WO2019037200A1 - 一种超级电容器用阻燃型电解液、其制备方法及超级电容器 - Google Patents

一种超级电容器用阻燃型电解液、其制备方法及超级电容器 Download PDF

Info

Publication number
WO2019037200A1
WO2019037200A1 PCT/CN2017/104205 CN2017104205W WO2019037200A1 WO 2019037200 A1 WO2019037200 A1 WO 2019037200A1 CN 2017104205 W CN2017104205 W CN 2017104205W WO 2019037200 A1 WO2019037200 A1 WO 2019037200A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
organic solvent
flame
functional auxiliary
supercapacitor
Prior art date
Application number
PCT/CN2017/104205
Other languages
English (en)
French (fr)
Inventor
陆全明
项彬彬
Original Assignee
吴江佳亿电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吴江佳亿电子科技有限公司 filed Critical 吴江佳亿电子科技有限公司
Publication of WO2019037200A1 publication Critical patent/WO2019037200A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/84Processes for the manufacture of hybrid or EDL capacitors, or components thereof
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the invention relates to the field of electrochemical materials, in particular to a flame-retardant electrolyte for super capacitors and a super capacitor.
  • Supercapacitor is a highly competitive energy storage product that can achieve fast charging, high current discharge, and has a charging life of more than 100,000 times. It plays an important role in some applications that require short-time high-rate discharge. .
  • Supercapacitors are mainly composed of electrode materials, current collectors, separators and electrolytes. As an important part of supercapacitors, electrolytes composed of solvents and electrolyte salts are extremely important research fields. Different types of electrolytes tend to be supercapacitor performance. A large impact, finding the right electrolyte is one of the research priorities of supercapacitors. Electrolyte stability, decomposition voltage, particle diameter, and electronegativity are important factors affecting the performance of supercapacitors.
  • the organic supercapacitor electrolyte uses a high dielectric constant aprotic liquid such as acetonitrile or propylene carbonate as a solvent.
  • a high dielectric constant aprotic liquid such as acetonitrile or propylene carbonate
  • these solvents have low lightning, and are prone to heat and fire when used in a supercapacitor for rapid charge and discharge and high temperature environments. A high security risk.
  • the present invention provides an electrolyte having good stability for a supercapacitor and a preparation method thereof.
  • a flame-retardant electrolyte for super capacitors which is composed of an electrolyte salt, an organic solvent and a functional auxiliary;
  • the above electrolyte salt is tetramethylammonium bis(dicarboxylate)borate, triethylammonium tetrafluoroborate, tetrafluoro One or more of lithium borate and lithium hexafluorophosphate;
  • the organic solvent is one of propylene carbonate, ⁇ -butyrolactone, acetonitrile, and N,N-dimethylformamide;
  • the functional auxiliary is a fluorophosphazene compound.
  • the molar concentration of the electrolyte salt in the electrolyte is from 0.6 mol/L to a saturated concentration.
  • the functional auxiliary has a mass percentage of 2 to 4% in an organic solvent.
  • the functional aux fluorophosphazene compound has the chemical formula N 3 P 3 F 5 OH 2 CH 3 .
  • the method for preparing a flame-retardant electrolyte for a supercapacitor has the following steps: firstly dispersing a functional auxiliary in an organic solvent to obtain a mixed liquid; removing the mixed liquid to a water content of 10 ppm or less, and then An electrolyte salt is added to the mixed solution, and the mixture is sufficiently mixed to obtain an electrolytic solution of the present invention.
  • the present invention also provides a supercapacitor comprising a positive electrode, a negative electrode, a separator and an electrolyte.
  • the electrolyte is the flame retardant electrolyte described in the above scheme.
  • the invention has the beneficial effects that the stable electrolyte for the supercapacitor of the invention adopts propylene carbonate and ⁇ -butane with low volatilization, good electrochemical stability and large dielectric constant.
  • One or more of lithium hexafluorophosphate is compounded as an electrolyte salt, and a functional additive having high flame retardancy is compounded, and a low added amount of functional additive having little influence on the electrical properties of the electrolyte can achieve better flame retardancy. Effect, the inventors found that the obtained electrolyte has good stability and flame retardancy.
  • Embodiment 1 A flame-retardant electrolyte for supercapacitor, which is composed of an electrolyte salt, an organic solvent and a functional auxiliary;
  • the above electrolyte salt is a mixture of tetramethylammonium bis(dicarboxylate) and lithium hexafluorophosphate, and the mass part thereof The ratio is 3:1;
  • the organic solvent is propylene carbonate; and
  • the functional auxiliary is a fluorophosphazene compound.
  • the molar concentration of the electrolyte salt in the electrolyte is 1.5 mol/L
  • the mass percentage of the functional auxiliary in the organic solvent is 3%
  • the chemical fluorophosphazene compound chemical formula of the functional additive Is N 3 P 3 F 5 OH 2 CH 3 .
  • the method for preparing a flame-retardant electrolyte for a supercapacitor has the following steps: firstly dispersing a functional auxiliary in an organic solvent to obtain a mixed liquid; removing the mixed liquid to a water content of 10 ppm or less, and then An electrolyte salt is added to the mixed solution, and the mixture is sufficiently mixed to obtain an electrolytic solution of the present invention.
  • Embodiment 2 A flame retardant electrolyte for a supercapacitor, which is composed of an electrolyte salt, an organic solvent and a functional auxiliary; the above electrolyte salt is triethylammonium tetrafluoroborate; and the organic solvent is ⁇ -butyl Lactone; the functional auxiliary is a fluorophosphazene compound.
  • the molar concentration of the electrolyte salt in the electrolyte is 0.6 mol/L
  • the mass percentage of the functional auxiliary in the organic solvent is 2%
  • the chemical fluorophosphazene compound chemical formula of the functional additive Is N 3 P 3 F 5 OH 2 CH 3 .
  • the method for preparing a flame-retardant electrolyte for a supercapacitor has the same specific procedure as in the first embodiment.
  • Embodiment 3 A flame retardant electrolyte for a supercapacitor, which is composed of an electrolyte salt, an organic solvent and a functional auxiliary; the above electrolyte salt is lithium tetrafluoroborate; and the organic solvent is B Nitrile; the functional auxiliary is a fluorophosphazene compound.
  • the molar concentration of the electrolyte salt in the electrolyte is a saturated concentration
  • the mass percentage of the functional auxiliary in the organic solvent is 4%
  • the chemical formula of the functional auxiliary fluorophosphazene compound is N. 3 P 3 F 5 OH 2 CH 3 .
  • the method for preparing a flame-retardant electrolyte for a supercapacitor has the same specific procedure as in the first embodiment.
  • Embodiment 4 A flame retardant electrolyte for a supercapacitor, which is composed of an electrolyte salt, an organic solvent and a functional auxiliary; the electrolyte salt is one or more of lithium hexafluorophosphate; and the organic solvent is N, N-dimethylformamide; the functional auxiliary is a fluorophosphazene compound.
  • the molar concentration of the electrolyte salt in the electrolyte is 1 mol/L
  • the mass percentage of the functional auxiliary in the organic solvent is 2.5%
  • the chemical formula of the functional additive fluorophosphazene compound is N 3 P 3 F 5 OH 2 CH 3 .
  • the method for preparing a flame-retardant electrolyte for a supercapacitor has the same specific procedure as in the first embodiment.
  • Embodiment 5 A flame retardant electrolyte for a supercapacitor, which is composed of an electrolyte salt, an organic solvent and a functional auxiliary; the above electrolyte salt is tetramethylammonium bis(dicarboxylate)borate and triethylammonium tetrafluoroborate Mixing; the organic solvent is propylene carbonate; the functional auxiliary is a fluorophosphazene compound.
  • the molar concentration of the electrolyte salt in the electrolyte is 1.5 mol/L
  • the mass percentage of the functional auxiliary in the organic solvent is 3%
  • the chemical fluorophosphazene compound chemical formula of the functional additive Is N 3 P 3 F 5 OH 2 CH 3 .
  • the method for preparing a flame-retardant electrolyte for a supercapacitor has the same specific procedure as in the first embodiment.
  • the present invention also provides a supercapacitor comprising a positive electrode, a negative electrode, a separator and an electrolyte.
  • the electrolyte is the flame retardant electrolyte described in the above embodiments 1-5.
  • the stable electrolyte for the supercapacitor of the present invention uses one of propylene carbonate, ⁇ -butyrolactone, acetonitrile, and N,N-dimethylformamide which have low volatilization, good electrochemical stability, and large dielectric constant.
  • an organic solvent one or more of tetramethylammonium bis(dicarboxylate)borate, triethylammonium tetrafluoroborate, lithium tetrafluoroborate, and lithium hexafluorophosphate are used as electrolyte salts, and have high electrochemical stability.
  • the flame retardant functional additive is compounded, and the flame retardant performance of the electrolyte can be achieved on the basis of only 2-4% of the functional additive, and the low added amount of the flame retardant functional additive on the electrolyte
  • the performance impact is small; the inventors found that the obtained electrolyte has good electrochemical stability, chemical stability and charge and discharge cycle stability.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Manufacturing & Machinery (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)

Abstract

一种超级电容器用阻燃型电解液,其由电解质盐、有机溶剂和功能助剂组成;上述的电解质盐为双乙二酸硼酸四甲基铵、四氟硼酸三乙基铵、四氟硼酸锂、六氟磷酸锂中的一种或几种;所述的有机溶剂为碳酸丙烯酯、γ-丁内酯、乙腈、N,N二甲基甲酰胺中的一种;所述的功能助剂为氟代磷腈化合物。上述超级电容器用的电解液具有良好的稳定性和阻燃性。

Description

一种超级电容器用阻燃型电解液、其制备方法及超级电容器 技术领域
本发明涉及电化学材料领域,尤其是涉及一种超级电容器用阻燃型电解液及超级电容器。
背景技术
超级电容器是一种极具市场竞争力的储能产品,可以实现快速充电、大电流放电,且具有十万次以上的充电寿命,在一些需要短时高倍率放电的应用中占有极重要的地位。
超级电容器主要由电极材料、集流体、隔膜和电解液组成,作为超级电容器的重要组成部分,由溶剂和电解质盐构成的电解液是极为重要的研究领域,不同类型的电解液往往对超级电容器性能产生较大影响,寻找合适的电解液是超级电容器目前研究的重点之一。电解液的稳定性、分解电压、粒子直径、电负性等是影响超级电容器性能的重要因素。
为了获得较高的工作电压和能量密度,有机电解液的使用非常广泛。有机超级电容器电解液多采用乙腈、碳酸丙烯酯等高介电常数的质子惰性液体作为溶剂,然而这些溶剂闪电较低,在超级电容器快速充放电及高温环境下使用时,容易发热起火,进而有较高安全隐患。
发明内容
针对现有技术不足,本发明提供了一种超级电容器用的稳定性良好的电解液以及其制备方法。
本发明解决上述技术问题采用的技术方案为:一种超级电容器用阻燃型电解液,其由电解质盐、有机溶剂和功能助剂组成;
上述的电解质盐为双乙二酸硼酸四甲基铵、四氟硼酸三乙基铵、四氟 硼酸锂、六氟磷酸锂中的一种或几种;
所述的有机溶剂为碳酸丙烯酯、γ-丁内酯、乙腈、N,N二甲基甲酰胺中的一种;
所述的功能助剂为氟代磷腈化合物。
进一步地,所述的电解质盐在电解液中的摩尔浓度为0.6mol/L~饱和浓度。
进一步地,所述的功能助剂在有机溶剂中的质量百分比为2~4%。
进一步地,所述的功能助剂氟代磷腈化合物化学式为N3P3F5OH2CH3
所述的一种超级电容器用阻燃型电解液的制备方法,其具体步骤为:首先将功能助剂分散在有机溶剂中,得到混合液;将混合液除水至含水量10ppm以下,然后向混合液中加入电解质盐,充分混合均匀后得到本发明的电解液。
本发明同时提供了一种超级电容器,包括正极、负极、隔膜和电解液,作为优选,所述电解液为上述方案中所述的阻燃型电解液。
与现有技术相比,本发明具备的有益效果为:本发明的超级电容器用的稳定性电解液采用低挥发、电化学稳定性良好、介电常数较大的碳酸丙烯酯、γ-丁内酯、乙腈、N,N二甲基甲酰胺中的一种作为有机溶剂,电化学稳定性较高的双乙二酸硼酸四甲基铵、四氟硼酸三乙基铵、四氟硼酸锂、六氟磷酸锂中的一种或几种作为电解质盐,以及具有高阻燃性的功能助剂进行复配,对电解液电性能影响较小的低添加量的功能助剂即可实现较好的阻燃效果,经发明人研究发现,所得的电解液具有良好的稳定性和阻燃性。
具体实施方式
下面结合具体实施例对本发明做进一步的说明,但本发明的实施方式不限于此,同时本发明的保护范围也不限于下述的实施例。
实施例1:一种超级电容器用阻燃型电解液,其由电解质盐、有机溶剂和功能助剂组成;上述的电解质盐为双乙二酸硼酸四甲基铵和六氟磷酸锂的混合,其质量份比为3:1;所述的有机溶剂为碳酸丙烯酯;所述的功能助剂为氟代磷腈化合物。
进一步地,所述的电解质盐在电解液中的摩尔浓度为1.5mol/L,所述的功能助剂在有机溶剂中的质量百分比为3%,所述的功能助剂氟代磷腈化合物化学式为N3P3F5OH2CH3
所述的一种超级电容器用阻燃型电解液的制备方法,其具体步骤为:首先将功能助剂分散在有机溶剂中,得到混合液;将混合液除水至含水量10ppm以下,然后向混合液中加入电解质盐,充分混合均匀后得到本发明的电解液。
实施例2:一种超级电容器用阻燃型电解液,其由电解质盐、有机溶剂和功能助剂组成;上述的电解质盐为四氟硼酸三乙基铵;所述的有机溶剂为γ-丁内酯;所述的功能助剂为氟代磷腈化合物。
进一步地,所述的电解质盐在电解液中的摩尔浓度为0.6mol/L,所述的功能助剂在有机溶剂中的质量百分比为2%,所述的功能助剂氟代磷腈化合物化学式为N3P3F5OH2CH3
所述的一种超级电容器用阻燃型电解液的制备方法,其具体步骤同实施例1。
实施例3:一种超级电容器用阻燃型电解液,其由电解质盐、有机溶剂和功能助剂组成;上述的电解质盐为四氟硼酸锂;所述的有机溶剂为乙 腈;所述的功能助剂为氟代磷腈化合物。
进一步地,所述的电解质盐在电解液中的摩尔浓度为饱和浓度,所述的功能助剂在有机溶剂中的质量百分比为4%,所述的功能助剂氟代磷腈化合物化学式为N3P3F5OH2CH3
所述的一种超级电容器用阻燃型电解液的制备方法,其具体步骤同实施例1。
实施例4:一种超级电容器用阻燃型电解液,其由电解质盐、有机溶剂和功能助剂组成;上述的电解质盐为六氟磷酸锂中的一种或几种;所述的有机溶剂为N,N二甲基甲酰胺;所述的功能助剂为氟代磷腈化合物。
进一步地,所述的电解质盐在电解液中的摩尔浓度为1mol/L,所述的功能助剂在有机溶剂中的质量百分比为2.5%,所述的功能助剂氟代磷腈化合物化学式为N3P3F5OH2CH3
所述的一种超级电容器用阻燃型电解液的制备方法,其具体步骤同实施例1。
实施例5:一种超级电容器用阻燃型电解液,其由电解质盐、有机溶剂和功能助剂组成;上述的电解质盐为双乙二酸硼酸四甲基铵和四氟硼酸三乙基铵的混合;所述的有机溶剂为碳酸丙烯酯;所述的功能助剂为氟代磷腈化合物。
进一步地,所述的电解质盐在电解液中的摩尔浓度为1.5mol/L,所述的功能助剂在有机溶剂中的质量百分比为3%,所述的功能助剂氟代磷腈化合物化学式为N3P3F5OH2CH3
所述的一种超级电容器用阻燃型电解液的制备方法,其具体步骤同实施例1。
本发明同时提供了一种超级电容器,包括正极、负极、隔膜和电解液,作为优选,所述电解液为上述实施例1-5方案中所述的阻燃型电解液。
本发明的超级电容器用的稳定性电解液采用低挥发、电化学稳定性良好、介电常数较大的碳酸丙烯酯、γ-丁内酯、乙腈、N,N二甲基甲酰胺中的一种作为有机溶剂,电化学稳定性较高的双乙二酸硼酸四甲基铵、四氟硼酸三乙基铵、四氟硼酸锂、六氟磷酸锂中的一种或几种作为电解质盐,以及具有高阻燃性的功能助剂进行复配,在功能助剂添加量仅为2-4%的基础上即可实现电解液良好的阻燃性能,低添加量的阻燃功能助剂对电解液电性能影响较小;经发明人研究发现,所得的电解液具有良好的电化学稳定性、化学稳定性性及充放电循环稳定性。
以上所述仅是本发明的优选实施方式,应当指出的是,对于本领域的普通技术人员来说,在不脱离本发明实质的前提下,还可以做出若干的改进和润饰,这些改进和润饰也应视为本发明的保护范围。

Claims (6)

  1. 一种超级电容器用阻燃型电解液,其特征在于:由电解质盐、有机溶剂和功能助剂组成;
    上述的电解质盐为双乙二酸硼酸四甲基铵、四氟硼酸三乙基铵、四氟硼酸锂、六氟磷酸锂中的一种或几种;
    所述的有机溶剂为碳酸丙烯酯、γ-丁内酯、乙腈、N,N二甲基甲酰胺中的一种;
    所述的功能助剂为氟代磷腈化合物。
  2. 根据权利要求1所述的一种超级电容器用阻燃型电解液,其特征在于:所述的电解质盐在电解液中的摩尔浓度为0.6mol/L~饱和浓度。
  3. 根据权利要求1所述的一种超级电容器用阻燃型电解液,其特征在于:所述的功能助剂在有机溶剂中的质量百分比为2~4%。
  4. 根据权利要求1所述的一种超级电容器用阻燃型电解液,其特征在于:所述的功能助剂氟代磷腈化合物化学式为N3P3F5OH2CH3
  5. 权利要求1-4任一项所述的一种超级电容器用阻燃型电解液的制备方法,其特征在于,包括以下步骤:首先将功能助剂分散在有机溶剂中,得到混合液;将混合液除水至含水量10ppm以下,然后向混合液中加入电解质盐,充分混合均匀后得到本发明的电解液。
  6. 一种超级电容器,包括正极、负极、隔膜和电解液,其特征在于:所述电解液为权利要求1-4任一项所述的阻燃型电解液。
PCT/CN2017/104205 2017-08-23 2017-09-29 一种超级电容器用阻燃型电解液、其制备方法及超级电容器 WO2019037200A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710729156.7 2017-08-23
CN201710729156.7A CN107564733A (zh) 2017-08-23 2017-08-23 一种超级电容器用阻燃型电解液、其制备方法及超级电容器

Publications (1)

Publication Number Publication Date
WO2019037200A1 true WO2019037200A1 (zh) 2019-02-28

Family

ID=60975649

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/104205 WO2019037200A1 (zh) 2017-08-23 2017-09-29 一种超级电容器用阻燃型电解液、其制备方法及超级电容器

Country Status (2)

Country Link
CN (1) CN107564733A (zh)
WO (1) WO2019037200A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103578792A (zh) * 2012-08-10 2014-02-12 张家港保税区超威电化技术服务有限公司 电解质、使用该电解质的电解液和电化学元件
CN103811811A (zh) * 2012-11-06 2014-05-21 万向电动汽车有限公司 一种锂离子动力电池用阻燃电解液及采用其制备的锂离子动力电池
CN105161764A (zh) * 2015-09-25 2015-12-16 江苏华东锂电技术研究院有限公司 锂硫电池电解液及其制备方法,以及锂硫电池
CN107564735A (zh) * 2017-08-23 2018-01-09 吴江佳亿电子科技有限公司 超级电容器用的阻燃有机电解液、其制备方法及超级电容器

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008282864A (ja) * 2007-05-08 2008-11-20 Bridgestone Corp 非水電解液及びそれを備えた非水電解液電気二重層キャパシタ
CN101587777B (zh) * 2009-06-19 2011-05-04 中南大学 一种双功能电解液及其制备方法
CN102516307B (zh) * 2011-12-31 2015-04-15 湖南有色郴州氟化学有限公司 磷腈类阻燃剂及其制备方法和锂离子电池电解液
JP2015005722A (ja) * 2013-02-20 2015-01-08 日本ケミコン株式会社 電極、その電極を用いた電気二重層キャパシタ、及び電極の製造方法
CN104795249B (zh) * 2015-01-06 2018-11-06 宁波中车新能源科技有限公司 一种基于复合正、负极材料的新型电池电容
CN105977533A (zh) * 2016-04-19 2016-09-28 上海交通大学 一种二次锂硫电池阻燃性电解液及其制备方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103578792A (zh) * 2012-08-10 2014-02-12 张家港保税区超威电化技术服务有限公司 电解质、使用该电解质的电解液和电化学元件
CN103811811A (zh) * 2012-11-06 2014-05-21 万向电动汽车有限公司 一种锂离子动力电池用阻燃电解液及采用其制备的锂离子动力电池
CN105161764A (zh) * 2015-09-25 2015-12-16 江苏华东锂电技术研究院有限公司 锂硫电池电解液及其制备方法,以及锂硫电池
CN107564735A (zh) * 2017-08-23 2018-01-09 吴江佳亿电子科技有限公司 超级电容器用的阻燃有机电解液、其制备方法及超级电容器

Also Published As

Publication number Publication date
CN107564733A (zh) 2018-01-09

Similar Documents

Publication Publication Date Title
US5754393A (en) Electric double layer capacitor
JP5392355B2 (ja) 電気二重層キャパシタ
CN101587777B (zh) 一种双功能电解液及其制备方法
CA2974090C (en) Additives for reducing esr gain in electrochemical double layer capacitors
CN103928707A (zh) 一种高电压锂离子电池功能电解液及制备方法与应用
CN109243860B (zh) 一种耐高电压的电解液及其在高电压超级电容器中的应用
CN107093766A (zh) 一种锂离子电池电解液
CN104505534A (zh) 一种高压电解液及包含该电解液的锂离子电池
KR102495382B1 (ko) 슈퍼커패시터 전해액 및 슈퍼커패시터
CN109478472B (zh) 电化学设备用电解质、电解液以及电化学设备
WO2019037200A1 (zh) 一种超级电容器用阻燃型电解液、其制备方法及超级电容器
CN107887176B (zh) 一种用于超级电容器的有机电解液及超级电容器
CN112310476B (zh) 一种锂离子电池离子液体电解液
JP2008091778A (ja) 電気二重層キャパシタ用非水電解液及びそれを備えた非水電解液電気二重層キャパシタ
WO2019037199A1 (zh) 一种低温型的超级电容器电解液、其制备方法及超级电容器
CN107634265A (zh) 一种耐高压锂离子电池电解液
CN107564735A (zh) 超级电容器用的阻燃有机电解液、其制备方法及超级电容器
CN104779075A (zh) 一种超级电容器高电压非水电解液
WO2019037198A1 (zh) 一种超级电容器用的稳定性电解液及其制备方法
US10102982B2 (en) Electrolytes for supercapacitors
JP2014099597A (ja) 電気二重層キャパシタ
JP2008091786A (ja) 電気二重層キャパシタ用非水電解液及びそれを備えた非水電解液電気二重層キャパシタ
JP2007012983A (ja) 電気二重層キャパシタ用非水電解液及び非水電解液電気二重層キャパシタ
Li et al. An adiponitrile additive electrolyte based on lithium difluoro (oxalate) borate for lithium batteries
CN117766874A (zh) 一种水系电解液及其应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17922837

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17922837

Country of ref document: EP

Kind code of ref document: A1