WO2019039346A1 - 電池用非水電解液及びリチウム二次電池 - Google Patents

電池用非水電解液及びリチウム二次電池 Download PDF

Info

Publication number
WO2019039346A1
WO2019039346A1 PCT/JP2018/030240 JP2018030240W WO2019039346A1 WO 2019039346 A1 WO2019039346 A1 WO 2019039346A1 JP 2018030240 W JP2018030240 W JP 2018030240W WO 2019039346 A1 WO2019039346 A1 WO 2019039346A1
Authority
WO
WIPO (PCT)
Prior art keywords
additive
carbonate
lithium
compound
battery
Prior art date
Application number
PCT/JP2018/030240
Other languages
English (en)
French (fr)
Inventor
藤山 聡子
敬 菅原
Original Assignee
三井化学株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三井化学株式会社 filed Critical 三井化学株式会社
Priority to US16/641,041 priority Critical patent/US11652237B2/en
Priority to KR1020207005669A priority patent/KR102463794B1/ko
Priority to CN201880054178.0A priority patent/CN110998957B/zh
Priority to EP18849021.3A priority patent/EP3675267A4/en
Priority to JP2019537572A priority patent/JPWO2019039346A1/ja
Publication of WO2019039346A1 publication Critical patent/WO2019039346A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M6/00Primary cells; Manufacture thereof
    • H01M6/14Cells with non-aqueous electrolyte
    • H01M6/16Cells with non-aqueous electrolyte with organic electrolyte
    • H01M6/162Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte
    • H01M6/168Cells with non-aqueous electrolyte with organic electrolyte characterised by the electrolyte by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/022Electrolytes; Absorbents
    • H01G9/035Liquid electrolytes, e.g. impregnating materials
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/058Construction or manufacture
    • H01M10/0585Construction or manufacture of accumulators having only flat construction elements, i.e. flat positive electrodes, flat negative electrodes and flat separators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • H01M4/381Alkaline or alkaline earth metals elements
    • H01M4/382Lithium
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/485Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of mixed oxides or hydroxides for inserting or intercalating light metals, e.g. LiTi2O4 or LiTi2OxFy
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/105Pouches or flexible bags
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M50/00Constructional details or processes of manufacture of the non-active parts of electrochemical cells other than fuel cells, e.g. hybrid cells
    • H01M50/10Primary casings, jackets or wrappings of a single cell or a single battery
    • H01M50/102Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure
    • H01M50/109Primary casings, jackets or wrappings of a single cell or a single battery characterised by their shape or physical structure of button or coin shape
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • H01G11/06Hybrid capacitors with one of the electrodes allowing ions to be reversibly doped thereinto, e.g. lithium ion capacitors [LIC]
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Definitions

  • the present disclosure relates to non-aqueous electrolytes for batteries and lithium secondary batteries.
  • lithium secondary batteries have been widely used as electronic devices such as mobile phones and laptop computers, or as power sources for electric vehicles and power storage.
  • the demand for high-capacity, high-power, high-energy density batteries that can be mounted on hybrid vehicles and electric vehicles is rapidly expanding.
  • various studies have been made on lithium secondary batteries (also referred to as non-aqueous electrolyte secondary batteries etc.) containing non-aqueous electrolyte.
  • Patent Document 1 in a non-aqueous electrolyte battery using lithium or a lithium alloy as a negative electrode active material and manganese dioxide as a positive electrode active material, the battery having discharged most of the discharge capacity is left for a long time and used again
  • a non-aqueous electrolyte battery capable of obtaining good battery performance by suppressing the increase in internal resistance that occurs when used for a long time with a low current of about several ⁇ A as a power source for memory backup
  • a non-aqueous electrolyte battery is disclosed that contains
  • Patent Document 2 discloses a non-aqueous electrolytic solution containing LiPF 6 as an electrolyte salt in a non-aqueous solvent as a non-aqueous electrolyte secondary battery capable of improving the cycle characteristics by protecting the positive electrode active material from the action of hydrofluoric acid.
  • a non-aqueous electrolyte secondary battery is disclosed, wherein the non-aqueous electrolyte comprises lithium borate.
  • Patent Document 2 discloses an example using lithium manganate as a positive electrode active material.
  • Patent Document 3 also discloses lithium manganese as a non-aqueous electrolyte secondary battery capable of maintaining a high battery capacity even when used or stored in a high temperature environment such as in a summer automobile.
  • a composite oxide is used as a positive electrode active material, lithium, a lithium alloy or a carbon material capable of reversibly absorbing and desorbing lithium is used as a negative electrode active material, and 0.01 mol% or more and 2 mol% of lithium boron oxide in a non-aqueous electrolyte
  • the non-aqueous-electrolyte secondary battery containing the following is disclosed.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-48828 Patent Document 2: Japanese Patent Application Laid-Open No. 2005-71617 Patent Document 3 Japanese Patent No. 4366724
  • the object of the present disclosure is to use a non-aqueous electrolyte for a battery that can reduce initial battery resistance before storing the battery and can suppress an increase in battery resistance due to storage, and the non-aqueous electrolyte for the battery. It is providing a lithium secondary battery.
  • Means for solving the above problems include the following aspects. ⁇ 1> Additive A comprising a boron compound represented by the following formula (1), An additive B comprising a compound having a reductive decomposition potential lower than that of the additive A; Nonaqueous electrolyte for batteries containing.
  • n represents an integer of 1 to 5.
  • M + represents Li + ion or H + ion.
  • n is an integer of 2 to 5
  • the plurality of M + may be the same or different.
  • the reductive decomposition potential B is 0.5 V to 2.0 V ⁇ 1> or ⁇ 2
  • the additive B is a carbonate compound having a carbon-carbon unsaturated bond, a sultone compound, a cyclic sulfate compound, a phosphate compound, an oxalato compound, an aromatic compound substituted with a fluorine atom, or a fluorine atom substituted And at least one selected from the group consisting of the following aliphatic compounds, dinitrile compounds, sulfonyl compounds having a fluorine atom, and carbonate compounds having a fluorine atom: Non-aqueous electrolyte for batteries.
  • the additive B is vinylene carbonate, vinyl ethylene carbonate, 1,3-propane sultone, 1,3-propene sultone, 4-methylsulfonyloxymethyl-2,2-dioxo-1,3,2-dioxathiolane , 4,4'-Bis (2,2-dioxo-1,3,2-dioxathiolane), 4-propyl-2,2-dioxo-1,3,2-dioxathiolane, lithium difluorophosphate, tristrimethylsilyl phosphate , Lithium difluorobis (oxalato) phosphate, lithium bis (oxalato) borate, orthofluorotoluene, (perfluorohexyl) ethylene, succinonitrile, adiponitrile, methanesulfonyl fluoride, lithium trifluoromethanesulfonate, lithium bis (fluorofluoromethane) Sulfon
  • ⁇ 6> The nonaqueous electrolyte for a battery according to any one of ⁇ 1> to ⁇ 5>, wherein the M + in the formula (1) is a Li + ion.
  • ⁇ 7> The non-battery according to any one of ⁇ 1> to ⁇ 6>, wherein the content of the additive A is 0.001% by mass to 10% by mass with respect to the total amount of the non-aqueous electrolyte for a battery Water electrolyte.
  • ⁇ 8> The non-battery according to any one of ⁇ 1> to ⁇ 7>, wherein the content of the additive B is 0.001% by mass to 10% by mass with respect to the total amount of the non-aqueous electrolytic solution for a battery Water electrolyte.
  • ⁇ 9> The nonaqueous electrolyte for a battery according to any one of ⁇ 1> to ⁇ 8>, wherein a content mass ratio of the additive B to the additive A is 1 or more and 20 or less.
  • positive electrode Lithium metal, lithium-containing alloy, metal or alloy capable of alloying with lithium, oxide capable of doping and dedoping lithium ion, transition metal nitride capable of doping and dedoping lithium ion, lithium A negative electrode including, as a negative electrode active material, at least one selected from the group consisting of carbon materials capable of ion doping and dedoping;
  • ⁇ 11> A lithium secondary battery obtained by charging and discharging the lithium secondary battery according to ⁇ 10>.
  • a lithium secondary battery is provided.
  • FIG. 1 is a schematic perspective view showing an example of a laminate type battery, which is an example of a lithium secondary battery of the present disclosure.
  • FIG. 2 is a schematic cross-sectional view in the thickness direction of the laminated electrode body accommodated in the laminate type battery shown in FIG. It is a schematic sectional drawing which shows an example of a coin-type battery which is another example of the lithium secondary battery of this indication.
  • a numerical range represented using “to” means a range including numerical values described before and after “to” as the lower limit value and the upper limit value.
  • the amount of each component in the composition is the total amount of the plurality of substances present in the composition unless a plurality of substances corresponding to each component are present in the composition.
  • non-aqueous electrolytic solution for battery of the present disclosure (hereinafter, also simply referred to as “non-aqueous electrolytic solution”) has an additive A comprising a boron compound represented by the following formula (1) and a reductive decomposition potential than the additive A. And the additive B which consists of a low compound.
  • n represents an integer of 1 to 5.
  • M + represents Li + ion or H + ion.
  • n is an integer of 2 to 5
  • the plurality of M + may be the same or different.
  • the non-aqueous electrolyte of the present disclosure it is possible to reduce the initial battery resistance before storing the battery, and to suppress an increase in the battery resistance due to the storage.
  • the reason why such an effect is exerted is not clear but is presumed as follows.
  • the additive A that is, the boron compound represented by the formula (1)
  • CV cyclic voltammetry
  • the non-aqueous electrolytic solution of the present disclosure contains, in addition to the additive A, an additive B composed of a compound having a lower reduction decomposition potential than the additive A.
  • an additive B composed of a compound having a lower reduction decomposition potential than the additive A.
  • Patent Document 1 Japanese Patent Application Laid-Open No. 2000-48828
  • Patent Document 2 described above
  • Patent Document 3 Japanese Patent No. 4366724
  • lithium tetraborate contained in the non-aqueous electrolytic solution is an elution of manganese ions from the positive electrode, or It is disclosed to suppress the deposition of the eluted manganese ions on the negative electrode, and it is disclosed that the effects of the invention can be exhibited by these mechanisms.
  • the mechanism described in these Patent Documents 1 to 3 is completely due to the combination of Additive A and Additive B. It is considered that the above-described different mechanisms have an effect of reducing the initial battery resistance and suppressing the increase of the battery resistance due to storage.
  • the reduction decomposition potential of the additive means a value measured by cyclic voltammetry (CV) by the following method.
  • a sample solution is prepared as follows.
  • ethylene carbonate (EC), dimethyl carbonate (DMC) and methyl ethyl carbonate (EMC) are mixed at a ratio of 34:33:33 (mass ratio) to obtain a mixed solvent.
  • a LiPF 6 as the electrolyte, eventually electrolyte concentration in the sample solution is prepared is dissolved to be 1 mol / liter.
  • the sample solution is added by adding an additive as a measurement target of the reduction decomposition potential to the obtained solution so that the additive concentration in the sample solution finally prepared is 0.5% by mass. obtain.
  • the above sample solution contains a graphite electrode as a working electrode (WE) and a Li metal electrode as a counter electrode (CE), While the Li metal electrode as a reference electrode (RE) is immersed, the electrode potential is swept from 3 V to 0 V at a sweep rate of 1 mV / sec.
  • an electrode potential when a current of 0.1 mA ie, a current accompanying reductive decomposition of the additive
  • a current of 0.1 mA ie, a current accompanying reductive decomposition of the additive
  • the non-aqueous electrolytic solution of the present disclosure contains an additive A composed of a boron compound represented by the following formula (1).
  • the additive A contained in the non-aqueous electrolyte of the present disclosure may be one type, or two or more types.
  • n represents an integer of 1 to 5.
  • M + represents Li + ion or H + ion.
  • n is an integer of 2 to 5
  • the plurality of M + may be the same or different.
  • n an integer of 1 to 3 is preferable, and 2 is particularly preferable.
  • Li + ions are particularly preferable as M + .
  • Lithium triborate compound having a reductive decomposition potential of 2.1 V, n is 1 and M + is a Li + ion
  • Lithium tetraborate reductive decomposition potential 2.1V, n is 2, compound a two M + is Li + ions
  • Five lithium borate reductive decomposition potential 2.2V, n is 3, compounds which are three M + is Li + ions
  • Six lithium borate reductive decomposition potential 2.2V, n is 4, compounds which are four M + is Li + ions
  • Etc As the boron compound represented by the formula (1), a boron compound having a reduction decomposition potential in the range of 2.0 V to 2.5 V is preferable.
  • the content (total content in the case of two or more) of the additive A with respect to the total amount of the non-aqueous electrolyte of the present disclosure is preferably 0.001 mass% to 10 mass%, and 0.005 mass% to 5% by mass is more preferable, 0.01% by mass to 1% by mass is more preferable, and 0.01% by mass to 0.5% by mass is particularly preferable.
  • the non-aqueous electrolyte of the present disclosure contains an additive B composed of a compound having a reduction decomposition potential lower than that of the additive A.
  • the additive B may be a compound having a reduction decomposition potential lower than that of the additive A, and is not particularly limited.
  • the film formed by the decomposition product of the additive A initially formed is reinforced by the decomposition product of the additive B, and the resistance and durability are low. An excellent film is formed. As a result, the effect of reducing the initial battery resistance and suppressing the rise of the battery resistance due to storage is exhibited.
  • the additive B contained in the non-aqueous electrolytic solution may be only one type or may be two or more types.
  • the reductive decomposition potential A When the absolute value of the reductive decomposition potential of the boron compound constituting the additive A is the reductive decomposition potential A, and the absolute value of the reductive decomposition potential of the compound constituting the additive B is the reductive decomposition potential B, the reductive decomposition potential A
  • the value obtained by subtracting the reductive decomposition potential B from that (ie, the reductive decomposition potential A-reductive decomposition potential B) may be more than 0, but preferably 0.1 V to 1.5 V, 0.2 V to 1 .3 V is more preferable, and 0.3 V to 1.2 V is particularly preferable.
  • the reduction decomposition potential B is preferably 0.5 V to 2.0 V, and more preferably 0.9 V to 1.8 V.
  • Additive B is a carbonate compound having a carbon-carbon unsaturated bond, a sultone compound, a cyclic sulfate compound, a phosphate compound, an oxalato compound, an aromatic compound substituted with a fluorine atom, or an aliphatic compound substituted with a fluorine atom More preferably, it is at least one selected from the group consisting of a compound, a dinitrile compound, a sulfonyl compound having a fluorine atom, and a carbonate compound having a fluorine atom. Further, as the additive B, a compound having a molecular weight of 1000 or less is preferable, and a compound having a molecular weight of 500 or less is more preferable.
  • Carbonate compound having a carbon-carbon unsaturated bond examples include methyl vinyl carbonate, ethyl vinyl carbonate, divinyl carbonate, methyl propynyl carbonate, ethyl propynyl carbonate, dipropynyl carbonate, methyl phenyl carbonate, ethyl phenyl carbonate, diphenyl carbonate and the like
  • methylphenyl carbonate preferred are methylphenyl carbonate, ethylphenyl carbonate, diphenyl carbonate, vinylene carbonate, vinyl ethylene carbonate, 4,4-divinyl ethylene carbonate, and 4,5-divinyl ethylene carbonate, and more preferably vinylene.
  • Carbonate reductive decomposition potential 1.1 V
  • vinyl ethylene carbonate reductive decomposition potential 1.0 V
  • particularly preferably vinylene carbonate particularly preferably vinylene carbonate.
  • sultone compound As a sultone compound, 1,3-propane sultone, 1,4-butane sultone, 1,3-propene sultone, 1-methyl-1,3-propene sultone, 2-methyl-1,3-propene sultone, 3-methyl And 1,3-propene sultone and the like.
  • 1,3-propane sultone reductive decomposition potential 1.2 V
  • 1,3-propene sultone reductive decomposition potential 1.4 V
  • Cyclic sulfate ester compound As a cyclic sulfate compound, Catechol sulfate, 1,2-cyclohexyl sulfate, 2,2-dioxo-1,3,2-dioxathiolane, 4-methyl-2,2-dioxo-1,3,2-dioxathiolane, 4-ethyl-2,2-dioxo-1,3,2-dioxathiolane, 4-propyl-2,2-dioxo-1,3,2-dioxathiolane, 4-butyl-2,2-dioxo-1,3,2-dioxathiolane, 4-pentyl-2,2-dioxo-1,3,2-dioxathiolane, 4-hexyl-2,2-dioxo-1,3,2-dioxathiolane, 4-Methylsulfonyloxymethyl-2,2-dioxo-1,3,2-dioxathiolane, 4-Met
  • 4-methylsulfonyloxymethyl-2,2-dioxo-1,3,2-dioxathiolane (reduction decomposition potential 1.3 V)
  • 4,4'-bis (2,2-dioxo -1,3,2-dioxathiolane) (reduction potential of 1.2 V)
  • 4-propyl-2,2-dioxo-1,3,2-dioxathiolane (reduction potential of 1.4 V)
  • particularly preferably 4 4,4'-bis (2,2-dioxo-1,3,2-dioxathiolane) (reduction decomposition potential 1.2 V).
  • cyclic sulfate compounds reference may be made to WO 2012/053644.
  • phosphoric acid ester compound As a phosphoric acid ester compound, lithium difluorophosphate, lithium monofluorophosphate, tristrimethylsilyl phosphate, dimethyltrimethylsilyl phosphate, methylditrimethylsilyl phosphate, trimethyl phosphate, tristriethylsilyl phosphate, triethyl phosphate, phosphoric acid Trioctyl and the like.
  • lithium difluorophosphate (reductive decomposition potential 1.1 V) and tristrimethylsilyl phosphate (reductive decomposition potential 0.9 V) are preferable.
  • the phosphoric acid ester compound which is an oxalato compound mentioned later is not included in the concept of the phosphoric acid ester compound here.
  • Phosphoric acid ester compounds which are oxalato compounds are included in the concept of oxalato compounds.
  • oxalato compounds examples include lithium difluorobis (oxalato) phosphate, lithium tetrafluoro (oxalato) phosphate, lithium tris (oxalato) phosphate, lithium difluoro (oxalato) borate, lithium bis (oxalato) borate and the like. .
  • lithium difluorobis (oxalato) phosphate reduction decomposition potential 2.0 V
  • lithium bis (oxalato) borate is preferable
  • bis (oxalato) is particularly preferable.
  • Lithium borate (reduction decomposition potential 1.8 V).
  • benzene substituted by at least one fluorine atom is preferable.
  • benzene substituted by at least one fluorine atom may be substituted by two or more fluorine atoms, or may be substituted by a substituent other than a fluorine atom.
  • orthofluorotoluene As an aromatic compound substituted by a fluorine atom, orthofluorotoluene, metafluorotoluene, parafluorotoluene, difluorotoluene, trifluorotoluene, tetrafluorotoluene, pentafluorotoluene, fluorobenzene, orthodifluorobenzene, metadifluorobenzene, Paradifluorobenzene, 1-fluoro-4-t-butylbenzene, 2-fluorobiphenyl, fluorocyclohexylbenzene (eg, 1-fluoro-2-cyclohexylbenzene, 1-fluoro-3-cyclohexylbenzene, 1-fluoro-4- And cyclohexylbenzene), 2,4-difluoroanisole, 2,5-difluoroanisole, 2,6-difluoro
  • fluorinated alkenes mean alkenes substituted by at least one fluorine atom.
  • the fluorinated alkene is more preferably a C3-C15 fluorinated alkene.
  • ethylene substituted by a fluorinated alkyl group having 1 to 12 carbon atoms is preferable.
  • the fluorinated alkyl group means an alkyl group substituted by at least one fluorine atom.
  • fluorinated alkenes examples include (perfluoromethyl) ethylene, (perfluoroethyl) ethylene, (perfluoropropyl) ethylene, (perfluorobutyl) ethylene, (perfluoropentyl) ethylene, (perfluorohexyl) ethylene, Fluoroheptyl) ethylene, (perfluorooctyl) ethylene, (perfluorononyl) ethylene, (perfluorodecyl) ethylene, (perfluoroundecyl) ethylene, (perfluorododecyl) ethylene, and the like.
  • (perfluorohexyl) ethylene (reduction decomposition potential 1.2 V) is preferable.
  • the dinitrile compound is preferably a dinitrile compound having 2 to 10 carbon atoms.
  • dinitrile compounds include malononitrile, succinonitrile, glutaronitrile, adiponitrile, piperonitrile, suberonitrile, azera nitrile, sebaconitrile, undecane dinitrile, dodecane dinitrile, methyl malononitrile, ethyl malononitrile, isopropyl malononitrile, tert-butyl malononitrile , Methyl succinonitrile, 2,2-dimethyl succinonitrile, 2,3-dimethyl succinonitrile, trimethyl succinonitrile, tetramethyl succinonitrile, 3,3'-oxydipropionitrile, 3,3'- Thiodipropionitrile, 3,3 '-(ethylenedioxy) dipropionitrile, 3,3'-(ethylenedithio) dipropion
  • sulfonyl fluoride compound methanesulfonyl fluoride, ethanesulfonyl fluoride, propanesulfonyl fluoride, 2-propanesulfonyl fluoride, butanesulfonyl fluoride, 2-butanesulfonyl fluoride, hexanesulfonyl fluoride, trifluoromethanesulfonyl fluoride And perfluoroethanesulfonyl fluoride, perfluoropropanesulfonyl fluoride, perfluorobutanesulfonyl fluoride, ethenesulfonyl fluoride, 1-propene-1-sulfonyl fluoride, 2-propene-1-sulfonyl fluoride, etc.
  • Perfluoroethanesulfonyl fluoride, perfluoropropanesulfonyl fluoride, or perfluorobutanesulfonyl fluoride is preferable, Methanesulfonyl fluoride, ethanesulfonyl fluoride, propanesulfonyl fluoride, 2-propanesulfonyl fluoride, butanesulfonyl fluoride, 2-butanesulfonyl fluoride or hexanesulfonyl fluoride is more
  • lithium fluoride alkyl sulfonate compounds include lithium trifluoromethane sulfonate and lithium pentafluoroethane sulfonate. Among these compounds, preferred is lithium trifluoromethanesulfonate (reductive decomposition potential 1.3 V).
  • Examples of the bis (fluorosulfonyl) imide compound include lithium bis (fluorosulfonyl) imide. This compound has a reductive decomposition potential of 1.4 V.
  • Carbonate compound having a fluorine atom As a carbonate compound having a fluorine atom, methyl trifluoromethyl carbonate, ethyl trifluoromethyl carbonate, bis (trifluoromethyl) carbonate, methyl (2,2,2-trifluoroethyl) carbonate, ethyl (2,2,2 -Linear carbonates such as -trifluoroethyl) carbonate and bis (2,2,2-trifluoroethyl) carbonate; 4-fluoroethylene carbonate, 4,4-difluoroethylene carbonate, 4,5-difluoroethylene carbonate, 4 And cyclic carbonates such as trifluoromethyl ethylene carbonate; and the like.
  • 4-fluoroethylene carbonate reductive decomposition potential 1.3 V).
  • Additive B is Vinylene carbonate, vinyl ethylene carbonate, 1,3-propane sultone, 1,3-propene sultone, 4-methylsulfonyloxymethyl-2,2-dioxo-1,3,2-dioxathiolane, 4,4′-bis (2 , 2-Dioxo-1,3,2-dioxathiolane), 4-propyl-2,2-dioxo-1,3,2-dioxathiolane, lithium difluorophosphate, tristrimethylsilyl phosphate, lithium difluorobis (oxalato) phosphate , Lithium bis (oxalato) borate, orthofluorotoluene, (perfluorohexyl) ethylene, succinonitrile, adiponitrile, methanesulfonyl fluoride, lithium trifluoromethanesulfonate, lithium bis (fluorosulfonyl) imide, and 4-fluor
  • the content (total content in the case of two or more) of the additive B with respect to the total amount of the non-aqueous electrolyte of the present disclosure is preferably 0.001% by mass to 10% by mass, and more preferably 0.05% by mass
  • the content is more preferably 5% by mass, still more preferably 0.1% by mass to 4% by mass, still more preferably 0.1% by mass to 2% by mass, and particularly preferably 0.1% by mass to 1% by mass.
  • the content mass ratio of the additive B to the additive A (that is, the ratio [content mass of additive B / content mass of additive A)] is preferably 1 or more and 20 or less. 2 to 15 is more preferable, and 1.4 to 10 is particularly preferable.
  • the non-aqueous electrolyte generally contains an electrolyte and a non-aqueous solvent.
  • Non-aqueous solvent The non-aqueous electrolyte generally contains a non-aqueous solvent. Although various well-known things can be suitably selected as a non-aqueous solvent, It is preferable to use at least one chosen from a cyclic
  • cyclic aprotic solvent cyclic carbonate, cyclic carboxylic acid ester, cyclic sulfone, cyclic ether can be used.
  • the cyclic aprotic solvent may be used alone or in combination of two or more.
  • the mixing ratio of the cyclic aprotic solvent in the nonaqueous solvent is 10% by mass to 100% by mass, more preferably 20% by mass to 90% by mass, and particularly preferably 30% by mass to 80% by mass. By setting the ratio as such, the conductivity of the electrolytic solution related to the charge and discharge characteristics of the battery can be increased.
  • cyclic carbonates include ethylene carbonate, propylene carbonate, 1,2-butylene carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate and the like.
  • ethylene carbonate and propylene carbonate having a high dielectric constant are preferably used.
  • ethylene carbonate is more preferable.
  • cyclic carboxylic acid esters include ⁇ -butyrolactone, ⁇ -valerolactone, and alkyl-substituted products such as methyl ⁇ -butyrolactone, ethyl ⁇ -butyrolactone and ethyl ⁇ -valerolactone.
  • the cyclic carboxylic acid ester has a low vapor pressure, a low viscosity, and a high dielectric constant, and can lower the viscosity of the electrolytic solution without lowering the flash point of the electrolytic solution and the degree of dissociation of the electrolyte.
  • the conductivity of the electrolyte which is an index related to the discharge characteristics of the battery, can be increased without increasing the flammability of the electrolyte. Therefore, when aiming to improve the flash point of the solvent, It is preferable to use a cyclic carboxylic acid ester as the cyclic aprotic solvent. Most preferred is ⁇ -butyrolactone.
  • the cyclic carboxylic acid ester is preferably used in combination with other cyclic aprotic solvents.
  • a mixture of cyclic carboxylic acid ester and cyclic carbonate and / or linear carbonate can be mentioned.
  • examples of combinations of cyclic carboxylic acid esters and cyclic carbonates and / or linear carbonates include ⁇ -butyrolactone and ethylene carbonate, ⁇ -butyrolactone and ethylene carbonate and dimethyl carbonate, ⁇ -butyrolactone and ethylene carbonate and methyl ethyl Carbonate, ⁇ -butyrolactone and ethylene carbonate and diethyl carbonate, ⁇ -butyrolactone and propylene carbonate, ⁇ -butyrolactone and propylene carbonate and dimethyl carbonate, ⁇ -butyrolactone and propylene carbonate and methyl ethyl carbonate, ⁇ -butyrolactone and propylene carbonate and diethyl carbonate, ⁇ -butyrolactone, ethylene carbonate and propylene carbonate, ⁇ -butyrolacto , Ethylene carbonate, propylene carbonate and dimethyl carbonate, ⁇ -butyrolactone, ethylene carbonate, propylene carbonate
  • cyclic sulfones examples include sulfolane, 2-methylsulfolane, 3-methylsulfolane, dimethylsulfone, diethylsulfone, dipropylsulfone, methylethylsulfone, methylpropylsulfone and the like.
  • Dioxolane can be mentioned as an example of cyclic ether.
  • Linear aprotic solvent As the chain-like aprotic solvent, a chain carbonate, a chain carboxylic acid ester, a chain ether, a chain phosphoric acid ester and the like can be used.
  • the mixing ratio of the chain-like aprotic solvent in the nonaqueous solvent is 10% by mass to 100% by mass, more preferably 20% by mass to 90% by mass, and particularly preferably 30% by mass to 80% by mass.
  • linear carbonates include dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate, methyl propyl carbonate, methyl isopropyl carbonate, ethyl propyl carbonate, dipropyl carbonate, methyl butyl carbonate, ethyl butyl carbonate, dibutyl carbonate, methyl pentyl carbonate, Ethyl pentyl carbonate, dipentyl carbonate, methyl heptyl carbonate, ethyl heptyl carbonate, diheptyl carbonate, methyl hexyl carbonate, ethyl hexyl carbonate, dihexyl carbonate, methyl octyl carbonate, ethyl octyl carbonate, dioctyl carbonate, methyl trifluoroethyl carbonate and the like. These linear carbonates may be used as a mixture of two or more.
  • chain carboxylic acid esters include methyl pivalate and the like.
  • chain ether include dimethoxyethane and the like.
  • linear phosphate ester include trimethyl phosphate.
  • the non-aqueous solvent contained in the non-aqueous electrolytic solution of the present disclosure may be only one type or two or more types.
  • the solvents may be mixed and used.
  • the conductivity of the electrolytic solution related to the charge and discharge characteristics of the battery can also be enhanced by the combination of the cyclic carboxylic acid ester and the cyclic carbonate and / or the linear carbonate.
  • combinations of cyclic carbonate and linear carbonate include ethylene carbonate and dimethyl carbonate, ethylene carbonate and methyl ethyl carbonate, ethylene carbonate and diethyl carbonate, propylene carbonate and dimethyl carbonate, propylene carbonate and methyl ethyl carbonate, and propylene carbonate Diethyl carbonate, ethylene carbonate and propylene carbonate and methyl ethyl carbonate, ethylene carbonate and propylene carbonate and diethyl carbonate, ethylene carbonate and dimethyl carbonate and methyl ethyl carbonate, ethylene carbonate and dimethyl carbonate and diethyl carbonate, ethylene carbonate and methyl ethyl carbonate And diethyl carbonate, ethylene carbonate and dimethyl carbonate, methyl ethyl carbonate and diethyl carbonate, ethylene carbonate and propylene carbonate and dimethyl carbonate and methyl ethyl carbonate, ethylene carbonate and propylene carbonate and dimethyl carbon
  • the mixing ratio of the cyclic carbonate to the linear carbonate is, in terms of mass ratio, cyclic carbonate: linear carbonate is 5:95 to 80:20, more preferably 10:90 to 70:30, particularly preferably 15:85. It is ⁇ 55: 45.
  • the ratio By setting the ratio as such, the increase in viscosity of the electrolyte can be suppressed, and the degree of dissociation of the electrolyte can be increased, so that the conductivity of the electrolyte related to the charge and discharge characteristics of the battery can be increased.
  • the solubility of the electrolyte can be further enhanced. Therefore, since it can be set as the electrolyte solution excellent in the electrical conductivity in normal temperature or low temperature, the load characteristic of the battery in normal temperature to low temperature can be improved.
  • non-aqueous solvent As the non-aqueous solvent, other solvents other than the above may also be mentioned.
  • amides such as dimethylformamide, linear carbamates such as methyl-N, N-dimethylcarbamate, cyclic amides such as N-methylpyrrolidone, N, N-dimethylimidazolidinone and the like
  • examples include cyclic urea, trimethyl borate, triethyl borate, tributyl borate, boron compounds such as trioctyl borate, trimethylsilyl borate and the like, and polyethylene glycol derivatives represented by the following general formula.
  • Electrodes Various well-known electrolytes can be used for the non-aqueous electrolyte of this indication, and if it is normally used as electrolyte for non-aqueous electrolytes, all can be used.
  • electrolyte examples include (C 2 H 5 ) 4 NPF 6 , (C 2 H 5 ) 4 NBF 4 , (C 2 H 5 ) 4 NClO 4 , (C 2 H 5 ) 4 NAsF 6 , (C 2 H 5 ) 4 N 2 SiF 6 , (C 2 H 5 ) 4 NOSO 2 C k F (2 k + 1) (k is an integer of 1 to 8), (C 2 H 5 ) 4 NPF n [C k F (2 k + 1)
  • a tetraalkyl ammonium salt such as (6-n) (n is an integer from 1 to 5 and k is an integer from 1 to 8), LiPF 6 , LiBF 4 , LiClO 4 , LiAsF 6 , Li 2 SiF 6 , LiOSO 2 C k F Lithium salts such as (2k + 1) (k is an integer of 1 to 8), LiPF n [C k F (2k + 1) ] (6-n), (an integer of 1 to 5 and
  • lithium salts are particularly preferable, and further, LiPF 6 , LiBF 4 , LiOSO 2 C k F (2k + 1) (k is an integer of 1 to 8), LiClO 4 , LiAsF 6 , LiNSO 2 [C k F ( 2k + 1) ] 2 (k is an integer of 1 to 8), LiPF n [C k F (2k + 1) ] (6-n) (n is an integer of 1 to 5, k is an integer of 1 to 8).
  • the electrolyte is usually contained in the non-aqueous electrolyte preferably at a concentration of 0.1 mol / L to 3 mol / L, preferably 0.5 mol / L to 2 mol / L.
  • LiPF 6 In the case of using a cyclic carboxylic acid ester such as ⁇ -butyrolactone in combination as a non-aqueous solvent in the non-aqueous electrolyte of the present disclosure, it is particularly desirable to contain LiPF 6 . Since LiPF 6 has a high degree of dissociation, it can enhance the conductivity of the electrolyte and has the function of suppressing the reductive decomposition reaction of the electrolyte on the negative electrode. LiPF 6 may be used alone, or LiPF 6 and other electrolytes may be used.
  • any electrolytes can be used as long as they are generally used as electrolytes for non-aqueous electrolytes, but lithium salts other than LiPF 6 are preferable among the above-mentioned specific examples of lithium salts.
  • Specific examples include LiPF 6 and LiBF 4 , LiPF 6 and LiN [SO 2 C k F (2k + 1) ] 2 (k is an integer of 1 to 8), LiPF 6 and LiBF 4 and LiN [SO 2 C k F ( 2k + 1) ] (k is an integer of 1 to 8) and the like.
  • the ratio of the LiPF 6 occupying the lithium salt is preferably 1% by mass to 100% by weight, more preferably 10 mass% to 100 mass%, more preferably 50 mass% to 100 mass%.
  • Such an electrolyte is preferably contained in the non-aqueous electrolyte at a concentration of 0.1 mol / L to 3 mol / L, preferably 0.5 mol / L to 2 mol / L.
  • the non-aqueous electrolyte of the present disclosure is not only suitable as a non-aqueous electrolyte for lithium secondary batteries, but also is a non-aqueous electrolyte for primary batteries, a non-aqueous electrolyte for electrochemical capacitors, and an electric double layer capacitor. Can also be used as an electrolytic solution for aluminum electrolytic capacitors.
  • Lithium secondary battery The lithium secondary battery of the present disclosure includes a positive electrode, a negative electrode, and the non-aqueous electrolyte of the present disclosure.
  • the negative electrode may include a negative electrode active material and a negative electrode current collector.
  • the negative electrode active material in the negative electrode metal lithium, lithium-containing alloy, metal or alloy capable of alloying with lithium, oxide capable of doping / dedoping lithium ion, capable of doping / dedoping lithium ion
  • At least one selected from the group consisting of transition metal nitrides and carbon materials capable of doping and de-doping lithium ions (may be used alone or as a mixture containing two or more of these) Good) can be used.
  • metals or alloys that can be alloyed with lithium (or lithium ion) include silicon, silicon alloys, tin, tin alloys and the like.
  • lithium titanate may be used.
  • carbon materials capable of doping and dedoping lithium ions are preferable.
  • examples of such carbon materials include carbon black, activated carbon, graphite materials (artificial graphite, natural graphite), amorphous carbon materials, and the like.
  • the form of the carbon material may be any of fibrous, spherical, potato-like, and flake-like forms.
  • amorphous carbon material examples include hard carbon, coke, mesocarbon microbeads (MCMB) calcined to 1500 ° C. or less, mesophase pitch carbon fiber (MCF) and the like.
  • MCMB mesocarbon microbeads
  • MCF mesophase pitch carbon fiber
  • These carbon materials may be used alone or in combination of two or more.
  • a carbon material having an interplanar spacing d (002) of (002) plane of 0.340 nm or less measured by X-ray analysis is particularly preferable.
  • graphite having a true density of 1.70 g / cm 3 or more or a highly crystalline carbon material having a property close thereto is also preferable. The use of the above carbon materials can increase the energy density of the battery.
  • the negative electrode current collector include metal materials such as copper, nickel, stainless steel, and nickel plated steel. Among them, copper is particularly preferred in view of processability.
  • the positive electrode may include a positive electrode active material and a positive electrode current collector.
  • Polyaniline Li thiophene, polypyrrole, polyacetylene, polyacene, dimercaptothiadiazoles, conductive polymer materials such as polyaniline complex thereof.
  • complex oxides composed of lithium and a transition metal are particularly preferable.
  • the negative electrode is lithium metal or lithium alloy
  • a carbon material can also be used as the positive electrode.
  • a mixture of a composite oxide of lithium and a transition metal and a carbon material can be used as the positive electrode.
  • the positive electrode active material may be used alone or in combination of two or more. When the positive electrode active material is insufficient in conductivity, it can be used together with a conductive aid to form a positive electrode.
  • a conductive support agent carbon materials, such as carbon black, an amorphous whisker, and a graphite, can be illustrated.
  • the positive electrode current collector include metal materials such as aluminum, aluminum alloy, stainless steel, nickel, titanium and tantalum; carbon materials such as carbon cloth and carbon paper; and the like.
  • the lithium secondary battery of the present disclosure preferably includes a separator between the negative electrode and the positive electrode.
  • the separator is a film that electrically insulates the positive electrode and the negative electrode and transmits lithium ions, and examples thereof include porous films and polymer electrolytes.
  • a microporous polymer film is preferably used as the porous membrane, and examples of the material include polyolefin, polyimide, polyvinylidene fluoride, polyester and the like.
  • porous polyolefins are preferable, and specifically, porous polyethylene films, porous polypropylene films, or multilayer films of porous polyethylene films and polypropylene films can be exemplified.
  • the polymer electrolyte may, for example, be a polymer in which a lithium salt is dissolved, or a polymer swollen in an electrolytic solution.
  • the non-aqueous electrolyte of the present disclosure may be used for the purpose of swelling a polymer to obtain a polymer electrolyte.
  • the lithium secondary battery of the present disclosure can take various known shapes, and can be formed into a cylindrical, coin, square, laminate, film, or any other shape.
  • the basic structure of the battery is the same regardless of the shape, and design changes can be made according to the purpose.
  • FIG. 1 is a schematic perspective view showing an example of a laminate type battery which is an example of the lithium secondary battery of the present disclosure
  • FIG. 2 is a thickness of a laminate type electrode body accommodated in the laminate type battery shown in FIG. It is a schematic sectional drawing of a direction.
  • the laminate type battery shown in FIG. 1 the non-aqueous electrolyte (not shown in FIG. 1) and the laminated electrode body (not shown in FIG. 1) are housed inside, and the peripheral portion is sealed.
  • the laminated exterior body 1 by which the inside was sealed is provided.
  • the laminate case 1 for example, a laminate case made of aluminum is used.
  • the laminate type electrode body housed in the laminate outer package 1 is, as shown in FIG. 2, a laminate in which the positive electrode plate 5 and the negative electrode plate 6 are alternately laminated via the separator 7, and And a separator 8 surrounding the periphery.
  • the non-aqueous electrolytic solution of the present disclosure is impregnated in the positive electrode plate 5, the negative electrode plate 6, the separator 7, and the separator 8.
  • the plurality of positive electrode plates 5 in the laminated electrode assembly are all electrically connected to the positive electrode terminal 2 through the positive electrode tab (not shown), and a part of the positive electrode terminal 2 is the laminate case 1. Projecting outward from the peripheral edge ( Figure 1). A portion where the positive electrode terminal 2 protrudes at the peripheral end of the laminate outer package 1 is sealed by an insulating seal 4.
  • each of the plurality of negative electrode plates 6 in the laminated electrode assembly is electrically connected to the negative electrode terminal 3 through the negative electrode tab (not shown), and a part of the negative electrode terminal 3 is in the laminate exterior It protrudes outward from the peripheral end of the body 1 (FIG. 1).
  • the part where the negative electrode terminal 3 protrudes at the peripheral end of the laminate outer package 1 is sealed by an insulating seal 4.
  • the number of the positive electrode plates 5 is five
  • the number of the negative electrode plates 6 is six
  • the positive electrode plate 5 and the negative electrode plate 6 have the separator 7 interposed therebetween.
  • the outer layers are all stacked in an arrangement to be the negative electrode plate 6.
  • the number of positive electrode plates, the number of negative electrode plates, and the arrangement of the laminate type battery are not limited to this example, and various modifications may be made.
  • FIG. 3 is a schematic perspective view showing an example of a coin-type battery which is another example of the lithium secondary battery of the present disclosure.
  • a disk-shaped negative electrode 12 a separator 15 into which a non-aqueous electrolyte is injected
  • a disk-shaped positive electrode 11 disk-shaped positive electrode 11
  • spacer plates 17 and 18 of stainless steel or aluminum, etc.
  • the positive electrode can 13 hereinafter also referred to as “battery can”
  • the sealing plate 14 hereinafter also referred to as “battery can lid”.
  • the positive electrode can 13 and the sealing plate 14 are crimped and sealed via the gasket 16.
  • the non-aqueous electrolyte of the present disclosure is used as the non-aqueous electrolyte to be injected into the separator 15.
  • the lithium secondary battery of the present disclosure is obtained by charging and discharging a lithium secondary battery (lithium secondary battery before charge and discharge) including a negative electrode, a positive electrode, and the non-aqueous electrolyte of the present disclosure.
  • a lithium secondary battery lithium secondary battery before charge and discharge
  • a lithium secondary battery before charge and discharge including the negative electrode, the positive electrode, and the non-aqueous electrolyte of the present disclosure is manufactured, and then, before the charge and discharge.
  • It may be a lithium secondary battery (charged / discharged lithium secondary battery) manufactured by charging / discharging the lithium secondary battery one or more times.
  • the application of the lithium secondary battery of the present disclosure is not particularly limited, and can be used for various known applications.
  • the “addition amount” represents the content in the finally obtained non-aqueous electrolyte (that is, the amount relative to the total amount of the finally obtained non-aqueous electrolyte).
  • “wt%” means mass%.
  • Example 1 According to the following procedure, a coin-type lithium secondary battery (hereinafter also referred to as "coin-type battery") having the configuration shown in FIG. 3 was produced.
  • the positive electrode mixture slurry is applied to a positive electrode current collector of a strip-shaped aluminum foil having a thickness of 20 ⁇ m and dried, and then compressed by a roll press to form a sheet-like positive electrode comprising the positive electrode current collector and a positive electrode active material.
  • EC ethylene carbonate
  • DMC dimethyl carbonate
  • EMC methyl ethyl carbonate
  • 34:33:33 mass ratio
  • Nonaqueous electrolyte finally prepared as lithium tetraborate that is, a compound in which n is 2 and two M + are both Li + ions in the formula (1)
  • A Add so that the content with respect to the total mass is 0.1% by mass (that is, add at 0.1% by mass addition)
  • additive B 4,4′-bis (2,2-dioxo-1,3,2-dioxathiolane) (hereinafter also referred to as “cyclic sulfate (1)”), a non-aqueous solution finally prepared The content is 0.5% by mass with respect to the total mass of the electrolytic solution (that is, the addition amount is 0.5% by mass), A non-aqueous electrolyte was obtained.
  • the obtained coin-like negative electrode, separator, and coin-like positive electrode are stacked in this order in a stainless steel battery can (2032 size), and then 20 ⁇ l of the non-aqueous electrolyte is injected into the battery can, It was impregnated in the separator, the positive electrode and the negative electrode. Next, an aluminum plate (thickness 1.2 mm, diameter 16 mm) and a spring were placed on the positive electrode, and the battery was sealed by caulking the battery can lid via a polypropylene gasket.
  • a coin-type battery ie, coin-type lithium secondary battery having a configuration shown in FIG. 3 and having a diameter of 20 mm and a height of 3.2 mm was obtained.
  • cyclic sulfate (1) represents 4,4′-bis (2,2-dioxo-1,3,2-dioxathiolane) as a cyclic sulfate compound.
  • Tables 1 to 9 also show the reductive decomposition potential of each additive.
  • Comparative Example 1 The same operation as in Example 1 was performed except that the additive A was not used. The results are shown in Table 1.
  • Example 1 using a non-aqueous electrolyte containing Additive A and Additive B, a non-aqueous electrolyte containing Additive B without using Additive A was used. As compared with Comparative Example 1, initial battery resistance was reduced.
  • Example 2 and Comparative Example 2 The same evaluation as in each of Example 1 and Comparative Example 1 was performed except that the amount of additive B was changed as shown in Table 2.
  • the initial cell resistance (25 ° C.) of Example 2 is shown in Table 2 as a relative value when the initial cell resistance (25 ° C.) of Comparative Example 2 is 100, and the initial cell resistance of Example 2 ( The ⁇ 20 ° C.) is shown as a relative value when the initial cell resistance ( ⁇ 20 ° C.) of Comparative Example 2 is 100.
  • Example 2 using a non-aqueous electrolyte containing Additive A and Additive B, a non-aqueous electrolyte containing Additive B without using Additive A was used. As compared with Comparative Example 2, the initial battery resistance was reduced.
  • Example 3 and Comparative Example 3 The same evaluation as in each of Example 1 and Comparative Example 1 was performed except that the type and addition amount of Additive B were changed as shown in Table 3.
  • Table 3 shows the initial cell resistance (25 ° C.) of Example 3 as a relative value when the initial cell resistance (25 ° C.) of Comparative Example 3 is 100, and the initial cell resistance of Example 3 ( The ⁇ 20 ° C.) is shown as a relative value when the initial cell resistance ( ⁇ 20 ° C.) of Comparative Example 3 is 100.
  • Example 3 using a non-aqueous electrolyte containing Additive A and Additive B, a non-aqueous electrolyte containing Additive B without using Additive A was used. As compared with Comparative Example 3, initial battery resistance was reduced.
  • Example 4 and Comparative Example 4 The same evaluation as in each of Example 1 and Comparative Example 1 was performed except that the type and addition amount of Additive B were changed as shown in Table 4.
  • the initial cell resistance (25 ° C.) of Example 4 is shown in Table 4 as a relative value when the initial cell resistance (25 ° C.) of Comparative Example 4 is 100, and the initial cell resistance of Example 4 ( The ⁇ 20 ° C.) is shown as a relative value when the initial cell resistance ( ⁇ 20 ° C.) of Comparative Example 4 is 100.
  • TMSP represents tristrimethylsilyl phosphate as a phosphoric acid ester compound.
  • Example 4 using a non-aqueous electrolyte containing Additive A and Additive B, a non-aqueous electrolyte containing Additive B without using Additive A was used. As compared with Comparative Example 4, the initial cell resistance was reduced.
  • Example 5 and Comparative Example 5 The same evaluation as in each of Example 1 and Comparative Example 1 was performed except that the type of Additive B was changed as shown in Table 5.
  • the initial cell resistance (25 ° C.) of Example 5 is shown in Table 5 as a relative value when the initial cell resistance (25 ° C.) of Comparative Example 5 is 100, and the initial cell resistance (Example 5) of Example 5 ( The ⁇ 20 ° C.) is shown as a relative value when the initial cell resistance ( ⁇ 20 ° C.) of Comparative Example 5 is 100.
  • Example 5 using a non-aqueous electrolyte containing Additive A and Additive B, a non-aqueous electrolyte containing Additive B but not Additive A was used. As compared to Comparative Example 5, the initial battery resistance was reduced.
  • Example 6 and Comparative Example 6 The same evaluation as in each of Example 1 and Comparative Example 1 was performed except that the type of Additive B was changed as shown in Table 6.
  • Table 6 shows the initial cell resistance (25 ° C.) of Example 6 as a relative value when the initial cell resistance (25 ° C.) of Comparative Example 6 is 100, and the initial cell resistance of Example 6 ( The ⁇ 20 ° C.) is shown as a relative value when the initial cell resistance ( ⁇ 20 ° C.) of Comparative Example 6 is 100.
  • LiDFP represents lithium difluorophosphate as a phosphoric acid ester compound.
  • Example 6 using a non-aqueous electrolyte containing Additive A and Additive B, a non-aqueous electrolyte containing Additive B without using Additive A was used. As compared with Comparative Example 6, the initial cell resistance was reduced.
  • Example 7 and Comparative Example 7 The same evaluation as in each of Example 1 and Comparative Example 1 was performed except that the type and addition amount of Additive B were changed as shown in Table 7.
  • Table 7 shows the initial cell resistance (25 ° C.) of Example 7 as a relative value when the initial cell resistance (25 ° C.) of Comparative Example 7 is 100, and the initial cell resistance (Example 7) The ⁇ 20 ° C.) is shown as a relative value when the initial cell resistance ( ⁇ 20 ° C.) of Comparative Example 7 is 100.
  • LiBOB represents lithium bis (oxalato) borate as the oxalato compound.
  • Example 7 using a non-aqueous electrolyte containing Additive A and Additive B, a non-aqueous electrolyte containing Additive B without using Additive A was used. As compared with Comparative Example 7, the initial cell resistance was reduced.
  • Example 8 and Comparative Example 8 The same evaluation as in each of Example 1 and Comparative Example 1 was performed except that the type and addition amount of Additive B were changed as shown in Table 8.
  • Table 8 shows the initial cell resistance (25 ° C.) of Example 8 as a relative value when the initial cell resistance (25 ° C.) of Comparative Example 8 is 100, and the initial cell resistance (Example 8) The ⁇ 20 ° C.) is shown as a relative value when the initial cell resistance ( ⁇ 20 ° C.) of Comparative Example 8 is 100.
  • PRS represents 1,3-propene sultone as a sultone compound.
  • Example 8 using a non-aqueous electrolyte containing Additive A and Additive B, a non-aqueous electrolyte containing Additive B without using Additive A was used. As compared with Comparative Example 8, the initial cell resistance was reduced.
  • the rate of increase in battery resistance ( ⁇ 20 ° C.) [after storage / initial stage] was measured as follows. First, initial cell resistance ( ⁇ 20 ° C.) was measured by the method described above. Next, the coin-type battery whose initial battery resistance ( ⁇ 20 ° C.) was measured was charged at a constant voltage of 4.2 V, and the charged coin-type battery was stored for 2 days in a thermostat of 80 ° C. The coin type battery after the storage for 2 days is set to a constant voltage of 3.9 V, and the direct current resistance [ ⁇ ] of the coin type battery at ⁇ 20 ° C. is obtained by the same method as the initial battery resistance ( ⁇ 20 ° C.) It was measured.
  • the obtained value was taken as the battery resistance ( ⁇ 20 ° C.) after storage.
  • the battery resistance ( ⁇ 20 ° C.) increase rate by dividing the battery resistance ( ⁇ 20 ° C.) after storage by the initial battery resistance ( ⁇ 20 ° C.) [after storage / initial stage] I asked for.
  • Table 9 The above results are shown in Table 9.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Electrochemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Inorganic Chemistry (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Secondary Cells (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Primary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

式(1)で表されるホウ素化合物からなる添加剤Aと、添加剤Aよりも還元分解電位が低い化合物からなる添加剤Bと、を含有する電池用非水電解液。式(1)中、nは、1~5の整数を表す。M+は、Li+イオン又はH+イオンを表す。nが2~5の整数である場合、複数のM+は、同一であっても異なっていてもよい。

Description

電池用非水電解液及びリチウム二次電池
 本開示は、電池用非水電解液及びリチウム二次電池に関する。
 近年、リチウム二次電池は、携帯電話やノート型パソコンなどの電子機器、或いは電気自動車や電力貯蔵用の電源として広く試用されている。特に最近では、ハイブリッド自動車や電気自動車に搭載可能な、高容量で高出力かつエネルギー密度の高い電池の要望が急拡大している。
 従来より、非水電解液を含むリチウム二次電池(非水電解液二次電池等とも称されている)について、種々の検討がなされている。
 例えば、特許文献1には、リチウム、またはリチウム合金を負極活物質とし、二酸化マンガンを正極活物質とする非水電解液電池において、放電容量の大半を放電した電池を長期間放置し、再度使用しようとした場合や、メモリバックアップ用電源として数μA程度の低電流にて長期間にわたって使用した場合に生ずる内部抵抗の上昇を抑制し、良好な電池性能を得ることが出来る非水電解液電池として、リチウムもしくはリチウム合金を含む負極、二酸化マンガンを主体とする正極および非水電解液から構成され、該非水電解液がリチウムホウ素酸化物を0.01モル/l以上、0.5モル/l以下の割合で含む非水電解液電池が開示されている。
 また、特許文献2には、正極活物質をフッ化水素酸の作用から防御してサイクル特性を向上できる非水電解質二次電池として、非水溶媒に電解質塩としてLiPFを含む非水電解液を備えた非水電解質二次電池であって、前記非水電解液がホウ酸リチウムを含む非水電解質二次電池が開示されている。特許文献2には、正極活物質として、マンガン酸リチウムを用いる実施例が開示されている。
 また、特許文献3には、夏期の自動車内のような高温環境下で使用したり、保存されたりした場合でも、高い電池容量を維持することができる非水電解液二次電池として、リチウムマンガン複合酸化物を正極活物質とし、リチウム、リチウム合金またはリチウムを可逆的に吸蔵,放出する炭素材料を負極活物質とし、非水電解液にリチウムホウ素酸化物を0.01モル%以上2モル%以下含む非水電解液二次電池が開示されている。
 特許文献1:特開2000-48828号公報
 特許文献2:特開2005-71617号公報
 特許文献3:特許第4366724号公報
 非水電解液を用いた電池に対し、電池を保存する前の初期の電池抵抗を低減し、かつ、保存による電池抵抗の上昇を抑制することが求められる場合がある。
 本開示の目的は、電池を保存する前の初期の電池抵抗を低減でき、かつ、保存による電池抵抗の上昇を抑制できる電池用非水電解液、及び、この電池用非水電解液を用いたリチウム二次電池を提供することである。
 上記課題を解決するための手段には、以下の態様が含まれる。
<1> 下記式(1)で表されるホウ素化合物からなる添加剤Aと、
 前記添加剤Aよりも還元分解電位が低い化合物からなる添加剤Bと、
を含有する電池用非水電解液。
Figure JPOXMLDOC01-appb-C000002
 式(1)中、nは、1~5の整数を表す。Mは、Liイオン又はHイオンを表す。nが2~5の整数である場合、複数のMは、同一であっても異なっていてもよい。
<2> 前記添加剤Aを構成するホウ素化合物の還元分解電位の絶対値を還元分解電位Aとし、前記添加剤Bを構成する化合物の還元分解電位の絶対値を還元分解電位Bとした場合に、還元分解電位Aから還元分解電位Bを差し引いた値が、0.1V~1.5Vである<1>に記載の電池用非水電解液。
<3> 前記添加剤Bを構成する化合物の還元分解電位の絶対値を還元分解電位Bとした場合に、前記還元分解電位Bが、0.5V~2.0Vである<1>又は<2>に記載の電池用非水電解液。
<4> 前記添加剤Bが、炭素-炭素不飽和結合を有するカーボネート化合物、スルトン化合物、環状硫酸エステル化合物、リン酸エステル化合物、オキサラト化合物、フッ素原子で置換された芳香族化合物、フッ素原子で置換された脂肪族化合物、ジニトリル化合物、フッ素原子を有するスルホニル化合物、及びフッ素原子を有するカーボネート化合物からなる群から選択される少なくとも1種からなる<1>~<3>のいずれか1つに記載の電池用非水電解液。
<5> 前記添加剤Bが、ビニレンカーボネート、ビニルエチレンカーボネート、1,3-プロパンスルトン、1,3-プロペンスルトン、4-メチルスルホニルオキシメチル-2,2-ジオキソ-1,3,2-ジオキサチオラン、4,4’-ビス(2,2-ジオキソ-1,3,2-ジオキサチオラン)、4-プロピル-2,2-ジオキソ-1,3,2-ジオキサチオラン、ジフルオロリン酸リチウム、リン酸トリストリメチルシリル、ジフルオロビス(オキサラト)リン酸リチウム、ビス(オキサラト)ホウ酸リチウム、オルトフルオロトルエン、(パーフルオロヘキシル)エチレン、スクシノニトリル、アジポニトリル、メタンスルホニルフルオリド、トリフルオロメタンスルホン酸リチウム、リチウムビス(フルオロスルホニル)イミド、及び4-フルオロエチレンカーボネートからなる群から選択される少なくとも1種からなる<1>~<4>のいずれか1つに記載の電池用非水電解液。
<6> 前記式(1)中の前記Mが、Liイオンである<1>~<5>のいずれか1つに記載の電池用非水電解液。
<7> 電池用非水電解液の全量に対する前記添加剤Aの含有量が、0.001質量%~10質量%である<1>~<6>のいずれか1つに記載の電池用非水電解液。
<8> 電池用非水電解液の全量に対する前記添加剤Bの含有量が、0.001質量%~10質量%である<1>~<7>のいずれか1つに記載の電池用非水電解液。
<9> 前記添加剤Aに対する前記添加剤Bの含有質量比が、1超20以下である<1>~<8>のいずれか1つに記載の電池用非水電解液。
<10> 正極と、
 金属リチウム、リチウム含有合金、リチウムとの合金化が可能な金属若しくは合金、リチウムイオンのドープ・脱ドープが可能な酸化物、リチウムイオンのドープ・脱ドープが可能な遷移金属窒素化物、及び、リチウムイオンのドープ・脱ドープが可能な炭素材料からなる群から選ばれる少なくとも1種を負極活物質として含む負極と、
 <1>~<9>のいずれか1つに記載の電池用非水電解液と、
を含むリチウム二次電池。
<11> <10>に記載のリチウム二次電池を充放電させて得られたリチウム二次電池。
 本開示によれば、電池を保存する前の初期の電池抵抗を低減でき、かつ、保存による電池抵抗の上昇を抑制できる電池用非水電解液、及び、この電池用非水電解液を用いたリチウム二次電池が提供される。
本開示のリチウム二次電池の一例である、ラミネート型電池の一例を示す概略斜視図である。 図1に示すラミネート型電池に収容される積層型電極体の、厚さ方向の概略断面図である。 本開示のリチウム二次電池の別の一例である、コイン型電池の一例を示す概略断面図である。
 本明細書において、「~」を用いて表される数値範囲は、「~」の前後に記載される数値を下限値及び上限値として含む範囲を意味する。
 本明細書において、組成物中の各成分の量は、組成物中に各成分に該当する物質が複数存在する場合は、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。
〔電池用非水電解液〕
 本開示の電池用非水電解液(以下、単に「非水電解液」ともいう)は、下記式(1)で表されるホウ素化合物からなる添加剤Aと、添加剤Aよりも還元分解電位が低い化合物からなる添加剤Bと、を含有する。
Figure JPOXMLDOC01-appb-C000003
 式(1)中、nは、1~5の整数を表す。Mは、Liイオン又はHイオンを表す。nが2~5の整数である場合、複数のMは、同一であっても異なっていてもよい。
 本開示の非水電解液によれば、電池を保存する前の初期の電池抵抗を低減でき、かつ、保存による電池抵抗の上昇を抑制できる。かかる効果が奏される理由は、明らかではないが、以下のように推測される。
 添加剤A(即ち、式(1)で表されるホウ素化合物)は、サイクリックボルタンメトリ(CV)による還元分解電位が高いために、電池の充放電時において、負極上で速やかに分解すると考えられる。その結果、負極上に添加剤Aの分解物による低抵抗な被膜が形成されると考えられる。本開示の非水電解液は、かかる添加剤Aに加えて、添加剤Aよりも還元分解電位が低い化合物からなる添加剤Bを含有する。これにより、電池の充放電時において、まず、負極上に添加剤Aの分解物による被膜が速やかに形成され、次いで、この被膜を、添加剤Bの分解物が補強することにより、負極上に、低抵抗であり且つ耐久性に優れた被膜が形成されると考えられる。負極上に形成された、低抵抗であり且つ耐久性に優れた被膜により、初期の電池抵抗を低減する効果、及び、保存による電池抵抗の上昇を抑制する効果がもたらされると推測される。
 本開示の非水電解液に対し、上記特許文献1(特開2000-48828号公報)、上記特許文献2(特開2005-71617号公報)、及び上記特許文献3(特許第4366724号公報)には、添加剤Aの範囲に含まれる四ホウ酸リチウム(Li)を含む非水電解液が開示されている。特許文献1の段落0018~0023、特許文献2の段落0005、及び特許文献3の段落0012には、非水電解液に含有される四ホウ酸リチウムが、正極からのマンガンイオンの溶出、又は、溶出したマンガンイオンの負極における析出を抑制することが開示されており、これらのメカニズムにより、発明の効果が奏されることが開示されている。
 これら特許文献1~3に記載の非水電解液に対し、本開示の非水電解液では、添加剤Aと添加剤Bとの組み合わせにより、これら特許文献1~3に記載のメカニズムとは全く異なる前述のメカニズムにより、初期の電池抵抗を低減し、かつ、保存による電池抵抗の上昇を抑制する効果が奏されると考えられる。
 本明細書において、添加剤の還元分解電位は、サイクリックボルタンメトリ(CV)により、以下の方法によって測定された値を意味する。
 まず、以下のようにして、サンプル溶液を調製する。
 非水溶媒として、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とメチルエチルカーボネート(EMC)とをそれぞれ34:33:33(質量比)の割合で混合し、混合溶媒を得る。得られた混合溶媒中に、電解質であるLiPFを、最終的に調製されるサンプル溶液中における電解質濃度が1モル/リットルとなるように溶解させる。得られた溶液に対し、還元分解電位の測定対象としての添加剤を、最終的に調製されるサンプル溶液中における添加剤濃度が0.5質量%となるように添加することにより、サンプル溶液を得る。
 次に、サイクリックボルタンメトリ(CV)としてALS電気化学アナライザー(BAS社)を用い、上記サンプル溶液に、作用極(WE)としての黒鉛電極と、対極(CE)としてのLi金属電極と、参照極(RE)としてのLi金属電極と、を浸漬させた状態で、電極電位を3Vから0Vまで、掃引速度1mV/secにて掃引する。この間に、0.1mAの電流(即ち、添加剤の還元分解に伴う電流)が流れた時の電極電位を、添加剤の還元分解電位とする。
 以下、添加剤A及び添加剤Bについて説明する。
<添加剤A>
 本開示の非水電解液は、下記式(1)で表されるホウ素化合物からなる添加剤Aを含有する。
 本開示の非水電解液に含有される添加剤Aは、1種であってもよいし、2種以上であってもよい。
Figure JPOXMLDOC01-appb-C000004
 式(1)中、nは、1~5の整数を表す。Mは、Liイオン又はHイオンを表す。nが2~5の整数である場合、複数のMは、同一であっても異なっていてもよい。
 式(1)中、nとしては、1~3の整数が好ましく、2が特に好ましい。
 式(1)中、Mとしては、Liイオンが特に好ましい。
 式(1)で表されるホウ素化合物としては、
三ホウ酸リチウム(還元分解電位2.1V、nが1であり、MがLiイオンである化合物)、
四ホウ酸リチウム(還元分解電位2.1V、nが2であり、2つのMがLiイオンである化合物)、
五ホウ酸リチウム(還元分解電位2.2V、nが3であり、3つのMがLiイオンである化合物)、
六ホウ酸リチウム(還元分解電位2.2V、nが4であり、4つのMがLiイオンである化合物)、
七ホウ酸リチウム(還元分解電位2.3V、nが5であり、5つのMがLiイオンである化合物)、
等が挙げられる。
 式(1)で表されるホウ素化合物としては、還元分解電位が2.0V~2.5Vの範囲内であるホウ素化合物が好ましい。
 本開示の非水電解液の全量に対する添加剤Aの含有量(2種以上である場合には総含有量)としては、0.001質量%~10質量%が好ましく、0.005質量%~5質量%がより好ましく、0.01質量%~1質量%が更に好ましく、0.01質量%~0.5質量%が特に好ましい。
<添加剤B>
 本開示の非水電解液は、添加剤Aよりも還元分解電位が低い化合物からなる添加剤Bを含有する。
 添加剤Bとしては、添加剤Aよりも還元分解電位が低い化合物であればよく、特に制限はない。添加剤Bが、添加剤Aよりも還元分解電位が低い化合物である限り、最初に形成される添加剤Aの分解物による被膜が添加剤Bの分解物によって補強され、低抵抗且つ耐久性に優れた被膜が形成される。その結果、初期の電池抵抗を低減し、かつ、保存による電池抵抗の上昇を抑制する効果が奏される。
 非水電解液に含有される添加剤Bは、1種のみであってもよいし、2種以上であってもよい。
 添加剤Aを構成するホウ素化合物の還元分解電位の絶対値を還元分解電位Aとし、添加剤Bを構成する化合物の還元分解電位の絶対値を還元分解電位Bとした場合に、還元分解電位Aから還元分解電位Bを差し引いた値(即ち、還元分解電位A-還元分解電位B)は、0超であればよいが、0.1V~1.5Vであることが好ましく、0.2V~1.3Vであることがより好ましく、0.3V~1.2Vであることが特に好ましい。
 また、上記の還元分解電位Bは、0.5V~2.0Vであることが好ましく、0.9V~1.8Vであることがより好ましい。
 添加剤Bは、炭素-炭素不飽和結合を有するカーボネート化合物、スルトン化合物、環状硫酸エステル化合物、リン酸エステル化合物、オキサラト化合物、フッ素原子で置換された芳香族化合物、フッ素原子で置換された脂肪族化合物、ジニトリル化合物、フッ素原子を有するスルホニル化合物、及びフッ素原子を有するカーボネート化合物からなる群から選択される少なくとも1種であることがより好ましい。
 また、添加剤Bとしては、分子量1000以下の化合物が好ましく、分子量500以下の化合物がより好ましい。
(炭素-炭素不飽和結合を有するカーボネート化合物)
 炭素-炭素不飽和結合を有するカーボネート化合物としては、メチルビニルカーボネート、エチルビニルカーボネート、ジビニルカーボネート、メチルプロピニルカーボネート、エチルプロピニルカーボネート、ジプロピニルカーボネート、メチルフェニルカーボネート、エチルフェニルカーボネート、ジフェニルカーボネートなどの鎖状カーボネート類;ビニレンカーボネート、メチルビニレンカーボネート、4,4-ジメチルビニレンカーボネート、4,5-ジメチルビニレンカーボネート、ビニルエチレンカーボネート、4,4-ジビニルエチレンカーボネート、4,5-ジビニルエチレンカーボネート、エチニルエチレンカーボネート、4,4-ジエチニルエチレンカーボネート、4,5-ジエチニルエチレンカーボネート、プロピニルエチレンカーボネート、4,4-ジプロピニルエチレンカーボネート、4,5-ジプロピニルエチレンカーボネートなどの環状カーボネート類;などが挙げられる。
 これらの化合物のうち、好ましくは、メチルフェニルカーボネート、エチルフェニルカーボネート、ジフェニルカーボネート、ビニレンカーボネート、ビニルエチレンカーボネート、4,4-ジビニルエチレンカーボネート、4,5-ジビニルエチレンカーボネートであり、より好ましくは、ビニレンカーボネート(還元分解電位1.1V)、ビニルエチレンカーボネート(還元分解電位1.0V)であり、特に好ましくはビニレンカーボネートである。
(スルトン化合物)
 スルトン化合物としては、1,3-プロパンスルトン、1,4-ブタンスルトン、1,3-プロペンスルトン、1-メチル-1,3-プロペンスルトン、2-メチル-1,3-プロペンスルトン、3-メチル-1,3-プロペンスルトン等が挙げられる。
 これらの化合物のうち、好ましくは、1,3-プロパンスルトン(還元分解電位1.2V)、1,3-プロペンスルトン(還元分解電位1.4V)であり、特に好ましくは1,3-プロペンスルトン(還元分解電位1.4V)である。
(環状硫酸エステル化合物)
 環状硫酸エステル化合物としては、
カテコールサルフェート、
1,2-シクロヘキシルサルフェート、
2,2-ジオキソ-1,3,2-ジオキサチオラン、
4-メチル-2,2-ジオキソ-1,3,2-ジオキサチオラン、
4-エチル-2,2-ジオキソ-1,3,2-ジオキサチオラン、
4-プロピル-2,2-ジオキソ-1,3,2-ジオキサチオラン、
4-ブチル-2,2-ジオキソ-1,3,2-ジオキサチオラン、
4-ペンチル-2,2-ジオキソ-1,3,2-ジオキサチオラン、
4-ヘキシル-2,2-ジオキソ-1,3,2-ジオキサチオラン、
4-メチルスルホニルオキシメチル-2,2-ジオキソ-1,3,2-ジオキサチオラン、
4-エチルスルホニルオキシメチル-2,2-ジオキソ-1,3,2-ジオキサチオラン、
ビス((2,2-ジオキソ-1,3,2-ジオキサチオラン-4-イル)メチル)サルフェート、
4,4’-ビス(2,2-ジオキソ-1,3,2-ジオキサチオラン)、等が挙げられる。
 これらの化合物のうち、好ましくは、4-メチルスルホニルオキシメチル-2,2-ジオキソ-1,3,2-ジオキサチオラン(還元分解電位1.3V)、4,4’-ビス(2,2-ジオキソ-1,3,2-ジオキサチオラン)(還元分解電位1.2V)、4-プロピル-2,2-ジオキソ-1,3,2-ジオキサチオラン(還元分解電位1.4V)であり、特に好ましくは4,4’-ビス(2,2-ジオキソ-1,3,2-ジオキサチオラン)(還元分解電位1.2V)である。
 環状硫酸エステル化合物については、国際公開第2012/053644号を参照してもよい。
(リン酸エステル化合物)
 リン酸エステル化合物としては、ジフルオロリン酸リチウム、モノフルオロリン酸リチウム、リン酸トリストリメチルシリル、リン酸ジメチルトリメチルシリル、リン酸メチルジトリメチルシリル、リン酸トリメチル、リン酸トリストリエチルシリル、リン酸トリエチル、リン酸トリオクチル、等が挙げられる。
 これらの化合物のうち、好ましくは、ジフルオロリン酸リチウム(還元分解電位1.1V)、リン酸トリストリメチルシリル(還元分解電位0.9V)である。
 なお、ここでいうリン酸エステル化合物の概念には、後述するオキサラト化合物であるリン酸エステル化合物は包含されない。オキサラト化合物であるリン酸エステル化合物は、オキサラト化合物の概念に包含される。
(オキサラト化合物)
 オキサラト化合物としては、ジフルオロビス(オキサラト)リン酸リチウム、テトラフルオロ(オキサラト)リン酸リチウム、トリス(オキサラト)リン酸リチウム、ジフルオロ(オキサラト)ホウ酸リチウム、ビス(オキサラト)ホウ酸リチウムなどが挙げられる。
 これらの化合物のうち、好ましくは、ジフルオロビス(オキサラト)リン酸リチウム(還元分解電位2.0V)、ビス(オキサラト)ホウ酸リチウム(還元分解電位1.8V)であり、特に好ましくはビス(オキサラト)ホウ酸リチウム(還元分解電位1.8V)である。
(フッ素原子で置換された芳香族化合物)
 フッ素原子で置換された芳香族化合物としては、少なくともフッ素原子1個によって置換されたベンゼンが好ましい。ここで、少なくともフッ素原子1個によって置換されたベンゼンは、フッ素原子2個以上によって置換されていてもよいし、フッ素原子以外の置換基によって置換されていてもよい。
 フッ素原子で置換された芳香族化合物としては、オルトフルオロトルエン、メタフルオロトルエン、パラフルオロトルエン、ジフルオロトルエン、トリフルオロトルエン、テトラフルオロトルエン、ペンタフルオロトルエン、フルオロベンゼン、オルトジフルオロベンゼン、メタジフルオロベンゼン、パラジフルオロベンゼン、1-フルオロ-4-t-ブチルベンゼン、2-フルオロビフェニル、フルオロシクロヘキシルベンゼン(例えば、1-フルオロ-2-シクロヘキシルベンゼン、1-フルオロ-3-シクロヘキシルベンゼン、1-フルオロ-4-シクロヘキシルベンゼン)、2,4-ジフルオロアニソール、2,5-ジフルオロアニソール、2,6-ジフルオロアニソール、3,5-ジフルオロアニソールなどが挙げられる。
 これらの化合物のうち、好ましくはオルトフルオロトルエン、メタフルオロトルエン、パラフルオロトルエンであり、より好ましくは、オルトフルオロトルエン(還元分解電位1.5V)である。
(フッ素原子で置換された脂肪族化合物)
 フッ素原子で置換された脂肪族化合物としては、フッ化アルケンが好ましい。ここで、フッ化アルケンとは、少なくとも1つのフッ素原子によって置換されたアルケンを意味する。
 フッ化アルケンとしては、炭素数3~15のフッ化アルケンがより好ましい。
 フッ化アルケンとしては、炭素数1~12のフッ化アルキル基によって置換されたエチレンが好ましい。ここで、フッ化アルキル基とは、少なくとも1つのフッ素原子によって置換されたアルキル基を意味する。
 フッ化アルケンとしては、(パーフルオロメチル)エチレン、(パーフルオロエチル)エチレン、(パーフルオロプロピル)エチレン、(パーフルオロブチル)エチレン、(パーフルオロペンチル)エチレン、(パーフルオロヘキシル)エチレン、(パーフルオロヘプチル)エチレン、(パーフルオロオクチル)エチレン、(パーフルオロノニル)エチレン、(パーフルオロデシル)エチレン、(パーフルオロウンデシル)エチレン、(パーフルオロドデシル)エチレン、等が挙げられる。
 これらの化合物のうち、好ましくは(パーフルオロヘキシル)エチレン(還元分解電位1.2V)である。
(ジニトリル化合物)
 ジニトリル化合物としては、炭素数2~10のジニトリル化合物が好ましい。
 ジニトリル化合物としては、マロノニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、ピメロニトリル、スベロニトリル、アゼラニトリル、セバコニトリル、ウンデカンジニトリル、ドデカンジニトリル、メチルマロノニトリル、エチルマロノニトリル、イソプロピルマロノニトリル、tert-ブチルマロノニトリル、メチルスクシノニトリル、2,2-ジメチルスクシノニトリル、2,3-ジメチルスクシノニトリル、トリメチルスクシノニトリル、テトラメチルスクシノニトリル、3,3’-オキシジプロピオニトリル、3,3’-チオジプロピオニトリル、3,3’-(エチレンジオキシ)ジプロピオニトリル、3,3’-(エチレンジチオ)ジプロピオニトリル、1,2-ベンゾジニトリル、1,3-ベンゾジニトリル、1,4-ベンゾジニトリル、1,2-ジシアノシクロブタン、1,1-ジシアノエチルアセテート、2,3-ジシアノヒドロキノン、4,5-ジシアノイミダゾール、2,4-ジシアノ-3-メチルグルタアミド、9-ジシアノメチレン-2,4,7-トリニトロフルオレン、2,6-ジシアノトルエンなどが挙げられる。
 これらの化合物のうち、好ましくはスクシノニトリル(還元分解電位1.2V)又はアジポニトリル(還元分解電位1.2V)である。
(フッ素原子を有するスルホニル化合物)
 フッ素原子を有するスルホニル化合物としては、スルホニルフルオリド化合物、フッ化アルキルスルホン酸リチウム化合物、ビス(フルオロスルホニル)イミド化合物、等が挙げられる。
 スルホニルフルオリド化合物としては、メタンスルホニルフルオリド、エタンスルホニルフルオリド、プロパンスルホニルフルオリド、2-プロパンスルホニルフルオリド、ブタンスルホニルフルオリド、2-ブタンスルホニルフルオリド、ヘキサンスルホニルフルオリド、トリフルオロメタンスルホニルフルオリド、パーフルオロエタンスルホニルフルオリド、パーフルオロプロパンスルホニルフルオリド、パーフルオロブタンスルホニルフルオリド、エテンスルホニルフルオリド、1-プロペン-1-スルホニルフルオリド、2-プロペン-1-スルホニルフルオリド等が挙げられる。
 これらの化合物のうち、メタンスルホニルフルオリド、エタンスルホニルフルオリド、プロパンスルホニルフルオリド、2-プロパンスルホニルフルオリド、ブタンスルホニルフルオリド、2-ブタンスルホニルフルオリド、ヘキサンスルホニルフルオリド、トリフルオロメタンスルホニルフルオリド、パーフルオロエタンスルホニルフルオリド、パーフルオロプロパンスルホニルフルオリド、又はパーフルオロブタンスルホニルフルオリドが好ましく、
メタンスルホニルフルオリド、エタンスルホニルフルオリド、プロパンスルホニルフルオリド、2-プロパンスルホニルフルオリド、ブタンスルホニルフルオリド、2-ブタンスルホニルフルオリド、又はヘキサンスルホニルフルオリドがより好ましく、
メタンスルホニルフルオリド、エタンスルホニルフルオリド、又はプロパンスルホニルフルオリドが更に好ましく、
メタンスルホニルフルオリド(還元分解電位1.3V)が特に好ましい。
 フッ化アルキルスルホン酸リチウム化合物としては、トリフルオロメタンスルホン酸リチウム、ペンタフルオロエタンスルホン酸リチウムが挙げられる。
 これらの化合物のうち、好ましくはトリフルオロメタンスルホン酸リチウム(還元分解電位1.3V)である。
 ビス(フルオロスルホニル)イミド化合物としては、リチウムビス(フルオロスルホニル)イミドが挙げられる。この化合物は、還元分解電位が1.4Vである。
(フッ素原子を有するカーボネート化合物)
 フッ素原子を有するカーボネート化合物としては、メチルトリフルオロメチルカーボネート、エチルトリフルオロメチルカーボネート、ビス(トリフルオロメチル)カーボネート、メチル(2,2,2-トリフルオロエチル)カーボネート、エチル(2,2,2-トリフルオロエチル)カーボネート、ビス(2,2,2-トリフルオロエチル)カーボネートなどの鎖状カーボネート類;4-フルオロエチレンカーボネート、4,4-ジフルオロエチレンカーボネート、4,5-ジフルオロエチレンカーボネート、4-トリフルオロメチルエチレンカーボネートなどの環状カーボネート類;などが挙げられる。
 これらの化合物のうち、好ましくは、4-フルオロエチレンカーボネート(還元分解電位1.3V)である。
 添加剤Bは、
ビニレンカーボネート、ビニルエチレンカーボネート、1,3-プロパンスルトン、1,3-プロペンスルトン、4-メチルスルホニルオキシメチル-2,2-ジオキソ-1,3,2-ジオキサチオラン、4,4’-ビス(2,2-ジオキソ-1,3,2-ジオキサチオラン)、4-プロピル-2,2-ジオキソ-1,3,2-ジオキサチオラン、ジフルオロリン酸リチウム、リン酸トリストリメチルシリル、ジフルオロビス(オキサラト)リン酸リチウム、ビス(オキサラト)ホウ酸リチウム、オルトフルオロトルエン、(パーフルオロヘキシル)エチレン、スクシノニトリル、アジポニトリル、メタンスルホニルフルオリド、トリフルオロメタンスルホン酸リチウム、リチウムビス(フルオロスルホニル)イミド、及び4-フルオロエチレンカーボネートからなる群から選択される少なくとも1種であることが更に好ましく、
ビニレンカーボネート、1,3-プロペンスルトン、4,4’-ビス(2,2-ジオキソ-1,3,2-ジオキサチオラン)、ジフルオロリン酸リチウム、リン酸トリストリメチルシリル、及びビス(オキサラト)ホウ酸リチウムからなる群から選択される少なくとも1種であることが特に好ましい。
 本開示の非水電解液の全量に対する添加剤Bの含有量(2種以上である場合には総含有量)としては、0.001質量%~10質量%が好ましく、0.05質量%~5質量%がより好ましく、0.1質量%~4質量%が更に好ましく、0.1質量%~2質量%が更に好ましく、0.1質量%~1質量%が特に好ましい。
 本開示の非水電解液において、添加剤Aに対する添加剤Bの含有質量比(即ち、比〔添加剤Bの含有質量/添加剤Aの含有質量〕)は、1超20以下が好ましく、1.2~15がより好ましく、1.4~10が特に好ましい。
 次に、非水電解液の他の成分について説明する。非水電解液は、一般的には、電解質と非水溶媒とを含有する。
(非水溶媒)
 非水電解液は、一般的に、非水溶媒を含有する。
 非水溶媒としては、種々公知のものを適宜選択することができるが、環状の非プロトン性溶媒及び鎖状の非プロトン性溶媒から選ばれる少なくとも一方を用いることが好ましい。
 電池の安全性の向上のために、溶媒の引火点の向上を志向する場合は、非水溶媒として環状の非プロトン性溶媒を使用することが好ましい。
(環状の非プロトン性溶媒)
 環状の非プロトン性溶媒としては、環状カーボネート、環状カルボン酸エステル、環状スルホン、環状エーテルを用いることができる。
 環状の非プロトン性溶媒は単独で使用してもよいし、複数種混合して使用してもよい。
 環状の非プロトン性溶媒の非水溶媒中の混合割合は、10質量%~100質量%、さらに好ましくは20質量%~90質量%、特に好ましくは30質量%~80質量%である。このような比率にすることによって、電池の充放電特性に関わる電解液の伝導度を高めることができる。
 環状カーボネートの例として具体的には、エチレンカーボネート、プロピレンカーボネート、1,2-ブチレンカーボネート、2,3-ブチレンカーボネート、1,2-ペンチレンカーボネート、2,3-ペンチレンカーボネートなどが挙げられる。これらのうち、誘電率が高いエチレンカーボネートとプロピレンカーボネートが好適に使用される。負極活物質に黒鉛を使用した電池の場合は、エチレンカーボネートがより好ましい。また、これら環状カーボネートは2種類以上を混合して使用してもよい。
 環状カルボン酸エステルとして、具体的にはγ-ブチロラクトン、δ-バレロラクトン、あるいはメチルγ-ブチロラクトン、エチルγ-ブチロラクトン、エチルδ-バレロラクトンなどのアルキル置換体などを例示することができる。
 環状カルボン酸エステルは、蒸気圧が低く、粘度が低く、かつ誘電率が高く、電解液の引火点と電解質の解離度を下げることなく電解液の粘度を下げることができる。このため、電解液の引火性を高くすることなく電池の放電特性に関わる指標である電解液の伝導度を高めることができるという特徴を有するので、溶媒の引火点の向上を指向する場合は、前記環状の非プロトン性溶媒として環状カルボン酸エステルを使用することが好ましい。γ-ブチロラクトンが最も好ましい。
 また、環状カルボン酸エステルは、他の環状の非プロトン性溶媒と混合して使用することが好ましい。例えば、環状カルボン酸エステルと、環状カーボネート及び/または鎖状カーボネートとの混合物が挙げられる。
 環状カルボン酸エステルと環状カーボネート及び/または鎖状カーボネートの組み合わせの例として、具体的には、γ-ブチロラクトンとエチレンカーボネート、γ-ブチロラクトンとエチレンカーボネートとジメチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとメチルエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとジエチルカーボネート、γ-ブチロラクトンとプロピレンカーボネート、γ-ブチロラクトンとプロピレンカーボネートとジメチルカーボネート、γ-ブチロラクトンとプロピレンカーボネートとメチルエチルカーボネート、γ-ブチロラクトンとプロピレンカーボネートとジエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネート、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとメチルエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとジエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとジメチルカーボネートとメチルエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとジメチルカーボネートとジエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとメチルエチルカーボネートとジエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとジエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとメチルエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとジエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとメチルエチルカーボネートとジエチルカーボネート、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとジエチルカーボネート、γ-ブチロラクトンとスルホラン、γ-ブチロラクトンとエチレンカーボネートとスルホラン、γ-ブチロラクトンとプロピレンカーボネートとスルホラン、γ-ブチロラクトンとエチレンカーボネートとプロピレンカーボネートとスルホラン、γ-ブチロラクトンとスルホランとジメチルカーボネートなどが挙げられる。
 環状スルホンの例としては、スルホラン、2-メチルスルホラン、3―メチルスルホラン、ジメチルスルホン、ジエチルスルホン、ジプロピルスルホン、メチルエチルスルホン、メチルプロピルスルホンなどが挙げられる。
 環状エーテルの例としてジオキソランを挙げることができる。
(鎖状の非プロトン性溶媒)
 鎖状の非プロトン性溶媒としては、鎖状カーボネート、鎖状カルボン酸エステル、鎖状エーテル、鎖状リン酸エステルなどを用いることができる。
 鎖状の非プロトン性溶媒の非水溶媒中の混合割合は、10質量%~100質量%、さらに好ましくは20質量%~90質量%、特に好ましくは30質量%~80質量%である。
 鎖状カーボネートとして具体的には、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネート、メチルプロピルカーボネート、メチルイソプロピルカーボネート、エチルプロピルカーボネート、ジプロピルカーボネート、メチルブチルカーボネート、エチルブチルカーボネート、ジブチルカーボネート、メチルペンチルカーボネート、エチルペンチルカーボネート、ジペンチルカーボネート、メチルヘプチルカーボネート、エチルヘプチルカーボネート、ジヘプチルカーボネート、メチルヘキシルカーボネート、エチルヘキシルカーボネート、ジヘキシルカーボネート、メチルオクチルカーボネート、エチルオクチルカーボネート、ジオクチルカーボネート、メチルトリフルオロエチルカーボネートなどが挙げられる。これら鎖状カーボネートは2種類以上を混合して使用してもよい。
 鎖状カルボン酸エステルとして具体的には、ピバリン酸メチルなどが挙げられる。
 鎖状エーテルとして具体的には、ジメトキシエタンなどが挙げられる。
 鎖状リン酸エステルとして具体的には、リン酸トリメチルなどが挙げられる。
(溶媒の組み合わせ)
 本開示の非水電解液に含有される非水溶媒は、1種のみであってもよいし、2種以上であってもよい。
 また、環状の非プロトン性溶媒のみを1種類または複数種類用いても、鎖状の非プロトン性溶媒のみを1種類または複数種類用いても、または環状の非プロトン性溶媒及び鎖状のプロトン性溶媒を混合して用いてもよい。電池の負荷特性、低温特性の向上を特に意図した場合は、非水溶媒として環状の非プロトン性溶媒と鎖状の非プロトン性溶媒を組み合わせて使用することが好ましい。
 さらに、電解液の電気化学的安定性から、環状の非プロトン性溶媒には環状カーボネートを、鎖状の非プロトン性溶媒には鎖状カーボネートを適用することが最も好ましい。また、環状カルボン酸エステルと環状カーボネート及び/または鎖状カーボネートの組み合わせによっても電池の充放電特性に関わる電解液の伝導度を高めることができる。
 環状カーボネートと鎖状カーボネートの組み合わせとして、具体的には、エチレンカーボネートとジメチルカーボネート、エチレンカーボネートとメチルエチルカーボネート、エチレンカーボネートとジエチルカーボネート、プロピレンカーボネートとジメチルカーボネート、プロピレンカーボネートとメチルエチルカーボネート、プロピレンカーボネートとジエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとメチルエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジエチルカーボネート、エチレンカーボネートとジメチルカーボネートとメチルエチルカーボネート、エチレンカーボネートとジメチルカーボネートとジエチルカーボネート、エチレンカーボネートとメチルエチルカーボネートとジエチルカーボネート、エチレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとジエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとメチルエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとジエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとメチルエチルカーボネートとジエチルカーボネート、エチレンカーボネートとプロピレンカーボネートとジメチルカーボネートとメチルエチルカーボネートとジエチルカーボネートなどが挙げられる。
 環状カーボネートと鎖状カーボネートの混合割合は、質量比で表して、環状カーボネート:鎖状カーボネートが、5:95~80:20、さらに好ましくは10:90~70:30、特に好ましくは15:85~55:45である。このような比率にすることによって、電解液の粘度上昇を抑制し、電解質の解離度を高めることができるため、電池の充放電特性に関わる電解液の伝導度を高めることができる。また、電解質の溶解度をさらに高めることができる。よって、常温または低温での電気伝導性に優れた電解液とすることができるため、常温から低温での電池の負荷特性を改善することができる。
(その他の溶媒)
 非水溶媒としては、上記以外のその他の溶媒も挙げられる。
 その他の溶媒としては、具体的には、ジメチルホルムアミドなどのアミド、メチル-N,N-ジメチルカーバメートなどの鎖状カーバメート、N-メチルピロリドンなどの環状アミド、N,N-ジメチルイミダゾリジノンなどの環状ウレア、ほう酸トリメチル、ほう酸トリエチル、ほう酸トリブチル、ほう酸トリオクチル、ほう酸トリメチルシリル等のホウ素化合物、及び下記の一般式で表されるポリエチレングリコール誘導体などを挙げることができる。
 HO(CHCHO)
 HO[CHCH(CH)O]
 CHO(CHCHO)
 CHO[CHCH(CH)O]
 CHO(CHCHO)CH
 CHO[CHCH(CH)O]CH
 C19PhO(CHCHO)[CH(CH)O]CH
 (Phはフェニル基)
 CHO[CHCH(CH)O]CO[OCH(CH)CHOCH
 前記式中、a~fは、5~250の整数、g~jは2~249の整数、5≦g+h≦250、5≦i+j≦250である。
(電解質)
 本開示の非水電解液は、種々公知の電解質を使用することができ、通常、非水電解液用電解質として使用されているものであれば、いずれをも使用することができる。
 電解質の具体例としては、(CNPF、(CNBF、(CNClO、(CNAsF、(CSiF、(CNOSO(2k+1)(k=1~8の整数)、(CNPF[C(2k+1)(6-n)(n=1~5、k=1~8の整数)などのテトラアルキルアンモニウム塩、LiPF、LiBF、LiClO、LiAsF、LiSiF、LiOSO(2k+1)(k=1~8の整数)、LiPF[C(2k+1)(6-n)(n=1~5、k=1~8の整数)などのリチウム塩が挙げられる。また、次の一般式で表されるリチウム塩も使用することができる。
 LiC(SO)(SO)(SO)、LiN(SOOR10)(SOOR11)、LiN(SO12)(SO13)(ここで、R~R13は、互いに同一でも異なっていてもよく、炭素数1~8のパーフルオロアルキル基である)。これらの電解質は単独で使用してもよく、また2種類以上を混合してもよい。
 これらのうち、特にリチウム塩が望ましく、さらには、LiPF、LiBF、LiOSO(2k+1)(k=1~8の整数)、LiClO、LiAsF、LiNSO[C(2k+1)(k=1~8の整数)、LiPF[C(2k+1)(6-n)(n=1~5、k=1~8の整数)が好ましい。
 電解質は、通常は、非水電解液中に0.1mol/L~3mol/L、好ましくは0.5mol/L~2mol/Lの濃度で含まれることが好ましい。
 本開示の非水電解液において、非水溶媒として、γ-ブチロラクトンなどの環状カルボン酸エステルを併用する場合には、特にLiPFを含有することが望ましい。LiPFは、解離度が高いため、電解液の伝導度を高めることができ、さらに負極上での電解液の還元分解反応を抑制する作用がある。LiPFは単独で使用してもよいし、LiPFとそれ以外の電解質を使用してもよい。それ以外の電解質としては、通常、非水電解液用電解質として使用されるものであれば、いずれも使用することができるが、前述のリチウム塩の具体例のうちLiPF以外のリチウム塩が好ましい。
 具体例としては、LiPFとLiBF、LiPFとLiN[SO(2k+1)(k=1~8の整数)、LiPFとLiBFとLiN[SO(2k+1)](k=1~8の整数)などが例示される。
 リチウム塩中に占めるLiPFの比率は、好ましくは1質量%~100質量%、より好ましくは10質量%~100質量%、さらに好ましくは50質量%~100質量%である。このような電解質は、0.1mol/L~3mol/L、好ましくは0.5mol/L~2mol/Lの濃度で非水電解液中に含まれることが好ましい。
 本開示の非水電解液は、リチウム二次電池用の非水電解液として好適であるばかりでなく、一次電池用の非水電解液、電気化学キャパシタ用の非水電解液、電気二重層キャパシタ、アルミ電解コンデンサー用の電解液としても用いることができる。
〔リチウム二次電池〕
 本開示のリチウム二次電池は、正極と、負極と、本開示の非水電解液と、を含む。
<負極>
 負極は、負極活物質及び負極集電体を含んでもよい。
 負極における負極活物質としては、金属リチウム、リチウム含有合金、リチウムとの合金化が可能な金属もしくは合金、リチウムイオンのドープ・脱ドープが可能な酸化物、リチウムイオンのドープ・脱ドープが可能な遷移金属窒素化物、及び、リチウムイオンのドープ・脱ドープが可能な炭素材料からなる群から選ばれた少なくとも1種(単独で用いてもよいし、これらの2種以上を含む混合物を用いてもよい)を用いることができる。
 リチウム(又はリチウムイオン)との合金化が可能な金属もしくは合金としては、シリコン、シリコン合金、スズ、スズ合金などを挙げることができる。また、チタン酸リチウムでもよい。
 これらの中でもリチウムイオンをドープ・脱ドープすることが可能な炭素材料が好ましい。このような炭素材料としては、カーボンブラック、活性炭、黒鉛材料(人造黒鉛、天然黒鉛)、非晶質炭素材料、等が挙げられる。上記炭素材料の形態は、繊維状、球状、ポテト状、フレーク状のいずれの形態であってもよい。
 上記非晶質炭素材料として具体的には、ハードカーボン、コークス、1500℃以下に焼成したメソカーボンマイクロビーズ(MCMB)、メソフェーズピッチカーボンファイバー(MCF)などが例示される。
 上記黒鉛材料としては、天然黒鉛、人造黒鉛が挙げられる。人造黒鉛としては、黒鉛化MCMB、黒鉛化MCFなどが用いられる。また、黒鉛材料としては、ホウ素を含有するものなども用いることができる。また、黒鉛材料としては、金、白金、銀、銅、スズなどの金属で被覆したもの、非晶質炭素で被覆したもの、非晶質炭素と黒鉛を混合したものも使用することができる。
 これらの炭素材料は、1種類で使用してもよく、2種類以上混合して使用してもよい。
上記炭素材料としては、特にX線解析で測定した(002)面の面間隔d(002)が0.340nm以下の炭素材料が好ましい。また、炭素材料としては、真密度が1.70g/cm以上である黒鉛又はそれに近い性質を有する高結晶性炭素材料も好ましい。以上のような炭素材料を使用すると、電池のエネルギー密度をより高くすることができる。
 負極における負極集電体の材質には特に制限はなく、公知のものを任意に用いることができる。
 負極集電体の具体例としては、銅、ニッケル、ステンレス鋼、ニッケルメッキ鋼等の金属材料が挙げられる。中でも、加工しやすさの点から特に銅が好ましい。
<正極>
 正極は、正極活物質及び正極集電体を含んでもよい。
 正極における正極活物質としては、MoS、TiS、MnO、Vなどの遷移金属酸化物又は遷移金属硫化物、LiCoO、LiMnO、LiMn、LiNiO、LiNiCo(1-X)〔0<X<1〕、α-NaFeO型結晶構造を有するLi1+αMe1-α(Meは、Mn、Ni及びCoを含む遷移金属元素、1.0≦(1+α)/(1-α)≦1.6)、LiNiCoMn〔x+y+z=1、0<x<1、0<y<1、0<z<1〕(例えば、LiNi0.33Co0.33Mn0.33、LiNi0.5Co0.2Mn0.3等)、LiFePO、LiMnPOなどのリチウムと遷移金属とからなる複合酸化物、ポリアニリン、ポリチオフェン、ポリピロール、ポリアセチレン、ポリアセン、ジメルカプトチアジアゾール、ポリアニリン複合体などの導電性高分子材料等が挙げられる。これらの中でも、特にリチウムと遷移金属とからなる複合酸化物が好ましい。負極がリチウム金属又はリチウム合金である場合は、正極として炭素材料を用いることもできる。また、正極として、リチウムと遷移金属との複合酸化物と、炭素材料と、の混合物を用いることもできる。
 正極活物質は、1種類で使用してもよく、2種類以上を混合して使用してもよい。正極活物質は導電性が不充分である場合には、導電性助剤とともに使用して正極を構成することができる。導電性助剤としては、カーボンブラック、アモルファスウィスカー、グラファイトなどの炭素材料を例示することができる。
 正極における正極集電体の材質には特に制限はなく、公知のものを任意に用いることができる。
 正極集電体の具体例としては、例えば、アルミニウム、アルミニウム合金、ステンレス鋼、ニッケル、チタン、タンタルなどの金属材料;カーボンクロス、カーボンペーパーなどの炭素材料;等が挙げられる。
<セパレータ>
 本開示のリチウム二次電池は、負極と正極との間にセパレータを含むことが好ましい。
 セパレータは、正極と負極とを電気的に絶縁し且つリチウムイオンを透過する膜であって、多孔性膜や高分子電解質が例示される。
 多孔性膜としては微多孔性高分子フィルムが好適に使用され、材質としてポリオレフィン、ポリイミド、ポリフッ化ビニリデン、ポリエステル等が例示される。
 特に、多孔性ポリオレフィンが好ましく、具体的には多孔性ポリエチレンフィルム、多孔性ポリプロピレンフィルム、又は多孔性のポリエチレンフィルムとポリプロピレンフィルムとの多層フィルムを例示することができる。多孔性ポリオレフィンフィルム上には、熱安定性に優れる他の樹脂がコーティングされてもよい。
 高分子電解質としては、リチウム塩を溶解した高分子や、電解液で膨潤させた高分子等が挙げられる。
 本開示の非水電解液は、高分子を膨潤させて高分子電解質を得る目的で使用してもよい。
<電池の構成>
 本開示のリチウム二次電池は、種々公知の形状をとることができ、円筒型、コイン型、角型、ラミネート型、フィルム型その他任意の形状に形成することができる。しかし、電池の基本構造は、形状によらず同じであり、目的に応じて設計変更を施すことができる。
 本開示のリチウム二次電池の例として、ラミネート型電池が挙げられる。
 図1は、本開示のリチウム二次電池の一例であるラミネート型電池の一例を示す概略斜視図であり、図2は、図1に示すラミネート型電池に収容される積層型電極体の厚さ方向の概略断面図である。
 図1に示すラミネート型電池は、内部に非水電解液(図1中では不図示)及び積層型電極体(図1中では不図示)が収納され、且つ、周縁部が封止されることにより内部が密閉されたラミネート外装体1を備える。ラミネート外装体1としては、例えばアルミニウム製のラミネート外装体が用いられる。
 ラミネート外装体1に収容される積層型電極体は、図2に示されるように、正極板5と負極板6とがセパレータ7を介して交互に積層されてなる積層体と、この積層体の周囲を囲むセパレータ8と、を備える。正極板5、負極板6、セパレータ7、及びセパレータ8には、本開示の非水電解液が含浸されている。
 上記積層型電極体における複数の正極板5は、いずれも正極タブを介して正極端子2と電気的に接続されており(不図示)、この正極端子2の一部が上記ラミネート外装体1の周端部から外側に突出している(図1)。ラミネート外装体1の周端部において正極端子2が突出する部分は、絶縁シール4によってシールされている。
 同様に、上記積層型電極体における複数の負極板6は、いずれも負極タブを介して負極端子3と電気的に接続されており(不図示)、この負極端子3の一部が上記ラミネート外装体1の周端部から外側に突出している(図1)。ラミネート外装体1の周端部において負極端子3が突出する部分は、絶縁シール4によってシールされている。
 なお、上記一例に係るラミネート型電池では、正極板5の数が5枚、負極板6の数が6枚となっており、正極板5と負極板6とがセパレータ7を介し、両側の最外層がいずれも負極板6となる配置で積層されている。しかし、ラミネート型電池における、正極板の数、負極板の数、及び配置については、この一例には限定されず、種々の変更がなされてもよいことは言うまでもない。
 本開示のリチウム二次電池の別の一例として、コイン型電池も挙げられる。
 図3は、本開示のリチウム二次電池の別の一例であるコイン型電池の一例を示す概略斜視図である。
 図3に示すコイン型電池では、円盤状負極12、非水電解液を注入したセパレータ15、円盤状正極11、必要に応じて、ステンレス、又はアルミニウムなどのスペーサー板17、18が、この順序に積層された状態で、正極缶13(以下、「電池缶」ともいう)と封口板14(以下、「電池缶蓋」ともいう)との間に収納される。正極缶13と封口板14とはガスケット16を介してかしめ密封する。
 この一例では、セパレータ15に注入される非水電解液として、本開示の非水電解液を用いる。
 なお、本開示のリチウム二次電池は、負極と、正極と、上記本開示の非水電解液と、を含むリチウム二次電池(充放電前のリチウム二次電池)を、充放電させて得られたリチウム二次電池であってもよい。
 即ち、本開示のリチウム二次電池は、まず、負極と、正極と、上記本開示の非水電解液と、を含む充放電前のリチウム二次電池を作製し、次いで、この充放電前のリチウム二次電池を1回以上充放電させることによって作製されたリチウム二次電池(充放電されたリチウム二次電池)であってもよい。
 本開示のリチウム二次電池の用途は特に限定されず、種々公知の用途に用いることができる。例えば、ノート型パソコン、モバイルパソコン、携帯電話、ヘッドホンステレオ、ビデオムービー、液晶テレビ、ハンディークリーナー、電子手帳、電卓、ラジオ、バックアップ電源用途、モーター、自動車、電気自動車、バイク、電動バイク、自転車、電動自転車、照明器具、ゲーム機、時計、電動工具、カメラ等、小型携帯機器、大型機器を問わず広く利用可能なものである。
 以下、本開示の実施例を示すが、本開示は以下の実施例によって制限されるものではない。
 なお、以下の実施例において、「添加量」は、最終的に得られる非水電解液中における含有量(即ち、最終的に得られる非水電解液全量に対する量)を表す。
 また、「wt%」は、質量%を意味する。
〔実施例1〕
 以下の手順にて、図3に示す構成を有するコイン型のリチウム二次電池(以下、「コイン型電池」とも称する)を作製した。
<負極の作製>
 天然黒鉛系黒鉛97質量部、カルボキシメチルセルロース(1質量部)及びSBRラテックス(2質量部)を水溶媒で混練してペースト状の負極合剤スラリーを調製した。
 次に、この負極合剤スラリーを厚さ18μmの帯状銅箔製の負極集電体に塗布し乾燥した後に、ロールプレスで圧縮して負極集電体と負極活物質層とからなるシート状の負極を得た。このときの負極活物質層の塗布密度は10mg/cmであり、充填密度は1.5g/mlであった。
<正極の作製>
 LiCoO(90質量部)、アセチレンブラック(5質量部)及びポリフッ化ビニリデン(5質量部)を、N-メチルピロリジノンを溶媒として混練してペースト状の正極合剤スラリーを調製した。
 次に、この正極合剤スラリーを、厚さ20μmの帯状アルミ箔の正極集電体に塗布し乾燥した後に、ロールプレスで圧縮して正極集電体と正極活物質とからなるシート状の正極を得た。このときの正極活物質層の塗布密度は30mg/cmであり、充填密度は2.5g/mlであった。
<非水電解液の調製>
 非水溶媒として、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とメチルエチルカーボネート(EMC)とをそれぞれ34:33:33(質量比)の割合で混合し、混合溶媒を得た。
 得られた混合溶媒中に、電解質であるLiPFを、最終的に調製される非水電解液中における電解質濃度が1モル/リットルとなるように溶解させた。
 得られた溶液に対して、
添加剤Aとして、四ホウ酸リチウム(即ち、式(1)中、nが2であり、2つのMがいずれもLiイオンである化合物)を、最終的に調製される非水電解液全質量に対する含有量が0.1質量%となるように添加し(即ち、添加量0.1質量%にて添加し)、
添加剤Bとして、4,4’-ビス(2,2-ジオキソ-1,3,2-ジオキサチオラン)(以下、「環状硫酸エステル(1)」ともいう)を、最終的に調製される非水電解液全質量に対する含有量が0.5質量%となるように添加し(即ち、添加量0.5質量%にて添加し)、
非水電解液を得た。
<コイン型電池の作製>
 上述の負極を直径14mmで、上述の正極を直径13mmで、それぞれ円盤状に打ち抜き、コイン状の負極及びコイン状の正極をそれぞれ得た。また、厚さ20μmの微多孔性ポリエチレンフィルムを直径17mmの円盤状に打ち抜き、セパレータを得た。
 得られたコイン状の負極、セパレータ、及びコイン状の正極を、この順序でステンレス製の電池缶(2032サイズ)内に積層し、次いで、この電池缶内に非水電解液20μlを注入し、セパレータと正極と負極とに含漬させた。
 次に、正極上にアルミニウム製の板(厚さ1.2mm、直径16mm)及びバネを乗せ、ポリプロピレン製のガスケットを介して、電池缶蓋をかしめることにより電池を密封した。
 以上により、直径20mm、高さ3.2mmの図3で示す構成を有するコイン型電池(即ち、コイン型のリチウム二次電池)を得た。
<評価>
 得られたコイン型電池について、以下の評価を実施した。
(初期の電池抵抗(25℃))
 上記で得られたコイン型電池に対し、定電圧4.2Vで充放電を3回繰り返した後、定電圧3.9Vまで充電した。充電後のコイン型電池を恒温槽内で25℃に保温し、25℃において0.2mA定電流で放電し、放電開始から10秒間における電位低下を測定することにより、コイン型電池の25℃での直流抵抗[Ω]を測定した。得られた値を、初期の電池抵抗(25℃)とした。
 後述の比較例1のコイン型電池についても同様に、初期の電池抵抗(25℃)を測定した。
 表1に、実施例1の初期の電池抵抗(25℃)を、比較例1の初期の電池抵抗(25℃)を100とした場合の相対値として示す。
(初期の電池抵抗(-20℃))
 上記で得られたコイン型電池に対し、定電圧4.2Vで充放電を3回繰り返した後、定電圧3.9Vまで充電した。充電後のコイン型電池を恒温槽内で-20℃に保温し、-20℃において0.2mA定電流で放電し、放電開始から10秒間における電位低下を測定することにより、コイン型電池の-20℃での直流抵抗[Ω]を測定した。得られた値を、初期の電池抵抗(-20℃)とした。
 後述の比較例1のコイン型電池についても同様に、初期の電池抵抗(-20℃)を測定した。
 表1に、実施例1の初期の電池抵抗(-20℃)を、比較例1の初期の電池抵抗(-20℃)を100とした場合の相対値として示す。
 表1~3中、環状硫酸エステル(1)は、環状硫酸エステル化合物としての、4,4’-ビス(2,2-ジオキソ-1,3,2-ジオキサチオラン)を表す。
 表1~9には、各添加剤の還元分解電位を併記した。
〔比較例1〕
 添加剤Aを用いなかったこと以外は実施例1と同様の操作を行った。
 結果を表1に示す。
Figure JPOXMLDOC01-appb-T000005
 表1に示すように、添加剤Aと添加剤Bとを含有する非水電解液を用いた実施例1では、添加剤Aを含有せず添加剤Bを含有する非水電解液を用いた比較例1と比較して、初期の電池抵抗が低減されていた。
〔実施例2及び比較例2〕
 添加剤Bの添加量を表2に示すように変更したこと以外は実施例1及び比較例1の各々と同様の評価を行った。
 表2に、実施例2の初期の電池抵抗(25℃)を、比較例2の初期の電池抵抗(25℃)を100とした場合の相対値として示し、実施例2の初期の電池抵抗(-20℃)を、比較例2の初期の電池抵抗(-20℃)を100とした場合の相対値として示す。
Figure JPOXMLDOC01-appb-T000006
 表2に示すように、添加剤Aと添加剤Bとを含有する非水電解液を用いた実施例2では、添加剤Aを含有せず添加剤Bを含有する非水電解液を用いた比較例2と比較して、初期の電池抵抗が低減されていた。
〔実施例3及び比較例3〕
 添加剤Bの種類及び添加量を表3に示すように変更したこと以外は実施例1及び比較例1の各々と同様の評価を行った。
 表3に、実施例3の初期の電池抵抗(25℃)を、比較例3の初期の電池抵抗(25℃)を100とした場合の相対値として示し、実施例3の初期の電池抵抗(-20℃)を、比較例3の初期の電池抵抗(-20℃)を100とした場合の相対値として示す。
 表3、表5、表8、及び表9中、VCは、炭素-炭素不飽和結合を有するカーボネート化合物としての、ビニレンカーボネートを表す。
Figure JPOXMLDOC01-appb-T000007
 表3に示すように、添加剤Aと添加剤Bとを含有する非水電解液を用いた実施例3では、添加剤Aを含有せず添加剤Bを含有する非水電解液を用いた比較例3と比較して、初期の電池抵抗が低減されていた。
〔実施例4及び比較例4〕
 添加剤Bの種類及び添加量を表4に示すように変更したこと以外は実施例1及び比較例1の各々と同様の評価を行った。
 表4に、実施例4の初期の電池抵抗(25℃)を、比較例4の初期の電池抵抗(25℃)を100とした場合の相対値として示し、実施例4の初期の電池抵抗(-20℃)を、比較例4の初期の電池抵抗(-20℃)を100とした場合の相対値として示す。
 表4中、TMSPは、リン酸エステル化合物としての、リン酸トリストリメチルシリルを表す。
Figure JPOXMLDOC01-appb-T000008
 表4に示すように、添加剤Aと添加剤Bとを含有する非水電解液を用いた実施例4では、添加剤Aを含有せず添加剤Bを含有する非水電解液を用いた比較例4と比較して、初期の電池抵抗が低減されていた。
〔実施例5及び比較例5〕
 添加剤Bの種類を表5に示すように変更したこと以外は実施例1及び比較例1の各々と同様の評価を行った。
 表5に、実施例5の初期の電池抵抗(25℃)を、比較例5の初期の電池抵抗(25℃)を100とした場合の相対値として示し、実施例5の初期の電池抵抗(-20℃)を、比較例5の初期の電池抵抗(-20℃)を100とした場合の相対値として示す。
Figure JPOXMLDOC01-appb-T000009
 表5に示すように、添加剤Aと添加剤Bとを含有する非水電解液を用いた実施例5では、添加剤Aを含有せず添加剤Bを含有する非水電解液を用いた比較例5と比較して、初期の電池抵抗が低減されていた。
〔実施例6及び比較例6〕
 添加剤Bの種類を表6に示すように変更したこと以外は実施例1及び比較例1の各々と同様の評価を行った。
 表6に、実施例6の初期の電池抵抗(25℃)を、比較例6の初期の電池抵抗(25℃)を100とした場合の相対値として示し、実施例6の初期の電池抵抗(-20℃)を、比較例6の初期の電池抵抗(-20℃)を100とした場合の相対値として示す。
 表6中、LiDFPは、リン酸エステル化合物としての、ジフルオロリン酸リチウムを表す。
Figure JPOXMLDOC01-appb-T000010
 表6に示すように、添加剤Aと添加剤Bとを含有する非水電解液を用いた実施例6では、添加剤Aを含有せず添加剤Bを含有する非水電解液を用いた比較例6と比較して、初期の電池抵抗が低減されていた。
〔実施例7及び比較例7〕
 添加剤Bの種類及び添加量を表7に示すように変更したこと以外は実施例1及び比較例1の各々と同様の評価を行った。
 表7に、実施例7の初期の電池抵抗(25℃)を、比較例7の初期の電池抵抗(25℃)を100とした場合の相対値として示し、実施例7の初期の電池抵抗(-20℃)を、比較例7の初期の電池抵抗(-20℃)を100とした場合の相対値として示す。
 表7中、LiBOBは、オキサラト化合物としての、ビス(オキサラト)ホウ酸リチウムを表す。
Figure JPOXMLDOC01-appb-T000011
 表7に示すように、添加剤Aと添加剤Bとを含有する非水電解液を用いた実施例7では、添加剤Aを含有せず添加剤Bを含有する非水電解液を用いた比較例7と比較して、初期の電池抵抗が低減されていた。
〔実施例8及び比較例8〕
 添加剤Bの種類及び添加量を表8に示すように変更したこと以外は実施例1及び比較例1の各々と同様の評価を行った。
 表8に、実施例8の初期の電池抵抗(25℃)を、比較例8の初期の電池抵抗(25℃)を100とした場合の相対値として示し、実施例8の初期の電池抵抗(-20℃)を、比較例8の初期の電池抵抗(-20℃)を100とした場合の相対値として示す。
 表8中、PRSは、スルトン化合物としての、1,3-プロペンスルトンを表す。
Figure JPOXMLDOC01-appb-T000012
 表8に示すように、添加剤Aと添加剤Bとを含有する非水電解液を用いた実施例8では、添加剤Aを含有せず添加剤Bを含有する非水電解液を用いた比較例8と比較して、初期の電池抵抗が低減されていた。
〔保存による抵抗上昇の評価〕
 実施例1~8について、以下のようにして、電池抵抗(-20℃)上昇率〔保存後/初期〕を測定した。
 まず、前述した方法により、初期の電池抵抗(-20℃)を測定した。
 次に、初期の電池抵抗(-20℃)を測定したコイン型電池を定電圧4.2Vにて充電し、充電したコイン型電池を、80℃の恒温槽内で2日間保存した。
 上記2日間の保存後のコイン型電池を定電圧3.9Vに設定し、初期の電池抵抗(-20℃)と同様の方法により、コイン型電池の-20℃での直流抵抗[Ω]を測定した。得られた値を、保存後の電池抵抗(-20℃)とした。
 各実施例のコイン型電池について、保存後の電池抵抗(-20℃)を初期の電池抵抗(-20℃)で除することにより、電池抵抗(-20℃)上昇率〔保存後/初期〕を求めた。
 以上の結果を表9に示す。
〔参考例〕
 添加剤Bを用いなかったこと以外は実施例1と同様にしてコイン型電池を作製し、実施例1と同様にして、電池抵抗(-20℃)上昇率〔保存後/初期〕を求めた。
 結果を表9に示す。
Figure JPOXMLDOC01-appb-T000013
 表9に示すように、添加剤Aと添加剤Bとを含有する非水電解液を用いた実施例1~8では、添加剤Bを含有せず添加剤Aを含有する非水電解液を用いた参考例と比較して、電池抵抗(-20℃)上昇率〔保存後/初期〕が低減されていた(即ち、保存による電池抵抗上昇が抑制されていた)。
 2017年8月24日に出願された日本国特許出願2017-161287の開示はその全体が参照により本明細書に取り込まれる。
 本明細書に記載された全ての文献、特許出願、及び技術規格は、個々の文献、特許出願、及び技術規格が参照により取り込まれることが具体的かつ個々に記された場合と同程度に、本明細書中に参照により取り込まれる。

Claims (11)

  1.  下記式(1)で表されるホウ素化合物からなる添加剤Aと、
     前記添加剤Aよりも還元分解電位が低い化合物からなる添加剤Bと、
    を含有する電池用非水電解液。
    Figure JPOXMLDOC01-appb-C000001

    〔式(1)中、nは、1~5の整数を表す。Mは、Liイオン又はHイオンを表す。nが2~5の整数である場合、複数のMは、同一であっても異なっていてもよい。〕
  2.  前記添加剤Aを構成するホウ素化合物の還元分解電位の絶対値を還元分解電位Aとし、前記添加剤Bを構成する化合物の還元分解電位の絶対値を還元分解電位Bとした場合に、還元分解電位Aから還元分解電位Bを差し引いた値が、0.1V~1.5Vである請求項1に記載の電池用非水電解液。
  3.  前記添加剤Bを構成する化合物の還元分解電位の絶対値を還元分解電位Bとした場合に、前記還元分解電位Bが、0.5V~2.0Vである請求項1又は請求項2に記載の電池用非水電解液。
  4.  前記添加剤Bが、炭素-炭素不飽和結合を有するカーボネート化合物、スルトン化合物、環状硫酸エステル化合物、リン酸エステル化合物、オキサラト化合物、フッ素原子で置換された芳香族化合物、フッ素原子で置換された脂肪族化合物、ジニトリル化合物、フッ素原子を有するスルホニル化合物、及びフッ素原子を有するカーボネート化合物からなる群から選択される少なくとも1種からなる請求項1~請求項3のいずれか1項に記載の電池用非水電解液。
  5.  前記添加剤Bが、ビニレンカーボネート、ビニルエチレンカーボネート、1,3-プロパンスルトン、1,3-プロペンスルトン、4-メチルスルホニルオキシメチル-2,2-ジオキソ-1,3,2-ジオキサチオラン、4,4’-ビス(2,2-ジオキソ-1,3,2-ジオキサチオラン)、4-プロピル-2,2-ジオキソ-1,3,2-ジオキサチオラン、ジフルオロリン酸リチウム、リン酸トリストリメチルシリル、ジフルオロビス(オキサラト)リン酸リチウム、ビス(オキサラト)ホウ酸リチウム、オルトフルオロトルエン、(パーフルオロヘキシル)エチレン、スクシノニトリル、アジポニトリル、メタンスルホニルフルオリド、トリフルオロメタンスルホン酸リチウム、リチウムビス(フルオロスルホニル)イミド、及び4-フルオロエチレンカーボネートからなる群から選択される少なくとも1種からなる請求項1~請求項4のいずれか1項に記載の電池用非水電解液。
  6.  前記式(1)中の前記Mが、Liイオンである請求項1~請求項5のいずれか1項に記載の電池用非水電解液。
  7.  電池用非水電解液の全量に対する前記添加剤Aの含有量が、0.001質量%~10質量%である請求項1~請求項6のいずれか1項に記載の電池用非水電解液。
  8.  電池用非水電解液の全量に対する前記添加剤Bの含有量が、0.001質量%~10質量%である請求項1~請求項7のいずれか1項に記載の電池用非水電解液。
  9.  前記添加剤Aに対する前記添加剤Bの含有質量比が、1超20以下である請求項1~請求項8のいずれか1項に記載の電池用非水電解液。
  10.  正極と、
     金属リチウム、リチウム含有合金、リチウムとの合金化が可能な金属若しくは合金、リチウムイオンのドープ・脱ドープが可能な酸化物、リチウムイオンのドープ・脱ドープが可能な遷移金属窒素化物、及び、リチウムイオンのドープ・脱ドープが可能な炭素材料からなる群から選ばれる少なくとも1種を負極活物質として含む負極と、
     請求項1~請求項9のいずれか1項に記載の電池用非水電解液と、
    を含むリチウム二次電池。
  11.  請求項10に記載のリチウム二次電池を充放電させて得られたリチウム二次電池。
PCT/JP2018/030240 2017-08-24 2018-08-13 電池用非水電解液及びリチウム二次電池 WO2019039346A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
US16/641,041 US11652237B2 (en) 2017-08-24 2018-08-13 Nonaqueous electrolyte solution including boron compound additive having higher reductive decomposition potential than additional additive and lithium secondary battery including the same
KR1020207005669A KR102463794B1 (ko) 2017-08-24 2018-08-13 전지용 비수 전해액 및 리튬 이차 전지
CN201880054178.0A CN110998957B (zh) 2017-08-24 2018-08-13 电池用非水电解液及锂二次电池
EP18849021.3A EP3675267A4 (en) 2017-08-24 2018-08-13 WATER-FREE ELECTROLYTE SOLUTION FOR BATTERIES AND LITHIUM SECONDARY BATTERY
JP2019537572A JPWO2019039346A1 (ja) 2017-08-24 2018-08-13 電池用非水電解液及びリチウム二次電池

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2017161287 2017-08-24
JP2017-161287 2017-08-24

Publications (1)

Publication Number Publication Date
WO2019039346A1 true WO2019039346A1 (ja) 2019-02-28

Family

ID=65440018

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2018/030240 WO2019039346A1 (ja) 2017-08-24 2018-08-13 電池用非水電解液及びリチウム二次電池

Country Status (6)

Country Link
US (1) US11652237B2 (ja)
EP (1) EP3675267A4 (ja)
JP (1) JPWO2019039346A1 (ja)
KR (1) KR102463794B1 (ja)
CN (1) CN110998957B (ja)
WO (1) WO2019039346A1 (ja)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020119867A (ja) * 2019-01-28 2020-08-06 トヨタ自動車株式会社 リチウム二次電池用非水電解液
CN112349958A (zh) * 2019-08-06 2021-02-09 珠海冠宇电池股份有限公司 一种电解液及其制备方法和锂离子电池
JP2021096913A (ja) * 2019-12-13 2021-06-24 三井化学株式会社 電池用非水電解液及びリチウムイオン二次電池

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110943250B (zh) 2018-09-21 2021-09-24 宁德新能源科技有限公司 电解液和含有电解液的锂离子电池
CN111525191B (zh) * 2020-04-29 2022-07-05 宁德新能源科技有限公司 一种电解液及电化学装置
CN112271330B (zh) * 2020-10-21 2022-06-07 广州天赐高新材料股份有限公司 电解液添加剂、电解液及储能装置
CN115441057A (zh) * 2022-10-09 2022-12-06 珠海冠宇电池股份有限公司 一种电解液及包括该电解液的电池

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000048828A (ja) 1998-07-31 2000-02-18 Matsushita Electric Ind Co Ltd 非水電解液電池
JP2005071617A (ja) 2003-08-21 2005-03-17 Japan Storage Battery Co Ltd 非水電解質二次電池およびその製造方法
JP2006236653A (ja) * 2005-02-23 2006-09-07 Matsushita Electric Ind Co Ltd 非水電解液ならびにそれを用いた非水電気化学装置
JP2008510287A (ja) * 2004-12-07 2008-04-03 エルジー・ケム・リミテッド 酸素陰イオンを含む非水系電解液及びこれを用いたリチウム2次電池
JP4366724B2 (ja) 1998-03-02 2009-11-18 パナソニック株式会社 非水電解液二次電池
WO2012053644A1 (ja) 2010-10-22 2012-04-26 三井化学株式会社 環状硫酸エステル化合物、それを含有する非水電解液、及びリチウム二次電池
JP2015232923A (ja) * 2012-09-28 2015-12-24 三洋電機株式会社 非水電解質二次電池
JP2016066595A (ja) * 2014-09-18 2016-04-28 ソニー株式会社 電池及び電池用電解液
JP2017152262A (ja) * 2016-02-25 2017-08-31 富山薬品工業株式会社 リチウムイオン二次電池
JP2017161287A (ja) 2016-03-08 2017-09-14 シチズン時計株式会社 テン輪

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2754177B1 (fr) 1996-10-07 1999-08-06 Sanofi Sa Microspheres pharmaceutiques d'acide valproique pour administration orale
WO2006057447A1 (ja) * 2004-11-26 2006-06-01 Otsuka Chemical Co., Ltd. 非水系リチウム二次電池用電解液および非水系リチウム二次電池
US20090233176A1 (en) 2005-12-20 2009-09-17 Yosuke Kita Non-aqueous electrolyte secondary battery
US10312518B2 (en) * 2007-10-26 2019-06-04 Murata Manufacturing Co., Ltd. Anode and method of manufacturing the same, and secondary battery
JP6017697B2 (ja) * 2013-09-25 2016-11-02 三井化学株式会社 電池用非水電解液、及びリチウム二次電池
JP6208560B2 (ja) * 2013-11-26 2017-10-04 日立マクセル株式会社 リチウム二次電池
JP6368501B2 (ja) * 2014-02-26 2018-08-01 三井化学株式会社 電池用非水電解液、及びリチウム二次電池
JP2016051600A (ja) * 2014-08-29 2016-04-11 富山薬品工業株式会社 蓄電デバイス用非水電解液
JP2017139085A (ja) * 2016-02-02 2017-08-10 日立マクセル株式会社 密閉型電池
CN109103500B (zh) * 2017-06-20 2020-05-26 中国科学院化学研究所 一种聚合物锂硒电池及其制备方法

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4366724B2 (ja) 1998-03-02 2009-11-18 パナソニック株式会社 非水電解液二次電池
JP2000048828A (ja) 1998-07-31 2000-02-18 Matsushita Electric Ind Co Ltd 非水電解液電池
JP2005071617A (ja) 2003-08-21 2005-03-17 Japan Storage Battery Co Ltd 非水電解質二次電池およびその製造方法
JP2008510287A (ja) * 2004-12-07 2008-04-03 エルジー・ケム・リミテッド 酸素陰イオンを含む非水系電解液及びこれを用いたリチウム2次電池
JP2006236653A (ja) * 2005-02-23 2006-09-07 Matsushita Electric Ind Co Ltd 非水電解液ならびにそれを用いた非水電気化学装置
WO2012053644A1 (ja) 2010-10-22 2012-04-26 三井化学株式会社 環状硫酸エステル化合物、それを含有する非水電解液、及びリチウム二次電池
JP2015232923A (ja) * 2012-09-28 2015-12-24 三洋電機株式会社 非水電解質二次電池
JP2016066595A (ja) * 2014-09-18 2016-04-28 ソニー株式会社 電池及び電池用電解液
JP2017152262A (ja) * 2016-02-25 2017-08-31 富山薬品工業株式会社 リチウムイオン二次電池
JP2017161287A (ja) 2016-03-08 2017-09-14 シチズン時計株式会社 テン輪

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3675267A4

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2020119867A (ja) * 2019-01-28 2020-08-06 トヨタ自動車株式会社 リチウム二次電池用非水電解液
US11437648B2 (en) 2019-01-28 2022-09-06 Toyota Jidosha Kabushiki Kaisha Nonaqueous electrolyte solution for lithium secondary battery
JP7148872B2 (ja) 2019-01-28 2022-10-06 トヨタ自動車株式会社 リチウム二次電池用非水電解液
CN112349958A (zh) * 2019-08-06 2021-02-09 珠海冠宇电池股份有限公司 一种电解液及其制备方法和锂离子电池
CN112349958B (zh) * 2019-08-06 2022-02-11 珠海冠宇电池股份有限公司 一种电解液及其制备方法和锂离子电池
JP2021096913A (ja) * 2019-12-13 2021-06-24 三井化学株式会社 電池用非水電解液及びリチウムイオン二次電池
JP7314458B2 (ja) 2019-12-13 2023-07-26 三井化学株式会社 電池用非水電解液及びリチウムイオン二次電池

Also Published As

Publication number Publication date
CN110998957A (zh) 2020-04-10
US11652237B2 (en) 2023-05-16
EP3675267A4 (en) 2021-05-19
KR102463794B1 (ko) 2022-11-04
CN110998957B (zh) 2023-03-24
US20210126288A1 (en) 2021-04-29
EP3675267A1 (en) 2020-07-01
JPWO2019039346A1 (ja) 2020-03-26
KR20200035094A (ko) 2020-04-01

Similar Documents

Publication Publication Date Title
US11652237B2 (en) Nonaqueous electrolyte solution including boron compound additive having higher reductive decomposition potential than additional additive and lithium secondary battery including the same
JP6285332B2 (ja) 電池用非水電解液、及びリチウム二次電池
JP6368501B2 (ja) 電池用非水電解液、及びリチウム二次電池
JP2017045724A (ja) 電池用非水電解液及びリチウム二次電池
US20200203768A1 (en) Lithium secondary battery and nonaqueous electrolyte solution
WO2019146731A1 (ja) 電池用非水電解液及びリチウム二次電池
JP2016213015A (ja) 電池用非水電解液、及びリチウム二次電池
JP7115724B2 (ja) 電池用非水電解液及びリチウム二次電池
JP2017027930A (ja) 電池用非水電解液及びリチウム二次電池
JP2022126851A (ja) 電池用非水電解液及びリチウム二次電池
JP7275455B2 (ja) 電池用非水電解液及びリチウム二次電池
JP2019175578A (ja) 電池用非水電解液及びリチウム二次電池
WO2020022452A1 (ja) 電池用非水電解液及びリチウム二次電池
JP6957179B2 (ja) 電池用非水電解液及びリチウム二次電池
JP6879799B2 (ja) 電池用非水電解液及びリチウム二次電池
JP7160461B2 (ja) リチウム二次電池の製造方法
JP7216805B2 (ja) 電池用非水電解液及びリチウム二次電池
JP6980502B2 (ja) 電池用非水電解液及びリチウム二次電池
JP2017045722A (ja) 電池用非水電解液及びリチウム二次電池
JP2021048006A (ja) 電池用非水電解液及びリチウム二次電池
JP6607690B2 (ja) 電池用非水電解液用の添加剤、電池用非水電解液、及びリチウム二次電池
JP7206556B2 (ja) 電池用非水電解液及びリチウム二次電池
JP2019179613A (ja) 電池用非水電解液及びリチウム二次電池

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18849021

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019537572

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207005669

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2018849021

Country of ref document: EP

Effective date: 20200324