した。同様に、第6エクソンから標的配列2(Target 2、配列番号39)を選び、人工化学合成により植物用crRNA発現カセットに組込んだ、pEgPTiD2-pds(2)を構築した。構築したバイナリーベクターは、それぞれAgrobacterium tumefaciens GV2260株に導入した。タバコPDSを標的とするTiD発現ベクターのタバコ細胞への導入は、アグロインフィルトレーション法により行った。pEgPTiD2-pds(1)あるいはpEgPTiD2-pds(2)を保持するアグロバクテリウム菌株とGFP発現バイナリーベクターを保持するアグロバクテリウム菌株をそれぞれ培養し、ベンサミアナタバコ本葉に共感染を行った(図5-1のb)。共感染後、3日経過後の葉片においてGFP蛍光を発する領域から調製したゲノムDNAを鋳型とし、標的配列を含む300~500bpのPDS遺伝子断片をPCR増幅した。増幅したPCR断片を用いてCel-1アッセイを行い、PDS遺伝子上に導入された変異の有無を解析した。コントロールとしてGFP発現バイナリーベクターのみを導入したタバコ葉片を用いた。GFP発現ベクターのみを導入した場合には、PDS遺伝子上に変異は認められなかったが、pEgPTiD2-pdsおよびGFP発現ベクターを同時に導入した場合には、それぞれのPDS遺伝子の標的配列上に変異導入が認められた(図5-2のc)。標的配列1および2を表5に示す。
トマトにおける実施例においては、標的配列および該配列に導入する変異として、Aux/IAA転写因子 IAA9遺伝子を選んだ(図6a)。トマトIAA9遺伝子中の第2エクソンから標的配列1(配列番号40)(表6)を選び、人工化学合成により植物用crRNA発現カセットに組込んだ、pEgPTiD2-iaa9を構築した。構築したバイナリーベクターは、Agrobacterium tumefaciens GV2260株に導入した。トマトIAA9遺伝子を標的とするTiD発現ベクターのトマト細胞への導入は、トマト子葉由来のリーフディスクをもちいたアグロバクテリウム法により行った。アグロバクテリウムと共存培養したリーフディスクを100mg/L カナマイシンおよび1.5mg/L t-ゼアチンを含むMS固化培地上で培養することにより、pEgPTiD2-iaa9上のT-DNA領域の遺伝子導入が生じたカルスを得た(図6b)。IAA9の標的配列には制限酵素AccIの認識配列が存在し、TiDによるゲノム編集の結果、変異が導入されればAccI認識部位が消失する。これを利用しAccIを用いたPCR-制限酵素長多型(RFLP)解析により、IAA9の標的配列に生じた変異解析を行った。得られた形質転換カルスから調製したゲノムDNAを鋳型とし、IAA9の標的配列を含む約300b領域をPCRにより増幅した。PCR断片をAccIにより制限酵素切断を行ったところ、pEgPTiD2-iaa9を導入したカルス培養物由来PCR断片中には、IAA9標的配列に変異導入が起きた結果、AccIにより切断を受けない配列が含まれていることがわかった(図6c)。pEgPTiD2-iaa9導入を行ったカルス由来のPCR断片の塩基配列を決定したところ、IAA9の標的配列上のPAM配列の直後に1bから4bまでの塩基欠失型あるいは塩基挿入型の変異が導入されていることが明らかとなった(図7)。
本実施例では、高等動物におけるゲノム編集の実施例の一形態として、ヒト胚性腎細胞由来細胞株HEK293細胞において本発明の技術が有効に機能することを実証した。
M. aeruginosa由来のTiD遺伝子座からCas5d、Cas6d、Cas7d、Cas3d、およびCas10dのアミノ酸配列情報を基に、各Casタンパク質をコードする遺伝子配列を人工化学合成した。各遺伝子の5’側上流には、タンデムに並べられた2つの核移行シグナルを含む核移行シグナル配列(配列番号22、配列番号23)を付与し、さらに各遺伝子間を自己開裂ペプチド2A配列(配列番号24~28)によりつなげたDNA断片を作製した。2Aペプチド配列により連結した5つのTiD遺伝子断片の5’側上流に、サイトメガロウィルスエンハンサー+トリβ-アクチン遺伝子プロモーターハイブリッド配列(CBhプロモーター;配列番号41)を、また3’側下流にウシ由来成長ホルモン遺伝子ターミネーター配列(bGHターミネーター配列番号42)を連結したTiD遺伝子発現カセットを作製し、pCR8TOPOベクター(サーモフィッシャーサイエンティフィック社製)に連結したpCR_hTiDを構築した。crRNA発現カセットとして、2つのcrRNA配列の間に、任意の35塩基配列を連結出来るように2ヶ所の制限酵素BsaIサイトを含むスペーサー配列を配置したDNA(配列番号31)を人工化学合成した。発現制御配列として5’側上流にヒトU6 snRNA遺伝子のプロモーター配列(配列番号43)を、また3’側下流にポリT配列を付加し、pCR8TOPOベクター(サーモフィッシャーサイエンティフィック社製)に連結したpCR_crRNAを構築した。pCR_hTiD中における核移行シグナルが付加された各Casタンパク質をコードする配列を配列番号33~37に示す。CBhプロモーター、bGHターミネーター、およびヒトU6 snRNA遺伝子プロモーター配列を表7に示す。
動物培養細胞における実施例として、細胞株にヒト胚性腎細胞由来細胞株(HEK293細胞株)を用い、標的配列および該配列に導入する変異として、EMX1遺伝子を選んだ。EMX1遺伝子中の標的配列としてターゲット1(配列番号44)およびターゲット2(配列番号45)を選び、人工化学合成により、上記(1)で作製したヒト培養細胞用crRNA発現カセットに組込んだ、ターゲット1を含むpUC_crRNA-T1およびターゲット2を含むpUC_crRNA-T2を構築した。構築したプラスミドベクターはそれぞれ大腸菌HST08株(タカラバイオ社製)において増幅しPureYield(登録商標)Plasmid Miniprep System(プロメガ社製)を用いて精製を行った。精製したプラスミドのうち、pCR_hTiDおよびpUC_crRNA-T1の混合物あるいは、pCR_hTiDおよびpUC_crRNA-T2の混合物をそれぞれHEK293細胞株にトランスフェクションし、導入した。プラスミドベクター導入3日目における細胞株を回収し、Blood&Cell Culture DNA Mini Kit(キアゲン社製)を用いてゲノムDNAを調製した。調製したゲノムDNAを鋳型として、ターゲット1およびターゲット2を含むゲノム配列領域をPCRにより増幅し、自動電気泳動装置MultiNA(島津製作所製)を用いたヘテロ二本鎖移動度分析により変異解析を行った。また、増幅したPCR断片をpNEB193ベクター(New England Biolab社製)にクローン化し、シーケンス解析により変異配列を同定した。体細胞変異効率は、それぞれ変異配列が確認されたクローン数/解析クローン総数により算出した。コントロールとして、プラスミド未導入、あるいはpCR_hTiD、pUC_crRNA-T1またはpUC_crRNA-T2を単独で導入した細胞株を用いて、同様に変異解析を行った。図9にHEK293細胞株を用いたゲノム編集の実験スキームを示す。
SEQ ID NO:2 ; Microcystis aeruginosa Cas6d amino acid sequence
SEQ ID NO:3 ; Microcystis aeruginosa Cas7d amino acid sequence
SEQ ID NO:4 ; Microcystis aeruginosa Cas3d amino acid sequence
SEQ ID NO:5 ; Microcystis aeruginosa Cas10d amino acid sequence
SEQ ID NO:6 ; TiDcrRNA containing direct repeat (37b) and spacer (35b of N). N is any nucleotide constituting a complementary sequence to a target nucleotide sequence.
SEQ ID NO:7 ; Cas5d nucleotide sequence for expression in Escherichia coli
SEQ ID NO:8 ; Cas6d nucleotide sequence for expression in Escherichia coli
SEQ ID NO:9 ; Cas7d nucleotide sequence for expression in Escherichia coli
SEQ ID NO:10 ; Cas3d nucleotide sequence for expression in Escherichia coli
SEQ ID NO:11 ; Cas10d nucleotide sequence for expression in Escherichia coli
SEQ ID NO:12 ; J23108 synthesis promoter
SEQ ID NO:13 ; Ribosomal binding sequence
SEQ ID NO:14 ; Terminator sequence STOP767
SEQ ID NO:15 ; Terminator sequence STOP768(1)
SEQ ID NO:16 ; Terminator sequence TOP768(2)
SEQ ID NO:17 ; T7 terminator sequence
SEQ ID NO:18 ; CRISPR repeat sequence
SEQ ID NO:19 ; T7 promoter sequence
SEQ ID NO:20 ; crRNA expression cassette
SEQ ID NO:21 ; Synthesis cccdB gene expression cassette
SEQ ID NO:22 ; Nuclear localizing signal (NLS) amino acid sequence
SEQ ID NO:23 ; NLS nucleotide sequence
SEQ ID NO:24 ; Self-cleaving peptide 2A amino acid sequence
SEQ ID NO:25 ; Self-cleaving peptide 2A(1) coding sequence
SEQ ID NO:26 ; Self-cleaving peptide 2A(2) coding sequence
SEQ ID NO:27 ; Self-cleaving peptide 2A(3) coding sequence
SEQ ID NO:28 ; Self-cleaving peptide 2A(4) coding sequence
SEQ ID NO:29 ; 2 x cauliflower mosaic virus 35S gene promoter + omega sequence
SEQ ID NO:30 ; Arabidopsis shock protein 18.2kDa gene terminator
SEQ ID NO:31 ; crRNA expression cassette
SEQ ID NO:32 ; Arabidopsis U6 snRNA-26 gene promoter sequence
SEQ ID NO:33 ; 2xNLS + Cas5d
SEQ ID NO:34 ; 2xNLS + Cas6d
SEQ ID NO:35 ; 2xNLS + Cas7d
SEQ ID NO:36 ; 2xNLS + Cas3d
SEQ ID NO:37 ; 2xNLS + Cas10d
SEQ ID NO:38 ; Target sequence 1 on tobacco PDS gene
SEQ ID NO:39 ; Target sequence 2 on tobacco PDS gene
SEQ ID NO:40 ; Target sequence on tomato IAA9 gene
SEQ ID NO:41 ; Cytomegalovirus enhancer + universal chicken beta-actin gene hybrid promoter
SEQ ID NO:42 ; Bovine-derived growth hormone gene terminator sequence
SEQ ID NO:43 ; Human U6 snRNA gene promoter
SEQ ID NO:44 ; Target 1 sequence on human EMX1 gene
SEQ ID NO:45 ; Target 2 sequence on human EMX1 gene
Claims (13)
- 標的ヌクレオチド配列を標的化する方法であって、細胞中に、
(i)CRISPRタイプI-D関連タンパク質Cas5d、Cas6d、およびCas7d、またはこれらのタンパク質をコードする核酸、および
(ii)前記標的ヌクレオチド配列に相補的な配列および該配列の前後にCRISPR遺伝子座に由来する共通繰り返し配列を含むガイドRNA、または該ガイドRNAをコードするDNA
を導入することを含む方法。 - 標的ヌクレオチド配列を改変する方法であって、細胞中に、
(i)CRISPRタイプI-D関連タンパク質Cas3d、Cas5d、Cas6d、Cas7d、およびCas10d、またはこれらのタンパク質をコードする核酸、および
(ii)前記標的ヌクレオチド配列に相補的な配列および該配列の前後にCRISPR遺伝子座に由来する共通繰り返し配列を含むガイドRNA、または該ガイドRNAをコードするDNA
を導入することを含む方法。 - 標的遺伝子の発現を抑制する方法であって、細胞中に、
(i)CRISPRタイプI-D関連タンパク質Cas5d、Cas6d、およびCas7d、またはこれらのタンパク質をコードする核酸、および
(ii)前記標的遺伝子の配列の少なくとも一部に相補的な配列および該配列の前後にCRISPR遺伝子座に由来する共通繰り返し配列を含むガイドRNA、または該ガイドRNAをコードするDNA
を導入することを含む方法。 - 前記ガイドRNAが、前記標的ヌクレオチド配列に相補的な20~50塩基からなる配列を含む、請求項1~3のいずれか1項記載の方法。
- 前記細胞中にドナーポリヌクレオチドを導入することをさらに含む、請求項2または4記載の方法。
- 改変が塩基の欠失、挿入、または置換である、請求項2、4および5のいずれか1項記載の方法。
- 前記Cas5dがプロトスペーサー隣接モチーフ(PAM)配列として5’-GTH-3’(H=A、C、またはT)を認識する、請求項1~6のいずれか1項記載の方法。
- (i)CRISPRタイプI-D関連タンパク質Cas5d、Cas6d、およびCas7d、および
(ii)標的ヌクレオチド配列に相補的な配列および該配列の前後にCRISPR遺伝子座に由来する共通繰り返し配列を含むガイドRNA
を含む複合体。 - Cas3dおよびCas10dをさらに含む、請求項8記載の複合体。
- 前記ガイドRNAが、前記標的ヌクレオチド配列に相補的な20~50塩基からなる配列を含む、請求項8または9記載の複合体。
- (i)CRISPRタイプI-D関連タンパク質Cas5d、Cas6d、およびCas7dをコードする核酸、および
(ii)標的ヌクレオチド配列に相補的な配列および該配列の前後にCRISPR遺伝子座に由来する共通繰り返し配列を含むガイドRNAをコードするDNA
を含む発現ベクター。 - Cas3dおよびCas10dをコードする核酸をさらに含む、請求項11記載の発現ベクター。
- 請求項8~10のいずれか1項記載の複合体をコードするDNA分子。
Priority Applications (14)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2019537609A JP7017259B2 (ja) | 2017-08-21 | 2018-08-20 | ヌクレオチド標的認識を利用した標的配列特異的改変技術 |
EP18847639.4A EP3674404A4 (en) | 2017-08-21 | 2018-08-20 | TARGET SEQUENCE SPECIFIC CHANGE TECHNOLOGY USING NUCLEOTIDE TARGET DETECTION |
AU2018321021A AU2018321021B2 (en) | 2017-08-21 | 2018-08-20 | Target sequence specific alteration technology using nucleotide target recognition |
KR1020207007763A KR102626503B1 (ko) | 2017-08-21 | 2018-08-20 | 뉴클레오타이드 표적 인식을 이용한 표적 서열 특이적 개변 기술 |
SG11202001471SA SG11202001471SA (en) | 2017-08-21 | 2018-08-20 | Target sequence specific alteration technology using nucleotide target recognition |
CA3073372A CA3073372A1 (en) | 2017-08-21 | 2018-08-20 | Target sequence specific alteration technology using nucleotide target recognition |
CN201880068289.7A CN111247247A (zh) | 2017-08-21 | 2018-08-20 | 使用核苷酸靶识别的靶序列特异性改变技术 |
US16/640,521 US12012596B2 (en) | 2017-08-21 | 2018-08-20 | Target sequence specific alteration technology using nucleotide target recognition |
BR112020003439-8A BR112020003439A2 (pt) | 2017-08-21 | 2018-08-20 | tecnologia de alteração específica de sequência alvo usando o reconhecimento alvo nucleotídico |
MX2020001998A MX2020001998A (es) | 2017-08-21 | 2018-08-20 | Tecnología de alteración específica de secuencia objetivo utilizando reconocimiento de objetivos del nucleotído. |
NZ762361A NZ762361B2 (en) | 2018-08-20 | Target sequence specific alteration technology using nucleotide target recognition | |
IL272688A IL272688A (en) | 2017-08-21 | 2020-02-16 | Target sequence specific modification technology, which uses target nucleotide recognition |
JP2021171578A JP7054283B2 (ja) | 2017-08-21 | 2021-10-20 | ヌクレオチド標的認識を利用した標的配列特異的改変技術 |
US18/743,751 US20240327828A1 (en) | 2017-08-21 | 2024-06-14 | Target sequence specific alteration technology using nucleotide target recognition |
Applications Claiming Priority (4)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2017-158876 | 2017-08-21 | ||
JP2017158876 | 2017-08-21 | ||
JP2017236518 | 2017-12-08 | ||
JP2017-236518 | 2017-12-08 |
Related Child Applications (2)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US16/640,521 A-371-Of-International US12012596B2 (en) | 2017-08-21 | 2018-08-20 | Target sequence specific alteration technology using nucleotide target recognition |
US18/743,751 Division US20240327828A1 (en) | 2017-08-21 | 2024-06-14 | Target sequence specific alteration technology using nucleotide target recognition |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2019039417A1 true WO2019039417A1 (ja) | 2019-02-28 |
Family
ID=65438898
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/030607 WO2019039417A1 (ja) | 2017-08-21 | 2018-08-20 | ヌクレオチド標的認識を利用した標的配列特異的改変技術 |
Country Status (12)
Country | Link |
---|---|
US (2) | US12012596B2 (ja) |
EP (1) | EP3674404A4 (ja) |
JP (2) | JP7017259B2 (ja) |
KR (1) | KR102626503B1 (ja) |
CN (1) | CN111247247A (ja) |
AU (1) | AU2018321021B2 (ja) |
BR (1) | BR112020003439A2 (ja) |
CA (1) | CA3073372A1 (ja) |
IL (1) | IL272688A (ja) |
MX (1) | MX2020001998A (ja) |
SG (1) | SG11202001471SA (ja) |
WO (1) | WO2019039417A1 (ja) |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2019062923A (ja) * | 2017-06-08 | 2019-04-25 | 国立大学法人大阪大学 | Dnaが編集された真核細胞を製造する方法、および当該方法に用いられるキット |
WO2020122104A1 (ja) * | 2018-12-11 | 2020-06-18 | 国立大学法人京都大学 | ゲノムdnaに欠失を誘導する方法 |
WO2020184723A1 (ja) * | 2019-03-14 | 2020-09-17 | 国立大学法人徳島大学 | Crisprタイプi-dシステムを利用した標的配列改変技術 |
WO2020204159A1 (ja) | 2019-04-05 | 2020-10-08 | 国立大学法人大阪大学 | ノックイン細胞の作製方法 |
CN112921038A (zh) * | 2021-02-23 | 2021-06-08 | 安徽农业大学 | 同源重组机制介导的精准序列替换基因编辑方法及其元件结构 |
KR20220043605A (ko) * | 2020-09-29 | 2022-04-05 | 경상국립대학교산학협력단 | SlHKT1;2 유전자 교정에 의해 내염성이 증가된 유전체 교정 토마토 식물체의 제조 방법 및 상기 방법에 의해 제조된 내염성이 증가된 유전체 교정 토마토 식물체 |
WO2022075419A1 (ja) | 2020-10-08 | 2022-04-14 | 国立大学法人徳島大学 | Crisprタイプi-dシステムを利用した標的ヌクレオチド配列改変技術 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015503535A (ja) | 2011-12-30 | 2015-02-02 | ヴァーヘニンヘン ウニフェルジテイト | 改変されたcascadeリボ核タンパク質およびそれらの用途 |
WO2015155686A2 (en) | 2014-04-08 | 2015-10-15 | North Carolina State University | Methods and compositions for rna-directed repression of transcription using crispr-associated genes |
WO2017043573A1 (ja) | 2015-09-09 | 2017-03-16 | 国立大学法人神戸大学 | 標的化したdna配列の核酸塩基を特異的に変換するゲノム配列の改変方法及びそれに用いる分子複合体 |
WO2017066497A2 (en) * | 2015-10-13 | 2017-04-20 | Duke University | Genome engineering with type i crispr systems in eukaryotic cells |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20100102580A1 (en) | 2008-10-23 | 2010-04-29 | Brooks Ryan J | Energy absorber with differentiating angled walls |
EP3708671A1 (en) * | 2014-06-06 | 2020-09-16 | Regeneron Pharmaceuticals, Inc. | Methods and compositions for modifying a targeted locus |
CA2953499C (en) * | 2014-06-23 | 2023-10-24 | Regeneron Pharmaceuticals, Inc. | Nuclease-mediated dna assembly |
US11807869B2 (en) | 2017-06-08 | 2023-11-07 | Osaka University | Method for producing DNA-edited eukaryotic cell, and kit used in the same |
-
2018
- 2018-08-20 MX MX2020001998A patent/MX2020001998A/es unknown
- 2018-08-20 US US16/640,521 patent/US12012596B2/en active Active
- 2018-08-20 JP JP2019537609A patent/JP7017259B2/ja active Active
- 2018-08-20 KR KR1020207007763A patent/KR102626503B1/ko active IP Right Grant
- 2018-08-20 SG SG11202001471SA patent/SG11202001471SA/en unknown
- 2018-08-20 WO PCT/JP2018/030607 patent/WO2019039417A1/ja unknown
- 2018-08-20 EP EP18847639.4A patent/EP3674404A4/en active Pending
- 2018-08-20 AU AU2018321021A patent/AU2018321021B2/en active Active
- 2018-08-20 BR BR112020003439-8A patent/BR112020003439A2/pt unknown
- 2018-08-20 CN CN201880068289.7A patent/CN111247247A/zh active Pending
- 2018-08-20 CA CA3073372A patent/CA3073372A1/en active Pending
-
2020
- 2020-02-16 IL IL272688A patent/IL272688A/en unknown
-
2021
- 2021-10-20 JP JP2021171578A patent/JP7054283B2/ja active Active
-
2024
- 2024-06-14 US US18/743,751 patent/US20240327828A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2015503535A (ja) | 2011-12-30 | 2015-02-02 | ヴァーヘニンヘン ウニフェルジテイト | 改変されたcascadeリボ核タンパク質およびそれらの用途 |
WO2015155686A2 (en) | 2014-04-08 | 2015-10-15 | North Carolina State University | Methods and compositions for rna-directed repression of transcription using crispr-associated genes |
JP2017512481A (ja) * | 2014-04-08 | 2017-05-25 | ノースカロライナ ステート ユニバーシティーNorth Carolina State University | Crispr関連遺伝子を用いた、rna依存性の転写抑制のための方法および組成物 |
WO2017043573A1 (ja) | 2015-09-09 | 2017-03-16 | 国立大学法人神戸大学 | 標的化したdna配列の核酸塩基を特異的に変換するゲノム配列の改変方法及びそれに用いる分子複合体 |
WO2017066497A2 (en) * | 2015-10-13 | 2017-04-20 | Duke University | Genome engineering with type i crispr systems in eukaryotic cells |
Non-Patent Citations (3)
Title |
---|
MAKAROVA KS ET AL.: "SnapShot: Class 1 CRISPR-Cas Systems", CELL, vol. 168, no. 5, February 2017 (2017-02-01), pages 946 - 946, XP029932494, DOI: doi:10.1016/j.cell.2017.02.018 * |
MORISAKA H . ET AL.: "Genome editing in mammalian cells by cascade and Cas3", J . INVEST, DERMATOL., vol. 137, no. 5, May 2017 (2017-05-01), pages 84, 490, XP055561205, DOI: doi:10.1016/j.jid.2017.02.506 * |
YANG C. ET AL.: "Comparative genomics reveals diversified CRISPR-Cas systems of globally distributed Microcystis aeruginosa, a freshwater bloom-forming cyanobacterium", FRONT. MICROBIOL., vol. 6, February 2019 (2019-02-01), pages 394, XP055579720 * |
Cited By (15)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP7301332B2 (ja) | 2017-06-08 | 2023-07-03 | 国立大学法人大阪大学 | Dnaが編集された真核細胞を製造する方法、および当該方法に用いられるキット |
JP2019062921A (ja) * | 2017-06-08 | 2019-04-25 | 国立大学法人大阪大学 | Dnaが編集された真核細胞を製造する方法、および当該方法に用いられるキット |
JP2019062923A (ja) * | 2017-06-08 | 2019-04-25 | 国立大学法人大阪大学 | Dnaが編集された真核細胞を製造する方法、および当該方法に用いられるキット |
JP7430358B2 (ja) | 2017-06-08 | 2024-02-13 | 国立大学法人大阪大学 | Dnaが編集された真核細胞を製造する方法、および当該方法に用いられるキット |
WO2020122104A1 (ja) * | 2018-12-11 | 2020-06-18 | 国立大学法人京都大学 | ゲノムdnaに欠失を誘導する方法 |
WO2020184723A1 (ja) * | 2019-03-14 | 2020-09-17 | 国立大学法人徳島大学 | Crisprタイプi-dシステムを利用した標的配列改変技術 |
JP7489112B2 (ja) | 2019-03-14 | 2024-05-23 | 国立大学法人徳島大学 | Crisprタイプi-dシステムを利用した標的配列改変技術 |
WO2020204159A1 (ja) | 2019-04-05 | 2020-10-08 | 国立大学法人大阪大学 | ノックイン細胞の作製方法 |
KR20220043605A (ko) * | 2020-09-29 | 2022-04-05 | 경상국립대학교산학협력단 | SlHKT1;2 유전자 교정에 의해 내염성이 증가된 유전체 교정 토마토 식물체의 제조 방법 및 상기 방법에 의해 제조된 내염성이 증가된 유전체 교정 토마토 식물체 |
KR102550308B1 (ko) * | 2020-09-29 | 2023-06-30 | 경상국립대학교산학협력단 | SlHKT1;2 유전자 교정에 의해 내염성이 증가된 유전체 교정 토마토 식물체의 제조 방법 및 상기 방법에 의해 제조된 내염성이 증가된 유전체 교정 토마토 식물체 |
JPWO2022075419A1 (ja) * | 2020-10-08 | 2022-04-14 | ||
WO2022075419A1 (ja) | 2020-10-08 | 2022-04-14 | 国立大学法人徳島大学 | Crisprタイプi-dシステムを利用した標的ヌクレオチド配列改変技術 |
JP7454881B2 (ja) | 2020-10-08 | 2024-03-25 | 国立大学法人徳島大学 | Crisprタイプi-dシステムを利用した標的ヌクレオチド配列改変技術 |
CN112921038B (zh) * | 2021-02-23 | 2022-08-02 | 安徽农业大学 | 同源重组机制介导的精准序列替换基因编辑方法及其元件结构 |
CN112921038A (zh) * | 2021-02-23 | 2021-06-08 | 安徽农业大学 | 同源重组机制介导的精准序列替换基因编辑方法及其元件结构 |
Also Published As
Publication number | Publication date |
---|---|
KR20200039775A (ko) | 2020-04-16 |
JP7017259B2 (ja) | 2022-02-08 |
AU2018321021B2 (en) | 2022-10-06 |
US20210363520A1 (en) | 2021-11-25 |
EP3674404A1 (en) | 2020-07-01 |
MX2020001998A (es) | 2020-10-05 |
AU2018321021A1 (en) | 2020-03-26 |
CN111247247A (zh) | 2020-06-05 |
CA3073372A1 (en) | 2019-02-28 |
BR112020003439A2 (pt) | 2020-08-25 |
IL272688A (en) | 2020-04-30 |
JP7054283B2 (ja) | 2022-04-13 |
EP3674404A4 (en) | 2021-05-26 |
KR102626503B1 (ko) | 2024-01-17 |
JPWO2019039417A1 (ja) | 2020-11-26 |
US20240327828A1 (en) | 2024-10-03 |
JP2022009293A (ja) | 2022-01-14 |
US12012596B2 (en) | 2024-06-18 |
NZ762361A (en) | 2024-03-22 |
SG11202001471SA (en) | 2020-03-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP7054283B2 (ja) | ヌクレオチド標的認識を利用した標的配列特異的改変技術 | |
US11220693B2 (en) | Method for converting monocot plant genome sequence in which nucleic acid base in targeted DNA sequence is specifically converted, and molecular complex used therein | |
KR102127418B1 (ko) | 부위-특이적인 뉴클레오티드 치환을 통해 글리포세이트-내성 벼를 수득하는 방법 | |
Srivastava et al. | Dual-targeting by CRISPR/Cas9 for precise excision of transgenes from rice genome | |
AU2018243654B2 (en) | Expression modulating elements and use thereof | |
US20210348179A1 (en) | Compositions and methods for regulating gene expression for targeted mutagenesis | |
AU2019285082B2 (en) | Methods for enhancing genome engineering efficiency | |
CN116286742B (zh) | CasD蛋白、CRISPR/CasD基因编辑系统及其在植物基因编辑中的应用 | |
CN114846144A (zh) | 将dna或突变精确引入小麦基因组 | |
KR20190122595A (ko) | 식물의 염기 교정용 유전자 구조체, 이를 포함하는 벡터 및 이를 이용한 염기 교정 방법 | |
WO2024158857A2 (en) | Mb2cas12a variants with flexible pam spectrum | |
WO2023111130A1 (en) | Modified agrobacteria for editing plants | |
WO2023201186A1 (en) | Plant regulatory elements and uses thereof for autoexcision | |
CN116917487A (zh) | 通过组合cpe和cre修饰进行协同启动子激活 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18847639 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2019537609 Country of ref document: JP Kind code of ref document: A Ref document number: 3073372 Country of ref document: CA |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
REG | Reference to national code |
Ref country code: BR Ref legal event code: B01A Ref document number: 112020003439 Country of ref document: BR |
|
ENP | Entry into the national phase |
Ref document number: 20207007763 Country of ref document: KR Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2018321021 Country of ref document: AU Date of ref document: 20180820 Kind code of ref document: A |
|
ENP | Entry into the national phase |
Ref document number: 2018847639 Country of ref document: EP Effective date: 20200323 |
|
ENP | Entry into the national phase |
Ref document number: 112020003439 Country of ref document: BR Kind code of ref document: A2 Effective date: 20200219 |