WO2019037198A1 - 一种超级电容器用的稳定性电解液及其制备方法 - Google Patents

一种超级电容器用的稳定性电解液及其制备方法 Download PDF

Info

Publication number
WO2019037198A1
WO2019037198A1 PCT/CN2017/104198 CN2017104198W WO2019037198A1 WO 2019037198 A1 WO2019037198 A1 WO 2019037198A1 CN 2017104198 W CN2017104198 W CN 2017104198W WO 2019037198 A1 WO2019037198 A1 WO 2019037198A1
Authority
WO
WIPO (PCT)
Prior art keywords
electrolyte
organic solvent
supercapacitor
aqueous organic
functional auxiliary
Prior art date
Application number
PCT/CN2017/104198
Other languages
English (en)
French (fr)
Inventor
陆全明
项彬彬
Original Assignee
吴江佳亿电子科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 吴江佳亿电子科技有限公司 filed Critical 吴江佳亿电子科技有限公司
Publication of WO2019037198A1 publication Critical patent/WO2019037198A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/62Liquid electrolytes characterised by the solute, e.g. salts, anions or cations therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/64Liquid electrolytes characterised by additives
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Definitions

  • the invention relates to the field of electrochemical materials, in particular to a stable electrolyte for super capacitors and preparation thereof.
  • Supercapacitor is a highly competitive energy storage product that can achieve fast charging, high current discharge, and has a charging life of more than 100,000 times. It plays an important role in some applications that require short-time high-rate discharge. .
  • Supercapacitors are mainly composed of electrode materials, current collectors, separators and electrolytes. As an important part of supercapacitors, electrolytes composed of solvents and electrolyte salts are extremely important research fields. Different types of electrolytes tend to be supercapacitor performance. A large impact, finding the right electrolyte is one of the research priorities of supercapacitors. Electrolyte stability, decomposition voltage, particle diameter, and electronegativity are important factors affecting the performance of supercapacitors.
  • the present invention provides an electrolyte having good stability for a supercapacitor and a preparation method thereof.
  • a stable electrolyte for a super capacitor which is composed of an electrolyte salt, a non-aqueous organic solvent and a functional auxiliary;
  • the above electrolyte salt is one or more of tetramethylammonium bis(dicarboxylate)borate, triethylammonium tetrafluoroborate, lithium tetrafluoroborate, and lithium hexafluorophosphate;
  • the non-aqueous organic solvent is one of propylene carbonate, ⁇ -butyrolactone, acetonitrile, and N,N-dimethylformamide;
  • the functional auxiliary is succinonitrile.
  • the molar concentration of the electrolyte salt in the electrolyte is from 0.6 mol/L to a saturated concentration.
  • the mass percentage of the functional auxiliary in the non-aqueous organic solvent is 0.05 to 2%.
  • the method for preparing a stable electrolyte for a supercapacitor has the following steps: firstly dispersing a functional auxiliary in a non-aqueous organic solvent to obtain a mixed liquid; and removing the mixed liquid to a water content of 10 ppm or less, Then, an electrolyte salt was added to the mixed solution, and the mixture was thoroughly mixed to obtain an electrolytic solution of the present invention.
  • the invention has the beneficial effects that the stable electrolyte for the supercapacitor of the invention adopts propylene carbonate and ⁇ -butane with low volatilization, good electrochemical stability and large dielectric constant.
  • One or more of lithium and lithium hexafluorophosphate are compounded as an electrolyte salt and a functional auxiliary having high pressure stability. The inventors have found that the obtained electrolyte has good electrochemical stability and chemical stability. Charge and discharge cycle stability.
  • Embodiment 1 A stable electrolyte for a supercapacitor, which is composed of an electrolyte salt, a non-aqueous organic solvent and a functional auxiliary; the above electrolyte salt is tetramethylammonium bis(dicarboxylate) and six
  • the mixture of lithium fluorophosphate has a mass ratio of 3:1; the non-aqueous organic solvent is propylene carbonate; and the functional auxiliary is succinonitrile.
  • the molar concentration of the electrolyte salt in the electrolyte is 1.5 mol/L, and the mass percentage of the functional auxiliary in the non-aqueous organic solvent is 0.5%.
  • the method for preparing a stable electrolyte for a supercapacitor has the following steps: firstly dispersing a functional auxiliary in a non-aqueous organic solvent to obtain a mixed liquid; and removing the mixed liquid to a water content of 10 ppm or less, Then, an electrolyte salt was added to the mixed solution, and the mixture was thoroughly mixed to obtain an electrolytic solution of the present invention.
  • Embodiment 2 a stable electrolyte for a supercapacitor, which is composed of an electrolyte salt, a non-aqueous organic solvent and a functional auxiliary; the above electrolyte salt is triethylammonium tetrafluoroborate; and the non-aqueous organic solvent It is ⁇ -butyrolactone; the functional assistant is succinonitrile.
  • the molar concentration of the electrolyte salt in the electrolyte is 0.6 mol/L, and the mass percentage of the functional auxiliary in the non-aqueous organic solvent is 0.05%.
  • the preparation method of the stable electrolyte for a supercapacitor is the same as the first embodiment.
  • Embodiment 3 a stable electrolyte for a supercapacitor, which is composed of an electrolyte salt, a non-aqueous organic solvent and a functional auxiliary; the above electrolyte salt is lithium tetrafluoroborate; and the non-aqueous organic solvent is acetonitrile;
  • the functional auxiliary is succinonitrile.
  • the molar concentration of the electrolyte salt in the electrolyte is a saturated concentration, and the mass percentage of the functional auxiliary in the non-aqueous organic solvent is 2%.
  • the preparation method of the stable electrolyte for a supercapacitor is the same as the first embodiment.
  • Example 4 A stable electrolyte for supercapacitors, which consists of electrolyte salts, non-aqueous
  • the organic solvent and the functional auxiliary composition consists of electrolyte salts, non-aqueous
  • the above electrolyte salt is one or more of lithium hexafluorophosphate
  • the non-aqueous organic solvent is N, N-dimethylformamide
  • the functional auxiliary is succinonitrile.
  • the molar concentration of the electrolyte salt in the electrolyte is 1 mol/L, and the mass percentage of the functional auxiliary in the non-aqueous organic solvent is 0.2%.
  • the preparation method of the stable electrolyte for a supercapacitor is the same as the first embodiment.
  • Embodiment 5 a stable electrolyte for a supercapacitor, which is composed of an electrolyte salt, a non-aqueous organic solvent and a functional auxiliary;
  • the above electrolyte salt is tetramethylammonium bis(dicarboxylate) and triethyltetrafluoroborate Mixing of the ammonium;
  • the non-aqueous organic solvent is propylene carbonate;
  • the functional auxiliary is succinonitrile.
  • the molar concentration of the electrolyte salt in the electrolyte is 1.5 mol/L, and the mass percentage of the functional auxiliary in the non-aqueous organic solvent is 0.05%.
  • the preparation method of the stable electrolyte for a supercapacitor is the same as the first embodiment.
  • the stable electrolyte for the supercapacitor of the present invention uses one of propylene carbonate, ⁇ -butyrolactone, acetonitrile, and N,N-dimethylformamide which have low volatilization, good electrochemical stability, and large dielectric constant.
  • a non-aqueous organic solvent one or more of tetramethylammonium bis(dicarboxylate)borate, triethylammonium tetrafluoroborate, lithium tetrafluoroborate, and lithium hexafluorophosphate are used as electrolyte salts, and The functional additive with high pressure stability is compounded. According to the research of the inventors, the obtained electrolyte has good electrochemical stability, chemical stability and charge and discharge cycle stability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

一种超级电容器用的稳定性电解液,其由电解质盐、非水有机溶剂和功能助剂组成;上述的电解质盐为双乙二酸硼酸四甲基铵、四氟硼酸三乙基铵、四氟硼酸锂、六氟磷酸锂中的一种或几种;所述的非水有机溶剂为碳酸丙烯酯、γ-丁内酯、乙腈、N,N二甲基甲酰胺中的一种;所述的功能助剂为丁二腈。所述的电解液具有良好的电化学稳定性、化学稳定性性及充放电循环稳定性。

Description

一种超级电容器用的稳定性电解液及其制备方法 技术领域
本发明涉及电化学材料领域,尤其是涉及一种超级电容器用的稳定性电解液及其制备。
背景技术
超级电容器是一种极具市场竞争力的储能产品,可以实现快速充电、大电流放电,且具有十万次以上的充电寿命,在一些需要短时高倍率放电的应用中占有极重要的地位。
超级电容器主要由电极材料、集流体、隔膜和电解液组成,作为超级电容器的重要组成部分,由溶剂和电解质盐构成的电解液是极为重要的研究领域,不同类型的电解液往往对超级电容器性能产生较大影响,寻找合适的电解液是超级电容器目前研究的重点之一。电解液的稳定性、分解电压、粒子直径、电负性等是影响超级电容器性能的重要因素。
超级电容器的使用性能要求电解液具备较高的的电化学稳定性、化学稳定性性及充放电循环稳定性。然而比较明显地,现有的超级电容器用电解液在综合使用性能良好的前提下,其稳定性有待提高。
发明内容
针对现有技术不足,本发明提供了一种超级电容器用的稳定性良好的电解液以及其制备方法。
本发明解决上述技术问题采用的技术方案为:一种超级电容器用的稳定性电解液,其由电解质盐、非水有机溶剂和功能助剂组成;
上述的电解质盐为双乙二酸硼酸四甲基铵、四氟硼酸三乙基铵、四氟硼酸锂、六氟磷酸锂中的一种或几种;
所述的非水有机溶剂为碳酸丙烯酯、γ-丁内酯、乙腈、N,N二甲基甲酰胺中的一种;
所述的功能助剂为丁二腈。
进一步地,所述的电解质盐在电解液中的摩尔浓度为0.6mol/L~饱和浓度。
进一步地,所述的功能助剂在非水有机溶剂中的质量百分比为0.05~2%。
所述的一种超级电容器用的稳定性电解液的制备方法,其具体步骤为:首先将功能助剂分散在非水有机溶剂中,得到混合液;将混合液除水至含水量10ppm以下,然后向混合液中加入电解质盐,充分混合均匀后得到本发明的电解液。
与现有技术相比,本发明具备的有益效果为:本发明的超级电容器用的稳定性电解液采用低挥发、电化学稳定性良好、介电常数较大的碳酸丙烯酯、γ-丁内酯、乙腈、N,N二甲基甲酰胺中的一种作为非水有机溶剂,电化学稳定性较高的双乙二酸硼酸四甲基铵、四氟硼酸三乙基铵、四氟硼酸锂、六氟磷酸锂中的一种或几种作为电解质盐,以及具有高压稳定性的功能助剂进行复配,经发明人研究发现,所得的电解液具有良好的电化学稳定性、化学稳定性性及充放电循环稳定性。
具体实施方式
下面结合具体实施例对本发明做进一步的说明,但本发明的实施方式不限于此,同时本发明的保护范围也不限于下述的实施例。
实施例1:一种超级电容器用的稳定性电解液,其由电解质盐、非水有机溶剂和功能助剂组成;上述的电解质盐为双乙二酸硼酸四甲基铵和六 氟磷酸锂的混合,其质量份比为3:1;所述的非水有机溶剂为碳酸丙烯酯;所述的功能助剂为丁二腈。
进一步地,所述的电解质盐在电解液中的摩尔浓度为1.5mol/L,所述的功能助剂在非水有机溶剂中的质量百分比为0.5%。
所述的一种超级电容器用的稳定性电解液的制备方法,其具体步骤为:首先将功能助剂分散在非水有机溶剂中,得到混合液;将混合液除水至含水量10ppm以下,然后向混合液中加入电解质盐,充分混合均匀后得到本发明的电解液。
实施例2:一种超级电容器用的稳定性电解液,其由电解质盐、非水有机溶剂和功能助剂组成;上述的电解质盐为四氟硼酸三乙基铵;所述的非水有机溶剂为γ-丁内酯;所述的功能助剂为丁二腈。
进一步地,所述的电解质盐在电解液中的摩尔浓度为0.6mol/L,所述的功能助剂在非水有机溶剂中的质量百分比为0.05%。
所述的一种超级电容器用的稳定性电解液的制备方法,其具体步骤同实施例1。
实施例3:一种超级电容器用的稳定性电解液,其由电解质盐、非水有机溶剂和功能助剂组成;上述的电解质盐为四氟硼酸锂;所述的非水有机溶剂为乙腈;所述的功能助剂为丁二腈。
进一步地,所述的电解质盐在电解液中的摩尔浓度为饱和浓度,所述的功能助剂在非水有机溶剂中的质量百分比为2%。
所述的一种超级电容器用的稳定性电解液的制备方法,其具体步骤同实施例1。
实施例4:一种超级电容器用的稳定性电解液,其由电解质盐、非水 有机溶剂和功能助剂组成;上述的电解质盐为六氟磷酸锂中的一种或几种;所述的非水有机溶剂为N,N二甲基甲酰胺;所述的功能助剂为丁二腈。
进一步地,所述的电解质盐在电解液中的摩尔浓度为1mol/L,所述的功能助剂在非水有机溶剂中的质量百分比为0.2%。
所述的一种超级电容器用的稳定性电解液的制备方法,其具体步骤同实施例1。
实施例5:一种超级电容器用的稳定性电解液,其由电解质盐、非水有机溶剂和功能助剂组成;上述的电解质盐为双乙二酸硼酸四甲基铵和四氟硼酸三乙基铵的混合;所述的非水有机溶剂为碳酸丙烯酯;所述的功能助剂为丁二腈。
进一步地,所述的电解质盐在电解液中的摩尔浓度为1.5mol/L,所述的功能助剂在非水有机溶剂中的质量百分比为0.05%。
所述的一种超级电容器用的稳定性电解液的制备方法,其具体步骤同实施例1。
本发明的超级电容器用的稳定性电解液采用低挥发、电化学稳定性良好、介电常数较大的碳酸丙烯酯、γ-丁内酯、乙腈、N,N二甲基甲酰胺中的一种作为非水有机溶剂,电化学稳定性较高的双乙二酸硼酸四甲基铵、四氟硼酸三乙基铵、四氟硼酸锂、六氟磷酸锂中的一种或几种作为电解质盐,以及具有高压稳定性的功能助剂进行复配,经发明人研究发现,所得的电解液具有良好的电化学稳定性、化学稳定性性及充放电循环稳定性。

Claims (4)

  1. 一种超级电容器用的稳定性电解液,其特征在于:由电解质盐、非水有机溶剂和功能助剂组成;
    上述的电解质盐为双乙二酸硼酸四甲基铵、四氟硼酸三乙基铵、四氟硼酸锂、六氟磷酸锂中的一种或几种;
    所述的非水有机溶剂为碳酸丙烯酯、γ-丁内酯、乙腈、N,N二甲基甲酰胺中的一种;
    所述的功能助剂为丁二腈。
  2. 根据权利要求1所述的一种超级电容器用的稳定性电解液,其特征在于:所述的电解质盐在电解液中的摩尔浓度为0.6mol/L~饱和浓度。
  3. 根据权利要求1所述的一种超级电容器用的稳定性电解液,其特征在于:所述的功能助剂在非水有机溶剂中的质量百分比为0.05~2%。
  4. 权利要求1-3任一项所述的一种超级电容器用的稳定性电解液的制备方法,其特征在于,包括以下步骤:首先将功能助剂分散在非水有机溶剂中,得到混合液;将混合液除水至含水量10ppm以下,然后向混合液中加入电解质盐,充分混合均匀后得到本发明的电解液。
PCT/CN2017/104198 2017-08-23 2017-09-29 一种超级电容器用的稳定性电解液及其制备方法 WO2019037198A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710729783.0A CN107527751A (zh) 2017-08-23 2017-08-23 一种超级电容器用的稳定性电解液及其制备方法
CN201710729783.0 2017-08-23

Publications (1)

Publication Number Publication Date
WO2019037198A1 true WO2019037198A1 (zh) 2019-02-28

Family

ID=60682137

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/104198 WO2019037198A1 (zh) 2017-08-23 2017-09-29 一种超级电容器用的稳定性电解液及其制备方法

Country Status (2)

Country Link
CN (1) CN107527751A (zh)
WO (1) WO2019037198A1 (zh)

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105161764A (zh) * 2015-09-25 2015-12-16 江苏华东锂电技术研究院有限公司 锂硫电池电解液及其制备方法,以及锂硫电池
CN105655637A (zh) * 2014-10-24 2016-06-08 微宏动力系统(湖州)有限公司 用于锂离子电池的离子液体、其制备方法及锂离子电池电解液
CN105761944A (zh) * 2016-04-28 2016-07-13 中航锂电(洛阳)有限公司 一种混合超级电容器用复合正极片及其制备方法、混合超级电容器
CN105826596A (zh) * 2015-01-22 2016-08-03 微宏动力系统(湖州)有限公司 离子液体的制备方法及二次电池

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105655637A (zh) * 2014-10-24 2016-06-08 微宏动力系统(湖州)有限公司 用于锂离子电池的离子液体、其制备方法及锂离子电池电解液
CN105826596A (zh) * 2015-01-22 2016-08-03 微宏动力系统(湖州)有限公司 离子液体的制备方法及二次电池
CN105161764A (zh) * 2015-09-25 2015-12-16 江苏华东锂电技术研究院有限公司 锂硫电池电解液及其制备方法,以及锂硫电池
CN105761944A (zh) * 2016-04-28 2016-07-13 中航锂电(洛阳)有限公司 一种混合超级电容器用复合正极片及其制备方法、混合超级电容器

Also Published As

Publication number Publication date
CN107527751A (zh) 2017-12-29

Similar Documents

Publication Publication Date Title
US5754393A (en) Electric double layer capacitor
US20180108947A9 (en) Electrolyte and lithium-ion battery containing the same
WO2016090979A1 (zh) 一种宽温高电压型超级电容器有机电解液及其制备方法
CN111816908B (zh) 一种电解液添加剂及其电解液和锂金属电池
US9870874B2 (en) Electrolyte solute, electrolyte, and high-voltage supercapacitor
CN103050732B (zh) 一种钛酸锂基化学电源
CN103928707A (zh) 一种高电压锂离子电池功能电解液及制备方法与应用
CN103633370A (zh) 钛酸锂电池非水电解液及钛酸锂电池
RU2591846C2 (ru) Способ сборки гибридной электрохимической системы
CN108110321A (zh) 一种锂电池高压电解液
CN109243860B (zh) 一种耐高电压的电解液及其在高电压超级电容器中的应用
CN109950060B (zh) 一种超级电容器氧化还原活性电解液
Zhang et al. “Double-salt” electrolytes for high voltage electrochemical double-layer capacitors
Zhu et al. Water-in-salt electrolytes achieve high energy densities at an ultralow-temperature for aqueous symmetrical supercapacitors
CN110783114B (zh) 一种耐高压水系电解液及其在高电压超级电容器中的应用
KR102495382B1 (ko) 슈퍼커패시터 전해액 및 슈퍼커패시터
Heng et al. Organic electrolytes for supercapacitors
NL2015030B1 (en) Electrolyte, and high-voltage supercapacitor.
WO2019037198A1 (zh) 一种超级电容器用的稳定性电解液及其制备方法
WO2017004884A1 (zh) 一种电解液溶质、电解液及超级电容器
CN115376838A (zh) 一种基于物理过程形成sei膜的宽电压窗口水系电解液及其制备方法和应用
WO2018058837A1 (zh) 一种用于超级电容器的有机电解液及超级电容器
WO2019037199A1 (zh) 一种低温型的超级电容器电解液、其制备方法及超级电容器
CN110379645B (zh) 一种用于高电压超级电容器的混合盐电解液及其应用
CN113140411A (zh) 一种高电压锂离子电容器的电解液

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17922303

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17922303

Country of ref document: EP

Kind code of ref document: A1