WO2019035560A1 - 안테나 모듈 - Google Patents

안테나 모듈 Download PDF

Info

Publication number
WO2019035560A1
WO2019035560A1 PCT/KR2018/007984 KR2018007984W WO2019035560A1 WO 2019035560 A1 WO2019035560 A1 WO 2019035560A1 KR 2018007984 W KR2018007984 W KR 2018007984W WO 2019035560 A1 WO2019035560 A1 WO 2019035560A1
Authority
WO
WIPO (PCT)
Prior art keywords
insulating substrate
electrode
substrate
base
base substrate
Prior art date
Application number
PCT/KR2018/007984
Other languages
English (en)
French (fr)
Inventor
김범진
박종호
Original Assignee
주식회사 아모텍
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 주식회사 아모텍 filed Critical 주식회사 아모텍
Priority to US16/638,695 priority Critical patent/US11735820B2/en
Priority to CN201880060814.0A priority patent/CN111108649B/zh
Publication of WO2019035560A1 publication Critical patent/WO2019035560A1/ko

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • H01Q7/06Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop with core of ferromagnetic material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/2283Supports; Mounting means by structural association with other equipment or articles mounted in or on the surface of a semiconductor substrate as a chip-type antenna or integrated with other components into an IC package
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q7/00Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop
    • H01Q7/06Loop antennas with a substantially uniform current distribution around the loop and having a directional radiation pattern in a plane perpendicular to the plane of the loop with core of ferromagnetic material
    • H01Q7/08Ferrite rod or like elongated core

Definitions

  • the present invention relates to an antenna module for a near field magnetic communication (NFMI), and more particularly, to an antenna module mounted on a earphone module such as a wearable device, a hearing aid, (E.g., a wearable device, a hearing aid main body, another ear module), and a method of manufacturing the antenna module.
  • NFMI near field magnetic communication
  • the earpiece is a device that plugs into your ear and allows you to listen to your music personally.
  • the earphone module can be classified into a wired earphone module and a wireless earphone module depending on a connection method with a sound source device.
  • the wireless ear module receives the sound source from the other ear module or the sound source device via wireless communication to output the sound source.
  • the wireless ear module can receive a sound source from a sound source device via Bluetooth, or receive and receive a sound source from another wireless ear ear module.
  • the wireless ear module may include a main ear module for receiving and outputting a sound source from a sound source device, or a sub ear module for receiving and receiving a sound source from the main ear module.
  • an antenna is mounted for transmitting / receiving sound to / from a sound source device or another wireless ear module. Since the wireless earphone module is formed in a small size, the space for mounting the antennas is very narrow, and the wireless ear earphone module is arranged in a small space around the head of the wearer so that the wireless ear earphone module can communicate with the body through the body .
  • the Bluetooth earphone module is equipped with a Bluetooth antenna that performs Bluetooth wireless communication.
  • a Bluetooth antenna that performs Bluetooth wireless communication.
  • NFMI near-field magnetic communication
  • NFMI near field communication
  • the NFMI antenna mounted on the wireless ear module consists of a directional solenoid antenna with wires wound around the ferrite sintered body. At this time, both ends of the wire are extended without a separate finishing process to constitute a lead wire, and the lead wire is connected to the circuit board of the wireless ear module through soldering.
  • the mounting space (work space) of the wireless earpiece module is very narrow, the workability at the time of mounting the NFMI antenna is lowered, and the yield is lowered due to lowering of workability and the antenna performance is lowered.
  • SMD antenna Surface Mount Device
  • a conventional SMD antenna 10 is manufactured by winding a coil 12 on a ferrite sintered body 11 having electrodes formed on one surface thereof and connecting both ends of the coil 12 to the electrodes 13 .
  • the electrode 13 is formed by directly printing a metal paste on the surface of the ferrite sintered body 11 and then etching.
  • the conventional SMD antenna 10 directly prints the metal paste on the ferrite sintered body 11, interference occurs in the permeability of the ferrite sintered body 11 by the metal paste, and the permeability of the ferrite sintered body 11 There is a problem that the quality factor (Q), which is a value that is greatly affected by the quality factor, is lowered.
  • the conventional SMD antenna 10 has a structure in which the electrode 13 (i.e., metal paste) is in direct contact with the ferrite sintered body 11, interference occurs in the permeability of the ferrite sintered body 11, Is lowered, and the antenna performance is deteriorated.
  • the electrode 13 i.e., metal paste
  • the present invention has been proposed in order to solve the problems of the prior art described above, and it is an object of the present invention to provide an antenna module for preventing permeability interference of a base substrate by an electrode by interposing an insulating base material between the base substrate and the electrode, And a method for producing the same.
  • an antenna module includes a base substrate made of a magnetic material, an insulating substrate laminated on a lower surface of the base substrate, a first electrode disposed on a lower surface of the insulating substrate, A second electrode spaced apart from the first electrode, and a radiation wire wound around the base substrate, the radiation wire having one end connected to the first electrode and the other end connected to the second electrode.
  • the base substrate may be a ferrite substrate, and the insulating substrate may be an insulating substrate composed of a selected one of polyimide (PI) and FR4.
  • the thickness of the insulating base material may be formed to be 50 ⁇ ⁇ or more and 200 ⁇ ⁇ or less.
  • the first electrode may be biased toward the first short side of the insulating substrate, the second electrode may be biased toward the second short side of the insulating base, and the first electrode and the second electrode may be made of a metal material.
  • the radiation wire may be wound on a laminate in which a base substrate and an insulating substrate are stacked, and wound on the upper surface of the base substrate and the lower surface of the insulating substrate. Wherein the radiating wire is wound in a spacing space between the first terminal and the second terminal in the lower surface of the insulating substrate.
  • the insulating substrate may include a first insulating substrate having a first electrode formed on a lower surface thereof, a second insulating substrate on which a second electrode is formed, and a second insulating substrate spaced apart from the first insulating substrate.
  • the first insulating substrate may be biased by the first short side of the base substrate
  • the second insulating substrate may be biased by the second short side of the base substrate.
  • the radiating wire is wound on the base substrate, and can be wound in the spacing space between the first insulating substrate and the second insulating substrate in the bottom surface of the base substrate.
  • the antenna module and the method of manufacturing the same have the effect of preventing the permeability interference of the base substrate by the electrodes by separating the base substrate from the electrodes with the insulating base interposed between the base substrate and the electrodes.
  • the antenna module and the manufacturing method thereof can prevent the permeability interference of the base substrate with the electrode by separating the base substrate and the electrode with the insulating base interposed between the base substrate and the electrode, thereby reducing the quality factor (Q) Can be prevented.
  • the antenna module and the manufacturing method thereof improve the quality factor (Q) of the antenna by adjusting the spacing between the base substrate and the electrode by adjusting the thickness of the insulating base material interposed between the base substrate and the electrode, Can be maximized.
  • 1 is a view for explaining a conventional SMD antenna
  • FIG. 2 is a view for explaining an antenna module according to an embodiment of the present invention.
  • 3 and 5 are views for explaining an antenna module according to a first embodiment of the present invention.
  • FIG. 6 and 7 are views for explaining a method of manufacturing an antenna module according to a first embodiment of the present invention.
  • FIG 8 and 10 are views for explaining an antenna module according to a second embodiment of the present invention.
  • 11 and 12 are views for explaining a method of manufacturing an antenna module according to a second embodiment of the present invention.
  • an antenna module 100 is mounted on a wireless ear module 20.
  • the antenna module 100 is mounted in the wireless ear module 20 and performs wireless communication with a selected one of the wireless ear ear module 20 and the sound source device.
  • the antenna module 100 is mounted on the wireless earphone module 20 constituting the wireless earphone to facilitate description of the antenna module 100.
  • the present invention is not limited to this, And may be mounted on a wireless ear module 20 used in various devices such as a device, a hearing aid, and the like.
  • the antenna module 100 includes a base substrate 110, an insulating substrate 120 disposed below the base substrate 110, And a radiation wire 130 wound on the insulating base 120.
  • the base substrate 110 is composed of a magnetic substrate having a magnetic permeability.
  • the magnetic substrate is an example of a ferrite substrate having a rectangular parallelepiped having a predetermined thickness.
  • the base substrate 110 is composed of a rigid magnetic substrate since the radiating wire 130 is wound. At this time, the base substrate 110 may be a flexible magnetic substrate when the insulating substrate 120 is rigid.
  • the insulating substrate 120 is formed of an insulating substrate having a predetermined thickness. At this time, the insulating substrate 120 is formed of a flexible insulating substrate.
  • the insulating substrate 120 is an insulating substrate formed of a material selected from one of PI (polyimide) and FR4. here.
  • An adhesive may be applied between the base substrate 110 and the insulating substrate 120.
  • the insulating substrate 120 is disposed under the base substrate 110. At this time, the upper surface of the insulating substrate 120 is in contact with the lower surface of the base substrate 110.
  • the first electrode 142 and the second electrode 144 are formed on the bottom surface of the insulating substrate 120. At this time, the first electrode 142 and the second electrode 144 are formed on the lower surface of the insulating substrate 120 through a paste printing process. That is, the first electrode 142 and the second electrode 144 are formed by printing a conductive paste on the lower surface of the insulating substrate 120 and then etching.
  • the conductive paste is, for example, a conductive metal paste such as copper (Cu), silver (Ag) or the like.
  • the first electrode 142 and the second electrode 144 are disposed apart from each other on the lower surface of the insulating substrate 120. That is, the first electrode 142 is formed by being biased toward the first short side of the insulating base 120. The second electrode 144 is formed by being biased toward the second short side of the insulating substrate 120.
  • the radiation wire 130 is wound on a laminate in which the base substrate 110 and the insulating base 120 are laminated. At this time, the radiating wire 130 is sequentially wound on the upper surface of the base substrate 110 and the lower surface of the insulating substrate 120. Here, the radiating wire 130 wound on the lower surface of the insulating substrate 120 is wound only in the region where the first electrode 142 and the second electrode 144 are not formed.
  • the radiating wires 130 are spaced apart from each other by windings (wires) wound on the same side of the laminate. That is, as the distance between the wires becomes narrower, the resistance value of the radiating wire 130 with respect to the frequency of use increases and the degree of goodness Q decreases. Thus, the radiating wire 130 is wound such that the wires wound in the same plane are mutually spaced for good quality (Q) characteristics.
  • the radiation wire 130 is connected to the first electrode 142 and the second electrode 144, respectively. That is, one end of the radiation wire 130 is connected to the first electrode 142 through soldering. The other end of the radiation wire 130 is connected to the second electrode 144 through soldering.
  • the first electrode 142 and the second electrode 144 are spaced apart from the base substrate 110 by the insulating substrate 120.
  • the spacing between the first electrode 142 and the second electrode 144 and the base substrate 110 is determined by the thickness of the insulating substrate 120.
  • FIG 5 shows the inductance of the antenna module 100 according to the thickness variation of the insulating substrate 120 interposed between the base substrate 110 and the electrodes 140 (i.e., the first electrode 142 and the second electrode 144) , Resistance, and quality factor (Q).
  • the antenna module 100 has a degree of goodness Q of about 50.21 when the electrode 140 is directly formed on the base substrate 110 and the thickness of the insulating substrate 120 is '0'.
  • the degree of goodness Q of the antenna module 100 is increased from approximately 53.27 to approximately 54.01 by increasing the thickness of the insulating substrate 120 interposed between the base substrate 110 and the electrode 140 from 50 mu m to 200 mu m, If the thickness of the insulating substrate 120 is increased to 250 ⁇ , the goodness Q of the antenna module 100 is reduced to about 42.33.
  • the antenna module 100 can improve the quality factor (Q) by interposing the insulating base material 120 having a thickness of about 50 to 200 ⁇ between the base material 110 and the electrode 140 .
  • an antenna module 200 includes a base substrate 210, an insulating substrate 220 disposed below the base substrate 210, a base substrate 210 (Not shown).
  • the base substrate 210 is composed of a magnetic substrate having a magnetic permeability.
  • the magnetic substrate is an example of a ferrite substrate having a rectangular parallelepiped having a predetermined thickness.
  • the base substrate 210 is composed of a rigid magnetic substrate since the radiating wire 230 is wound. At this time, the base substrate 210 may be a flexible magnetic substrate when the first insulating substrate 222 is rigid.
  • the insulating substrate 220 includes a first insulating substrate 222 and a second insulating substrate 224 formed separately.
  • the first insulating substrate 222 is made of an insulating substrate having a predetermined thickness. At this time, the first insulating substrate 222 is formed of a flexible insulating substrate.
  • the first insulating substrate 222 is an insulating substrate formed of a material selected from one of PI (polyimide) and FR4.
  • a first electrode 242 is formed on a lower surface of the first insulating substrate 222.
  • the first electrode 242 is formed on the lower surface of the first insulating substrate 222 through a paste printing process. That is, the first electrode 242 is formed by printing a conductive paste on the lower surface of the first insulating substrate 222.
  • the conductive paste is a conductive metal paste such as copper (Cu), silver (Ag) or the like as an example. here.
  • An adhesive may be applied between the base substrate 210 and the first insulating substrate 222.
  • the first insulating substrate 222 is disposed below the base substrate 210.
  • the upper surface of the first insulating substrate 222 is in contact with the lower surface of the base substrate 210.
  • the first insulating substrate 222 is formed by being biased toward the first short side of the base substrate 210.
  • the first electrode 242 is also formed by being biased toward the first short side direction of the base substrate 210.
  • the second insulating substrate 224 is formed of an insulating substrate having a predetermined thickness. At this time, the second insulating substrate 224 is formed of a flexible insulating substrate. At this time, the second insulating substrate 224 is an insulating substrate formed of one material selected from PI (polyimide) and FR4. here. An adhesive may be applied between the base substrate 210 and the second insulating substrate 224.
  • a second electrode 244 is formed on the lower surface of the second insulating substrate 224.
  • the second electrode 244 is formed on the lower surface of the second insulating substrate 224 through a paste printing process. That is, the second electrode 244 is formed by printing a conductive paste on the lower surface of the second insulating substrate 224.
  • the conductive paste is, for example, a conductive metal paste such as copper (Cu), silver (Ag) or the like.
  • the second insulating substrate 224 is disposed below the base substrate 210.
  • the upper surface of the second insulating substrate 224 is in contact with the lower surface of the base substrate 210.
  • the second insulating substrate 224 is biased toward the second short side of the base substrate 210.
  • the second electrode 244 is also formed by being biased toward the second short side of the base substrate 210.
  • the second insulating substrate 224 may be disposed on the side or top of the base substrate 210. That is, the second insulating substrate 224 may be disposed on a selected one of the remaining five surfaces except the one surface of the base substrate 210 on which the first insulating substrate 22 is disposed.
  • the first insulating substrate 222 and the second insulating substrate 224 are formed on both sides of the base substrate 210 so that the first electrode 242 and the second electrode 244 are electrically connected to the base substrate 210 And are spaced apart from each other.
  • the radiating wire 230 is wound on the base substrate 210. At this time, the radiating wire 230 is sequentially wound on the upper surface and the lower surface of the base substrate 210. Here, the radiating wire 230 wound on the lower surface of the base substrate 210 is wound only in a region where the first insulating substrate 222 and the second insulating substrate 224 are not formed.
  • the radiating wires 230 are spaced apart from each other by windings (wires) wound on the same side of the base substrate 210. That is, as the distance between the wires becomes narrower, the resistance value of the radiating wire 230 with respect to the used frequency increases, and the degree of goodness Q decreases. Thus, the radiating wire 130 is wound such that the wires wound in the same plane are mutually spaced for good quality (Q) characteristics.
  • the radiation wire 230 is connected to the first electrode 242 and the second electrode 244, respectively. That is, one end of the radiation wire 230 is connected to the first electrode 242 through soldering. The other end of the radiation wire 230 is connected to the second electrode 244 through soldering.
  • FIG. 10 shows the inductance, resistance, and goodness of the antenna module 200 according to the spacing distance between the base substrate 210 and the electrodes 240 (i.e., the first electrode 242 and the second electrode 244) Quality Factor ").
  • the antenna module 200 has the goodness Q of about 39.84 when the electrode 240 is formed directly on the base substrate 210 and the spacing is '0'.
  • the degree of goodness Q of the antenna module 200 is increased from about 41.15 to about 43.58 by successively increasing the spacing between the base substrate 210 and the electrode 240 from 10 m to 40 m, 210 and the electrode 240 is increased to 50 m, the goodness Q of the antenna module 200 is reduced to about 42.33.
  • the antenna module 200 can improve the quality factor Q when the spacing between the base substrate 210 and the electrode 240 is maintained at about 10 to 40 ⁇ ⁇ .
  • a method of manufacturing an antenna module 200 according to a second embodiment of the present invention includes a base substrate preparation step S210, a first insulating substrate preparation step S220, S230), a second insulating substrate preparation step S240, a second terminal formation step S250, a base material lamination step S260, a spinning wire winding step S270, a spinning wire and electrode connecting step S280 .
  • a magnetic substrate having a magnetic permeability is prepared as a base substrate 210.
  • the base substrate 210 is a ferromagnetic substrate having a rectangular parallelepiped having a predetermined thickness, which is a rigid magnetic substrate, since the radiating wire 230 is wound in step S150.
  • a flexible magnetic substrate may be prepared as the base material 210.
  • an insulating substrate having a predetermined thickness is prepared as the first insulating substrate 222.
  • a flexible insulating substrate is prepared as the first insulating substrate 222.
  • a flexible insulating substrate formed of one selected from the group consisting of polyimide (PI) and FR4 is prepared as the first insulating substrate 222.
  • the first electrode 242 is formed on the first insulating substrate 222. [ In the first terminal forming step S230, the first electrode 242 is formed on the lower surface of the first insulating substrate 222. [ At this time, in the first terminal forming step S230, the first electrode 242 is formed on the lower surface of the first insulating substrate 222 through the paste printing process.
  • the conductive paste is, for example, a conductive metal paste such as copper (Cu), silver (Ag) or the like.
  • an insulating substrate having a predetermined thickness is prepared as the first insulating substrate 222.
  • a flexible insulating substrate is prepared as the first insulating substrate 222.
  • a flexible insulating substrate formed of one selected from the group consisting of polyimide (PI) and FR4 is prepared as the first insulating substrate 222.
  • the second electrode 244 is formed on the second insulating substrate 224.
  • a second electrode 244 is formed on the lower surface of the second insulating substrate 224.
  • the second electrode 244 is formed on the lower surface of the second insulating substrate 224 through the paste printing process.
  • the conductive paste is, for example, a conductive metal paste such as copper (Cu), silver (Ag) or the like.
  • the first insulating base material 222 and the second insulating base material 224 are laminated below the base material 210. [ At this time, in the base material laminating step S260, the first insulating substrate 222 and the second insulating substrate 224 are stacked at a predetermined interval.
  • the second insulating substrate 224 may be laminated on the base substrate 210 so that the first insulating substrate 222 is disposed to be biased toward the first short side direction of the base substrate 210, Side direction of the first short side of the second side.
  • the spinning wire winding step (S270) the spinning wire 230 is wound on the base substrate 210.
  • the spinning wire winding step S270 the spinning wire 230 is sequentially wound on the upper surface and the lower surface of the base substrate 210.
  • the radiation wire 230 wound on the lower surface of the base substrate 210 is wound only in the spacing space formed by the first insulating substrate 222 and the second insulating substrate 224 being spaced apart.
  • both ends of the radiating wire 230 wound on the laminate are connected to the first electrode 242 and the second electrode 244, respectively. That is, one end of the radiation wire 230 is brought into contact with the first electrode 242 and then soldered to connect one end of the radiation wire 230 to the first electrode 242 Connect. The other end of the radiation wire 230 is connected to the second electrode 244 by soldering after the other end of the radiation wire 230 is connected to the second electrode 244.

Landscapes

  • Engineering & Computer Science (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Details Of Aerials (AREA)
  • Coils Or Transformers For Communication (AREA)

Abstract

베이스 기재와 전극 사이에 절연성 기재를 개재하여 베이스 기재와 전극을 이격시킴으로써 전극에 의한 베이스 기재의 투자율 간섭을 방지하도록 한 안테나 모듈 및 이의 제조 방법을 제시한다. 제시된 안테나 모듈은 자성 재질의 베이스 기재, 베이스 기재의 하면에 적층된 절연 기재, 절연 기재의 하면에 배치된 제1 전극, 절연 기재의 하면에 제1 전극이 이격되어 배치된 제2 전극 및 베이스 기재 및 절연 기재 중 적어도 하나에 권선되고, 일단부가 제1 전극에 연결되고 타단부가 제2 전극에 연결된 방사 와이어를 포함한다.

Description

안테나 모듈
본 발명은 NFMI(Near-field magnetic communication, 근거리 자기유도방식 통신 또는 근거리 양이 통신)를 위한 안테나 모듈에 관한 것으로, 더욱 상세하게는 웨어러블 기기, 보청기, 무선 이어폰 등의 이어 모듈에 실장되어 다른 기기(예를 들면, 웨어러블 기기, 보청기 본체, 다른 이어 모듈)과 통신을 수행하는 안테나 모듈 및 이의 제조 방법에 관한 것이다.
이어 모듈은 귀에 꽂아 개인적으로 음원을 들을 수 있게 하는 기기이다. 이어 모듈은 음원 기기와의 연결 방식에 따라 유선 이어 모듈 및 무선 이어 모듈로 구분될 수 있다.
무선 이어 모듈은 음원을 출력하기 위해서 무선 통신을 통해 다른 이어 모듈 또는 음원 기기로부터 음원을 수신한다. 일례로, 무선 이어폰에 적용된 경우, 무선 이어 모듈은 블루투스를 통해 음원 기기로부터 음원을 전송받거나, 다른 무선 이어 모듈로부터 음원을 전달받아 출력할 수 있다. 여기서, 무선 이어 모듈은 음원 기기로부터 음원을 전송받아 출력하는 메인 이어 모듈 또는 메인 이어 모듈로부터 음원을 전달받아 출력하는 서브 이어 모듈로 구성될 수 있다.
무선 이어 모듈에는 음원 기기 또는 다른 무선 이어 모듈과의 음원 송수신을 위해서 안테나가 실장된다. 무선 이어 모듈은 소형으로 형성되기 때문에 안테나를 실장할 수 있는 공간이 매우 협소하고, 착용자의 머리를 중심으로 좌우로 이격되어 배치되기 때문에 소형이면서 신체(즉, 머리)를 통과하여 통신이 가능해야 한다.
무선 이어 모듈에는 블루투스 방식의 무선 통신을 수행하는 블루투스 안테나가 실장되었으나, 블루투스 안테나는 사용자의 신체 일부가 무선 이어 모듈과 음원 기기 사이에 배치되는 경우 음원 품질이 저하되거나 음원 재생이 끊기는 등의 문제점이 있다.
이에, 최근의 무선 이어 모듈에는 NFMI(Near-field magnetic communication, 근거리 자기유도방식 통신 또는 근거리 양이 통신) 방식의 무선 통신을 수행하는 NFMI 안테나가 실장되고 있다.
무선 이어 모듈에 실장되는 NFMI 안테나는 페라이트 소성체에 와이어가 권선된 지향성 솔레노이드 안테나로 구성된다. 이때, 와이어의 양단은 별도의 마감 처리 없이 연장되어 리드 선(lead wire)으로 구성되고, 리드 선은 무선 이어 모듈의 회로 기판에 솔더링(soldering)을 통해 연결된다.
하지만, 무선 이어 모듈은 실장 공간(작업 공간)이 매우 협소하기 때문에 NFMI 안테나의 실장시 작업성이 저하되고, 작업성 저하로 인한 수율 저하, 안테나 성능 저하 등의 문제점이 있다.
이러한 문제점을 해결하기 위해서 SMD(Surface Mount Device) 타입의 NFMI 안테나(이하, SMD 안테나)를 무선 이어 모듈에 실장하는 기술이 연구되고 있다.
도 1을 참조하면, 종래의 SMD 안테나(10)는 일면에 전극이 형성된 페라이트 소성체(11)에 코일(12)을 권선하고, 코일(12)의 양단을 전극(13)에 연결하여 제조된다. 이때, 전극(13)은 금속 페이스트를 페라이트 소성체(11)의 표면에 직접 인쇄한 후 식각하여 형성된다.
하지만, 종래의 SMD 안테나(10)는 페라이트 소성체(11)에 금속 페이스트를 직접 인쇄하기 때문에, 금속 페이스트에 의해 페라이트 소성체(11)의 투자율에 간섭이 발생하여 페라이트 소성체(11)의 투자율에 많은 영향을 받는 값인 양호도(Q; Quality Factor)가 저하되는 문제점이 있다.
또한, 종래의 SMD 안테나(10)는 전극(13; 즉, 금속 페이스트)이 페라이트 소성체(11)에 직접 접촉되는 구조이기 때문에 페라이트 소성체(11)의 투자율에 간섭이 발생하여 양호도(Q)가 저하되어, 안테나 성능이 저하되는 문제점이 있다.
본 발명은 상기한 종래의 문제점을 해결하기 위해 제안된 것으로, 베이스 기재와 전극 사이에 절연성 기재를 개재하여 베이스 기재와 전극을 이격시킴으로써 전극에 의한 베이스 기재의 투자율 간섭을 방지하도록 한 안테나 모듈 및 이의 제조 방법을 제공하는 것을 목적으로 한다.
상기한 목적을 달성하기 위하여 본 발명의 실시예에 따른 안테나 모듈은 자성 재질의 베이스 기재, 베이스 기재의 하면에 적층된 절연 기재, 절연 기재의 하면에 배치된 제1 전극, 절연 기재의 하면에 제1 전극과 이격되어 배치된 제2 전극 및 베이스 기재의 주위로 권선되고, 일단부가 제1 전극에 연결되고 타단부가 제2 전극에 연결된 방사 와이어를 포함한다.
베이스 기재는 페라이트 기판이고, 절연 기재는 폴리이미드(PI) 및 FR4 중 선택된 하나로 구성된 절연성 기판일 수 있다. 이때, 절연 기재의 두께는 50㎛ 이상 200㎛ 이하로 형성될 수 있다.
제1 전극은 절연 기재의 제1 단변으로 치우쳐져 배치되고, 제2 전극은 절연 기재의 제2 단변으로 치우쳐져 배치되고, 제1 전극 및 제2 전극은 금속 재질일 수 있다.
방사 와이어는 베이스 기재 및 절연 기재가 적층된 적층체에 권선되어 베이스 기재의 상면 및 절연 기재의 하면에 권선될 수 있다. 이때, 방사 와이어는 절연 기재의 하면 중 제1 단자 및 제2 단자 사이의 이격 공간에 권선된 안테나 모듈.
절연 기재는 하면에 제1 전극이 형성된 제1 절연 기재 및 하면에 제2 전극이 형성되고, 제1 절연 기재와 이격되어 배치된 제2 절연 기재를 포함할 수 있다. 이때, 제1 절연 기재는 베이스 기재의 제1 단변으로 치우쳐져 배치되고, 제2 절연 기재는 베이스 기재의 제2 단변으로 치우쳐져 배치될 수 있다. 이 경우, 방사 와이어는 베이스 기재에 권선되되, 베이스 기재의 하면 중 제1 절연 기재 및 제2 절연 기재 간의 이격 공간에 권선될 수 있다.
본 발명에 의하면, 안테나 모듈 및 이의 제조 방법은 베이스 기재와 전극 사이에 절연성 기재를 개재하여 베이스 기재와 전극을 이격시킴으로써, 전극에 의한 베이스 기재의 투자율 간섭을 방지할 수 있는 효과가 있다.
또한, 안테나 모듈 및 이의 제조 방법은 베이스 기재와 전극 사이에 절연성 기재를 개재하여 베이스 기재와 전극을 이격시킴으로써, 전극에 의한 베이스 기재의 투자율 간섭을 방지하여 안테나의 양호도(Q; Quality Factor) 저하를 방지할 수 있는 효과가 있다.
또한, 안테나 모듈 및 이의 제조 방법은 베이스 기재와 전극 사이에 개재되는 절연성 기재의 두께 조절을 통해 베이스 기재와 전극의 이격 간격을 조절함으로써, 안테나의 양호도(Q; Quality Factor)를 향상시켜 안테나 성능을 최대화할 수 있는 효과가 있다.
도 1은 종래의 SMD 안테나를 설명하기 위한 도면.
도 2는 본 발명의 실시예에 따른 안테나 모듈을 설명하기 위한 도면.
도 3 및 도 5는 본 발명의 제1 실시예에 따른 안테나 모듈을 설명하기 위한 도면.
도 6 및 도 7은 본 발명의 제1 실시예에 따른 안테나 모듈 제조 방법을 설명하기 위한 도면.
도 8 및 도 10은 본 발명의 제2 실시예에 따른 안테나 모듈을 설명하기 위한 도면.
도 11 및 도 12는 본 발명의 제2 실시예에 따른 안테나 모듈 제조 방법을 설명하기 위한 도면.
이하, 본 발명이 속하는 기술분야에서 통상의 지식을 가진 자가 본 발명의 기술적 사상을 용이하게 실시할 수 있을 정도로 상세히 설명하기 위하여, 본 발명의 가장 바람직한 실시 예를 첨부 도면을 참조하여 설명하기로 한다. 우선 각 도면의 구성요소들에 참조부호를 부가함에 있어서, 동일한 구성요소들에 대해서는 비록 다른 도면상에 표시되더라도 가능한 한 동일한 부호를 가지도록 하고 있음에 유의해야 한다. 또한, 본 발명을 설명함에 있어, 관련된 공지 구성 또는 기능에 대한 구체적인 설명이 본 발명의 요지를 흐릴 수 있다고 판단되는 경우에는 그 상세한 설명은 생략한다.
도 2를 참조하면, 본 발명의 실시 예에 따른 안테나 모듈(100)은 무선 이어 모듈(20)에 실장된다. 이때, 안테나 모듈(100)은 무선 이어 모듈(20) 내에 실장되어 다른 무선 이어 모듈(20) 및 음원 기기 중 선택된 하나와 무선 통신을 수행한다. 여기서, 본 발명의 실시 예에서는 안테나 모듈(100)을 용이하게 설명하기 위해 무선 이어폰을 구성하는 무선 이어 모듈(20)에 안테나 모듈(100)이 실장되는 것으로 예로 들어 설명하였으나, 이에 한정되지 않고 웨어러블 기기, 보청기 등과 같이 다양한 기기에 사용되는 무선 이어 모듈(20)에 실장될 수도 있다.
도 3 및 도 4를 참조하면, 본 발명의 제1 실시 예에 따른 안테나 모듈(100)은 베이스 기재(110), 베이스 기재(110)의 하부에 배치된 절연 기재(120) 및 베이스 기재(110) 및 절연 기재(120)에 권선된 방사 와이어(130)를 포함하여 구성된다.
베이스 기재(110)는 투자율을 갖는 자성체 기판으로 구성된다. 이때, 자성체 기판은 소정 두께를 갖는 직육면체 형성의 페라이트 기판인 것을 일례로 한다.
베이스 기재(110)는 방사 와이어(130)가 권선되기 때문에 경성(rigid)의 자성체 기판으로 구성된다. 이때, 베이스 기재(110)는 절연 기재(120)가 경성인 경우 연성(flexible)의 자성체 기판일 수도 있다.
절연 기재(120)는 소정의 두께를 갖는 절연성 기판으로 구성된다. 이때, 절연 기재(120)는 연성의 절연성 기판으로 구성된다. 여기서, 절연 기재(120)는 PI(Polyimide) 및 FR4 중 선택된 하나의 재질로 형성된 절연성 기판인 것으로 일례로 한다. 여기서. 베이스 기재(110)와 절연 기재(120) 사이에는 접착체가 도포될 수 있다.
절연 기재(120)는 베이스 기재(110)의 하부에 배치된다. 이때, 절연 기재(120)의 상면은 베이스 기재(110)의 하면과 접촉된다.
절연 기재(120)는 하면에 제1 전극(142) 및 제2 전극(144)이 형성된다. 이때, 제1 전극(142) 및 제2 전극(144)은 페이스트 인쇄 공정을 통해 절연 기재(120)의 하면에 형성된다. 즉, 제1 전극(142) 및 제2 전극(144)은 절연 기재(120)의 하면에 도전성 페이스트를 인쇄한 후 식각하여 형성된다. 여기서, 도전성 페이스트는 구리(Cu), 은(Ag) 등과 같이 도전성을 갖는 금속 페이스트인 것을 일례로 한다.
제1 전극(142) 및 제2 전극(144)은 절연 기재(120)의 하면에서 상호 이격되어 배치된다. 즉, 제1 전극(142)은 절연 기재(120)의 제1 단변 방향으로 치우쳐져 형성된다. 제2 전극(144)은 절연 기재(120)의 제2 단변 방향으로 치우쳐져 형성된다.
방사 와이어(130)는 베이스 기재(110) 및 절연 기재(120)가 적층된 적층체에 권선된다. 이때, 방사 와이어(130)는 베이스 기재(110)의 상면 및 절연 기재(120)의 하면에 순차적으로 권선된다. 여기서, 절연 기재(120)의 하면에 권선된 방사 와이어(130)는 제1 전극(142) 및 제2 전극(144)이 형성되지 않은 영역에만 권선된다.
방사 와이어(130)는 적층체의 동일면에 권선된 권선(와이어)간 상호 이격된다. 즉, 방사 와이어(130)는 와이어간의 간격이 좁아짐에 따라 사용 주파수에 대한 저항값이 증가하여 양호도(Q)가 감소한다. 이에, 방사 와이어(130)는 양호도(Q) 특성을 위해 동일면에 권선된 와이어들이 상호 이격되도록 권선된다.
방사 와이어(130)는 제1 전극(142) 및 제2 전극(144)에 각각 연결된다. 즉, 방사 와이어(130)의 일단부는 제1 전극(142)에 솔더링(soldering)을 통해 연결된다. 방사 와이어(130)의 타단부는 제2 전극(144)에 솔더링을 통해 연결된다.
제1 전극(142) 및 제2 전극(144)은 절연 기재(120)에 의해 베이스 기재(110)와 소정 간격 이격되어 배치된다. 이때, 제1 전극(142) 및 제2 전극(144)과 베이스 기재(110)의 이격 간격은 절연 기재(120)의 두께에 의해 결정된다.
도 5는 베이스 기재(110)와 전극(140; 즉, 제1 전극(142) 및 제2 전극(144)) 사이에 개재된 절연 기재(120)의 두께 변화에 따른 안테나 모듈(100)의 인덕턴스, 저항 및 양호도(Q; Quality Factor)를 측정한 데이터를 도시한다.
안테나 모듈(100)은 베이스 기재(110)에 전극(140)이 직접 형성되어 절연 기재(120)의 두께가 '0'이면 대략 50.21 정도의 양호도(Q)를 갖는다.
베이스 기재(110)와 전극(140) 사이에 개재된 절연 기재(120)의 두께를 50㎛에서 200㎛까지 순차적으로 증가시킴에 따라 안테나 모듈(100)의 양호도(Q)는 대략 53.27에서 54.01 정도까지 증가하다가, 절연 기재(120)의 두께를 250㎛으로 증가시키면 안테나 모듈(100)의 양호도(Q)는 대략 42.33 정도까지 감소한다.
이에, 안테나 모듈(100)은 대략 50㎛ 내지 200㎛ 정도의 두께를 갖는 절연 기재(120)를 베이스 기재(110)와 전극(140) 사이에 개재하여 양호도(Q) 특성을 향상시킬 수 있다.
도 8 및 도 9를 참조하면, 본 발명의 제2 실시 예에 따른 안테나 모듈(200)은 베이스 기재(210), 베이스 기재(210)의 하부에 배치된 절연 기재(220), 베이스 기재(210)에 권선된 방사 와이어(230)를 포함하여 구성된다.
베이스 기재(210)는 투자율을 갖는 자성체 기판으로 구성된다. 이때, 자성체 기판은 소정 두께를 갖는 직육면체 형성의 페라이트 기판인 것을 일례로 한다.
베이스 기재(210)는 방사 와이어(230)가 권선되기 때문에 경성(rigid)의 자성체 기판으로 구성된다. 이때, 베이스 기재(210)는 제1 절연 기재(222)가 경성인 경우 연성(flexible)의 자성체 기판일 수도 있다.
절연 기재(220)는 분리 형성된 제1 절연 기재(222) 및 제2 절연 기재(224)를 포함하여 구성된다.
*제1 절연 기재(222)는 소정의 두께를 갖는 절연성 기판으로 구성된다. 이때, 제1 절연 기재(222)는 연성의 절연성 기판으로 구성된다. 여기서, 제1 절연 기재(222)는 PI(Polyimide) 및 FR4 중 선택된 하나의 재질로 형성된 절연성 기판인 것으로 일례로 한다.
제1 절연 기재(222)는 하면에 제1 전극(242)이 형성된다. 이때, 제1 전극(242)은 페이스트 인쇄 공정을 통해 제1 절연 기재(222)의 하면에 형성된다. 즉, 제1 전극(242)은 제1 절연 기재(222)의 하면에 도전성 페이스트를 인쇄하여 형성된다. 이때, 도전성 페이스트는 구리(Cu), 은(Ag) 등과 같이 도전성을 갖는 금속 페이스트인 것을 일례로 한다. 여기서. 베이스 기재(210)와 제1 절연 기재(222) 사이에는 접착제가 도포될 수도 있다.
제1 절연 기재(222)는 베이스 기재(210)의 하부에 배치된다. 제1 절연 기재(222)의 상면은 베이스 기재(210)의 하면과 접촉된다. 이때, 제1 절연 기재(222)는 베이스 기재(210)의 제1 단변 방향으로 치우쳐져 형성된다. 그에 따라, 제1 전극(242)도 베이스 기재(210)의 제1 단변 방향으로 치우쳐져 형성된다.
제2 절연 기재(224)는 소정의 두께를 갖는 절연성 기판으로 구성된다. 이때, 제2 절연 기재(224)는 연성의 절연성 기판으로 구성된다. 이때, 제2 절연 기재(224)는 PI(Polyimide) 및 FR4 중 선택된 하나의 재질로 형성된 절연성 기판인 것으로 일례로 한다. 여기서. 베이스 기재(210)와 제2 절연 기재(224) 사이에는 접착제가 도포될 수도 있다.
제2 절연 기재(224)는 하면에 제2 전극(244)이 형성된다. 이때, 제2 전극(244)은 페이스트 인쇄 공정을 통해 제2 절연 기재(224)의 하면에 형성된다. 즉, 제2 전극(244)은 제2 절연 기재(224)의 하면에 도전성 페이스트를 인쇄하여 형성된다. 여기서, 도전성 페이스트는 구리(Cu), 은(Ag) 등과 같이 도전성을 갖는 금속 페이스트인 것을 일례로 한다.
제2 절연 기재(224)는 베이스 기재(210)의 하부에 배치된다. 제2 절연 기재(224)의 상면은 베이스 기재(210)의 하면과 접촉된다. 이때, 제2 절연 기재(224)는 베이스 기재(210)의 제2 단변 방향으로 치우쳐져 형성된다. 그에 따라, 제2 전극(244)도 베이스 기재(210)의 제2 단변 방향으로 치우쳐져 형성된다.
제2 절연 기재(224)는 베이스 기재(210)의 측부 또는 상부에 배치될 수도 있다. 즉, 제2 절연 기재(224)는 베이스 기재(210)의 육면 중 제1 절연 기재(22)가 배치된 일면을 제외한 나머지 다섯개의 면 중 선택된 하나에 배치될 수 있다.
이처럼, 베이스 기재(210)의 양단변에 제1 절연 기재(222) 및 제2 절연 기재(224)가 각각 형성됨에 따라, 제1 전극(242) 및 제2 전극(244)은 베이스 기재(210)의 하부에서 상호 이격되어 배치된다.
방사 와이어(230)는 베이스 기재(210)에 권선된다. 이때, 방사 와이어(230)는 베이스 기재(210)의 상면 및 하면에 순차적으로 권선된다. 여기서, 베이스 기재(210)의 하면에 권선된 방사 와이어(230)는 제1 절연 기재(222) 및 제2 절연 기재(224)가 형성되지 않은 영역에만 권선된다.
방사 와이어(230)는 베이스 기재(210)의 동일면에 권선된 권선(와이어)간 상호 이격된다. 즉, 방사 와이어(230)는 와이어간의 간격이 좁아짐에 따라 사용 주파수에 대한 저항값이 증가하여 양호도(Q)가 감소한다. 이에, 방사 와이어(130)는 양호도(Q) 특성을 위해 동일면에 권선된 와이어들이 상호 이격되도록 권선된다.
방사 와이어(230)는 제1 전극(242) 및 제2 전극(244)에 각각 연결된다. 즉, 방사 와이어(230)의 일단부는 제1 전극(242)에 솔더링(soldering)을 통해 연결된다. 방사 와이어(230)의 타단부는 제2 전극(244)에 솔더링을 통해 연결된다.
도 10은 베이스 기재(210)와 전극(240; 즉, 제1 전극(242) 및 제2 전극(244)) 사이의 이격 간격 변화에 따른 안테나 모듈(200)의 인덕턴스, 저항 및 양호도(Q; Quality Factor)를 측정한 데이터를 도시한다.
안테나 모듈(200)은 베이스 기재(210)에 전극(240)이 직접 형성되어 이격 간격이 '0'이면 대략 39.84 정도의 양호도(Q)를 갖는다.
베이스 기재(210)와 전극(240)의 이격 간격을 10㎛에서 40㎛까지 순차적으로 증가시킴에 따라 안테나 모듈(200)의 양호도(Q)는 대략 41.15에서 43.58 정도까지 증가하다가, 베이스 기재(210)와 전극(240)의 이격 간격을 50㎛로 증가시키면 안테나 모듈(200)의 양호도(Q)는 대략 42.33 정도까지 감소한다.
이에, 안테나 모듈(200)은 베이스 기재(210)와 전극(240)의 이격 간격을 10㎛에서 40㎛ 정도로 유지할 때 양호도(Q) 특성을 향상시킬 수 있다.
도 11 및 도 12를 참조하면, 본 발명의 제2 실시 예에 따른 안테나 모듈(200) 제조 방법은 베이스 기재 준비 단계(S210), 제1 절연 기재 준비 단계(S220), 제1 단자 형성 단계(S230), 제2 절연 기재 준비 단계(S240), 제2 단자 형성 단계(S250), 베이스 기재 적층 단계(S260), 방사 와이어 권선 단계(S270), 방사 와이어 및 전극 연결 단계(S280)를 포함한다.
베이스 기재 준비 단계(S210)에서는 투자율을 갖는 자성체 기판을 베이스 기재(210)로 준비한다. 이때, 베이스 기재(210)는 S150 단계에서 방사 와이어(230)가 권선되기 때문에 경성의 자성체 기판으로, 소정 두께를 갖는 직육면체 형성의 페라이트 기판인 것을 일례로 한다. 여기서, 베이스 기재 준비 단계(S210)에서는 S120 단계에서 경성의 제1 절연 기재(222)를 준비하는 경우 연성(flexible)의 자성체 기판을 베이스 기재(210)로 준비할 수도 있다.
제1 절연 기재 준비 단계(S220)에서는 소정의 두께를 갖는 절연성 기판을 제1 절연 기재(222)로 준비한다. 이때, 제1 절연 기재 준비 단계(S220)에서는 연성의 절연성 기판을 제1 절연 기재(222)로 준비한다. 여기서, 제1 절연 기재 준비 단계(S220)에서는 PI(Polyimide) 및 FR4 중 선택된 하나의 재질로 형성된 연성의 절연성 기판을 제1 절연 기재(222)로 준비하는 것을 일례로 한다.
제1 단자 형성 단계(S230)에서는 제1 절연 기재(222)에 제1 전극(242)을 형성한다. 제1 단자 형성 단계(S230)에서는 제1 절연 기재(222)의 하면에 제1 전극(242)을 형성한다. 이때, 제1 단자 형성 단계(S230)에서는 페이스트 인쇄 공정을 통해 제1 절연 기재(222)의 하면에 제1 전극(242)을 형성한다. 여기서, 도전성 페이스트는 구리(Cu), 은(Ag) 등과 같이 도전성을 갖는 금속 페이스트인 것을 일례로 한다.
제2 절연 기재 준비 단계(S240)에서는 소정의 두께를 갖는 절연성 기판을 제1 절연 기재(222)로 준비한다. 이때, 제2 절연 기재 준비 단계(S240)에서는 연성의 절연성 기판을 제1 절연 기재(222)로 준비한다. 여기서, 제2 절연 기재 준비 단계(S240)에서는 PI(Polyimide) 및 FR4 중 선택된 하나의 재질로 형성된 연성의 절연성 기판을 제1 절연 기재(222)로 준비하는 것을 일례로 한다.
제2 단자 형성 단계(S250)에서는 제2 절연 기재(224)에 제2 전극(244)을 형성한다. 제2 단자 형성 단계(S250)에서는 제2 절연 기재(224)의 하면에 제2 전극(244)을 형성한다. 이때, 제2 단자 형성 단계(S250)에서는 페이스트 인쇄 공정을 통해 제2 절연 기재(224)의 하면에 제2 전극(244)을 형성한다. 여기서, 도전성 페이스트는 구리(Cu), 은(Ag) 등과 같이 도전성을 갖는 금속 페이스트인 것을 일례로 한다.
베이스 기재 적층 단계(S260)에서는 베이스 기재(210)의 하부에 제1 절연 기재(222) 및 제2 절연 기재(224)를 적층한다. 이때, 베이스 기재 적층 단계(S260)에서는 제1 절연 기재(222) 및 제2 절연 기재(224)가 소정 간격 이격되도록 적층한다.
이를 위해, 베이스 기재 적층 단계(S260)에서는 제1 절연 기재(222)를 베이스 기재(210)의 제1 단변 방향으로 치우쳐져 배치되도록 적층하고, 제2 절연 기재(224)를 베이스 기재(210)의 제2 단변 방향으로 치우쳐져 배치되도록 적층한다.
방사 와이어 권선 단계(S270)에서는 베이스 기재(210)에 방사 와이어(230)를 권선한다. 이때, 방사 와이어 권선 단계(S270)에서는 베이스 기재(210)의 상면 및 하면에 순차적으로 방사 와이어(230)를 권선한다. 여기서, 베이스 기재(210)의 하면에 권선된 방사 와이어(230)는 제1 절연 기재(222) 및 제2 절연 기재(224)가 이격되어 형성되는 이격 공간에만 권선된다.
방사 와이어 및 전극 연결 단계(S280)에서는 적층체에 권선된 방사 와이어(230)의 양단을 제1 전극(242) 및 제2 전극(244)에 각각 연결한다. 즉, 방사 와이어 및 전극 연결 단계(S280)에서는 방사 와이어(230)의 일단부를 제1 전극(242)에 접촉시킨 후 솔더링(soldering)하여 방사 와이어(230)의 일단부를 제1 전극(242)에 연결한다. 방사 와이어 및 전극 연결 단계(S280)에서는 방사 와이어(230)의 타단부를 제2 전극(244)에 접촉시킨 후 솔더링하여 방사 와이어(230)의 타단부를 제2 전극(244)에 연결한다.
이상에서 본 발명에 따른 바람직한 실시 예에 대해 설명하였으나, 다양한 형태로 변형이 가능하며, 본 기술분야에서 통상의 지식을 가진자라면 본 발명의 특허청구범위를 벗어남이 없이 다양한 변형 예 및 수정 예를 실시할 수 있을 것으로 이해된다.

Claims (11)

  1. 자성 재질의 베이스 기재;
    상기 베이스 기재의 하면에 적층된 절연 기재;
    상기 절연 기재의 하면에 배치된 제1 전극;
    상기 절연 기재의 하면에 상기 제1 전극과 이격되어 배치된 제2 전극; 및
    상기 베이스 기재의 주위로 권선되고, 일단부가 상기 제1 전극에 연결되고 타단부가 상기 제2 전극에 연결된 방사 와이어를 포함하는 안테나 모듈.
  2. 제1항에 있어서,
    상기 베이스 기재는 페라이트 기판인 안테나 모듈.
  3. 제1항에 있어서,
    상기 절연 기재는 폴리이미드(PI) 및 FR4 중 선택된 하나로 구성된 절연성 기판인 안테나 모듈.
  4. 제1항에 있어서,
    상기 절연 기재의 두께는 50㎛ 이상 200㎛ 이하로 형성된 안테나 모듈.
  5. 제1항에 있어서,
    상기 제1 전극은 상기 절연 기재의 제1 단변으로 치우쳐져 배치되고, 상기 제2 전극은 상기 절연 기재의 제2 단변으로 치우쳐져 배치된 안테나 모듈.
  6. 제1항에 있어서,
    상기 제1 전극 및 상기 제2 전극은 금속 재질인 안테나 모듈.
  7. 제1항에 있어서,
    상기 방사 와이어는 상기 베이스 기재 및 상기 절연 기재가 적층된 적층체에 권선되어 상기 베이스 기재의 상면 및 상기 절연 기재의 하면에 권선된 안테나 모듈.
  8. 제7항에 있어서,
    상기 방사 와이어는 상기 절연 기재의 하면 중 상기 제1 단자 및 상기 제2 단자 사이의 이격 공간에 권선된 안테나 모듈.
  9. 제1항에 있어서,
    상기 절연 기재는,
    하면에 상기 제1 전극이 형성된 제1 절연 기재; 및
    하면에 상기 제2 전극이 형성되고, 상기 제1 절연 기재와 이격되어 배치된 제2 절연 기재를 포함하는 안테나 모듈.
  10. 제9항에 있어서,
    상기 제1 절연 기재는 상기 베이스 기재의 제1 단변으로 치우쳐져 배치되고,
    상기 제2 절연 기재는 상기 베이스 기재의 제2 단변으로 치우쳐져 배치된 안테나 모듈.
  11. 제9항에 있어서,
    상기 방사 와이어는 상기 베이스 기재에 권선되되, 상기 베이스 기재의 하면 중 상기 제1 절연 기재 및 상기 제2 절연 기재 간의 이격 공간에 권선된 안테나 모듈.
PCT/KR2018/007984 2017-08-18 2018-07-13 안테나 모듈 WO2019035560A1 (ko)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/638,695 US11735820B2 (en) 2017-08-18 2018-07-13 Antenna module
CN201880060814.0A CN111108649B (zh) 2017-08-18 2018-07-13 天线模块

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2017-0104794 2017-08-18
KR1020170104794A KR102088032B1 (ko) 2017-08-18 2017-08-18 안테나 모듈

Publications (1)

Publication Number Publication Date
WO2019035560A1 true WO2019035560A1 (ko) 2019-02-21

Family

ID=65361890

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2018/007984 WO2019035560A1 (ko) 2017-08-18 2018-07-13 안테나 모듈

Country Status (4)

Country Link
US (1) US11735820B2 (ko)
KR (1) KR102088032B1 (ko)
CN (1) CN111108649B (ko)
WO (1) WO2019035560A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002016419A (ja) * 2000-06-30 2002-01-18 Matsushita Electric Ind Co Ltd チップアンテナ及び無線端末装置
JP2007060138A (ja) * 2005-08-23 2007-03-08 Nec Tokin Corp コイルアンテナ
KR20160050502A (ko) * 2014-10-30 2016-05-11 서울전자통신(주) Nfc 안테나의 코어 및 그를 이용한 nfc 안테나
JP2017050811A (ja) * 2015-09-04 2017-03-09 戸田工業株式会社 アンテナ装置、icタグ及びicタグ付き物品
JP2017098647A (ja) * 2015-11-19 2017-06-01 株式会社リコー アンテナ装置、通信装置、及びアンテナ装置の製造方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7295168B2 (en) * 2004-05-20 2007-11-13 Yonezawa Electric Wire Co., Ltd. Antenna coil
JP2007164479A (ja) * 2005-12-14 2007-06-28 Matsushita Electric Ind Co Ltd Rf−idリーダーライター装置用アンテナ及びそれを用いたrf−idリーダーライター装置並びにrf−idシステム
JP3933191B1 (ja) * 2006-03-13 2007-06-20 株式会社村田製作所 携帯電子機器
JP2007306137A (ja) * 2006-05-09 2007-11-22 Sumida Corporation コイルアンテナの実装方法およびアンテナ装置
JP2008109484A (ja) * 2006-10-26 2008-05-08 Sumida Corporation アンテナ用コイル装置
US8381990B2 (en) * 2007-03-30 2013-02-26 Sony Corporation Antenna module
EP2498509B1 (en) 2008-04-07 2018-08-15 Koss Corporation Wireless earphone that transitions between wireless networks
KR101663839B1 (ko) * 2008-04-25 2016-10-07 도다 고교 가부시끼가이샤 자성체 안테나, 상기 자성체 안테나를 실장한 기판 및 rf 태그
JP5284449B2 (ja) * 2011-11-29 2013-09-11 株式会社東芝 電子機器
JP5918609B2 (ja) * 2012-04-13 2016-05-18 株式会社吉川アールエフセミコン 薄型アンテナコイル
US9673524B2 (en) * 2014-04-18 2017-06-06 Samsung Electro-Mechanics Co., Ltd. Compact loop-type antenna device
CN104009293A (zh) * 2014-06-06 2014-08-27 昆山联滔电子有限公司 天线
WO2016121501A1 (ja) * 2015-01-29 2016-08-04 株式会社村田製作所 アンテナ装置、カード型情報媒体および通信端末装置
KR102117473B1 (ko) * 2015-03-18 2020-06-01 삼성전기주식회사 실장 기판 모듈, 안테나 장치 및 실장 기판 모듈 제조 방법
US9941729B2 (en) * 2015-08-07 2018-04-10 Nucurrent, Inc. Single layer multi mode antenna for wireless power transmission using magnetic field coupling
KR101878162B1 (ko) * 2015-09-16 2018-07-13 주식회사 아모텍 근거리 통신 안테나 모듈 및 이를 구비하는 휴대 단말
US20170229777A1 (en) * 2016-02-04 2017-08-10 Samsung Electro-Mechanics Co., Ltd. Antenna structure and antenna apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002016419A (ja) * 2000-06-30 2002-01-18 Matsushita Electric Ind Co Ltd チップアンテナ及び無線端末装置
JP2007060138A (ja) * 2005-08-23 2007-03-08 Nec Tokin Corp コイルアンテナ
KR20160050502A (ko) * 2014-10-30 2016-05-11 서울전자통신(주) Nfc 안테나의 코어 및 그를 이용한 nfc 안테나
JP2017050811A (ja) * 2015-09-04 2017-03-09 戸田工業株式会社 アンテナ装置、icタグ及びicタグ付き物品
JP2017098647A (ja) * 2015-11-19 2017-06-01 株式会社リコー アンテナ装置、通信装置、及びアンテナ装置の製造方法

Also Published As

Publication number Publication date
CN111108649B (zh) 2023-08-25
US11735820B2 (en) 2023-08-22
US20200220265A1 (en) 2020-07-09
KR102088032B1 (ko) 2020-03-11
CN111108649A (zh) 2020-05-05
KR20190019618A (ko) 2019-02-27

Similar Documents

Publication Publication Date Title
WO2010104251A1 (ko) 마이크로 스피커
CN109040928B (zh) 听力设备、尤其耳后式助听器
CN110574231B (zh) 环形天线及具有该环形天线的耳机模块
WO2019035561A1 (ko) 링형 안테나 및 이를 구비한 이어 모듈
WO2016175592A1 (ko) 다층 구조의 보이스 코일판 및 이를 포함하는 평판형 스피커
WO2012111943A2 (ko) Pcb 보이스 코일판의 진동-리드 플레이트를 갖는 평판형 스피커
WO2013133652A1 (ko) 평판 스피커용 fpcb 일체형 리드 플레이트
CN208016128U (zh) 多层基板及电子设备
WO2019182283A1 (ko) 콤보 안테나 모듈
WO2017048062A1 (ko) 근거리 통신 안테나 모듈 및 이를 구비하는 휴대 단말
WO2012050279A1 (ko) 마이크로폰 장치
WO2016190708A1 (ko) 무선전력 전송용 안테나유닛 및 이를 포함하는 무선전력 송신모듈
WO2011037303A1 (ko) 칩 안테나를 위한 pcb 레이아웃 구조 및 이를 이용한 칩 안테나 장치
US5900845A (en) Antenna device
WO2019035560A1 (ko) 안테나 모듈
WO2012151844A1 (zh) 连接装置、耳机天线及耳机
WO2012002718A2 (ko) 표면실장형 안테나부를 포함한 기판형 내장 안테나 및 그 제조방법
WO2019132368A1 (ko) 스피커용 압전 소자 및 그의 제조 방법
WO2020060152A1 (ko) 차량용 공통 모드 필터
KR101926576B1 (ko) 이중 링형 안테나 및 이를 구비한 이어 모듈
KR101926575B1 (ko) 링형 안테나 및 이를 구비한 이어 모듈
WO2019177357A1 (ko) 무선전력 수신모듈 및 이를 포함하는 휴대용 전자기기
US10305187B2 (en) Antenna device, communication apparatus, and method of manufacturing antenna device
WO2022270839A1 (ko) 위상 변환기 및 그를 포함하는 무선 통신 장치
JP6239176B1 (ja) アンテナモジュール

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18845577

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18845577

Country of ref document: EP

Kind code of ref document: A1